
1 INTRODUCTION 

Geotechnical engineers often use the observation method to deal with uncertainties in site con-
ditions or performance behavior. The engineer collects a few hypotheses about site conditions 
and then gathers field observations to identify the correct hypothesis. In probability theory, 
Bayesian updating formalizes this procedure, by quantifying the effect of an observation on the 
probability of a prior hypothesis. Bayesian updating is applied here within the structural reliabil-
ity concept. To this end, a recently proposed methodology (Straub 2010) that allows updating of 
the reliability given measurement information is applied. Hence, the effect of measurements at a 
geotechnical construction site on the failure probability of the system is quantified. 

In geotechnical reliability analysis, material nonlinearities are often taken into account, lead-
ing to failure events defined by nonlinear performance functions. The largest uncertainties in the 
analysis stem from the mechanical properties of the soil materials. The inherent spatial variabil-
ity of the soil necessitates the consideration of random fields for the accurate modeling of these 
uncertainties. Moreover, the consideration of the spatial variability seems to have an important 
influence on the computed reliability (Rackwitz 2000). 

In the context of finite element (FE) reliability analysis, the stochastic FE discretization of the 
random fields may lead to a large number of random variables. The reliability of such high-
dimensional nonlinear problems can be solved efficiently by either first or second order reliabil-
ity methods combined with the direct differentiation method for the evaluation of the derivatives 
(Zhang & Der Kiureghian 1993, Der Kiureghian & Zhang 1999) or by certain simulation ap-
proaches, such as the subset simulation, the spherical subset simulation and recently the asymp-
totic sampling method (Au & Beck 2001, Katafygiotis & Cheung 2007, Bucher 2009). The for-
mer case requires alterations at the FE code level, while the latter may be easily coupled with a 
“black-box” FE code.  

In this work, the subset simulation is applied for the reliability updating of a geotechnical FE 
model, involving an excavation in sand with a sheet pile retaining wall, whereby the underlying 
non-Gaussian random fields are discretized using the stochastic FE method. 
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ABSTRACT: In geotechnical sites, deformation measurements are commonly made during the 
construction process. In this paper, it is shown how information obtained during such measure-
ments can be utilized to update the estimate of the reliability at future construction stages. A re-
cently proposed method for Bayesian updating of the reliability with information of equality 
type is successfully applied in conjunction with a stochastic nonlinear geotechnical finite ele-
ment model. Therein uncertainty in the soil material properties is modelled by non-Gaussian 
random fields. The conditional reliability is evaluated by means of an efficient adaptive Monte 
Carlo method, known as subset simulation. The approach is demonstrated through an applica-
tion to a sheet pile wall at a deformation-sensitive geotechnical construction site. 



2 STOCHASTIC FEM 

In computational mechanics, the continuous nature is approximated by a discrete representation 
through the discretization procedure. Among the different discretization methods, the FE me-
thod is considered the most suitable for application in geotechnical engineering (Zienkiewicz & 
Taylor 2000). The FE method requires the splitting of the continuous medium into an assembly 
of individual elements, i.e. the FE mesh. Moreover, nonlinear FE analysis computes the defor-
mations and stresses through the solution of a nonlinear system of equations, wherein the nonli-
near effects of the soil material properties as well as the interaction between the soil and adja-
cent retaining structures are taken into account. For the simulation of construction sites, usually 
a sequence of nonlinear FE analyses is performed to model the different stages of the construc-
tion process. 

The consideration of the stochastic nature of the mechanical properties of soil requires an ad-
ditional discretization of the relevant random fields. A random field X(t) may be loosely defined 
as a random function, which describes a random variable at each point t of a continuous space, 
where t is a location vector. To completely define a random field, the joint distribution of the 
random variables {X(t1), X(t2) …, X(tn)} for any {n, t1, t2, …, tn} must be specified. In most en-
gineering applications, however, the joint distribution is modeled by a Gaussian copula (the Na-
taf distribution, Der Kiureghian & Liu 1986), in which case the distribution is completely de-
scribed by second moment information and the marginal distribution. Denoting the expectation 
operator by E[.], we define the mean and auto-covariance function of the random field respec-
tively by: 
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The variance function is expressed as: 
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The auto-correlation coefficient function may then be defined by: 
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A random field is said to be second-order homogeneous if its second-order properties are invari-
ant to a shift of the origin. A direct consequence of this is that the mean and variance are con-
stant over space and the auto-covariance and auto-correlation coefficient functions depend only 
on the difference in location τ between two points: 
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The continuous random field X(t) may be approximated by a discrete X̂(t), defined by means 
of a finite set of random variables Xi. Several methods have been proposed for the discretization 
of random fields – a comprehensive review is given by Sudret & Der Kiureghian (2000). In this 
study, the midpoint method (Der Kiureghian & Ke 1988) is adopted. This method requires a 
stochastic finite element (SFE) mesh, which can be independent of the FE mesh used in the de-
terministic part of the analysis. According to this method, the value of the random field X(t) 
over each SFE i is represented by its value at the midpoint ti of the element: 
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If the random field is second-order homogeneous, the mean and the variance of the random va-
riables Xi are not affected by the discretization and therefore are equal to their constant values 
over the entire field. The correlation matrix of the random variables is generated by computing 
the distances τij between the midpoints of each element and inserting into Equation 6. The ran-



dom field is thus reduced to a vector X of correlated random variables with known marginal dis-
tributions and correlation coefficients. 

3 RELIABILITY ANALYSIS 

Let X be a vector of random variables with joint probability density function (PDF) fX(x). A 
failure event F is defined by a domain ΩF = {g(x) ≤ 0} in the outcome space of X, with g(x) be-
ing a performance function with the following general form: 
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where {gi(x), i = 1,…,m} is a set of component performance functions and Ck is an index set de-
noting the k-th cut set. The component-reliability problem may be derived by setting i = 1, the 
parallel-system reliability problem by setting K = 1, and the series-system reliability problem by 
defining each cut set by a single index. The probability of failure for the general reliability prob-
lem is evaluated by: 
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In the case where only second moments and marginal distributions are available, the joint PDF 
may be approximated using the Nataf model and a transformation of the random variables from 
the original random variable space to an equivalent independent standard Gaussian space (trans-
formed space) U = T(X) may be performed (Der Kiureghian & Liu 1986). The probability may 
then be computed as follows: 
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where φU(u) is the standard normal joint PDF and G(u) = g[T
-1

(u)]. 

3.1 Reliability updating with equality information 

Consider measurements or other observations of the structural or geotechnical system. This in-
formation is described by an event Z, which in structural reliability is defined through a domain 
ΩZ in the outcome space of the basic random variables X. The conditional probability of F given 
the information Z is: 
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The domain ΩZ is defined through a function h(x); if ΩZ is defined as ΩZ = {h(x) ≤ 0}, the event 
Z is said to be of inequality-type and if ΩZ is defined as ΩZ = {h(x) = 0}, Z is said to be of equal-
ity-type. In the latter case, the probability of the event Z is zero and both integrals in Equation 
11 will result in zero. To circumvent this problem, a method proposed in (Straub 2010) will be 
applied, according to which the event Z is replaced by an equivalent inequality-type event Ze. 

To illustrate the methodology, consider the case where Z describes the measurement sm of a 
system characteristic s(x), e.g. a deformation measurement of a structure, with corresponding 
equality-type performance function: 
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where εm is a random variable representing the measurement error. Equivalently, the informa-
tion of the event Z with respect to the random variables X can be expressed by the likelihood 
function: 
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where fεm is the PDF of εm. It is suggested in (Straub 2010) to utilize this likelihood function to 
define a new performance function: 
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where u is the outcome of a standard normal random variable, Φ
-1

(.) is the inverse of the stan-
dard normal cumulative distribution function and c is a positive constant, chosen to ensure that 
cL(x) ≤ 1 for all x. Let ΩZe = {he(x+) ≤ 0}, be the corresponding domain of event Ze that defines 
an inequality information, where x+ is the outcome of X+ = [X, U]

T
. It is shown in (Straub 2010) 

that the conditional probability of F given Z is: 
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where fX+(x+) is the joint PDF of X+. As opposed to the original formulation in Equation 11, 
both integrals in Equation 15 have finite value and can thus be computed using any structural re-
liability method, including simulation methods. Here, this formulation will be applied in con-
junction with subset simulation for the application to geotechnical reliability updating. 

4 SUBSET SIMULATION 

The subset simulation is an adaptive simulation method developed by Au & Beck (2001), which 
is shown to be efficient especially in high dimensions. The method is based on the standard 
Monte Carlo simulation (MCS) but overcomes its inefficiency in estimating small probabilities, 
while maintaining its independency on the problem dimensionality. This is achieved by express-
ing the failure event F as the intersection of M intermediate failure events: 
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. The probability of failure is estimated by applying the definition 
of conditional probability, resulting in: 
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The failure event is defined in the equivalent standard normal space by G(u) ≤ 0; each of the in-
termediate events is defined as Fi = {G(u) ≤ Gi}, where Gi > … > GM = 0. The values of Gi are 
chosen adaptively so that the estimates of the conditional probabilities correspond to a chosen 
value p0. The probability of F1 is computed by applying the crude MCS method (Rubinstein 
1981). Through MCS, we simulate N samples of U and take as G1 the [(1 – p0)N]-th largest val-
ue among the samples {G(uk): k = 1,…,N}. The samples ui for which G(ui) ≤ G1 are used as 
starting points for the simulation of samples conditional on F1, by applying the Metropolis-
Hastings algorithm, which is a Markov chain Monte Carlo technique. This procedure is repeated 
until the maximum level M is reached, for which the threshold GM = 0 is given. The failure 
probability is then approximated by: 
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where the conditional probability Pr(FM | FM–1) is equal to the ratio of the number of samples for 
which G(u) ≤ 0 over the total number of samples N simulated conditional on FM–1. 

The choice of p0 and the number of samples at each step N may in principle be arbitrary. 
However, the choice of N should be large enough to give an accurate estimation of p0. In this 
study, the values p0 = 0.1 and N = 500 were chosen, following the initial suggestions given by 
Au & Beck (2001). 



5 APPLICATION 

The application considered is a deep excavation in sand with a sheet pile retaining wall. The FE 
model was built in the SOFiSTiK program and the reliability assessment was performed using a 
reliability tool, developed as part of the SOFiSTiK software package (Papaioannou et al. 2009). 

5.1 Geotechnical model description 

The site consists of a 5.0m deep trench with cantilever sheet piles, without anchors or bottom 
support (Fig. 1), in a homogeneous soil layer of dense cohesionless sand with uncertain spatially 
varying mechanical properties. The soil is modeled in 2D with plane-strain finite elements. For 
simplicity, neither groundwater nor external loading is considered. The material model used is 
an elastoplastic model with a prismatic yield surface according to the Mohr-Coulomb criterion 
and a non-associated plastic flow. The probability distributions, describing the uncertainty in the 
material properties of the soil, are shown in Table 1. The spatial variability of the soil is mod-
eled by a second-order homogeneous random field, with the following exponential auto-
correlation coefficient function (Vanmarcke 1983): 
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where τ = [τx, τz]
T
 is the vector of absolute distances in the x (horizontal) and z (vertical) direc-

tions. The correlation lengths were chosen as lx = 20m and lz = 5m. The random field was dis-
cretized by the midpoint method using a SFE mesh, consisting of 144 deterministic FE patches. 
The stochastic discretization resulted in a total of 432 basic random variables. In Figure 2, the 
stochastic and deterministic FE meshes are shown. 
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Figure 1. Sheet pile wall in sand. 

 
Table 1. Material properties. 
                                                                                                                                         

Parameter        Distribution   Mean  COV 
                                                                                                                                         

Specific weight γ [kN/m
3
]  Normal     19.0   5% 

Young’s modulus E [MPa]  Lognormal    125.0   25% 
Poisson’s ratio ν      -       0.35   - 
Friction angle  φ [

ο
]     Beta(0.0,45.0)  35.0   10% 

Cohesion c [MPa]     -       0.0   - 
Dilatancy angle ψ [

ο
]    -       5.0   - 

                                                                                                                                         

 
A deterministic design using the conventional method for cantilever sheet pile design in granu-
lar soils, which requires equilibrium of the active and passive lateral pressures (e.g. see Tsche-
botarioff 1951), was performed analytically. A depth of 7.5m and the sheet pile profile PZC 13 
were chosen, applying a global safety factor of 1.5. The Young’s modulus of steel was taken as 
210 GPa. The pile was modeled using beam elements with an equivalent rectangular cross sec-



tion that behaves equally to the sheet pile in bending and axial resistance. The interaction be-
tween the retaining structure and the surrounding soil was modeled using nonlinear interface 
elements. An elastoplastic model with a yield surface defined by the Mohr-Coulomb criterion is 
used to describe the interface behavior. The elastic properties of the interface elements are taken 
from the mean values of the adjacent soil, while the strength properties are reduced by the factor 
2/3 and a zero dilatancy is chosen. 

The finite element analysis is performed stepwise. First, the modeling of the in-situ stress 
state is carried out applying the K0-procedure, where K0 is the lateral earth pressure coefficient 
at rest, computed here using the expression proposed by Jaky (1944) for normally consolidated 
soils: 
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Next, the sheet pile is installed by activating the corresponding beam and interface elements. Fi-
nally, the excavation is modeled by removing the plane-strain elements corresponding to the 
trench and applying the necessary loading to establish equilibrium. 
 

  
(a) Stochastic finite element mesh (b) Deterministic finite element mesh 
 
Figure 2. Stochastic and deterministic finite element mesh. 

5.2 Limit state functions 

The maximum horizontal ux displacement occurs at the top of the trench. The failure event F is 
defined as the event of ux exceeding a threshold of ux,t = 10cm. Mathematically, this is expressed 
through the following performance function: 
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We assume that a measurement of the displacement ux is made at an intermediate excavation 
step of 2.5m depth. This information is expressed by an event Z, defined through the following 
equality-type performance function: 
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where εm is a zero mean Gaussian random variable, representing the measurement error. The 
corresponding equivalent inequality performance function is: 

( )
( )

























 −
−= −

mε

xmx

mε

e
σ

uu
φ

σ

c
Φuuh

,

,

,

1,
x

x  (23) 

where σε,m is the standard deviation of εm and the constant is chosen as c = σε,m.  



5.3 Results 

In Figure 3, the deformed configuration is depicted at the final excavation stage for the mean 
values of the random fields.  
 

 
Figure 3. Deformed configuration at the final excavation step. 

 
The reliability analysis is performed by means of subset simulation. Without measurements, the 
computed failure probability is Pr(F) = 1.360×10

-2
 with a corresponding reliability index β = 

2.209.  
For the estimation of the updated failure probability conditional on the measurement event Z, 

the integrals in Equation 15 were evaluated with subset simulation. The reliability updating was 
performed for different values of the assumed measurement ux,m, and different values of the 
standard deviation σε,m of the measurement error. The results are summarized in Table 2. For 
comparison, the (a-priori) expected value of h(x) is computed as 2.57mm.  

 
Table 2. Updated failure probability Pr(F) = 1.360 ×10

-2
 

                                                                                                                           

Measurement    Pr(F|Z) 
                                                                                                                           

        σε,m = 2 mm    σε,m = 1 mm 
                                                                                                                           

ux,m = 10 mm    2.185×10
-1

     3.313×10
-1

 
ux,m = 5 mm    2.091×10

-2
     3.587×10

-2
 

ux,m = 2 mm    6.743×10
-3

     1.845×10
-3

 
                                                                                                                           

 
Not surprisingly, for measurements higher than the expected value, the updated failure probabil-
ity is higher than the prior probability. This difference increases with decreasing σε,m, represent-
ing an increase in accuracy of the measurement device. On the other hand, the updated failure 
probability conditional on a measurement smaller than the expected value is lower than the prior 
probability, and a decreasing value of σε,m increases this difference. It is noted, however, that a 
measurement that corresponds exactly to the expected value of the deformation would lead to a 
posterior failure probability that is lower than the prior probability, due to the reduction in un-
certainty. 

The number of deterministic FE analyses required by the subset simulation ranges between 
1900 and 3700. The higher amount of computations is observed in the case where the assumed 
measurement differs considerably from the expected value (i.e. the case where ux,m = 10 mm). 
This is due to the small value of the probability Pr(Ze) in Equation 15, resulting in a larger num-
ber of levels in the corresponding run of the subset simulation algorithm. 

6 CONCLUSION 

In this paper, a procedure for the reliability updating of geotechnical sites using measurement 
information is presented. The applied methodology includes the stochastic discretization of the 
non-Gaussian random fields, representing the spatial variability of the uncertain material pa-



rameters. For the reliability updating, a recently proposed method that tackles Bayesian updat-
ing with equality information was applied. This approach was combined with the subset simula-
tion, an adaptive Monte Carlo method that is able to handle efficiently reliability problems with 
a large number of random variables.   

The proposed procedure was applied to a nonlinear stochastic finite element model of an ex-
cavation with a sheet pile retaining wall. Several different cases of deformation measurements 
in an intermediate construction stage were considered. The results showed that reasonable esti-
mates of the conditional failure probability may be obtained with a feasible computational cost 
even when including a large number of basic random variables for the random field representa-
tion of the soil properties. 

ACKNOWLEDGEMENT 

This work is partially supported by SOFiSTiK AG. This support is gratefully acknowledged.  

REFERENCES 

Au, S.K. & Beck, J.L. 2001. Estimation of small failure probabilities in high dimensions by subset simu-
lation. Probabilistic Engineering Mechanics 16(4): 263-277. 

Bucher, C. 2009. Asymptotic sampling for high-dimensional reliability analysis. Probabilistic Engineer-
ing Mechanics 24: 504-510. 

Der Kiureghian, A. & Ke, J-B. 1988. The stochastic finite element method in structural reliability. Prob-
abilistic Engineering Mechanics 3(2): 83-91. 

Der Kiureghian, A. & Liu, P-L. 1986. Structural reliability under incomplete probability information. 
Journal of Engineering Mechanics ASCE 112(1): 85-104. 

Der Kiureghian, A. & Zhang, Y. 1999. Space variant finite element reliability analysis. Comput. Methods 
Appl. Mech. Engrg. 168: 173-183. 

Jaky, J. 1948. The coefficient of earth pressure at rest. In Hungarian. J. Soc. Hung. Eng. Arch., 355-358. 
Katafygiotis, L.S. & Cheung, S.H. 2007. Application of spherical subset simulation method and auxiliary 

domain method on a benchmark reliability study. Structural Safety 29: 194-207. 
Papaioannou, I., Heidkamp, H., Düster, A., Rank, E. & Katz, C. 2009. Integration of reliability methods 

into a commercial finite element software package. In H. Furuta, D.M. Frangopol, M. Shonozuka 
(eds.), Proceedings of the 10

th
 International Conference on Structural Safety and Reliability ICOSSAR 

2009, Osaka, September, 2009. London: Taylor & Francis Group. 
Rackwitz, R. 2000. Reviewing probabilistic soils modelling. Computers and Geotechnics 26: 199-223. 
Rubinstein, R.Y. 1981. Simulation and the Monte Carlo Method. New York: John Wiley & Sons. 
Straub, D. 2010. Reliability updating with equality information, Probabilistic Engineering Mechanics, 

under review. 
Sudret, B. & Der Kiureghian, A. 2000. Stochastic Finite Elements and Reliability: A State-of-the-Art Re-

port. University of California, Berkeley, 2000 – Technical Report no UCB/SEMM-2000/08. 
Tschebotarioff, G.P. 1951. Soil Mechanics, Foundations and Earth Structures. New York: M cGraw-Hill. 
Vanmarcke, E.H. 1983. Random Fields: Analysis and Synthesis. Cambridge, MA: MIT Press. 
Zhang, Y. & Der Kiureghian A. 1993. Dynamic response sensitivities of inelastic structures. Comput. 

Methods Appl. Mech. Engrg. 108: 23-36. 
Zienkiewicz, O.C. & Taylor, R.L. 2000. The Finite Element Method. Fifth edition. Oxford: Butterworth-

Heinemann. 


