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ABSTRACT: The paper presents a novel computational framework for probabilistic deterioration modeling 
based on dynamic Bayesian networks. The framework enables robust and efficient Bayesian updating of the 
deterioration model with measurements, inspections and monitoring, making it ideally suited for applications 
in the management of infrastructure systems, such as structural health monitoring and inspection planning. In 
this paper, the framework is applied to process equipment subject to CO2 corrosion, for which inspection and 
monitoring data is available.   

1 INTRODUCTION  2 DYNAMIC BAYESIAN NETWORKS (DBN) 

In a recent paper (Straub, in press), the author has 
proposed a computational framework for stochastic 
deterioration modeling based on the dynamic Baye-
sian network (DBN) methodology. The proposed 
framework can be interpreted as a generalization of 
the Markov chain, which allows to efficiently in-
clude non-ergodic random variables that are the do-
minant source of uncertainty in most engineering 
models of deterioration. When the interest is in up-
dating of the deterioration model with inspection re-
sults, monitoring data and other observations, the 
DBN framework has significant advantages over ex-
isting computational methods such as FORM/SORM 
and simulation techniques. The DBN framework is 
both computationally efficient and robust. In particu-
lar the latter characteristic make the framework 
ideally suited for application in practice for the man-
agement of deteriorating structures, because the 
model can be implemented in software that does not 
require input from an engineer specialized in relia-
bility analysis.  

Dynamic Bayesian Networks (DBN) are a special 
class of Bayesian networks that can represent sto-
chastic processes (Murphy 2002; Russell and Norvig 
2003). A DBN consists of a sequence of slices, each 
of which contains one or more BN nodes that 
represent random variables. The slices are connected 
by directed links from nodes in slice i to nodes in 
slice i+1. An example of a DBN is shown in Figure 
1, where each slice consists of two nodes Xi and Yi.   
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In this paper, following a short summary of the 
DBN framework, the application of the model to 
corrosion in process equipment is demonstrated. Par-
ticular emphasis is set on the Bayesian updating of 
the deterioration model with inspection results and 
monitoring data. The latter have not been considered 
in (Straub, in press). Finally, it is outlined how the 
DBN model facilitates the modeling of deterioration 
in infrastructure systems.  

 
 

 
Figure 1. An example of a dynamic Bayesian network. 

 
Like any Bayesian network, a DBN essentially is a 
model for a joint probability distribution. The graph-
ical structure of the DBN represents the dependence 
structure among the random variables (Pearl 1988). 
By exploiting assumptions on (conditional) indepen-
dence of random variables, the DBN enables an effi-
cient modeling of the joint probability distribution. It 
is sufficient to define the conditional distributions 
for each variable X in the DBN given its parents 
pa(X), which are the variables that have links di-
rected towards the variable in the network. The full 
distribution of a DBN with discrete variables 
X=X1,…,Xn is then fully described by the local con-
ditional probability mass functions (PMF) 

[ ( )]i ip x pa X  through the relation 
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In this paper, we consider only DBN models of dis-
crete random variables. The interest is in computing 
the conditional PMF of one or several variables in 
the DBN given observed values of other variables. 
Denoting the variables of interest by Y and the ob-
served variables by E (for evidence), we can sum-
marize the inference problem as that of determining 

. A number of exact inference algorithms are 
available for the efficient computation of  
(Murphy 2002). 

2.1 Markov processes 
DBN can be interpreted as a generalization of Mar-
kov process models, which have frequently been ap-
plied for the modeling of deterioration (Bogdanoff 
and Kozin 1985; Ishikawa et al. 1993; Rocha and 
Schuëller 1996; Spencer and Tang 1988). Markov 
deterioration processes are characterized by the fact 
that for a given condition at time 1t , the condition at 
any future time 2 1  is statistically independent of 
the condition at any past time 0 1 . By studying 
the independence assumption of the DBN, it is ob-
served that this holds also for the DBN shown in 
Figure 1. The joint distribution of the variables in 
this DBN can also be modeled by a Markov chain, 
yet such a model would be less efficient.  

It is noted that the Markovian assumption does 
not hold in engineering practice, where epistemic 
uncertainties are prevalent (Melchers 1999; Yang 
1994). Epistemic uncertainties are often time-
invariant (e.g., uncertainties due to simplistic para-
metrical models, due to limited statistical data for 
empirical models, or due to incomplete knowledge 
of influencing parameters), thus invalidating the 
Markovian assumption. To overcome this shortcom-
ing, the generic deterioration model presented in the 
next section corresponds to a Markov process model 
conditional on time-invariant random variables. As 
will be shown, the DBN technique enables the effi-
cient computation of such models. 

3 THE DBN FRAMEWORK FOR STOCHASTIC 
DETERIORATION MODELING 

3.1 Generic deterioration model 
Consider a parametric deterioration model h  that 
describes the extent of deterioration, td , as a func-
tion of time t , a set of time-invariant model parame-
ters , a set of time-variant model parameters 

t  and the initial condition 0 . For corro-
sion, t  can be the dimension of the corrosion de-
fects, e.g., the maximum depth of corrosion in a 
structural element, the average corrosion loss or the 

area of corrosion; t  can also be a variable describ-
ing different discrete condition states, such as “no 
corrosion” and “initiation of corrosion”; finally, td  
can be a combination of defect dimensions and con-
ditions. The deterioration model is written in generic 
form as 

( ) ( )0 1, , , ,..., , 0t td d t h t d t= = >θ ω ω
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The proposed DBN model does not replace the pa-
rametric deterioration model . Instead, the DBN 
model provides a computational framework that al-
lows accurate and efficient evaluation of t  based 
on the prior stochastic model of the parameters and 
including all observations of the deterioration 
process and any of the parameters. The DBN also 
facilitates learning about the model parameters , 

 and ω  based on the observations. t
Hereafter, we limit ourselves to modeling deteri-

oration as a discrete time process. Furthermore, in 
accordance with common deterioration models, we 
require that the dependence among the d  is condi-
tionally Markovian, i.e.,  
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where f  denotes the probability density function 
(PDF). Note that 1t t t−  can vary with , 
i.e., the conditional Markov process is not homo-
genous in the general case. Additionally, we require 
that the time-variant model parameters tω  are a 
Markov process conditional on  and 
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Since t  is dependent on the time-invariant uncer-
tain model parameters θ  for given 1td − , the deteri-
oration process is not Markovian in the uncondition-
al case, i.e., in general it is 
f 0 1 1( | , , ) ( | )t t t td d d f d d≠− −K
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θ
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3.2 DBN framework 
The generic deterioration model introduced above 
can be interpreted as a DBN. By accounting for the 
independence assumptions made above, the DBN 
model shown in Figure 2 is constructed. In this 
DBN, the additional vectors 1 T  are intro-
duced, which are identical to the time-invariant pa-
rameters , i.e., they are related by the deterministic 
functions 1t t−= =θ θ =θ θand 1 . The intro-
duction of these vectors has no effect on the compu-
tational efforts, however, it simplifies the model 
building process and the graphical representation of 
the model.  
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Figure 2. Generic DBN deterioration model. 
 

 The nodes in the generic DBN of Figure 2 are vec-
tors of random variables. When the framework is 
applied to specific deterioration processes, it will be 
beneficial to replace the vectors by the individual 
variables of the specific models and introduce them 
directly in the DBN. In this way, additional inde-
pendence assumptions can be encoded in the net-
work, thus reducing the computational efforts re-
quired in evaluating the network. This will be 
demonstrated in the example. 

 
Figure 3. Including an inspection event (observation of the 
damage variables) in the DBN. 

3.4 Inference 

Since we apply a DBN model with exclusively 
discrete random variables, it is necessary to discret-
ize all continuous random variables in the model. A 
heuristics for discretizing the random variables is 
presented in (Straub, in press), which will applied in 
the example. 

3.3 Including observations in the model 
Observations, such as measurements, monitoring da-
ta or inspection results, can be included in the mod-
el. If a variable of the model is observed directly, 
then the variable is instantiated in the DBN. Typical-
ly, however, the observation is indirect or associated 
with a measurement uncertainty. In this case, a spe-
cific variable representing the observation must be 
introduced in the DBN as a child of the observed va-
riable. Figure 3 exemplarily shows the modeling of 
observations of the extent of damage, obtained from 
inspections of the component. The node Zt is fully 
defined by t t( | )p dz

e

, which is the likelihood func-
tion of the observation and corresponds to common 
inspection models such as PoD (Probability of De-
tection), see also Straub (submitted). When estab-
lishing the DBN model, variables Zt should be in-
cluded in the DBN for all potential future 
observations. Whenever an observation is available, 
the corresponding variable can be instantiated with-
out modifying the DBN. This is one of the key ad-
vantages of the DBN framework: Because the evalu-
ation of the DBN with exact inference algorithms is 
computationally robust, once the DBN is estab-
lished, all types of evidence can be included auto-
matically. This allows including the model in soft-
ware that can be run without the support of an expert 
in structural reliability, with applications, e.g., in 
health monitoring and inspection planning. 

The purpose of the DBN model is to facilitate the 
computation of the conditional probability distribu-
tion of Dt and other variables of interest, given ob-
servations  from inspection and monitoring (e.g., 
the observation of an inspection result t tZ e=  in ac-
cordance with Figure 3). An efficient exact algo-
rithm to compute this conditional probability distri-
bution was proposed in (Straub, in press) and is here 
employed. The algorithm is an adopted version of 
the “forward-backward” algorithm. The main consti-
tuents of this algorithm are 
− the forward operation (for time ), which com-

putes 1t t t t  by means of a recur-
sive algorithm given in the appendix of (Straub, 
in press);  

t
( , , | ,..., )p dθ ω e e

( ,..., | , , )
− the backward operation (for time t ), which com-

putes 1t T t t tp de e θ ω

1,...,t T+e e ( | ) 1p d

+  by means of a re-
cursive algorithm given in the appendix of 
(Straub, in press).  

When the interest is in computing the reliability at 
time t given the evidence up to time t, the forward 
operation is performed. This case is known as “fil-
tering”. When the interest is in computing the relia-
bility at a future time T conditional on evidence up 
to the present t, which is the case known as “predic-
tion”, the forward operation is performed for time T, 
whereby the whereby the likelihood functions for 

 are set equal to one: i i =e
1, ,i t T

, 
= + K

t

 (i.e., no evidence is entered for these 
variables). Finally, for the case where the interest is 
in computing the probability over the state at a past 
time t given evidence up to time T, which is the case 
known as “smoothing”, both the forward operation 
and the backward operation are carried out for time 

. We then obtain 
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Equation (5) is an application of Bayes’ rule, where-
by 1t t t t  is the prior probability. The 
likelihood function is p d+e e θ ω , the 

 



 

result of the backward operation, because of inde-
pendence of 1 T+e  from 1  for given 

, as prescribed by the DBN structure. 
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Let the number of states of t t t  be 

θ , respectively. As demonstrated in 
(Straub, in press), in the general case the computa-
tion time for filtering is d dO m ω ω θ , 
whereas for predicting and smoothing it is 

d dω ω θ . By exploiting the indepen-
dence assumptions among the variables in tθ  and in 

t , the computation time can be further reduced. 
This will be shown for the presented example of 
CO2 corrosion in the following.  
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4 DBN MODELING OF CO2 CORROSION 

4.1 Deterioration model 
The example from (Straub and Faber 2007) is stu-
died, considering CO2 corrosion in a pressurized 
pipe, a common deterioration mechanism in oil ad 
gas process plants. CO2 corrosion is modeled by a 
parametric model originally developed in (DeWaard 
and Milliams 1975, DeWaard et al. 1991), which 
predicts a linear corrosion rate R as a function of 
number of influential parameters. For illustrational 
purposes, a simple version of the model is utilized, 
with the corrosion rate defined as a function of oper-
ating pressure Po, operating temperature To and the 
partial pressure of CO2. Other influencing parame-
ters, such as the pH value or the flow rate are not 
explicitly accounted for.  

CO2 corrosion leads to spatially distributed de-
fects (pits). The DeWaard-Milliams model is a 
worst-case model, and it can be assumed that the 
corrosion rate R relates to the maximum defect size 
in a given area of the considered process equipment. 
To account for the conservatism of this model, a 
model correction factor XM is included, following 
(Sydberger 1995). 

The environmental conditions vary with time. 
Accordingly, Po and To are modeled as random 
processes. As a consequence, the corrosion rate is 
also varying with time, and the maximum defect 
depth at time T is determined as 

D t D R t dt

2
( )CO
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D0 is the initial defect depth. The corrosion rate R(t) 
at any time t is calculated as a function of To(t), the 
CO2 fugacity f t  and a model uncertainty XM: 

( ) 105.8 1710 ( ) 0.67 log10 oT t f
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Here, the temperature T t  is expressed in [K] and 
the CO2 fugacity 

2COf t  is calculated as 
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where o  is expressed in [bar] and 
2CO  is the 

partial pressure of CO2. 
2CO is a function of 

 and the fraction of CO2 in the gas phase, : 
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4.2 Failure criterion 
The considered failure mode is leakage, i.e., the fail-
ure event occurs when the largest corrosion depth 
D t

( )

 exceeds the wall thickness of the pipe, W. The 
corresponding limit state function is  

( )F tg w D t= −  (10) 

The extension of the model to the bursting failure 
mode is straightforward (Ahammed and Melchers 
1996), and corresponds to replacing w in Equation 
(10) with the critical defect size at which failure oc-
curs. Note, however, that in most practical applica-
tions the uncertainty related to the failure mecha-
nism is smaller than the uncertainty related to the 
corrosion process. 

4.3 Stochastic modeling 
The operating pressure Po(t) and temperature To(t) 
are random processes. To include model uncertainty, 
the mean values of these processes, MP and MT , are 
modeled by random variables. This reflects the fact 
that these values depend on the operation of the 
process system and are not known with certainty at 
the time of design. For given values of MP and MT , 
the operating pressure Po(t) and the operating tem-
perature To(t) are modeled as Poisson square wave 
processes (Madsen 1986). Such a process has differ-
ent intervals, whose starting points are generated by 
a Poisson process with intensity ν . In each interval, 
the value of the process is redefined, and is here 
Normal distributed with mean values MP and MT and 
standard deviations Pσ  and Tσ . It is assumed that 
the underlying Poisson process is identical for Po(t) 
and To(t), because both will change at times when 
the operational conditions are changing. In addition, 
it is assumed that Po(t) and To(t) at any time t are 
correlated by a correlation factor PTρ . The cova-
riance functions of these processes are derived in 
(Straub and Faber 2007). For the DBN modeling, 
however, these are not required. It is sufficient to 
note that the processes have the Markov property.  

The model uncertainty XM is Weibull distributed 
with mean 0.4 and coefficient of variation 0.8 in ac-
cordance with (Sydberger 1995). All random vari-
ables are summarized in Table 1. 
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Table 1. Stochastic model 
Variable Distribution Mean St.Dev. Correlation 
W [mm] Deterministic 24 -  - 
D0 [mm] Deterministic 0.0 -  - 
XM [-] Weibull 0.4 0.32 -  
nCO2 [-] Deterministic 0.01 -  - 
PO [bar] Normal MP σP=15 ρPT = 0.8 
TO [K] Normal MT σT=15 ρPT = 0.8 
MP [bar] Normal 303 7 -  
MT [K] Normal 100 5 - 
ν [yr-1] Deterministic 4 -  - 

4.4 Model of inspection and monitoring 
During an inspection, the deepest identified defect in 
the pipe element is measured and recorded. It is, 
however, not guaranteed that the identified defect is 
the actual deepest defect in the element, which might 
be missed at the inspection. The inspection model 
developed in (Straub, submitted) accounts for this 
possibility of missing the largest defect, and is ap-
plied here to represent inspection results. The model 
gives the likelihood of measuring a defect size dmt 
given that the true largest defect size is dt: 
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where PoD is the Probability of Detection function, 

 is the additive measurement error and f ⋅ε  its 
corresponding PDF, 

tD  is the cumulative proba-
bility distribution (CDF) of t , and 

tD  the cor-
responding PDF. The PoD function is taken from 
(Straub, submitted) as  
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The measurement error is Normal distributed with 
zero mean and standard deviation .  1mσ =ε

In the DBN, the inspections are included by the 
nodes Dmt, whose conditional PMF is defined by the 
discretized version of the likelihood function (11). 
Whenever an inspection result dmt is available, the 
corresponding node in the DBN is instantiated.  

Monitoring data is considered for the variables 
Po(t) and To(t). It is assumed that these can be moni-
tored exactly, i.e., the observed values correspond to 
the true values. Therefore, monitoring data is in-
cluded in the DBN by directly instantiating the re-
spective variables of the DBN deterioration model. 

4.5 DBN model 
The resulting DBN model for the example is shown 
in . Because the model has discrete time 

steps, we write all variables with index t, e.g., R(t) = 
Rt. 

 

 
 
Figure 4. The DBN model for CO2 corrosion. 

 
With the inference algorithm from (Straub, in press), 
the computational efforts for performing inference 
on this network are 

OT R DO m
O O O O M T PP T R D P T R D X M M  for the 

filtering case, where m are the number of discrete 
states of the respective random variables.  

The discretization scheme, selected following the 
heuristics suggested in (Straub, in press), is summa-
rized in Table 2. 

 
Table 2. Stochastic model 
Variable # of states Interval boundaries  
XM [-]  16 0, exp{ln(0.1):[ln(4.0/0.1)]/14:ln(4.0)},∞  
PO [bar] 9 0, 34:(116-34)/7:116,   ∞

∞TO [K] 14 0, 243:10:363, ,  
MP [bar] 7 86:4:114 
MT [K] 10 288:3:318  
Rt [mmyr-1] 21 0, exp{ln(0.1):[ln(5.0/0.1)]/19:ln(5.0)},∞  

∞   Dt [mm] 10 0, exp{ln(0.1):[ln(24/0.1)]/98:ln(24)},
∞  Zt [mm] 145 0, exp{ln(0.1):[ln(24/0.1)]/98:ln(24)},

 
In the general case, the resulting computation times 
are in the order of 1-2 CPU hours on a standard PC 
with a 2GHz processor. If monitoring data is availa-
ble for TO(t) and PO(t), these can be reduced down to 
a few CPU seconds. These CPU times are large, not 
least in comparison to the ones reported in (Straub, 
in press) for other deterioration models (which are in 
the order of a few CPU seconds in all cases). To 
some extent this is because the discretization 
schemes shown here are not optimized, yet the main 
reason is that the number of random variables in a 
time slice is higher in the CO2 model presented here. 
It is possible to reduce this number, and therefore 
the computation time, by a strategy outlined in the 
discussion section later. It is noted that the computa-
tion times reported here are not necessarily critical, 
since the cost of computer time is negligible. The 
fact that the computations are robust and do not re-
quire the intervention of the engineer will be the 
crucial factor in many applications. Figure 4

 



 

5 NUMERICAL RESULTS 

5.1 Unconditional case 
Figure 5 summarizes the reliability for the pipe ele-
ment prior to including inspection and monitoring 
results. For this case, Monte Carlo simulation (MCS) 
can be performed, which is used to verify the out-
comes of the DBN model. As observed in Figure 5, 
the results obtained with the DBN are in reasonable 
agreement with the MCS results.  
 

 
 
Figure 5. The reliability index for the case without evidence. 

5.2 Including inspection results 
Two series of inspection outcomes are considered, 
with measured defect sizes as summarized in the fol-
lowing with the corresponding inspection time in 
brackets: 

1) 3mm(2yr); 3mm(3yr); 4mm(4yr); 5mm(6yr); 
6mm(8yr). 

2) 13mm(5yr); 18mm(7yr). 
Figure 6 presents the reliability index updated with 
these inspection results, as evaluated with the DBN. 
The results presented here correspond to filtering. 
i.e., at each time t, the reliability index in Figure 6 
includes all evidence available up to time t. This is a 
common case encountered in the integrity manage-
ment of engineering systems. 

5.3 Including monitoring data 
Next, we consider the situation when the values of 
the influencing parameters TO and PO are recorded. 
It is noted that such data is readily available in the 
operation of process systems, yet an integrity man-
agement procedure is necessary for storing the data 
for the purpose of planning inspections and repairs. 
The two considered monitoring data sets are summa-

rized in Figure 7. The resulting reliability indexes 
are presented in Figure 8. 

 

 
Figure 6. The reliability index for the case with inspection re-
sults. 
 

 
Figure 7. The monitoring data for the updating example. 
 

 
Figure 8. The reliability index for the case with monitoring da-
ta. 

 



 

From Figure 8 it is observed that the monitoring data 
can have a significant influence on the reliability. 
This is particularly the case for data set 1 with lower 
observed values of pressure and temperature (the 
mean value of the TOt series is 293.5K, the one of the 
POt series is 92.9). Because gathering the data will 
be relatively cheap in many instances, such monitor-
ing of influencing variables can represent an effi-
cient way to reduce the risk due to deterioration. 

In general, monitoring data will be available in 
combination with inspection results. Updating of the 
model with such combined information is 
straightforward with the DBN model, an exemplarily 
result is presented in Figure 9, combining the moni-
toring data set 1 with the inspection outcomes 2 
from above. It is interesting to note that including 
the monitoring data in addition to the inspection re-
sults increases the reliability. In the case without in-
spection results, the same monitoring data leads to a 
decrease in reliability (

 
Figure 10. The PDF of XM, updated with monitoring data set 1 
and inspection results 1.  

Figure 8). Without inspection 
results, the effect of observing mean values of pres-
sure and temperature that are larger than expected is 
stronger than the effect of the reduction in uncertain-
ty. Combined with inspection results, which lead to 
higher reliability indexes, the reduction in uncertain-
ty has the stronger effect. 

6 DISCUSSION 

The DBN framework enables robust probabilistic in-
ference when information on the deterioration 
process becomes available. Unlike for the deteriora-
tion processes investigated in (Straub, in press), the 
example presented here still has a main drawback in 
that the CPU times required for performing infe-
rence are in the order of one hour on a standard PC 
with a 2GHz processor unless monitoring data on 
some of the variables is available. For applications 
in which this computational effort becomes critical, 
a modified version of the model must be utilized. 
The model as developed and presented here is the 
straightforward implementation of the general 
framework. If CPU time needs to be reduced by or-
ders of magnitude, simplifications must be made. 
For the presented example of CO2 corrosion, it has 
been shown in (Straub and Faber 2007) that replac-
ing the random process models of TO and PO with 
time-invariant, equivalent values of TO and PO 
changes the results only slightly as long as these 
values are not directly observed. Therefore, a strate-
gy for making the DBN modeling of CO2 corrosion 
more efficient is to separate the model: For those 
time slices at which TO and PO are observed, the 
model as presented here is employed. For all times 
with no observations, e.g., for all future times T, the 
model can be simplified significantly because, with 
TO and PO represented by time-invariant random va-
riables, R becomes time-invariant, and it is sufficient 
to have RT and DT in these time slices, instead of all 
random variables. A similar strategy is presented in 
(Straub, in press), where monitoring evidence is not 
considered.  

 

 
Figure 9. The reliability index for the case with monitoring da-
ta set 1 and inspection results 2.  

 
Besides computing the reliability, the DBN readily 
computes the updated distribution of any variable in 
the model. Exemplarily, the posterior distribution of 
XM given the monitoring data set 1 and the inspec-
tion outcomes 1 is shown in Figure 10. This infe-
rence problem belongs to the smoothing class. Since 
in this case the inspections indicate large defect siz-
es, the posterior PDF of XM is shifted towards larger 
values. Furthermore, it is observed that the uncer-
tainty on the value of XM for this component has 
been significantly reduced.  

Extension of the presented DBN framework to 
the modeling of entire engineering systems is possi-
ble. To this end, the DBN model of each element is  

 



 

 

defined conditional on common influencing va-
riables. Such a joint model is a Bayesian network, 
yet no longer a DBN.  

7 CONCLUSIONS 

A computational framework for deterioration model-
ing is presented and investigated by means of an ex-
ample considering CO2 corrosion in process equip-
ment. It has been shown that the framework allows 
including inspection results and monitoring data 
through Bayesian updating in a robust manner, i.e., 
the computations can be performed automatically. 
Such robust computations have a strong potential for 
applications in the asset integrity management of 
engineering systems.  
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