
1 INTRODUCTION 

1.1 Background and Motivation 

Civil infrastructure systems are logistical backbones 
of modern societies. Transportation networks, utility 
distribution systems, communication networks, as 
well as government, health, and public facilities are 
important infrastructures, vital to the welfare of so-
ciety. Disruption of the service of such systems can 
have far-reaching economic, social, health, and safe-
ty consequences. Despite this recognized criticality, 
infrastructure systems remain vulnerable to a wide 
variety of natural and manmade hazards. In many 
locations around the world, earthquakes are the do-
minate hazard to infrastructure systems.    

Decisions made by emergency management per-
sonnel immediately after a major earthquake can 
significantly influence the severity of the associated 
consequences. These crucial decisions include the 
deployment of emergency personnel and equipment, 
evacuation of people, post-event inspections, and 
closure (or continued operation) of critical facilities. 
Unfortunately, these vital decisions are often made 
in an ad hoc manner, under large uncertainty, with 
information that evolves in time. First responders are 
in need of a tool to aid decision-making, which 
properly accounts for the uncertainty prevailing in 
the immediate aftermath of an earthquake and which 
synthesizes the incoming information to reduce the 
uncertainty. 

To address this need, we are currently working 
towards the development of a probabilistic decision-

support system (DSS) for near-real time emergency 
response and recovery following a seismic event, 
utilizing a Bayesian Network (BN) framework. This 
DSS will integrate information from a wide-range of 
sources in near-real time to provide a comprehensive 
description of the state of a geographically distri-
buted infrastructure system following an earthquake.   

1.2 Objective and Scope 

To date, our efforts toward the development of the 
probabilistic DSS have focused on modeling earth-
quake demand as a spatially distributed random field 
(Straub et al. 2008) and on investigating methods for 
modeling the infrastructure system as a BN. In the 
present paper we provide only a brief description of 
the seismic demand model and thereafter focus on 
the system modeling. Several approaches to model-
ing a spatially distributed network by a BN are de-
scribed and compared. A case study for a transporta-
tion network demonstrates the methodology.   

2 SEISMIC DEMANDS ON SPATIALLY-
DISTRIBUTED INFRASTRUCTURE SYSTEM 

 
Due to their spatially distributed nature, infrastruc-
ture systems are more likely than individual facili-
ties to sustain damage as a result of an earthquake. 
Performance assessment of such a system requires: 
(a) characterization of the earthquake magnitude, lo-
cation and other source characteristics, (b) estima-
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tion of ground motion intensities at distributed 
points in the network with proper account of the spa-
tial correlation structure, (c) modeling of the per-
formance of system components, e.g., in terms of 
fragility functions, (d) modeling of the performance 
of the system in terms of the component perfor-
mances and the seismic demand, and (e) system re-
liability assessment under different earthquake sce-
narios. In the context of the aforementioned near-
real time DSS, we are interested in the reliability of 
the system and its components conditioned on any 
available information, e.g. known magnitude and  
location of the earthquake, measurements of shaking 
intensity at selected locations, observed performance 
of selected components; an application for which 
BNs are uniquely well-suited. 

The intensity of ground motion at a site is often 
characterized in terms of a single measure, such as 
the peak ground acceleration or the spectral accele-
ration at a selected frequency. Let iS  denote this in-
tensity measure at a site i . Predictive models based 
on regression of observed data are available to relate 

iS  to the earthquake characteristics (Bozorgnia and 
Bertero, 2004). These models typically have the 
form )ln( iS iiiRMf ε),,( θ , where ),,( iiRMf θ  
is a deterministic function of the magnitude, M , 
site-to-source distance, iR , and other source and site 
characteristics iθ , such as type of faulting and the 
shear-wave velocity at the site. The zero-mean, 
normal random variable iε  is the error term of the 
regression law. In general, the error terms iε  and jε  
at two locations i  and j  are correlated due to two 
effects: (a) the variability in source characteristics, 
which is common to all sites, and (b) the random-
field nature of the intensities over a spatial domain 
for a given set of source characteristics. Thus, the er-
ror term can be written as irmi ,εεε  , where mε  is 
an inter-event error term common to all sites, while 

ir ,ε  is an intra-event error random field. Both terms 
are zero-mean and Gaussian. Boore et al. (2003) and 
Park et al. (2007), among others, have developed au-
tocorrelation models for ir ,ε , assuming it to be a 
homogeneous isotopic random field.  

In a BN model of the seismic demand, the corre-
lation between ir ,ε  for different sites implies di-
rected links between all nodes representing these er-
ror terms. With a large number of component sites, 
this would render the BN computationally intracta-
ble. To overcome this difficulty, Straub et al. (2008) 
used the method of principle component analysis to 
approximate the correlation structure of ir ,ε  in terms 
of a few standard normal random variables iu  
representing the most important principle compo-
nents. Figure 1 shows the resulting BN model of the 
seismic demand for a spatially distributed infrastruc-
ture system. The node designated by “L” describes 
the location coordinate of the earthquake. All other 
nodes are according to the terminology just intro-
duced. 

 

 
 

Figure 1: BN model of seismic demands for a spatially distri-
buted system 

3 INFRASTRUCTURE SYSTEM MODELING 
USING BN 

3.1 Using BN to model system connectivity 

Once the seismic demand model has been devel-
oped, we must consider modeling the seismic per-
formance of the individual components of the infra-
structure system as well as the performance of the 
system as a whole. The system components can have 
any number of states, but in many cases binary 
states, e.g., fail or survive, are sufficient to describe 
the function of the components. For example, a tun-
nel in a transportation system is either open or 
closed. Usually more than two states are considered 
when a component has a “flow” characteristic asso-
ciated with its performance. For example, a bridge 
may be open for full capacity traffic, 50% capacity 
traffic, or it may be closed to traffic. Such a bridge 
has three states. The system performance may also 
be defined in terms of multiple states, e.g., the avail-
ability of certain levels of traffic flow between a set 
of source nodes and a set of destination nodes.  

The performance of the individual components of 
the infrastructure system relative to a specified 
ground motion intensity parameter can be modeled 
using seismic fragility curves. Such curves are avail-
able for a wide-variety of infrastructure system 
components, such as the components of electrical 
subsystems (e.g. Straub and Der Kiureghian (2008)) 
or bridges in a transportation network, e.g. Mander 
(1999), Gardoni et al. (2003). 

In this paper, we focus our attention on the issue 
of connectivity between the nodes of a system with-
out consideration of flow characteristics. The com-
ponents of such a system have binary states (open or 
closed) and the system itself also has two states (ei-
ther connectivity between the source and sink nodes 
exists or does not exist). The analysis for this class 
of systems is obviously simpler. However, the BN 
methodology is in not restricted to systems with bi-
nary component states and work is currently under-
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way to expand these ideas to the multi-state prob-
lem. 

For systems with binary component states, we de-
fine a minimal link set (MLS) as a minimum set of 
components whose joint survival constitutes survival 
of the system, and a minimal cut set (MCS) as a 
minimum set of components whose joint failure 
constitutes failure of the system. One can show that, 
in general, a two-state system can be expressed as a 
parallel subsystem of its MLSs, or a series system of 
its MCSs (Der Kiureghian et al. 2007).    

Friis-Hansen (2004) has proposed a BN formula-
tion, in which system connectivity is modeled by 
exploiting causal relationships between the system 
components necessary for its survival. We have 
found that this approach can be effective for certain 
types of systems, specifically those for which it is 
easy to identify all MLSs. Systems with many of 
their components in series tend to work well with 
this approach.  

 We expand upon Friis-Hansen’s approach by 
considering five different formulations for modeling 
two-state systems using BN. These are described in 
conjunction with the simple example system shown 
in Figure 2. In this system, the five components 
(squares) connect points A, B, and C (circles). We 
assume only the square components in the system 
can fail. The required system performance is con-
nectivity between the source node A and the sink 
node C. The MLSs of this system are {(1,2),(1,3), 
(4,5)} and its MCSs are {(1,4),(1,5),(2,3,4),(2,3,5)}. 

 

 

Figure 2: Example System 

3.2 Five BN formulations 

We define a naïve BN formulation as one in which 
the system connectivity is modeled as a direct func-
tion of its components. Figure 3 shows the corres-
ponding BN for the example system. As can be seen, 
all components are parents of one system node. For 
binary component states, the system node has a con-
ditional probability table (CPT) of size 2n, where n is 
the number of components (25 = 32 for the example 
system).  For systems with a large number of com-
ponents, the size of the CPT will quickly cause the 
BN to become computationally intractable. Hence, 
while easy to formulate, this is not a pragmatic ap-
proach for many real-world applications, where the 
number of system components is often large.  

 

 

Figure 3: Naïve BN formulation of example system 
 

We define the minimum link set BN formulation, 
as a BN where the system connectivity is expressed 
directly as a function of the MLSs. This is done by 
representing the system as a node whose parents are 
the MLSs. In turn, each MLS node has its constitu-
ent components as parents. Figure 4 shows the mod-
eling of the example system according to this formu-
lation. The size of the CPT for each MLS is 2 to the 
power of the number of its components, and the size 
of the system node is 2 to the power of the number 
of MLSs. For the example system, the largest CPT 
occurs for the system node and is of size 23.  

This MLS BN formulation can take advantage of 
the fact that each MLS node is a series system of its 
components, and that the system node is a parallel 
system of its MLS parents. Clearly, this formulation 
is advantageous to the naïve formulation described 
above, particularly when the system has fewer MLSs 
than components. 
 

 

Figure 4: MLS BN formulation of example system 

 
We define the formulation advocated by Friis-

Hansen (2004) as the explicit connectivity (EC) BN 
formulation. Rather than modeling the system as a 
child of its MLS nodes, this formulation expresses 
system connectivity using a causal interpretation of 
the connectivity paths. We can think of it as the op-
timist’s formulation (in contrast to a pessimist’s 
formulation discussed later), because one models the 
system by directly modeling paths that ensure sur-
vival of the system. The approach has the advantage 
of being intuitive and is thus useful for interaction 
with non-technical personnel during the modeling 
phase. Furthermore, due to the encoded causal rela-
tionships, the resulting BN is likely to produce CPTs 
that are smaller than those of the naïve or possibly 
the MLS formulation. Moreover, this formulation 
does not require identification of MLSs, though the 
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causal logic indirectly employs them. The formula-
tion is always superior to the naïve formulation in 
terms of its computational efficiency when the num-
ber of MLSs is smaller than the number of compo-
nents in the system. This is typically the case in sys-
tems with many components in series. The 
disadvantage of this formulation is that constructing 
the BN is not as systematic as in the MLS formula-
tion. However, it should be noted that when model-
ing complex systems it is of utmost importance that 
the modeling can be validated by third parties.  
Therefore, the modeling should always focus on 
transparency. A direct causal modeling assures this 
is in general possible. 

Figure 5 shows the EC BN formulation for the 
example system. Starting at the source node A, we 
consider the initial steps for all paths leading to the 
sink node C. For the example system, these are 
represented by the nodes A→B and A→C. Step 
A→B depends on the survival of component 1, whe-
reas step A→C depends on the survival of both 
components 4 and 5. The second step for the first 
path is B→C, the success of which depends on the 
success in step A→B as well as survival of either 
component 2 or 3. Thus, node B→C has the nodes 
representing step A→B and components 2 and 3 as 
parents. The successful arrival at the sink node C is 
now represented as a child of nodes A→C and 
B→C, survival of either of which suffices for the 
system to survive. In essence, the EC formulation 
requires the enumeration of connectivity paths (or 
MLSs), but rather than representing them as nodes, 
the BN explicitly models each path following step-
by-step causal relations. In comparison, the MLS 
formulation is relatively straightforward for individ-
uals familiar with traditional system analyses, but it 
lacks the intuitive causal interpretation present in the 
EC formulation.  

For the example under consideration, using the 
EC formulation, the size of the largest CPT is 
23(which can be reduced to 2ଶ by adding additional 
nodes before A→C and B→C). However, a small 
CPT size does not necessarily translate into a re-
duced computational demand. In fact, in terms of the 
total clique table size (the sum of the sizes of all cli-
que tables generated by the inference algorithm, 
where a clique is a maximally connected subgraph 
formed when performing computation on the BN 
and the clique table is the joint probability distribu-
tion over the nodes of a clique), the MLS formula-
tion outperforms the EC formulation for this exam-
ple: Using the default triangulation method in Hugin 
(Hugin Researcher, 2008), which for this example 
corresponds to the optmial triangulation, the sizes 
are 48 for the MLS formulation and 64 for the EC 
formulation. 

   

 

Figure 5: EC BN Formulation of example system 
 

We define the dual of the MLS formulation as the 
minimum cut set BN formulation, in which the sys-
tem node is a child of parents representing MCS 
nodes, and each MCS node itself is represented as a 
child of nodes representing its constituent compo-
nents. The system node is a series system of all the 
MCS nodes, whereas each MCS is a parallel system 
of its parent nodes. The MCS BN for the example 
system is shown in Figure 6. The maximum CPT 
size in this case is 24 and the total clique table size 
using Hugin’s default triangulation is 192. Thus, the 
MCS formulation is less advantageous than the MLS 
and EC formulation for this example. However, rela-
tive to the MLS formulation, the MCS formulation 
would be advantageous when the number of MCSs 
is smaller than the number of MLSs. But, the rela-
tive advantage would also depend on the number of 
components within the individual MLSs and MCSs.  
 

 
Figure 6: MCS BN formulation of example system 
 

We define the dual of the EC formulation as the 
explicit disconnectivity (EDC) BN formulation. Ra-
ther than tracing paths that ensure survival of the 
system, one pursues causal event paths that ensure 
failure of the system. This is a less intuitive ap-
proach than the EC formulation; it follows a pessim-
ist’s perspective. Similar to the EC formulation, us-
ing the EDC formulation one can often improve 
upon the naïve and MCS formulations, particularly 
when the number of failure event paths (or MCSs) 
are small relative to the number of components.  

Figure 7 shows the BN model of the example sys-
tem according to the EDC formulation. We know 
disconnectivity between the source node A and the 
sink node C will occur if neither path A-C nor path 
A-B-C is open. Starting at the source node A, in or-
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der to get disconnection, path A-C must be closed. 

This is defined by the node CA  , which is a child 
of components 4 and 5 (either must fail for the path 
to be closed). If path A-C is closed, then we need 
link A-B or link B-C to be closed as well. These 
events are represented by the nodes BA   and 

CB , which are dependent not only on the states 
of their respective components, but also on the state 

of node CA  . The largest CPT in this example is 
of size 22 and the total clique table size using Hu-
gin’s default triangulation is 56 (smaller than the 
MCS and EC formulations). 
 

 
 

Figure 7: EDC BN formulation of example system 

 
For further refinement of the MCS and MLS for-

mulations, it is instructive to consider the cases of 
ideal series and parallel systems. For a series or pa-
rallel system of n components, the naïve, MLS and 
MCS BN formulations appear identical and are as 
shown in Figure 8. Note that a series system has one 
MLS and as many MCSs as components, whereas a 
parallel system has one MCS and as many MLSs as 
components. Because of this, the three BN models 
for the two systems have identical topologies, but 
with different CPTs. It is easy to verify that the EC 
and EDC models for the series and parallel systems 
are as shown in Figure 9. For large number of com-
ponents, this BN formulation is much more efficient 
than the one in Figure 8.   

We can take advantage of the above formulations 
for series and parallel systems to improve the MLS 
and MCS BN formulations. Specifically, note that in 
the MLS formulation the system node is a parallel 
system of the MLS nodes. Using the idea from Fig-
ure 9, the BN in Figure 4 is reformulated in the form 
of Figure 10. Likewise, noting that in the MCS for-
mulation the system node is a series system of the 
MCS nodes, the BN in Figure 6 is reformulated into 
that shown in Figure 11. Furthermore, it is noted that 
each MLS is a series system of its constituent com-

ponents and that each MCS is a parallel system. 
Therefore, it is possible to use the series/parallel sys-
tem representation from Figure 9 to represent the 
upper parts of Figure 10 and  Figure 11 as well. 

One can see that a significant reduction in the 
size of the CPTs results from these reformulations. 
However, this is achieved at the cost of increased 
number of nodes in the reformulated BNs. Definitive 
guidelines to achieve the most effective BN model 
remains an area for further study.   

 
 

 
 
 
 
 
 

Figure 8: Naïve, MLS and MCS formulations of series and pa-
rallel systems  

 
(a) 

 

 
(b) 

 
Figure 9: (a) EC and (b) EDC formulations of series and pa-

rallel systems 

 

 
 

Figure 10: Reformulation of the MLS BN in Figure 5 

 

 
 

Figure 11: Reformulation of the MCS BN in Figure 7 
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4 ILLUSTRATIVE EXAMPLE 

4.1 Overview 

Next, we present a case study using the hypothetical 
transportation system in the vicinity of an active 
fault, shown in Figure 12, which is a simplified ver-
sion of the example in Straub et al. (2008). In this 
network, circles represent cities and square nodes 
represent bridges. System survival is defined as the 
event that all cities are able to reach the hospital, H, 
following an earthquake. Correspondingly, the sys-
tem fails if any city is unable to reach the hospital (a 
series system of city events). We assume that the 
roadways remain passable following an earthquake 
and that only the bridges are susceptible to failure. 
Fragility models for bridges in terms of spectral ac-
celeration are adapted from Gardoni et al. (2002), 
are used to determine the failure probability of each 
bridge for a given ground motion demand.  

The BN used to model both the seismic demands 
and system performance is shown in Figure 13. An 
object-oriented modeling approach is used. Ovals in 
the figure represent the designated random variables, 
whereas rounded rectangles represent objects, which 
are themselves BNs with specified input and output 
nodes as described below.  

 

 
 
Figure 12: Case Study - Transportation Network 

The earthquake is represented by a point-source 
model with a uniform distribution along the fault. A 
finite source model with account of directivity is 
currently under development. The earthquake mag-
nitude is assumed to follow a truncated exponential 
distribution (Araya & Der Kiureghian, 1988). The 
Campbell (1997) ground motion prediction equation 
is used to estimate the spectral acceleration at each 
bridge site. The goal of this case study is primarily 
to demonstrate the connectivity formulations pro-
posed herein and demonstrate the BN framework ra-
ther than to emphasize the specific numerical results. 
As such, empirical modeling assumptions made here 
should be viewed as “placeholders” rather than re-
strictive assumptions. In the proposed BN frame-

work, empirical models can easily be “switched out” 
if different or new models are preferred.  As shown 
in Figure 13, the spectral acceleration at each site is 
a function of the earthquake magnitude, the location 
of the earthquake (which determines the source-to-
site distance for each site), and the inter- and intra-
event error terms.  

The object SA(1)  is shown in an expanded form 
in Figure 14. The light-blue nodes are interface 
nodes.  The SA(1) object takes the magnitude, loca-
tion, and error terms as input. Using local informa-
tion about the site location, it defines the source-to-
site distance and the distribution of the spectral acce-
leration at the site (the output node).  

The object representing the intra-event, spatially 
correlated error term is expanded in Figure 15. The 
approximation procedure presented in Straub, et al 
(2008) is used with the twelve most important links 
included.  
 

 
Figure 13: BN model of the example transportation network 

 

 
Figure 14: Expansion of object SA(1) 

 

 

Figure 15: Expansion of object for intra-event error terms 
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4.2 Modeling System Performance 

4.2.1 System connectivity 
 
As mentioned earlier, the survival of the transporta-
tion network is defined as the event that all cities can 
reach the hospital following an earthquake. This is a 
case of multiple source nodes and a single sink node. 
We solve this problem by creating a separate object 
for each city’s ability to reach the hospital, then con-
sider the transportation network as a series system of 
the city objects. For each city object, any of the BN  
formulations described earlier can be used. One ex-
ample is described below. For the representation of 
the series system of cities, the formulation described 
in Figure 9 is employed.   

4.2.2 City-to-Hospital Connectivity 
 

As an example, we consider the connectivity be-
tween City A and the hospital. The MLSs are {(1), 
(4,2,5), (4,2,6,3)} and the MCSs are {(1,4), (1,2), 
(1,5,6), (1,5,3)} and can be used directly to model 
the system using the MLS and MCS formulations.  
Here we focus on the EC and EDC formulations.   

Figure 16 presents the EC model of the object 
representing the connectivity between City A and 
the hospital. We begin at the node “City A.” We can 
reach the hospital either via link A→H, whose sur-
vival depends on the survival of bridge 1, or we 
must travel via link A→B, which depends on the 
survival of bridge 4. Assuming this link survives, we 
must then travel link B→C to City C, which is poss-
ible only if bridge 2 survives. From City C, we can 
either go directly to the hospital, provided bridge 5 
survives, or travel to City D on the link C→D, pro-
vided bridge 6 survives. Once at City D, we can 
reach the hospital, provided bridge 3 survives. Thus, 
we can reach the hospital from City A if any of the 
nodes A→H, C→H or D→H is in survival state. 
This represents a parallel system of the three nodes. 
It is noted that the input nodes of this object are the 
states of bridges 1-6 and the output node is the sys-
tem node, which describes the connectivity of City 
A to the hospital.   

Figure 17 presents the EDC formulation for the 
City A object. In this formulation, we model the 
ways in which City A can be disconnected from the 
hospital. In order to achieve disconnection, the link 
A→H must be impassable, i.e. bridge 1 must fail. If 
in addition either link A→B or link B→C is impass-
able, then system disconnection has been achieved. 
Note that in this formulation the failure of node 
A→B requires the failure of both its parent nodes, 
i.e., A→H must be closed and bridge 4 must have 
failed for A→B to be in the fail state. Similarly for 
link B→C and the other nodes. Alternatively, we 
achieve system disconnection if both links A→H 

and C→H are closed and either of the links C→D or 
D→H are also closed. Thus, system disconnect oc-
curs if any of the four nodes A→B, B→C, C→D or 
D→H is in the fail state. Clearly, the “Hospital“ 
node is a series system of these four nodes. The in-
put nodes into this object are the states of bridges 1-
6 and the output is the state of the hospital.  

A similar approach is used to model the connec-
tivity or disconnectivity of the other cities from the 
hospital.  
 

 
 

Figure 16: Model of connectivity between City A and Hospital 

 

 
Figure 17: Model of disconnectivity between City A and Hos-

pital 

4.3 Illustrative Results 

To illustrate the power of the BN framework for as-
sessing and updating component and system reliabil-
ity, we consider probabilities of component and sys-
tem failure under different evidence cases. Evidence 
cases considered are for illustrative purposes and are 
selected from numerous possible cases we could in-
clude. Table 1 presents failure probabilities of the 
system (one or more cities not being able to reach 
the hospital) and of the individual bridges under the 
unconditional (no evidence) case as well as the fol-
lowing simple evidence cases: 
 Case 1: The magnitude of the earthquake is 

measured to be between 6.75 and 7.0 
 Case 2:  Bridge 1 is observed to have failed 
 Case 3: A sensor at the location of bridge 1 

measures spectral acceleration is 0.4-0.5g 

Bridge 
(1)

City A A → B B → C

A → H

C → D

C→ H
Bridge 

(5)
D → H

Bridge 
(3)

Hosp.

Bridge
(4)

Bridge
(2)

Bridge
(6)

Bridge 
(1)

City A

A → B
(bar)

B → C 
(bar)

A → H
(bar)

C → D
(bar)

C→ H
(bar)

Bridge 
(5)

D → H
(bar)

Bridge 
(3)

Hosp.

Bridge
(4)

Bridge
(2)

Bridge
(6)



 Case 4: Bridge 1 and Bridge 2 are observed to 
have survived 

Table 2 presents more complex evidence cases 
(compound evidence from a variety of sources) as 
described below: 
 Case 5: Earthquake magnitude is 6.75-7.0. The 

epicenter of the earthquake is observed to be lo-
cated ~40 km from the left edge of the fault. 

 Case 6: Earthquake magnitude is between 5.5 
and 5.75. Spectral acceleration at bridge 4 is 
measured in the range 0.3-0.4g and bridge 4 is 
observed to have survived.  

 Case 7: Earthquake magnitude is between 5.5 
and 5.75. Spectral acceleration at bridge 4 is 
measured in the range 0.3-0.4g and bridge 4 is 
observed to have failed.  

  Case 9: Seismological monitoring station is of-
fline. We have received a phone call indicating 
that bridges 4 and 5 have failed and no ambul-
ances are arriving from City B. 

 
Table 1: System and component failure probabilities under 

simple evidence cases 

 
 

Table 2: System and component failure probabilities under 
compound evidence cases 

 
 
Depending on the evidence, the system failure prob-
ability ranges from less than 1% to ~5%, excluding 
the cases of observed system failure. Likewise, 
bridge failure probabilities range from less than 1% 
to over 40%, depending on the evidence, excluding 
the cases of observed bridge survival and failure. 

5 CONCLUSIONS 

With the eventual objective of developing a BN-
based probabilistic decision support system for post-
earthquake risk management, in this paper we inves-
tigated several approaches for modeling a spatially 
distributed infrastructure network system by a BN. 
These approaches included a naïve approach that di-
rectly connects component nodes to the system 
node, two approaches that directly utilize minimal 

link and cut sets, and two explicit approaches that 
use causal relationships to construct connectivity 
and disconnectivity BNs. Relative advantages of the 
various method from the viewpoints of modeling 
and computational efficiency were discussed, though 
definitive conclusions must await further study. Ad-
ditionally, these approaches can be combined to 
draw upon the relative advantages of the different 
formulations. To illustrate the approaches outlined 
in this paper, we presented a hypothetical case study 
of a transportation network system. 
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