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ABSTRACT 
 

Information (Bayesian) updating enables the combination of probabilistic models of engineering systems 
with observations made in-service, e.g. through monitoring, inspections, measurements or simple 
observations of system performance. The paper presents a short overview on recent developments in 
information updating for engineering risk analysis. Focus is put on computational aspects; in particular, 
novel modelling techniques and algorithms that improve the efficiency and/or the robustness of these 
computations are reviewed. The methods are illustrated with a number of examples, including a 
geotechnical site with deformation monitoring, inspections on deteriorating structures and near-real time 
risk assessment of infrastructure systems. The paper concludes with an outlook on the application of the 
methodology in practice and associated challenges in the modelling and the management of information. 
 
 

1. INTRODUCTION 
In most applications of risk and reliability analysis 
for structures and other large-scale engineering 
systems, probabilistic models are based on limited 
amount of representative data. This is true in 
particular for random variables describing model 
(epistemic) uncertainties, which are expensive to 
assess in experimental setups. As a consequence, 
epistemic uncertainty is often dominating the 
overall uncertainty in models of engineering 
systems. A commonly applied strategy to reduce 
this uncertainty is the collection of information 
during the service life of the system through 
inspections, monitoring or simple observations of 
system performance.  
Information updating, also called Bayesian 
updating, enables the quantitative assessment of 
the uncertainty (and hence the risk) conditional on 
such information. It represents a consistent and 
powerful way to combine a-priori models with 
information gathered in-service. It also facilitates 
the quantitative analysis of the information content 
of different sources of information and thus 
provides a framework for optimizing the 
collection of information (e.g. the design of 
monitoring systems or the planning of inspection 
schedules). 
Although information updating has been proposed 
since the 1970s (e.g. Tang 1973, Yang and Trapp 
1974, Madsen 1987), it has been rarely applied in 

engineering practice and research until recently. A 
main reason for the reluctance of the industry to 
adopt this approach lies in the computational 
difficulties associated with performing 
information updating in practice (see also Straub 
and Faber 2006). For this reason, the author has 
been working on several strategies to facilitate 
such computations. This paper presents an 
overview on some of these developments and 
closes with an outlook on future research needs. 
 
2. INFORMATION UPDATING 
Let 𝐗𝐗 = [𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ]T  be a vector of basic random 
variables describing the considered engineering 
system, with joint probability density function 
𝑓𝑓(𝐱𝐱) . For the purpose of risk and reliability 
analysis, we are interested in the probability of one 
or more adverse events, commonly denoted by 𝐹𝐹 
(for failure). 𝐹𝐹 can be represented by a domain Ω𝐹𝐹 
in the outcome space of 𝐗𝐗. Often, the domain is 
defined through a (continuously differentiable) 
limit state function 𝑔𝑔 such that  

Ω𝐹𝐹 = {𝑔𝑔(𝐱𝐱) ≤ 0} (1) 

The corresponding probability is obtained from 

� 𝑓𝑓(𝐱𝐱)d𝐱𝐱
𝐱𝐱∈Ω𝐹𝐹

 (2) 



This integration can be performed by well-known 
structural reliability methods, which include 
FORM, SORM and various simulation methods 
(e.g. Rackwitz 2001, Der Kiureghian 2005). 
In analogy to the failure event, it is possible to 
model observation (information) events 𝑍𝑍 through 
domains Ω𝑍𝑍 in the outcome space of 𝐗𝐗, by means 
of limit state functions ℎ(𝐱𝐱) . The information 
event 𝑍𝑍 is said to be of the inequality type if it can 
be written as  

Ω𝑍𝑍 = {ℎ(𝐱𝐱) ≤ 0} (3) 

and it is said to be of the equality type if it can be 
written as  

Ω𝑍𝑍 = {ℎ(𝐱𝐱) = 0} (4) 

The situation is illustrated in Figure 1, with the 
failure domain Ω𝐹𝐹  corresponding to the area 
𝑔𝑔(𝐱𝐱) ≤ 0 and the domain Ω𝑍𝑍 to the area ℎ(𝐱𝐱) ≤ 0 
in the case of inequality information, and to the 
surface ℎ(𝐱𝐱) = 0  in the case of equality 
information. 

  

Figure 1. Illustration of the limit state surfaces and 
corresponding domains in information updating. 

Our aim is to update the probability of 𝐹𝐹 with the 
information 𝑍𝑍 , i.e. to compute the conditional 
probability of 𝐹𝐹 given 𝑍𝑍: 

Pr(𝐹𝐹|𝑍𝑍) =
Pr(𝐹𝐹 ∩ 𝑍𝑍)

Pr(𝑍𝑍)  (5) 

This definition is based on the fact that the 
observed event 𝑍𝑍 reduces the outcome space to the 
domain Ω𝑍𝑍.  
The updated probability of failure can be 
computed in accordance with Eq. (2) as 

Pr(𝐹𝐹|𝑍𝑍) =
∫ 𝑓𝑓(𝐱𝐱)d𝐱𝐱𝐱𝐱∈{Ω𝐹𝐹∩Ω𝑍𝑍 }

∫ 𝑓𝑓(𝐱𝐱)d𝐱𝐱𝐱𝐱∈Ω𝑍𝑍

 (6) 

The nominator corresponds to an integration of  
𝑓𝑓(𝐱𝐱) over the domain Ω𝐹𝐹  in the reduced outcome 
space Ω𝑍𝑍 . The denominator is merely a 
normalization constant that takes care of the fact 
that the outcome space has been reduced to Ω𝑍𝑍 . 
In practice, there are several challenges involved 
in the computation of Eq. (6). A main issue is the 
fact that direct application of Eq. (6) is not 
possible if information is of the equality type. In 
that case, it is Pr(𝑍𝑍) = 0  and both the 
denominator and the nominator result in zero. In 
the past, surface integration (Schall et al 1988) or 
evaluation through the computation of derivatives 
(Madsen 1987) were applied to circumvent the 
problem. However, in practice those approaches 
were limited to first- and second-order 
approximations, which do not always perform well. 
Recently, the author has proposed a different 
approach that proceeds by transforming the 
equality into inequality information and thus 
enables the use of all structural reliability method 
(Straub 2010). The approach is summarized in 
Section 3. 
Several other challenges in the computation of Eq. 
(6) remain. For one, the limit state functions 
describing the domains can be complex (they are 
often described by FE models) and 
computationally expensive; the number of 
evaluations of the limit state functions might thus 
be limited. Furthermore, the probability of both 
the nominator and denominator reduces with 
increasing amount of information. This limits the 
use of crude simulation techniques. On the other 
hand, FORM, SORM and some advanced 
simulation methods require optimization for 
finding the so-called design point. This 
optimization is non-trivial and makes it difficult to 
include algorithms in software, which can perform 
information updating automatically without the 
interference of the user. For these reasons, 
research has been carried out on using so-called 
Bayesian networks (BNs) for information updating. 
Ongoing research on BNs for this application is 
briefly reviewed in section 4.  
 



3. INFORMATION UPDATING WITH 
EQUALITY INFORMATION 
We make use of the fact that the likelihood 
function provides an alternative to domains Ω𝑍𝑍 for 
modeling (uncertain) information. The likelihood 
function is commonly used in statistics and 
corresponds to the likelihood of the observation 
given the true system state 𝐗𝐗 = 𝐱𝐱: 

𝐿𝐿(𝐱𝐱) ∝ Pr(𝑍𝑍|𝐗𝐗 = 𝐱𝐱) (7) 

As shown in Straub (2010), any domain Ω𝑍𝑍 can be 
translated into a likelihood function. However, in 
most cases it is more convenient to directly 
identify the likelihood function. As an example, 
consider a measurement 𝑠𝑠𝑚𝑚  of a system 
characteristic 𝑠𝑠(𝐗𝐗) . The measurement has an 
additive error 𝜖𝜖  that is a zero mean random 
variable uncorrelated with 𝐗𝐗 . The limit state 
function ℎ(𝐱𝐱, 𝜖𝜖) describing this equality 
information as well as the corresponding 
likelihood function are given in the following, 
with 𝑓𝑓𝜖𝜖() being the PDF of 𝜖𝜖.  

ℎ(𝐱𝐱, 𝜖𝜖) = 𝑠𝑠(𝐱𝐱) − 𝑠𝑠𝑚𝑚 + 𝜖𝜖  (8) 

𝐿𝐿(𝐱𝐱) = 𝑓𝑓𝜖𝜖(𝑠𝑠𝑚𝑚 − 𝑠𝑠(𝐱𝐱)) (9) 

For the case of several observation events 
𝑍𝑍𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 , the corresponding likelihood 
functions 𝐿𝐿𝑖𝑖(𝐱𝐱), 𝑖𝑖 = 1, … ,𝑛𝑛  can always be 
combined into  a single likelihood function 𝐿𝐿(𝐱𝐱). 
E.g., if measurements are uncorrelated for given 
𝐗𝐗 = 𝐱𝐱, it is simply 𝐿𝐿(𝐱𝐱) = ∏ 𝐿𝐿𝑖𝑖(𝐱𝐱)𝑚𝑚

𝑖𝑖=1 . Therefore, 
𝐿𝐿(𝐱𝐱)  is a general format for describing any 
information that can become available on the 
system.  
In Straub (2010), it is shown that it is possible to 
define an equivalent information event 𝑍𝑍𝑒𝑒  based 
on the likelihood. This event is described by the 
following limit state function and associated 
domain: 

ℎ𝑒𝑒(𝐱𝐱,𝑢𝑢) = 𝑢𝑢 − Φ−1(𝑐𝑐𝑐𝑐(𝐱𝐱)) (10) 

Ω𝑍𝑍𝑒𝑒 = {ℎ𝑒𝑒(𝐱𝐱,𝑢𝑢) ≤ 0} (11) 

wherein 𝑈𝑈 is a standard Normal random variable, 
𝑐𝑐 is a constant that can be freely chosen to ensure 
that 𝑐𝑐𝑐𝑐(𝐱𝐱) ≤ 1 for any 𝐱𝐱  and Φ−1() is the inverse 
cumulative standard Normal distribution function. 
Note the correspondence of (10) to the nested 

reliability formulation proposed in Wen and Chen 
(1987). 
It can then be shown (Straub 2010) that an 
alternative to Eq. (6) is available through the 
following identity  

Pr(𝐹𝐹|𝑍𝑍) = Pr(𝐹𝐹|𝑍𝑍𝑒𝑒) =
∫ 𝑓𝑓(𝐱𝐱)d𝐱𝐱𝐱𝐱∈�Ω𝐹𝐹∩Ω𝑍𝑍𝑒𝑒 �

∫ 𝑓𝑓(𝐱𝐱)d𝐱𝐱𝐱𝐱∈Ω𝑍𝑍𝑒𝑒

 (12) 

The only difference between Eq. (6) and Eq. (12) 
lies in the use of the domain Ω𝑍𝑍𝑒𝑒  instead of Ω𝑍𝑍 . 
Since Ω𝑍𝑍𝑒𝑒  by definition (11) corresponds to a finite 
domain in the outcome space of 𝐗𝐗 , the 
corresponding integrations result in values larger 
than zero and the computation of Eq. (12), unlike 
Eq. (6), can be performed with any structural 
reliability method. 
 
3.1 APPLICATIONS 
The first application is taken from Straub (2010) 
and considers a classical fatigue crack growth 
problem taken from Ditlevsen and Madsen (1996). 
The crack depth in a structural component after 𝑛𝑛 
stress cycles with range Δ𝑆𝑆 is  

𝑎𝑎(𝑛𝑛) = ��1 − 𝑚𝑚
2
� 𝐶𝐶Δ𝑆𝑆𝑚𝑚𝜋𝜋

𝑚𝑚
2 𝑛𝑛 + 𝑎𝑎0

�1−𝑚𝑚2 � �

1
1−𝑚𝑚2   (13) 

Here, 𝑎𝑎0  is the initial crack size, 𝐶𝐶  and 𝑚𝑚  are 
material parameters. The reliability of the 
component after 𝑛𝑛  cycles is described by the 
following limit state function: 

𝑔𝑔(𝐱𝐱) = 𝑎𝑎𝑐𝑐 − 𝑎𝑎(𝑛𝑛)  (14) 

where 𝑎𝑎𝑐𝑐  is the critical crack size.  
Measurements of the crack size at different points 
in time are considered, resulting in 𝑎𝑎𝑚𝑚 ,𝑖𝑖 . The 
likelihood function for a measurement after 𝑛𝑛𝑖𝑖  
cycles is  

𝐿𝐿𝑖𝑖(𝐱𝐱) = 𝑓𝑓𝜖𝜖𝑖𝑖(𝑎𝑎𝑚𝑚 ,𝑖𝑖 − 𝑎𝑎(𝑛𝑛𝑖𝑖))  (15) 

The joint probabilistic model of the random 
variables 𝑋𝑋 = [𝐶𝐶,𝑚𝑚,Δ𝑆𝑆,𝑎𝑎0, 𝜖𝜖1, 𝜖𝜖2]  is given in 
Straub (2010). Here, we consider two 
measurements and compute the conditional 
probability of failure according to Eq. (12), 
whereby the integrals are evaluated using Monte 
Carlo simulation (MCS) with 106 samples. The 



results are shown in terms of the reliability index 
𝛽𝛽 = Φ−1(Pr(𝐹𝐹|𝑍𝑍)) in Figure 2. 
 

 
Figure 2. Results for the crack growth example. 

As evident from the results shown in Figure 2, 
MCS gives sufficiently accurate results, which 
have the advantage of being unbiased. For 
comparison, the results obtained with a second 
order surface integration (Schall et al. 1988) are 
also shown, which strongly underestimate the true 
reliability index. For 𝑛𝑛 ≥ 4 ∙ 106, no results could 
be obtained with this approach, due to algorithmic 
difficulties in the design point search (this is not a 
fundamental problem and could be overcome by 
improving the applied optimization algorithm, but 
it is quite common in practical implementations of 
the second-order surface integration approach). 
The second application is taken from Papaioannou 
and Straub (2010) and considers information 
updating at a geotechnical construction site. It 
demonstrates that the information collected during 
the construction process can be utilized to update 
the reliability at the most critical stage. 
Consider the geotechnical site sketched in Figure 3. 
It consists of an excavation supported with sheet 
pile walls. The excavation will reach a depth of 
5m at the final stage. As is commonly done at 
geotechnical sites, a monitoring system is installed, 
which measures the horizontal deformation at the 
top of the sheet pile walls.  
Failure of the system is defined as the horizontal 
deformation at the top of the excavation, 𝑢𝑢𝑥𝑥 ,5m , 
exceeding 0.1m, with corresponding limit state 
function  

𝑔𝑔(𝐱𝐱) = 0.1𝑚𝑚− 𝑢𝑢𝑥𝑥 ,5m (𝐱𝐱)  (16) 

where 𝑢𝑢𝑥𝑥 ,5m (𝐱𝐱) is computed through a non-linear 
FEM code (a realization of the deformation at the 
final excavation step is shown in Figure 4). The 
random variables 𝐗𝐗  represent discretized random 
fields of soil and material parameters (the total 
number of random variables is 432). 
  

 
Figure 3. Situation of the geotechnical example. 

 
Figure 4. FEM output of the deformations at the final 
excavation step (not to scale), from Papaioannou and 
Straub (2010). 

In the analysis, we consider a single measurement 
𝑢𝑢𝑥𝑥𝑥𝑥 ,2.5m  made at the intermediate construction 
step when the excavation reaches 2.5m. The 
corresponding likelihood function is 

𝐿𝐿(𝐱𝐱) = 𝑓𝑓𝜖𝜖(𝑢𝑢𝑥𝑥𝑥𝑥 ,2.5m − 𝑢𝑢𝑥𝑥 ,2.5m (𝐱𝐱))  (17) 

With the corresponding limit state function (10), 
the conditional probability of exceeding the 
critical deformation at the final step is computed 
according to Eq. (12). Due to the computationally 
demanding FEM model, an efficient method is 
required to evaluate the integrals in Eq. (12) for 
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this application. The subset simulation method 
(Au and Beck 2001) is employed and found to be 
both robust and efficient (between 2000 and 4000 
limit state function calls were required for the 
presented solutions). 
The probability of failure is updated considering 
different measurement results 𝑢𝑢𝑥𝑥𝑥𝑥 ,2.5m . The 
results are summarized in Table 1. 
 
Table 1. Results of the reliability of the excavation site 
conditional on different deformation measurement 
outcomes at the intermediate excavation step. 

Measurement Pr(𝐹𝐹|𝑍𝑍) 
No measurement 1.4 × 10−2   
𝑢𝑢𝑥𝑥𝑥𝑥 ,2.5m = 10mm 2.2 × 10−1 
𝑢𝑢𝑥𝑥𝑥𝑥 ,2.5m = 5mm 2.1 × 10−2  
𝑢𝑢𝑥𝑥𝑥𝑥 ,2.5m = 2mm 6.8 × 10−3   

 
To interpret the results, it is useful to compare the 
measured deformation 𝑢𝑢𝑥𝑥𝑥𝑥 ,2.5m  with the expected 
deformation according to the a-priori model, 
calculated as E�𝑢𝑢𝑥𝑥 ,2.5m (𝐗𝐗)� = 2.6mm . When 
observing a deformation much larger than this 
value (e.g. 10mm), the probability of failure 
increases significantly. When observing a value 
close to this expected value (here 2mm), the 
probability of failure is significantly lower than 
the prior probability, due to the fact that an 
observation of a value close to the expected value 
reduces the uncertainty without increasing the 
mean estimate.  
As seen from this example, simple measurements 
can contain significant amounts of information. 
The corresponding increase or decrease in 
reliability can be consistently quantified using 
information updating. With the proposed method, 
the implementation of information updating is 
straightforward using any of the available 
structural reliability methods, many of which are 
implemented in commercial software such as 
Strurel (Gollwitzer et al. 2006).  
 
4. BAYESIAN NETWORKS FOR 
INFORMATION UPDATING 
An alternative to using structural reliability 
methods for information updating are Bayesian 
networks (BNs). BNs have been developed during 
the past 25 years, mostly in the field of artificial 

intelligence, for representing probabilistic 
information and reasoning (Russell and Norvig, 
2003). They have found applications in many 
fields such as statistical modeling, language 
processing, image recognition and machine 
learning. BNs have become increasingly popular 
for engineering risk analysis in recent years; 
applications in this field are reported, e.g., in 
(Friis-Hansen, 2000; Faber et al., 2002; Friis-
Hansen, 2004; Mahadevan and Rebba, 2005; Grêt-
Regamey and Straub, 2006; Nishijima et al., 2009; 
Bensi et al., 2009). 
There are a number of introductory texts to BNs 
available, e.g. Jensen and Nielsen (2007) or 
Langseth and Portinale (2007). In the following, it 
is assumed that the reader has a basic familiarity 
with BNs.  
 
4.1 ENHANCED BAYESIAN NETWORK 
(EBN) 
BNs are a powerful modelling framework when it 
is possible to exploit conditional independence 
among random variables. This is the case for most 
applications of engineering risk analysis, where 
the relation among random variables is often 
characterized by causal relations (A causes B). 
One example of such a dependence structure is 
given in Figure 5. 

 

Figure 5. Conceptual BN model for spatial modeling of 
seismic hazard analysis of an infrastructure system 
(Straub et al. 2008). 



In the example given in Figure 5 it can be 
observed that the spatial correlation between the 
seismic intensity at different locations leads to a 
large number of links. This is one example of a 
dependence that is not efficiently represented by a 
BN (although it is investigated if such dependence 
structure can be efficiently approximated within a 
BN as well, Straub et al 2008). 
To be computationally efficient and robust, it is 
preferable that the random variables in the BN be 
discrete (i.e. they should be defined in a finite 
outcome space) and that the number of links to a 
single node be limited. This condition is often not 
found in applications of engineering risk analysis. 
To overcome this limitation of the BN, Straub and 
Der Kiureghian (2010a,b) propose an extension of 
the BN framework, termed enhanced Bayesian 
Network (eBN), by combining it with structural 
reliability methods.  
The eBN proceeds by modelling the problem by a 
hybrid Bayesian network, which has both discrete 
and continuous random variables as nodes (e.g. 
Langseth et al. 2009). To perform inference in this 
hybrid BN, the eBN approach first eliminates all 
continuous nodes using a classical node 
elimination algorithm (Shachter 1986). This 
process is illustrated for one example in Figure 6, 
where the continuous random variable 𝑋𝑋  is 
removed. It can be observed that the removal of 𝑋𝑋 
leads to new links, which make it necessary to 
compute the conditional probabilities 𝑝𝑝(𝑦𝑦5|𝑦𝑦3,𝑦𝑦4) 
and 𝑝𝑝(𝑦𝑦6|𝑦𝑦3, 𝑦𝑦4,𝑦𝑦5) . In the eBN approach, 
structural reliability methods are employed to 
compute these conditional probabilities.   

 

Figure 6. Illustration of an eBN and a link reversal 
sequence for removal of the continuous node X (from 
Straub and Der Kiureghian 2010a). 

Once all continuous nodes are removed from the 
network, inference can be performed using the 
usual exact inference algorithms (e.g. the junction 
tree algorithm, Jensen and Nielsen 2007).  

The eBN has its own limitations in regard to 
model complexity.  When the network is too dense, 
computation may be either too time- or memory-
consuming. However, when applying the eBN 
approach, a number of modeling techniques are 
available to ensure the computational efficiency of 
the approach, as described in Straub and Der 
Kiureghian (2010a,b). Not least, the eBN offers 
the possibility to quantify the computational 
efforts associated with a given model, which is a 
powerful ability in developing models of complex 
systems. In doing so, the eBN provides a 
formalism for analyzing any model that require 
structural reliability calculations (most of which 
are not commonly model by BNs). 
One example from Straub and Der Kiureghian 
(2010b) is briefly summarized in the following. It 
demonstrates how the eBN enables the multiscale 
probabilistic modelling of complex infrastructure 
systems where various type of information is 
available. Due to the dependences among the 
system elements, this information propagates in 
the system. This is consistently quantified using 
the information updating facilities of the BN. 

 

Figure 7. A spatial-temporal eBN model of an 
infrastructure system. Here, 𝐸𝐸𝑖𝑖(𝑡𝑡) is the performance 
of system component 𝑖𝑖 at time 𝑡𝑡 (Straub and Der 
Kiureghian 2010b). 



Consider the eBN model shown in Figure 7. It 
models a transportation infrastructure system with 
components (these include structural systems such 
as bridges and non-structural components such as 
control elements). The system is subject to natural 
hazards (EQ, wind) and deterioration of system 
components.  
The eBN shown in Figure 7 makes use of the 
object-oriented BN methodology. Each oval node 
corresponds to an object (an instantiation of the 
corresponding class). The classes that are used to 
construct the eBN of Figure 7 are shown in Figure 
8. Each of the objects in the system model is an 
eBN with input and output nodes (the attributes of 
the class). As an example, the object structure j 
represents the time-invariant characteristics of 
bridge j. Or the object deterioration represents the 
condition of one bridge at a particular point in 
time (each bridge is at each time step represented 
by a new object deterioration).  

 

Figure 8. The classes/objects of the eBN for the 
example infrastructure, shown in Figure 7. The objects 
are connected through their input and output nodes. 

With the object-oriented BN methodology, the fact 
that system elements are repetitive can be 
exploited. Therefore, the full system model can be 
assembled with little effort, while each system 

element (e.g. bridge) can be modelled to any 
desired level of detailing. Thus, the approach 
enables the multiscale application of information 
updating: Information obtained on any of system 
elements (or elements thereof) is consistently 
propagated through the entire model. As an 
example, it is possible to update the hazard model 
by observing the performance of structures. 
(Mostly it has been found that the information 
content of observations of structural performances 
with respect to the hazard model are low except 
for extreme observations, e.g. Straub et al (2008). 
However, the key issue is that the approach 
enables the quantification of this effect and also 
allows determining which information should be 
considered in the analysis). 

 

Figure 9. Reliability index of the infrastructure system 
conditional on the sequence of observations. 

To demonstrate the potential of the eBN 
framework as a tool for information updating in 
the context of near-real-time infrastructure risk 
assessment, the model is applied to determine the 
reliability of the network as a function of time 
with information evolving in time. An exemplary 
sequence of observations is considered, with 
results summarized in Figure 9. The analysis starts 
with the a-priori case (a) that corresponds to the 
information available during the design phase. 
After construction of the infrastructure, 
measurements of the capacities of the structural 
elements are made, step (b). Thereafter, in the first 
two years of service, relatively low environmental 
loads are observed, together with the performance 



of the system elements, steps (c) and (d). In the 
third year, an extreme hazard event occurs. During 
the event, the only available information is that the 
hazard intensity is above a certain level, step (e). 
(For certain hazards, e.g., windstorms, predictions 
of H could also be included prior to the event.) 
Immediately after the event, the available 
information is still incomplete and only the 
performances of two system elements are known, 
step (f). Finally, in the aftermath of the hazard 
event, the performance of the entire system and 
the exact hazard intensity become known, step (g). 
Figure 9 summarizes the reliability updated with 
all available information up to the respective time 
step. 
 
4.2 DYNAMIC BAYESIAN NETWORKS 
FOR INSPECTION AND MONITORING OF 
DETERIORATING STRUCTURES 
Another example of the use of BN for information 
updating is provided in Straub (2009). There, a 
special class of BNs, namely dynamic Bayesian 
networks (DBNs), is applied as a framework for 
probabilistic modelling of deterioration processes 
and associated observations such as inspection or 
monitoring results. A generic DBN model that can 
represent all common deterioration models is 
proposed, as shown in Figure 10. (An earlier, less 
formal example of a BN application for 
deterioration modelling was presented by Friis-
Hansen 2000). 

 

Figure 10. One time slice of the generic DBN 
deterioration modelling framework. 

In the following, an application of the DBN 
framework is presented. For illustrative purposes, 
we consider the same fatigue crack growth 
example as described in Section 3.1. The DBN 
corresponding to this example is shown in Figure 

11. Here, the random variable 𝑞𝑞 = 𝐶𝐶Δ𝑆𝑆𝑚𝑚  is 
introduced to reduce computational efforts. The 
variables 𝑍𝑍𝑡𝑡  are the (potential) observations and 
the variables 𝐸𝐸𝑡𝑡  model the condition of the 
structural element (survival/failure). 

 

Figure 11. DBN implementation of the fatigue crack 
growth model from Section 3.1. 

Results are given exemplarily in Figure 12 for the 
case of an inspection every 106 cycles, with no 
indication of a defect (no detection) at all 
inspections (for validation, the results of a Monte 
Carlo simulation with 106 samples are included).  

 

Figure 12. Results for the conditional case, with no 
indication of a defect at all inspections, (Straub 2009). 

The main benefit of using the DBN for these 
calculations lies in the computational robustness 
and effectiveness. Once the DBN is established, 
the computation of the results presented here takes 
in the order of 10 CPU seconds on a standard PC 
with a 2.0 GHz processor with a Matlab-based 
program. The computation time increases linearly 
with the number of time steps considered (the 10 
CPU seconds correspond to 100 time steps), but is 
independent of the number of observations. 



Because the exact inference algorithm for the 
deterioration DBN model from Straub (2009) 
exclusively performs summations and 
multiplications, the algorithm is certain to work 
under any circumstance and can thus be 
implemented in software to be used by the 
engineer who has no detailed knowledge of 
structural reliability computations.   
Besides providing the conditional reliability, the 
DBN can update the probability distribution of any 
of the random variables in the model without 
additional computational efforts. Exemplarily, 
Figure 13 shows the mean value of the crack depth 
conditional on measurements as a function of time. 
Here it is distinguished between filtering, which 
updates the probability distribution at time 𝑡𝑡 
conditional on all measurements up to time 𝑡𝑡, and 
smoothing, which updates the probability 
distribution at time 𝑡𝑡  conditional on all 
measurements, including those made later than 𝑡𝑡. 

 

Figure 13. Posterior mean of the crack depth ( )a n , 
updated with measurements of crack depths (Straub 
2009). 

5. OUTLOOK AND CONCLUSION 
In most applications of engineering risk analysis, a 
significant or even dominant part of the 
uncertainty is epistemic. It can thus be 
significantly reduced by collecting relevant 
information. As reviewed in this paper, 
computational methods exist for efficiently 
updating the probabilistic model and the reliability 
estimate with information, thus quantifying the 
reduction in uncertainty.  The vision of this author 

is that in the future any relevant information 
collected on critical systems will be automatically 
included in an information updating algorithm, to 
compute an updated system model at any time. 
This facilitates near-real-time decision making, 
where relevant decisions on risk mitigation actions 
are made continuously as information evolves. 
Applications are manifold, and include e.g. the 
monitoring and risk control in engineering systems 
subject to deterioration or the planning of 
emergency response during and after large natural 
hazards. Before this vision will materialize, 
however, a number of challenges must be tackled, 
some of which are briefly discussed in the 
following.  
Arguably the largest challenge lies in the necessity 
for accurate models of the engineering system and 
the relevant processes (such as deterioration 
mechanisms). Highly simplified models, which are 
often sufficient for design purposes, are generally 
not suitable when considering information 
updating. One example is the correlation between 
random variables. For design purposes, this 
correlation can often be neglected (e.g. in series 
systems, this is a conservative approach). 
However, in information updating, the correlation 
must be estimated, since it will determine how 
much the uncertainty is reduced on the random 
variables that are not directly observed. (An 
example is a pipeline subject to inspections on 5% 
of its length. To determine the risk reduction from 
the inspection using information updating, 
correlation must be considered.) Similarly, it is 
necessary to represent the actual mechanisms 
acting in engineering systems as accurately as 
possible. As an example, the Palmgren-Miner 
model is normally sufficient for fatigue design but 
cannot be used for information updating, where a 
fracture-mechanics-based model is required 
instead.  
Computational aspects were discussed in this 
paper. Here, a few challenges still remain, in 
particular for systems where large amount of data 
are collected in the spatial and temporal dimension 
(from continuous monitoring). To date, the 
methods presented in this paper work well with a 
limited number of information events only. Thus, 
when large amounts of data points are available, 
they cannot be directly considered for information 
updating, except when direct observations of 
individual model parameters are made. However, 



the data obtained from monitoring is generally 
highly correlated. Therefore, it can be promising 
to investigate strategies for reducing the data.  
Finally, an important challenge for information 
updating lies in the way engineering systems are 
managed. Information updating requires the 
systematic collection and storage of data. Thanks 
to the advent of information technology, this has 
become greatly simplified and a number of 
industries have realized the importance of this task. 
However, in some fields, most notably the 
construction industry, there have been little efforts 
to collect data systematically in the past. In 
addition, even when data is collected and managed, 
it is not always the case that it is done so in the 
format required for information updating. It is up 
to engineers and risk analysts to convince decision 
makers in companies and regulatory bodies of the 
benefits of information updating.  
Consider an ideal world where the author’s vision 
of a systematic collection of information and 
associated updating of models of engineering 
systems is the norm. Once such a standard practice 
would be implemented, the principles of 
information updating could equally be used to 
continuously improve the models of engineering 
systems in general. In particular, this would 
provide the possibility to quantify model and other 
epistemic uncertainties, and a full probabilistic 
model of the (engineering) world might one day 
be available. Obviously, it is a long way to go 
until such an ideal situation is reached, but any 
intermediate step presents an opportunity in itself.  
 
REFERENCES 
Au S.K. & Beck, J.L. 2001. Estimation of small 

failure probabilities in high dimensions by 
subset simulation. Probabilistic Engineering 
Mechanics 16(4): 263-277. 

Bensi M. T., D. Straub, P. Friis-Hansen, and A. 
Der Kiureghian (2009), Modeling 
infrastructure system performance using BN, 
in Proc. ICOSSAR'09, Osaka, Japan. 

Der Kiureghian A. (2005), First- and second-order 
reliability methods. Chapter 14, in 
Engineering design reliability handbook, 
edited by E. Nikolaidis et al., CRC Press, 
Boca Raton, FL. 

Ditlevsen O., and H. O. Madsen (1996), Structural 
Reliability Methods, John Wiley & Sons. 

Faber M. H., I. B. Kroon, E. Kragh, D. Bayly, and 
P. Decosemaeker (2002), Risk Assessment of 
Decommissioning Options Using Bayesian 
Networks, Journal of Offshore Mechanics and 
Arctic Engineering, 124(4), 231–238. 

Friis-Hansen A. (2000), Bayesian Networks as a 
Decision Support Tool in Marine Applications, 
PhD thesis, DTU, Lyngby, Denmark. 

Friis-Hansen P. (2004), Structuring of complex 
systems using Bayesian network., in 
Proceedings Workshop on Reliability Analysis 
of Complex Systems, Technical University of 
Denmark, Lyngby. 

Gollwitzer S., B. Kirchgäßner, R. Fischer, and R. 
Rackwitz (2006), PERMAS-RA/STRUREL 
system of programs for probabilistic 
reliability analysis, Structural Safety, 28(1-2), 
108–129. 

Grêt-Regamey A., and D. Straub (2006), Spatially 
explicit avalanche risk assessment linking 
Bayesian networks to a GIS, Natural Hazards 
and Earth System Sciences, 6(6), 911–926. 

Jensen F. V., and T. D. Nielsen (2007), Bayesian 
Networks and Decision Graphs. Information 
Science and Statistics, Springer, New York, 
NY. 

Langseth H., and L. Portinale (2007), Bayesian 
networks in reliability, Reliability 
Engineering & System Safety, 92(1), 92–108. 

Langseth H., T. D. Nielsen, R. Rumí, and A. 
Salmerón (2009), Inference in hybrid 
Bayesian networks, Reliability Engineering 
and System Safety, 94(10), 1499–1509. 

Madsen H. O. (1987), Model Updating in 
Reliability Theory, in Proc. ICASP 5, 
Vancouver, Canada. 

Mahadevan S., and R. Rebba (2005), Validation of 
reliability computational models using Bayes 
networks, Reliability Engineering & System 
Safety, 87(2), 223–232. 

Nishijima K., M. A. Maes, J. Goyet, and M. H. 
Faber (2009), Constrained optimization of 
component reliabilities in complex systems, 
Structural Safety, 31(2), 168–178. 

Papaioannou I., Straub D. (2010). Geotechnical 
reliability updating using stochastic FEM. 
Reliability and Optimization of Structural 
Systems (ed. D. Straub), Taylor and Francis. 



Rackwitz R. (2001), Reliability analysis – a 
review and some perspectives, Structural 
Safety, 23(4), 365–395. 

Russell S. J., and P. Norvig (2003), Artificial 
intelligence: a modern approach, Prentice-
Hall, Englewood Cliffs, N.J. 

Schall G., S. Gollwitzer, and R. Rackwitz (1988), 
Integration of multinormal densities on 
surfaces, in Proc. 2nd IFIP WG 7.5 Working 
Conference, London. 

Shachter R. D. (1986), Evaluating Influence 
Diagrams, Operations Research, 34(6), 871–
882. 

Straub D., Der Kiureghian A. (2010a). Bayesian 
Network Enhanced with Structural Reliability 
Methods. Part A: Theory. Journal of 
Engineering Mechanics, Trans. ASCE, in 
print. 

Straub D., Der Kiureghian A. (2010b). Bayesian 
Network Enhanced with Structural Reliability 
Methods. Part B: Applications. Journal of 
Engineering Mechanics, Trans. ASCE, in 
print.  

Straub D., Faber M.H. (2006). Computational 
Aspects of Risk Based Inspection Planning. 
Computer-Aided Civil and Infrastructure 
Engineering, 21(3), pp. 179-192. 

Straub D. (2009), Stochastic Modeling of 
Deterioration Processes through Dynamic 
Bayesian Networks, Journal of Engineering 
Mechanics, Trans. ASCE, 135(10), pp. 1089-
1099. 

Straub D. (2010), Reliability updating with 
equality information. Probabilistic 
Engineering Mechanics, under review. 

Straub D., M. T. Bensi, and A. Der Kiureghian 
(2008), Spatial Modeling of Earthquake 
Hazard and Infrastructure Performance 
Through Bayesian Networks, in Proc. EM’08 
conference, University of Minnesota, 
Minneapolis. 

Tang W. H. (1973), Probabilistic Updating of 
Flaw Information, Journal of Testing and 
Evaluation, 1(6), 459–467. 

Wen Y. K., and H. C. Chen (1987), On fast 
integration for time variant structural 
reliability, Probabilistic Engineering 
Mechanics, 2(3), 156–162. 

Yang J.N., and W. J. Trapp (1974). Reliability 
Analysis of Aircraft Structures under Random 
Loading and Periodic Inspection. AIAA 
Journal, 12(12), pp. 1623-1630. 

 
 
 
 
 


	Abstract
	1. Introduction
	2. Information updating
	3. Information updating with equality information
	3.1 Applications

	4. Bayesian Networks for Information updating
	4.1 Enhanced Bayesian Network (EBN)
	4.2 Dynamic Bayesian Networks for inspection and monitoring of Deteriorating structures

	5. Outlook and Conclusion
	References

