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Abstract

We consider a log-price process Xt, which is observed at discrete times 0,∆n,
2∆n, . . ., and the process has a stochastic squared volatility σ2

t . Assuming that the
price process as well as the volatility process have common jumps, we suggest tests
for non-correlation between log-price and squared volatility jumps, or functions of
such jumps. Our tests have a prescribed asymptotic level, as the mesh ∆n tends to
0 and the observation time Tn tends to ∞. The finite sample performance of our
test is studied using simulations. We finally apply our tests to real data, and the
test rejects the non-correlation hypothesis for the combination of squared log-price
jumps and the moduli of the jumps of the squared volatility. This sheds new light on
economically motivated statements on causality between price and volatility jumps
and on econometric modeling.
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1 Introduction

Models for financial data involving stochastic volatility and allowing for sample path
discontinuities in the volatility as well as in the underlying asset price (stock, index,
exchange rate) have become popular in recent years. Since Merton’s paper [24] there is
an increasing number of publications showing empirical evidence of jumps in the asset
prices: from the distribution of log-returns viewpoint as in [1, 12, 15], or from a non-
parametric statistical viewpoint as in [5, 10, 16] using multipower variations, or [2, 22]
with other methods, see also the references in these papers. Naturally, if the asset price
process has jumps, one might suppose that the volatility process also exhibits jumps,
which is e.g. modeled by a continuous-time GARCH model [21]. However, as in [9],
the volatility process can exhibit jumps, although price is continuous. The presence of
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jumps, for price and/or volatility, implies that the model is incomplete (a stochastic
volatility usually also implies incompleteness). The consequences of this fact for risk
management, portfolio optimization and derivatives pricing, starting again with [24], have
been extensively discussed already in the last decades, see for example [14] and many
others.

Another important topic is the (statistical) connection between price and volatility,
besides the mere fact that “dXc

t = σt dWt” for the “continuous martingale part” Xc of the
log-price process X, where σt is the spot volatility and W the Brownian motion driving
X. In continuous models, this connection often takes the name of leverage and is usually
understood as being the correlation between the two Brownian motions driving X and σ.
Most empirical studies conclude to a significant negative correlation, typically between
−0.3 and −0.6. Since [11] and [13], there have been numerous economical interpretations
or justifications of empirical findings of negative correlation between log-returns and func-
tions of the volatility, and the fact that leads to the name “leverage” is that, when price
goes down, the asset becomes (relatively) more risky, hence volatility goes up.

Now, once statistical evidence for the presence of jumps is established, it is important
to investigate in a next step a possible relationship between price jumps and volatility
jumps. It might of course happen that price and volatility never jump together; however,
this seems ruled out by empirical evidence, see e.g. [19]. If common jumps occur, the
same economical justification as for the (continuous) leverage to be negative would suggest
the sizes of a log-price jump and a volatility jump (or some function of it) occurring
simultaneously to be negatively correlated, and in any case this (positive or negative)
correlation can be viewed as an assessment of the “jump leverage”.

More generally, and even if the above correlation is found to be essentially zero, know-
ing the joint law – or at least some of its properties – of the two components of a “co-jump”
is of uttermost importance for modeling purposes.

Of course, there are many possibilities for the joint law of co-jumps, ranging from an
extreme case where there is a functional relationship between the two sizes, to the other
extreme where they are independent. A precise functional relationship is – not surprisingly
– ruled out by empirical evidence. On the other hand, testing for independence stricto
sensu, especially in a non-parametric setting, is always a difficult task, and completely
out of reach here with the relatively scarce large jumps one observes in finance, even
with high-frequency data. So the more modest question addressed in this paper is to
determine whether, for log-price and (squared) volatility co-jumps, the two jump sizes are
correlated or not; or, more generally, if some functions of these are correlated or not. An
important point is that we completely disentangle the jumps from the continuous part
of our processes, unlike in [6] where a “global” leverage which includes both the leverage
for the continuous part and a kind of correlation between jumps, is evaluated and found
significantly negative in empirical studies.

In this paper we consider a single, liquid, asset. The price is observed at discrete
and regularly spaced times i∆n, for some small time lag ∆n, whereas the final horizon
Tn is large: so the asymptotic is ∆n → 0 and Tn → ∞, and in the empirical study we
use ∆n = 1 minute and Tn = 7 years. We also assume that the microstructure noise is
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negligible (probably a reasonable assumption when ∆n = 1 minute), that is, prices at
times i∆n are exactly observed.

Price jumps, though, are not observed exactly, but the sizes of the “big” jumps are
actually known up to a small – essentially negligible – error. As for the volatility, which
is not directly observed per se, we use spot volatility estimators such as those in [3, 19],
based on rolling windows of size about 1 hour when ∆n is 1 minute; as we will see on
Monte-Carlo experiments, this allows us to get “reasonable” estimators for the volatility
jumps, although by far not as good as those for price jumps. The assumption Tn → ∞,
rather unusual in a high-frequency setting, is necessary here because otherwise one would
only have a finite number of big jumps (or of jumps of any size when they have finite
activity), and of course asymptotic inference is impossible when a fixed amount of data
is observed.

The empirical analysis of co-jumps and their joint statistical properties has of course
been done by a number of authors, although it typically concerns daily returns and the
corresponding daily moves of volatility: see for example [7] and the references therein.
The usual finding is that, as for the continuous leverage, a negative correlation is found
for those daily returns large enough to be interpreted as jumps. In this paper we consider
higher frequency observations and take into consideration intra-day (large enough) jumps.
The volatility jumps are estimated by taking differences of spot volatility estimators based
on windows of size almost one hour, and from our simulation studies these spot volatility
estimators seem to behave well enough to obtain reasonably accurate estimators for the
actual volatility jumps. This analysis of actual jumps rather than daily returns leads us
to different empirical conclusions: the correlation between co-jumps is not statistically
different from 0, although there seems to be some statistically significant dependence
between the price and volatility co-jumps. However, from a mere visual inspection (which
is of course not compelling in any sense) of the plots in Figure 3, for example, it looks
like the dependence is indeed quite weak.

The paper is organized as follows: In Section 2 we set the stage by formulating the
(log) price process and stochastic volatility models in its full generality of a bivariate Itô
semimartingale. We also describe the kind of statistical hypotheses which we subject to
testing. The theoretical results are given in Section 3, in the case of finite activity jumps
for the price process, and extended to the general case in Section 4. Section 5 provides
some Monte Carlo experiments. Section 6 shows the empirical results for SPDR S&P
500 ETF (SPY) high-frequency data during 2005-2011. Two more data sets have been
analyzed and results are reported in appendix [17]. Section 7 concludes. Finally, proofs
are given in Section 8.

2 Model framework and statistical hypotheses

Our (non-parametric) model is for the pair of the single log-price X and the correspond-
ing squared volatility c = σ2. The basic structural assumption is that (X, c) is an Itô
semimartingale on some filtered probability space (Ω,F , (Ft)t≥0,P). Their jumps are inte-
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grable (since our main interest is their correlation, they should at least have finite second
moment anyway). So we may write them as

Xt = X0 +
∫ t

0
bsds+

∫ t
0
σs dWs +

∫ t
0

∫
E
δ(s, z) (µ− ν)(ds, dz)

ct = c0 +
∫ t

0
b̃sds+

∫ t
0
σ̃sdWs +

∫ t
0
σ̂sdW

′
s +
∫ t

0

∫
E
δ̃(s, z) (µ− ν)(ds, dz)

(1)

(see [18] for all unexplained, but classical, notions or notation). Here, W and W ′ are
independent standard Brownian motions, µ = µ(ω, dt, dz) is a Poisson random measure
on R+ × E, and the predictable compensator (or intensity measure) of µ is ν(dt, dz) =
dt ⊗ λ(dz) for some σ-finite measure λ on (E, E). Further (E, E) is an auxiliary Polish
space (there is a lot of freedom for choosing the driving measure µ and λ, and even the
space E: it is always possible to take E = R for example, and λ to be the Lebesgue
measure).

This formulation is general enough to accommodate a large variety of situations: cases
without or with leverage for the “continuous part”, according to whether σ̃t is identically
0 or not: cases where X and c do not jump together, if the product δδ̃ vanishes identically;
cases where they always jump together, if δ 6= 0 if and only if δ̃ 6= 0. And, of course, all
intermediate cases for simultaneous and non-simultaneous jumps.

The “coefficients” of the model are the processes bt, b̃t, σ̃t and σ̂t, which are progres-
sively measurable, and the predictable functions δ and δ̃ on Ω×R+×E. They should be
such that the integrals in (1) are meaningful, and also that ct ≥ 0 for all t ≥ 0. In our
calculations below we will make two simplifying assumptions: one is that all moments of
ct are bounded in t and that those of Xt are all finite (although not bounded in t); second,
we assume that the jumps of X have finite activity (we do not assume the same for c,
because this property is without consequences on the mathematical treatment below).
The first assumption is reasonable, at least for stock and foreign exchange markets; the
second one is probably less so, but in Section 4 we explain, how it can be relaxed. The
precise assumption is thus as follows:

Assumption (A) a) There are functions Γ, Γ̃ ≥ 0 on E and processes γt, γ̃t such that

|δ(ω, t, z)| ≤ γt(ω)Γ(z) and |δ̃(ω, t, z)| ≤ γ̃t(ω)Γ̃(z), with
∫
E

(1{Γ(z)>0} ∨ Γ(z)p)λ(dz) <∞
and

∫
E

(Γ̃(z)2 ∨ Γ̃(z)p)λ(dz) <∞ for all p ≥ 2.
b) For all p > 0 we have

sup
t≥0

E
[

sup
s∈[t,t+1]

(
|bs|+ |̃bs|+ |σ̃s|+ |σ̂s|+ γs + γ̃s + cs

)p]
< ∞. (2)

Under (A-a) the process Xt has finite activity jumps, and finite moments of all order,
but those are typically not bounded in time.

(A-b) replaces the weaker requirement that all processes bt, b̃t, · · · are locally bounded,
which is more common in the literature on high-frequency data with fixed time horizon:
this property is “localized” and replaced by boundedness, but of course localization is
impossible when the time horizon goes to infinity. This is needed because the number of
jumps of X and c should go to infinity if we wish to have independence or non-correlation
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tests to be consistent, and this cannot be achieved if the time horizon is kept fixed because
we would only observe finitely many jumps of size larger than ε for any ε > 0.

With ∆Yt = Yt−Yt− denoting the jump size at time t of any càdlàg process Yt, we set

Nt =
∑
s≤t

1{∆Xs 6=0}, S1, S2, · · · are the successive jump times of X. (3)

Then (A-a) implies that Nt is finite-valued, and under Assumption (B) below we will have
Sn ↑ ∞, and of course Nt =

∑
n≥1 1{Sn≤t}.

Remark 1 (i) The signs of σt, σ̃t, σ̂t in (1) are irrelevant (the sign of the product σtσ̃t is
relevant for the continuous leverage effect, but we are not considering this question here)
and, for example, one may take σt =

√
ct, which gives a càdlàg version for σt, and is even

an Itô semimartingale if ct and ct− never vanish.(i)
(ii) We have required ct ≥ 0 above. Now, in virtually all models featuring a standard

Brownian motion W in the formula for X, and of which we are aware, we have ct > 0 and
ct− > 0 for all t. In this case one can also consider the log-volatility c′t = log ct, which has
been considered in [11, 13]. The process c′ satisfies an equation of the form

c′t = c′0 +

∫ t

0

b̃′sds+

∫ t

0

σ̃′sdWs +

∫ t

0

σ̂′sdW
′
s +

∫ t

0

∫
E

δ̃′(s, z) (µ− ν)(ds, dz) (4)

for suitable coefficients b̃′, σ̃′, σ̂′, δ̃′. For example, the connection between δ̃ and δ̃′ is

δ̃′(ω, t, z) = log
(

1 +
δ̃(ω, t, z)

ct−(ω)

)
, δ̃(ω, t, z) = ct−(ω)

(
eδ̃
′(ω,t,z) − 1

)
. (5)

When ct and ct− do not vanish, it is theoretically equivalent to model ct or its logarithm c′t.
In practice, modeling c′t (which can take positive and negative values) is often easier than
modeling ct (which does not take negative values), when there are jumps, for the following

reason: in (1) we need δ̃(ω, t, z) ≥ −ct−(ω) for all z in the support of λ; so, unless we take
δ ≥ 0 identically (implying positive volatility jumps only), this requirement prevents us

to use a non-random function δ̃(ω, t, z) = δ̃(t, z). In the version (4) nothing prevents us

from taking a non-random δ̃′.
(iii) If we use (4) we need assumptions on the coefficients to ensure that (A) is satisfied.

For example, considering the conditions on δ̃ and δ̃′, if for instance |δ̃′(ω, t, z)| ≤ Γ̃′(z)

for a function Γ̃′ satisfying
∫ (

Γ̃′(z)2 ∧ epΓ̃′(z)
)
λ(dz) < ∞ for all p ≥ 0, then (A) is

satisfied by δ with γ̃t = ct and Γ̃ = eΓ̃′ − 1. This is the reason why in (A) we have

required |δ̃(ω, t, z)| ≤ γ̃t(ω)Γ̃(z) instead of the – seemingly – more natural condition

|δ̃(ω, t, z)| ≤ Γ̃(z). 2

Our general (albeit unreachable) aim is to test for “independence” of the sizes of
simultaneous jumps of X and c or, rather, for “conditional independence” knowing the
past before the jumps: this is what is really meaningful in a dynamical system and, thus,
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it is what we want to check for modeling purposes. The conditional distribution of jumps,
knowing the past, is easily obtained in terms of the coefficients δ and δ̃. Namely, for any
two measurable functions f, g of polynomial growth we can define the process (with the
convention 0

0
= 0)

V (f, g)t =

∫
E

1{δ(t,z)6=0} f(δ(t, z)) g(δ̃(t, z))λ(dz)∫
E

1{δ(t,z)6=0} λ(dz)
, (6)

and we have

V (f, g)Sn = E
[
f(∆XSn) g(∆cSn) | FSn−

]
on the set {Sn <∞}. (7)

In other words, the above-mentioned conditional independence amounts to

V (f, g)Sn = V (f, 1)Sn V (1, g)Sn ∀n ≥ 1 (8)

for all pairs f, g of functions, and by a density argument it suffices to check this, when
f and g belong to the class Lpol of all functions h of polynomial growth satisfying |h(x+
y)−h(x)| ≤ K|y|(1+ |x|p+ |y|p) for some K, p ≥ 0 (taking bounded functions would even
be sufficient).

Now, testing (8) simultaneously for all pairs f, g is impossible. So we will choose a
pair f, g and propose a test of the property (8) for this particular choice. One can then
repeat the same test for several pairs, thus “approaching” an independence test. When

f(x) = g(x) = x, (9)

and because the difference of the two sides of (8) is then the (conditional) covariance of
the two jump sizes ∆XSm and ∆cSm , testing (8) amounts to testing for non-correlation,
but other choices for f and g may be as useful as (9).

For testing (8), and even if the variables V (f, g)Sn were observable (which they are
not), one needs a large number of them, and also a nice behavior when n tends to infinity.
This leads us to introduce the following assumption:

Assumption (B) a) We have convergence in probability: 1
n
Nnt

P−→ At as n → ∞ for
all t (recall (3) for Nt), where the process A is continuous and A1 > 0.

b) For all functions f, g ∈ Lpol we have (non-random) numbers v(f, g) such that as
n→∞

1

n

[nt]∑
j=1

V (f, g)Sj

P−→ v(f, g) t for all t . (10)

Under (B-a) the jump times Sn are not too “unevenly distributed” through time, and
in particular they are all finite. This is a rather mild condition, clearly satisfied when
X is a discontinuous Lévy process or, more generally, when X has jumps of Lévy type,
meaning that the function δ(ω, t, z) = δ(z) depends on z only. In this case the Sn form a
Poisson process.
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Remark 2 One could weaken (B-a) so as to be γ−1
n Nnt

P−→ At for a sequence γn →
∞: the forthcoming results still hold, with an appropriate modification of the condition
Tn∆

1/2−ζ
n → 0 in Theorem 1 by Tn∆

2/3−ζ
n → 0, and the extension at the end of Section 5.

But it is difficult to imagine realistic models satisfying this with γn other than n. 2

Assumption (B-b) is a kind of “ergodic” hypothesis for the discrete-time process
V (f, g)Sm . Assumption (B) is satisfied when the process c is ergodic and X has Lévy
jumps. It is also satisfied when the pair (X, c) is ergodic.

Finally, besides being in Lpol, the pair of functions f, g is supposed to satisfy:

Assumption (C) a) We have v(f 2, 1) > v(f, 1)2 and v(1, g2) > v(1, g)2.
b) We have V (f, 1)Sm = v(f, 1) for all m ≥ 1.

(C-a) is a non-degeneracy condition, basically stating that the variables f(∆XSm) and
g(∆cSm) are not constant (if they were, (8) would be trivially satisfied and there would
be nothing to test), and also implying implicitly that there are infinitely many jumps of
c occurring together with those of X. As for (C-b), it looks, and is, quite restrictive, and
we can only think of three situations in which this can reasonably be true:

(S1) X has jumps of Lévy type: then V (f, 1)t does not depend on t and (C-b) holds for
all f .

(S2) The distribution of the sizes of X-jumps, conditionally on the past, is symmetrical
about 0. In this case, any odd function f satisfies (C-b), because then V (f, 1)Sm = 0
for all m, and also v(f, 1) = 0. In practice, many models for (discontinuous) prices
are assumed to have jumps satisfying this symmetry property.

(S3) Even more models have the weaker property that the jumps of X, conditionally on
the past, are centered. In this case the function f(x) = x satisfies (C-b).

At this stage, we can state the statistical hypotheses, for any given (fixed) pair f, g of
functions in Lpol, under (A, B, C). The null and alternative hypotheses are, respectively,

(H0) : V (f, g)Sn = V (f, 1)Sn V (1, g)Sn for all n, hence also v(f, g) = v(f, 1)v(1, g)

(H1) : v(f, g) 6= v(f, 1)v(1, g).
(11)

These two hypotheses are disjoint, but there is a gap between them: it is possible that both
fail. (H0) is genuinely the null in which we are interested (the conditional independence
(8)). Note that, within the sub-class of our model for which the two-dimensional discrete-
time process (∆XSn ,∆cSn) is stationary ergodic, we have v(f, g) = E[f(∆XSn)g(∆cSn)]
for all n, hence (H1) amounts to the fact that the random variables f(∆XSn) and g(∆cSn)
are (unconditionally) correlated.
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3 The test procedure

We start with the observation scheme. For n ≥ 1 the process X is observed at discrete
times i∆n for all integers i between 0 and Tn/∆n, where the time span Tn is a multiple of
the time lag ∆n, and below we assume that Tn →∞ (long span asymptotic) and ∆n → 0
(high-frequency in-fill asymptotic) as n→∞. The starting point X0 is irrelevant for us,
so the observation amounts to the returns (or log-returns):

∆n
iX = Xi∆n −X(i−1)∆n , (12)

and later the same notation ∆n
i Y is used for the increments of any other process Y .

As explained at the beginning of Chapter 9 of [20], large increments ∆n
iX are due to

jumps, most usually to a single one (recalling finite activity), whereas small increments
reflect the variation of the continuous (Brownian) part of X. Since we are interested in
the jumps of X we need to disentangle them from the continuous part, and for this we use
decreasing truncation levels un > 0. To “estimate” the spot volatility we also use time
windows of size kn∆n for an increasing sequence kn of integers. We must have un → 0, but
more slowly than

√
∆n, and kn → ∞, but more slowly than 1/

√
∆n. These convergence

rates hold, if we choose exponents $ and ρ such that for some constant A ∈ (1,∞)

1

A
≤ un

∆$
n

≤ A ,
1

A
≤ kn∆ρ

n ≤ A , with $, ρ ∈ (0,
1

2
). (13)

The choice of un and kn in practice will be discussed at the end of this section.
Based on the truncation method initiated by Mancini [23], the next quantities serve

as “local estimators” of the squared spot volatility ct = σ2
t :

ĉni =
1

kn∆n

kn∑
j=1

|∆n
i+jX|2 1{|∆n

i+jX|≤un}, (14)

so that ĉn[t/∆n] and ĉn[t/∆n]−kn will be used as estimators of ct and ct−, respectively. Taking
only returns smaller than un into account allows us to eliminate the jumps of X, which
otherwise would introduce a positive bias into the volatility estimator.

We will construct the tests under the assumptions (A,B,C). In view of (7), it is only
natural that the following process plays a key role:

U(f, g)t =
∑
m≥1

f(∆XSm) g(∆cSm) 1{Sm≤t}. (15)

It is not observable, but its value at time t is consistently estimated by the following
(observable) statistics (below, empty sums are set to 0):

U(f, g)nt =

[t/∆n]−kn∑
i=kn+1

f(∆n
iX) g(ĉni − ĉni−kn−1) 1{|∆n

i X|>un}. (16)
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The test statistics itself will be as follows (below, U(1, g)nt , for example, stands for U(f, g)nt
when f(x) = 1 for all x, and U(1, 1)nt counts the number of returns larger than un in the
estimation window):

Ψn =
√
U(1, 1)nTn

Υn√
Φn

,

where

Φn = (U(1, 1)nTn)3U(f 2, g2)nTn + U(1, 1)nTn (U(f, 1)nTn)2 U(1, g2)nTn
+U(1, 1)nTn (U(1, g)nTn)2 U(f 2, 1)nTn + 4U(1, 1)nTn U(1, g)nTn U(f, 1)nTn U(f, g)nTn
−2U(1, 1)nTn U(f, 1)t U(f, g2)nTn − 2U(1, 1)nTn U(1, g)nTn U(f 2, g)nTn
−3(U(f, 1)nTn)2 (U(1, g)nTn)2

Υn = U(1, 1)nTn U(f, g)nTn − U(f, 1)nTn U(1, g)nTn .

(17)

In words, Ψn is the Studentized version of Υn, which in turn is the empirical corre-
lation between proxies of the jumps of X (replaced by the observed returns) and those
of c (replaced by the increments of the spot volatility estimators, over non-overlapping
adjacent windows). Let us also mention that the functionals (16) are of the same type as
those introduced for example in [19]. However, the conditions on f and g are different,
and also Tn →∞, so that the next result needs a new proof.

Before describing the tests, we give the asymptotic behavior of these statistics (recall

that
P−→ denotes convergence in probability, and

L−→ convergence in law):

Theorem 1 Assume (A,B,C) for the stochastic volatility model (1) and the test functions

f and g, and let Tn → ∞ and ∆n → 0 be such that Tn∆
1/2−η
n → 0 for some η ∈ (0, 1

2
).

We also choose un and kn as in (13), with ρ ∈
[

1
2
− η, 1

2

)
. Then, as n→∞,

under (H0) : Ψn
L−→ N (0, 1)

under (H1) : |Ψn|
P−→ ∞.

(18)

This theorem readily provides a way to construct a test with a given asymptotic level
α ∈ (0, 1) for the null hypothesis (H0). We consider the symmetric α-quantile yα of the
standard normal law, such that P(|U | > yα) = α when U is N (0, 1). The critical regions
are

Cn =
{
|Ψn| > yα

}
. (19)

In our non-parametric setting, the asymptotic size of the tests above is defined

sup

{
lim sup
n→∞

P(Cn) : P satisfies (H0)

}
,

and this family of critical regions is called consistent for the alternative, if P(Cn) → 1
whenever P satisfies (H1).

Theorem 2 Under the assumptions of Theorem 1 the critical regions Cn have the asymp-
totic size α for testing the null hypothesis (H0) and are consistent for the alternative
(H1).
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Practical considerations. Apart from the natural choice (9), which allows us to test for
non-correlation of the jump sizes of X and c, the choice of other pairs f, g, for which
to conduct the test, really depends on the type of model one wants to use or which one
believes to be more or less realistic, and also on how far one wants to go towards testing
“complete” conditional independence. In our empirical studies we use a few pairs, but
other choices are of course possible.

The procedure also requires to choose the truncation levels un and the window kn.
For un, the aim is to eliminate the Brownian parts in (16), and to eliminate the jumps
and keep most of the Brownian parts in (14). This type of truncation, which originates in
[23], is quite often used in similar context, and is for example discussed in [19], or in [2]
for un only. Taking the threshold un fixed over the whole time period has the effect that
we investigate more jumps during periods with high volatility than in periods with low
volatility. Therefore we will use an adaptive threshold, computed locally in time on the
basis of a few days. As for kn, saying that (13) holds with ρ almost equal to 1/2 does not
say much. We can take kn = [k∗∆−.49

n ] as suggested in [19] with k∗ = 4. However, taking
kn to be between 50 and 100 for a “typical” number and span of observations seems to
be a reasonable choice according to our Monte Carlo study, which mimics the empirical
analysis where 1 minute data is used.

One may also wonder whether Tn∆
1/2
n is really “small enough” to suppose that we are

in the asymptotic regime. As usual in this context, there is no reliable rule about this,
apart from conducting the test for various values of ∆n (that is, doing sub-sampling with
various ranges) and check for significant differences.

Finally, our test completely disregards microstructure noise, and is clearly not robust
against it. Therefore, it should be used with care, when very high-frequency data are
employed. This depends, of course, on the nature of the data: for stock prices, sampling
more frequently than 1 minute for the most liquid ones and 5 minutes for the others is
probably unreasonable; for exchange rates or indices, frequency might be higher. It would
indeed be possible to take care of microstructure noise by using a “pre-averaged” version of
log-prices and spot volatility estimators; however, this requires another tuning parameter
(the length of the pre-averaging window), and matters become even more complicated,
both theoretically and practically, and less transparent.

Remark 3 The above procedure is designed to test for correlation between two functions
f(∆Xt) and g(∆ct) for a co-jump at time t, under the conditional law knowing the past
before t. One might prefer to test for correlation between f(∆Xt) and g(∆h(c)t) for some
function h, such as h(x) =

√
x (so ∆h(c)t would be the jump ∆σt of the volatility and not

the squared volatility), or h(x) = log x (so ∆h(c)t would be the jump of the log-volatility).
As indicated in Remark 1(ii), this is possible, under the additional assumption that the

process ct satisfies infs cs > 0 (a rather weak assumption, satisfied by virtually all models
for stochastic volatility). The jump ∆h(c)t would then be estimated by the quantity
h(ĉ′ni )−h(ĉ′ni−kn), where ĉ′ni = ĉni ∨ρn for some appropriately chosen sequence ρn of positive
numbers, decreasing sufficiently slow to 0. With this modification, the previous procedure
works in exactly the same way.
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Below, we do not implement these slightly different tests explicitly. If we are interested
in whether there is independence or not, this property holds for the pair (∆Xt,∆ct) if
and only if it holds for the pair (∆Xt,∆h(c)t), as soon as h is continuous and strictly
monotonic. 2

4 Extension to the infinite activity case

Assumption (A) is quite weak, except for the requirement that jumps of X have finite
activity. Relaxing this amounts to replace (A) by the following, for some number r ∈ [0, 2]:

Assumption (A-r) We have (A), except that the integrability condition on Γ is replaced
by
∫
E

(Γ(z)r ∨ Γ(z)p)λ(dz) <∞, for all p ≥ 2.

The number r is an upper bound for the activity index, or Blumenthal-Getoor index,
of the jumps of X, and imposing (A-0) is the same as adopting (A).

Testing for the independence of the infinitely many very small jumps of X with those
of c seems out of practical reach. We can however fix a level ε > 0 and decide that only
jumps of X with absolute size bigger than ε are tested. If desired, we can repeat the same
test for a decreasing (finite) sequence ε1 > ε2 > · · · > εm. One should also make sure
that X has a.s. no jump such that |∆Xt| = ε; this is true for all ε > 0 except countably
many values, and also for all ε > 0 as soon as the Lévy measure of X has a density.

In this situation we have to replace (3) and (6) by

Nt =
∑

s≤t 1{|∆Xs|>ε}; S1, S2, · · · are the jump times of X with size bigger than ε,

V (f, g)t =

∫
E

1{|δ(t,z)|>ε} f(δ(t, z)) g(δ̃(t, z))λ(dz)∫
E

1{|δ(t,z)|>ε} λ(dz)
.

Assumptions (B) and (C) are not formally modified, although of course Nt, hence At, and
also all v(f, g), depend implicitly on the value ε. In particular (C-b) is satisfied in the
situations (S1) (for all f) and (S2) (for all odd f) described just after Assumption (C),
but not in situation (S3) for f(x) = x, in general.

The two statistical hypotheses (H0) and (H1) are the same as in (11), and again
implicitly depend on ε. The testing procedure works in exactly the same way, provided
we replace (16) by

U(f, g)nt =

[t/∆n]−kn∑
i=kn+1

f(∆n
iX) g(ĉni − ĉni−kn−1) 1{{|∆n

i X|>ε}.

However, due to the presence of many small jumps, the spot volatility estimators (14)
are not as good as in the finite activity case, and the quality deteriorates as r increases.
This results in more stringent assumptions in Theorems 1 and 2. Namely, instead of

Tn∆
1/2−η
n → 0 for some η ∈ (0, 1

2
), and when e.g. r ≥ 4

3
, we need Tn∆

2−r
r
−η

n → 0. The
proofs, though, are much more involved, and we will not pursue this topic here.
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5 Monte Carlo results

To assess the behavior of the test in a realistic scenario, we conduct a Monte Carlo study
using a two-factor stochastic volatility model with diurnal effect and mid-range changing
volatility level. We consider 16 simulation scenarios to investigate the sensitivity of the
test on the jump frequency, on the length of the data set, and on the threshold un and
the length kn of the window for the volatility estimation, cf. Eq. (14) and Eq. (16).

5.1 Two-factor stochastic volatility model

For our experiments we use the following model:

dXt =
√
Vt + aeYt

√
Dt

√
MtdWt + dJXt (20)

dVt = κ1(θ − Vt)dt+ τ
√
VtdBt (21)

dYt = −κ2Ytdt+ dHt + dJYt (22)

Dt = 4.8((t− btc)− 0.5)2 + 0.6 (23)

Note that a similar two-factor model has been used in [19], and regarding the choice of the
parameters we closely follow the setup given there. The process X is the log-price process,
and the processes V and Y are two stochastic components of the volatility process. Since
Dt = Dt+1 for all t and we identify the time unit with one day, D represents a deterministic
diurnal effect on the volatility. Note that the process D mimics quite accurately the
diurnal volatility pattern found in [25] for the SPY equity (cf. Figure 2 in [25]) between
9:30 am and 4:00 pm. The process M is not modeled explicitly, but is the 20-day moving
average volatility level (standardized to an average level of 1 over the full period), which
we observe in the empirical analysis in Section 6. This way we model realistic volatility
fluctuations over long periods. The four volatility components V , Y , D and M are linked
to the volatility process σ, given by

σt =
√
Vt + aeYt

√
Dt

√
Mt, (24)

in Eq. (20). The processes W and B are assumed to be independent standard Brownian
motions, driving the processes X and V . We conduct a similar Monte Carlo study with
leverage effect (i.e. with W and B being correlated Brownian motions) in the appendix
[17]. The common jumps of the log-price process and the squared volatility process are
generated by the bivariate compound Poisson process (JX , JY ) with intensity λJ . Note
that σ can jump upwards and downwards, if the jump distribution of JY allows for positive
and negative jumps. The process H is assumed to be a univariate compound Poisson
process with intensity λH generating jumps occurring only in the volatility process.

5.2 Simulation scenarios

We consider 16 different simulation scenarios, which all have some parameter setting in
common: θ = 0.4, κ1 = 0.02, κ2 = 0.5, τ = 0.04, a = 0.6, and λH = 0.5, ∆−1

n = 390.
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Table 1: The 16 simulation scenarios, differing in the common jump intensity λ, in the number T of days
in the observation period, and in the threshold parameters k∗ (3 and 5) and u∗ (3.89 and 3.72).

Scenario λJ T k∗ u∗

A.1250.k∗.a 0.68 1250

3 / 5

3.89
B.1250.k∗.a 1.36 1250 3.89
A.2500.k∗.a 0.68 2500 3.89
B.2500.k∗.a 1.36 2500 3.89

A.1250.k∗.b 0.68 1250

3 / 5

3.72
B.1250.k∗.b 1.36 1250 3.72
A.2500.k∗.b 0.68 2500 3.72
B.2500.k∗.b 1.36 2500 3.72

We further assume that the jump distribution of H is uniform on (−0.4, 0.4), so that H
generates additional small jumps in the volatility without simultaneous jumps in X. The
number of observations per day, ∆−1

n , corresponds to our empirical analysis in Section 6.
The parameters fit high-frequency financial data very well, cf. the choice of the parameters
in the two-factor model in [19]. Note, however, that in contrast to the model in [19] we
additionally employ the diurnal volatility pattern D, the 20-day moving average volatility
level M , and the process H, which all lead to higher volatility fluctuations (intraday and
over longer periods). Moreover, we use the exponential function in (20) in combination
with possibly negative values in Y to handle both upward and downward volatility jumps
generated by JY . Having in mind that V is mean-reverting to θ, Y is mean reverting to 0,
the parameter a = 0.6, and that the processes D and M have mean level 1, the volatility
level for the Brownian part in (20) varies around 1.

The scenarios differ in the (common) jump intensity λJ , in the length of the observation
period [0, T ], and in the constants u∗ and k∗ which are used as factors determining the
threshold un and the length kn. The parameter settings can be found in Table 1.

For the 16 scenarios, we simulate 1000 data sets each, and take T ∈ {1250, 2500}, which
corresponds to 5 and 10 years with 250 trading days each. To assess the sensitivity of
the test on the threshold un and the length kn of the window for the volatility estimation
(cf. Eq. (14) and Eq. (16)), we apply the test always using subsequently two different
values of k∗ and two different values of u∗, cf. Table 1. More precisely, as in Section 6
we set un = u∗

√
∆n

√
M∗

t Dt, where
√
M∗

t is the 20-day average volatility level (estimated
from the simulated data set at hand), and Dn is the diurnal effect from (23). Finally,
kn = [k∗∆−0.49

n ].
One main goal of this simulation study is to learn about the sensitivity of the test

statistics Ψn in Theorem 1 on the level of correlation between the log-price jumps and the
squared volatility jumps. To this end, we choose the joint jump distribution of (JX , JY )
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to be a truncated bivariate normal distribution with correlation ρsim; more precisely,(
∆JX

∆JY

)
∼ N

((
0
0

)
,

(
0.5 ρsim

√
0.9

ρsim
√

0.9 1.8

))
. (25)

For comparison, [19] employ a uniform log-price jump distribution in [−1.0420,−0.1]∪
[0.1, 1.0420] (for a jump intensity of 0.5), and a uniform volatility jump distribution in
[0.04, 0.76]. Hence, our choice leads to similar price jumps, but to volatility jumps which
can be larger in magnitude and both upwards and downwards. Furthermore, using this
non-truncated bivariate normal distribution we produce effectively not only significant
common jumps, but also significant price jumps paired with invisibly small volatility
jumps and vice versa (and some common jumps which can hardy be detected, neither
in the price nor in the volatility). Finally, our choice is in line with two criteria which
are important for our purpose: First, as we will see later, using these parameters the
(random) number of jumps taken into consideration by our test corresponds (at least in
certain setups) quite well to the empirical analysis in Section 6 (there, in the main analysis
330 jumps were taken into consideration). Second, the fraction of maximal and minimal
squared volatility over the whole time period should be at least of the magnitude of the
empirical analysis, where this fraction is about 63.

Due to the model structure the correlation parameter ρsim of (25) does not represent
the real correlation between the jumps in X and the jumps in c. After simulating a data
set, we therefore always compute the empirical correlation between the jumps in X and
the jumps in c. We denote this empirical correlation simply by ρ. Over the 1000 data
sets in a simulation scenario we vary the correlation parameter ρsim uniformly over the
interval [−0.6, 0.6]; then we compare the resulting test statistics Ψn to the corresponding
empirical correlation ρ.

Always the test is performed for f = g = id (where id denotes the identity function
id(x) = x), as in Eq. (9). For details on the specific selection of jumps (concerning
the selection of volatility jumps, handling of overnight data frictions, etc., we refer to
Section 6, where we proceed completely analogously.

5.3 Results

The 16 plots in Figure 1 show the values of the test statistics Ψn against the empirical
correlation ρ computed from the corresponding simulated data sets. Information about
the number of jumps analyzed by the test and about the fraction of maximal and minimal
squared volatility can be found in the appendix [17].

The similarity of the plots to data from linear models is obvious. Moreover, the slope
of the regression lines varies over the simulation scenarios. Of course, in order to have a
test which is able to detect also small correlations between log-price and squared volatility
jumps, the (absolute) values of the test statistics should be large as soon as the empirical
correlation ρ moves away from 0. Hence, a larger slope indicates that the test has more
power in detecting small correlations.
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Figure 1: Monte Carlo results for the 16 simulation scenarios of Table 1. The plots show the values of the
test statistics Ψn against the empirical correlation ρ computed from the corresponding simulated data
sets. The null no correlation is rejected on the level α if |Ψn| > yα, cf. Eq. (19). For illustration, the
horizontal dashed lines indicate the 2.5% and 97.5% quantiles of the standard normal distribution, used
for a test level of 5%.

To make this precise, we conduct regression analysis for all 16 plots of Figure 1;
details on the results can be found in [17]. As Figure 1 suggests, scenario B2500.3.b
has the highest power. Moreover, there is a strong connection between the number of
investigated price jumps and the value of the slope: the more jumps are investigated, the
larger the slope is. Obviously, a higher jump intensity as well as a longer observation
interval increases the number of jumps (using the same parameter values otherwise, in
particular u∗). Here it is useful to compute from Table 1 that the total expected number
of common jumps is 850 in scenarios A.1250, 1700 in scenarios B1250 and A.2500, and
3400 in scenarios B.2500 (note, however, that usually less jumps are investigated by the
test, cf. the histograms in [17]). As to the influence of the choice of u∗ we do not observe
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Figure 2: Rejection rates against test level α, for scenarios A.1250.3.a and B.2500.3.a, and for ρ∗ ∈
{0.0, 0.1, 0.2, 0.3}. Each curve is based on 1000 data sets.

significant differences in the slopes for u∗ = 3.89 and u∗ = 3.72. Of course, taking a higher
value for u∗ protects better against a misspecification of jumps due to larger movements of
the Brownian motion. The influence of the choice of k∗ on the slope is marginal, although
in our simulations we get slightly better results for k∗ = 3.

Next we investigate rejection rates in the different scenarios. Figure 2 exemplarily
shows rejection rates against test levels α ∈ (0, 1) for scenarios A.1250.3.a and B.2500.3.a.
Here we pool data sets with similar empirical correlation ρ, e.g. ρ ∈ (ρ∗ − 0.01, ρ∗ + 0.01)
as having correlation approximately ρ∗ for ρ∗ ∈ {0.0, 0.1, 0.2}. To reduce the Monte Carlo
error, we conducted additional simulations for these two scenarios, so that each curve in
Figure 2 is based on 1000 data sets. Due to the smaller number of large jumps, the test
has only small power in scenario A.1250.3.a to distinguish between no correlation and a
correlation of about 0.1, whereas it has the power to distinguish very precisely between
no correlation and a correlation of about 0.3. In scenario B.2500.3.a, where more jumps
are available, the test has more power and is able to detect very precisely correlations of
0.2. Moreover, we learn from Figure 2, that the test is slightly over-rejecting in general,
but this effect is only marginal for the usual levels of 5% of 10%.

Summarizing our results, we conclude that the more jumps are considered, the more
power the test has in order to distinguish between no correlation and correlation; this, of
course, coincides with our expectations from asymptotics in Theorem 1, where Tn → ∞
and ∆n → 0. The sensitivity on both k∗ and u∗ is quite weak.

6 Empirical results

As an application we consider trade data from the SPDR S&P 500 ETF (SPY), an
exchange traded fund that tracks the S&P 500 index. Our data comes from TickData
and contains all trades of SPY between January 3, 2005 and December 30, 2011, at 15
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different U.S. exchanges. However, we only retained trades from NASDAQ, where SPY
was traded more often than at all other 14 exchanges.

Before calculating returns we applied a procedure for cleaning high-frequency data
(cf., e.g., Section 3 in [8]). In particular, we used median prices if multiple transactions
with identical time stamp occurred. Since SPY is the most liquid equity in U.S. markets
with a very small spread, market microstructure noise is very modest (cf. Section 6 in
[25]), and we can frequently sample from the price process. Since we calculated returns
after every 60 seconds for the period 9:30 am to 4:00 pm, we have 390 observations on
a full day, hence we set ∆n = 1/390. Moreover, we deleted days, where periods of more
than 60 consecutive seconds without trades occur. Applying this rule, we retain 1266
days in the data set, corresponding to 493 740 one minute observations.

According to the recommendations of Section 3 and the conclusions from our Monte
Carlo experiments, we choose kn = 56. To account for changing volatility levels - intraday
as well as over the period of 7 years - we use a time-varying threshold un,i. To this end
we first estimate the current volatility level by computing a classical volatility estimate
vn,i based on a time window of 3900 returns before and 3899 returns after observation i
(i.e. the estimate vn,i is based on 7800 observations). Second we multiply this estimate by
the diurnal volatility pattern given in (23); recall that this pattern was found in [25] for
the SPY equity. Finally we multiply by u∗ = 3.89 (the 99.995% quantile of the standard
normal), which gives us un,i.

After specifying the thresholds un,i, we get a preliminary set of jump candidates by
selecting those i for which |∆Xi| > un,i. Recall that for the volatility jump estimation we
use returns within kn minutes before and kn minutes after the corresponding price jump.
In consequence, due to the overnight discontinuities in the data, the estimation of the
volatility jumps may not be accurate in the first kn minutes of the trading day as well as
in the last kn minutes before closing. Accordingly, we remove all jumps before 10:26 am
and after 3:04 pm from the preliminary set of jump candidates. Similarly, also clusters
of price jumps may deteriorate the quality of the volatility jump estimation. Hence, we
investigate only isolated common jumps; i.e. we remove all jumps from the current set of
jump candidates where other price jumps occur within kn minutes before or after.

We improve the quality of the squared volatility estimators further by adapting them
to the intraday volatility pattern. To this end, we replace the estimator from (14) by a
weighted mean, ∑

k 1{|∆n
i+kX|≤un}

kn∆n

∑
k[Di+k1{|∆n

i+kX|≤un}]

kn∑
j=1

1

Di+j

|∆n
i+jX|2 1{|∆n

i+jX|≤un}, (26)

where Di is the value of the diurnal component for observation i according to (23).
Finally we use additional thresholds to identify volatility jumps occurring simultane-

ously with price jumps, in order to ensure that only relevant jumps are retained. In the
end we only retain those price jumps, where the corresponding volatility jump is at least
10% upwards or at least 9% downwards. This way, we finally investigate 330 common
jumps in total.
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Figure 3: Extreme returns ∆n
i X (on the horizontal axis) together with corresponding estimated jumps

∆n
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These common jumps are shown in Figure 3 with log-price jumps on the horizontal axis
and corresponding estimated jumps ∆n

i c := ĉni − ĉni−kn−1 (left plot) and estimated jumps
∆n
i log(c) := log(ĉni )− log(ĉni−kn−1) (right plot), respectively, on the vertical axis. The two

most extreme variance jumps (which are marked in Figure 3 by A and B) were observed
on October 10, 2008, at 12:43 pm and on October 29, 2008, 2:19 pm, respectively. Note
from Figure 3 that we estimate both upward and downward volatility jumps; moreover,
the empirical correlation between the estimated variance jumps and the log-price jumps
is -0.23. This indicates that the correlation between log-price and variance jumps is not
as strong as the overall correlation between returns and variance increments, where values
of up to around -0.6 are reported (e.g., [4]). Our result for the common jumps is in line
with [7], who find a smaller leverage of -0.11 for the co-jumps (of log-price and volatility
σinstead of σ2) than in total (-0.37) for a similar data set. Removing the points A and
B in our data set decreases the empirical correlation even to -0.06. From the right-hand
side of Figure 3 one does not detect any correlation between the jumps of the log-price
and the log-variance at all, in the sense of linear dependence. However, given the plot on
the left-hand side of Figure 3) log-price and squared volatility jumps are nevertheless not
independent.

For our data set, values of the volatility estimates of up to 0.1002 are observed for
the last minutes of October 9, 2008, and the minimal value is 0.0016 for April 16, 2007,
at 12:45 pm. These dates correspond also to the largest and smallest values of the time-
varying threshold un,i: here, the smoothest period was around April 20, 2007, and the
most turbulent period around October 17, 2008.

Table 2 shows the values of the test statistics Ψn for the SPY data set for three different
choices of the functions f and g, cf. Eq. (6) and thereafter. We see that one of the nine
test statistics has a value greater than 1.96: for f(x) = x2 and g(x) = |x| the test statistic
Ψn is 2.0007. Accordingly, we reject the null hypothesis of no correlation between (∆X)2

and |∆c| on a 5% level. On a 10% level the null hypothesis is also rejected for |∆X| versus
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Table 2: Values of the test statistics Ψn for the SPY data set, for different choices of f and g, and
for testing f(∆X) vs. g(∆c). The test statistics are asymptotically standard normal and, hence, are
compared to the corresponding quantiles. For large values (positive or negative) the null (non-correlation)
is rejected.

f(∆X) vs. g(∆c)

f(x) = x f(x) = |x| f(x) = x2

g(x) = x -1.4213 0.8859 1.1421
g(x) = |x| -0.3561 1.7766 2.0007
g(x) = x2 -0.6019 1.0949 1.2920

|∆c|.
At 5% level the rejection is not very substantial; however, as seen in the appendix

[17], for the Intel and Microsoft data we also reject under the same circumstances. These
decisions should be reasonably reliable since we have learnt from our simulation study
that, even if only about 330 jumps are investigated, the error of wrongly rejecting the null
is quite well controlled by the chosen level of the test: for small levels (e.g. 5%) the test
only very slightly overrejects.

The appendix [17] contains a sensitivity analysis, where we vary the constants u∗ and
k∗ as well as the length and the position of the window used for the moving average
estimation of the (mid-range) volatility level M . We always come to the same conclusion,
at least at a 10% level.

7 Conclusions

For a stochastic volatility model given as a bivariate Itô semimartingale (X, σ2) (the
log-price and squared volatility) observed on a discrete grid with grid size ∆n we have
proposed a test for correlation of the common jumps or functions of common jumps with
prominent examples being the identity, the modulus or the squares of the jumps. We
have also indicated the necessary modifications to test for correlation, for common jumps
of (X, h(σ2)) for functions h like squareroot or logarithm. We concentrate on large price
jumps (larger than a threshold un) and estimate a possible jump of the spot volatility
at the time of such large price jumps. The estimation of the latent spot volatility is of
course crucial and we use a window of size kn∆n.

For a two-factor stochastic volatility model with diurnal effect we have investigated
the small sample properties of the test in a simulation study. In the paper we present 16
different simulation scenarios taken from the fit of high-frequency data investigating the
influence of the (common) jump intensity, the length of the observation period, the choice
of the threshold un for the size of the log-price jumps, and the sensitivity of the procedure
with respect to the choice of kn. Some details are provided in the appendix [17].

A plot of the values of the test statistics versus the correlation reveals that the pro-
cedure works well in the Monte-Carlo study; i.e. it rejects H0 : the jumps in squared
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volatility and log-price process are uncorrelated: for a sufficiently large correlation. Not
surprisingly, more jumps (larger jump intensity or larger observation interval) lead to a
better test performance. As for the influence of the choice of the threshold un and of the
choice of kn for the window size, it turns out that the test is not very sensitive on these
parameters. However, choosing un relatively small can be dangerous, since in this case
big increments of the Brownian part could wrongly be identified as jumps.

As an application we consider 1-minute returns of the SPDR S&P 500 ETF (SPY)
from NASDAQ between January 3, 2005 and December 30, 2011. After cleaning the
data according to an established procedure we have finally 493 740 data points. Our
test procedure is then based on 330 price jumps. We consider 9 tests based on jumps
in log-price and squared volatility taking simply their values, the jump moduli and the
squared jumps. On a 5% level, the test does not reject the non-correlation hypothesis
for the log-price and squared volatility co-jumps, however it rejects the non-correlation
hypothesis for the combination of squared log-price jumps and the moduli of the jumps
of the squared volatility; i.e., we can conclude that (∆Xt)

2 and |∆σ2
t | are correlated, and

thus the two components of a co-jump are indeed dependent. The same empirical findings
holds for the stock prices analyzed in the appendix [17].

8 The proofs

We shall need the notion of stable convergence in law. This kind of convergence is slightly
stronger than convergence in law. For details and extensions see [20], Section 2.2.1. A
formal definition is as follows: let Vn be random variables on (Ω,F ,P), and V be a variable

defined on an extension (Ω̃, F̃ , P̃) of this space, that is Ω̃ = Ω× Ω′ and F̃ = F ⊗ F ′ and

the Ω-marginal of the measure P̃ on (Ω̃, F̃) is P. Then Vn converges to V stably in law

(Vn
L−(s)−→ V ) if E[Y φ(Zn)]→ Ẽ[Y φ(Z)] as n→∞ for all bounded F -measurable random

variables Y and all bounded Lipschitz functions φ.

8.1 Some auxiliary processes

We start with two lemmas which are about some processes related to the jumps of X and
c, but not to the actual observations. The pair f, g of functions of polynomial growth
(f, g ∈ Lpol) is fixed. Throughout, K is a positive constant which changes from line to
line, and it is written as Kp if it depends on an additional parameter p. We also need the
following expression

a(f, g) = v(f 2, g2) + v(f, 1)2 v(1, g2) + v(1, g)2 v(f 2, 1) + 4v(f, 1) v(1, g) v(f, g)
−2v(f, 1) v(f, g2)− 2v(1, g) v(f 2, g)− 3v(f, 1)2 v(1, g)2.

(27)

An important property is that a(f, g) > 0 when f, g satisfies (C). To see this, we observe
that the family v(f, g) when f, g vary can be interpreted as v(f, g) = E[f(Y )g(Y ′)] for
a pair of random variables (Y, Y ′), and then a(f, g) = E

[
(f(Y ) − E(f(Y )))2 (g(Y ′) −
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E(g(Y ′)))2
]
, whereas (C) implies E

[
(f(Y )−E(f(Y )))2

]
> 0 and E

[
(f(Y ′)−E(f(Y ′)))2

]
>

0, hence a(f, g) > 0

Lemma 1 (a) Under (B) we have as n→∞,

Dn(f, g)t :=
1

n

[nt]∑
i=1

f(∆XSi
) g(∆cSi

)
u.c.p.−→ v(f, g) t (28)

(convergence in probability, uniform in t over each compact interval).
(b) Under (B,C), and the null hypothesis (H0) relative to f, g, the processes

Zn
t =

√
n
(
Dn(f, g)t − v(f, 1)Dn(1, g)t − v(1, g)Dn(f, 1)t + v(f, 1)v(1, g) t

)
Z
n

t =
√
n
(
Dn(f, 1)t − v(f, 1)t

)
converge stably in law to

√
a(f, g)Z and

√
v(f 2, 1)− v(f, 1)2 Z as n → ∞, respectively,

where Z is a standard Brownian motion defined on an extension of the space (Ω,F ,P)
and independent of F .

There is also joint convergence of Zn and Z
n

towards two correlated Brownian motions,
but we do not need this later on.

Proof. (a) For i ≥ 1 set ζ(f, g)i := f(∆XSi
) g(∆cSi

) and Gi := FSi−. By (7) and (10),
we have

1

n

[nt]∑
i=1

E[ζ(f, g)i | Gi−1]
P−→ v(f, g) t for all t. (29)

Since the limit is continuous, this convergence is locally uniform in t, when f, g ≥ 0. Upon
decomposing f and g as differences of positive functions, we deduce that the convergence
in (29) is locally uniform in t for all f, g ∈ Lpol. Moreover, ζ(f, g)i is Gi-measurable, so
by well known results on triangular arrays, (28) will follow if we prove that for all t,

1

n2

[nt]∑
i=1

E[ζ(f, g)2
i | Gi−1]

P−→ 0.

This follows from (29) applied with the functions f 2 and g2.

(b) The proof is the same for Zn and Z
n
, so we only consider Zn

t , which equals∑[nt]
i=1 ξ

n
i + v(f, 1)v(1, g)

√
n
( [nt]
n
− t
)
, where

ξni =
1√
n

(
f(∆XSi

)g(∆cSi
)− v(f, 1)g(∆cSi

)− v(1, g)f(∆XSi
) + v(f, 1)v(1, g)

)
.

In view of (C) and (H0) one easily checks that E[ξni | Gi−1] = 0. Then, since
√
n
( [nt]
n
− t
)

goes to 0 locally uniformly in t, and by classical convergence results (see e.g. [18]), in order
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to prove the convergence in law Zn L−→
√
a(f, g)Z, it is enough to show the following

two convergences, for all t > 0:

[nt]∑
i=1

E[(ξn)2 | Gi−1]
P−→ a(f, g) t,

[nt]∑
i=1

E[(ξni )4 | Gi−1]
P−→ 0. (30)

For this we observe that (use again (C) and (H0)):

E[(ξni )2 | Gi−1] = 1
n

(
V (f 2, g2)Si

+ v(f, 1)2 V (1, g2)Si
+ v(1, g)2 V (f 2, 1)Si

−v(f, 1)2 v(1, g)2 − 2v(f, 1)V (f, g2)Si
− 2v(1, g)V (f 2, g)Si

+ 2v(f, 1)2 v(1, g)V (1, g)Si

)
whereas E[(ξni )4 | Gi−1] ≤ K

n2

(
1 + V (f 8, 1)Si

+ +V (1, g8)Si

)
. Then (30) follows from (29),

plus the property v(f, g) = v(f, 1)v(1, g), which holds under (H0).
Now, we need to prove that this convergence in law is indeed stable, which amounts

to proving
E[Lφ(Zn)] → E[L]E[φ(

√
a(f, g)Z)] (31)

for any bounded F -measurable random variable L and any bounded Lipschitz function
φ on the Skorokhod space D(R+,R) endowed with a bounded Skorokhod distance ρ (cf.
[20], Section 2.2.2 for details and references). It suffices to prove (31) for all L in a set of
variables which is dense in L1, hence to consider an FSj

-measurable variable L, where j
is an arbitrarily large integer (because Sj →∞ as j →∞). On the one hand, as n→∞
we have Zn

t∧ j
n

→ 0 uniformly in t, so ρ(Zn, Z(j)n)→ 0 if Z(j)nt = Zn
t − Zn

t∧ j
n

, and thus∣∣E[Lφ(Zn)]− E[Lφ(Z(j)n)]
∣∣ ≤ KE[ρ(Zn, Z(j)n)] → 0.

On the other hand Z(j)n has the same structure as Zn, except that the sum is taken
from j + 1 instead of 1, hence the same proof as above shows that the sequence Z(j)n

converges in law to
√
a(f, g)Z as well, under P, and also under the conditional probability

P(· | FSi
). Thus

E[φ(Z(j)n) | FSi
] → E[φ(

√
a(f, g)Z)].

Since E[Lφ(Z(j)n)] = E
[
LE(φ(Z(j)n) | FSj

)
]
, (31) follows from what precedes. 2

Lemma 2 Assume (B,C), and recall U from (15) with U(1, 1)t = Nt =
∑

m≥1 1{Sm≤t}.
Set

Φt = (Nt)
3 U(f 2, g2)t +Nt(U(f, 1)t)

2 U(1, g2)t
+Nt(U(1, g)t)

2 U(f 2, 1)t + 4NtU(f, 1)t U(1, g)t U(f, g)t
−2NtU(f, 1)t U(f, g2)t − 2NtU(1, g)t U(f 2, g)t − 3U(f, 1)2

t U(1, g)2
t

Υt = Nt U(f, g)t − U(f, 1)t U(1, g)t.

(32)

and define Ψt = Υt/
√

Φt/Nt. Then, as Tn →∞, we have

ΦTn/N
4
Tn

P−→ a(f, g), ΥTn/N
2
Tn

P−→ v(f, g)− v(f, 1)v(1, g), (33)
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and
under (H0) : ΨTn

L−→ N (0, 1)

under (H1) : |ΨTn|
P−→ ∞.

(34)

Proof. 1) We set zn = [Tn], and the aim of this step is to show that, as n→∞,

Ant :=
1

zn
NTnt

u.c.p.−→ At. (35)

Since both An and A are increasing in t, and At is continuous, it suffices to show that

Ant
P−→ At for any fixed t. We have 1

zn
Nznt ≤ A ≤ 1

zn
N(zn+1)t, whereas zn+1

zn
→ 1, so (35)

readily follows from (B-a).

2) Next, we recall a classical result about the convergence of time-changed processes,
see for example [18], Chapter VI. Let Y n and Y be (possibly multi-dimensional) processes,
with Y continuous. Then, since An is increasing and its limit A is continuous, we have

• Y n P−→ Y (functional convergence) ⇒ Y n
An

1

P−→ YA1 ,

• Y n L−(s)−→ Y (functional convergence) ⇒ Y n
An

1

L−(s)−→ YA1 .
(36)

Even though we are interested in the convergence of the random variables Y n
An

1
at time

t = 1 only, we need the “functional” convergence for the above to be true. We also remark
that in the second part Y is defined on an extension of the space.

We also mention a key point, which follows from the definition in (28), namely

U(f, g)Tnt = znD
zn(f, g)An

t
. (37)

3) Let Y n be the 8-dimensional process with components

Y n,1 = Dzn(f 2, g2), Y n,2 = Dzn(f, g2), Y n,3 = Dzn(f 2, g), Y n,4 = Dzn(f 2, 1)
Y n,5 = Dzn(1, g2), Y n,6 = Dzn(f, 1), Y n,7 = Dzn(1, g), Y n,8 = Dzn(f, g)

so by (37) a simple calculation shows

ΦTn = z4
n

(
(An1 )3 Y n,1

An
1

+ An1 (Y n,6
An

1
)2 Y n,5

An
1

+ An1 (Y n,7
An

1
)2 Y n,4

An
1

+ 4An1 Y
n,6
An

1
Y n,7
An

1
Y n,8
An

1

−2An1 Y
n,6
An

1
Y n,2
An

1
− 2An1 Y

n,7
An

1
Y n,3
An

1
− 3(Y n,6

An
1

)2 (Y n,7
An

1
)2
)

ΥTn = z2
n

(
An1 Y

n,8
An

1
− Y n,6

An
1
Y n,7
An

1

)
, ΨTn = ΥTn/

√
ΦTn/(znA

n
1 ).

(38)

Combining Lemma 1 and (35) yields (An, Y n)
P−→ (A, Y ) in the functional sense,

where

Yt =
(
v(f 2, g2)t, v(f, g2)t, v(f 2, g)t, v(f 2, 1)t, v(1, g2)t, v(f, 1)t, v(1, g)t, v(f, g)t

)
.

Then the first part of (36) and NTn = znA
n
1 and A1 > 0 yield (33). Since further NTn →∞,

whereas v(f, g) 6= v(f, 1)v(1, g) under (H1), we deduce the second part of (34).
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4) It remains to prove the first part of (34), and we thus assume (H0). With the
notation Zn, Z

n
of Lemma 1, we can rewrite ΥTn as

ΥTn = z3/2
n

(
An1 Z

zn
An

1
− Zzn

An
1

(
Y n,7
An

1
− v(1, g)An1 )

)
.

As seen before, Y n,7
An

1
− v(1, g)An1

P−→ 0, whereas the second part of (36) with

Y n = Zzn and with Y n = Z
zn

, plus Lemma 1, imply that Zzn
An

1

L−(s)−→
√
a(f, g)ZA1 and

Z
zn
An

1

L−(s)−→
√
v(f 2, 1)− v(f, 1)2 ZA1 . Plugging this in the expression for ΥTn , we deduce

that ΥTn/z
3/2
n

L−(s)−→
√
a(f, g)A1 ZA1 . Coming back to (38), and since a(f, g) > 0 and

upon using (35), it follows that ΨTn

L−(s)−→ ZA1/
√
A1. Since Z is a standard Brownian

motion independent of A1, we see that this limit is N (0, 1), and the proof is complete.2

8.2 Fixed-time approximations

Here we compare the process U(f, g) of (15) with its approximation U(f, g)n given by
(16). It should be emphasized that our Assumption (A) is not directly comparable to the
boundedness or local boundedness assumptions on the coefficients which are made in the
book [20]. However, the estimates are still valid, and thus so is for example Theorem 9.5.1
of [20], which asserts that U(f, g)n converges in probability, for the Skorokhod topology,
to U(f, g).

Here we need precise moment estimates on the difference U(f, g)nt − U(f, g)t for any
given time t, and for this we need some notation. We set X t = Xt −

∑
s≤t ∆Xs =

Xt −
∑

m≥1 ∆XSm 1{Sm≤t}, and we denote by S ′1, S
′
2, · · · the successive jump times of the

Poisson process N ′t =
∫ t

0

∫
E

1{Γ(z)>0} µ(ds, dz) = µ((0, t]× {z : Γ(z) > 0}), and by i(n,m)
the unique integer such that (i(n,m) − 1)∆n < S ′m ≤ i(n,m)∆n. Next, Gt denotes the
σ-field generated by Ft and all random times S ′m.

We set vn = kn∆n, and it is no restriction to assume vn ≤ 1/2. Let Ωn,t be the set on
which |∆n

iX| ≤ un for all i ≤ [t/∆n], and Ω′n,t be the set on which all S ′m smaller than t are

more than 2vn apart from one another and from t itself. Observe that E[|∆n
iX|q] ≤ Kq∆

q/2
n

for any non-random i (use (A) and classical estimates). Then by Markov’s inequality and
un � ∆$

n with $ < 1
2

on the one hand (cf. (13) for the precise formulation), and by the
Poisson property of the times S ′m on the other hand, we get

P(Ωn,t) ≥ 1−Kt∆n, P(Ω′n,t) ≥ 1−Ktvn. (39)

Below, q is an arbitrary number in [2,∞). We set

Mt := 1 + |bt|+ |̃bt|+ |σ̃t|+ |σ̂t|+ γt + γ̃t +
√
ct, M(q, t) := E

[
sup
s∈[0,t]

(Ms)
q | G0

]
.

Observing that E[M(q, t)] ≤
∑[t]

m=0 E
[

sups∈[m,m+1] (Ms)
q
]
, we readily deduce from (A-b)

that
E[M(q, t)] ≤ Kq(t+ 1). (40)
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By (A-a) we have E[|∆XS′m|q | GS′m−] ≤ Kq γ
q
S′m

and a similar estimate for ∆cS′m , hence

S ′m ≤ t ⇒ E[|∆XS′m|
q | G0] + E[|∆cS′m|

q | G0] ≤ KqM(q, t). (41)

By (A) and the arguments in Section 2.1.6 of [20], and since i(n,m) is G0-measurable,

E[|∆n
i(n,m)X|q | G(i(n,m)−1)∆n ] ≤ Kq∆

q/2
n E

[
sup

s∈((i(n,m)−1)∆n,i(n,m)∆n]

(Ms)
q | G(i(n,m)−1)∆n ],

which yields

S ′m ≤ t ⇒ E[|∆n
i(n,m)X|q | G0] ≤ Kq∆

q/2
n M(q, t+ 1). (42)

We also set

cni :=
1

kn∆n

kn∑
j=1

(∆n
i+jX)2, (43)

which is the estimated spot volatility based upon the continuous process X. By standard
estimates of the same type as above,

E[|cni(n,m) − cS′m |
q | GS′m ] ≤ Kq

(
vn +

1

k
q/2
n

)
E
[

sup
s∈(S′m,S

′
m+vn+∆n]

(Ms)
2q | Gi(n,m)∆n

]
and similarly for E[|cni(n,m)−kn−1 − cS′m−|q | G(i(n,m)−kn−1)∆n ]. Then, as for (42), we get

S ′m ≤ t⇒ E[|cni(n,m)−kn−1−cS′m−|
q+|cni(n,m)−cS′m|

q | G0] ≤ Kq

(
vn+

1

k
q/2
n

)
M(2q, t+1). (44)

The properties of f and g yield |f(x + u)g(y + v) − f(x)g(y)| ≤ K(1 + |x|p + |u|p +
|y|p + |v|p)(|u|+ |v|) for some K, p ≥ 1. Therefore, on the set Ωn,t ∩ Ω′n,t we have

|U(f, g)nt − U(f, g)t| ≤ K
∑

m≥1:S′m≤t
ζnm ζ

n

m, where

ζnm = 1 + |∆XS′m |p + |∆n
i(n,m)X|p + |∆cS′m|p + |cni(n,m) − cS′m|p + |cni(n,m)−kn−1 − cS′m−|p

ζ
n

m = |∆n
i(n,m)X|+ |cni(n,m) − cS′m |+ |c

n
i(n,m)−kn−1 − cS′m−|.

(45)
We have M(p, s) ≤M(q, s)p/q ≤M(q, s) if q ≥ p, by Hölder’s inequality and M(q, s) ≥ 1,
so (41), (42) and (44) and Hölder’s inequality again give us, with N ′t =

∑
m≥1 1{S′m≤t}:

E
[
|U(f, g)nt − U(f, g)t| 1Ωn,t∩Ω′n,t

]
≤ K

∑
m≥1

E
[
1{S′m≤t} E(ζnm ζ

n

m | GS′m−1
)
]

≤ K
(√

∆n +
√
vn +

1√
kn

)
E
[
M(4p, t+ 1)N ′t

]
≤ K

(√
vn +

1√
kn

)
E[M(4pq, t+ 1)]1/q E[(N ′t)

r]1/r
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for every conjugate pair q, r ∈ (1,∞) (i.e. 1/q + 1/r = 1). Then (40) and the fact that
N ′t is a Poisson variable with parameter Ct, implying E[(N ′t)

r] ≤ Ktr, allow us to deduce

E
[
|U(f, g)nt − U(f, g)t| 1Ωn,t∩Ω′n,t

]
≤ Kε

(√
vn +

1√
kn

)
(1 + t1+ε), (46)

for any ε > 0, where Kε depends on ε, and also on the functions f and g, arbitrary in
Lpol. Note that, when f = g = 1, the left side of (46) vanishes, whereas U(1, 1)t = Nt.

8.3 Proof of Theorems 1 and 2

Theorem 2 is an immediate consequence of Theorem 1, which we now proceed to prove.
In view of Lemma 2, we need to compare Ψn and ΨTn . Note that Tn∆

1/2−η
n → 0 and

ρ ∈
[

1
2
− η, 1

2

)
imply the existence of some ε > 0 such that

Tnvn → 0, T 1+2ε
n w2

n → 0, where wn =
√
vn + 1/

√
kn. (47)

The inequalities (39) and the above yield that Ωn = Ωn,Tn ∩Ω′n,Tn satisfies P(Ωn)→ 1.

By (35) and [Tn] ∼ Tn we have NTn/Tn
P−→ A1 > 0. Moreover, combining (28), (35) and

(37), we see that U(f ′, g′)Tn/NTn
P−→ v(f ′, g′) for every f ′, g′ ∈ Lpol. Thus, the above

and (46) applied with an ε satisfying (47) imply the existence of a [1,∞)-valued variable
ζ, of a sequence ξn of variables bounded in probability, and of subsets Ω′n ⊂ Ωn with
P(Ω′n)→ 1, such that on Ω′n we have

|U(f j, gk)nTn − U(f j, gk)Tn | ≤ ξnwn T
1+ε
n , |U(f j, gk)Tn| ≤ ζ Tn, Tn ≤ ζ NTn ≤ ζ2Tn

(48)
for all powers j, k = 0, 1, 2. Recalling U(1, 1)t = Nt and (17) and (32), we deduce that,
on the set Ω′n,

|Φn−ΦTn| ≤ K(ξ4
nw

4
n T

43ε
n + ξnwn T

ε
n ζ

3)T 4
n , |Υn−ΥTn| ≤ K(ξ2

nw
2
n T

2ε
n + ξnwn T

ε ζ)T 2
n .

(49)
Therefore, we deduce from (33) and wnT

ε
n → 0 that the variables Φn and Γn also satisfy

the same properties (33): the second part of (18) is then proved as in Lemma 2.

For the first part, we assume (H0). It suffices to show that (Ψn−ΨTn) 1Ω′n

P−→ 0. As Φn

satisfies the first property (33), it is enough to show that
(
(Υn−ΥTn)/(NTn)3/2

)
1Ω′n

P−→ 0,
and by (48) and (49) this trivially holds under (47).
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[7] Bandi, F. and Renò, R. (2013). Price and volatility co-jumps. Working paper, Johns
Hopkins University and Università di Siena.
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