

Harvesting solar energy using computer simulations

Harald Oberhofer, Jochen Blumberger, and Karsten Reuter

28th June 2012

Munich, June 2012

Solar energy, production and storage

Water electrolysis.

Direct water splitting.

Efficiency (water splitting): $60\% - 80\%^2$ Efficiency of the solar cell: 0.5% - 45%

Efficiency: $\approx 5\%^{1}$ ²

¹Centi and Perathoner, ChemSusChem **3**, 195 (2010) ²Dau *et. al.*, ChemCatChem **2**, 724 (2010)

Part I: Solar cells

Munich, June 2012

Motivation

Munich, June 2012

The Aim

Predict electron mobility in a macroscopic fullerene crystal.

Below 250K, C₆₀ crystals are stable in FCC configuration and exhibit no special features.

Over 250K every C₆₀ molecules pseudo-rotates at its site.

Simulations need to consider these different regimes.

The mobility of an electron can be defined as the derivative of the drift velocity \mathbf{v} with respect to the applied external field \mathbf{E} :

$$\mu_{ij} = \frac{\partial \left\langle v_i(\mathbf{E}) \right\rangle}{\partial E_j}$$

 \rightarrow need a way to calculate field dependent electron velocities. \rightarrow assume electron localisation on single molecules: hopping model \rightarrow within macroscopic hopping model calculate microscopic rates

use DFT to estimate microscopic rate parameters for each possible electron transfer

Hopping model:

Need derivative of average drift velocity $\langle \mathbf{v} \rangle$.

Within hopping model this is given as the sum of all forward and backward hops in each direction. Determined by rate k_l and hopping distance d_l

$$\mu_{ij} = \frac{\partial \langle v_i \rangle}{\partial E_j} = \sum_l \frac{\partial \langle k_l \rangle}{\partial E_j} d_{li}$$

Can be solved analytically for crystals.

Munich, June 2012

Temperature dependence of mobility.

¹Frankevich, Maruyamaa, Ogataa, CPL **214** 39, (1993)

Part II: Photo-catalytic hydrogen production

Munich, June 2012

Background

Splitting water using visible light \Rightarrow small(er) band-gap semiconductors \Rightarrow less energy available for the reaction.

- \blacksquare \rightarrow need catalysts with smaller overpotential
- ightarrow ightarrow optimise reaction kinetics

Munich, June 2012

Background

All current water splitting approaches use **co-catalysts**. Very often **small metal clusters** deposited on surface.

Reaction pathway

Harald Oberhofer

Munich, June 2012

Reaction pathway

Munich, June 2012

Reaction energetically possible but no information about barriers.

Only data on coupled pathway available, yet.

Data from: Valdés, et. al., J. Phys. Chem. C 112, 9872 (2008).

Munich, June 2012

Au_3

Reaction energetically much more favourable than on plain surface (dashed line).

Note:

Relative free energy of initial and final state is fixed.

Material only influences adsorbed intermediates.

Au_{20}

Less steep than Au_3 (dotted) still more favourable than plain surface (dashed).

Trend towards reduced reactivity is expected to continue \rightarrow

plain Au surface is inert.

\mathbf{Pt}_3

Energetically even more favourable than Au_3 .

Reaction is driven by electron-holes in the surface's valence band

We can determine an upper limit to the valence band position for the reaction to still go ahead.

co-catalyst	VB versus vacuum
Au ₃	-5.95 eV
Au_{20}	-5.97 eV
Pt_3	-6.45 eV

Note: TiO₂ (111) surface has -7.1 eV.

Simulation of electron mobilities needs a multi-scale approach

- Microscopic ET parameters calculated from DFT
- \blacksquare Hopping model not accurate enough \rightarrow direct dynamics

- Water oxidation on gold clusters in the non-scalable size regime is energetically possible (disregarding any barriers).
- Reaction with co-catalyst more favourable than on plain TiO₂ (increasingly important for small bandgap seminconductors).
- Small Pt clusters show even more promise than Au but need lower lying valence band of the substrate to work