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Abstract: The paradigm shift from an exclusive allocation of frequency bands, one
for each system, to a shared use of frequencies comes along with the need of new
concepts since interference will be an ubiquitous phenomenon. In this paper, we use
the concept of arbitrarily varying channels to model the impact of unknown interference
caused by coexisting wireless systems which operate on the same frequencies. Within
this framework, capacity can be zero if pre-specified encoders and decoders are used.
This necessitates the use of more sophisticated coordination schemes where the choice of
encoders and decoders is additionally coordinated based on common randomness. As an
application we study the arbitrarily varying bidirectional broadcast channel and derive
the capacity regions for different coordination strategies. This problem is motivated
by decode-and-forward bidirectional or two-way relaying, where a relay establishes a
bidirectional communication between two other nodes while sharing the resources with other
coexisting wireless networks.
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Notation

In this paper we denote discrete random variables by non-italic capital letters and their corresponding
realizations and ranges by lower case italic letters and script letters, e.g., X, x, and X , respectively; the
notation Xn stands for the sequence X1,X2, ...,Xn of length n; N and R+ denote the set of positive
integers and non-negative real numbers; all logarithms, exponentials, and information quantities are
taken to the basis 2; I(·; ·), H(·), and D(·∥·) are the mutual information, entropy, and Kullback–Leibler
(information) divergence; E[·] and P{·} denote the expectation and probability; ⟨·, ·⟩ is the inner product
and | · |+ = max{·, 0}; P(·) is the set of all probability distributions and (·)c is the complement of a set;
W⊗n is the n-th memoryless extension of the stochastic matrix W ; lhs := rhs means the value of the
right hand side (rhs) is assigned to the left hand side (lhs); lhs =: rhs is defined accordingly.

1. Introduction

The ongoing research progress reveals a paradigm shift from an exclusive allocation of certain
frequency bands to a shared use of frequencies. While most current systems such as conventional cellular
systems usually operate on exclusive frequency bands, several future systems such as ad-hoc or sensor
networks will operate on shared resources in an uncoordinated and self-organizing way. The main issue
that comes along with this development is that interference becomes an ubiquitous phenomenon and that
it will be one of the major impairments in future wireless networks. Since the induced interference can
no longer be coordinated between the coexisting networks, new concepts are needed especially for the
frequency usage.

As an example, Figure 1 depicts a wireless network that consists of several uncoordinated
transmitter-receiver pairs or links, where each receiver receives the signal he is interested in but is also
confronted with interfering signals from other transmitting nodes. If there is no a priori knowledge about
applied transmit strategies of all other transmitting nodes such as coding or modulation schemes, there
is no knowledge about the induced interference. Thus, users are confronted with channels that may
vary from symbol to symbol in an unknown and arbitrary manner. The concept of arbitrarily varying
channels (AVC) [1–4] provides a suitable and robust model for such communication scenarios.

Figure 1. Wireless network with several transmitter-receiver pairs. Each receiver
receives a desired signal (solid) and simultaneously receives interference from all other
transmitters (dashed).
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Interestingly, it is shown for the single-user AVC that its capacity highly depends on how encoder and
decoder are coordinated within one transmitter-receiver link: the deterministic code capacity, i.e., the
traditional approach with pre-specified encoder and decoder, either equals the random code capacity,
i.e., additional encoder-decoder coordination based on common randomness, or is otherwise zero [2]. It
is shown that symmetrizable AVCs prevent reliable communication for the traditional approach without
additional coordination. Roughly speaking, in this case a symmetrizable AVC can emulate a valid input,
which makes it impossible for the decoder to decide on the correct codeword. Unfortunately, many
channels of practical importance fall in the category of symmetrizable channels [4].

The situation changes significantly, if constraints on the permissible codewords and channel states are
imposed. Such restrictions are motivated by the fact that in real communication systems the transmitter
as well as possible interferers are usually limited in their transmit powers. For the single-user AVC under
input and state constraints, it is shown that due to the imposed constraints the deterministic code capacity
may be positive even for symmetrizable channels, but may be less than its random code capacity [4,5].

Besides the single-user AVC there are several important extensions to multi-user settings as well. The
arbitrarily varying wiretap channel is analyzed in [6,7]. The arbitrarily varying multiple access channel
(AVMAC) is analyzed in [8–10], where its deterministic code and random code capacity regions are
established. The AVMAC with constraints on input and states is considered in [11,12], where in the
latter it is shown that the random code capacity region is non-convex in general. The AVMAC with
conferencing encoders is analyzed in detail in [13,14]. While the AVMAC is well understood, there
are only partial results known so far for the arbitrarily varying general broadcast channel. Achievable
deterministic code rate regions are analyzed in [8,15], where the latter further imposes the assumption of
degraded message sets. But unfortunately, no converses or outer bounds on the capacity region are given.

In this paper we analyze bidirectional relaying, or two-way relaying, for arbitrarily varying channels.
The concept of bidirectional relaying has the potential to significantly improve the overall performance
and coverage in wireless networks such as ad-hoc, sensor, and even cellular systems. This is mainly
based on the fact that it advantageously exploits the bidirectional information flow of the communication
to reduce the inherent loss in spectral efficiency induced by half-duplex relays [16–19].

Bidirectional relaying applies to three-node networks, where a half-duplex relay node establishes a
bidirectional communication between two other nodes using a two-phase decode-and-forward protocol.
There, in the initial multiple access (MAC) phase two nodes transmit their messages to the relay
node which decodes them. In the succeeding broadcast phase the relay re-encodes and transmits
both messages in such a way that both receiving nodes can decode their intended message using
their own message from the previous phase as side information. Note that due to the complementary
side information at the receiving nodes this scenario differs from the classical broadcast channel and
is therefore known as bidirectional broadcast channel (BBC). It is shown in [20–23] for discrete
memoryless channels and in [24] for MIMO Gaussian channels that capacity is achieved by a single
data stream that combines both messages based on the network coding idea. Optimal transmit strategies
for the multi-antenna BBC are then analyzed in [25,26]. Bidirectional relaying for compound channels
is studied in [27,28], while [29] discusses adaptive bidirectional relaying with quantized channel state
information. Besides the decode-and-forward protocol [20–32] there are also amplify-and-forward
[32–36] or compress-and-forward [37–39] approaches similarly as for the classical relay channel. A
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newer approach is compute-and-forward [40–46], where the relay decodes a certain function of both
individual messages. Another approach is given in [47] which is based on the noisy network coding
idea [48–50].

Here, we use the concept of arbitrarily varying channels to study bidirectional relaying that operates
on the same (frequency) resources as other coexisting wireless networks. Then the initial MAC phase
is specified by the AVMAC and is therefore well understood [8–12]. Thus, it remains to study the BBC
phase for arbitrarily varying channels. The arbitrarily varying bidirectional broadcast channel (AVBBC)
is analyzed in [51–53], where it is shown that the AVBBC displays a dichotomy behavior similar to the
single-user AVC: its deterministic code capacity region either equals its random code capacity region
or else has an empty interior. Having practical limitations on transmit powers in mind, in this paper
we impose constraints on the permissible codewords and state sequences and derive the corresponding
deterministic code and random code capacity regions of the AVBBC under input and state constraints.

The rest of this paper is organized as follows. In Section 2 we briefly review the concept of types from
Csiszár and Körner and state some information theoretic and combinatoric preliminaries. In Section 3 we
introduce the concept of arbitrarily varying channels as a suitable model for communication in wireless
networks, which share the resources with other coexisting systems in an uncoordinated way, and review
the impact of coordination within one transmitter-receiver link on the capacity. As an application for this
framework we then study bidirectional relaying under such conditions. We impose constraints on the
permissible input and state sequences and analyze bidirectional relaying for arbitrarily varying channels
in Section 4. This requires the study of the AVBBC under input and state constraints for which we derive
its deterministic code and random code capacity regions. Finally, we conclude the paper in Section 5.

2. Preliminaries

We denote the mutual information between the input random variable X and the output random
variable Y by I(X;Y). To emphasize the dependency of the mutual information on the input distribution
p ∈ P(X ) and the channel W : X → P(Y), we also write I(X;Y) = I(p,W ) interchangeably.

Furthermore, we extensively use the concept of types from Csiszár and Körner [3], which is briefly
reviewed in the following. The type of a sequence xn = (x1, ..., xn) ∈ X n of length n is a distribution
Pxn ∈ P(X ) defined by Pxn(a) := 1

n
N(a|xn) for every a ∈ X . Thereby, N(a|xn) denotes the number of

indices i such that xi = a, i = 1, ..., n. The set of all types of sequences in X n is denoted by P0(n,X ).
The notation extends to joint types in a natural way. For example the joint type of sequences xn ∈ X n

and yn ∈ Yn is the distribution Pxn,yn ∈ P(X × Y) where Pxn,yn(a, b) = 1
n
N(a, b|xn, yn) for every

a ∈ X , b ∈ Y , where N(a, b|xn, yn) is the number of indices i such that (xi, yi) = (a, b), i = 1, ..., n.
For notational convenience, we represent (joint) types of sequences of length n by (joint)

distributions of dummy variables. For instance, the random variables X and Y represent a joint type,
e.g., PXY = Pxn,yn for some xn ∈ X n and yn ∈ Yn. The set of all sequences of type Pxn is
denoted by T n

X = {xn : xn ∈ X n, Pxn = PX}. Of course, this notation extends to joint types and
sections in a self-explanatory way, e.g., T n

XY = {(xn, yn) : xn ∈ X n, yn ∈ Yn, Pxn,yn = PXY} or
T n
Y|X(x

n) = {yn : (xn, yn) ∈ T n
XY}.
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Remark 1. To avoid notational ambiguity we usually use small letters to denote arbitrary probability
distributions, e.g., p ∈ P(X ), and capital letters to highlight types, e.g., PX ∈ P0(n,X ).

Next, we state as facts some bounds on types which we will need for our proofs, cf. for example
Csiszár and Körner ([3], Section 1.2).

Fact 1: The number of possible types of sequences of length n is a polynomial in n, i.e.,

|P0(n,X )| ≤ (n+ 1)|X |

Fact 2: We have

(n+ 1)−|X | exp
(
nH(X)

)
≤ |T n

X | ≤ exp
(
nH(X)

)
, if T n

X ̸= ∅
(n+ 1)−|X ||Y| exp

(
nH(Y|X)

)
≤ |T n

Y|X(x
n)| ≤ exp

(
nH(Y|X)

)
, if T n

Y|X(x
n) ̸= ∅

Fact 3: For any channel W : X → P(Y),∑
xn∈T n

Y|X(xn)

W⊗n(yn|xn) = W⊗n(T n
Y|X(x

n)|xn) ≤ exp
(
− nD(PXY∥PX ⊗W )

)
where W⊗n(yn|xn) :=

∏n
k=1 W (yk|xk) and PX ⊗W denotes the distribution on X ×Y with probability

mass function PX(x)W (y|x).

3. Modeling of Communication in Coexisting Wireless Networks

Here we introduce the concept of arbitrarily varying channels as a suitable model for communication
in coexisting wireless networks. To highlight the crucial points we consider the simplest interference
scenario with two transmitter-receiver pairs (or links) as shown in Figure 2. Here, each receiver receives
signals from both transmitters, but is only interested in the information from its own transmitter.

Figure 2. Interference channel with two transmitters and receivers. Each receiver receives
the desired signal (solid) from the intended transmitter but simultaneously receives also
interference (dashed) the other transmitter.
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Since in practical systems a transmitter usually uses a finite modulation scheme and a receiver
quantizes the received signal before further processing, it is reasonable to assume finite input and output
alphabets denoted by Xi and Yi for link i, i = 1, 2, respectively. Then, for input and output sequences
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xn
i ∈ X n

i and yni ∈ Yn
i of length n, the transmission over the discrete memoryless channel is completely

characterized by a stochastic matrix

W⊗n
i (yni |xn

1 , x
n
2 ) :=

n∏
k=1

Wi(yi,k|x1,k, x2,k), i = 1, 2 (1)

Thereby, the additive noise at the receivers is taken into account by considering stochastic matrices
and not deterministic ones. Interestingly, the transmission model in Equation (1) looks like a multiple
access channel, since the received signal depends on both the codeword of the intended message and the
codeword of the interfering message from the other link.

Remark 2. If we treat the received signal from the other transmitter as additional noise, we would end
up with a modified stochastic matrix W̃⊗n

i (yni |xn
i ), i = 1, 2, where the received signal depends only on

the codeword of the intended message.

We consider the standard model with block codes of arbitrary but fixed length n. Let
Mi := {1, ...,Mi,n}, i = 1, 2, be the set of messages to transmit. The traditional coding strategy
for each transmitter-receiver pair is specified by the following definition of deterministic codes.

Definition 1. A deterministic (n,Mi,n)-code or codebook Ci,det for transmitter-receiver pair i is a family

Ci,det :=
{
(xn

mi
,D(i)

mi
) : mi ∈ Mi

}
with codewords xn

mi
∈ X n

i , one for each message mi ∈ Mi, and decoding sets D(i)
mi ⊆ Yn

i for all
mi ∈ Mi with D(i)

mk ∩ D(i)
ml = ∅ for mk ̸= ml, i = 1, 2.

When xn
m1

and xn
m2

have been sent according to fixed codebooks C1,det and C2,det, and yn1 and yn2 have
been received, the decoder of receiver i is in error if yni /∈ D(i)

mi , i = 1, 2. With this, we can define the
probability of error at receiver 1 for given messages m1 and m2 as

e1(m1, x
n
m2

) := W⊗n
1

(
(D(1)

m1
)c|xn

m1
, xn

m2

)
and the average probability of error at receiver 1 as

ē1(x
n
m2

) :=
1

M1,n

M1,n∑
m1=1

e1(m1, x
n
m2

)

with similar expressions e2(m2, x
n
m1

) and ē2(x
n
m1

) for receiver 2.
Important to note is that the probability of error depends on the codebooks that both

transmitter-receiver pairs use as well as on the specific message the interfering transmitter sends.

Definition 2. A rate Ri ∈ R+ is said to be deterministically achievable if for any δ > 0 there exists
an n(δ) ∈ N and a sequence of deterministic (n,Mi,n)-codes {C(n)

i,det}n∈N, i = 1, 2, such that for all
n ≥ n(δ) we have

1

n
logMi,n ≥ Ri − δ

while maxxn
m2

ē1(x
n
m2

),maxxn
m1

ē2(x
n
m1

) → 0 as n → ∞. The deterministic code capacity is the largest
deterministically achievable rate.
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If we assume no coordination between both transmitter-receiver pairs, there is no a priori knowledge
about the used codebooks and codewords that are chosen by the interfering transmitter. Consequently,
the receiver can be confronted with arbitrary interfering sequences. This corresponds to the concept of
arbitrarily varying channels (AVC) [1–4] and the only way to guarantee a successful transmission is to
find a universal strategy that works for all possible codebooks and interfering codewords simultaneously.

To model the appearance of arbitrary interfering sequences, we introduce a finite state set S. Then,
for a fixed state sequence sn ∈ Sn of length n and input and output sequences xn ∈ X n and yn ∈ Yn,
the discrete memoryless channel is given by W⊗n(yn|xn, sn) :=

∏n
k=1 W (yk|xk, sk). (In the following

we drop the index (·)i indicating the transmitter-receiver pair, since obviously the argumentation holds
for all i.)

Note that the input sequence and interfering sequence originate from different and, in particular,
uncoordinated transmitters, so that they are independent of each other. But of course, the codebook
has to be designed in such a way that each codeword works for all possible interfering sequences
simultaneously.

Definition 3. The discrete memoryless arbitrarily varying channel (AVC) Wn is the family

Wn :=
{
W⊗n : X n × Sn → P(Yn)

}
n∈N,sn∈Sn

Further, for any probability distribution q ∈ P(S) we denote the averaged channel by
W q(y|x) :=

∑
s∈S W (y|x, s)q(s).

3.1. Impact of Coordination within Transmitter-Receiver Pair

In the following we analyze and review different approaches of coordination in one
transmitter-receiver pair and specify their impact on the transmission. Therefore, we characterize all
achievable rates at which reliable communication is possible for three different types of coordination: the
traditional approach as well as additional encoder-decoder coordination based on common randomness
or based on correlated side information.

3.1.1. No Additional Coordination

The system design of the traditional or conventional approach without additional coordination is
defined by a deterministic coding strategy, where transmitter and receiver use a pre-specified encoder
and decoder as given in Definition 1. We further need the concept of symmetrizability to state the main
result for this approach.

Definition 4. An AVC Wn is symmetrizable if for some channel U : X → P(S)∑
s∈S

W (y|x, s)U(s|x′) =
∑
s∈S

W (y|x′, s)U(s|x) (2)

holds for every x, x′ ∈ X and y ∈ Y . This means the channel W̃ (y|x, x′) =
∑

s∈S W (y|x, s)U(s|x′) is
symmetric in x, x′ for all x, x′ ∈ X and y ∈ Y .

For the traditional approach the capacity is known [2–4] and summarized in the following theorem.
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Theorem 1. The deterministic code capacity Cdet(W
n) of the AVC Wn is

Cdet(W
n) =

maxp∈P(X ) infq∈P(S) I(p,W q) if Wnis non-symmetrizable

0 if Wnis symmetrizable

The complete proof can be found for example in [4]. In the following we only want to highlight the
key insight why we have a zero capacity if the AVC Wn is symmetrizable.

Let xn
m ∈ X n, m = 1, ...,Mn with Mn ≥ 2 be arbitrary codewords. For a symmetrizable AVC Wn,

we can consider interfering sequences that look like valid codewords, more precisely we set snm = xn
m,

m = 1, ...,Mn. Now, for each pair of codewords (k, l) ∈ M×M with k ̸= l we have for the probability
of error

E
[
e(k, Sn

l )
]
+ E

[
e(l, Sn

k)
]
= E

[
W⊗n((Dk)

c|xn
k , S

n
l )
]
+ E

[
W⊗n((Dl)

c|xn
l , S

n
k)
]

= E
[
W⊗n((Dk)

c|xn
k , S

n
l )
]
+ E

[
W⊗n((Dl)

c|xn
k , S

n
l )
]

≥ E
[
W⊗n((Dk)

c|xn
k , S

n
l )
]
+ E

[
W⊗n(Dk|xn

k , S
n
l )
]

= E
[
W⊗n((Dk)

c ∪ Dk|xn
k , S

n
l )
]
= 1

where the second equality follows from the fact that the AVC Wn is symmetrizable, cf. Definition 4.
Hence, this leads for the average probability of error to

1

Mn

Mn∑
l=1

E
[
ē(Sn

l )
]
=

1

(Mn)2

Mn∑
k=1

Mn∑
l=1

E
[
e(k, Sn

l )
]

≥ 1

(Mn)2
· Mn(Mn − 1)

2

=
Mn − 1

2Mn

≥ 1

4

which implies that E[ē(Sn
l )] ≥ 1

4
for at least one l ∈ M. Since the average probability of error is bounded

from below by a positive constant, a reliable transmission is not possible, so that we have Cdet(W
n) = 0

if the AVC is symmetrizable.
This becomes intuitively clear, if one realizes the following. Since the AVC Wn is symmetrizable,

cf. (2), it can happen that the interfering sequence looks like another valid codeword. Then, the receiver
receives a superimposed version of two valid codewords and cannot distinguish which one comes from
the intended transmitter and which one is the interfering sequence. Thus, reliable communication can no
longer be guaranteed.

3.1.2. Encoder-Decoder Coordination Based on Common Randomness

Since the traditional interference coordination with predetermined encoder and decoder fails in the
case of symmetrizable channels, we are interested in strategies that work well also in this case. Therefore,
we consider in the following a strategy with a more involved coordination, where we additionally allow
transmitter and receiver to coordinate their choice of encoder and decoder based on an access to a
common resource independent of the current message. This leads directly to the following definition.
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Definition 5. A random (n,Mn,Z)-code Cran(W
n) for the AVC Wn is given by a family

Cran(W
n) := {C(z) : z ∈ Z} of deterministic (n,Mn)-codes

C(z) :=
{(

xn
m(z),Dm(z)

)
: m ∈ M

}
together with a random variable Z ∈ Z distributed according to pZ ∈ P(Z).

This means that codewords and decoding sets are chosen according to a common random experiment,
realized in Definition 5 by the random variable Z, whose outcome has to be known to the transmitter and
receiver in advance. The definitions of probability of error, a randomly achievable rate, and the random
code capacity Cran(W

n) follow accordingly as in Section 3.1.1.
The access to the common resource can be realized for example by an external source such as a

satellite signal. Moreover, we know from [2] that if we transmit at rate R with exponentially many
messages, i.e., exp(nR), it suffices to use a random code which consists of n2 encoder-decoder pairs and
a uniformly distributed random variable whose value indicates which encoder and decoder the transmitter
and receiver have to use.

Due to the additional coordination within one transmitter-receiver pair, we expect an improvement
in the performance compared to the traditional approach especially for symmetrizable channels. The
following result confirms our intuition [1,3].

Theorem 2. The random code capacity Cran(W
n) of the AVC Wn is

Cran(W
n) = max

p∈P(X )
inf

q∈P(S)
I(p,W q)

It shows that the random code capacity Cran(W
n) has the same value as for the traditional interference

coordination but is also achieved in the case of symmetrizable channels.

3.1.3. Encoder-Decoder Coordination Based on Correlated Side Information

For the previous additional encoder-decoder coordination we assumed that both transmitter and
receiver have access to a common random experiment. This seems to be a hard condition and one can
think of a weaker version. Therefore, we allow transmitter and receiver each to have access to an own
random experiment which are both correlated. In more detail, the correlated side information strategy is
given by the following definition.

Definition 6. A correlated (n,Mn, n,ZX ,ZY)-code Ccorr(W
n) for the AVC Wn is given by

Ccorr(W
n) := {C(znX , znY) : znX ∈ Zn

X , z
n
Y ∈ Zn

Y} of deterministic (n,Mn)-codes

C(znX , znY) :=
{
(xn

m(z
n
X ),Dm(z

n
Y)) : m ∈ M

}
together with random variables ZX ∈ ZX and ZY ∈ ZY distributed according to pZX ∈ P(ZX ) and
pZY ∈ P(ZY) with I(ZX ; ZY) > 0.

Thereby, the fact that the random variables ZX and ZY are correlated is guaranteed by the (weak)
condition I(ZX ; ZY) > 0. Note that in contrast to the additional encoder-decoder coordination based
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on common randomness, the codewords and decoding sets now depend on a whole sequence of the
random variables.

The next result states the capacity for the case of additional encoder-decoder coordination based on
correlated side information at transmitter and receiver [54].

Theorem 3. The correlated side information capacity Ccorr(W
n) of the AVC Wn is

Ccorr(W
n) = max

p∈P(X )
inf

q∈P(S)
I(p,W q)

The theorem shows that even if transmitter and receiver only have access to correlated versions of
a random experiment, such side information is already sufficient to achieve the same rates as for the
encoder-decoder coordination based on common randomness. Thus, correlated side information suffices
to overcome symmetrizable channel conditions.

4. Bidirectional Relaying under Arbitrarily Varying Channels

In the previous section we established the concept of arbitrarily varying channels as a suitable
model for communication in wireless networks which operate on the same resources as other
coexisting systems. Here we use this framework and apply it to bidirectional relaying. There, a
relay node establishes a bidirectional communication between two other nodes using a two-phase
decode-and-forward protocol as shown in Figure 3. The initial MAC phase for arbitrarily varying
channels is characterized by the AVMAC and therefore well understood, cf. [8–12,14]. Thus, it remains
to study the succeeding BBC phase. Since in practical systems transmitters are usually limited in their
transmit power, this requires the study of the AVBBC under input and state constraints, which is the main
contribution of this paper.

Figure 3. Bidirectional relaying in a three-node network, where nodes 1 and 2 exchange their
messages m1 and m2 with the help of the relay node using a decode-and-forward protocol.

R 21
m

R
1 m2

2 R1
R 21

m
R

1 m2m1m2
1 R2

4.1. Arbitrarily Varying Bidirectional Broadcast Channel

For the bidirectional broadcast phase we assume that the relay has successfully decoded both
messages from the previous MAC phase. Now, the relay broadcasts an optimal re-encoded message
in such a way that both nodes can decode the intended message using their own message from the
previous phase as side information. The transmission is affected by a channel which varies arbitrarily
in an unknown manner from symbol to symbol during the whole transmission of a codeword. We
model this behavior with the help of a finite state set S. Further, let X and Yi, i = 1, 2, be finite
input and output sets. Then, for a fixed state sequence sn ∈ Sn of length n and input and output
sequences xn ∈ X n and yni ∈ Yn

i , i = 1, 2, the discrete memoryless broadcast channel is given by
W⊗n(yn1 , y

n
2 |xn, sn) :=

∏n
k=1 W (y1,k, y2,k|xk, sk).
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Definition 7. The discrete memoryless arbitrarily varying broadcast channel Wn is the family

Wn :=
{
W⊗n : X n × Sn → P(Yn

1 × Yn
2 )
}
n∈N,sn∈Sn

Since we do not allow any cooperation between the receiving nodes, it is sufficient to consider the
marginal transition probabilities W⊗n

i (yni |xn, sn) =
∏n

k=1 Wi,k(yi,k|xk, sk), i = 1, 2, only. Further, for
any probability distribution q ∈ P(S) we denote the averaged broadcast channel by

W q(y1, y2|x) :=
∑
s∈S

W (y1, y2|x, s)q(s) (3)

and the corresponding averaged marginal channels by W 1,q(y1|x) and W 2,q(y2|x).
Further, we will need the concept of symmetrizability for the AVBBC, which is an extension of the

one for the single-user AVC introduced in [4], cf. also Definition 4.

Definition 8. An AVBBC Wn is Yi-symmetrizable if for some channel Ui : X → P(S)∑
s∈S

Wi(yi|x, s)Ui(s|x′) =
∑
s∈S

Wi(yi|x′, s)Ui(s|x) (4)

holds for every x, x′ ∈ X and yi ∈ Yi, i = 1, 2.

4.1.1. Input and State Constraints

Since transmitter and possible interferers are usually limited in their transmit powers, we impose
constraints on the permissible input and state sequences. We follow [4] and define cost functions g(x)
and l(s) on X and S, respectively. For convenience, we assume that minx∈X g(x) = mins∈S l(s) = 0 and
define gmax := maxx∈X g(x) and lmax := maxs∈S l(s). For given xn = (x1, ..., xn) and sn = (s1, ..., sn)

we set

g(xn) :=
1

n

n∑
k=1

g(xk) (5a)

l(sn) :=
1

n

n∑
k=1

l(sk) (5b)

Further, for notational convenience we define the costs caused by given probability distributions
p ∈ P(X ) and q ∈ P(S) as

g(p) =
∑
x∈X

p(x)g(x) = Ep[g(p)] and l(q) =
∑
s∈S

q(s)l(s) = Eq[l(q)]

and observe that, if we consider types, these definitions immediately yield

g(xn) = g(Pxn) and l(sn) = l(Psn)

for every xn ∈ X n and every sn ∈ Sn, respectively, cf. also [4].
This allows us to define the set of all state sequences of length n that satisfy a given state constraint

Λ by

Sn
Λ :=

{
sn ∈ Sn :

1

n

n∑
k=1

l(sk) = EPsn
[l(sn)] ≤ Λ

}
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Furthermore, the set of all probability distributions q ∈ P(S) that satisfy Eq[l(q)] ≤ Λ is given by

P(S,Λ) :=
{
q : q ∈ P(S),Eq[l(q)] ≤ Λ

}
In [52] it is shown that an AVBBC Wn (without state constraint) has a capacity region whose interior

is empty if the AVBBC Wn is Y1-symmetrizable or Y2-symmetrizable. If we impose a state constraint,
the situation changes significantly. Now, it is possible that the interior of the capacity region is non-empty
even if the AVBBC Wn is Yi-symmetrizable in the sense of Definition 8. Rather, Yi-symmetrizability
enters the picture via

Λi(PX) =

min
Ui∈Ui

∑
x∈X

∑
s∈S

PX(x)Ui(s|x)l(s) if Ui ̸= ∅

∞ if Ui = ∅
(6)

i = 1, 2, which indicates whether the symmetrization violates the imposed state constraint or not.
Thereby, Ui is the set of all channels Ui : X → P(S) which satisfy (4). For given type PX the quantity
Λi(PX) is called symmetrizability costs and can be interpreted as the minimum costs that are needed to
symmetrize the AVBBC Wn. Clearly, if Wn is Yi-symmetrizable, then Ui ̸= ∅ and Λi(PX) is finite.
Further, if Wn is non-Yi-symmetrizable, then Ui = ∅, and we set Λi(PX) = ∞ for convenience.

4.1.2. Coordination Strategies

We consider the standard model with a block code of arbitrary but sufficient fixed length n. Let
Mi := {1, ...,Mi,n} be the message set of node i, i = 1, 2, which is also known at the relay node.
Further, we use the abbreviation M := M1 ×M2.

First, we introduce the traditional approach without additional coordination which is based on a
deterministic coding strategy with pre-specified encoder and decoders at the relay and receivers.

Definition 9. A deterministic (n,M1,n,M2,n)-code Cdet(W
n) of length n for the AVBBC Wn under input

constraint Γ and state constraint Λ is a family

Cdet(W
n) :=

{
(xn

m,D
(1)
m2|m1

,D(2)
m1|m2

) : m1∈ M1,m2∈ M2

}
with codewords

xn
m ∈ X n with g(xn

m) ≤ Γ

one for each message m = (m1,m2), satisfying the input constraint Γ, and decoding sets at nodes 1
and 2

D(1)
m2|m1

⊆ Yn
1 and D(2)

m1|m2
⊆ Yn

2

for all m1 ∈ M1 and m2 ∈ M2. For given m1 at node 1 the decoding sets must be disjoint,
i.e., D(1)

m2|m1
∩ D(1)

m′
2|m1

= ∅ for m′
2 ̸= m2, and similarly for given m2 at node 2 the decoding sets

must satisfy D(2)
m1|m2

∩ D(2)

m′
1|m2

= ∅ for m′
1 ̸= m1.

When xn
m with m = (m1,m2) and g(xn

m) ≤ Γ has been sent, and yn1 and yn2 have been received at
nodes 1 and 2, the decoder at node 1 is in error if yn1 is not in D(1)

m2|m1
. Accordingly, the decoder at node 2
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is in error if yn2 is not in D(2)
m1|m2

. This allows us to define the probability of error for the deterministic
code Cdet(W

n) for given message m = (m1,m2) and state sequence sn ∈ Sn
Λ, i.e., it satisfies the state

constraint Λ, as
e(m, sn|Cdet(W

n)) := W⊗n
(
(D(1)

m2|m1
×D(2)

m1|m2
)c|xn

m, s
n
)

and the corresponding marginal probabilities of error at nodes 1 and 2 as e1(m, sn|Cdet(W
n)) :=

W⊗n
1 ((D(1)

m2|m1
)c|xn

m, s
n) and e2(m, sn|Cdet(W

n)) := W⊗n
2 ((D(2)

m1|m2
)c|xn

m, s
n), respectively. Thus, the

average probability of error for state sequence sn ∈ Sn
Λ is given by

ē(sn|Cdet(W
n)) :=

1

|M|
∑
m∈M

e(m, sn|Cdet(W
n))

and the corresponding marginal average probability of error at node i by ēi(s
n|Cdet(W

n)) :=
1

|M|
∑

m∈M ei(m, sn|Cdet(W
n)), i = 1, 2. Clearly, we always have ē(sn|Cdet(W

n)) ≤ ē1(s
n|Cdet(W

n)) +

ē2(s
n|Cdet(W

n)).
For given 0 < λn < 1, the code Cdet(W

n) is called a (n,M1,n,M2,n, λn)-code (with average
probability of error λn) for the AVBBC Wn under input constraint Γ and state constraint Λ if

ē(sn|Cdet(W
n)) ≤ λn for all sn ∈ Sn

Λ

Definition 10. A rate pair (R1, R2) ∈ R2
+ is said to be deterministically achievable for the AVBBC Wn

under input constraint Γ and state constraint Λ if for any δ > 0 there exists an n(δ) ∈ N and a sequence
of deterministic (n,M1,n,M2,n, λn)-codes {C(n)

det (W
n)}n∈N with codewords xn

m1,m2
, m1 = 1, ...,M1,n,

m2 = 1, ...,M2,n, each satisfying g(xn
m1,m2

) ≤ Γ, such that for all n ≥ n(δ) we have

1

n
logM1,n ≥ R2 − δ and

1

n
logM2,n ≥ R1 − δ

while
max

sn:l(sn)≤Λ
ē(sn|Cdet(W

n)) ≤ λn

with λn → 0 as n → ∞. The set of all achievable rate pairs is the deterministic code capacity region of
the AVBBC Wn under input constraint Γ and state constraint Λ and is denoted by Rdet(W

n|Γ,Λ).

If Γ ≥ gmax or Λ ≥ lmax, then the input or state sequences are not restricted by the corresponding
constraint, respectively. Consequently, we denote the capacity region with state constraint and no input
constraint by Rdet(W

n|gmax,Λ) and the capacity region with input constraint and no state constraint by
Rdet(W

n|Γ, lmax).

Remark 3. The definitions above require that we have to find codes such that the average probability of
error goes to zero as the block length tends to infinity simultaneously for all state sequences that fulfill
the state constraint. This means the codes are universal with respect to the state sequence.

Next, we introduce the encoder-decoder coordination based on common randomness which is
specified by a random code, where the encoder and the decoders are chosen according to a common
random experiment whose outcome has to be known at all nodes in advance.
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Definition 11. A random (n,M1,n,M2,n,Z)-code Cran(W
n) of length n for the AVBBC Wn under input

constraint Γ and state constraint Λ is given by a family Cran(W
n) := {C(z) : z ∈ Z} of deterministic

(n,M1,n,M2,n)-codes

C(z) :=
{(

xn
m(z),D

(1)
m2|m1

(z),D(2)
m1|m2

(z)
)
: m1 ∈ M1,m2 ∈ M2

}
together with a random variable Z ∈ Z distributed according to pZ ∈ P(Z). Thereby, each C(z) is a
deterministic code in the sense of Definition 9, which means that each C(z) satisfies the input and state
constraints individually.

Then, the average probability of error of the random code Cran(W
n) for given state sequence sn ∈ Sn

Λ

is given by
ē(sn|Cran(W

n)) := EZ[ē(s
n|C(Z))]

and accordingly the corresponding marginal average probability of error at node i by ēi(s
n|Cran(W

n)) :

= EZ[ēi(s
n|C(Z))], i = 1, 2. For given 0 < λn < 1, the random code Cran(W

n) is called a
(n,M1,n,M2,n,Z, λn)-code (with average probability of error λn) for the AVBBC Wn under input
constraint Γ and state constraint Λ if

ē(sn|Cran(W
n)) ≤ λn for all sn ∈ Sn

Λ

The definitions of a randomly achievable rate pair under input and state constraints and the random code
capacity region Rran(W

n|Γ,Λ) under input and state constraints follow accordingly.

4.2. Encoder-Decoder Coordination Based on Common Randomness

Here, we derive the random code capacity region of the AVBBC Wn under input constraint Γ and
state constraint Λ. This characterizes the scenario, where transmitter and receivers can coordinate their
choice of encoder and decoders based on common randomness. For this purpose we define the region

R(PX|Λ) :=
{
(R1, R2) ∈ R2

+ : R1 ≤ inf
q∈P(S,Λ)

I(PX,W 1,q)

R2 ≤ inf
q∈P(S,Λ)

I(PX,W 2,q)
} (7)

for joint probability distributions {PX(x)W q(y1, y2|x)}q∈P(S,Λ).

Theorem 4. The random code capacity region Rran(W
n|Γ,Λ) of the AVBBC Wn under input

constraint Γ and state constraint Λ is

Rran(W
n|Γ,Λ) =

∪
PX:g(PX)≤Γ

R(PX|Λ)

In the following we give the proof of the random code capacity region where the achievability part is
mainly based on an extension of Ahlswede’s robustification technique [55,56].
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4.2.1. Compound Bidirectional Broadcast Channel

As in [51] for the AVBBC Wn without constraints on input and states, we start with a construction
of a suitable compound BBC, where the key idea is to restrict it in an appropriate way. Having the state
constraint Λ in mind, it is reasonable to restrict our attention to all probability distributions q ∈ P(S,Λ).
Let us consider the family of averaged broadcast channels, cf. (3),{

W q(y1, y2|x)
}
q∈P(S,Λ) (8)

and observe that this already corresponds to a compound BBC where each permissible probability
distribution q ∈ P(S,Λ) parametrizes one element of the compound channel which we denote by W in
the following. The capacity region of the compound BBC is known and can be found in [27]. It is shown
that for given input distribution PX all rate pairs (R1, R2) satisfying (R1, R2) ∈ R(PX|Λ), cf. (7), are
deterministically achievable. In particular, this is valid for a input distribution PX that satisfies the input
constraint g(PX) ≤ Γ.

In more detail, in [27] it is shown that there exists a deterministic code Cdet(W) for the compound
BBC W such that all rate pairs (R1, R2) ∈ R(PX|Λ) are achievable while the average probability of
error can be bounded from above by

ē(q|Cdet(W)) :=
1

|M|
∑
m∈M

W
⊗n

q

(
(D(1)

m2|m1
×D(2)

m1|m2
)c|xn

m

)
≤ λW,n for all q ∈ P(S,Λ)

with λW,n = λW,1n+λW,2n where λW,in is the average probability of error at node i, i = 1, 2. Moreover,
for n large enough, we have

λW,in = (n+ 1)|X ||Yi|2−n cδ2

2 +
(n+ 1)|X ||Yi|

1− (n+ 1)|X |2−ncδ2
2−n τ

8

which decreases exponentially fast for increasing block length n. Thereby, δ > 0, τ > 0, and c > 0 are
constants independent of n, cf. [27].

Together with (3) this immediately implies that for Cdet(W) the average probability of a successful
transmission over the compound BBC W is bounded from below by

1

|M|
∑
m∈M

W
⊗n

q (D(1)
m2|m1

×D(2)
m1|m2

|xn
m) > 1− λW,n

or equivalently by

1

|M|
∑
m∈M

∑
sn∈Sn

W⊗n(D(1)
m2|m1

×D(2)
m1|m2

|xn
m, s

n)q⊗n(sn) > 1− λW,n

for all q⊗n =
∏n

k=1 q and q ∈ P(S,Λ).

4.2.2. Robustification

As in [51] for the AVBBC without state constraints, we use the deterministic code Cdet(W) for the
compound BBC W to construct a random code Cran(W

n) for the AVBBC Wn under input constraint Γ
and state constraint Λ.
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Let Πn be the group of permutations acting on {1, 2, ..., n}. For given sequence sn = (s1, s2, ..., sn) ∈
Sn and permutation π ∈ Πn : Sn → Sn, we denote the permuted sequence (sπ(1), sπ(2), ..., sπ(n)) ∈ Sn

by π(sn). Further, we denote the inverse permutation by π−1 so that π−1(π(sn)) = sn since π is bijective.

Theorem 5 (Robustification technique). Let f : Sn → [0, 1] be a function such that for some α ∈ (0, 1)

the inequality ∑
sn∈Sn

f(sn)q⊗n(sn) > 1− α for all q ∈ P0(n,S,Λ) (9)

holds where P0(n,S,Λ) := {q ∈ P0(n,S) : Eq[l(q)] ≤ Λ}. Then it also holds

1

n!

∑
π∈Πn

f
(
π(sn)

)
> 1− (n+ 1)|S|α for all sn ∈ Sn

Λ (10)

Proof. The proof is a modification of the corresponding proof in [56], where a similar result is given
without constraints on the sequences of states. First, we observe that (9) is equivalent to∑

sn∈Sn

(
1− f(sn)

)
q⊗n(sn) ≤ α for all q ∈ P0(n,S,Λ) (11)

Since each π ∈ Πn is bijective and because q⊗n(π(sn)) = q⊗n(sn) for all sn ∈ Sn, we obtain from (11)

α ≥
∑

sn∈Sn

(
1− f

(
π(sn)

))
q⊗n

(
π(sn)

)
=

∑
sn∈Sn

(
1− f

(
π(sn)

))
q⊗n(sn) for all q ∈ P0(n,S,Λ) and all π ∈ Πn (12)

Therefore, averaging (12) over Πn yields∑
sn∈Sn

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
q⊗n(sn) ≤ α for all q ∈ P0(n,S,Λ) (13)

Since 1− 1
n!

∑
π∈Πn

f(π(sn)) ≥ 0, restricting the state sequences to T n
q we get from (13)∑

sn∈T n
q

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
q⊗n(sn) ≤ α for all q ∈ P0(n,S,Λ)

which is equivalent to

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
q⊗n(T n

q ) ≤ α for all q ∈ P0(n,S,Λ) and all sn ∈ T n
q (14)

because for sn ∈ T n
q , the term 1

n!

∑
π∈Πn

(1− f(π(sn))) does not depend on sn. Since T n
q ≥ (n+1)−|S|,

cf. [3], Equation (14) implies

1

n!

∑
π∈Πn

(
1− f

(
π(sn)

))
≤ (n+ 1)|S|α for all q ∈ P0(n,S,Λ) and all sn ∈ T n

q (15)

Obviously, we have Sn
Λ =

∪
q∈P0(n,S,Λ) T

n
q so that (15) shows that

1

n!

∑
π∈Πn

f
(
π(sn)

)
> 1− (n+ 1)|S|α for all sn ∈ Sn

Λ

which completes the proof of the theorem.
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With the robustification technique and

f
(
π(sn)

)
=

1

|M|
∑
m∈M

W⊗n
(
D(1)

m2|m1
×D(2)

m1|m2
|xn

m, π(s
n)
)

we immediately obtain a random (n,M1,n,M2,n,Πn)-code Cran(W
n) for the AVBBC Wn under input

constraint Γ and state constraint Λ, which is given by the family

Cran(W
n) =

{
(π−1(xn

m), π
−1(D(1)

m2|m1
), π−1(D(2)

m1|m2
)) : m1 ∈ M1,m2 ∈ M2, π ∈ Πn

}
(16)

where the permutations π are uniformly distributed on Πn and

π−1(D(1)
m2|m1

) =
∪

yn1 ∈D
(1)
m2|m1

π−1(yn1 ) and π−1(D(2)
m1|m2

) =
∪

yn2 ∈D
(2)
m1|m2

π−1(yn2 )

Since Πn is the group of permutations of size n, the cardinality of Πn is n! so that the random code
Cran(W

n) consists of n! deterministic (n,M1,n,M2,n)-codes.
From the robustification technique follows that the average probability of error of Cran(W

n) is bounded
from above by

ē(sn|Cran(W
n)) ≤ (n+ 1)|S|λW,n =: λWnran,n for all sn ∈ Sn

Λ (17)

Moreover, from the construction it is clear that for given input PX, the random code Cran(W
n) achieves

for the AVBBC Wn the same rate pairs as Cdet(W) for the compound BBC W as specified in (7). Finally,
taking the union over all input distributions PX that satisfy the input constraint g(PX) ≤ Γ establishes
the achievability of the random code capacity Rran(W

n|Γ,Λ) as stated in Theorem 4.

4.2.3. Converse

It remains to show that the presented random coding strategy actually achieves all possible rate pairs
so that it is optimal in the sense that no other rate pairs are achievable.

As a first step, it is easy to show that the average probability of error for the random code Cran(W
n) for

the AVBBC Wn equals the average probability of error for the random code for the compound BBC W.
Hence, it is clear that we cannot achieve higher rates as for the constructed compound BBC W with
random codes. The deterministic rates of the compound channel can be found in [27]. Additionally, as
in [57] for the single-user compound channel, it can be easily shown that for the compound BBC W the
achievable rates for deterministic and random codes are equal. Since the constructed random code for
the AVBBC Wn already achieves these rates, the converse is established.

This finishes the proof of Theorem 4 and therewith the random code capacity region Rran(W
n|Γ,Λ)

of the AVBBC Wn under input constraint Γ and state constraint Λ.

4.3. No Additional Coordination

A random coding strategy as constructed in the previous section requires common randomness
between all nodes, since the encoder and the decoders depend all on the same random permutation which
has to be known at all nodes in advance. If this kind of resource is not available, one is interested in
deterministic strategies. In this section, we derive the deterministic code capacity region of the AVBBC
with constraints on input and states.
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Theorem 6. If maxPX:g(PX)≤Γ Λi(PX) > Λ, i = 1, 2, then the deterministic code capacity region
Rdet(W

n|Γ,Λ) of the AVBBC Wn under input constraint Γ and state constraint Λ is

Rdet(W
n|Γ,Λ) =

∪
PX: g(PX)≤Γ

Λi(PX)>Λ, i=1,2

R(PX|Λ)

If maxPX:g(PX)≤Γ Λ1(PX) < Λ or maxPX:g(PX)≤Γ Λ2(PX) < Λ, then int(Rdet(W
n|Γ,Λ)) = ∅.

From the theorem we immediately obtain the deterministic code capacity region of the AVBBC Wn

with state constraint Λ and no input constraint, i.e., Rdet(W
n|gmax,Λ).

Corollary 1. If maxPX
Λi(PX) > Λ, i = 1, 2, then the deterministic code capacity region

Rdet(W
n|gmax,Λ) of the AVBBC Wn with state constraint Λ and no input constraint is given by

Rdet(W
n|gmax,Λ) =

∪
PX: Λi(PX)>Λ,i=1,2

R(PX|Λ)

If maxPX
Λ1(PX) < Λ or maxPX

Λ2(PX) < Λ, then int(Rdet(W
n|gmax,Λ)) = ∅.

We observe that the deterministic code capacity region Rdet(W
n|Γ,Λ) of the AVBBC Wn under

input constraint Γ and state constraint Λ displays a dichotomy behavior similarly as in the unconstrained
case [51]: it either equals a non-empty region or has an empty interior. Unfortunately, this knowledge
cannot be exploited to prove the corresponding deterministic code capacity region since, as already
observed in [4] for the single-user AVC, Ahlswede’s elimination technique [2] does not work anymore if
constraints are imposed on the permissible codewords and sequences of states. Consequently, to prove
Theorem 6 we need a proof idea which does not rely on this technique. In the following subsections we
present the proof which is therefore mainly based on an extension of [4].

4.3.1. Symmetrizability

The following lemma shows that under state constraint Λ no code with codewords of type PX

satisfying Λ1(PX) < Λ or Λ2(PX) < Λ can be good.

Lemma 1. For a Y1-symmetrizable AVBBC Wn any deterministic code Cdet(W
n) of block length n with

codewords xn
m1,m2

, m1 = 1, ...,M1,n, m2 = 1, ...,M2,n, each of type PX with Λ1(PX) < Λ, and M2,n ≥ 2

has

max
sn:l(sn)≤Λ

ē1(s
n|Cdet(W

n)) ≥ M2,n − 1

2M2,n

− 1

n

l2max

(Λ− Λ1(PX))2

Similarly, for a Y2-symmetrizable AVBBC Wn any deterministic code Cdet(W
n) of block length n with

codewords xn
m1,m2

, m1 = 1, ...,M1,n, m2 = 1, ...,M2,n, each of type PX with Λ2(PX) < Λ, and M1,n ≥ 2

has

max
sn:l(sn)≤Λ

ē2(s
n|Cdet(W

n)) ≥ M1,n − 1

2M1,n

− 1

n

l2max

(Λ− Λ2(PX))2

Proof. The proof can be found in Appendix A.1.
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Remark 4. The lemma indicates that for a successful transmission using codewords of type PX

the symmetrizability costs Λi(PX), i = 1, 2, have to exceed the permissible (or available) costs
Λ, since otherwise the AVBBC Wn can be symmetrized, which prohibits any reliable or error-free
communication. This already establishes the second part of Theorem 6 and therewith characterizes
when int(Rdet(W

n|Γ,Λ)) = ∅.

4.3.2. Positive Rates

Next, we present a coding strategy with codewords of type PX that achieves the desired rates as
specified in Theorem 6 if the symmetrizability costs exceed the permissible costs, i.e., Λ1(PX) > Λ and
Λ2(PX) > Λ. Fortunately, we are in the same position as in the single-user AVC [4]: the coding strategy
for the AVBBC without constraints [52] must only be slightly modified to apply also to the AVBBC
with constraints.

We need codewords xn
m1,m2

, m1 = 1, ...,M1,n, m2 = 1, ...,M2,n with the following properties.

Lemma 2. For any ϵ > 0, n ≥ n0(ϵ), Mi,n ≥ 2nϵ, i = 1, 2, and given type PX, there exist codewords
xn
m1,m2

∈ T n
X , m1 = 1, ...,M1,n, m2 = 1, ...,M2,n such that for every xn ∈ X n, sn ∈ Sn

Λ, and every
joint type PXX′S, with R1 = 1

n
logM2,n and R2 = 1

n
logM1,n, we have for each fixed m1 ∈ M1 the

following properties∣∣{m′
2 : (x

n, xn
m1,m′

2
, sn) ∈ T n

XX′S}
∣∣ ≤ exp

(
n(|R1 − I(X′; XS)|+ + ϵ)

)
(18a)

1

M2,n

∣∣{m2 : (x
n
m1,m2

, sn) ∈ T n
XS}

∣∣ ≤ exp
(
− n

ϵ

2

)
if I(X; S) > ϵ (18b)

1

M2,n

∣∣{m2 : (x
n
m1,m2

, xn
m1,m′

2
, sn) ∈ T n

XX′S for some m′
2 ̸= m2}

∣∣ ≤ exp
(
− n

ϵ

2

)
if I(X;X′S)− |R1 − I(X′; S)|+ > ϵ (18c)

where |x|+ = max{x, 0}, and further for each fixed m2 ∈ M2∣∣{m′
1 : (x

n, xn
m′

1,m2
, sn) ∈ T n

XX′S}
∣∣ ≤ exp

(
n(|R2 − I(X′; XS)|+ + ϵ)

)
(18d)

1

M1,n

∣∣{m1 : (x
n
m1,m2

, sn) ∈ T n
XS}

∣∣ ≤ exp
(
− n

ϵ

2

)
if I(X; S) > ϵ (18e)

1

M1,n

∣∣{m1 : (x
n
m1,m2

, xn
m′

1,m2
, sn) ∈ T n

XX′S for some m′
1 ̸= m1}

∣∣ ≤ exp
(
− n

ϵ

2

)
if I(X;X′S)− |R2 − I(X′; S)|+ > ϵ (18f)

Proof. The proof can be found in Appendix A.2.

We follow [4] and define the decoding sets similarly as for the single-user AVC under input and state
constraints. Therefore, we define the set

Dηi(Λ) =
{
PXSYi

: D(PXSYi
∥PX ⊗ PS ⊗Wi) ≤ ηi, l(PS) ≤ Λ

}
, i = 1, 2

Then, the decoding sets at node 1 are specified as follows.
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Definition 12. For given codewords xn
m1,m2

∈ T n
X , m1 = 1, ...,M1,n, m2 = 1, ...,M2,n, and η1 > 0 we

have yn1 ∈ D(1)
m2|m1

if and only if

(i) there exists an sn∈Sn
Λ such that Pxn

m1,m2
,sn,yn1

∈Dη1(Λ)

(ii) for each codeword xn
m1,m′

2
with m′

2 ̸= m2 which satisfies Pxn
m1,m

′
2
,s′n,yn1

∈ Dη1(Λ) for some

s′n ∈ Sn
Λ, we have I(XY1; X

′|S) ≤ η1 where X,X′, S,Y1 are dummy random variables such
that PXX′SY1 equals the joint type of (xn

m1,m2
, xn

m1,m′
2
, sn, yn1 ).

The decoding sets at node 2 are defined accordingly with η2 > 0. A key part is now to ensure that
these decoding sets are unambiguously defined. This means that they are disjoint for small enough η1

and η2, which can be shown analogously to the single-user case [4]. Here is where the conditions on the
symmetrizability costs, Λi(PX) > Λ, i = 1, 2, come in.

Lemma 3. Let α > 0 and β > 0, then for a sufficiently small ηi, i = 1, 2, no quintuple of random
variables X, X′, S, S′, and Yi can simultaneously satisfy PX = PX′ with

Λi(PX) ≥ Λ + α and min
x∈X

PX(x) ≥ β

and

PXSYi
∈ Dηi(Λ), PX′S′Yi

∈ Dηi(Λ) (19a)

I(XYi; X
′|S) ≤ ηi, I(X′Yi; X|S′) ≤ ηi (19b)

Proof. The proof can be found in Appendix A.3.

So far we defined coding and decoding rules. Next, we show that codewords of type PX with
properties as given in Lemma 2 and decoding sets as given in Definition 12 suffices to achieve all rate
pairs as specified by the region R(PX|Λ), cf. (7).

Lemma 4. Given Λ > 0 and arbitrarily small α > 0, β > 0, and δ > 0, for any type PX satisfying

Λi(PX) ≥ Λ + α, i = 1, 2, min
x∈X

PX(x) ≥ β

there exist a code Cdet(W
n) of block length n ≥ n0 with codewords xn

m1,m2
∈ T n

X , m1 = 1, ...,M1,n,
m2 = 1, ...,M2,n, such that

1

n
logM1,n > inf

q∈P(S,Λ)
I(PX,W 2,q)− δ and

1

n
logM2,n > inf

q∈P(S,Λ)
I(PX,W 1,q)− δ

while
max

sn:l(sn)≤Λ
ēi(s

n|Cdet(W
n)) ≤ exp(−nγi), i = 1, 2 (20)

where n0 and γi > 0 depend only on α, β, δ, and the AVBBC Wn.

Proof. The proof follows [4] (Lemma 5) where a similar result is shown for the single-user AVC.
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Let xn
m1,m2

∈ T n
X , m1 = 1, ...,M1,n, m2 = 1, ...,M2,n, each satisfying the input constraint

g(xn
m1,m2

) ≤ Γ, be codewords with properties as specified in Lemma 2 (ϵ will be chosen later) and
R1 =

1
n
logM2,n, R2 =

1
n
logM1,n satisfying

inf
q∈P(S,Λ)

I(PX,W 1,q)− δ < R1 < inf
q∈P(S,Λ)

I(PX,W 1,q)−
2

3
δ (21a)

inf
q∈P(S,Λ)

I(PX,W 2,q)− δ < R2 < inf
q∈P(S,Λ)

I(PX,W 2,q)−
2

3
δ (21b)

Let the decoding sets D(1)
m2|m1

and D(2)
m1|m2

be as given in Definition 12. Then Lemma 3 ensures that η1
and η2 can be chosen small enough to ensure that the decoding sets are well defined.

Furthermore, I(X;Yi) is uniformly continuous in PXYi
and divergence dominates the variational

distance [3] so that we can choose ηi small enough to ensure that PXSYi
∈ Dηi(Λ) implies

I(X;Yi) ≥ inf
q∈P(S,Λ)

I(PX,W i,q)−
δ

3
, i = 1, 2 (22)

In the following we carry out the analysis for the probability of error at node 1. Then the analysis for
node 2 follows accordingly using the same arguments. Now, we establish an exponentially decreasing
upper bound on the probability of error as postulated in (20) for node 1 for a fixed state sequence sn ∈ Sn

Λ.
For each m1 ∈ M1 we first observe by Definition 12 of the decoding sets that yn1 is erroneously

decoded if decoding rule (i) or decoding rule (ii) is violated. More precisely, when message
m = (m1,m2) has been sent, then the decoder makes an error if Pxn

m,sn,yn1
/∈ Dη1(Λ) or there exists a joint

type PXX′SY1 with (xn
m1,m2

, xn
m1,m′

2
, sn, yn1 ) ∈ T n

XX′SY1
for some m′

2 ̸= m2 such that (a) PXSY1 ∈ Dη1(Λ);
(b) PX′S′Y1 ∈ Dη1(Λ) for some S′; and (c) I(XY1; X

′|S) > η1. Let Eη1(Λ) denote the set of all types
PXX′SY1 which satisfy the aforementioned conditions (a)–(c). Consequently, the probability of error for
message m and state sequence sn ∈ Sn

Λ is bounded by

e1(m, sn|Cdet(W
n)) ≤

∑
yn1 :Pxnm,sn,yn1

/∈Dη1 (Λ)

W⊗n
1 (yn1 |xn

m, s
n)+

∑
PXX′SY1

∈Eη1 (Λ)

eXX′SY1(m, sn|Cdet(W
n)) (23)

where
eXX′SY1(m, sn|Cdet(W

n)) :=
∑

yn1 :(x
n
m1,m2

,xn
m1,m

′
2
,sn,yn1 )∈T n

XX′SY1

for some m′
2 ̸=m2

W⊗n
1 (yn1 |xn

m1,m2
, sn) (24)

Next, for given m1 ∈ M1 we define the set

Am1
:=

{
m2 : (x

n
m1,m2

, sn) ∈
∪

I(X;S)>ϵ

T n
XS

}
and use the trivial bound e1((m1,m2), s

n|Cdet(W
n)) ≤ 1 for all such m2 ∈ Am1 . With this and (23) we

get for the average probability of error

ē1(s
n|Cdet(W

n)) ≤|Am1 |
|M|

+
1

|M|
∑

m1∈M1

∑
m2∈Ac

m1

∑
yn1 :Pxnm,sn,yn1

/∈Dη1 (Λ)

W⊗n
1 (yn1 |xn

m, s
n)

+
1

|M|
∑

m1∈M1

∑
m2∈Ac

m1

∑
PXX′SY1

∈Eη1 (Λ)

eXX′SY1(m, sn|Cdet(W
n))
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Property (18b) of the codewords and Fact 1 from Section 2 imply for the first term that

|Am1 |
|M|

≤ (n+ 1)|X ||S| exp
(
− n

ϵ

2

)
≤ exp

(
− n

ϵ

3

)
(25)

where the last inequality holds for sufficiently large n.
To bound the second term we observe that for any m2 ∈ Ac

m1∑
yn1 :Pxnm,sn,yn1

/∈Dη1 (Λ)

W⊗n
1 (yn1 |xn

m, s
n) ≤

∑
PXSY1

/∈Dη1 (Λ)

W⊗n
1 (T n

Y1|XS(x
n
m, s

n)|xn
m, s

n)

≤
∑

PXSY1
/∈Dη1 (Λ)

exp
(
− nD(PXSY1∥PXS ⊗W1)

)
≤ (n+ 1)|X ||S||Y1| exp

(
− n(η1 − ϵ)

)
≤ exp

(
− n(η1 − 2ϵ)

)
(26)

where the second inequality follows from Fact 3 and the third inequality from Fact 1 and

D(PXSY1∥PXS ⊗W1) = D(PXSY1∥PX ⊗ PS ⊗W1)− I(X; S)

> η1 − ϵ.

It remains to bound for PXX′SY1 ∈ Eη1(Λ) the term

1

|M|
∑

m1∈M1

∑
m2∈Ac

m1

eXX′SY1(m, sn|Cdet(W
n)) (27)

Before we proceed to bound (27) we observe that if I(X;X′S) > |R1 − I(X′; S)|+ + ϵ, then by (18c),

1

M2,n

∣∣{m2 : (x
n
m1,m2

, xn
m1,m′

2
, sn) ∈ T n

XX′S for some m′
2 ̸= m2}

∣∣ ≤ exp
(
− n

ϵ

2

)
(28)

Consequently, it suffices to proceed when PXX′SY1 ∈ Eη1(Λ) satisfies

I(X;X′S) ≤ |R1 − I(X′; S)|+ + ϵ

From (24) we may write

eXX′SY1(m, sn|Cdet(W
n))

≤
∑

m′
2:(x

n
m1,m2

,xn
m1,m

′
2
,sn)∈T n

XX′S

W⊗n
1 (T n

Y1|XX′S(x
n
m1,m2

, xn
m1,m′

2
, sn)|xn

m1,m2
, sn) (29)

Since W⊗n
1 (yn1 |xn

m1,m2
, sn) is constant for yn1 ∈ T n

Y1|XS(x
n
m1,m2

, sn) and W⊗n
1 (yn1 |xn

m1,m2
, sn) ≤

1/(|T n
Y1|XS(x

n
m1,m2

, sn)|) the inner term in (29) is bounded from above by

W⊗n
1 (T n

Y1|XX′S(x
n
m1,m2

, xn
m1,m′

2
, sn)|xn

m1,m2
, sn) ≤

|T n
Y1|XX′S(x

n
m1,m2

, xn
m1,m′

2
, sn)|

|T n
Y1|XS(x

n
m1,m2

, sn)|

≤ exp
(
− n(I(Y1; X

′|XS)− ϵ)
)

(30)
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where the last inequality follows immediately from Fact 2. Next, using (18a), it follows from (29)
together with (30) that

eXX′SY1(m, sn|Cdet(W
n)) ≤ exp

(
− n(I(Y1; X

′|XS)− |R1 − I(X′; XS)|+ − 2ϵ)
)

(31)

Since
|R1 − I(X′; XS)|+ ≥ R1 − I(X′; XS)− ϵ

is obviously fulfilled, we can substitute this into (31) and obtain

eXX′SY1(m, sn|Cdet(W
n)) ≤ exp

(
− n(I(X′; XSY1)−R1 − ϵ)

)
≤ exp

(
− n(I(X′; Y1)−R1 − ϵ)

)
Since PX′S′Y1 ∈ Dη1(Λ) for some S′, it follows from (21) and (22) that

I(X′; Y1)−R1 ≥ inf
q∈P(S,Λ)

I(PX,W 1,q)−R1 −
δ

3
>

δ

3

and therewith
eXX′SY1(m, sn|Cdet(W

n)) ≤ exp
(
− n(

δ

3
− ϵ)

)
(32)

Now, we choose ϵ < min{ δ
3
, η1

2
} so that (25), (26), (28), and (32) imply that the average probability

of error decreases exponentially fast for sufficiently large n. Since the derived bounds hold uniformly for
all sn ∈ Sn

Λ, the first part of the proof is complete. Similarly, we can now bound the average probability
of error at node 2 using the same argumentation.

4.3.3. Converse

It remains to show that there are no other rate pairs achievable than these rate pairs which are already
characterized by Theorem 6. If Λi(PX) < Λ, i = 1, 2, the converse is already established by Lemma 1.
Consequently, we only need to consider the case where Λi(PX) > Λ, i = 1, 2, in the following.

Lemma 5. For any Λ > 0, δ > 0, and ϵ < 1, there exists n0 such that for any deterministic code
Cdet(W

n) of block length n ≥ n0 with M1,nM2,n codewords, each of type PX, satisfying

1

n
logM2,n ≥ inf

q∈P(S,Λ)
I(PX,W 1,q) + δ

implies
max

sn:l(sn)≤Λ
ē1(s

n|Cdet(W
n)) > ϵ

And similarly, if the codewords satisfy 1
n
logM1,n ≥ infq∈P(S,Λ) I(PX,W 2,q) + δ, then

maxsn:l(sn)≤Λ ē2(s
n|Cdet(W

n)) > ϵ.

Proof. The proof follows [4] (Lemma 2) where a similar converse result is shown for the single-user case.
We carry out the analysis for receiving node 1, then the result for receiving node 2 follows accordingly
using the same argumentation.

Let us consider a joint probability distribution

PXSY1(x, s, y1) = PX(x)q(s)W1(y1|x, s) (33)



Entropy 2012, 14 1380

If some probability distribution q ∈ P(S,Λ) satisfies

Eq[l(q)] ≤ Λ(1− η) (34)

for some η > 0 which depends on δ but not on PX, then

I(X;Y1) ≤ inf
q∈P(S,Λ)

I(PX,W 1,q) +
δ

2
(35)

To prove (35) let q∗ ∈ P(S,Λ) be a probability distribution which achieves the infimum in
infq∈P(S,Λ) I(PX,W 1,q) so that we have I(X;Y∗

1) = infq∈P(S,Λ) I(PX,W 1,q) for PXS∗Y∗
1

as given in (33)
with Eq∗ [l(q

∗)] ≤ Λ. Next, we use q∗ to construct a new probability distribution with slightly smaller
costs than Λ as required in (34). Therefore, let s0 ∈ S with l(s0) = 0 and define

q(s) :=

(1− η)q∗(s) if s ̸= s0

η + (1− η)q∗(s) if s = s0

Clearly, q(s) satisfies (34), and therefore (35) holds for sufficiently small η, since I(X;Y1) is a uniformly
continuous in (PX, q) if PXSY1 is given as in (33).

Similarly as in [4] (Lemma 2), we consider now any deterministic code Cdet(W
n) with codewords

xn
m1,m2

, m1 = 1, ...,M1,n, m2 = 1, ...,M2,n, and decoding sets D(1)
m2|m1

and D(2)
m1|m2

for all m1 ∈ M1 and
m2 ∈ M2, cf. Definition 9. Further, let Sn = (S1, ..., Sn) ∈ Sn be a sequence, where each element is
independent and identically distributed according to q as constructed above. Then for receiving node 1
we get for each fixed m1 ∈ M1 for the probability of error

Eq

[
ē1(S

n|Cdet(W
n))

]
=

1

|M|
∑
m∈M

Eq

[
e1((m1,m2), S

n|Cdet(W
n))

]
=

1

|M|
∑
m∈M

∑
yn1 /∈D(1)

m2|m1

Eq

[
W n

1 (y
n
1 |xn

m1,m2
, Sn)

]

=
1

|M|
∑
m∈M

∑
yn1 /∈D(1)

m2|m1

n∏
k=1

Eq

[
W1(y1,k|xm1,m2,k, Sk)

]
(36)

Next, we set
W 1,q(y1|x) = Eq[W1(y1|x, s)] (37)

which is, in fact, a discrete memoryless channel (DMC). For each m1 ∈ M1, (36) yields that
Eq[ē1(S

n|Cdet(W
n))] = ē1(W 1,q|Cdet(W

n)) where ē1(W 1,q|Cdet(W
n)) is the average probability of error

when the deterministic code Cdet(W
n) is used on the DMC W 1,q. Next, observe that

P
{
l(Sn) > Λ

}
= P

{
1

n

n∑
k=1

l(Sk) > Eq[l(q)] + ηΛ

}

≤
(
var[l(q)]

)2
n(ηΛ)2

≤ l2max

nη2Λ2



Entropy 2012, 14 1381

which follows from (34), (5b), and Chebyshev’s inequality so that we get

max
sn:l(sn)≤Λ

ē1(s
n|Cdet(W

n)) ≥ Eq[ē1(S
n)]− P

{
l(Sn) > Λ

}
≥ ē1(W 1,q|Cdet(W

n))− l2max

nη2Λ2
(38)

Now, we are almost done. We observe that the definition of PXSY1 as given in (35) implies that Y1 is
connected with X by the channel W 1,q as defined in (37). For such a DMC a strong converse in terms of
maximal error can be found in [3], which immediately yields also a strong converse for the DMC in terms
of average probability of error as needed here. In more detail, (36) implies, by the strong converse for a
DMC with codewords of type PX, that if all codewords xn

m1,m2
, m1 = 1, ...,M1,n, m2 = 1, ...,M2,n, each

of type PX, then, for each m1 ∈ M1, the average probability of error ē1(W 1,q|Cdet(W
n)) is arbitrarily

close to 1 if 1
n
logM2,n ≥ infq∈P(S,Λ) I(PX,W 1,q) + δ and n sufficiently large enough. Finally, this

together with (38) complete the first part of the proof.
The result for receiving node 2 follows accordingly using the same argumentation which completes

the proof of the lemma.

4.3.4. Capacity Region

Now we are in the position to finally establish the deterministic code capacity region, which is one
of the main contributions of this work. Thus, summarizing the results obtained so far, we see that for
given input distribution PX the achievable rates for the AVBBC Wn under input constraint Γ and state
constraint Λ are given by R(PX|Λ) if Λi(PX) > Λ, i = 1, 2. Taking the union over all such valid inputs
we finally obtain

Rdet(W
n|Γ,Λ) =

∪
PX: g(PX)≤Γ,

Λi(PX)>Λ,i=1,2

R(PX|Λ)

On the other hand, we have int(Rdet(W
n|Γ,Λ)) = ∅ if maxPX:g(PX)≤Γ Λ1(PX) < Λ or

maxPX:g(PX)≤Γ Λ2(PX) < Λ, which follows immediately from Lemma 1. This, indeed, establishes the
deterministic code capacity region Rdet(W

n|Γ,Λ) of the AVBBC Wn under input constraint Γ and state
constraint Λ as stated in Theorem 6.

Remark 5. The case where Λi(PX) = Λ, i ∈ {1, 2}, remains unsolved in a similar way as for the
single-user AVC [4]. Likewise, we expect that int(R(PX|Λ)) = ∅ in that case.

4.4. Unknown Varying Additive Interference

So far we considered discrete memoryless channels and analyzed the corresponding arbitrarily
varying bidirectional broadcast channel. Here, we assume channels with additive white Gaussian noise,
where the transmission in the bidirectional broadcast phase is further corrupted by unknown varying
additive interference. Therefore, we also call this a BBC with unknown varying interference. Clearly, the
interference at both receivers may differ so that we introduce two artificial interferers or jammers, one
for each receiver, to model this scenario. Then the BBC with unknown varying interference is specified
by the flat fading input-output relation between the relay node and node i, i = 1, 2, which is given by

yi = x+ ji + ni
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Here, yi ∈ R denotes the output at node i, x ∈ R the input, ji ∈ R the additive interference, and ni ∈ R
the additive Gaussian noise distributed according to N (0, σ2).

The transmit powers of the relay and of the artificial jammers are restricted by average power
constraints Γ and Λi, i = 1, 2, respectively. This means, all permissible input sequences xn =

(x1, x2, ..., xn) of length n must satisfy
1

n

n∑
k=1

x2
k ≤ Γ (39)

and all permissible jamming sequences jni = (ji,1, ji,2, ..., ji,n), i = 1, 2, of length n must satisfy

1

n

n∑
k=1

j2i,k ≤ Λi (40)

From conditions (39) and (40) it follows that all permissible codewords and interfering sequences lie on
or within an n-dimensional sphere of radius

√
nΓ or

√
nΛi, i = 1, 2, respectively.

Similarly as for the discrete memoryless AVBBC, it makes a difference for the BBC with unknown
varying interference, if we consider deterministic or random coding strategies. Hence, we want specify
their different impact on the transmission in the following.

4.4.1. No Additional Coordination

The traditional approach without additional coordination is in general based on a system design which
ensures that the interference at the receivers does not exceed a certain threshold. For example in current
cellular networks, this is realized by separating cells in space which operate at the same frequency.

Theorem 7. The deterministic code capacity region Rdet(W
n) of the BBC with unknown varying

interference with input constraint Γ and jamming constraints Λ1 and Λ2 is the set of all rate pairs
(R1, R2) ∈ R2

+ that satisfy

Ri ≤


1
2
log

(
1 + Γ

Λi+σ2

)
if Γ > Λi

0 if Γ ≤ Λi

(41)

i = 1, 2. This means int(Rdet(W
n)) ̸= ∅ if and only if Γ > Λ1 and Γ > Λ2.

Sketch of Proof. First, we consider the case when Γ ≤ Λ1 or Γ ≤ Λ2. Let xn
m1,m2

∈ Rn,
m1 = 1, ...,M1,n, m2 = 1, ...,M2,n with M1,n ≥ 2 and M2,n ≥ 2 be arbitrary codewords satisfying
the input constraint (39). For Γ ≤ Λ1 we can consider the jamming sequences jn1,m1,m2

= xn
m1,m2

,
m1 = 1, ...,M1,n, m2 = 1, ...,M2,n. Then for each m1 ∈ M1 at node 1 the following holds. For each
pair (k, l) ∈ M2 ×M2 with k ̸= l we have for the probability of error at node 1

E
[
e1((m1, k), j

n
l |Cdet(W

n))
]
+ E

[
e1((m1, l), j

n
k |Cdet(W

n))
]

= P
{
xn
m1,k

+ jn1,m1,l
+ nn

1 /∈ D(1)
k|m1

}+ P
{
xn
m1,l

+ jn1,m1,k
+ nn

1 /∈ D(1)
l|m1

}

= P
{
xn
m1,k

+ jn1,m1,l
+ nn

1 ∈ (D(1)
k|m1

)c}+ P
{
xn
m1,k

+ jn1,m1,l
+ nn

1 /∈ D(1)
l|m1

}

≥ P
{
xn
m1,k

+ jn1,m1,l
+ nn

1 ∈ (D(1)
k|m1

)c}+ P
{
xn
m1,k

+ jn1,m1,l
+ nn

1 ∈ D(1)
k|m1

}

= P{xn
m1,k

+ jn1,m1,l
+ nn

1 ∈ (D(1)
k|m1

)c ∪ D(1)
k|m1

} = 1
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Hence, for a fixed m1 ∈ M1 this leads for the average probability of error to

1

M2,n

M2,n∑
k=1

E
[
ē1(j

n
1,m1,k

|Cdet(W
n))

]
=

1

M2,n

1

M1,nM2,n

M2,n∑
k=1

M1,n∑
m′

1=1

M2,n∑
m′

2=1

E
[
e1((m

′
1,m

′
2), j

n
1,m1,k

|Cdet(W
n))

]
≥ 1

M1,n(M2,n)2

M1,n∑
m′

1

M2,n(M2,n − 1)

2

=
M1,nM2,n(M2,n − 1)

2M1,n(M2,n)2
=

M2,n − 1

2M2,n

≥ 1

4

This implies that E[ē1(jn1,m1,m2
|Cdet(W

n))] ≥ 1
4

for at least one (m1,m2) ∈ M1×M2. Since the average
probability of error is bounded from below by a positive constant, a reliable transmission from the relay
to node 1 is not possible so that we end up with R1 = 0. The case Γ ≤ Λ2 similarly leads to R2 = 0.

Remark 6. Interestingly, Theorem 7 shows that the existence of positive rates only depends on the
interference and is completely independent of the noise. Consequently, the goal of the traditional
approach is to ensure that the received interference will be small enough. Otherwise, there is no
communication possible, not even at very low rates.

Now, we turn to the case when Γ > Λ1 and Γ > Λ2. To show that the rates given in (41) are actually
achievable, we follow [58] where a similar result is proved for the corresponding single-user scenario.
The strategy is outlined in the following.

Without loss of generality we assume that Γ = 1 and further 0 < Λi < 1, i = 1, 2. Then it suffices
to show that for every small δ > 0 and sufficiently large n there exist M1,nM2,n codewords xn

m1,m2
(on

the unit sphere) with M1,n = exp(nR2) and M2,n = exp(nR1) and Ci − 2δ < Ri < Ci − δ with
Ci :=

1
2
log(1 + 1

Λi+σ2 ), i = 1, 2, cf. (41), such that the average probability is arbitrarily small for all jni
satisfying (40). To ensure that the probability of error gets arbitrarily small, the codewords must possess
certain properties which are guaranteed by the following lemma. This is a straightforward extension of
the single-user case [58] (Lemma 1) to the BBC with unknown varying interference.

Lemma 6. For every ϵ > 0, 8
√
ϵ < η < 1, K > 2ϵ, and M1,n = exp(nR2), M2,n = exp(nR1)

with 2ϵ ≤ Ri ≤ K, i = 1, 2, for n ≥ n0(ϵ, η,K) there exist unit vectors xn
m1,m2

, m1 = 1, ...,M1,n,
m2 = 1, ...,M2,n such that for every unit vector un and constants α, β in [0, 1], we have for each
m1 ∈ M1 ∣∣∣{m2 :

⟨
xn
m1,m2

, un
⟩
≥ α

}∣∣∣ ≤ exp
(
n(|R1 +

1
2
log(1− α2)|+ + ϵ)

)
and, if α ≥ η, α2 + β2 > 1 + η − exp(−2R1)

1

M2,n

∣∣∣{m′
2 : |

⟨
xn
m1,m2

, xn
m1,m′

2

⟩
| ≥ α, |

⟨
xn
m1,m2

, un
⟩
| ≥ β, for some m′

2 ̸= m2

}∣∣∣ ≤ exp(−nϵ)

and similarly for each m2 ∈ M2∣∣∣{m1 :
⟨
xn
m1,m2

, un
⟩
≥ α

}∣∣∣ ≤ exp
(
n(|R2 +

1
2
log(1− α2)|+ + ϵ)

)
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and, if α ≥ η, α2 + β2 > 1 + η − exp(−2R2)

1

M1,n

∣∣∣{m′
1 : |

⟨
xn
m1,m2

, xn
m′

1,m2

⟩
| ≥ α, |

⟨
xn
m1,m2

, un
⟩
| ≥ β, for some m′

1 ̸= m1

}∣∣∣ ≤ exp(−nϵ)

Proof. The proof is a straightforward extension of the corresponding single-user result given
in [58] (Lemma 1) and is therefore omitted for brevity.

At the receiving nodes it suffices to use a minimum-distance decoder. Then for each m1 ∈ M1 the
decoding sets at node 1 and for each m2 ∈ M2 at node 2 are given by

D(1)
m2|m1

:=
{
yn1 : ∥yn1 − xn

m1,m2
∥2 < ∥yn1 − xn

m1,m′
2
∥2 for all m′

2 ̸= m2

}
(42a)

D(2)
m1|m2

:=
{
yn2 : ∥yn2 − xn

m1,m2
∥2 < ∥yn2 − xn

m′
1,m2

∥2 for all m′
1 ̸= m1

}
(42b)

With the presented coding and decoding rule, the probability of error gets arbitrarily small for increasing
block length, which can be shown analogously to [58]. The details are omitted for brevity.

It remains to show that the described strategy is optimal, which means that no other rate pairs are
achievable. From the previous discussions, we already know that the capacity region of the deterministic
code capacity region is included in the capacity region of the random code capacity region. In the next
subsection, from Theorem 8 we see that for Γ > Λi, i = 1, 2, the maximal achievable rates for both
strategies are equal. Since the described strategy already achieves these rates, the optimality is proved.

4.4.2. Encoder-Decoder Coordination Based on Common Randomness

Next, we study a more involved coordination scheme. We assume that the relay and the receivers are
synchronized in such a manner that they can coordinate their choice of the encoder and decoders based
on an access to a common resource independent of the current message.

This can be realized by using a random code. If we transmit at rates R1 and R2 with exponentially
many messages, i.e., exp(nR1) and exp(nR2), we know from [2] that it suffices to use a random code,
which consists of n2 pairs of encoder and decoders and a uniformly distributed random variable whose
value indicates which of the pair all nodes have to use. The access to the common random variable
can be realized by an external source, e.g., a satellite signal, or a preamble prior to the transmission.
Clearly, for sufficiently large block length the (polynomial) costs for the coordination are negligible.
We call this additional encoder-decoder coordination based on common randomness. Due to the
more involved coordination we expect an improvement in the performance compared to the traditional
approach, especially for high interference.

Theorem 8. The random code capacity region Rran(W
n) of the BBC with unknown varying interference

with input constraint Γ and jamming constraints Λ1 and Λ2 is the set of all rate pairs (R1, R2) ∈ R2
+

that satisfy

Ri ≤
1

2
log

(
1 +

Γ

Λi + σ2

)
, i = 1, 2 (43)

Sketch of Proof. The theorem can be proved analogously to [59] where a similar result is proved for the
single-user case. The random strategy which achieves the rates given in (43) is outlined in the following.
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The codewords xn
m1,m2

are uniformly distributed on the n-sphere of radius
√
nΓ. Similar to the

traditional approach, a minimum-distance decoder as given in (42) at the receiving nodes is sufficient.
It remains to show that for all rate pairs satisfying (43) the probability of error gets arbitrarily small for
increasing block length. This can be done similarly to [59].

The optimality of the presented random strategy, which means that no other rate pairs are achievable,
follows immediately from [59] and can be shown by standard arguments.

Remark 7. The capacity region Rran(W
n) is identical to the one if the interfering sequences would

consist of iid Gaussian symbols distributed according to N (0,Λi), i = 1, 2. This means, the arbitrary,
possibly non-Gaussian, unknown interference do not affect the achievable rates more than Gaussian
noise of the same power.

5. Discussion

The concept of arbitrarily varying channels has been shown to be a suitable and robust model for
communication in wireless networks, which share their resources with other coexisting systems in an
uncoordinated way. The main issue that comes along with this development is that interference becomes
an ubiquitous phenomenon and that it will be one of the limiting factors in future wireless networks.

It has been shown that unknown varying interference has a dramatic impact on the communication in
such wireless systems. If the traditional approach without additional coordination is applied, unknown
varying interference can lead to situations that completely prohibit any reliable communication. This
is mainly based on the assumption that the traditional approach treats the interference as some kind
of additional noise. As we have seen, this is in general to imprecise and leads to a performance loss
especially if the interference is caused by other transmitters that use the same or a similar codebook.
Then, interference can look like other valid codewords and receivers cannot reliably distinguish between
the intended signal and the interference anymore. Consequently, a traditional approach based on a
deterministic coding strategy is only reasonable if the interference can be made small enough. For
Gaussian channels this means that the power of the interference signal must be ensured to be smaller than
the power of the transmit signal. Thus, especially in the high interference case where the interference
power exceeds the transmit power, a more sophisticated coordination based on a random coding strategy
is needed for reliable communication. It is shown that an additional coordination of the encoder and
decoder based on a common resource, such as common randomness or correlated side information, is
sufficient to handle the interference even if it is stronger than the desired signal.

To date only the single-user AVC is analyzed under additional encoder-decoder coordination based on
correlated side information in [54]. It would be interesting to extend it also to other (multi-user) settings.

In this paper we used the concept of arbitrarily varying channels to analyze bidirectional relaying in
coexistence with other wireless networks. This required the study of the arbitrarily varying bidirectional
broadcast channel (AVBBC). Based on Ahlswede’s elimination technique [2] the following dichotomy of
the deterministic code capacity region of an AVBBC was revealed in [51,52]: it either equals its random
code capacity region or else has an empty interior. Unfortunately, many channels of practical interest are
symmetrizable, which results in an ambiguity of the codewords at the receivers. Such channels prohibit
any reliable communication and therewith fall in the latter category.
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Imposing constraints on the permissible sequences of channel states reveals further phenomena. Now,
even when the channel is symmetrizable, the deterministic code capacity region of the AVBBC under
input and state constraints may be non-empty but less than its random code capacity region. Thereby, we
observed that the constraints on the state sequences may reduce the deterministic code capacity region
so that it is in general strictly smaller than the corresponding random code capacity region, but they
preserve the general dichotomy behavior of the deterministic code capacity region: it still either equals
a non-empty region or else has an empty interior. Although the deterministic code capacity region
displays a dichotomy behavior, it cannot be exploited to prove the corresponding capacity region since
Ahlswede’s elimination technique [2] does not work anymore in the presence of constraints on input and
states, cf. also [60]. This necessitated a proof technique which does not rely on the dichotomy behavior
and is based on an idea of Csiszár and Narayan [4].

Besides the concept of arbitrarily varying channels, there are also other approaches to tackle the
problem of interference or channel uncertainty in wireless networks. One approach to model the
interference is based on the framework of interference functions, cf. for example [61] or [62,63]. In
this axiomatic approach the interference functions are assumed to have some basic properties such
as non-negativity, scale-invariance, and monotonicity. It is shown that under these assumptions the
performance of wireless systems depends continuously on the interference functions. These assumptions
are valid and reasonable for conventional cellular systems which are coordinated in a centralized way.
But if such systems compete with other coexisting systems on the same wireless resources, the concept
of arbitrarily varying channels show that these assumptions are no longer valid.

In the signal processing community, a common approach to tackle the problem of channel uncertainty
is the robust design of wireless systems based on robust optimization techniques. There are statistical
approaches which assume the channel to be random but according to a certain statistic that is known.
For example heuristics are developed for the multi-antenna downlink scenario from a signal processing
point of view in [64,65]. These approaches are developed for conventional cellular systems, and it would
be interesting for future work to analyze if these approaches can be extended to the case with unknown
interference from other coexisting wireless networks.

Another approach is based on the worst noise analysis as studied in [66–69]. Here, the impact of
interference and channel uncertainty is analyzed for conventional single cell systems and, again, it would
be interesting to analyze if this approach can be extended to scenarios with interference from coexisting
wireless networks.
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Appendices

A. Additional Proofs

A.1. Proof of Lemma 1

The lemma follows immediately from [4] (Lemma 1), where a similar result for the single-user AVC is
proved. Using the same ideas we are able to extend the proof to the AVBBC Wn under input constraint Γ
and state constraint Λ. Thereby, we carry out the analysis for the case where Λ1(PX) < Λ for given type
PX, then the case Λ2(PX) < Λ follows accordingly.

We consider any deterministic code Cdet(W
n) for the AVBBC Wn with codewords xn

m1,m2
=

(xm1,m2,1, ..., xm1,m2,n) ∈ X n, m1 = 1, ...,M1,n, m2 = 1, ...,M2,n, and the corresponding decoding sets
D(1)

m2|m1
⊂ Yn

1 at node 1. Next, for any channel U1 ∈ U1 which symmetrizes the AVBBC Wn in the sense
of Definition 8, we define random variables Sn

m1,m2
= (Sm1,m2,1, ..., Sm1,m2,n) ∈ Sn, m1 = 1, ...,M1,n,

m2 = 1, ...,M2,n with statistically independent elements and

P{Sm1,m2,k = s} = U1(s|xm1,m2,k) (44)

Then for each m1 ∈ M1 the following holds. For each pair (i, j) ∈ M2 × M2 and every
yn1 = (y1,1, ..., y1,n) ∈ Yn

1 we have

E
[
W n

1 (y
n
1 |xn

m1,i
, Sn

m1,j
)
]
=

n∏
k=1

E
[
W1(y1,k|xm1,i,k, Sm1,j,k)

]
=

n∏
k=1

∑
s∈S

W1(y1,k|xm1,i,k, s)P{Sm1,j,k = s}

=
n∏

k=1

∑
s∈S

W1(y1,k|xm1,i,k, s)U1(s|xm1,j,k)

where the equalities follow from the memoryless property of the channel, the definition of the
expectation, and (44). Since the AVBBC Wn is Y1-symmetrizable, i.e., (4) holds, it follows that

n∏
k=1

∑
s∈S

W1(y1,k|xm1,i,k, s)U1(s|xm1,j,k) =
n∏

k=1

∑
s∈S

W1(y1,k|xm1,j,k, s)U1(s|xm1,i,k)

=
n∏

k=1

E
[
W1(y1,k|xm1,j,k, Sm1,i,k)

]
= E

[
W n

1 (y
n
1 |xn

m1,j
, Sn

m1,i
)
]
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so that we finally end up with

E
[
W n

1 (y
n
1 |xn

m1,i
, Sn

m1,j
)
]
= E

[
W n

1 (y
n
1 |xn

m1,j
, Sn

m1,i
)
]

(45)

For the probability of error at node 1 this implies the following. For i ̸= j we have

E
[
e1((m1, i), S

n
m1,j

|Cdet(W
n))

]
+ E

[
e1((m1, j), S

n
m1,i

|Cdet(W
n))

]
= E

[
W n

1 ((D
(1)
i|m1

)c|xn
m1,i

, Sn
m1,j

)
]
+ E

[
W n

1 ((D
(1)
j|m1

)c|xn
m1,j

, Sn
m1,i

)
]

= E
[
W n

1 ((D
(1)
i|m1

)c|xn
m1,i

, Sn
m1,j

)
]
+ E

[
W n

1 ((D
(1)
j|m1

)c|xn
m1,i

, Sn
m1,j

)
]

≥ E
[
W n

1 ((D
(1)
i|m1

)c|xn
m1,i

, Sn
m1,j

)
]
+ E

[
W n

1 (D
(1)
i|m1

|xn
m1,i

, Sn
m1,j

)
]

= E
[
W n

1 ((D
(1)
i|m1

)c ∪D
(1)
i|m1

|xn
m1,i

, Sn
m1,j

)
]
= 1

where the second equality follows from (45). For a fixed m1 ∈ M1 this leads to

1

M2,n

M2,n∑
j=1

E
[
ē1(S

n
m1,j

|Cdet(W
n))

]
=

1

M2,n

1

M1,nM2,n

M2,n∑
j=1

M1,n∑
m′

1=1

M2,n∑
i=1

E
[
e1((m

′
1, i), S

n
m1,j

|Cdet(W
n))

]
≥ 1

M1,n(M2,n)2

M1,n∑
m′

1

M2,n(M2,n − 1)

2

=
M1,nM2,n(M2,n − 1)

2M1,n(M2,n)2
=

M2,n − 1

2M2,n

Thus we obtain

1

M1,nM2,n

M1,n∑
m1=1

M2,n∑
j=1

E
[
ē1(S

n
m1,j

|Cdet(W
n))

]
=

1

M1,n

M1,n∑
m1=1

(
1

M2,n

M2,n∑
j=1

E
[
ē1(S

n
m1,j

|Cdet(W
n))

])

≥ 1

M1,n

M1,n∑
m1=1

M2,n − 1

2M2,n

=
M2,n − 1

2M2,n

which implies that there exists at least one m1 ∈ M1 and m2 ∈ M2 such that

E
[
ē1(S

n
m1,m2

|Cdet(W
n))

]
≥ M2,n − 1

2M2,n

≥ 1

4
(46)

Next, we restrict to codewords of type PX, i.e., xn
m1,m2

∈ T n
X , m1 = 1, ...,M1,n, m2 = 1, ...,M2,n,

with Λ1(PX) < Λ. Further, we choose U1 ∈ U1 such that it attains the minimum in (6). Then, with (5b)
we get for the expectation

E[l(Sn
m1,m2

)] =
1

n

n∑
k=1

∑
s∈S

l(s)U1(s|xm1,m2,k)

=
∑
x∈X

∑
s∈S

PX(x)U1(s|x)l(s)

= Λ1(PX)

and the variance

var[l(Sn
m1,m2

)] ≤ l2max

n
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From Chebyshev’s inequality we obtain

P
{
l(Sn

m1,m2
) > Λ

}
= P

{
l(Sn

m1,m2
)− E[l(Sn

m1,m2
)] > Λ− Λ1(PX)

}
≤ 1

n

l2max

(Λ− Λ1(PX))2
(47)

Finally, since E[ē1(Sn
m1,m2

|Cdet(W
n))] ≤ maxsn:l(sn)≤Λ ē1(s

n|Cdet(W
n)) + P{l(Sn

m1,m2
) > Λ}, we get

from (46) and (47)

max
sn:l(sn)≤Λ

ē1(s
n|Cdet(W

n)) ≥ E[ē1(Sn
m1,m2

|Cdet(W
n))]− P{l(Sn

m1,m2
) > Λ}

≥ M2,n − 1

2M2,n

− 1

n

l2max

(Λ− Λ1(PX))2

which proves the first part of the lemma. Clearly, the second part where Λ2(PX) < Λ for given type PX

follows accordingly using the same argumentation.

A.2. Proof of Lemma 2

In the following we show that if we select randomly M1,nM2,n codewords with M1,n = 2nR2 and
M2,n = 2nR1 , then these codewords will possess, with probability close to 1, the properties (18a)–(18f)
as stated in Lemma 2. Thereby, we follow [4, Lemma 3], where a similar result is proved for the
single-user case. Further, an analogous version of the lemma for the arbitrarily varying MAC can be
found in [10]. But first, we restate a lemma which will be essential to prove the desired properties of the
codewords.

Lemma 7. Let Zn
1 , ...,Z

n
N be arbitrary random variables, and let fi(Z

n
1 , ...,Z

n
i ) be arbitrary with

0 ≤ fi ≤ 1, i = 1, ..., N . Then the condition

E
[
fi(Z

n
1 , ...,Z

n
i )|Zn

1 , ...,Z
n
i−1

]
≤ a almost surely (48)

i = 1, ..., N , implies that

P
{ 1

N

N∑
i=1

fi(Z
n
1 , ...,Z

n
i ) > t

}
≤ exp

(
−N(t− a log e)

)
(49)

Proof. The proof can be found in [4] (Lemma A1) or [10].

Now, we turn to the proof of Lemma 2. As in [4] (Lemma 3) let Zn
m1,m2

, m1 = 1, ...,M1,n,
m2 = 1, ...,M2,n be independent random variables, each uniformly distributed on T n

X . Further, we fix an
xn ∈ T n

X , sn ∈ Sn
Λ, and a joint type PXX′S with PXS = Pxn,sn and PX′ = PX.

First, we show that for each m1 ∈ M1 the properties (18a)–(18c) are satisfied. Therefore, we fix an
arbitrary m1 ∈ M1 for the following analysis. We define

fm1,j(Z
n
m1,1

, ...,Zn
m1,j

) =

1 if Zn
m1,j

∈ T n
X′|XS(x

n, sn)

0 otherwise
(50)
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and apply Lemma 7. Now, the condition (48) of Lemma 7 is fulfilled with

a = P
{
Zn
m1,j

∈ T n
X′|XS(x

n, sn)
}

=
|T n

X′|XS(x
n, sn)|

|T n
X |

≤
exp

(
nH(X′|XS)

)
(n+ 1)−|X | exp

(
nH(X)

)
= (n+ 1)|X | exp

(
− nI(X′; XS)

)
where the inequality follows from Fact 2, cf. Section 2, and the last equality because H(X′) = H(X).
For R1 =

1
n
logM2,n we choose

t =
1

M2,n

exp
(
n(|R1 − I(X′; XS)|+ + ϵ)

)
so that M2,n(t− a log e) ≥ 1

2
exp(nϵ) if n ≥ n1(ϵ), where

n1(ϵ) = min
{
n : (n+ 1)|X | log e <

1

2
exp(nϵ)

}
(51)

Then (49) yields

P
{∣∣{j : Zn

m1,j
∈ T n

X′|XS(x
n, sn)}

∣∣ > exp
(
n(|R1 − I(X′;XS)|+ + ϵ)

)}
< exp

(
− 1

2
exp(nϵ)

)
(52)

The same reasoning holds if we replace T n
X′|XS(x

n, sn) by T n
X′|S(s

n) in (50). Consequently, we
similarly obtain

P
{∣∣{j : Zn

m1,j
∈ T n

X′|S(s
n)}

∣∣ > exp
(
n(|R1 − I(X′; S)|+ + ϵ)

)}
< exp

(
− 1

2
exp(nϵ)

)
(53)

Moreover, if I(X′; S) > ϵ (and remember that R1 ≥ ϵ since R1 = 1
n
logM2,n and M2,n ≥ 2nϵ as

assumed) we obtain by replacing ϵ with ϵ/2 for n ≥ n1(ϵ/2) from (53) that

P
{ 1

M2,n

∣∣{j : Zn
m1,j

∈ T n
X′|S(s

n)}
∣∣ > exp

(
− n

ϵ

2

)}
< exp

(
− 1

2
exp(n

ϵ

2
)
)

(54)

Equations (52) and (54) allow us to establish the first two properties of the codewords, i.e., (18a) and
(18b). To obtain the third property (18c) we define the set Am1,i as the set of indices j < i such that
znm1,j

∈ T n
X′|S(s

n). If |Am1,i| > exp
(
n(|R1 − I(X′; S)|+ + ϵ/4)

)
, we set Am1,i = ∅. Let

fm1,i(z
n
m1,1

, ..., znm1,i
) =

1 if znm1,i
∈
∪

j∈Am1,i
T n
X|X′S(z

n
m1,j

, sn)

0 otherwise.
(55)

If we replace ϵ with ϵ/4, it follows from (53) that for n ≥ n1(ϵ/4)

P
{M2,n∑

i=1

fm1,i(Z
n
m1,1

, ...,Zn
m1,i

) ̸=
∣∣{i : Zn

m1,i
∈ T n

X|X′S(Z
n
m1,j

, sn) for some j < i}
∣∣}

< exp
(
− 1

2
exp(n

ϵ

4
)
)

(56)
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Then, we get from (55)

E
[
fm1,i(Z

n
m1,1

, ...,Zn
m1,i

)|Zn
m1,1

, ...,Zn
m1,i−1

]
=P

{
Zn
m1,i

∈
∪

j∈Am1,i

T n
X|X′S(Z

n
m1,j

, sn)
∣∣∣Zn

m1,1
, ...,Zn

m1,i−1

}
≤|Am1,i|

exp
(
nH(X|X′S)

)
(n+ 1)−|X | exp

(
nH(X)

)
≤(n+ 1)|X | exp

(
n(|R1 − I(X′; S)|+ − I(X;X′S) +

ϵ

4
)
)

which follows from the independence of the Zn
m1,i

and Fact 2. Next, we assume that I(X;X′S) >

|R1 − I(X′; S)|+ + ϵ so that (48) of Lemma 7 is satisfied with

a = (n+ 1)|X | exp
(
− n

3ϵ

4

)
With t = exp

(
− n ϵ

2

)
and for n ≥ n1(ϵ/4), cf. also (51), Lemma 7 yields

P
{ 1

M2,n

M2,n∑
i=1

fm1,i(Z
n
m1,1

, ...,Zn
m1,i

) > exp
(
− n

ϵ

2

)}
< exp

(
− M2,n

2
exp

(
− n

ϵ

2

))
< exp

(
− 1

2
exp

(
n
ϵ

2

))
where the last inequality follows from the assumption M2,n ≥ 2nϵ. Combining this with (56), we get

P
{ 1

M2,n

∣∣{i : Zn
m1,i

∈ T n
X|X′S(Z

n
m1,j

, sn) for some j < i}
∣∣ > exp

(
− n

ϵ

2

)}
< exp

(
− 1

2
exp

(
n
ϵ

2

))
+ exp

(
− 1

2
exp

(
n
ϵ

4

))
< 2 exp

(
− 1

2
exp

(
n
ϵ

4

))
If we replace “for some j < i” by “for some j > i” in (56), we obtain the same by symmetry.
Consequently, we end up with

P
{ 1

M2,n

∣∣{i : Zn
m1,i

∈ T n
X|X′S(Z

n
m1,j

, sn) for some j ̸= i}
∣∣ > exp

(
− n

ϵ

2

)}
< 4 exp

(
− 1

2
exp

(
n
ϵ

4

))
(57)

if I(X;X′S) > |R1 − I(X′; S)|+ + ϵ and n ≥ n1(ϵ/4).
Now we are in the position to complete the first part of the proof. The number of all possible sequences

xn ∈ T n
X , states sn ∈ Sn

Λ and joint types PXX′S grows exponentially with n. Since the bounds (52), (54)
and (57) are doubly exponential probability bounds, the inequalities∣∣{j : znm1,j

∈ T n
X′|XS(x

n, sn)}
∣∣ ≤ exp

(
n(|R1 − I(X′; XS)|+ + ϵ)

)
1

M2,n

∣∣{j : znm1,j
∈ T n

X′|S(s
n)}

∣∣ ≤ exp
(
− n

ϵ

2

)
if I(X; S) > ϵ

1

M2,n

∣∣{i : znm1,i
∈ T n

X|X′S(z
n
m1,j

, sn) for some j ̸= i}
∣∣ ≤ exp

(
− n

ϵ

2

)
if I(X;X′S)− |R1 − I(X′; S)|+ > ϵ
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hold simultaneously with probability arbitrarily close to 1 if n is sufficiently large and
n ≥ n0(ϵ) = n1(ϵ/4). This establishes the properties (18a)–(18c).

It remains to show that for each fixed m2 ∈ M2 the properties (18d)–(18f) simultaneously hold
for n large enough. This can be done analogously to the first three properties and is therefore omitted
for brevity.

A.3. Proof of Lemma 3

The lemma is proved by contradiction as done in [4] (Lemma 4) for the single-user AVC. For receiving
node i, i = 1, 2, suppose that the quintuple X,X′, S, S′,Yi satisfies the conditions given in (19). Since
PXSYi

∈ Dηi(Λ) and I(XYi; X
′|S) ≤ ηi, we have

2ηi ≥ D(PXSYi
∥PX ⊗ PS ⊗Wi) + I(XYi; X

′|S)

=
∑
x,s,yi

PXSYi
(x, s, yi) log

PXSYi
(x, s, yi)

PX(x)PS(s)Wi(yi|x, s)

+
∑

x,x′,s,yi

PXX′SYi
(x, x′, s, yi) log

PX′|XSYi
(x′|x, s, yi)

PX′|S(x′|s)

=
∑

x,x′,s,yi

PXX′SYi
(x, x′, s, yi) log

PXX′SYi
(x, x′, s, yi)

PX(x)PX′S(x′, s)Wi(yi|x, s)

=
∑
x,x′,yi

∑
s

PXX′SYi
(x, x′, s, yi) log

PXX′SYi
(x, x′, s, yi)

PX(x)PX′(x′)PS|X′(s|x′)Wi(yi|x, s)

≥
∑
x,x′,yi

PXX′Yi
(x, x′, yi) log

PXX′Yi
(x, x′, yi)

PX(x)PX′(x′)
∑

s PS|X′(s|x′)Wi(yi|x, s)

= D(PXX′Yi
∥PX ⊗ PX′ ⊗ V ′

i ) (58)

with V ′
i (yi|x, x′) =

∑
s PS|X′(s|x′)Wi(yi|x, s) and the last inequality follows from the log-sum

inequality.
From [3] we know that we can bound the variational distance between two probability distributions

from above by the square root of their divergence times an absolute constant. (This bound with a worse
constant was first given by Pinsker [70] and is therefore also known as Pinsker’s inequality.) With this
and (58) we get∑

x,x′,yi

∣∣PXX′Yi
(x, x′, yi)− PX(x)PX′(x′)V ′

i (yi|x, x′)
∣∣

≤ c
√
D(PXX′Yi

∥PX ⊗ PX′ ⊗ V ′
i ) ≤ c

√
2ηi (59)

with c =
√
2 ln 2. Similarly, since PX′S′Yi

∈ Dηi(Λ) and I(X′Yi; X|S′) ≤ ηi, cf. (19), we obtain∑
x,x′,yi

∣∣PXX′Yi
(x, x′, yi)− PX′(x′)PX(x)Vi(yi|x′, x)

∣∣ ≤ c
√

2ηi (60)

with c =
√
2 ln 2 and Vi(yi|x′, x) =

∑
s PS′|X(s|x)Wi(yi|x′, s). Next, (59) and (60) together imply∑

x,x′,yi

PX(x)PX′(x′)
∣∣Vi(yi|x′, x)− V ′

i (yi|x, x′)
∣∣ ≤ 2c

√
2ηi
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Since minx PX(x) ≥ β, it immediately follows that

max
x,x′,yi

∣∣Vi(yi|x′, x)− V ′
i (yi|x, x′)

∣∣ ≤ 2c
√
2ηi

β2
(61)

Lemma 8. For any AVBBC Wn with state constraint Λ and any input PX with Λi(PX) ≥ Λ + α, α > 0,
i = 1, 2, for which each pair U1 : X → P(S) and U2 : X → P(S) satisfies∑

x,s

PX(x)U1(s|x)l(s) ≤ Λ (62a)∑
x,s

PX(x)U2(s|x)l(s) ≤ Λ (62b)

there exists some ξ > 0 such that

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U1(s|x′)−
∑
s

Wi(yi|x′, s)U2(s|x)

∣∣∣∣∣ ≥ ξ i = 1, 2 (63)

Proof. The proof can be found in Appendix A.4.

If we choose U1 = PS|X′ and U2 = PS′|X, we obtain from (63)

max
x,x′,yi

∣∣Vi(yi|x′, x)− V ′
i (yi|x, x′)

∣∣ ≥ ξ (64)

Finally, (61) and (64) yield

ηi ≥
ξ2β4

8c2
, i = 1, 2

which contradicts the assumption that ηi can be chosen arbitrarily small proving the lemma.

A.4. Proof of Lemma 8

As in [4] (Lemma A2) we can interchange the two sums and then x and x′ without changing the
maximum in (63). Thus we can write for all U1, U2 : X → P(S)

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U1(s|x′)−
∑
s

Wi(yi|x′, s)U2(s|x)

∣∣∣∣∣
as

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U2(s|x′)−
∑
s

Wi(yi|x′, s)U1(s|x)

∣∣∣∣∣
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so that we get

max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U1(s|x′)−
∑
s

Wi(yi|x′, s)U2(s|x)

∣∣∣∣∣
= max

x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)
U1(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U2(s|x)

2

∣∣∣∣∣
+ max

x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)
U2(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U1(s|x)

2

∣∣∣∣∣
≥ max

x,x′,yi

{∣∣∣∣∣∑
s

Wi(yi|x, s)
U1(s|x′)

2
−

∑
s

Wi(yi|x′, s)
U2(s|x)

2

∣∣∣∣∣
+

∣∣∣∣∣∑
s

Wi(yi|x, s)
U2(s|x′)

2
−

∑
s

Wi(yi|x′, s)
U1(s|x)

2

∣∣∣∣∣
}

≥ max
x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)
U1(s|x′) + U2(s|x′)

2
−
∑
s

Wi(yi|x′, s)
U1(s|x) + U2(s|x)

2

∣∣∣∣∣
= max

x,x′,yi

∣∣∣∣∣∑
s

Wi(yi|x, s)U(s|x′)−
∑
s

Wi(yi|x′, s)U(s|x)

∣∣∣∣∣ (65)

with U = 1
2
(U1 + U2). Further, since U1 and U2 satisfy (62) for some PX, then also U satisfy∑

x,s

PX(x)U(s|x)l(s) ≤ Λ (66)

Since (65) can be considered as a continuous function of the pair (PX, U) on the compact set of all
channels U : X → P(S), it attains its minimum for some (P ∗

X, U
∗), where the minimization is taken

over all channels U that satisfy (66). Additionally, since (P ∗
X, U

∗) satisfies (66), U∗ cannot satisfy (4)
which in turn implies that maxx,x′,yi |

∑
s Wi(yi|x, s)U(s|x′)−

∑
sWi(yi|x′, s)U(s|x)| > 0 completing

the proof.
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