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Abstract
Businesses typically employ operational database systems to service transaction-
oriented applications that are vital to their day-to-day operations, and use data
warehouse systems for analyzing large amounts of business data to support strate-
gic decision making. The data warehouse is periodically updated with data that
is extracted from the operational databases and transformed into a schema opti-
mized for analytical processing. This data staging approach suffers from inherent
drawbacks. On the one hand, two or more software and hardware systems must be
purchased, administrated and maintained. On the other hand, analyses do not incor-
porate the latest data, but are processed on a stale snapshot in the data warehouse.
Lately, the case has been made for so called Operational Business Intelligence, to
overcome the disadvantages of this data staging approach. Advances in hardware ar-
chitecture allow keeping large amounts of data in main-memory and make it possible
to process some analytical queries directly on operational database systems with-
out impeding the performance of mission-critical transaction processing too much.
In this thesis, we analyze how business applications, like CRM, with Operational
Business Intelligence features, like analytic dashboards, can be provided efficiently
as a service in the cloud. Cloud providers typically employ a multi-tenant archi-
tecture in order to reduce costs by consolidating several customers onto the same
hardware and software infrastructure. First, we discuss the challenges for multi-
tenancy in the Cloud Computing context and propose to integrate multi-tenancy
support into the database management systems in order to reduce administration
and maintenance costs. We discuss what multi-tenancy features are required and
propose a data model that supports extensibility, data sharing and evolution with
branching. Second, we analyze the suitability of emerging cloud data management
solutions for providing business applications as cloud services. Third, we focus on
mixed workloads that result from Operational Business Intelligence. We propose a
special-purpose approach that allows processing the mixed workload of our appli-
cation scenario with low response times at high throughput rates while minimizing
space overhead and adhering to maximal response times and minimal throughput
guarantees. Fourth, we present a benchmark to analyze the suitability of database
systems for mixed workloads and Operational Business Intelligence. Finally, we pro-
pose elastic workload management to improve the resource utilization of database
servers running main-memory database systems with mixed workloads.
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Chapter 1

Introduction

Lately, the case has been made for so-called Operational Business Intelligence or
Real-time Business Intelligence. SAP’s co-founder Hasso Plattner emphasizes the
need to perform analytical queries on current data and compares the expected impact
of real-time analysis on management of companies with the impact of Internet search
engines on all of us [88]. In an Operational Business Intelligence system, analytical
queries and business transactions have to be processed at the same time on the same
data. This results in mixed workloads which are a big challenge for current database
management systems.

Today, cloud computing has become a major industry trend. According to Gart-
ner, "Cloud computing heralds an evolution of business - no less influential than
the era of e-business"1. We focus on Software-as-a-Service (SaaS), where a service
provider owns and operates a standardized application that is accessed over the In-
ternet by many users who correspond to different customers. According to Gartner,
"Users will be driven into cloud computing as business application services (e.g.,
SaaS) ... reach acceptable levels of maturity and offer new innovative technological
and business model features that will become increasingly hard to resist" 2. Today,
a wide variety of business applications are provided according to the SaaS model.
The best known examples are the Customer Relationship Management (CRM) sys-
tem salesforce.com and Business ByDesign, the comprehensive business application
system of SAP. With SaaS, the service provider and not the customer owns and op-
erates the entire application software and hardware stack. By careful engineering,

1http://www.gartner.com/it/page.jsp?id=1476715 (retrieved 08/28/2012)
2http://www.gartner.com/it/page.jsp?id=1586114 (retrieved 08/28/2012)
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CHAPTER 1. INTRODUCTION

it is possible to leverage economy of scale to reduce total cost of ownership relative
to on-premise solutions. With regard to database systems, cloud computing may
foster the development of data management systems that are optimized for specific
application scenarios. Once a SaaS provider has identified an application scenario
whose potential customer base is large enough, the entire software and hardware
stack should be optimized based on the characteristics of the specific application
scenario in order to gain competitive advantage relative to on-premise solutions
and more general-purpose cloud offerings. Business applications, like CRM, with
Operational Business Intelligence features may be such an application scenario, as
CRM has the biggest share of the SaaS market today. Moreover, advances in hard-
ware architecture allow keeping large amounts of data in main-memory which may
be the enabling technology to process mixed workloads efficiently, that result from
Operational Business Intelligence.

In this thesis, we analyze how business applications, like CRM, with Operational
Business Intelligence features, like analytic dashboards, can be provided efficiently
as a service in the cloud. We focus on database management systems which are a
crucial component of most business applications. Providing an application as a ser-
vice in the cloud corresponds to the Software-as-a-Service model, which represents
a certain form of Cloud Computing. For providing a service efficiently, resource
utilization has to be maximized while administration and maintenance costs have
to be minimized. In order to maximize resource utilization on modern hardware
architectures, an application has to be optimized for multi-core CPU architectures
and large main-memory. In the following, we introduce Operational Business In-
telligence, Cloud Computing and modern hardware architecture. Furthermore, we
highlight our contributions and present the outline of this thesis. Moreover, we
disclose previous publications that are relevant for this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Operational Business Intelligence

Today, businesses typically rely on transaction-oriented applications to manage busi-
ness processes. Furthermore, business intelligence applications are used to support
strategic decision making, e. g. computing sales revenue of a company by products
across regions and time. These two kinds of business applications are vital to busi-
ness operations and represent different workloads: Online transaction processing
(OLTP), like order processing, and online analytical processing (OLAP), like sales
analytics. These workloads are typically not executed on the same database system,
because they have very different characteristics. On the one hand, OLTP work-
loads are typically processed by operational database systems and consist of many
short business transactions, including update operations. On the other hand, OLAP
workloads are typically processed by data warehouse systems and perform mostly
read operations, as large amounts of business data are analyzed. If both workloads
were performed on the same data in a single database, the resulting mixed workload
may lead to resource contention and result in unacceptable transaction processing
performance. Therefore, OLTP and OLAP workloads are typically processed by
separate specialized database management systems (DBMSs) (see Figure 1.1 and
chapter 17 in [62]).

Operational
DBMS

OLTP

Data
Warehouse

OLAPETL

Figure 1.1: Traditional Separation of OLTP and OLAP

An Extraction, Transformation and Load process (ETL) is used to extract data
from the operational databases periodically, perform transformations (e.g. aggrega-
tions) and load the transformed data into the data warehouse. As a consequence,
the ETL process introduces a delay until updates become visible for analytical pro-
cessing in the data warehouse. Modeling and optimizing the ETL process is an area
of active research, e.g. see publications from researchers lead by Umeshwar Dayal

3



CHAPTER 1. INTRODUCTION

at HP Labs on modeling the ETL process [117] and ETL design for performance,
fault-tolerance and freshness [100]. There is a trade-off between the additional load
caused by extracting, transforming and loading the data and the business needs to
analyze up-to-the-minute data, because the ETL process introduces high overheads
on both systems. There is recent work on reducing the performance impact based
on advanced change data capture and queuing techniques, see [86] for example. But,
the separate system approach still incurs administration and maintenance costs for
at least two systems and the complex ETL process. An advantage of this approach is
that specific data representations can be used to suit the different workloads. Typi-
cally, normalized tables are used for OLTP and star-schema for OLAP (see chapter
17 in [62]).

Operational
DBMS

Data
Warehouse

longer-
running
OLAP

ETLOLTP
short OLAP

Figure 1.2: Operational Business Intelligence

Today, there is a trend towards Operational Business Intelligence, where some
analytical queries are processed on the operational DBMS, in order to reduce the
delay until updates become visible for analytical processing (see Figure 1.2). The
goal is to process analytical queries directly on the operational database without im-
peding mission-critical transaction processing. This trend is driven by advances in
hardware architecture. Hasso Plattner, the co-founder of SAP, advocates the "infor-
mation ... at your fingertips"-goal [88] and Curt Monash discusses several use cases
for so-called "low-latency analytics", including BI dashboards and interactive cus-
tomer response for upselling and antifraud3. Modern business applications provide
Operational Business Intelligence features, like analytic dashboards, in addition to
traditional transaction processing, like order processing. Data warehouses will still
be needed for very complex and long-running OLAP queries, which would cause too
much resource contention on the operational databases. But by performing periodic

3http://www.dbms2.com/2011/04/10/use-cases-for-low-latency-analytics/ (retrieved 08/28/2012)
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CHAPTER 1. INTRODUCTION

and short-running queries on an Operational Business Intelligence system, the up-
date cycles of data warehouses can be kept large enough for processing long-running
queries efficiently.

Operational Business Intelligence results in mixed workloads (OLTP and OLAP)
on the Operational DBMS. Managing these mixed workloads poses a big challenge
for current disk-based DBMSs, as discussed by Krompass et al. in [70]. A DBMS
that fulfills the ACID properties allows several users to work on the same data con-
currently without interfering with each other, as described in chapter 9 of [62]. To
make this feasible, the user has to specify begin and end of units of work, called
database transactions. The highest isolation level, serializability, assures that a user
does not see changes made by other users during a database transaction. For OLTP-
only workloads, commercial DBMSs have support for transactions and serializability
and can be configured to fulfill the ACID properties. For OLAP-only workloads, it
is even easier to fulfill these properties, as data warehouses are optimized for read-
mostly workloads and updates are typically applied during load windows when no
queries are performed. But for mixed workloads it is a big challenge to fulfill these
properties, as OLTP and OLAP workloads have very different characteristics. On
the one hand, OLTP workloads consist of many short-running business transactions
which read, insert, update and delete data in the database. On the other hand,
OLAP workloads consist of longer-running read-only business queries. For mixed
workloads, many short OLTP transactions, which make changes to the database,
conflict with longer-running read-only OLAP queries. This incurs heavy synchro-
nization overhead which negatively affects performance and results in low overall
resource utilization. Stonebraker et al. stipulate the end of general-purpose DBMSs
and postulate special-purpose DBMSs for specific application scenarios [105]. Busi-
ness applications, like CRM, with Operational Business Intelligence features may be
such an application scenario.

5



CHAPTER 1. INTRODUCTION

1.2 Cloud Computing

The buzz word Cloud Computing describes an on-going trend to provide more and
more services over the Internet. The name comes from the cloud symbol that is
often used in architecture diagrams to represent the Internet. According to the
National Institute of Standards and Technology (NIST), "Cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. ... applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction" [78]. Cloud Computing attracts a lot of attention, because of
its goal to reduce up-front and operational costs by enabling economies of scale.

1.2.1 Service Models

According to the NIST definition [78], Cloud Computing covers three service models
which differ in the level of the provided service in the software and hardware stack
of an application.

Infrastructure-as-a-Service (IaaS) provides fundamental computing resources, like
processing, storage and networking, as a service over the Internet. The key enabling
technology is virtualization, that allows to provide these resources in the form of vir-
tual machines. On the one hand, virtualization allows to install and run arbitrary
software on these virtual machines, including operating systems and applications.
With virtualization based on binary translation or hardware virtualization support
[2], neither operating systems nor application software need to be modified. Even
legacy applications can be migrated to virtual machines. On the other hand, virtu-
alization impedes customers from accessing the underlying physical infrastructure
which is managed and controlled by the service provider. This is the major differ-
ence to traditional infrastructure hosting. A major advantage of IaaS is that physical
resources can be shared between customers to improve resource utilization and to
enable economies of scale. Furthermore, the provided infrastructure is elastic in the
sense that additional infrastructure components, like virtual machines and virtual
network components, can be added on demand with minimal service provider in-
teraction, e.g. via a Web-Service interface. Thus, cloud applications do not have
to be provisioned for peak loads, but can be scaled-out (and scaled-in) on demand.
The risk of over-provisioning and under-provisioning is transferred to the service

6
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provider, as only requested virtual resources are charged for. Typically, pricing is
based on resource usage, e.g. runtime of virtual machines and data traffic, accord-
ing to the pay-per-use principle. Resources can be added elastically on demand and
only used resources have to be paid for. This approach is summarized by the mar-
keting slogan pay as you go and turns utility computing into reality, as described
by Armbrust et al. in [6]. Examples for IaaS are Amazon Elastic Compute Cloud4

and Rackspace Cloud Hosting5. Today, many IaaS offerings provide virtual machine
templates for various application scenarios which blur the differentiation between
IaaS and other forms of Cloud Computing.

Platform-as-a-Service (PaaS) provides a platform for developing and deploying
custom applications on the cloud infrastructure of the service provider. Any appli-
cation may be built within the limitations of the provided platform. Customers do
not have to manage or maintain the underlying infrastructure, including operating
systems and software platform. Tedious tasks like applying patches to the operating
systems and software platform are taken care of by the service provider. The major
disadvantages of PaaS are that only tools and programming languages supported
by the service provider can be used for creating these custom applications and that
legacy applications may require significant changes in order to use PaaS, if it is
possible at all. Typically the service provider provides proprietary frameworks and
APIs that may enable applications to scale elastically. But there may be limita-
tions depending on the used data store, e.g. Microsoft SQL Azure [23] or Microsoft
Azure Tables6. Today, pricing for PaaS is often done similar to IaaS. This means
that the customer has to pay for resources consumed by the application and the
underlying software platform which may be difficult to predict and may change over
time. Examples for PaaS are Microsoft Windows Azure7, Google AppEngine8 and
Force.com9.

Software-as-a-Service (SaaS) provides entire applications running on a cloud in-
frastructure. These cloud applications can be accessed over the Internet from various
client devices typically using web interfaces, like web browsers. A service provider

4http://aws.amazon.com/ec2 (retrieved 08/28/2012)
5http://www.rackspace.com/cloud (retrieved 08/28/2012)
6http://www.windowsazure.com/en-us/home/features/data-management (08/28/2012)
7http://www.microsoft.com/windowsazure (retrieved 08/28/2012)
8https://appengine.google.com (retrieved 08/28/2012)
9http://www.salesforce.com/platform (retrieved 08/28/2012)
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owns and operates a standardized application that is accessed over the Internet by
many users who correspond to different customers. The standardized application
can be tailored according to customer needs within the limits of the provided cus-
tomization features. By careful engineering, it is possible to leverage economy of
scale to reduce TCO relative to on-premise solutions. In contrast to on-premise
software, the service provider and not the customer owns and operates the entire
application software and hardware stack (infrastructure, operating system, software
platform and application). Customers only have to manage and control the client
devices. In contrast to IaaS and PaaS, customers are typically charged a monthly
service fee on a per-user basis. Today, a wide variety of business applications, in-
cluding CRM are provided according to the SaaS model. Examples for SaaS are
salesforce.com10, SAP Business ByDesign 11, Google Docs12 and Microsoft Office
36513. Today, CRM has the biggest share of the SaaS market. Therefore, we focus
on this application scenario.

Our application scenario is standardized business applications, like CRM, with
Operational Business Intelligence features. For this application scenario, SaaS seems
to be the most promising approach, because many techniques for maximizing re-
source utilization while minimizing administration and maintenance costs can be
applied when the entire application software and hardware stack is owned and op-
erated by the service provider. On the one hand, the application, the software plat-
form, the infrastructure and the management procedures can be highly optimized
when focusing on one standardized application. On the other hand, SaaS providers
employ multi-tenancy techniques to achieve economies of scale by consolidating sev-
eral customers, referred to as tenants, onto a common software and hardware infras-
tructure. Consolidation may help to reduce administration and maintenance costs
and improve resource utilization, but may cause resource contention between the
workloads of different tenants.

10http://www.salesforce.com (retrieved 08/28/2012)
11http://www.sap.com/solutions/technology/cloud/business-by-design (08/28/2012)
12http://docs.google.com (retrieved 08/28/2012)
13http://www.office365.com (retrieved 08/28/2012)

8

http://www.salesforce.com
http://www.sap.com/solutions/technology/cloud/business-by-design
http://docs.google.com
http://www.office365.com


CHAPTER 1. INTRODUCTION

1.2.2 Service Level Agreements

The consumer of a service typically requires a certain service level in order to be
productive. For example, in telemarketing, there is a known number of agents that
call prospective customers over the phone and have to enter gathered information
into a CRM system during the call. In order to be productive in this scenario,
end-to-end response times below one or few seconds are required for almost all of
these business transactions and the required throughput depends on the number of
agents. Furthermore, supervisors may use operational (or real-time) business intel-
ligence features of the CRM product in order to monitor agent performance and
to evaluate the success of marketing campaigns. For those analytical queries, the
required throughput rate may be lower than for the business transactions. SaaS cus-
tomers have to agree with the SaaS provider upon service level agreements (SLAs)
which define the characteristics of the provided service including service level objec-
tives (SLOs), like maximal response times and minimal throughput rates, and define
penalties if these objectives are not met by the service provider. SaaS customers
need to monitor SLA fulfillment and demand compensation if the promised service
level is not met. Today, service providers already offer monitoring functionality,
e.g. Amazon CloudWatch14 and third-party vendors offer monitoring services, e.g.
Hyperic Cloud-Status15. But in order to enable monitoring at the level of business
transactions and analytic queries, application specific solutions may be required.
Service providers need to offer the required interfaces, but the actual monitoring
should be performed under the control of the customer or an independent service
provider.

1.2.3 Deployment Models

According to the NIST definition [78], there are different deployment models for
Cloud Computing. We focus on the public cloud model. According to this deploy-
ment model, the cloud service is owned by an organization selling cloud services
which makes the cloud service available to the general public or a large industry
group. The public cloud deployment model seems very suitable for the SaaS ser-
vice model, as the same application may be provided to many different customers,

14http://aws.amazon.com/cloudwatch (retrieved 08/28/2012)
15http://www.hyperic.com/products/cloud-status-monitoring (retrieved 08/28/2012)
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especially in the context of standardized business applications. There are concerns
about the security of public clouds, as the service providers have to take care of
information security for the provided service and customers have to trust them. For
our application scenario this seems to be less of an issue, considering the success of
services like salesforce.com.
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1.3 Modern Hardware Architecture

In order to maximize resource utilization on modern hardware architectures, an
application has to be optimized for multi-core CPU architectures and large main-
memory. For business applications, this can be achieved by building them on-top
of modern database systems. In the database community, there is an on-going
trend towards database systems which keep most or even all data in main-memory.
This trend is fueled by the increasing amount of main-memory available in off-
the-shelf servers, which is increasing faster than the data volume that is required
for storing all information contained in business applications of small and mid-
sized businesses. For example, Intel announced already in 2011 a large multi-core
processor which supports more than 1 TB of main-memory, as part of the so-called
Tera-Scale initiative16. According to statistics published by salesforce.com [77], a
single off-the-shelf server that is available today provides enough main-memory to
accommodate all CRM data of several small to mid-sized businesses. Furthermore,
emerging database technology can store large amounts of data in main-memory, in
compressed form, and can process queries directly on compressed data [107].

Main-memory database architectures could be the right means to tackle the chal-
lenge that Operational Business Intelligence and mixed workloads pose for disk-
based database systems. In main memory DBMSs, data can be accessed without
disk I/O. Therefore requests can be processed at much smaller time scales and there
is less variation in execution times. With a modern main-memory DBMS, typical
business transactions like order entry or payment have execution times of less than
100 microseconds. This was shown by researchers led by Mike Stonebraker with
the research prototype H-store [61, 105]. A commercial successor, called VoltDB17,
is now offered by a startup company. But main-memory is an expensive resource
which has to be utilized efficiently. In our SaaS scenario, a space overhead of a factor
of two could double hardware and energy costs as only half as many tenants can
be accommodated on a given infrastructure if there is sufficient processing capacity
and main-memory capacity is the bottleneck.

Today, a typical cloud computing infrastructure consists of a farm of commodity
servers with multi-core architecture and large main-memory [12, 40]. The challenge

16http://www.intel.com/go/terascale (retrieved 08/19/2011)
17http://www.voltdb.com (retrieved 08/28/2012)
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is to minimize maintenance and administration costs while maximizing resource
utilization. A SaaS database system with automated administration procedures can
help to reduce administration costs. Furthermore, maintenance costs can be reduced
by building the SaaS application on-top of a SaaS database system which supports
on-line application upgrades. Moreover, a SaaS database system should support
multi-tenancy to allow for consolidation and should be optimized for large main-
memory and CPUs with multi-core architecture to utilize such an infrastructure
efficiently.
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1.4 Contributions and Outline

For SaaS it is common practice to employ a multi-tenant architecture in order to re-
duce costs by consolidating several customers onto the same hardware and software
infrastructure. In Chapter 2, we introduce multi-tenancy and give an overview on
different implementation options. We point out that multi-tenant applications need
a certain schema flexibility and that current techniques based on application owned
schemata have severe drawbacks. We argue that these issues should be solved by
integrating multi-tenancy support into the DBMS and propose an integrated model
that allows capturing the evolution and extensibility of a SaaS application explic-
itly, including data sharing. Our major contribution is the proposed data model
which supports branching in the evolution dimension and enables seamless upgrades
that may help to reduce administration and maintenance costs significantly. The
proposed data model eliminates redundancy by decomposition. Thus, model com-
ponents have to be overlaid to derive "virtual" relations and partial overlays may
be materialized to improve performance. We formulate the question which partial
overlays should be materialized as an optimization problem.

In Chapter 3, we give an overview on emerging cloud data management solu-
tions and analyze their suitability for SaaS business applications like CRM. These
solutions have interesting features with regard to scalability and availability. Thus,
we analyze how multi-tenancy can be realized with such systems and propose a
multi-tenant schema mapping approach for one of these systems, namely Apache
HBase. But, we assume that the resource requirements of any tenant can be met by
a single server, which is the case for business applications of many small to mid-sized
businesses according to published statistics. Therefore, we compare the single-server
performance of an open-source cloud data management solution with a commercial
DBMS. We conclude that many independent DBMS instances on a large server farm
with automated administration procedures may be sufficient for multi-tenant SaaS
business applications and our experimental results suggest that this approach may
achieve better performance.

Operational Business Intelligence results in mixed workloads on the operational
database. In Chapter 4, we discuss the characteristics of mixed workloads and the
specifics of our application scenario. We point out the challenges posed by mixed
workloads and give an overview on techniques for handling mixed workloads. Our

13
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major contribution is a special purpose main-memory DBMS prototype that allows
processing the mixed workload of our application scenario with low response times
at high throughput rates while minimizing space overhead and adhering to maxi-
mal response time and minimal throughput guarantees. These guarantees enable
strict SLAs and by minimizing space overhead, consolidation can be maximized in
our multi-tenancy scenario. We present the underlying techniques: non-tree tier
SaaS architecture, queuing approach, special-purpose logging approach, analytical
model and resource reservation. Finally, our experimental evaluation shows that
this approach is feasible for the mixed workload of our application scenario.

In Chapter 5, we present a benchmark for analyzing the suitability of database
systems for mixed workloads and Operational Business Intelligence. CH-benCHmark
combines transactional load based on TPC-C order processing with decision support
load based on a TPC-H-like query suite run in parallel on the same tables in a single
database system. Just as the data volume of actual enterprises tends to increase
over time, an inherent characteristic of this mixed workload benchmark is that data
volume increases during benchmark runs, which in turn may increase response times
of analytic queries. Thus, the insert throughput metric for the transactional com-
ponent interferes with the response-time metric for the analytic component of the
mixed workload. We highlight this problem and discuss possible solutions including
normalized metrics that account for data volume growth.

In Chapter 6, we present an approach for improving the resource utilization
of emerging main-memory database systems that handle mixed workloads, by tem-
porarily running other applications on the database server using virtual machines.
In contrast to traditional multi-tenancy, this approach can be applied even if there
are no complementary database workloads. We propose an elastic workload manage-
ment approach and an analytical model to derive attractive service level objectives
that can be met by a main-memory DBMS despite being co-located with arbitrary
applications running in VMs. Furthermore, we propose an elastic scheduling ap-
proach called GOMA that tries to make spare resource better usable for co-locating
VMs. We developed an elastic workload management extension for HyPer, an emerg-
ing main-memory DBMS that supports the mixed workloads of our operational
business intelligence scenario. The experimental evaluation shows that GOMA may
improve progress of co-located VMs significantly.

Chapter 7 concludes this thesis and gives an outlook on future challenges.
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Chapter 2

Multi-Tenant DBMS for SaaS

For SaaS it is common practice to employ a multi-tenant architecture in order to re-
duce costs by consolidating several customers onto the same hardware and software
infrastructure. Instead of provisioning for peak loads, several tenants with com-
plementary workloads may be co-located onto the same machine or even database
instance to improve consolidation and achieve better utilization of the common in-
frastructure. In this chapter, we introduce multi-tenancy and give an overview on
different implementation options. We point out that multi-tenant applications need
a certain schema flexibility and that current techniques based on application owned
schemata have severe drawbacks. We argue that these issues should be solved by
integrating multi-tenancy support into the DBMS and propose an integrated model
that allows capturing the evolution and extensibility of a SaaS application explicitly,
including data sharing. Furthermore, the proposed data model supports branching
in the evolution dimension and enables seamless upgrades that may help to reduce
administration and maintenance costs significantly. Moreover, the proposed data
model eliminates redundancy by decomposition. Thus, model components have
to be overlaid to derive "virtual" relations and partial overlays may be material-
ized to improve performance. We formulate the question which partial overlays
should be materialized as an optimization problem and present a simple approach
for reorganizing the proposed data model in order to derive an improved runtime
representation.
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2.1 Multi-Tenancy

In this section, we introduce multi-tenancy and give an overview on different imple-
mentation options. Furthermore, we discuss to what extent tenant migration and
schema flexibility is supported by these different implementation options. More-
over, we discuss virtualization in the context of multi-tenancy and conclude that
multi-tenancy support should be integrated into next generation DBMS to facilitate
economies of scale and minimize total cost of ownership.

2.1.1 Challenges

A multi-tenant system provides an application to several tenants and consolidates
several tenants onto the same operational system to allow for pooling of resources.
Thereby resource utilization may be improved, as it eliminates the need to provision
each tenant for their maximum load. For SaaS it is common practice to employ a
multi-tenant architecture to reduce total cost of ownership, e.g. salesforce.com [116].
But multi-tenancy can also be used for on-premise deployments, e.g. to consolidate
different departments of a large organization.

A multi-tenant system should allow for multiple specialized versions of the ap-
plication, e.g. for particular vertical industries or geographic regions. We refer to
this capability as application extensibility. An extension may be private to an in-
dividual tenant or shared between multiple tenants. Furthermore, the multi-tenant
system should anticipate application evolution with support for on-line application
upgrades. Moreover, even more tenants may be consolidated onto the same infras-
tructure, by sharing common data between tenants. In a multi-tenant system there
is high potential for common data, like application code, application meta-data,
master data, default configuration data and public information catalogs, such as
area code data or industry best practices. But, application extensibility and evolu-
tion is even more challenging when data is shared between different tenants in favor
of more consolidation.

The multi-tenant system comprises software and hardware. Depending on the
application scenario, the data and workload of several tenants may fit on a single
server. However, the multi-tenant software should support scale out across a farm
of shared-nothing servers (as defined in [40]), because it is not cost effective to
increase the capacity of a single server indefinitely [12]. The distribution of data
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across the server farm should be tenant-aware to benefit from data locality. For
example, a tenant might be placed on a server that manages trial accounts initially,
be moved to a small production server later and once the capacity of this server
is not sufficient anymore, the tenant may be moved to a larger production server
or split across several servers. A uniform framework for system administration can
improve management efficiencies and thereby reduce operational expenditures as
fewer personnel may be required. The administration framework should allow for
automation of operations like adding tenants, removing tenants and moving tenants
within the server farm.

Consolidation can reduce capital expenditures for hardware and software licenses,
but may cause resource contention and introduce additional security risks. The
multi-tenant system has to provide tenant isolation with regard to security and
performance. On the one hand, access control mechanisms have to span application
and database layer to ensure that data is processed according to adequate security
policies, as described in [118]. On the other hand, contention for shared resources
has to be controlled by the multi-tenant system to ensure that the workloads of co-
located tenants do not interfere with each other or with administrative operations.

2.1.2 Implementation Options

Today, multi-tenancy features are usually provided by a middleware between the ap-
plication layer and a standard DBMS. Basically, there are four different approaches
for implementing multi-tenancy with a middleware and a standard DBMS: dedi-
cated machine approach, shared machine approach, shared process approach and
shared table approach. These approaches increasingly improve consolidation but
make tenant isolation more challenging.1

Dedicated Machine Approach The dedicated machine approach represents the
most basic form of multi-tenancy. Each tenant gets its own physical server which
runs a single DBMS instance. Figure 2.1 introduces our running multi-tenancy ex-
ample with two tenants (Tenant1 and Tenant2). According to the dedicated machine
approach, there are two servers, one per tenant, and on these servers run indepen-

1The following overview of multi-tenancy is based on a paper by Aulbach et al. at SIGMOD
2008 [7] which formed the basis of a conjoint follow-up paper at SIGMOD 2009 [8]. A short
overview on multi-tenancy is also included in our Datenbank-Spektrum journal article [93].
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Account
AID Name
17 Duck Inc
35 Mouse Inc

Contact
CID Name
17 Dagobert 17
35 Donald 17

3542 Micky

AID

Tenant 1

Account
AID Name
17 Rabbit Inc

Contact
CID Name
17 Bugs 17
35 Daffy 17

AID SN

12345
54321

Tenant 2

Figure 2.1: Dedicated Machine Approach

dent database instances. In our example, each tenant has two tables (Account and
Contact), containing different data. Furthermore, Tenant2 has an additional column
SN in the Contact table. The additional column represents a tenant-specific exten-
sion for managing information about the social network ID of contacts. We refer
to this as the "social" extension. There is no consolidation and resource contention
between tenants is avoided, as each tenant is isolated on its own physical machine.
This approach seems appropriate for applications, like Enterprise Resource Planning
that manage very sensitive data. Furthermore, a uniform administration framework
for the entire server farm can improve management efficiencies and reduce opera-
tional expenditures. Moreover, if a single server is not sufficient for a given tenant,
a dedicated database cluster may be used instead.

Shared Machine Approach With the shared machine approach, each tenant
still gets its own DBMS instance, but several DBMS instances of different tenants
run on the same physical server. Figure 2.2 shows a multi-tenancy layout of our
running example according to the shared machine approach. In this case, there is
only one server and both database instances run on the same server. As separate
database processes are used for each tenant, tenants are isolated from each other
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Figure 2.2: Shared Machine Approach

by using separate address spaces. But sharing the same machine between multi-
ple tenants may introduce additional security risks, as security issues of one tenant
may affect co-located tenants. Furthermore, resource contention between tenants
may occur and has to be controlled by scheduling mechanisms of the operating sys-
tem which executes the different database processes. Only low consolidation can be
achieved with the shared machine approach, because separate DBMS instances do
not pool resources between each other, e.g. memory is not pooled as each DBMS
instance reserves its own buffer pools. The amount of consolidation that can be
achieved with the shared machine approach depends on the required resources for a
single tenant, e.g. data volume, and the capacity of a given server. For large tenants
who require almost all resources of a given server almost all the time, the dedicated
machine approach is more suitable. A good example for the shared machine ap-
proach is CasJobs, which creates private database instances — called MyDB — to
allow researchers to analyze astrophysical data using a full-blown SQL interface and
without interfering with each other. This approach allows researchers to work with
a private database at the server-side without transferring high-volume data over
Internet connections [83].
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Figure 2.3: Shared Process Approach (= Private Table Layout)

Shared Process Approach Consolidation can be further improved with the
shared process approach by sharing the same database process between multiple
tenants and by assigning each tenant its own set of tables. To identify the tables
of a given tenant, the table name may be prefixed with the tenant ID or a separate
schema per tenant may be used. We also refer to this approach as thePrivate Table
Layout, as tables are not shared between tenants. Figure 2.3 shows a multi-tenancy
layout of our running example according to the shared process approach, also called
private table layout. In this case, there is only one database instance running on
one server and the table names are prefixed with a tenant ID. Isolation between
tenants is lower than in the shared machine approach, as co-located tenants run
in the same address space, because they use the same database processes. Instead
of operating system mechanisms, standard DBMS mechanisms can be employed to
isolate tenants from each other, e.g. separate user profiles. The shared process ap-
proach allows for more consolidation as resource pooling is improved by using only
one DBMS instance per server. Memory and disk resources can be utilized more
efficiently, e.g. by sharing buffer-pools between tenants and using a common write-
ahead-log. However, the data of individual customers (or tenants) is still strictly
separated into separate tables or even schemata, which causes a certain overhead
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related to meta-data and index structures. The level of consolidation that can be
achieved depends on the number of tables the DBMS can handle. On the one hand,
DBMS performance degrades if there are too many tables. This effect is due to the
large amount of memory needed to hold the associated meta-data, as well as the
inability to keep index pages in the buffer pool. On the other hand, standard DBMS
have certain limitations, e.g. allocate a certain amount of memory for each table up
front.

Shared Table Approach Consolidation can be further improved with the shared
table approach by storing the data from many tenants in the same tables of the same
schema. Thereby the overhead related to meta-data and index structures is reduced.
Instead of the number of tables, the limiting factor is now the number of rows the
database can hold which is sufficiently large for most standard DBMS. But there are
new challenges. With regard to performance, the interleaving of tenants’ data breaks
down the natural partitioning of the data and may compromise query optimization.
First, table scans go across the data of all tenants. Second, optimization statistics
aggregate across all tenants. Third, if one tenant requires an index on a column,
then all tenants have to have that index. With regard to security, the interleaving
of tenants’ data complicates access control mechanisms which have to occur at the
row level rather than the table level. Moreover, the shared table approach requires
schema mapping techniques which map the logical schemata from multiple tenants
into one physical schema in the database. The database only contains tables for
the physical schema and these tables contain meta-data information apart from the
data itself, in order to reconstruct the tables of the logical schemata. To make
this approach transparent to application programmers, a middleware transforms
queries against the logical schemata into queries against the physical schema. In the
following we give an overview on the most important schema mapping techniques.

Basic Layout The basic layout allows tenants to share tables and adds a tenant
ID column to each table to identify the owner of each row. To allow customers to
extend the base schema, each table is given a fixed set of additional generic columns
which may be of type VARCHAR or follow a certain type mix. Figure 2.4 shows our
running example according to the shared table approach with basic layout. In this
case, there are only two tables (Account and Contact) and the tables contain data
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Account
Tenant Name

Contact
CID Name AID Ext1

AID

1 Duck Inc17

Tenant
17 Dagobert 171

1 Mouse Inc35
2 Rabbit Inc17

35 Donald 171
42 Micky 351
17 Bugs 17 543212
35 Daffy 17 543212

Figure 2.4: Shared Table Approach: Basic Layout

of both tenants. The Contact table contains three rows with NULL values in the
Ext1 column, because Tenant1 does not have the "social" extension. This schema
mapping technique only requires a small, fixed number of tables which can provide
performance benefits in comparison to private table layout, because a huge number
of tables may impact DBMS performance negatively as discussed above. But the
generic columns may contain many NULL values and special provisions may be
required as commercial DBMS do not handle NULL values efficiently by default.

Account
Tenant NameAID

1 Duck Inc17
1 Mouse Inc35
2 Rabbit Inc17

Contact
CID Name AIDTenant
17 Dagobert 171
35 Donald 171
42 Micky 351
17 Bugs 172
35 Daffy 172

Social
Row SNTenant
1 543212
2 543212

Row

Row

1
2
1

1
2
3
1
2

Figure 2.5: Shared Table Approach: Extension Table Layout

Extension Table Layout The extension table layout vertically partitions exten-
sions into separate tables that are joined to the base tables using an additional Row
column. Figure 2.5 shows our running example according to the shared table ap-
proach with extension table layout. In this case, there is one extension table for the
"social" extension. This layout may require additional join operations which may
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cause a certain performance overhead. But vertical partitioning also has its advan-
tages, as extension tables only have to be read if they are really required by a query.
Copeland et al. discuss the pros and cons of vertical partitioning based on their De-
composed Storage Model [31]. Nowadays, vertical partitioning has been adopted by
column-oriented databases like C-Store [107] and its commercial successor Vertica2

to improve the performance of analytical queries.

Tenant Column1RowTable Column2 Column3 Column4
Account1 171 Duck Inc
Account1 352 Mouse Inc
Contact1 171 Dagobert 17
Contact1 352 Donald 17
Contact1 423 Mickey 35
Account2 171 Rabbit Inc
Contact2 171 Bugs 17 12345
Contact2 352 Daffy 17 54321

Figure 2.6: Shared Table Approach: Universal Table Layout

Universal Table Layout The universal table layout uses a single physical table
with a Tenant column, a Table column, a Row column and a large number of data
columns with generic type, e.g. VARCHAR. As there is only one physical table, all
physical rows have the same width and this may result in many NULL values if the
width of logical tables varies. Figure 2.6 shows our running example according to
the shared table approach with universal table layout. In this case, there is only one
table, that contains all data, and there are several NULL values in Column3 and
Column4. This approach originates from the theoretical concept of the Universal
Relation [75].

Pivot Table Layout The pivot table layout also uses a single physical table, but
stores each value of a logical column in a separate physical row. Apart from Tenant,
Table, and Row columns, the pivot table has an additional Col column that specifies
which logical column a row represents and a single Data column. This layout does
not require additional NULL values and furthermore NULL values of logical tables
don’t have to be stored explicitly. Figure 2.7 shows our running example according to
the shared table approach with pivot table layout. In this case, there is only one table
with only one Data column and there are no NULL values. Apart from eliminating

2http://www.vertica.com (retrieved 08/28/2012)
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Tenant ColRowTable Data
Account1 11 17
Account1 21 Duck Inc
Account1 12 35
Account1 22 Mouse Inc
Contact1 11 17
Contact1 21 Dagobert

Contact1 31 17
Contact1 12 35
Contact1 22 Donald
Contact1 32 17
Contact1 13 42
Contact1 23 Micky
Contact1 33 35
Account2 11 17
Account2 21 Rabbit Inc
Contact2 11 17
Contact2 21 Bugs
Contact2 31 17
Contact2 41 12345
Contact2 12 35
Contact2 22 Daffy
Contact2 32 17
Contact2 42 54321

Figure 2.7: Shared Table Approach: Pivot Table Layout

NULL values, the pivot table layout has the benefits of vertical partitioning, but
causes space and performance overhead. The space overhead is due to the large
amount of meta-data, as each row of the physical table contains four meta-data
values and only one actual data value of a logical table. The performance overhead
results from additional join operations that are required to reconstruct the logical
tables. Each logical column apart from the first one requires an additional join.

This approach is based on a proposal by Agrawal et al. to "represent objects in a
vertical format storing an object as a set of tuples. Each tuple consists of an object
identifier and attribute name-value pair" [3]. Furthermore, they recommend to use
a logical horizontal view of the vertical representation to hide complexity. Cun-
ningham et al. [32] propose to implement Pivot and Unpivot as first-class RDBMS
operations for better performance.

Chunk Table Layout and Chunk Folding Pivot table layout and universal
table layout both use a single physical table, but the number of data columns dif-
fers greatly. Pivot table layout uses a single data column and the universal table
layout uses a large number of generic data columns. Aulbach et al. [7] propose a
compromise between these two extremes called chunk table layout. A chunk table
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is similar to a pivot table but has several data columns of various types and uses a
Chunk column instead of the Col column. Furthermore, Aulbach et al. [7] propose
a technique called chunk folding that vertically partitions logical tables. With the
goal to exploit the entire "meta-data budget" of the database, conventional tables
are used for those parts of the logical schema that are most often accessed and chunk
tables for the remaining parts. Recently, Grund et al. [54] published related work
and propose a main memory hybrid database system that automatically partitions
tables into vertical partitions of varying width depending on access patterns.

2.1.3 Tenant Migration

The resource requirements of tenants may change over time. Therefore, it may
become necessary to migrate a tenant from one server of the server farm to a different
server that has more free resources available. The presented implementation options
differ with regard to tenant migration support.

With the dedicated machine approach and the shared machine approach, each
tenant has its own database instance that can be migrated within the server farm by
moving database files. To minimize downtime, a snapshot of the database files may
be used in combination with log shipping. Similarly, the shared process approach
allows to use a separate table space per tenant and to store different table spaces in
separate database files. But a migration may affect performance for other tenants
that share the same database instance. With the Shared Table Approach, it is more
difficult to keep the data of different tenants separate, as several tenants share the
same tables. Of course, it is always possible to export a tenant’s data by querying
the DBMS, but this may have a large impact on co-located tenants and may be
much slower than moving files, especially if the data is not clustered by tenant ID.

There is recent work on database live migration that is similar to virtual ma-
chine live migration, but avoids virtualization overhead. Das et al. [38] propose
a database live migration technique for scenarios where multiple tenants share the
same database process — this corresponds to the shared process approach — and
the persistent database image is stored on network attached storage. Elmore et al.
[43] lift the latter restriction. Barker et al. [10] propose a throttling technique to
minimize the performance impact of database live migration on other tenants.
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2.1.4 Schema Flexibility

To support application extensibility and on-line application upgrades, a multi-tenant
DBMS has to provide a certain schema flexibility. With the dedicated machine ap-
proach, the shared machine approach and the shared process approach, the schema
is explicitly defined in the database. But commercial DBMSs only offer limited
support for schema modifications on existing data and these operations may dete-
riorate performance, if they are supported at all. The impact of physical schema
modifications on throughput for MS SQL Server has been studied in [8]. In con-
trast, the shared table approach requires a schema mapping technique and only the
physical schema is defined in the database. The mapping between logical schemata
and physical schema is done by the middleware. The major advantage of these
"application owned schemata" is that logical schema changes can occur while the
database is on-line, as no heavy-weight reorganization operations are required. The
major disadvantage is that the underlying DBMS degenerates to a "dumb data
repository" that only stores data rather than managing it. Experimental results,
published in [8], show that application owned schemata cause a significant decrease
in performance unless characteristic DBMS features, such as query optimization,
are re-implemented in the middleware. But such a complex middleware may cause
high maintenance efforts as functionality is duplicated in the standard DBMS and
the middleware.

2.1.5 Virtualization and Multi-Tenancy

Virtualization ranges somewhere between the dedicated machine approach and the
shared machine approach. By using a separate virtual machine for each tenant,
tenant isolation is higher than in the shared machine approach. But it is lower
than in the dedicated machine approach, as it may be possible to break out of a
virtual machine with current virtualization technology. A recent example is US-
CERT Vulnerability Note VU#6492193, which describes a vulnerability that may
be exploited for local privilege escalation or a guest-to-host virtual machine escape.
Ray and Schultz [89] give an overview of risks associated with virtualization. Hav-
ing said that, virtualization also has its benefits, like mature support for virtual
machine live migration. Live migration allows migrating operating system instances

3http://www.kb.cert.org/vuls/id/649219 (retrieved 08/28/2012)
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across distinct physical hosts, including the applications running within an operat-
ing system instance and without remote clients having to reconnect [29]. When a
separate virtual machine is used for each tenant, individual tenants can be moved
between physical servers using live migration. Moreover, consolidation is higher
than in the dedicated machine approach and may be further improved by advanced
virtualization techniques, like transparent page sharing. Transparent page sharing
allows sharing virtual memory pages that have the same content between virtual ma-
chines [115]. But according to Curino et al. [35], advanced multi-tenancy techniques
can achieve more than twice the amount of consolidation than current virtualization
technology. The major advantage of virtualization is that legacy applications can be
consolidated without modification and that a good level of isolation can be achieved.
But virtualization typically results in a complex software stack and may cause higher
maintenance costs, as there are more possible sources of errors: each virtual machine
runs its own operating system and there is the additional virtualization layer. In
the following chapters, we therefore focus on a light-weight form of virtualization:
a multi-tenant DBMS. Multi-tenant DBMSs help to improve resource utilization by
consolidating databases with complementary workloads. In Chapter 6, we propose
an approach to improve resource utilization of database servers even if there are no
complementary database workloads, by temporarily running other applications on
the database server using virtual machines.

2.1.6 Conclusions

A multi-tenant system faces the challenge to support application extensibility and
evolution while employing consolidation and data sharing to minimize total cost
of ownership. To achieve this, schema modifications over existing data have to be
supported in an online fashion without affecting co-located tenants. Today, this kind
of schema flexibility can be achieved with application owned schemata and the shared
table approach. Several major SaaS vendors have developed mapping techniques
in which the application owns the schema. This approach has become a design
principle called "meta-data driven architecture", whereby application components
are generated from meta-data at runtime [116]. But application owned schemata
with generic structures in the DBMS break down the natural partitioning of the data.
The problem is, that application owned schemata may cause a significant decrease
in performance unless characteristic DBMS features, such as query optimization, are
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re-implemented in the middleware. But such a complex middleware may cause high
maintenance efforts as functionality is duplicated in the standard DBMS and the
middleware. These issues could be solved by a new DBMS design with integrated
multi-tenancy support. In our opinion, such a DBMS design should be based on the
shared process approach and a "virtual" private table layout. As we propose a new
DBMS design, the shared table approach and techniques like chunk table layout
or chunk folding are not applied. But these techniques remain relevant for current
standard DBMSs with limited support for online-schema modification and limited
"meta-data budget".
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2.2 Multi-Tenancy and SaaS

For SaaS it is common practice to employ a multi-tenant architecture in order
to reduce total cost of ownership, e.g. salesforce.com [116]. According to Steve
Bobrowski, multi-tenancy is a core cloud computing technology that controls how
computing resources are shared among applications [17]. Figure 2.8 shows how
multi-tenant business applications can be provided according to the SaaS model.
The customers of the SaaS provider represent different tenants. Users who be-
long to different tenants use their web-browsers to access the SaaS application over
the Internet. Business applications, like CRM, typically have a 3-tier architecture
consisting of a web-server, an application-server and a DBMS. The SaaS provider
consolidates several tenants into the same multi-tenant DBMS. There may be dif-
ferent application server instances, as different tenants may use different versions
of the same standardized business application. The goal is to reduce total cost of
ownership relative to on-premise solutions by consolidation and data sharing while
allowing for extensibility and evolution.

Tenant 1

Tenant 2

SaaS-Provider

User

Browser

App-Server

Web-Server

Multi-Tenant
DBMS

SaaS-Application

User

Browser

Tenants
may use
different

versions of
App

Figure 2.8: Multi-Tenant SaaS-Application

The following analysis of multi-tenancy in the SaaS context is based on research
done in cooperation with Stefan Aulbach. Parts of this work have been published
in a conjoint paper at ICDE 2011 [9].
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2.2.1 Extensibility

For being competitive, a service provider has to leverage economies of scale by pro-
viding the same service to as many customers as possible. One prerequisite for
increasing the customer base is to satisfy the needs of individual customers and cus-
tomer groups. This prerequisite can be achieved by allowing customers to tailor the
SaaS application according to their individual business needs. The extensibility di-
mension is made up of extensions to the common base application. These extensions
may require database-schema changes by adapting predefined entities (e.g. adding
attributes or changing types of attributes) and the possibility to add new entities.
Extensions may be developed individually by customers themselves or by Indepen-
dent Software Vendors (ISVs), and thus be shared between customers. Today, SaaS
applications offer platforms for building and sharing such extensions, like force.com
[116].

Evolution
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Ext

T
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vk

E
xtensibility

v0 v1 vm-1

v0 v1 vn-1

v0 v1 vk-1

Figure 2.9: Extensibility

Figure 2.9 shows the SaaS application for a single tenant which is made up of
the following components: the base application Base in version vm, an extension
Ext of an ISV in version vn, and the tenant-specific extension T in version vk. The
components are developed and maintained separately from each other. Therefore,
the releases of new versions are not synchronized. There may be dependencies
between these components, as an extension may depend on a specific version of the
base application or another extension. In the example, T in version vk depends on
Ext in version vn and Ext in version vn depends on Base in version vm.
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When the customers of a SaaS provider customize the SaaS application accord-
ing to their individual business needs, the SaaS provider has to ensure that these
extensions do not interfere with each other. Although most of the customizations
may be small, managing the huge number of variants is a big challenge. It is not
feasible for the service provider to manage each application instance separately, as
the administration and maintenance costs would be similar to on-premise solutions
multiplied by the number of customers of the service provider. A straight forward
approach to improve manageability of many different application instances is to sep-
arate the base application and the extensions from the customer specific data and
to maintain a master copy for each combination of base application version and
extension versions used by any customer. But the number of different combinations
which may be used by customers depends on the number of extensions used by a
single customer and the number of available extensions, which may be pretty high.
The best example is the SaaS CRM product salesforce.com, for which there are more
than 1000 extensions, called "apps", available on the AppExchange marketplace4.

2.2.2 Data Sharing

There is high potential for data redundancy between different instances of the same
SaaS application. Even with a high degree of customization, big parts of the base
application and ISV extensions can be shared across tenants: application code, ap-
plication meta-data, master data, default configuration data and public information
catalogs, such as area code data or industry best practices. SaaS providers are forced
to minimize total cost of ownership and therefore already co-locate several customers
on a single operational system, which lowers administration and maintenance efforts.
Data sharing techniques may reduce space overhead and thus allow for more tenants
to be consolidated onto the same hardware and software infrastructure.

In Figure 2.10, tenants T1 and T2 share version vm of the base application Base
and version vn of the ISV extension Ext. If the application would be managed
separately for each tenant, the version vm of the base application Base and the
version vn of the ISV extension Ext would require twice the amount of space, as it
would be part of the application instance of tenant T1 and part of the application
instance of tenant T2.

4http://appexchange.salesforce.com (retrieved 08/28/2012)
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Figure 2.10: Data Sharing

SaaS enables optimizations which are not possible with on-premise solutions. For
example, today many businesses use standardized software products for their on-
premise business applications like CRM and ERP. The application instance of one
business is very similar to the application instance of many other businesses that
use the same version of the standardized software product, e.g. the executable code
and the default configuration data are the same. Furthermore, master data may
be very similar for businesses in the same economic sector. This data redundancy
becomes more apparent, when these application instances are deployed on the same
infrastructure as businesses adopt cloud computing. This data redundancy can be
eliminated for SaaS applications by applying data sharing techniques.

For enabling data sharing in our multi-tenancy scenario, the ability to override
common data with tenant-specific data is required. Shared data needs to be updat-
able, as already existing entries may have to be overwritten by tenants. Instead of
replicating all data for each tenant, a small delta per tenant can be used if only a low
percentage of the shared data is modified by a particular tenant. Current DBMSs
do not support the functionality of data overriding in a transparent fashion.

2.2.3 Evolution

Another prerequisite to increase the customer base is to provide all functionality
expected by prospective customers. This prerequisite can be achieved by incor-
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porating new functionality into the provided service and by ensuring the security
of the provided service. This may also require changes to the existing database
schema. Therefore, SaaS applications are constantly evolving. The Evolution di-
mension tracks changes to the SaaS application which are necessary to either fix
issues with the application or to integrate new features. Evolution is not only re-
quired for the base application itself, but also for extensions. The base application
and its extensions may be developed and maintained separately from each other.
Therefore, the releases of new versions are not synchronized.

For SaaS applications which allow extensions to a common base application, a
major issue arises with regard to application upgrades. It may not be feasible for
customers to always use the latest version of the provided common base application,
because customer specific extensions and third-party extensions have to be checked
for compatibility with the new version of the common base application and may
require changes before the migration can take place. For a tenant, it is important to
always have a consistent snapshot of the shared data. If shared data could change
over time without the knowledge of the tenants, they would get unpredictable results.
For many customers it may not be acceptable to upgrade their extensions according
to the release schedule of the service provider. They may accept to pay a higher
service fee if they don’t upgrade right away, but they need the possibility to stay on
a given version of the base application with which all their extensions work.
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Figure 2.11: Evolution
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Figure 2.11 depicts a SaaS application used by three tenants. It shows how the
SaaS application and its extensions develop in the Evolution dimension. In this
example, the base application has evolved from version vm − 1 to version vm and
the extension Ext has evolved from version vn− 1 to version vn. Tenants T1 and T3
have already migrated to the new version of the base application and the extension,
but Tenant T2 is still using the old version of the base application and the extension,
because the tenant-specific extension of T2 has not been checked for compatibility
with the new version of the extension and the base application yet. Once the tenant-
specific extensions of Tenant T2 have been checked for compatibility with the new
version of the base application and the extension, Tenant T2 can migrate to the
new version of the base application and the extension. After this migration has
happened, there is even more potential for data sharing, as all three tenants share
the common base application in version vm and tenants T2 and T3 share the common
third-party extension Ext in version vn.

2.2.4 Conclusions

The way applications develop according to the dimensions Extensibility and Evo-
lution is important in the SaaS scenario, because different customers may be using
different versions of the application with different extensions and the service provider
has to provide all these different application instances at the same time. Further-
more, data has to be shared between tenants to allow for more consolidation. This is
a big challenge for service providers, as administration and maintenance costs have
to be minimized for being competitive.

Today, many service providers try to avoid these issues by the following measures.
First, customers are forced to always use the latest version of the provided appli-
cation. Second, only a very limited form of customization is provided. A typical
limited form of customization is to provide a generic application which incorporates
functionality for all customer groups and allow customization only in the form of con-
figuration switches. This approach may be acceptable for some potential customers,
but probably not for all. Today, many large and mid-size businesses already use
standardized software products for their on-premise business applications like CRM
and ERP. These standardized software products also provide a generic application
which incorporates functionality for all customer groups and allow customization in
the form of configuration switches. But apart from this simple form of customiza-

36



CHAPTER 2. MULTI-TENANT DBMS FOR SAAS

tion, many businesses tailor these standardized software products to their needs by
changing the software themselves or by using third-party extensions. Often, there
is a market around standardized software products for third-party extensions devel-
oped by ISVs. This extended form of customization is quite popular for on-premise
software solutions and achieves levels of customization which cannot be done by
configuration switches only. To enable these businesses to move from on-premise
software to the SaaS model, SaaS applications have to provide more flexibility with
regard to customization. Database-schema changes by adapting predefined entities
(e.g. adding attributes or changing types of attributes) and the possibility to add
new entities are required. Those modifications result in a high number of application
variants, each individually customized for a particular customer.

A better approach would be to model the evolution and extensibility of a SaaS
application explicitly. SaaS applications need to support Extensibility, Evolution
and Data Sharing. These features can be characterized as multi-tenancy features and
should be provided by a multi-tenant DBMS, as business applications are typically
built on top of a standard DBMS. A multi-tenant DBMS needs an integrated model
to capture these features. We propose such a model, which is described in the next
section (Section 2.3).
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2.3 Data-Model for Multi-Tenancy

A multi-tenant DBMS should have inherent support for the following multi-tenancy
features: Extensibility, Data Sharing and Evolution. These capabilities are highly
related. Therefore an integrated model is required to capture these features5.

There already exist models which capture Extensibility, like the object-oriented
concept of inheritance [65] and there are models for capturing the Evolution of an
application, like the PRISM project for database-centric applications [36]. But to
our knowledge there is no integrated model that captures both dimensions and Data
Sharing together. Therefore, we propose such a data model for managing meta-data
and shared data in a multi-tenant DBMS.6

Multi-tenant applications can be represented by a hierarchy of extensions to a
common base application. In the proposed data model, Extensibility is captured
by modeling schema hierarchies of multi-tenant applications explicitly. From these
schema hierarchies a "virtual" private table layout can be derived for each tenant.
The knowledge about the different schemata of a multi-tenant application can be
used to improve consolidation by applying data sharing at all levels of the multi-
tenant DBMS. The hierarchical schema representation can be used to share meta-
data between tenants and shared data can be attached to this hierarchy. Different
versions of this schema hierarchy can be used to model the evolution dimension. We
propose a hierarchical data model for meta-data and shared data which captures ex-
tensibility, evolution and data sharing in one integrated model. This model can be
used to automate administration tasks, like evolving a tenant from one application
version to a different application version and compatible versions of the used exten-

5A similar approach has been proposed by Schiller et al. [91] at EDBT 2011. This research was
done independent to our work and in parallel, as our ICDE 2011 paper submission deadline (July
23, 2010) was before the EDBT 2011 paper submission deadline (September 15, 2010). To our
understanding, they only consider extensibility, but not evolution. Furthermore, the paper only
mentions meta-data sharing, but not sharing of data (like default configuration or master data).
Moreover, branching is not mentioned in the paper.

6An earlier version of this data model has been published in [9]. Polymorphic relations of the
same relation history were condensed into one polymorphic relation whose instances contained
fragment sequences and segment sequences to capture versioning of schema and shared data. This
enabled a very compact representation, but required that dependencies between instance versions
had to be managed separately on a per-tenant basis and branching in the evolution dimension was
not supported.
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sions. Thereby, application upgrades can be performed by the tenants themselves
with minimal management effort and without service provider interaction. This can
help to lower administration and maintenance efforts and thus decrease total cost of
ownership. Furthermore, it can help to ease the maintenance of the application, as
dependencies between extensions and application versions are modeled explicitly.

The proposed data model for managing meta-data and shared data in a multi-
tenant DBMS adheres to the traditional relational data model, as the "virtual"
private table layout of each tenant represents a traditional relational layout. We
chose the traditional relational data model (without object-relational extensions),
because it is the predominant data model as relational database systems are most
widely used today. There is related work by Curino et al. [37] to support legacy
applications when the database schema evolves, including support for legacy updates
under schema and integrity constraint evolution. Schema evolution is relevant in our
context, but updates on older versions of the application are only required at the
level of individual tenants and only for the latest schema used by a given tenant.
Evolution of integrity constraints is an interesting direction for future work.

2.3.1 Model Components

The proposed data model represents multi-tenant applications as a hierarchy of ex-
tensions to a common base application. Each relation from the databases of any
tenant is decomposed into Instances according to this hierarchy and for a given re-
lation the Instances of all tenants are combined to form a Polymorphic Relation.
We use the term "polymorphic", because it contains the information of all tenants
and the "virtual" relation of each tenant can be derived from a Polymorphic Rela-
tion. A Polymorphic Relation may change over time due to evolution. A Relation
History comprises the different versions of a Polymorphic Relation. Branching, as
known from revision control systems, is supported to capture the evolution of a
Polymorphic Relation explicitly along the development history of the corresponding
application.

Polymorphic Database A Polymorphic Database consists of a set of Relation
Histories.

Relation History A Relation History consists of a set of Polymorphic Relations.
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Polymorphic Relation A Polymorphic Relation consists of Instances and Inher-
itance Relationships between these Instances. An artificial primary key is used to
identify tuples within a Polymorphic Relation.

Instance An Instance is made up of a local Fragment, which contains schema
information, and a list of local Segments, which contain data items.

Inheritance Relationship An Instance has zero or one parent Instance and zero
or more child Instances.

Predecessor Relationship An Instance has zero or one preceding Instance and
zero or more succeeding Instances.

Fragment A Fragment contains a Transform Sequence and represents a list of N
typed attributes.

Transform Sequence A Transform Sequence is a list of M Transforms.

Transform A Transform consists of a schema modification operator, as described
in [36], and a mechanism to migrate data accordingly.

Segment A Segment contains data items that may be shared or private. The
schema of a Segment consists of exactly one Fragment and the artificial primary
key of the Polymorphic Relation. The Fragment may be a local Fragment or an
inherited Fragment.

Figure 2.12 shows a Polymorphic Relation, that is used by three tenants (T1, T2
and T3). T1 extends the original relation from the Base application with a tenant-
specific extension. T2 and T3 both extend an extension Ext of the relation with
tenant-specific extensions.

Figure 2.13 shows a simplified Polymorphic Relation that is only used by tenant
T3 and corresponds to the path from the root to tenant T3 in Figure 2.12. In the
following figure (Figure 2.14), we use the simplified Polymorphic Relation to make
it easier to understand how Relation Histories work.

Figure 2.14 shows a relation history that contains the simplified Polymorphic
Relation from Figure 2.13 and another Polymorphic Relation that represents a newer
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Figure 2.14: Relation History

version of the former Polymorphic Relation. In the latter Polymorphic Relation, the
relation has changed at the level of the Base application and of tenant T3. At the
level of the extension Ext, the relation has not changed, therefore a place holder
points to the earlier version of the Ext Instance.
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Figure 2.15: Fragment

Figure 2.15 shows a Relation History containing two versions of a Polymorphic Re-
lation that consist of only one Instance each. The Predecessor Relationship between
the two instances determines which of the two Instances is newer. The Instances
contain one Fragment and one Segment each. Furthermore, the Transform Sequence
of the older Fragment contains two Transforms and the Transform Sequence of the
newer Fragment contains one Transform.
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2.3.2 Data and Meta-Data Overlay

The proposed data model eliminates redundancy by decomposition. An Instance of a
given Polymorphic Relation corresponds to a "virtual" relation of the common base
application, a common extension or a tenant. In order to derive a "virtual" relation
of a given tenant from a Polymorphic Relation, the components of the model have to
be overlaid according to the Inheritance Relationships and the Predecessor Relation-
ships. The Inheritance Relationship defines the Instance hierarchy. The model does
not support multiple inheritance to avoid the associated complexity. Inheritance
Relationships determine inheritance of schema and shared data, as Fragments and
Segments are inherited according to the Inheritance Relationships. The Predecessor
Relationship captures the changes between different Polymorphic Relations of the
same Relation History.

Meta-Data Overlay Meta-data in the form of schema information is represented
by Fragments. For a given Instance of a given Polymorphic Relation, the schema of
the corresponding "virtual" relation can be derived by concatenating the attribute
lists of inherited Fragments and the local Fragment. But Fragments do not store
attribute lists explicitly. Instead, the attribute list of a Fragment is defined by
Transform Sequences. The attribute list of a Fragment can be derived as follows.
First, the Transform Sequences of preceding Fragments and the local Transform
Sequence have to be concatenated (Fragment fx of Instance x precedes Fragment
fy of Instance y if Instance x precedes Instance y according to predecessor relation-
ships.) Second, the resulting list of Transforms has to be evaluated to determine the
attribute list.

Data Overlay Data is represented by Segments. An Instance contains exactly
one local Segment for each local or inherited Fragment. For a given Fragment there
may be multiple local or inherited Segments. For a given Instance of a given Poly-
morphic Relation, the data of the corresponding "virtual" relation can be derived
by generating virtual Segments and aligning these virtual Segments. First, partial
Segments are generated by overlaying7 each local Segment of the given Instance and
all ancestor Instances with the corresponding local Segments of their preceding In-
stances. Second, the partial Segments (local or inherited) of each Fragment (local

7A similar overlay operator has been formally defined in [9].
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or inherited) are overlaid. Both overlay steps have to adhere to the Data Overrid-
ing Precedence. The Data Overriding Precedence defines that data contained in
Segments whose originating Instance is lower down in the instance hierarchy over-
writes data contained in Segments whose originating Instance is higher up in the
instance hierarchy. Furthermore, data contained in succeeding Segments overwrites
data contained in preceding Segments. For proper alignment of the resulting virtual
Segments, each data item in any Segment has to replicate the artificial primary key
value of the corresponding tuple.

Shared and private data are handled similarly with regard to data overlay. Data
overlay allows tenants to overwrite shared data without affecting other tenants,
as the changes are stored as part of the tenants’ private data. Furthermore, an
extension can overwrite shared data and the changes only affect tenants or other
extensions which inherit from the given extension. But there is a big difference
between shared and private data. Changes to shared data have to be released as
part of a new version of the base application or extension which is added to the
Relation History as a new Polymorphic Relation. After release, shared data is read-
only. The space overhead for changes to shared data is small, because the proposed
data model stores only changes due to decomposition. But still we assume that
changes to shared data are less frequent than changes to private data. Changes to
private data of a tenant are immediately visible to the owning tenant and private
data segments are writable until the tenant upgrades to a new version of the base
application and/or extensions. Private data Segments have to be made read-only as
part of an upgrade, as changes are tracked in succeeding Segments. This approach
may cause space overhead for high update rates, but enables a low overhead roll-
back mechanism which can be used by tenants to test-drive upgrades in separate
branches.

2.3.3 Data Overriding

In the proposed data model, data overriding allows tenants or extensions to override
shared data. Data Overriding is a new concept which is not supported by the original
data models from which the proposed data model is derived.

For comparison to the object-oriented data model, an Instance can be seen as an
Abstract Data Type, which only has attributes, and the corresponding set of objects.
The instance hierarchy is similar to a class hierarchy, but the semantics are different:
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in the object-oriented model, the inclusion polymorphism is specified by subtyping,
i.e. each sub-type can be treated as its super-type. However, in the proposed data
model this is not the case: The inclusion polymorphism goes from the leaf node to
the root node. There is some similarity to the object-oriented concept of Method
Overriding, but currently neither Object-Oriented DBMSs (OODBMSs) nor object-
oriented programming languages support the functionality of Data Overriding. The
reason may be that Data Overriding conflicts with Object Identity, as a tuple of a
tenant overrides a tuple of the base relation or an extension by specifying the same
primary key value.

Relational DBMSs extend the relational data model with Views. But updates
to Views are typically restricted or even prohibited. Moreover, an update of an
updatable View results in changes to the relations which contribute to the view.
This would mean that shared data is overwritten for all tenants and not only for
the updating tenant as required by Data Overriding.

2.3.4 Branching

The proposed data model supports branching in the evolution dimension, as an in-
stance may have more than one successor according to the Predecessor Relationship.
Branching is known from revision control systems and may become more and more
important for SaaS, as even the development of cloud applications moves to the
cloud. Recently, an open-source project, called Eclipse Orion8, has started to de-
velop a web-based development environment that runs in the cloud and is accessed
via a browser-based interface. Branching allows capturing the evolution of a Poly-
morphic Relation along the development history of the corresponding application.

Figure 2.16 shows another example where branching in the evolution dimension is
beneficial. At a given point in time, tenant T1 was using the Base application in ver-
sion vm−1 and tenants T2 and T3 were using version vn−1 of an extension Ext to this
Base application version. Afterwards, a new version of the Base application (vm)
and of the extension Ext (vn) was released and tenants T1 and T3 migrated to the
new versions. Tenant T2 did not migrate to the new version of the Base application
and extension Ext right away, because there were incompatibilities between the new
version of extension Ext and tenant-specific extensions of tenant T2. Furthermore,

8http://www.eclipse.org/orion (retrieved 08/28/2012)
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Figure 2.16: Branching

it turned out that the migration effort would be considerable although tenant T2 did
not need any of the new features of the new version. Therefore, tenant T2 decided
to stay with the older version for some time. But there were some security related
changes in the new version of extension Ext, that did not cause incompatibilities
with the tenant-specific extensions of tenant T2, and that were relevant for tenant
T2. Therefore tenant T2 decided to pay the ISV who developed extension Ext for
back-porting the security-related fixes to the older version of the extension. The
resulting version vn′ of extension Ext was created in a separate branch of the evo-
lution dimension and tenant T2 migrated to that version. Because the data model
supports branching explicitly, it was possible to enhance an older application version
without affecting other tenants and without service provider interaction.

With branching, the evolution dimension can be seen as a graph of Instance
versions. A differential data organization scheme would materialize some Instance
versions corresponding to nodes in the graph. Apart from that, only Deltas cor-
responding to edges in the graph would be stored. Any Instance version in this
graph could be materialized and it even would be possible to add new edges to the
graph by computing the Deltas. This could be used to reduce the number of deltas
on the shortest path from any materialized Instance to a target Instance. For a
given workload, the graph could be augmented with node weights corresponding to

46



CHAPTER 2. MULTI-TENANT DBMS FOR SAAS

the popularity of an application version. Based on such a representation it may be
possible to find the optimal combination of deltas and materializations for a given
workload. In [9], we analyzed different options for physical data organization and
assumed a typical SaaS workload, where the latest available version was material-
ized. Next generation SaaS applications could offer several branches, e.g. a current
branch with the newest features and a stable branch with long term support. In
this case it would make sense to materialize more than one Segment of a Segment
Sequence, as two versions of the application would be very popular.

2.3.5 Data Organization

The proposed data model should be organized differently for archival purposes and
at runtime.9 The entire history of a multi-tenant application can be captured with
the proposed data model, including schema changes and changes to shared and
private data. This information should be archived as it can be used to automate ad-
ministration and maintenance tasks. At runtime a more efficient data representation
should be used which can be derived automatically from the archived representation
of the data model. Using the archived representation directly would cause space
and performance overhead. On the one hand, data overlay is required to derive
the "virtual" relation which corresponds to a given instance of the proposed data
model. This operation may cause performance overhead. The incurred performance
overhead depends on the number of parent instances and the number of predecessor
instances of the given instance and its parent instances. On the other hand, the
different versions of the same relation are stored as a set of Polymorphic Relations
in a Relation History. Due to decomposition, only the differences are stored. But
if a tuple with a given artificial primary key changes between two versions, both
versions are stored in the data model. This may incur significant space overhead,
depending on the update rate and the number of versions stored in the model.

Space overhead and performance overhead can be reduced by reorganization. For
archival purposes, the fully decomposed data model with all versions of all instances
should be stored on secondary or tertiary storage. From this archived data model

9A discussion of physical data organization techniques can be found in [9]. We compared
different physical data organization techniques and analyzed their suitability for seamless adminis-
tration and maintenance mechanisms. Based on this analysis, we proposed an optimization based
on differential XOR-Deltas.
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any "virtual" relation in any version can be derived. At runtime, an optimized
representation should be used. The runtime data model should only contain the
versions of those instances which are currently used by active tenants. To further
reduce performance overhead redundant copies of the data model can be materialized
which are optimized for a subset of the active tenants. As tenants may become active
and inactive over time and may upgrade to newer versions over time, the runtime
data model has to be reorganized over time. This reorganization has to be performed
regularly and therefore should be fully automated. As automatic reorganization is
out-of-control of the tenants, it has to be performed transparently and in an on-line
fashion without impacting performance for active tenants.

We predict that next-generation SaaS applications are based on a next-generation
DBMS which actually manages the data and provides multi-tenancy capabilities.
Next-generation DBMSs have to be optimized for emerging server hardware which
provides big main-memory capacity and many processing cores. But such a main-
memory DBMS has to use main-memory efficiently, as it is an expensive resource.
Data that is not needed anymore has to be removed from main-memory as soon
as possible. This is a big challenge. Especially in the multi-tenancy context, when
data is shared between tenants. The proposed data model allows identifying what
data is needed for a given set of tenants, that are using given versions of the SaaS
application and its extensions.

Optimization Problem

For the proposed data model, the reorganization of the runtime representation can
be formulated as an optimization problem.

The input to the optimization problem is the following. First, the archive repre-
sentation of the data model. Second, information about active tenants and an esti-
mation on which tenants will become active or inactive in the near future. Third, an
estimation on when tenants will upgrade to newer versions of the base application
and its extensions. Fourth, estimations on future resource requirements of tenants
and finally resource requirements for reorganization.

The output to the optimization problem is the following. First, an assignment of
tenants to servers. Second, information on how the runtime representation of each
server should be reorganized. Third a schedule on when planned reorganizations
shall be performed.
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The optimization goals are the following. First, flexibility has to be ensured,
as tenants need to be migrated between servers according to their future resource
requirements. Furthermore, tenants need the ability to upgrade to newer versions of
the base application and its extensions. Second, space overhead has to be minimized.
Third, performance overhead has to be minimized. Fourth, the number of active
servers has to be minimized in order to maximize the resource utilization of active
servers.

The assignment of tenants with given resource requirements to servers with given
capacity corresponds to the famous bin packing problem, which represents an NP-
hard optimization problem.

Reorganization

In the following, we present a simple approach for reorganizing the proposed data
model in order to derive an improved runtime representation. We make the following
simplifications. First, tenants are either active or inactive. Second, each active
tenant uses exactly one version of the application and its extensions. Third, we do
not consider changing resource requirements of tenants. Fourth, we do not consider
migration of tenants two newer versions of the application and its extensions. Fifth,
we do not consider resource requirements of reorganization operations.
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Figure 2.17: Model for Example from Figure 2.16

For reorganization, we simplify the proposed data model and represent it as a
graph by using Instances as nodes and Predecessor and Inheritance Relationships
as edges. The resulting graph consists of trees and we maintain this information by
marking edges corresponding to Predecessor and Inheritance Relationships differ-
ently. Figure 2.17 shows how the example from Figure 2.16 can be represented as
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a graph. In this figure, dummy root nodes (black dots) are used in the predecessor
hierarchies. These dummy root nodes allow storing all data in the form of deltas
on the edges of the Predecessor Relationships. Tenant-specific Instances are located
at the leaf level of the inheritance hierarchies and gray leaf nodes represent current
Instances used by active tenants.
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Figure 2.18: Reorganization Step One

For the runtime representation, we only need the ability to derive "virtual" rela-
tions for current Instances of active tenants (gray nodes in Figure 2.17). In order to
derive a "virtual" relation for a given Instance, we need all Instances on the path
from the given Instance up to the root of the corresponding Inheritance hierarchy
and all predecessors of these Instances. In Figure 2.18, the nodes on the paths from
a dark-gray node to the root of the corresponding inheritance hierarchy are marked
light-gray. Moreover, Inheritance Relationships of white nodes can be removed to
simplify the graph.
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Figure 2.19: Reorganization Step Two

In the next step, we determine the predecessors of those Instances whose node
is marked gray. Figure 2.19 only shows the Predecessor Relationships and the gray
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nodes have been enumerated. We start at the gray nodes, go along the predecessor
relationships and mark the visited edges with the number of the gray start node.
If two successive Predecessor Relationship edges are marked by the same numbers,
this corresponds to two successive deltas that are required by the same start nodes.
Therefore, such edges can be combined and the node in-between can be removed.
Of course, this requires that the deltas on the edges of the Predecessor Relationships
are merged.
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Figure 2.20: Reorganization Step Three

Figure 2.20 shows the resulting graph after merging deltas on the Predecessor
Relationship edges. The deltas on the Predecessor Relationship edges are illustrated
as black triangles. For each active tenant, there is one leaf node of an inheritance
hierarchy. These leaf nodes have exactly one dummy predecessor, because the data
on this level is tenant-specific and therefore the predecessors have been collapsed
in step two. There is one such dummy node per tenant and we mark this dummy
node with the tenant ID. We start from these tenant dummy nodes, follow all edges
and mark all edges with the tenant ID. Thereby, the Predecessor Relationship edges
are marked by all tenants that require the corresponding delta for deriving their
"virtual" relation.

Based on the information from the last step, a new graph can be constructed (see
Figure 2.21). There is a node for each tenant and this node is marked with IDs of
deltas that are only required by the given tenant. Moreover, there are separate nodes
for deltas that are required by more than one tenant. These deltas can be shared
between tenants. There are edges between tenants and the shared deltas that they
require. In our example there are three tenants and three deltas that can be shared
between tenants. If a tenant node is marked with more than one delta IDs, it may

51



CHAPTER 2. MULTI-TENANT DBMS FOR SAAS

T2

T1

T3

g,c h,e

a b

d

f
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be possible to merge these deltas without replicating shared data. In our example,
tenant T2 has two "private" deltas: g and c. However, these deltas cannot be merged,
because they are located on different levels of the inheritance hierarchy and it is not
possible to materialize the instance on the upper level without replicating shared
data, because c has a predecessor that is shared with tenant T3. The same is the
case for tenant T3.

In the last step, tenants and shared data have to be assigned to servers. Curino
et al. describe a workload-aware approach for database partitioning and replication
based on graph-partitioning [33]. A specific graph representation is used that at-
taches resource requirements to nodes and the cost for separating nodes into different
partitions to edges. In our case, this approach can be used to derive an assignment
of tenants and shared data to servers. Our graph representation from the previous
step can be used for that purpose. The sum of the delta sizes of each node, as well
as the processing requirements can be used as node weight and the access frequency
for shared data as edge weight. Apart from partitioning, replication may also be
applied, as described in [33]. In our case, shared data is mostly read. Therefore, the
cost for distributed updates may be negligible and replication of shared data may
be acceptable, but may lead to reduced consolidation due to the resulting space
overhead.

2.3.6 Seamless Upgrades and Extensions

Today, when several customers are consolidated onto the same hardware and soft-
ware infrastructure, either all administration and maintenance tasks are performed
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by the service provider or the service provider has to coordinate administration and
maintenance tasks performed by customers and ISVs. The proposed data model
enables seamless upgrades and extensions, when the reorganization of the runtime
data model is automated and performed transparently in an on-line fashion. Reor-
ganization of the runtime data model can be performed transparently in an on-line
fashion by leveling out the costly reorganization process. A multi-tenant DBMS
may perform only light-weight logical schema changes on request and adaptively
schedule heavy-weight physical data reorganization operations.

Seamless upgrades and extensions, allow tenants and ISVs to perform the ad-
ministration and maintenance tasks for their extensions themselves without service
provider interaction. The service provider only has to perform administration and
maintenance tasks for the base application and extensions provided by the service
provider. This approach may lower administration and maintenance efforts of the
service provider significantly and can help to reduce total cost of ownership by re-
ducing coordination efforts.

Moreover, the model helps to minimize the costs of tenants and ISVs for perform-
ing administration and maintenance tasks on their extensions, by enabling tool-
support for these tasks. For example, a tenant wants to upgrade to version x+ 1 of
the base application. Before the upgrade can take place, the tenant has to check if
its tenant-specific extensions which work with version x of the base application are
compatible with version x + 1 of the base application and to identify and resolve
possible conflicts. To help the tenant with this task, the differences between the dif-
ferent versions of the base application can be derived from the proposed data model
and possible conflicts may be identified automatically by matching the changes in
the base application with changes in the tenant-specific extension.
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2.4 Conclusions

In this chapter, we introduced multi-tenancy and gave an overview on different
implementation options. We pointed out that multi-tenant applications need certain
schema flexibility and that current techniques based on application owned schemata
have severe drawbacks. We argued that these issues should be solved by integrating
multi-tenancy support into the DBMS and proposed an integrated model that allows
capturing the evolution and extensibility of a SaaS application explicitly, including
data sharing. Our major contribution is the proposed data model which supports
branching in the evolution dimension and enables seamless upgrades that may help
to reduce administration and maintenance costs significantly. The proposed data
model eliminates redundancy by decomposition. Thus, model components have to
be overlaid to derive "virtual" relations and partial overlays may be materialized
to improve performance. Finally, we formulated the question which partial overlays
should be materialized as an optimization problem and presented a simple approach
for reorganizing the proposed data model in order to derive an improved runtime
representation.
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Cloud Data Management Platforms

Currently, novel cloud data management solutions are emerging, that have interest-
ing properties with regard to scalability and availability. In this section, we analyze
the suitability of emerging cloud data management solution for building a SaaS
business application, like CRM. The goal is to utilize an infrastructure consisting of
a farm of commodity servers with multi-core architecture and large main-memory
efficiently. Furthermore, multi-tenancy, automated administration procedures and
on-line application upgrades should be supported to minimize administration and
maintenance costs while maximizing resource utilization.

3.1 Overview of Cloud Data Management Platforms

Web 2.0 companies require high performance data management solutions in order
to serve their interactive web sites to huge numbers of users that also update data
apart from reading data. Furthermore, these web-sites have to be highly avail-
able and operational costs need to be minimized. Interestingly, today’s big Web
2.0 companies like Google, Amazon and Facebook do not use traditional database
management systems, but instead have developed custom data management solu-
tions themselves. Google and Amazon have published scientific papers about their
systems, called Bigtable and Dynamo. Facebook has open-sourced a system called
Apache Cassandra, that is based on architectural concepts of both, Dynamo and
Bigtable. These systems have in common, that they are designed to run on a large
server farm of commodity hardware.
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Although many advances have been made in recent years, traditional general-
purpose database management systems cannot scale-out across a large server farm
of commodity hardware out-of-the-box. This means that the performance of a tra-
ditional DBMS cannot be significantly improved by simply adding a huge number of
commodity servers. Instead traditional database clusters are typically scaled-up by
adding or replacing components. DBMS vendors typically offer options to their com-
mercial products for improved scalability and availability. As these options typically
are not part of the main product, expert knowledge is required for administration
and maintenance which results in high operational costs in addition to the license
costs. For example, Oracle Real Application Clusters1 improves availability based
on a shared-disk architecture, but is not designed to scale-out across hundreds of
servers. MySQL Cluster is based on a shared-nothing architecture and is able to
scale-out. But according to MySQL documentation2, the total maximum number
of nodes in a MySQL Cluster is 255. There are commercial offerings that claim to
achieve high availability and scalability, like IBM DB2 for mainframes and Oracle
Exadata Database Machines, but these offerings typically require non-commodity
hardware. Furthermore, there are data warehousing solutions that achieve good
scalability for read-mostly workloads, e.g. from Teradata3 or Greenplum4.

On the one hand, current cloud data management platforms typically provide
fewer features than traditional DBMSs. First, weaker concurrency control mecha-
nisms are used that do not guarantee ACID properties of relational DBMSs. Second,
only system-specific APIs and client libraries are provided instead of full-fledged SQL
interfaces. On the other hand, cloud data management platforms have to tackle new
challenges posed by large server farms of commodity hardware. In large data cen-
ters, failures of individual components occur all the time [12]. Thus, cloud data
management platforms have to anticipate these failure rates and mask failures of
individual components. First, scalability is achieved by data partitioning, often re-
ferred to as automatic sharding. Second, data is replicated to improve availability
and performance. Moreover, the mentioned techniques may help to improve the
availability of database systems. However, actual outages in IT operations are often
caused by IT changes that are typically conducted manually by IT personnel. IT

1http://www.oracle.com/us/products/database/options/real-application-clusters (08/28/2012)
2http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-limitations-limits.html (08/28/2012)
3http://www.teradata.com (retrieved 08/28/2012)
4http://www.greenplum.com (retrieved 08/28/2012)
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changes may lead to network outages, unavailability, temporary and even durable
loss of customer data. A prominent example is a major outage that occurred in
Amazon’s US east coast data center on April 21st 20115, which led to significant
disruptions on customer services. In a conjoint paper with Sebastian Hagen at
NOMS 2012 [57], we analyzed this incident and proposed techniques to avoid such
incidents by automated detection of conflicting IT changes and violations of safety
constraints. Moreover, we compared techniques for efficient generation of IT change
plans on large infrastructures and proposed optimizations. This work was published
in a conjoint paper with Sebastian Hagen at CNSM 2012 [56].

3.1.1 Google Bigtable

Google Bigtable [27] is a distributed storage system that is used by many Google
services, e.g. for web indexing and Google Earth. It provides massive scalability and
is designed to scale-out across thousands of commodity servers. The system relies
on a single master and many tablet servers that manage data partitions. The master
is responsible for assigning and reassigning data partitions to tablet servers. Tablet
servers store data in the distributed Google File System [48] which maintains several
copies of the data on different servers, depending on the replication level. To achieve
high availability, Bigtable relies on a highly-available and persistent distributed lock
service called Chubby [21]. Chubby is responsible for keeping track of tablet servers
and to ensure that there is at most one active master at any time. High performance
is achieved by minimizing client interaction with the master. To achieve this, the
clients communicate directly with tablet servers for read and write operations.

Bigtable does not support the full relational data model, but manages structured
data. A table in Bigtable is a sparse, distributed, persistent multi-dimensional sorted
map that stores uninterpreted strings and is indexed by a row key, column key and
timestamp. Row keys are arbitrary strings and data is maintained in lexicographic
order by row key. Therefore, reads of short row key ranges are efficient, because
data is dynamically partitioned by row key ranges. The Bigtable data model allows
to reason about the locality properties of the data. Data locality can be controlled
by selecting the row key in such a way that data which is often accessed together is
located in contiguous rows. Apart from horizontal data partitioning, vertical data

5http://aws.amazon.com/message/65648 (retrieved 08/28/2012)
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partitioning can also be controlled by grouping column keys into column families and
column families into locality groups. A column family is compressed together and
different locality groups are stored separately. The Bigtable data model is flexible,
because once a column family has been created, any column key can be used without
announcing it first. Bigtable does not provide global transactions, but every read
or write of data under a single row key is guaranteed to be atomic.

There is an open-source implementation of the Bigtable architecture, called Apache
HBase. We describe this system in more detail in Section 3.3.1.

3.1.2 Amazon Dynamo

Amazon Dynamo [39] is a highly available key-value store that is used in production
for Amazon’s world-wide e-commerce platform. It has been designed for applica-
tions that neither require relational schema nor general-purpose querying function-
ality provided by traditional DBMSs. Only simple read/write operations to single
data items are supported, no operation spans multiple data items. Data items are
uniquely identified by a key and contain binary data.

Dynamo has a completely decentralized architecture based on a structured P2P
network similar to Chord [104] and supports continuous growth, as nodes can be
added and removed without manual data redistribution. But in contrast to Chord,
Dynamo uses a special zero-hop routing protocol. Data partitioning and replication
is based on consistent hashing. The output value range of a hash function is mapped
onto a fixed circular ring. The location of a data item can be determined by hashing
the key of the data item onto the ring. The IDs of storage nodes are also hashed
onto the ring and a storage node is responsible for the region between itself and its
predecessor node on the ring. To improve availability, data is replicated on multiple
storage nodes.

Dynamo gives the application developer control over the trade-offs between avail-
ability, consistency and performance. Very high availability may be achieved, but in
this case only weak consistency and no isolation is guaranteed. Updates are prop-
agated to all replicas asynchronously. This approach is called eventual consistency,
because all updates reach all replicas eventually. Therefore, reads on several replicas
may return different, maybe conflicting versions of a data item. Such conflicts are
resolved during read operations using versioning information. The application devel-
oper may either write own conflict resolution mechanisms or choose simple policies
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like last-write-wins. There is an open-source implementation of the Dynamo archi-
tecture, called Project Voldemort6.

3.1.3 Apache Cassandra

Cassandra was open-sourced by Facebook in 2008 and development continues as a
top-level project of the Apache Software Foundation. Apache Cassandra is a highly
scalable distributed data management system that combines Bigtable’s data model
with Dynamo’s fully distributed architecture. Cassandra is in use at large Web 2.0
sites like Twitter, Netflix and Reddit. The largest known Cassandra cluster consists
of 400 servers and manages over 300 TB of data 7.

Cassandra extends the Bigtable data model with super columns that allow group-
ing of multiple columns. According to the official documentation8, column fami-
lies may serve as "indexes" for data stored in a different column family and super
columns are useful in this case to represent several matches per indexed value.

Cassandra supports different data distribution options. The selected "parti-
tioner" decides how keys are mapped onto the ring9. "RandomPartitioner" is the
recommended option, because it distributes data evenly around the ring based on
hashing similar to Amazon Dynamo. The "OrderPreservingPartitioner" option does
not use hashing and allows to efficiently retrieve a contiguous range of keys, but may
lead to an unbalanced data distribution on the ring. Thus, the recommended con-
figuration does not allow to control data locality.

Cassandra allows the application developer to tune consistency levels per query
and thereby control the trade-off between availability and consistency. Several con-
sistency levels are supported including strong consistency at the row-level and even-
tual consistency.

3.1.4 Conclusions

For our application scenario, Bigtable seems more suitable than Dynamo and Cas-
sandra. First, Bigtable gives the application developer implicit control over data
locality. The Bigtable design enables this feature by partitioning data by range

6http://project-voldemort.com (retrieved 08/28/2012)
7http://cassandra.apache.org (retrieved 08/28/2012)
8http://www.datastax.com/docs/0.8/data_model/supercolumns (retrieved 08/19/2011)
9http://www.datastax.com/docs/0.8/operations/clustering (retrieved 08/19/2011)
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rather than distributing data according to a hash function. Second, neither Bigtable
nor Dynamo provides full transaction support, that is typically required by busi-
ness applications. But Bigtable at least provides atomic operations at row-level
and does not put additional burden on the application developer, as Dynamo does
with application-level conflict resolution for eventual consistency. Therefore we use
Apache HBase, an open-source implementation of the Bigtable architecture, for our
experimental evaluation.

Driven by the cloud computing trend, various specialized data management sys-
tems have emerged and have received a lot of attention. Distributed key-value
stores like Membase, document stores like CouchDB and graph database systems
like Neo4j. A more extensive survey on cloud data management systems can be
found in [26] and further information on various emerging systems can be found on
the web-site nosql-databases.org10.

Business applications, like CRM, have different characteristics than the applica-
tions behind popular Web 2.0 sites, like social networks. Social networks have a
huge number of users and it is very difficult to separate data into more or less inde-
pendent data partitions, as it is difficult to predict who will interact with whom. In
contrast, the number of users of an on-premise CRM business application is much
smaller and more predictable. The number of users of a SaaS business application
depends on the number and size of its customers. But even if the total number of
users of a SaaS business application would be as large as for a social network site,
it would be much easier to handle, as data can be partitioned easily by customer
or tenant. For multi-tenant SaaS business applications, many independent DBMS
instances on a large server farm with automated administration procedures may be
sufficient. In contrast, Web 2.0 sites require "web-scale" data management solution
which can handle a huge number of users on a common data set of high volume.

10http://nosql-databases.org (retrieved 08/28/2012)
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3.2 Multi-Tenant Database Testbed

We use a multi-tenant database testbed called MTD11 to analyze the suitability of
cloud data management platforms for SaaS business applications. MTD simulates
a simple but realistic CRM service.

LineItem Product Case Contract

Lead Opportunity Asset Contact

Campaign Account

Figure 3.1: MTD Base Schema (adapted from [8])

Figure 3.1 shows the entity types of the base schema and illustrates the relation-
ships between these entity types. The base schema can be extended for individual
tenants by extending entity types of the base schema with additional fields of various
types. Tenants have different sizes and tenants with more data have more extension
fields, ranging from 0 to 100. The characteristics of the dataset are modeled on
statistics published by salesforce.com [77].

The workload contains single- and multi-row create, read, and update operations
as well as basic reporting tasks that correspond to the following nine request classes:

Select 1: Select all attributes of a single entity as if it was displayed in a detail
page in the browser.

Select 50: Select all attributes of 50 entities as if they were displayed in a list in
the browser.

Select 1000: Select all attributes of the first 1000 entities of a given entity type as
if they were exported through a Web Services interface.

11MTD was introduced in [7] and an enhanced version with tenant-specific extensions has been
published in [8]
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SELECT p.Name, COUNT(c.Case_id) AS cases

FROM Products p, Assets a, Cases c

WHERE c.Asset = a.Asset_id

AND a.Product = p.Product_id

GROUP BY p.Name

ORDER BY cases DESC

Figure 3.2: Reporting Query

Reporting: Run one of five reporting queries that perform aggregation and/or
parent-child roll-ups. See Figure 3.2 for an example query that reports the
number of cases per product.

Insert 1: Insert one new entity as if it was manually entered into the browser.

Insert 50: Insert 50 new entity instances as if data were synchronized through a
Web Services interface.

Insert 1750: Insert 1750 new entity instances as if data were imported through a
Web Services interface.

Update 1: Update a single entity as if it was modified in an edit page in the
browser.

Update 100: Update 100 entity instances as if data were synchronized through a
Web Services interface.

The distribution of requests is controlled using a card deck mechanism similar to
the one described in the TPC-C specification [111].

The testbed mimics the behavior of a typical application server by creating a
configurable number of connections to the database back-end. These connections
are distributed among a set of worker hosts, each of them handling a few connections
only, to model various sized, multi-threaded application servers.

The multi-tenant database testbed can be adapted for different database con-
figurations. Each configuration requires a plug-in to the testbed that transforms
abstract actions into operations that are specific to and optimized for the target
database.
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3.3 Experimental Evaluation

In the following experimental evaluation, we analyze the performance of cloud data
management platforms in multi-tenancy scenarios where the data volume and work-
load of any tenant fits on a single server. According to statistics published by
salesforce.com [77], this is the case for many small and mid-sized tenants. We use
the cloud data management platform Apache HBase and compare it to a commercial
disk-oriented DBMS using the MTD-Benchmark. Our results have been published
at SIGMOD 2009 [8].

3.3.1 Apache HBase

Apache HBase calls itself "the Hadoop database" 12 and represents a "web-scale"
data management platform. According to Borthakur et al. [19] HBase is used
at Facebook for the Facebook Messages service. HBase is an open-source project,
whose architecture is modeled after Google Bigtable [27], and was originally designed
to support the exploration of massive web data sets with clusters of commodity
hardware. By now, the project’s goal is to support random, real-time read/write
access to very large tables with billions of rows and millions of columns. The basic
architecture of HBase and Bigtable is very similar. Bigtable leverages the distributed
data storage provided by the Google File System and likewise HBase is built on top
of the Hadoop Distributed File System 13.

The HBase data model provides a special kind of table that groups columns into
column families. Each table consists of a row-key column and one or more column
families. One row of a column family can contain zero, one or more label-value
pairs. Column families are schema elements that are not owned by the application,
because they must be defined in advance using the HBase API. According to best
practices, there should not be more than tens of column families in a table and they
should rarely be changed while the system is in operation. In contrast, a label-value
pair with a new label can be added to a row of a column family without announcing
it first. Column families and label-value pairs have generic types, as all values are
stored as Strings. Different rows in a table may use the same column family in differ-
ent ways. Different rows of the same column family can contain different numbers of

12http://hbase.apache.org (retrieved 08/28/2012)
13http://hadoop.apache.org/hdfs (retrieved 08/28/2012)
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label-value pairs and different labels, hence labels are owned by the application. The
column families of a table are stored sparsely and HBase stores the data of a given
column family physically close on disk and in memory. Therefore, items in a given
column family should have roughly the same read/write characteristics and contain
logically related data. Thus, a column family is essentially a Pivot Table as described
in Section 2.1.2. Pivot table representation allows storing sparse data in a tradi-
tional row-oriented DBMS. A single table with the three columns object identifier,
attribute name and attribute value can be used, as described in [3]. Logically, tables
are made up of rows whose columns can be accessed by columnfamilyname:label and
the rows are stored in ascending order by row-key. HBase was designed to scale out
across a large farm of servers and uses range-partitioning to achieve that. Physi-
cally, tables are broken up into row-key ranges called regions and an entire table is
formed by a sequence of contiguous regions. Therefore data locality is controlled by
the row-key. Applications can define the key structure and thereby may implicitly
control data locality. Rows that have large common key prefixes are likely to be
adjacent. The column families of a given region are managed and stored separately.
Thus, the rows on each server are physically broken up into their column families.

In the following we describe a generic HBase schema for multi-tenant business
applications, like CRM. We propose to use only one table in HBase for storing all
data of all tenants and to create one column family per source-table. As each source-
table is packed into its own column family, each row has values in only one column
family. This causes no overhead in storage volume as the column families of a table
are stored sparsely. A source-row is stored as label-value pairs in the corresponding
column family. The label is the name of the column and the value is the data in
that column of the row. The data of a given source-table is stored in the same
column family for all tenants. This works also for source-tables with tenant specific
extension columns, because label-value pairs with arbitrary labels can be added to
a given row of a column family, as described above. We propose to use a compound
key as row-key which is made up of three concatenated parts: the tenant ID, the
name of the source-table and the key value of the row in the source-table. In keeping
with best practices for HBase, this mapping tries to cluster data together that is
likely to be accessed within one query. To minimize communication overhead, it
makes sense to store all data that is likely to be accessed in a query on the same
node or only few nodes. This is feasible in our scenario, because any query only
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accesses data of a single tenant and many queries only access data of one source-
table, e.g. search accounts, display or update a given account. Furthermore, the
data of any tenant fits on a single node in our scenario.

RowKey Account Contact
1Account17 [Name: Duck Inc] []
1Account35 [Name: Mouse Inc] []
1Contact17 [] [Name: Dagobert, AID: 17]
1Contact35 [] [Name: Donald, AID: 17]
1Contact42 [] [Name: Micky, AID: 35]
2Account17 [Name: Rabbit Inc] []
2Contact17 [] [Name: Bugs, AID: 17, SN: 12345]
2Contact35 [] [Name: Daffy, AID: 17, SN: 54321]

Figure 3.3: HBase Multi-Tenancy Layout

Figure 3.3 shows how the described HBase multi-tenancy layout works for our
multi-tenancy example from Section 2.1.2. The data of both tenants (tenant 1 and
tenant 2) is stored in the same table. There is one column family for the source-table
Account and one for the source-table Contact. Data is stored as a set of label-value
pairs in the corresponding column family.

The single large table is automatically split into regions by HBase. Thereby, a
tenant’s data may be segmented into two different regions, although the data of a
tenant usually fits into one region. This may happen because regions are managed
automatically and may be split at any row-key. With the described schema we can
only guarantee, that the data of tenants which fit into one region are split at most
across two regions. We also tried out a different schema which guarantees, that all
data of a tenant, which fits into one region, is contained in a single region. The
alternative schema contains one table per tenant and uses a compound key made
up of the name of the source-table and the key value of the row in the source-table.
But with the alternative schema it was not possible to store the data set for 195
tenants on our test server. We assume, that one region per tenant caused too much
overhead as the benchmark requires 195 regions in this case.

The reporting queries in our testbed require join, sort and aggregation operations.
HBase currently does not provide the mentioned high-level operators. Therefore, we
implemented these operators outside the database in an adaptation layer that runs
on the client side. The adaptation layer utilizes operations in the HBase client API
such as update single-row, get single-row and multi-row scan with row-filter from
the HBase client API for Java. The query operators are executed on the client side
and only the underlying HBase operations are executed on the server side. As an
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example, consider the reporting query shown in Figure 3.2, which produces a list
of all Products with Cases by joining via Assets. To implement this query, our
adaptation layer scans through all Cases for the given tenant and, for each one,
retrieves the associated Asset and Product. It then groups and sorts the data for
all Cases to produce the final result.

We do not use the Hadoop map-reduce framework for query processing, although
it is supported by HBase. In our scenario of business applications like CRM, hun-
dreds of small and mid-sized tenants can be managed by a multi-tenant database on a
single commodity server. In this setting, it would not be advantageous to spread the
data for a single tenant across multiple nodes and to process queries in a distributed
fashion, because the overhead for managing the data distribution would probably
outweigh benefits resulting from parallelization. Of course, the ideal SaaS database
should also scale out to handle large tenants in addition to handling many small
tenants efficiently. But Hadoop map-reduce is currently not recommended for small
jobs, as the initialization delay can be longer than one second. HBase can be used in
combination with the Hadoop map-reduce framework and this combination is very
successful in various analytical applications. But the map-reduce framework is not
required and HBase itself does not use map-reduce internally. Furthermore, map-
reduce on HBase tables could be used for extending our benchmark with business
intelligence queries across tenants. Moreover, a performance evaluation of HBase
with map-reduce can be found in [25].

We implemented a plug-in to MTD for HBase. For our tests, we used release
0.19.0 of Apache HBase. At the time of our tests, HBase was under heavy develop-
ment and significant performance improvements were anticipated for the upcoming
0.20 release. In our experiments, HBase was configured in the following way. First,
HBase offers only row-at-a-time transactions and we did not add a layer to extend
the scope to the levels provided by commercial databases. Second, compression of
column families was turned off. Third, neither major nor minor compactions oc-
curred during any of our experiments. Fourth, replication of data in the Hadoop
file system was turned off. Fifth, column families were not pinned in main-memory.
Sixth, the system was configured such that old attribute values were not maintained.
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3.3.2 MS SQL

In our scenario, extension fields contain sparse data. According to [13], sparse data
poses a challenge for relational database management systems. Sparse data consists
of relations which have many attributes that are null for most tuples. Storing sparse
data in normal tables causes a lot of space overhead. HBase is designed to support
sparse data, as any label can be used within a column family without announcing it
first. Thus, the question is how sparse data can be handled efficiently in a traditional
relational DBMS, like MS SQL. MS SQL Server 2008 has a feature called Sparse
Columns. Sparse Columns were originally developed to manage data such as parts
catalogs where each item has only a few out of thousands of possible attributes.
Acharya et al. [1] describe how MS SQL Server implements Spares Columns using a
variant of the Interpreted Attribute Storage Format [13], where a value is stored in
the row together with an identifier for its column. In combination with the shared
table approach and the basic layout described in Section 2.1.2, the Sparse Columns
feature can be used to handle NULL values more efficiently. The base tables are
shared by all tenants and every extension field of every tenant is added to the
corresponding base table as a Sparse Column.

The resulting schema is not owned by the application, as sparse columns must be
explicitly defined in the database by a CREATE/ALTER TABLE statement. The
shared table approach with basic layout and Sparse Columns requires only a small,
fixed number of tables, which gives it a performance advantage over Private Tables;
Aulbach et al. show in [7] that having many tables negatively impacts performance.
Nevertheless, there is some space overhead for managing Sparse Columns. According
to MS SQL Server documentation14, "Sparse columns require more storage space
for nonnull values than the space required for identical data that is not marked
SPARSE". The percentage of the data that must be NULL to achieve net space
savings depends on the data type. For the int data type, Microsoft states that
at least 64 percent of the data must be NULL to achieve net space savings of 40
percent.

For our experimental evaluation, we used an existing plug-in to MTD for MS
SQL with Spare Columns. For comparability, we extended the existing plug-in to
support the adaptation layer that we use for HBase.

14http://msdn.microsoft.com/en-us/library/cc280604.aspx (retrieved 08/28/2012)
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3.3.3 Experimental Results
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Figure 3.4: HBase Performance

Figure 3.4 shows the results of running MTD on HBase along with two MS SQL
Server configurations: one using Sparse Columns and one using our adaptation layer.
In the latter case we use our adaptation layer on top of MS SQL Server instead of
using corresponding SQL statements. Recall that the adaptation layer performs join,
sort and group operations outside the database. To further approximate the HBase
mapping, we made the base columns as well as the extension columns sparse in this
case. It turns out that this change was not significant. According to independent
test runs of MTD, making the base fields sparse has little impact on the performance
of SQL Server.

In comparison to the Sparse Columns mapping in MS SQL Server, HBase ex-
hibits a decrease in performance that ranges from one to two orders of magnitude
depending on the operation. One reason for this decrease is the reduced expressive
power of the HBase APIs, which results in the need for the adaptation layer. This
effect is particularly severe for reports and updates, where SQL Server with adap-
tation also shows a significant decrease in performance. These results are consistent
with observations by Franklin et al. [45], which show that shipping queries to the
server rather than shipping data to the client can have significant performance ad-
vantages, especially if locality of data access is poor at clients. This applies for our
scenario, because we do not cache data at the client side, as we assume high update
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rates. The performance decrease for updates is primarily due to the fact that the
adaptation layer submits changes one at a time rather than in bulk. HBase has
a bulk update operation, however it appears that, in the version we used, changes
are not actually submitted in bulk unless automatic flushing to disk is turned off.
Furthermore, HBase accesses disks over the network via the Hadoop File System.
In contrast, shared-nothing architectures typically put disks on the local SCSI bus
while shared-disk architectures use fast SANs.

The conclusion we draw from these experiments, is that commercial DBMSs
achieve better performance than cloud data management platforms like Apache
HBase when the data volume of any tenant fits on a single server as in our multi-
tenancy scenario.

3.4 Service Models for Cloud Data Management

Today many businesses already use cloud computing for business applications like
CRM. Business applications typically rely on relational database management sys-
tems for managing data. Therefore, it seems worthwhile to assess how database
systems can be provided efficiently as a service in the cloud. We compare different
service models for cloud databases and conclude that cloud database services repre-
sent a category of its own: Database-as-a-Service. Moreover, we discuss migration
towards Database-as-a-Service. 15

3.4.1 Database-as-a-Service

Database systems can be provided as a service over the Internet. The simplest
option is to deploy traditional relational database systems (RDBMS) on virtual
machines of IaaS providers like Amazon EC2, as customers are allowed to deploy
almost any software on virtual machines. Figure 3.5 (a) shows a DBMS and an Ap-
plication instance App running inside a virtual machine VM1. VM1 runs together
with other virtual machines, e.g. VM2, on the same virtualized infrastructure of
a IaaS provider. But deploying traditional RDBMS on virtual machines is only a
first step, because the customers of IaaS offerings still have to administer and main-
tain all software that runs inside their virtual machines themselves. The remaining

15Parts of this work have been published in our Datenbank-Spektrum journal article [93].
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database management activities incur high operational costs, because skilled per-
sonnel is required for installation, configuration, administration, performance tuning
and maintenance of database systems. Regular maintenance activities include te-
dious tasks like application of patches and creation of backups. Moreover, it is a big
challenge to elastically scale traditional RDBMS across several virtual machines, as
these systems were not designed for this feature.

IaaS PaaS SaaS

App

Conf.1

Platform

Virtualization

Hardware

App1 App2

App

DBMS

VM1 VM2

?

Conf.2

Data
Management

Data
Store

(a) (b) (c)

Figure 3.5: Service Models for Cloud Databases

In order to reduce operational costs further, database management tasks should
be out-sourced to the service provider who may automate administration and main-
tenance procedures to achieve economies of scale. Such a cloud database service can
be provided on-demand and may be priced according to the pay-per-use principle
without long-term contract or up-front payment. Amazon and Microsoft already
provide cloud database services: Amazon Relational Database Service (Amazon
RDS)16 and Microsoft SQL Azure. But currently customers still may have to take
care of some database administration tasks. Amazon RDS recently added support
for Oracle, one of the most widely used commercial RDBMS. A research group at

16http://aws.amazon.com/rds (retrieved 08/28/2012)
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ETH Zürich has shown, how database systems can be built on top of commercial
cloud services [20].

How can we classify such a cloud database service? Cloud database services
definitely do not fall under the IaaS category, as databases reside at a higher level
of abstraction than virtual machines. But it is not clear if cloud database services
should be classified as PaaS or SaaS. On the one hand, PaaS typically integrates
the data store tightly with the provided platform (see Figure 3.5 b) and requires
applications to be built with specific tools in order to utilize a common software
platform, e.g. force.com. In contrast, cloud database services provide a very generic
interface and put almost no restrictions on how the application is implemented.
Even on-premise applications may use database services in the cloud. On the other
hand, SaaS applications are typically accessed by end-users using a thin client, like
a web browser, over the Internet. In contrast, database services typically are not
accessed by end-users directly, but by application software. SaaS applications use
a data management solution internally, but typically the stored data can only be
accessed via the provided application (see Figure 3.5 c). In our opinion, cloud
database services represent a category of its own: Database-as-a-Service (DbaaS).
There is some related early work by Hacigümüs et al. [55] and recent work like the
"Relational Cloud" project by Curino et al. [35].

DbaaS is similar to PaaS, but provides more flexibility with regard to application
development. Apart from the core data management functionality, DbaaS should
provide user authentication and authorization features to control data access in a
fine-granular manner. Recently, salesforce.com released a cloud database service,
called database.com. This service basically repackages the data management layer
that is used by the SaaS CRM application salesforce.com and the PaaS force.com,
but apart from authentication and authorization features the new service provides a
REpresentational State Transfer (REST) API that makes application development
more flexible. Currently, many new DbaaS providers emerge, like FathomDB and
MongoHQ (see also the DbaaS Product Directory17).

17http://dbaas.wordpress.com/database-as-a-service-dbaas-product-directory (re-
trieved 08/28/2012)
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3.4.2 Migration towards Database-as-a-Service

Ease of migration plays an important role in the adoption of new paradigms like
DbaaS. As part of his bachelor thesis, Sebastian Wöhrl analyzed how to migrate an
existing on-premise data center, that mainly hosts dedicated servers leased by inter-
nal clients (e.g. other departments), from the traditional managed-hosting paradigm
towards the novel cloud computing and DbaaS paradigms.18 Due to security con-
cerns and legal requirements, existing DbaaS offerings from the public cloud like
database.com may not be an option. Instead, the existing on-premise data center
may be transformed into an internal DbaaS provider for such private cloud scenarios.
The most important goal is to improve flexibility. By automating administration
tasks that are currently done manually, e.g. apply patches, create new database
instances, manage user accounts and permissions across several systems, the server
and database provisioning process can be made faster and less error-prone. Fur-
thermore, automation may help to reduce frequency and duration of maintenance
windows. A big challenge is that on-premise data centers today typically host many
legacy applications. This often includes many proprietary business applications
with three-tier architecture that require specific commercial database systems and
maybe even specific versions of them. But there may be several — if not many —
applications that require the same commercial database system (maybe they can
even use the same version). In order to migrate these applications towards DbaaS,
application-level changes may be necessary and this requires huge effort. Therefore,
Sebastian Wöhrl proposes a soft incremental migration with several intermediate
levels. The first step is to automate administration and management of existing
database systems, similar to Amazon RDS. The second step is to make authen-
tication and authorization mechanisms more independent from the used database
systems. The third step is to develop an internal DbaaS abstraction layer that
wraps a commercial or open-source database system, provides abstract interfaces
and prohibits use of vendor-specific extensions. On the one hand, the goal is to
support a large subset of features needed by many applications (SQL features, sup-
port for stored procedures, etc.) to reduce the amount of application-level changes.
On the other hand, the DbaaS interfaces should be kept as simple as possible for

18Sebastian Wöhrl did his bachelor thesis "Automated Server-Provisioning at Siemens CIT:
Design and Implementation" at Siemens Corporate Information Technology (Siemens CIT) and
I (Michael Seibold) was his advisor.
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manageability. The last step is to use the DbaaS solution for new applications and
to migrate more and more legacy applications toward the DbaaS.

3.5 Conclusions

In this chapter we gave an overview on emerging cloud data management solutions
and analyzed their suitability for SaaS business applications, like CRM. Further-
more, we analyzed how multi-tenancy can be realized with such systems and pro-
posed a multi-tenant schema mapping approach for one of these systems, namely
Apache HBase. Moreover, we discussed different service models for cloud data man-
agement. This is relevant for SaaS business application, as a SaaS provider may
use a DbaaS data management solution internally and one of the presented cloud
data management solutions may form the basis of such a DbaaS offering. None of
the presented systems offers multi-tenancy support out-of-the box. But cloud data
management platforms, like Apache HBase, offer a certain schema flexibility that
may make it easier to implement multi-tenancy with support for on-line applica-
tion upgrades. For our application scenario of multi-tenant business applications
like CRM, we assume that the processing and storage requirements of any tenant
can be fulfilled by a single server. Therefore, we compared the single-server perfor-
mance of an open-source "web-scale" data management solution with a commercial
DBMS. We conclude that many independent DBMS instances on a large server
farm with automated administration procedures may be sufficient for multi-tenant
SaaS business applications and our experimental results suggest that this approach
may enable more efficient resource utilization. We do not consider "web-scale" data
management platforms further and instead focus on optimization techniques for
consolidating several small and mid-sized tenants.
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Chapter 4

Mixed Workloads

Operational Business Intelligence systems have to process analytical queries (OLAP)
and business transactions (OLTP) at the same time on the same data. Managing
the resulting mixed workloads (OLTP and OLAP on the same data) poses a big
challenge for current disk-based DBMSs [70]. For mixed workloads, it is very diffi-
cult to achieve high performance, serializability and data freshness at the same time,
as OLTP and OLAP workloads have very different characteristics. Main-memory
database architectures could be the right means to tackle the challenge that mixed
workloads pose for disk-based DBMSs. Requests can be processed at much smaller
time scales and there is less variation in execution times, when data can be ac-
cessed without disk I/O. Our goal is to process mixed workloads of SaaS business
applications, like CRM, with Operational Business Intelligence features, e.g. ana-
lytic dashboards, according to strict SLAs with stringent SLOs and enable service
providers to commit to significant penalties. With stricter SLAs it would be eas-
ier to compare different cloud offerings with on-premise solutions and thus cloud
computing could become more attractive for potential customers.

In the following, we analyze the characteristics of mixed workloads and outline
the challenges posed by mixed workloads in our application scenario. We give an
overview on techniques for handling mixed workloads and present a special purpose
main-memory DBMS prototype, called MobiDB, for handling the mixed workload
of our application scenario that allows for stringent service level objectives and
significant penalties.1

1Parts of this work have been published at CLOUD 2011 [95] and have been accepted for
publication in IT Professional [92].
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4.1 Characteristics

In the context of business applications, the mixed workload consists of an OLTP
component and an OLAP component.

The OLTP workload is generated by transaction-oriented applications that are
vital to day-to-day business operations. These applications are typically used by
a large number of concurrent users and individual business transactions typically
have relatively short execution times. Business transactions read, insert, update
and delete data in the database and form part of many parallel and independent
OLTP sessions, as they are triggered by many different users. A business trans-
action typically corresponds to a single database transaction in a straight forward
manner. Although, business transactions are sometimes split into several database
transactions to improve performance.

The OLAP workload is generated by business intelligence applications that are
used for analyzing large amounts of business data to support strategic decision
making, e.g. computing sales revenue of a company by products across regions and
time. These applications are typically used only by a small number of concurrent
users and individual business queries typically have relatively long execution times
due to the complexity of the queries and the volume of analyzed data. A business
query involves a sequence of one or more read-only database queries which need
to be evaluated on the same consistent database state and therefore form a single
read-only database transaction.

DEV TEST PROD

Figure 4.1: Three System Landscape

In general, business transactions may be formulated ad-hoc, but we assume that
business transactions are canned and therefore change in the production system only
due to application upgrades. This is reasonable for today’s business applications
with web-based user interfaces, as the SQL database interface is typically only used
by the application layer and a three-system landscape is used for developing, testing
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and deploying business applications (see Figure 4.1).
Furthermore, we assume that business transactions are interaction-free, which

means that interaction with the user may take place only at the beginning and at the
end of a business transaction, but not during a business transaction. User-interaction
within business transactions may cause severe synchronization overhead as a business
transaction typically corresponds to a single database transaction. Thus, for DBMSs
with lock-based concurrency control, the duration for which locks are held depends
on the responsiveness of the user. High-throughput OLTP systems typically prohibit
user-interaction within business transactions to avoid "user stalls", as discussed in
[105]. Moreover, we assume that business transactions are deterministic, as most
business transactions can be made deterministic. Thomson et al. propose to use a
preprocessor, that performs any necessary non-deterministic work in advance and
to pass on the results as transaction arguments [109].

In general, business queries may be ad-hoc or canned and may involve user-
interaction within the business query. We assume that most business queries are
periodic business queries which are canned and interaction-free. There may be few
ad-hoc business queries which only occur once in a while. This is reasonable for our
Operational Business Intelligence scenario, as some analytical queries are processed
on the operational database, but very complex and long-running OLAP queries are
still processed on separate data warehouse systems. Therefore, we assume that busi-
ness queries typically require longer execution times than business transactions, but
not as long as complex OLAP queries typically found in data warehouses. As shown
by Funke et al., 16 out of 22 TPC-H-like queries can be executed within less than
500 milliseconds with a modern main-memory DBMS running on commodity hard-
ware [47]. We conclude that periodic and short-running queries should be processed
on an operational business intelligence system and the longer-running queries on a
separate data warehouse. Thereby, the update cycles of data warehouses can be
kept large enough for processing long-running queries efficiently.
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4.2 Challenges

In a mixed workload that contains OLTP and OLAP components, many short OLTP
transactions, which make changes to the database, may conflict with longer-running
read-only OLAP queries. Conflicts are highly probable if business transactions and
business queries are performed concurrently on the same data. This incurs heavy
synchronization overhead which negatively affects performance and results in low
overall resource utilization.

With a lock-based concurrency control mechanism for example, a longer-running
business query may delay concurrent short-running business transactions due to
lock conflicts. This may cause reduced throughput and increased response times for
concurrent business transactions. If throughput and response time guarantees for
the business transactions are still met depends on the execution time of the business
query, the execution times of the business transactions and the expected response
times of the business transactions. One business query can delay a concurrent
business transaction at most by the execution time of the business query. If the
expected response time of the business transaction minus the execution time of the
business query is larger than the execution time of the business transaction, the
response time guarantee for the given business transaction may still be met. But
throughput guarantees may require that many concurrent business transactions meet
their response time guarantees while the given business query is performed. In order
to fulfill response time and throughput guarantees of the business transactions, the
longer-running business query may have to be aborted. Depending on the arrival
rate of business transaction requests, this may lead to starvation and cause violation
of response time and throughput guarantees for business queries.

4.3 Related Work

There are commercial DBMSs, like TimesTen [108], which achieve high OLTP
throughput rates by keeping most or all data in main-memory. As shown by Kallman
et al., typical business transactions, like order entry or payment, can be executed
within less than 100 microseconds with a modern main-memory DBMS running on
commodity hardware by removing traditional DBMS features, like buffer manage-
ment, locking and latching [61, 105]. Their research prototype H-store [61] and
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its commercial successor VoltDB achieve extremely high throughput rates by min-
imizing synchronization overhead. Transactions are processed by multiple single-
threaded engines and data is partitioned across a database cluster. The RAMcloud
[85] development at Stanford shows the feasibility of a main-memory-only approach.
For OLAP, there are highly efficient query processors based on column store technol-
ogy, as pioneered by MonetDB. Instead of the traditional tuple-at-a time pipelined
execution paradigm, MonetDB uses a column-at-a-time paradigm and aims at utiliz-
ing large main-memory and multi-core architectures more efficiently [76]. Recently,
a new system called HyPer has been proposed which can handle mixed workloads
consisting of OLTP and OLAP at extremely high throughput rates, based on a low-
overhead mechanism for creating differential snapshots which relies on hardware
supported operating system mechanisms and works at the granularity of virtual
memory pages [64].

Our approach of handling OLTP is similar to H-Store, but our approach is not
limited to OLTP. Like HyPer, our approach is optimized for mixed workloads. When
snapshots are created periodically, as described in [64], queries are performed on
the last snapshot at the time a query session started. Thus, data freshness is not
guaranteed, as changes may have been committed between the time the last snapshot
was created and the time the query session started. This lack of data freshness
depends on how often snapshots are created. For HyPer the lack of data freshness
is limited, as snapshots can be created within few milliseconds. Nevertheless, many
snapshots may be required to guarantee data freshness, one per query session in the
worst case. Instead, we propose to queue query requests and to delay the start of a
query session until the next periodic snapshot is created. Our special-purpose system
always guarantees data freshness and tries to avoid snapshots whenever possible,
because of the incurred space overhead. The proposed system is not general-purpose,
because it is optimized based on the characteristics of our application scenario (see
Section 4.1). But there is another major difference to the mentioned general-purpose
systems that process queries and transactions in a best-effort manner. For our
special-purpose system, stringent response time and throughput guarantees can be
given based on our proposed queuing approach, an analytical model and resource
reservation.

Tenant placement is an area of active research in the Cloud Computing and ser-
vice computing community. Zhang et al. formulate the Online Tenant Placement
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Problem, "given a fixed number of nodes, how to optimally place on-boarding ten-
ants to maximize the total supported number of tenants without violating their SLA
requirements", and show that it is NP-hard [119]. We discussed a similar problem
in Section 2.3.5 and formulated it as a graph-partitioning problem. In Section 4.5.3,
we present an analytical model that allows analyzing if the mixed workload of one or
several tenants can be processed on a given infrastructure according to our proposed
queuing approach.
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4.4 Techniques for Handling Mixed Workloads

In the following we give an overview on techniques which help to process mixed
workloads more efficiently 2. We look at the space and processing overhead of
these techniques and analyze how overheads are distributed across the different
components of the mixed workloads.

4.4.1 Reduced Isolation Levels

Commercial DBMSs offer a number of reduced isolation levels, e.g. read-committed,
which may require less synchronization within the DBMS and thus improve perfor-
mance for mixed workloads from the perspective of the DBMS. But anomalies may
occur which have to be precluded or handled explicitly by the application layer
which is error-prone, makes the application layer more complex and thus increases
maintenance costs. The goal stated in the introduction is to maximize resource uti-
lization and to minimize administration and maintenance costs at the same time.
Reduced isolation levels may reduce synchronization overhead on the database layer
and therefore enable better resource utilization, but in order to minimize adminis-
tration and maintenance costs, potential interference from multi-user operation has
to be precluded by the DBMS with the highest isolation level, serializability, in order
to shield the application layer from the associated complexity.

Moreover, certain techniques for implementing reduced isolation levels may cause
additional space overhead. Even when reduced isolation levels are used for process-
ing mixed workloads, the isolation level should be high enough to ensure that certain
anomalies do not occur. For example, business queries should not see uncommit-
ted changes of concurrent business transactions. DBMSs employ special techniques
to preclude this anomaly with isolation level read committed, like shadow paging,
which requires storing more than one copy of certain data pages [42] and thus causes
additional space overhead. In our scenario, space overhead has to be minimized, as
SaaS providers typically employ multi-tenancy techniques for reducing costs by con-
solidating several tenants onto the same infrastructure. Additional space overhead
may limit or even prohibit consolidation and thus may impact resource utilization
negatively.

2Most of the mentioned techniques are also described in [63] and chapter 20.2 of [62]. Beyond
that, we focus on the applicability of these techniques for our SaaS scenario.
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Recently, techniques have been proposed to make snapshot isolation, a reduced
isolation level defined in [14], serializable by preventing anomalies at runtime [22].
But on the one hand transactions may be aborted even due to potential anomalies,
which may cause starvation when anomalies are highly probable. On the other
hand, snapshot isolation is typically implemented with multiversion concurrency
control, which stores several versions of the data and therefore causes a certain
space overhead [42]. Therefore, this approach does not seem feasible in our mixed
workload scenario.

In our scenario, the highest isolation level, serializability, is required while syn-
chronization and space overhead has to be minimized. There are two major kinds
of serializability: view serializability and conflict serializability [15]. We focus on
conflict serializability, as most mayor DBMSs employ lock-based concurrency con-
trol mechanisms which are based on the notion of conflict serializability. Thus, in
the following, serializable really means conflict serializable.

4.4.2 Separation by Copying Data

The components of a mixed workload can be separated by processing them on their
own snapshot of the data. Thereby, synchronization overhead can be reduced sig-
nificantly at the cost of additional space overhead. In our scenario, business queries
can be processed on a consistent copy of the data while business transactions are
processed on the current data. This approach does not reduce the isolation level,
as business queries are read-only3. But many snapshots may be required to ensure
serializability and data freshness. There are different approaches for creating a con-
sistent copy of the data which differ in the time needed to create the snapshot and
the resulting performance and space overhead.

Versioning

Insert-only database systems never update tuples in-place. Instead, several versions
of a tuple are stored. The open-source DBMS PostgreSQL introduced this approach
by treating the log as normal data managed by the DBMS and provides support for
queries on historic data that implicitly define a snapshot [106]. The advantage of

3Standard DBMS interfaces, like JDBC, allow to mark database transactions as read-only. This
additional information can be used by the DBMS to optimize transaction processing.
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this approach is that business transactions and business queries can be performed
concurrently without synchronization overhead, as they work on different versions
of the data. As all versions are kept, the required data for any snapshot is available.
The obvious disadvantage of this approach is that the database grows quickly as all
tuple versions are kept. The data volume may become several times larger than the
data volume of only the latest versions. To reduce this space overhead, a "vacuum"
operation has to be performed regularly to move old versions to tertiary storage, as
described in [106]. This technique either adds processing overhead for determining
the latest versions and the versions corresponding to a given snapshot. Alternatively,
directory or index structures may be used to reduce processing overhead at the
expense of additional space overhead.

Complete Snapshots

Some of the space overhead introduced by versioning can be avoided by keeping only
those versions of tuples which correspond to snapshots that are still required. The
complete snapshot approach does not share common data between snapshots and is
similar to a two system approach with an operational database, a data warehouse and
an ETL process. Managing both copies in a single system may enable optimizations
to reduce the overhead caused by ETL. For example, a snapshot may be updated
by applying business transaction requests in bulk, instead of using change data
capture to retrieve changes from an operational database. With a single snapshot,
the update frequency limits the maximum execution time of a business query. But
the update frequency depends on data freshness requirements. Therefore, more than
one snapshot may be required which could cause significant space overhead.

An advantage of complete snapshots in comparison to other snapshotting tech-
niques is that different schemata and data representations may be used for current
data and snapshots. For example, normalized tables and row representation can be
used for processing business transactions while star-schema and column representa-
tion may be used for processing business queries. Thereby, mixed workloads may be
processed more efficiently, at the expense of higher overheads for snapshot creation.
Then again, using the same schema and the same representation may make request
processing less efficient, but enables sophisticated techniques for updating snapshots
quickly. Cao et al. propose such techniques in the context of checkpoint recovery
[24].
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Space overhead depends on the number of snapshots and incurs at least a factor
of two. In our SaaS scenario, a space overhead of a factor two or more may limit
consolidation severely when memory is the limiting factor. Therefore, the complete
snapshot approach does not seem feasible for our scenario.

Computed Snapshots

The space overhead of complete snapshots can be eliminated by keeping only the
latest version of tuples. The versions required for older snapshots can be computed
on demand by undoing operations according to the undo log. This technique causes
no overhead for business transactions, but may add significant processing overhead
for business queries. This processing overhead can be reduced by caching complete
or partial snapshots which in turn incurs space overhead. This approach does not
seem feasible for our Operational Business Intelligence scenario, as business queries
have to be processed with low response times at high throughput rates.

Differential Snapshots

Depending on the update characteristics of the application, the current data and the
complete snapshots contain lots of redundant data. This redundancy can be reduced
by sharing data between current data and snapshots. We refer to this mechanism as
differential snapshots. The amount of redundancy that can be eliminated depends on
the granularity of the differential snapshot mechanism and the update characteristics
of the application. In the following, we focus on row level and page level granularity.
Row level granularity seems very suitable for business transactions which typically
process data row-wise. A common way to realize a differential snapshot with row
level granularity is a delta mechanism that stores changes in a delta structure instead
of performing the changes on the current data. This causes a certain overhead
for business transactions, as they have to consider the delta for read operations.
Furthermore, the delta grows over time when changes are made while the snapshot
is active. Thus the snapshot should be removed as soon as it is not needed anymore.
But to remove such a snapshot, changes stored in the delta have to be merged into
the current data. There is recent work by Krüger et al. [69] on how to optimize this
merge process for modern servers with multi-core architectures. Furthermore, there
is a novel way to realize differential snapshots with page level granularity that is
based on copy-on-write mechanisms of the operating system. This approach is used
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by HyPer and is described by Kemper and Neumann in [64]. Copy-on-write snapshot
mechanisms are an area of active research. Sowell et al. [102] recently proposed a
copy-on-write snapshot mechanism for B-trees and Sidlauskas et al. [98] observed
no impact on read performance when comparing page level differential snapshots
— created similar to the HyPer approach — with complete snapshots. Moreover, a
general disadvantage of differential snapshots in comparison to complete snapshots
is that the same schema and the same representation have to be used for current
data and snapshot. In contrast, complete snapshots may employ different schemata,
e.g. normalized tables and star schema, and different representations, e.g. row store
and column store.

4.4.3 Separation by Time

For mixed workloads, synchronization overhead can be reduced by separating the
individual components of the mixed workload and processing them more indepen-
dently from each other. For business applications, the OLTP and OLAP components
can be separated by controlling when business transactions and business queries are
executed.

Cyclic Scan Processing

There is a big difference in execution times of OLTP and OLAP requests, because
the database is accessed in different manners. Business transactions typically are
supported by indexes, mostly use point-wise accesses and therefore have short execu-
tion times. Business queries typically have to read lot’s of data, require mostly scan
accesses and therefore have longer execution times. Instead of point-wise accesses,
business transactions could also use scan accesses, but this probably would result
in longer execution times. It depends on the application scenario if the required
response times can still be met.

There are special-purpose systems that read the entire database in repeating
circular scans, called cycles, and let multiple operations share the scan cursor. The
goal of these cooperative scans is to improve cache locality and to cope with limited
main-memory bandwidth. During a single cycle several operations corresponding
to different business queries and business transactions may be performed for each
scanned tuple. Thereby, the available processing power may be utilized better, while
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the next tuple is prefetched through the memory hierarchy. This approach can help
to improve resource utilization if memory bandwidth is the bottleneck. During a
cycle, each tuple is loaded once for a given set of operations. First write operations
are performed in arrival order. Then read operations are performed on the given
tuple. Thereby each cycle corresponds to a consistent snapshot of the database.
Special-purpose systems like Crescando apply and extend this approach to achieve
predictable performance for unpredictable workloads [113, 50]. This approach can
be categorized as time-based, because business queries and business transactions
have to be processed according to the mentioned cycles. The question arises if this
approach can be applied to business applications like CRM. On the one hand, this
approach slows down business transactions in favor of business query throughput.
On the other hand, consistent snapshots are only available during a given cycle. This
means that a business transaction has to complete all its read operations within one
cycle in order to work on a consistent snapshot and can only read tuples in the
order of the circular scan. It may be necessary to process and maybe even cache
tuples that might be needed later on in the cycle, which may lead to additional space
overhead. Due to the mentioned restrictions and the impact on execution times of
business transactions, this approach does not seem feasible for our scenario.

Admission Control and Priority-based Scheduling

In the workload management area a lot of research has been done to optimize the
workload mix for handling transactions and queries in the same DBMS. Requests
are mapped to different service classes. An SLA defines objectives for each service
class and penalties if these objectives are not fulfilled, as described by Krompass
et al. in [67]. Workload management tries to meet all objectives as long as there
are sufficient resources. The only way to control how resources are distributed
among the components of a mixed workload is to specify penalty costs of the corre-
sponding service classes accordingly. When there are too many requests, admission
control and priority-based scheduling are applied to minimize the penalty costs for
requests that miss their objectives. Workload management solutions typically treat
the DBMS as a "gray box". Monitoring techniques are used to build up a model
about the resource requirements of transactions and queries. This model is used by
admission control and priority-based scheduling techniques. Workload management
has some space and processing overhead, which mainly depends on the number of
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queued requests and the monitoring overhead, but not on the data volume of the
database. The workload manager controls when queries and transactions are sub-
mitted to the DBMS and an execution controller may abort queries which consume
too many resources. But workload management solutions typically do not change
how the DBMS works internally. For a given DBMS it may be the case that a given
mixed workload cannot be performed without missing its objectives due to synchro-
nization overhead within the DBMS. Furthermore, current workload management
solutions are typically added on-top of commercial general-purpose DBMSs which
are typically disk-based and execute requests in parallel in order to mask delays
caused by disk I/O. In such systems, stringent guarantees cannot be given, because
the parallel execution of requests makes it very difficult to derive accurate execution
time estimates due to unpredictable interferences between the different requests and
resource contention, especially for mixed workloads4. Therefore, traditional work-
load management is not sufficient for our application scenario that requires strict
SLAs with stringent service level objectives and significant penalties.

Request Queuing and Resource Reservation

Instead of doing workload management in an on-line best effort manner, we propose
a soft real-time approach based on techniques known from the research area of
workload management. For a known workload, the resource requirements can be
assessed off-line and by reserving the required resources, known workloads can be
processed according to soft real-time guarantees. Depending on the objectives of the
service provider, sufficient resources can be reserved to meet all objectives or to keep
penalty costs below a certain limit. This approach would enable service providers
to include stricter SLOs regarding response time and throughput in their SLAs and
thereby could make cloud computing more attractive for potential customers.

This approach is feasible, as emerging main-memory DBMSs allow to predict
execution times quite accurately, as shown by Schaffner et al. in [90]. In contrast
to traditional disk-based DBMSs, main-memory DBMSs do not have to process
requests concurrently in order to mask delays caused by disk I/O. Instead transac-

4Researchers lead by Ashraf Aboulnaga have observed that interactions between queries running
concurrently in a query mix can have significant impact on performance. Tozer et al. [110] propose
to improve admission control decisions based on a model of expected query execution times that
accounts for the mix of queries being executed.
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tions can be processed in a single-threaded fashion and one single-threaded engine
per CPU core and/or cluster node can be used, as described by researchers lead
by Michael Stonebraker [61, 105]. We extend this approach for mixed workloads.
Business transactions and business queries should not be processed in parallel on
different cores of a modern multi-core server, in order to avoid the resulting syn-
chronization overhead. Instead, requests should be queued and the queued business
transaction requests should be processed within one time-slot and the queued busi-
ness query request within a different time-slot. The required time slot duration can
be determined based on throughput and response time requirements and execution
time estimates. When business transactions and business queries are performed in
separate time slots, data is changed only in one of the two time slots, as business
queries are read-only. Therefore, business queries can be performed directly on the
data as if it were a snapshot. We call that a time-based snapshot. During the
business query time slot only read-only queries are processed, therefore queries can
be processed in parallel without synchronization and multi-query optimization tech-
niques may be applied. There is recent related work by Giannikis et al. [49] on
multi-query optimization based on batched query execution that aims at response
time guarantees in high load situations.

The major advantage of time-based snapshots is that both workloads are per-
formed on the same data and thus no data has to be copied. Additional space is
required for queuing requests, but requests are typically small - a couple of numbers
and strings - and the number of requests only depends on the guaranteed request
rate and not on the data volume of the database. There is some synchronization
overhead at the beginning and at the end of each time slot, but this can be imple-
mented efficiently with hardware supported barrier synchronization methods. The
major restriction of this approach is that it only works if the workload is known in
advance. Furthermore, a given mixed workload can only be processed according to
this approach on a given infrastructure, if the execution times of the expected busi-
ness query requests are short enough for keeping the OLAP time slot short enough,
such that concurrent business transaction requests are not delayed too much and
still meet their response time goals. This approach can be applied for those com-
ponents of our mixed workload that are known in advance: business transactions
and periodic business queries. Additional measures have to be taken for handling
ad-hoc business queries that are not known in advance.
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4.4.4 Conclusions

Reduced isolation levels do not meet our requirement of minimizing administration
and maintenance costs. Thus, the highest isolation level - serializability - is required
while synchronization and space overhead has to be minimized. Separation by time
seems most promising for minimizing space overhead for known workloads and sep-
aration by copying data may be required for handling ad-hoc queries. In the next
section a combination of the Request Queuing and Resource Reservation approach
and the Differential Snapshots approach is proposed to achieve this goal. The former
approach is applied for those components of our mixed workload that are known in
advance: business transactions and periodic business queries. The latter approach
is applied for handling ad-hoc business queries that are not known in advance.
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4.5 MobiDB: Special-purpose Main-Memory DBMS

Cloud Computing and SaaS foster the development of data management systems
that are optimized for specific application scenarios. Once a SaaS provider has
identified an application scenario whose potential customer base is large enough,
the entire software and hardware stack should be optimized based on the charac-
teristics of the specific application scenario in order to gain competitive advantage
relative to on-premise solutions and more general-purpose cloud offerings. MobiDB
is a special-purpose main-memory DBMS prototype which guarantees serializability
and can handle the mixed workload of our Operational Business Intelligence scenario
with low response times at high throughput rates while minimizing space overhead
and adhering to maximal response time and minimal throughput guarantees. Mo-
biDB combines the Request Queuing and Resource Reservation approach and the
Differential Snapshots approach described in the preceding section (Section 4.4).

4.5.1 SaaS architecture

In this section, the traditional architecture of business applications is presented
and its suitability for our SaaS scenario is discussed. Based on this discussion an
architecture optimized for SaaS applications is proposed.

Three-Tier SaaS-Architecture

Customer 1

Customer 2

SaaS-Provider

User

Browser

App-Server

Web-Server

Multi-Tenant
DBMS

SaaS-Application

User

Browser

Figure 4.2: Three-Tier SaaS-Architecture
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Traditionally, business applications have a three-tier architecture. Business trans-
actions and business queries represent high-level operations which traditionally span
all three layers: presentation layer, application layer and database layer. Figure 4.2
shows how this traditional architecture can be applied for SaaS business applications.
The SaaS provider operates all three layers and may use a multi-tenant DBMS for
improving consolidation. The different layers may be deployed into separate virtual
machines and many instances may be run on the server farm of a large data center.

For traditional business applications with three-tier architecture it is a big chal-
lenge to fulfill SLOs for high-level processes within the business application because
it is difficult to predict execution times accurately as low-level data management
operations cannot be correlated well to high-level business processes. Presentation
layer, application layer and database layer are separated and several round-trips
between the different layers may be necessary even for a single business transac-
tion. This may be one of the reasons why SLAs for business applications usually
lack stringent SLOs and significant penalties today. With stricter SLAs it would
be easier to compare different cloud offerings with on-premise solutions and thus
cloud computing could become more attractive for potential customers. Moreover,
the separation of presentation layer, application layer and database layer introduces
many layers of abstraction whose overhead and complexity should be eliminated in
a SaaS application to minimize administration and maintenance costs.

Proposed Changes to Three-Tier SaaS-Architecture

We propose two changes to the traditional three-tier architecture for business appli-
cations and the SaaS scenario.

The first change concerns the presentation layer. Modern web-browsers, like
Mozilla Firefox5 and Google Chrome6, support techniques like AJAX and HTML5
that allow generating dynamic web pages within the browser on the client device.
If all dynamic content is generated within the users’ browsers, web servers are only
needed for delivering static content. This approach eliminates the presentation layer
and relocates the generation of dynamic content from the data center onto the users’
browsers. Beyond that, HTML5 features for offline web applications allow to cache
static content on client devices.

5http://www.mozilla.com/en-US/firefox/fx (retrieved 08/28/2012)
6http://www.google.com/chrome?hl=en (retrieved 08/28/2012)
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The second change concerns the application layer. Most major database vendors
support some form of stored procedures that allow to process business logic within
the database layer. Thereby the number of round-trips between the application layer
and the database layer can be reduced. Today the programming languages provided
for stored procedures vary by vendor and mostly include proprietary extensions.
Traditional tree-tier business applications typically do not use stored procedures
much, to make it easier to support several database systems of different vendors.
But a SaaS provider probably will use DBMSs of the same vendor for most or
even all customers. Furthermore, application layer and database layer should be
tightly integrated in our SaaS scenario in order to minimize administration and
maintenance costs. Emerging main-memory DBMSs like HyPer [64] and SAP HANA
[44] allow to process business logic inside the DBMS. Thereby performance may be
improved significantly, as the number of round-trips between application servers
and the DBMS can be reduced. We propose to process all business logic within
the database system. Thereby, the application layer effectively is merged into the
database layer.

Customer 1

Customer 2

SaaS-Provider

User

Browser

App-Server

Web-Server

Multi-Tenant
DBMS

SaaS-Application

User

Browser

Generation of
Dynamic Content

Business
Logic
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Figure 4.3: Proposed Changes to Three-Tier SaaS-Architecture

Figure 4.3 illustrates these changes and shows how to eliminate presentation and
application layer. Such a simplified non-three-tier architecture makes it easier to
correlate low-level data management operations with high-level business processes.
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Proposed SaaS-Architecture

The proposed SaaS architecture generates dynamic content on the users’ browsers
and merges the application layer with the database layer. The correlation of low-
level data management operations with high-level application processes is simplified,
as business transactions and periodic business queries can be processed with only
one round-trip, as described below.
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Figure 4.4: Proposed SaaS-Architecture

Figure 4.4 illustrates the proposed SaaS architecture. SaaS providers operate
data centers with large server farms. Users access a SaaS application running on
one of these server farms over the Internet. As discussed in Section 4.1 business
transactions and periodic business queries are canned and interaction-free. There-
fore, requests only need to contain the requested business transaction or periodic
business query type and parameter values. A modern AJAX-based user interface
runs on the user’s browser and sends requests to a routing component of the global
workload manager which directs requests to the server to which the given tenant
is currently assigned. The multi-tenant DBMS instance on this server processes
incoming requests completely and sends a response back to the user interface.

Apart from processing business logic, the multi-tenant DBMS manages the data.
Each server runs one instance of the multi-tenant DBMS. Several customers or
tenants are assigned to the same multi-tenant DBMS instance, e.g., Customer1 and
Customer2 in our example. A local workload management component, which is
part of the multi-tenant DBMS, ensures that the workloads of different tenants do
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not interfere with each other. We assume that the capacity of a single off-the-
shelf server is sufficient for the workload of any tenant. Our approach could be
extended to support database clusters, but this is out of the scope of this thesis.
If the computing capacity of a single server is not sufficient for the workload of all
assigned tenants, some of the tenants have to be migrated to different servers which
have sufficient resources available. A global workload manager takes care of tenant
placement within the server farm. For security reasons, firewalls and encryption
should be used.

In our SaaS scenario, SLAs define what the customers can expect from the ser-
vice, what the service provider has to deliver and what happens if the provided
service does not fulfill these requirements. Today, these SLAs are typically pretty
vague, which may discourage businesses to adopt a cloud computing strategy. In
our scenario, SLAs should include maximal response time and minimal throughput
guarantees for business transactions and periodic business queries to attract more
potential customers. SLOs should be adapted constantly to the requirements of the
customer, as the service provider may project data volume growth and estimate
resource requirements based on these objectives.

4.5.2 Multi-Tenant DBMS Architecture

As a multi-tenant DBMS, MobiDB has to process the workloads of all assigned
tenants according to their SLOs. MobiDB incorporates native support for multi-
tenancy and is optimized for multi-core CPUs. Business transactions of different
tenants are executed in parallel according to the one-thread-per-core model, as data
is partitioned by tenant and each data partition is assigned to one CPU core. Mo-
biDB is optimized for the mixed workload of our Operational Business Intelligence
scenario. According to the Request Queuing and Resource Reservation approach, in-
coming business transaction and periodic business query requests are not processed
right away, but added to a queue and processed later. The queued requests are an-
alyzed to estimate how long it would take to perform the queued requests. MobiDB
decides adaptively when to execute a queued request based on this analysis and the
required throughput rate and response time guarantees. Execution times can be
estimated quite accurately, as all data is kept in main-memory and interferences be-
tween different users and different tenants are precluded, as requests are processed
according to the one thread-per-core model and different components of our mixed
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workload are separated by time, i.e., read-write business transactions are executed in
a different phase than read-only business queries. Time is divided into fixed-length
intervals. The interval length is determined based on an analytical model which is
described in the next section (Section 4.5.3).
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Figure 4.5: Queuing Approach Interval 1

In the following the queuing approach is explained in more detail. Figure 4.5
shows an interval that illustrates how MobiDB processes business transaction and
periodic business query requests. The first part of the interval is the OLAP phase
during which periodic business queries are performed. During this phase, busi-
ness transaction requests are queued and logged to disk without performing the
corresponding business transactions. This works for our workload, because busi-
ness transactions are deterministic, canned and interaction-free. Therefore, business
transaction requests can be replayed and it is sufficient to log the business transaction
requests and not the changes made by business transactions. This special-purpose
logging approach is explained in detail at the end of this section. The queued busi-
ness transaction requests are executed in batch during the OLTP phase at the end
of the interval. Requests corresponding to different tenants are separated based on
the tenant ID parameter and are executed in parallel on different cores of a multi-
core server. Cross-tenant transactions may also be required from time to time, for
example if a larger company uses one tenant per department. These cross-partition
business transactions are executed in a short single-threaded single-core phase at the
end of the OLTP phase. Requests for business transactions and periodic business
queries which arrive during the OLTP phase are queued. There is some synchro-
nization overhead at the beginning and the end of each phase. The synchronization
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points are indicated in Figure 4.5 by dots on the time axis. This approach can be
implemented efficiently with hardware supported barrier synchronization methods.
The space overhead of our approach is limited, as additional space is only required
for queuing requests, but requests are typically small - a couple of numbers and
strings - and the number of requests depends only on the guaranteed request rate,
not on the data volume of the database.

The required queue length is determined based on the analytical model described
in Section 4.5.3 and excess requests may be dropped when the queue is full. Small
bursts in demand can even out across tenants which are assigned to the same DBMS
instance, as the queue is shared between tenants. To avoid interferences between
tenants, required requests - which have to be processed according to guarantees -
have to replace queued excess requests of other tenants.
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Figure 4.6: Queuing Approach Interval 2

In addition to business transactions and periodic business queries, ad-hoc busi-
ness queries may be required from time to time. As this kind of query is not known
in advance, no guarantees can be given. Furthermore, ad-hoc business queries may
slow down and delay the execution of business transactions and periodic business
queries. This may lead to a violation of response time and throughput guarantees.
Therefore, MobiDB performs ad-hoc business queries in a best-effort manner while
processing business transaction and periodic business query requests according to
guarantees. Intervals two and three of Figure 4.6 show how MobiDB processes ad-
hoc business queries. Ad-hoc business queries which arrive during the OLTP phase
are delayed until the next OLAP phase. During the OLAP phase, ad-hoc queries are
delayed until all queued periodic business queries have been performed. If an ad-hoc
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query does not finish before the end of the OLAP phase, a differential snapshot is
created on-demand before the OLTP phase starts. Differential snapshots are imple-
mented using a delta mechanism and therefore can be created with low overhead.
All changes made during the OLTP batch execution phase are recorded in the delta
which has to be considered only by business transactions. Ad-hoc business queries
are performed without considering the delta. The differential snapshot is dropped
as soon as possible by merging the delta into the current database state. During the
OLTP phase, business transactions block ad-hoc queries, as two threads per core are
used instead of the pure one-thread-per-core model and the OLTP thread has higher
priority than the OLAP thread. Only ad-hoc business queries are performed on the
differential snapshot to ensure serializability. Periodic business queries which arrive
while a differential snapshot is active have to be queued. MobiDB may decide to
kill ad-hoc business queries, when the delta becomes larger than a defined threshold
or when it detects that queued periodic business queries would miss their response
time guarantees. For this decision, MobiDB has to consider the time to merge the
delta which is estimated based on the current size of the delta.

The execution time of a business query may be reduced by using intra-query
parallelization. Thereby even more complex queries may be performed according to
the queuing approach. This seems very promising, as modern servers have many
processing cores and there are no conflicts during the OLAP phase as only read-only
queries are performed. Even with sub-optimal speedups, it may be possible to re-
duce overall costs with the queuing approach, if intra-query parallelization enables
to process complex queries according to the queuing approach and the resulting
reduction of space overhead allows for more consolidation. In our scenario, intra-
transaction parallelization does not make sense for OLTP, as the execution times of
business transactions are very short and because there are sufficient business trans-
actions per time interval to keep all CPU cores busy, as we assume many parallel and
independent OLTP sessions. Inter-transaction parallelization makes sense, but may
require synchronization. The most common synchronization approach in relational
DBMSs is based on pessimistic concurrency control with locks at different granu-
larities. A description of multi-granularity locking can be found in [62]. MobiDB
partitions data by tenant and employs locking at tenant granularity to minimize syn-
chronization overhead and utilize all available processing cores in our multi-tenancy
scenario.
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Serializability

For a DBMS that guarantees serializability7, all generated transaction histories have
to be serializable [42]. According to conflict serializability, as defined in chapter two
of [15], a transaction history is serializable if it is equal to a serial execution history.
Two histories are equal if conflicting operations are executed in the same order.
Two operations (read or write) of different transactions are conflicting operations if
they operate on the same data item and at least one of them is a write operation.
Single-partition business transactions, which represent read-write transactions, are
performed sequentially by a single read-write thread which is responsible for that
data partition. Cross-partition business transactions are performed by an exclu-
sive read-write thread and longer-running business queries, which represent read-
only transactions, are performed concurrently using one or more read-only threads.
Therefore, the partial history of the read-write transactions of one data partition
is serializable, as it is a serial execution, and the partial history of the read-write
transactions of several data partitions is serializable, as there are no conflicting op-
erations between data partitions. Furthermore, the partial history of the read-only
transactions is serializable, as there are no conflicting operations. But the complete
history may not be serializable. As both transaction types work on the same data,
non-serializable histories are highly probable when read-only transactions read large
parts of the database and there are many concurrent read-write transactions. To
improve performance, the different transaction types can be separated by perform-
ing read-only transactions on a snapshot of the database and read-write transactions
on the current database state. When read-only transactions are performed on older
snapshots of the database, the complete history may not be serializable. In the worst
case, the snapshot on which a read-only transaction is performed has to reflect the
consistent database state right before the read-only transaction was started. This is
due to write-read conflicts which is the only kind of conflict that can occur between
a read-write and a read-only transaction. For example, a read-only transaction Tro
reads data item x among other data. It may be the case, that a read-write transac-
tion Trw changed data item x and was committed right before Tro was started. In
this case, Tro has to see the changes made by Trw , as the conflicting operations have
to be performed in this order. Creating a new snapshot for each read-only transac-

7As defined in Section 4.4.1, we use this abbreviation for conflict serializable.
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tion would cause a lot of overhead. MobiDB reduces this overhead by delaying the
start of read-only transactions. Several read-only transactions are executed together
on a consistent database state and during the corresponding OLAP phase no read-
write transactions are performed. Data freshness is guaranteed, as the consistent
database state reflects all committed changes before the OLAP phase begins.

Special-purpose Logging Approach

Commercial database systems can be configured to fulfill ACID properties and typ-
ically use write-ahead logging and the ARIES transaction recovery method [79]
to ensure durability. Even main-memory database systems, like TimesTen, ensure
durability by checkpointing and logging [108]. According to the write-ahead-log pro-
tocol and the force-log-at-commit rule [53], all log records containing changes made
by a given database transaction have to be written to stable storage before the
database transaction can be committed. Main-memory is usually volatile. There-
fore log records have to be flushed to stable storage, e.g. hard disks. Especially in
main-memory database systems, logging may dominate response times of database
transactions, as the log flush may be the only access to stable storage required for
each transaction. With high transaction rates, bandwidth of stable storage may be-
come a performance bottleneck. In the following, we give an overview on techniques
to reduce the performance impact of database logging and present a special-purpose
logging approach for our application scenario.

Several database systems, including TimesTen, have configuration options to re-
lax durability guaranties. Performance may be improved by committing transactions
without waiting for log records to be flushed to disk. The database log can be kept
in main-memory and be flushed to disk asynchronously. But in case of a system
crash, all committed transactions whose log records have not been flushed to disk
yet may be lost. This approach is not feasible for application scenarios that require
ACID properties and there are other techniques to reduce the performance impact
of database logging without sacrificing durability.

Group commit aims to utilize the bandwidth of stable storage devices more effi-
ciently by processing log-flush requests of several transactions together. Log records,
including commit records, are appended to a queue in main-memory. But the user
is not informed that a transaction has committed until all log records up to the
transaction’s commit record have been flushed to disk. Several log records from the
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queue are flushed to disk together in a single disk operation. Transactions whose
commit records are transferred by the same disk operation are committed as a group,
as described by DeWitt in [41].

Stonebraker et al. argue, that even with group commit, forced writes of commit
records cause too much performance overhead [105]. Instead, they suggest, that
recovery for transaction systems can be accomplished by copying missing state from
other database replicas. Such an approach was introduced in [72] for highly available
data warehouse systems. Highly available database systems typically employ some
form of replication to tolerate failures. If a replica fails, it may be possible to
recover by using data from other replicas. First the failed replica has to be brought
into a consistent state. This may be achieved by restoring the last savepoint and
requires that savepoints are created periodically at all replicas. Changes since the
given savepoint may be retrieved from other replicas. But this requires that replicas
keep a certain amount of historic data. In order to tolerate k failures (k-safety)
during the interval required to recover a single replica, at least k+1 replicas are
required. This requires redundant copies of the data and also causes space overhead
on single replicas, as a certain amount of historic data has to be kept. The amount
of historic data that is kept determines the earliest possible point in time for a
point-in-time recovery which may be required due to human mistakes or software
errors. The level of durability that can be achieved with this approach depends on
the availability and reliability of the distributed replication system. One of the first
commercial systems that implement this approach is VoltDB 8. But even VoltDB
relies on periodic database snapshots to stable storage apart from k-safety 9 and
VoltDB Enterprise Edition has additional commercial logging features 10.

Group commit can be further optimized. One technique is called early lock re-
lease and has already been described by DeWitt [41]. A transaction can release all
locks, once it has added its commit record to the in-memory log queue. Thereby,
other transactions can read dirty data of such a pre-committed transaction and thus
become dependent on it. The pre-committed transaction has to be committed before
its dependent transactions, which can be ensured by flushing the log records from
the in-memory queue to disk sequentially in a FIFO manner. Another technique has
been proposed recently by Johnson et al. [60] and is called flush pipelining. Apart

8http://www.voltdb.com (retrieved 08/28/2012)
9http://community.voltdb.com/faq (retrieved 08/28/2012)

10http://community.voltdb.com/docs/UsingVoltDB/ChapCmdLog (retrieved 08/28/2012)
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from disk I/O, latency may be caused by context switches which are required to
let other processes (or threads) use processing resources while a process (or thread)
is waiting for I/O operations. Johnson et al. state that the resulting scheduling
overhead is significant, especially for systems with multi-core architecture and fast
solid state storage devices. Flush Pipelining tries to eliminate this scheduling bottle-
neck by decoupling the transaction commit from thread scheduling. The technique
is based on a daemon thread, which performs the actual log flush, and so-called
"agent threads", that are able to execute other work during log flush by enqueuing
state at the log.

Purely single-threaded transaction processing systems process transactions se-
quentially. Therefore, the current transaction cannot commit before all log records
have been flushed to disk and all succeeding transactions have to wait. Emerging
main-memory database systems, like HyPer, process transactions according to the
single-threaded model (at least those of a given partition), but run certain tasks in
concurrent threads to improve performance. This allows using group commit, as
the log buffer can be flushed to disk asynchronously and users are informed that a
transaction has committed once the corresponding commit record has reached sta-
ble storage, as described in [64]. Processing the next transaction before the current
transaction’s commit has been finished completely, allows transactions to read dirty
data of the pre-committed transaction. This is somewhat similar to the early lock
release technique. Although a single-threaded transaction processing system may
work without locks when a single thread exclusively performs all processing on a
given partition. Moreover, a single-treaded transaction processing system tries to
minimize context switches as does flush pipelining.

Emerging main-memory database systems, like HyPer [64], use a special kind of
log records, that does not contain changes made by transactions, but instead the
ID and parameter values of stored procedures. This special form of logical logging
works for deterministic transactions that correspond to a stored procedure which is
called with the given parameter values. The major advantage of this approach is
that the number of log records may be reduced significantly, as there is only one log
record per transaction. If the number and size of parameters is small, overall log
size may be reduced. In combination with consolidation, the available stable storage
bandwidth may be utilized more efficiently. Furthermore, Harizopoulos et al. argue
that the cost for executing a transaction in a main-memory database system is low
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enough to compete with the cost for replaying the changes made by a transaction
based on a traditional redo log [59]. A specific requirement of this approach is that
a change history of stored procedures has to be archived for being able to replay the
log records.

We propose a special-purpose logging approach. Business transactions are deter-
ministic, canned and interaction-free in our application scenario. Therefore, business
transaction requests can be replayed and it is sufficient to log the business transac-
tion requests and not the changes made by business transactions. Thomson et al.
observed that deterministic transactions can be ordered in advance [109]. Similarly,
we suggest writing logical log records to stable storage without even executing the
corresponding database transactions. The log sequence on disk defines an order
according to which the business transactions - corresponding to the logged business
transaction requests - have to be executed. Actually only a partial order is required,
as it is sufficient to define A) the order of cross-partition business transactions, B)
the order of single-partition business transactions within a given partition and C) the
relative order of single-partition business transactions and cross-partition business
transactions. The order between single-partition business transactions of different
partitions does not have to be defined, as described in [64], and allows for parallelism.
We apply this approach to our mixed workload scenario, and take advantage of the
mentioned characteristics with the queuing approach. Log records are written dur-
ing the OLAP phase before the corresponding business transactions are executed
during the OLTP phase. Thereby, there is no disk I/O during the OLTP phase
which helps to make execution times of short-running business transactions more
predictable. Similar to group commit, requests can be accumulated and logged to
disk using bulk transfers. Moreover, the optimization techniques early lock release
and flush pipelining can be applied to single-threaded transaction processing system
as discussed above.
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4.5.3 Analytical Model

In this section, we present an analytical model for processing business transactions
and periodic business queries according to the queuing approach without snapshots.
For ad-hoc business queries, we analyze the space and processing overhead of differ-
ential snapshots with different granularities.

Queuing approach

The analytical model can be used to determine a suitable interval length for a
given set of business transactions and periodic business queries with given response
time and throughput rate guarantees, a given data volume and a server with given
capacity. Execution times are estimated based on test runs which are performed
on a server with the given capacity. If the required throughput rate is too high or
the required response time is too low, a server with the given resources may not
be sufficient and the analytical model determines that no suitable interval length
exists. In this case, a different server of the server farm with more capacity has to
be used. We assume that the workload of any single customer or tenant fits on a
single server of the server farm.

We define a mapping tp which returns the expected throughput guarantee for a
given business transaction type (BT0 .. BTi) or periodic business query type (BQ0

.. BQj). Then the maximum number of requests per interval of each business
transaction type and periodic business query type can be determined, based on the
expected throughput (tp) and a given interval length (IL). We refer to this figure
as the request count (rc).

rc(x) = tp(x) ∗ IL
We define a mapping et which returns the average execution time for processing

a given business transaction type or periodic business query type on a given data
volume. Based on the request count (rc) and the execution time (et), the overall
execution time of business transactions (ETT ) and periodic business queries (ETQ)
can be calculated.

ETT =
∑BTi

x=BT0
rc(x) ∗ et(x)

ETQ =
∑BQi

x=BQ0
rc(x) ∗ et(x)

We define a mapping rg which returns the response time guarantee for a given
business transaction type or periodic business query type. Based on the response
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time guarantee, the minimal response time guarantee of business transactions (MRGT )
and periodic business queries (MRGQ) can be calculated.

MRGT = minBTi
BT0

rg(x)

MRGQ = minBQi
BQ0

rg(x)

Based on the minimal response time guarantee, the overall execution time and
the average network delay from client to server (ND), the maximal acceptable de-
lay of business transactions (MDT ) and periodic business queries (MDQ) can be
calculated.

MDT =MRGT − ETT − 2 ∗ND
MDQ =MRGQ − ETQ − 2 ∗ND
A suitable interval length has to fulfill the following condition.

ETT <=MDQ ∧ ETQ <=MDT

If it exists, such a suitable interval length can be determined as follows.

IL = min(MDT + ETT ,MDQ + ETQ)

The maximal acceptable delay and the overall execution time depend on the
interval length themselves which can be resolved via fixed point iteration.

For a given interval length, the required queue length QL can be determined as
follows.

QL =
∑BTi

x=BT0
rc(x) +

∑BQi
x=BQ0

rc(x)

The expected resource utilization RU can be determined as follows.

RU =
ETT+ETQ

IL

If the resource utilization is less than one, the given server is oversized. By
consolidating several tenants onto the same infrastructure, resource utilization can
be improved. Tenants can be consolidated if there is a suitable interval length for
their combined workload.

Differential Snapshots

The space overhead of differential snapshots depends on the update characteristics
of the application. At creation time of a snapshot, all data can be shared between
current state and snapshot. Data can be appended without altering the snapshot,
as it is sufficient to record the information about the last valid row of each table.
But when existing data is overwritten, the old version of the data has to be kept
for the snapshot and the new version has to be made available for the current
state. Therefore, the incurred space overhead depends on the granularity of the
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snapshot technique and the distribution of updates across the data set. We focus on
row granularity, which seems very suitable for transactional business applications
which typically process data row-wise, and page granularity, which can benefit from
hardware supported operating system mechanisms. So either an entire row or an
entire page may be copied, when a value is updated. At most two copies are required
and it makes no difference how often a given row or page is updated until the
snapshot is merged.

If we assume that updates are distributed uniformly across the data set, the
process can be modeled by an urn model with replacement and without order. The
expectation for random variable X, which represents the number of "dirty" blocks
containing updated objects, can be determined according to Cardenas formula.

E[X] = b ∗ (1− (1− 1
b
)k)

There are N objects, and b blocks. For page granularity, each block has the
size of a page. Each block contains N/b objects and there are k update operations
which are distributed uniformly among the N objects and the b blocks. For row
granularity, each row corresponds to an object. Therefore, b = N and each block
contains exactly one object as N/b = 1.

The number of update operations depends on the rate at which operations are
performed and the operation mix. The maximal rate without snapshot may be re-
duced due to overhead of the snapshot technique and its implementation. For page
granularity, we model the HyPer approach as described in [64]. This approach re-
quires forking a new process at the beginning of each interval to create the snapshot.
The duration of this operating system operation depends on the amount of memory
used by the forked process, as among other things the page table of the parent pro-
cess is copied. Depending on the hardware, this operation may take around 8 ms per
1 GB of memory that is used by the parent process. If we model the data volume
as a constant, then this operation reduces the maximal rate and the difference to
the maximal rate without snapshot represents the incurred performance overhead.
For row granularity, a delta mechanism can be used which imposes only very low
overhead for snapshot creation. Apart from the creation, the process of releasing a
snapshot may also cause performance overhead. For page granularity, the snapshot
can be released by terminating the child process at the end of the interval. Among
other things, this operating system operation frees the page table copy and frees
pages which are not referenced any more. As the operating system performs these
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operations lazily to even out the associated performance overhead, we do not have
to take this into account. For row granularity with delta mechanism, the delta has
to be merged at the end of each interval which can have a significant performance
impact. The duration of the merge operation depends on the size of the delta. The
maximum size of the delta depends on the maximum number of update operations
performed per interval and the resulting number of dirty blocks. We define the
function db which returns the number of dirty blocks for a given rate. We define the
function md which returns the merge duration for a given rate. The merge duration
can be estimated based on the number of dirty blocks for the given rate and the
average merge duration per block (amd).

md(rate) = db(rate) ∗ amd
The maximal rate in turn depends on the duration of the merge operation, as no

other operations can be performed during the merge operation, and can be deter-
mined as follows. We define a helper function f that returns the deviation from the
interval length for a given rate based on the average duration of a single operation
(c), the merge duration for the given rate and the interval length (IL).

f(rate) = rate ∗ c+md(rate)− IL
The maximal rate at which operations can be performed with row granularity and

delta mechanism can be determined by finding the location of a function root of f.
The difference between this rate and the maximal rate without snapshot represents
the incurred performance overhead.

The space overhead depends on the update characteristics of the application.
For our application scenario, hot spots are characteristic and therefore uniform dis-
tribution is unrealistic. To get a more realistic estimation of space overhead, we
split the data set into two subsets - hot and cold - and assume uniform distribution
only within each subset. The number of hot spots has to be considered and can be
modeled as the distribution of the hot subset across the data set.

4.5.4 Experimental Evaluation

For evaluating OLTP performance of MobiDB, we use a benchmark similar to TPC-
C [111]. In [61], also a TPC-C-like benchmark was used for evaluating H-Store. For
MobiDB, we implemented a TPC-C-like benchmark that relies solely on point-wise
operations. MobiDB achieves throughput numbers of more than 120’000 new-orders
per second with 8 warehouses on an off-the shelf server (2 Intel Xeon X5570 Quad
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Core-CPUs, 2.93 GHz, 64 GB RAM, Linux). Thus, OLTP performance of MobiDB
is in the same order of magnitude as H-Store, with published numbers of more than
70’000 new orders per second on a slightly less powerful machine [105]. MobiDB and
the benchmark are implemented in pure Java while H-Store relies on a native library
written in C++. Furthermore, as H-Store relies on replication instead of logging, we
disabled logging in MobiDB. Moreover, cross-warehouse transactions were disabled
for this comparison, because H-Store did so, as described in [114].

To evaluate the mixed workload performance of MobiDB, we used a fixed TPC-
C-like OLTP workload of 6’250 new-orders per second with cross-warehouse trans-
actions and evaluated how much OLAP business queries can be performed while ad-
hering to the guarantees for OLTP. The used OLAP workload consists of one simple
periodic business query type called top-customer-query which determines the ten
best customers for a given warehouse and a given district according to sales volume
based on the TPC-C schema. The top-customer-query meets our workload charac-
teristics with an average execution time of 10 milliseconds while TPC-C-like business
transactions have execution times of only a couple of microseconds. We measured a
throughput of 6’250 new-orders per second and the 95th percentile of response times
was below 1’075 milliseconds (the upper limited for the 90th percentile required by
the TPC-C Specification is higher than two seconds [111]). Thus, the guarantees
for OLTP were fulfilled and, at the same time, an OLAP throughput of almost 250
top-customer queries per second was achieved.

For business transactions and periodic business queries, the space overhead of
MobiDB is limited, as additional space is only required for queuing requests which
depends on the guaranteed request rate and the request size. MobiDB is a special
purpose system which minimizes space overhead for its application scenario while
guaranteeing serializability. It is difficult to compare this with other systems. On
the one hand, commercial DBMSs only achieve much lower throughput rates for
mixed workloads, even at the reduced isolation level read-committed, as shown
by Funke et al. in [47] with System "X". On the other hand, HyPer achieves
even higher throughput numbers than MobiDB and H-Store using a novel query
compilation strategy that aims at good code and data locality in combination with
a predictable branch layout [81]. But HyPer incurs a certain space overhead, as
snapshots are required even for periodic business queries. For ad-hoc queries, the
space and performance overhead of differential snapshot mechanisms with row and
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(a) Scenario 1: Difference in performance overhead

(b) Scenario 1: Difference in space overhead

(c) Scenario 2: Difference in performance overhead

(d) Scenario 2: Difference in space overhead

Figure 4.7: Comparison of row and page granularity snapshots

page granularity can be compared according to our analytical model. We assume a
data volume of 1 GB per tenant, consisting of approximately 10 million small objects
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Figure 4.8: TPC-C-like update characteristics

with average size of 100 byte, and look at the overhead caused by a single tenant.
The operations mix represents business transactions and is made up of read, append
and update operations. Read operations form 74 percent of the operations mix
similar to TPC-C and the distribution of the remaining operations among append
and update operations is varied according to the update share between 1% and 100%
(u1 - u100). Time is divided into 1 second time intervals; a snapshot is created at
the beginning of the interval and merged before the end of the interval. The size
of the hot subset and the probability that an update hits the hot subset is varied
to model different application characteristics. Regarding the number of hot spots
or how the hot subset is distributed across the data set, we look at two extreme
scenarios. Figures 4.7a and 4.7b show results for the first scenario where hot objects
are clustered together in a single hot spot. Figures 4.7c and 4.7d show results for
the second scenario where hot objects are distributed uniformly across the data set
to model many small hot spots. The characteristics of real applications probably
lie somewhere in-between these two extreme scenarios, but these extreme scenarios
show that the best trade-off between space and performance overhead depends on
the characteristics of the application. Some applications can reduce their space
overhead with row granularity and the resulting performance overhead may still be
acceptable. Some applications may accept higher space overhead in order to reduce
performance overhead. Depending on application characteristics, the space overhead
may reach almost a factor of two, although snapshots are only active for less than
1 second. This corresponds to space overhead which can be saved with the queuing
approach for every second that no ad-hoc business query is in the system. All in all,
the queuing approach is feasible for the mixed workload of our application scenario.

We analyzed the space overhead of row and page granularity snapshots with TPC-
C and measured only a very small difference. This is due to the update characteris-
tics of TPC-C. We did a micro-benchmark with our TPC-C-like implementation to
analyze its update characteristics. The Warehouse table for a single warehouse
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accounts for 1 page and per second 16’611 updates are performed on this single
page. The District table also accounts for 1 page and 75’303 updates per second.
The Customer and Stock tables account for 5’266 and 8’252 pages respectively.
During the time interval of one second all pages of these tables are updated, but
with varying frequency. The Order table accounts for 16’874 pages, but only a few
hundred pages are updated during a one second time interval (see Figure 4.8). The
tables Item, History and Order-Line are never updated and account for 2’392,
37’499 and 487’499 pages respectively at the time of measurement. The History

and Order-Line tables constantly grow during the benchmark run. If TPC-C
would represent realistic update characteristics of a real business application, it
would not matter if page or row granularity was used as the space overhead of both
is very small and merging deltas of this size only causes very limited performance
overhead. Probably the TPC-C benchmark was not built for that purpose. Further-
more, for this kind of business applications a pure main-memory approach would be
a waste of resources, as most data is cold. A hybrid approach which offloads cold
data to a different media, like flash memory, would be much better suited. A hy-
brid approach keeps only hot and warm data in main-memory. Thus, the difference
between page and row granularity matters as the above scenarios show.
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4.6 Conclusions

The presented SaaS architecture combined with the queuing approach used by Mo-
biDB, may enable SaaS business applications, like CRM, with more powerful ana-
lytical features at competitive prices. Furthermore, the presented approach enables
service providers to offer strict SLAs with stringent response time and through-
put guarantees. With stricter SLAs it would be easier to compare different cloud
offerings with on-premise solutions and thus cloud computing could become more
attractive for potential customers.

The main difference between OLTP and OLAP workloads is that they have dif-
ferent predominant access patterns (point-wise vs. scan). This results in a big dif-
ference with regard to average execution times. To a certain degree, it is possible to
change the access pattern of a query by materialization. Introducing materialization
can turn a scan-based access into a point-wise access and removing materialization
can turn a point-wise access into a scan-based access. If materializations are not
kept up to date, this is similar to reduced isolation levels and leads to additional
complexity in the application layer. Materializations are typically kept up to date
by the application code of business transactions, e.g. revenue per district in TPC-
C. Today, introducing or removing such materializations requires changes to the
application code. The overall space and performance overhead with and without
materializations depends on the data representation of the DBMS, e.g. row-store or
column-store, and hardware characteristics, e.g. cache hierarchy. As DBMSs and
hardware typically evolve during the life cycle of an application, it is a bad idea to
specify materialization by manual coding at development time. Recently, techniques
are emerging, that allow translating declarative query languages automatically into
either scan-based queries or point-wise accesses and imperative code for updating
materializations. Ahmad et al. propose such a technique as part of the DBToaster
project [5] and recently presented promising experimental results [4]. Such declar-
ative query languages provide more flexibility and may enable the DBMS to apply
materializations adaptively.
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Chapter 5

Mixed Workload Benchmark

Advances in hardware architecture enable Operational Business Intelligence. Emerg-
ing database systems can process analytical queries directly on the operational
database without impeding the performance of mission-critical transaction process-
ing too much. In order to evaluate the suitability of database systems for Op-
erational Business Intelligence, we propose the mixed workload CH-benCHmark1,
which combines transactional load based on TPC-C order processing with deci-

sion support load based on a TPC-H-like query suite. This combination consti-
tutes a mixed workload, as both loads are run in parallel on the same tables in a
single database system. In contrast, single-workload benchmarks can be installed
on a single database instance and run in parallel, but this does not constitute a real
mixed-workload, because the different loads are run on separate data.

TPC-C and TPC-H are two standardized and widely used benchmarks address-
ing either transactional or analytical workloads. We derived our mixed workload
CH-benCHmark from these two standardized and widely accepted benchmarks, as
to our knowledge, currently there is no widely accepted mixed workload benchmark.
Recently another mixed workload benchmark has been devised, called Compos-
ite Benchmark for Transaction processing and operational Reporting (CBTR) that

1The CH-benCHmark was developed as a research project (http://www-db.in.tum.de/
research/projects/CH-benCHmark/, retrieved 08/28/2012) lead by Prof. Alfons Kemper, Ph.D.
and Prof. Dr. Thomas Neumann. Florian Funke, Stefan Krompass and I (Michael Seibold) worked
together on this project. We had several external partners from the IT industry and were sup-
ported by bachelor student Adrian Streitz. After a related benchmark - called "TPC-CH" - had
been published at BTW 2011 by Florian Funke et al. [47], the CH-benCHmark was devised and
published at DBTest 2011 [30] and TPCTC 2011 [46].
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CHAPTER 5. MIXED WORKLOAD BENCHMARK

includes OLTP and reporting components [18]. This benchmark is not based on
standardized benchmarks, but instead uses the actual data of a real enterprise. In
contrast, CH-benCHmark is derived from the two most widely used TPC bench-
marks and produces results that are highly relevant to both hybrid and classic
single-workload systems.

Just as the data volume of actual enterprises tends to increase over time, an
inherent characteristic of this mixed workload benchmark is that data volume in-
creases during benchmark runs, which in turn may increase response times of ana-
lytic queries. For purely transactional loads, response times typically do not depend
that much on data volume, as the queries used within business transactions are less
complex and often indexes are used to answer these queries with point-wise accesses
only. But for mixed workloads, the insert throughput metric for the transactional
component interferes with the response-time metric for the analytic component of
the mixed workload. In order to address this problem, we analyze the workload char-
acteristics and performance metrics of the mixed workload CH-benCHmark. Based
on this analysis, we propose performance metrics that account for data volume
growth which is an inherent characteristic of such a mixed workload benchmark2.

2Parts of this work have been published at DBTest 2011 [30] and TPCTC 2011 [46].
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5.1 Overview of the MixedWorkload CH-benCHmark

The CH-benCHmark represents a mixed database workload comprised of transac-
tional and analytical loads that are executed in parallel on the same tables in a single
DBMS. The transactional load is based on the business transactions of TPC-C and
uses unaltered TPC-C tables. Thus, benchmark sponsors — hardware and software
vendors who publish TPC benchmark results — can adapt their existing TPC-C
benchmark kits to run the transactional load of CH-benCHmark. The analytical
load consists of a read-only query suite modeled after TPC-H. The TPC-H refresh
functions are omitted, as the database is continuously updated (and expanded) via
the transactional load.

5.1.1 Schema and Initial Database Population
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Figure 5.1: Entity-Relationship-Diagram of the CH-Benchmark Database

CH-benCHmark extends the TPC-C schema (see gray boxes in Figure 5.1) with
three additional tables from the TPC-H schema: Supplier, Region and Nation

(see white boxes in Figure 5.1). These additional tables are read-only, as they are
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not modified during a benchmark run. The combined schema allows formulating
slightly modified TPC-H queries on TPC-C-like schema and data.

Figure 5.1 denotes the cardinalities of the initial database population in brackets
after the name of each entity. The + symbol is used after the cardinality of an
entity to indicate that the cardinality is subject to change during a benchmark run,
as rows are added or deleted. The initial database population follows the official
TPC-C specification. (min, max)-notation is used to represent the cardinalities of
relationships after initial database population and during benchmark runs. As in
TPC-C, the Warehouse table is used as the base unit of scaling. The cardinal-
ity of all other tables (except for Item) is a function of the number of configured
warehouses (cardinality of the Warehouse table). The population of the three
additional read-only tables is defined as follows. The relation Supplier is popu-
lated with a fixed number of entries (10,000). Thereby, an entry in Stock can be
uniquely associated with its Supplier via the following formula:
(Stock.s_i_id × Stock.s_w_id) mod 10, 000 = Supplier.su_suppkey

A Customer’s Nation is identified by the first character of the field c_state.
TPC-C specifies that this first character can have 62 different values (upper-case
letters, lower-case letters and numbers), therefore we chose 62 nations to populate
Nation (TPC-H specifies 25 nations). The primary key n_nationkey is an iden-
tifier according to the TPC-H specification. Its values are chosen such that their
associated ASCII value is a letter or number. Therefore no additional calculations
are required to skip over the gaps in the ASCII code between numbers, upper-case
letters and lower-case letters. Region contains the five regions of these nations. Re-
lationships between the new relations are modeled with simple foreign key fields:
Nation.n_regionkey and Supplier.su_nationkey.

5.1.2 Transactional Load

According to the TPC-C specification [111], the original TPC-C workload consists
of a mixture of read-only and update-intensive business transactions: New-Order,
Payment, Order-Status, Delivery, and Stock-Level. The TPC-C schema contains
nine tables: Warehouse, Stock, Item, History, New-Order, Order-Line,
District, Customer and Order (see gray boxes in Figure 5.1). The transac-
tional load of the CH-benCHmark is very similar to the original TPC-C workload.
Unchanged TPC-C business transactions are processed on unchanged TPC-C tables.
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Even the initial database population follows the official TPC-C specification. But
the CH-Benchmark does not simulate terminals, as TPC-C does with keying times
and think times. Instead a given number of transactional sessions issue randomly
chosen business transactions in a sequential manner without think times or key-
ing times. Furthermore, the distribution of the different business transaction types
follows the official TPC-C specification. Moreover, the home warehouses of busi-
ness transactions are randomly chosen by each transactional session and are evenly
distributed across warehouses.

5.1.3 Analytical Load
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Figure 5.2: Schema TPC-H (adapted from [112])

117



CHAPTER 5. MIXED WORKLOAD BENCHMARK

The analytical load of CH-benCHmark is based on TPC-H. The following descrip-
tion of TPC-H is based on the TPC-H specification [112], which defines a decision
support benchmark that was designed to be representative of complex business anal-
ysis applications — involving sequential scans of large amounts of data, aggregation
of large amounts of data and multi-table joins. TPC-H models the activity of a
wholesale supplier and tries to represent the activity of any industry which must
manage, sell, or distribute a product worldwide. Data warehouse applications typ-
ically use a star schema, as discussed in chapter 17.2.1 of [62]. But, the database
schema of TPC-H does not follow the star schema paradigm. Although there is
the Star Schema Benchmark, which has a star schema and is derived from TPC-H
[84], we use the original TPC-H benchmark, because its schema is more similar to
TPC-C. The database schema of TPC-H is shown in Figure 5.2. It is made up of
the following eight tables and one-to-many relationships between them: supplier,
nation, region, part, partsupp, customer, orders and lineitem. Column
names are prefixed with the prefix mentioned in parentheses following each table’s
name. Furthermore, the number or formula below each table name represents the
cardinality of the table which may depend on the scale factor SF . This scale factor
determines the size of the initial database population. The minimum database pop-
ulation (SF = 1) contains business data from 10,000 suppliers consisting of almost
ten million rows and representing a data volume of about 1 gigabyte. A similar
initial database size can be achieved in TPC-C by configuring 12 Warehouses.

TPC-H comprises 22 read-only ad-hoc queries and each query is described in
terms of a business question that illustrates the business context in which the query
could be used. The queries have substitution parameters, that are replaced by ran-
dom values selected from a uniform distribution and change across query executions.
Apart from the queries, the benchmark involves two refresh functions, which per-
form batch modifications of the database. The "New Sales" refresh function inserts
new rows into the orders and lineitem tables and is complemented by the "Old
Sales" refresh function, which removes rows from the orders and lineitem tables.
The two refresh functions are executed in pairs and are designed is such a way that
the population of the test database is once again in its initial state after a certain
number of pairs have been executed. Thus, the data volume does not grow signifi-
cantly during a benchmark run. The amount of data inserted and deleted depends
on the scale factor SF .
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According to execution rules, first a load test is performed, which creates and
loads the database tables. Then follows the performance test which itself consists
of two different tests: Power Test and Throughput Test. On the one hand, Power
Test measures the raw query execution power of the system when connected with
a single active user. On the other hand, Throughput Test represents a multi-user
workload and measures the ability of the system to process the most queries in the
least amount of time. For the Power Test, all 22 queries are submitted by a single
session of the driver to the system under test, which executes the queries one after
another. In parallel, a single refresh stream executes a single pair of refresh functions.
The first refresh function is scheduled before and the second one is scheduled after
the execution of the queries. The result of the Power Test is the TPC-H Power
metric. It is defined as the inverse of the geometric mean of the timing intervals.
For the Throughput Test, two or more sessions submit queries on the system under
test. In parallel, a single refresh stream executes pairs of the two refresh functions.
The number of pairs that need to be executed is equal to the number of query
streams used for the Throughput Test. The scheduling of the refresh function pairs
within the refresh stream is left to the test sponsor. Thus, query executions can be
segregated from database refreshes. The result of the Throughput Test is the TPC-
H Throughput metric at the chosen database size. It is defined as the ratio of the
total number of queries executed over the length of the measurement interval. The
TPC-H Composite Query-Per-Hour Performance Metric (QphH@Size) combines the
numerical quantities of the TPC-H Power and TPC-H Throughput metric for the
selected database size. TPC-H does not constitute a mixed workload, because data
modification operations - in the form of refresh functions - can be performed in bulk
when no queries are running.

The analytical load of CH-benCHmark is based on the 22 TPC-H queries. Since
the CH-benCHmark schema is different from the TPC-H schema, the queries are
reformulated to match the schema. However, we tried to preserve their business
semantics and syntactical structure3. But, the TPC-H-like queries are performed
on extended TPC-C data which may have different characteristics than the original
TPC-H data, although both benchmarks model very similar application scenarios.
Furthermore, business queries read data from the extended schema, including data
from the TPC-C tables and the three additional read-only tables. The contents

3The SQL code of the CH-benCHmark queries can be found in the Appendix.
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of the unmodified TPC-C tables change during the benchmark run, as business
transactions update and insert tuples and these changes have to be accounted for by
the business queries depending on data freshness requirements. Therefore, analytical
performance in the CH-benCHmark cannot be easily inferred from the performance
of a similarly-sized TPC-H installation. Similarly to TPC-H, the analytical load is
generated by a given number of analytical sessions. Each analytical session submits
business queries sequentially. All 22 business query types are issued in continuous
iterations over the set of query types, while each analytical session executes all 22
query types in a randomly chosen permutation sequence to avoid caching effects.
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Figure 5.3: Benchmark Parameters

5.1.4 Benchmark Parameters

The CH-benCHmark provides flexible configuration options to model different work-
load characteristics and application scenarios, e.g. the data volume can be adjusted
to fit in main-memory or to require secondary storage. Figure 5.3 illustrates param-
eters of the CH-benCHmark and shows some exemplary values. Database systems
can be compared based on performance metrics by performing benchmark runs with
the same parameter values on all systems.

First, the size of the initial database is specified by the number of warehouses,
which determines the cardinalities of the other relations similar to TPC-C. Second,
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the composition of the workload is specified by the number of transactional ses-
sions and analytical sessions. This parameter allows specifying purely transactional,
purely analytical and mixed workload scenarios. Third, the isolation level which has
to be provided by a system under test, is a parameter of the CH-benCHmark. Lower
isolation levels, like read committed, can be used to measure raw performance with
limited synchronization overhead. More demanding isolation levels can be used to
account for more realistic synchronization requirements. The isolation level param-
eter can be specified separately for the transactional and the analytical load. For
mixed workload scenarios, the data freshness parameter allows to specify the time
or number of transactions after which newly issued queries have to incorporate the
most recent data.

5.1.5 Data Scaling

TPC-C and TPC-H employ different scaling models. A scaling model maintains
the ratio between the transactional load presented to the system under test, the
cardinality of the tables accessed by the transactions, the required space for storage
and the number of terminals or sessions generating the system load. TPC-C employs
a continuous scaling model, where the data volume has to be increased for higher
transaction load. The number of warehouses determines not only the cardinality of
the other tables, but also the number of terminals that generate a limited load each
due to think times and keying times. For increasing transaction load, the number of
terminals has to be increased, requiring a higher number of warehouses and resulting
in a larger data volume. In contrast, TPC-H employs a fixed scale factor model,
where the database size is set by a scale factor regardless of system performance.

The CH-benCHmark deviates from the continuous scaling model of TPC-C in or-
der to allow for high transaction rates on small database sizes that are common for
scenarios supported by emerging main-memory database systems. On the one hand,
the continuous scaling model may cause higher response times for analytical queries
when transactional load is increased, because analytical queries would have to pro-
cess larger data volumes. In this case it would not be meaningful to compare query
response times of two systems with different maximum transactional loads, as even
the size of the initial database population would vary largely. On the other hand, the
continuous scaling model of TPC-C requires very large data volumes and expensive
secondary storage systems in order to fully utilize modern CPUs. However, the CH-

121



CHAPTER 5. MIXED WORKLOAD BENCHMARK

benCHmark was designed not only for traditional disk-based database systems, but
also for emerging main-memory database systems. For measuring performance of
high-throughput OLTP main-memory database systems like VoltDB, a TPC-C-like
benchmark has been proposed which does not adhere to continuous scaling. Instead,
a fixed number of warehouses is used and there are no wait times, according to the
benchmark description [114]. Similarly, the CH-benCHmark determines maximum
system performance for a fixed initial data volume, which is determined by a param-
eter of the CH-benCHmark. Thus, the initial database population is determined by
a scale factor regardless of system performance, like in TPC-H. In our case, the scale
factor is the number of warehouses which determines the initial data volume as in
TPC-C. But in contrast to TPC-C, the number of transactional sessions is another
parameter of the benchmark that does not depend on the number of warehouses
and there are neither sleep nor keying times. Therefore higher system performance
can be achieved without increasing the initial data volume.

During the course of a benchmark run business transactions create new orders,
adding tuples to relations Order, Order-Line, History and New-Order. Since
the Supplier relation is read-only, the ratio of the cardinalities of these relations
changes relative to the Supplier relation. The cardinality ratio relative to the Sup-

plier relation does not change for the relations Warehouse, District, Stock,
Customer, and Item, which are read-only or only updated in-place. Due to con-
tinuous data volume growth, refresh functions like in TPC-H are not required. But
continuous data volume growth during benchmark runs poses new challenges as
discussed in the next section.

5.2 Performance Metrics

In order to compare two systems, metrics for the transactional and the analytical
load have to be considered. Table 5.1 gives an overview on the current performance
metrics of CH-benCHmark.

Currently, the mixed workload CH-benCHmark uses performance metrics similar
to those of single-workload benchmarks like TPC-C and TPC-H (see Table 5.1). The
two most important metrics are Transactional Throughput for transactional load
and Geometric Mean of response times for analytical load. It may seem obvious to
combine the Transactional Throughput metric and the Queries Per Hour metric in
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Transactional Throughput
(tpmCH)

Total number of New-Order transactions com-
pleted during the measurement interval di-
vided by the elapsed time of the interval in
minutes; New-Order transactions that rollback
due to simulated user data entry errors must
be included; Similar to the Maximum Quali-
fied Throughput metric of TPC-C

Geometric Mean
(ms)

For each query type the average response times
of queries completed during the measurement
interval is determined and the geometric mean
of the average response times of all query types
is reported.

Duration Per Query Set
(s)

Query set consists of 22 queries, one query per
query type; Sum of the average response times
of all query types; Reported in seconds

Queries Per Hour
(QphCH)

Completed queries per hour; Can be deduced
from Duration Per Query Set metric as fol-
lows:

60 minutes
Duration Per Query Set (in seconds)

60

× 22

Table 5.1: Performance Metrics

order to obtain a single metric, but competing systems under test may prioritize
transactions and analytical queries differently and this aspect would get lost if a
single metric were used. Remember that the transactional load generated by the
configured number of transactional sessions is not limited by sleep times or keying
times, but can only be throttled by the system under test.

Data volume growth caused by the transactional load of the mixed workload
poses a new challenge. The problem is that higher transactional throughput results
in larger data volume which in turn may result in longer response times for analyti-
cal queries. Therefore, currently reported performance metrics cannot be compared
individually, as systems with high transactional performance may have to report
inferior analytical performance numbers, although analytical queries have been per-
formed on larger data volumes. The insert throughput metric of the transactional
component interferes with the response-time metric of the analytic component of the
mixed workload. Note that TPC-H does not consider a database that grows over
the course of a benchmark run. To overcome this issue, we propose performance
metrics that account for data volume growth which is an inherent characteristic of
a mixed workload benchmark like CH-benCHmark.
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5.2.1 Response Times and Data Volume Growth

During the course of a CH-benCHmark run, data volume grows over time due to
inserts caused by the transactional load of the mixed workload. Figure 5.4 illustrates
how response time of a query may increase with growing data volume.

During the course of a CH-benCHmark run, cardinality of the following tables
increases: Order, Order-Line, History and New-Order. The cardinality
ratio between the relations Order-Line and Order should be approximately ten
and should be more or less constant during a run, because an order includes ten
items on average according to the TPC-C specification. The History relation is
not read by any query in the TPC-H-like query suite of CH-benCHmark and thus
does not impact their response times. One could think that the cardinality of the
New-Order relation would be more or less constant, as each delivery transaction
delivers a batch of ten new (not yet delivered) orders and the TPC-C specification
states: "The intent of the minimum percentage of mix ... is to execute approximately
... one Delivery transaction ... for every 10 New-Order transactions" [111]. But in
practice our CH-benCHmark implementation, like most other implementations of
TPC-C, tries to maximize the number of processed New-Order transactions and only
processes the required minimum of the other transaction types. This strategy results
in approximately 45% New-Order transactions and only 4% Delivery transactions
that deliver ten new orders each. Therefore the Delivery transactions cannot keep
up with orders created by New-Order transactions and thus the cardinality of the
New-Order relation increases during a benchmark run, as approximately 11% of
new orders remain undelivered.
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Figure 5.4: Response Times and Data Volume Growth
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Whether the response time of a given query is affected by growing data volume
depends on the required data access patterns, available indexes and clustering of
the accessed data. Data volume growth may affect response times of 19 out of the
22 analytical queries 4, as they access tables whose cardinality increases during the
course of a benchmark run. Response times of queries Q2, Q11 and Q16 should not
be affected by growing data volume, as they access only tables whose cardinality
does not change during the course of a benchmark run. Also Q22 should not be
affected too much, if a suitable index on the Order table is available.

5.2.2 Analytical Model and Normalization

We propose to monitor data volume growth during a benchmark run and to nor-
malize response times based on an analytical model to compensate the "handicap"
caused by larger data volumes. In order to minimize the performance impact of
monitoring data volume growth, we propose to monitor the number of non-aborted
New-Order and Delivery transactions and to estimate the data volume growth of
the Order, Order-Line and the New-Order relation based on this figure. CH-
benCHmark, like any other TPC-C implementation, has to monitor the number of
New-Order transactions anyway for reporting the throughput metric. Additionally,
we have to monitor how many New-Order transactions abort due to simulated input
errors.

For each analytic query, the analytical model has to capture how data volume
growth affects query response times, e.g. based on the accessed relations and the
complexity of required basic operations, like scan, join, etc. Currently our model fo-
cuses on the growth of the accessed relations. For a given point in time, cardinalities
of accessed relations can be estimated and the analytical model can be used to de-
termine a compensation factor. This factor can be used to normalize query response
times and thereby compensate the "handicap" caused by larger data volumes.

The point in time used for estimating data volume of a given query execution
depends on the configured isolation level. Depending on the chosen isolation level,
a query may even account for data which is added while the query is executed. For
example, in Figure 5.4 data volume grows even during query execution as query
execution starts at ts and ends at te. Response times of queries may increase over

4The SQL code of the CH-benCHmark queries can be found in the Appendix.
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time when more data has to be processed. For snapshot isolation and higher isolation
levels, the start time of query execution (ts) can be used. For lower isolation levels,
ts would ignore cardinality changes during query execution and te could favor longer
execution times. As a compromise, the middle of query execution (tm) may be used.

5.3 Experimental Evaluation

For our experimental evaluation5, we configured CH-benCHmark as follows. We use
12 warehouses, as we want to analyze an in-memory scenario. This corresponds to a
data volume of around 1 GB and comes close to the minimum database population
of TPC-H. We use a single analytical session and no transactional sessions. For our
read-only workload, we require that queries are performed on consistent snapshots
of the database and use snapshot isolation as isolation level. This isolation level
has to be explicitly configured in system "P" and is the default for system "V",
which is optimized for read-mostly workloads. We conducted our experiments on a
commodity server with two Intel X5570 Quad-Core-CPUs with 8MB cache each and
64GB RAM. The machine had 16 2.5" SAS disks with 300GB that were configured as
RAID 5 with two logical devices. As operating system, we used an Enterprise-grade
Linux running a 2.6 Linux kernel.

In order to evaluate how data volume growth affects response times of analytical
queries, we need the ability to evaluate analytical performance on CH-benCHmark
databases of different sizes. For reproducibility, we always use the same fixed data
set for a given data volume size. We generate the data sets by configuring CH-
benCHmark for a purely transactional workload scenario and dump database con-
tents to disk after a given number of New-Order transactions have been performed.
As described in Section 5.2.1, normalization is based on an analytical model and an
estimation of data volume growth. We estimate data volume growth based on the
characteristics of typical TPC-C implementations (11% of New-Orders remain un-
delivered). Figure 5.5 shows a comparison between the estimated cardinalities and
the actual cardinalities of the relations in the used data sets. This comparison shows

5As part of his bachelor thesis, Adrian Streitz helped integrating the benchmark extensions
for normalized metrics into the "Performance Measurement Framework", an implementation of
the CH-benCHmark, and helped with conducting measurements. Florian Funke and I (Michael
Seibold) were advisors for his bachelor thesis "Architecture and Evaluation of the Mixed-Workload
CH-benCHmark".
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that the estimations are quire accurate. The x-axis represents the factor by which
data volume is increased (2x - 64x) in a given data set and the y-axis represents
actual or estimated cardinality of the relations. 1x denotes the initial database size
with 12 warehouses, 2x denotes twice that amount and so on.
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Figure 5.5: Estimated and Actual Cardinalities of Relations

In order to compare purely analytical performance of different database systems,
we load data sets of different sizes into two database systems which are representa-
tive for different database system architectures. Database system "P" is a general-
purpose disk-based database system and adheres to traditional row-store architec-
ture. Database system "V" adheres to emerging column-store architecture, is highly
optimized for analytical loads and represents a main-memory database system. We
measure response times of analytical queries for each data set. Each query is per-
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formed N times on each data set with warm cache and the average response time
is compared. Figure 5.8 shows the measured average response times for each of the
22 queries on system "P" and Figure 5.9 shows the corresponding normalized re-
sponse times. Figures 5.6 and 5.7 show the same for system "V". Average response
times for system "V" are one to two orders of magnitude better than for system
"P". A difference of two orders of magnitude was expected due to the architectural
differences of the two systems. Probably the difference is not always two orders of
magnitude, because the data volume fits into the memory-resident buffer pool of
system "P". As expected, average response times of queries Q2, Q11 and Q16 are
not affected by growing data volume, as they access only tables whose cardinality
does not change. After normalization, the average response times of all queries,
apart from Q7 for system "P", are more or less constant. Q7 is an outlier. For sys-
tem "V", average response time increases with growing data volume, but for system
"P" it remains more or less constant. Thus, for system "V" normalization works
fine, but for system "P" it results in decreasing response times. Probably system
"V" scans a lot of data, while system "P" can reduce the processed data volume by
applying early filtering techniques.
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Figure 5.6: Average Response Times of System "V"
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Figure 5.7: Normalized Average Response Times of System "V"
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Figure 5.8: Average Response Times of System "P"
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Figure 5.9: Normalized Average Response Times of System "P"
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1 Q. stream on data set with increasing data volume
System "V" System "P"

average average average average
response times normalized response times normalized

Q# (ms) response times (ms) response times

Q1 368 42 63632 6001
Q2 126 126 890 890
Q3 1012 121 2606 281
Q4 3368 319 15202 1403
Q5 5722 818 17104 1624
Q6 168 20 22549 2125
Q7 1782 260 177 65
Q8 729 131 4270 517
Q9 703 105 4829 551
Q10 6760 725 141634 7510
Q11 57 57 538 538
Q12 2497 254 39550 3619
Q13 120 27 1437 314
Q14 1430 163 42819 4165
Q15 2876 368 141051 14804
Q16 525 525 7767 7767
Q17 651 79 23405 1926
Q18 7828 587 332413 30598
Q19 614 70 27786 2683
Q20 517 73 6863 819
Q21 2552 280 31812 2710
Q22 245 53 1847 396

Geometric mean (ms) 146 1621
Normalized geometric mean 859 10814
Duration per query set (s) 41 931
Normalized duration per query set 6 92
Queries per hour (QphH) 1949 86
Normalized queries per hour (QphH) 15222 868

Table 5.2: Reported CH-benCHmark Results

The experiments show that data volume growth affects response times of analytic
queries and that our analytical model can be used to normalize these response times
for CH-benCHmark. Normalized response times can serve as a performance metric
for the analytical load and account for data volume growth. This metric can be used
to compare systems whose data volume grows at different rates.

In [30] we defined a tabular format for reporting CH-benCHmark results. In Table
5.2 we show our results according to this format and have added columns and rows
for the proposed normalized metrics. The normalized metrics are determined in the
same way as the original ones, but with normalized response times. The presented
results do not correspond to a full mixed workload, as only one query stream is
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performed on fixed data sets with increasing data volume. The advantage of this
approach is, that the same data set of given size can be used for both systems. We
decided not to compare the two systems with a full mixed workload, because system
"V" is highly optimized for analytical loads and is not intended for transaction
processing.
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5.4 Deviations from TPC-C and TPC-H Specifica-

tions

In the following we provide a short summary of those aspects in which CH-benCHmark
deviates from TPC-C and TPC-H specifications.

The transactional load of CH-benCHmark deviates from the TPC-C specification
in the following aspects. First, client requests are generated directly by transactional
sessions instead of simulating terminals and the number of transactional sessions is
a parameter of the CH-benCHmark. Second, home warehouses of business trans-
actions are randomly chosen by each transactional session and are uniformly dis-
tributed across warehouses, instead of statically assigning home warehouses to ter-
minals. Third, a transactional session issues randomly chosen business transactions
in a sequential manner without think times or keying times. But, the distribution
of the different business transaction types follows the official TPC-C specification.
Fourth, the number of warehouses is a parameter of the CH-benCHmark and it is
not necessary to increase the number of warehouses to achieve higher throughput
rates. These changes can be easily applied to existing TPC-C implementations, only
small modifications of the benchmark driver configuration and implementation may
be required.

The analytical load of CH-benCHmark deviates from the TPC-H specification in
the following aspects. First, the queries are reformulated to match the extended
TPC-C schema. Second, the queries are performed on extended TPC-C data which
may have different characteristics than the original TPC-H data. Third, the TPC-H
refresh functions are omitted, as the database is continuously updated (and ex-
panded) via the transactional load. Fourth, default values are used for substitution
parameters and these values do not change across query executions. Default values
have been chosen such that data from the initial database population and data that
was generated during the benchmark run is selected. Fifth, CH-benCHmark does
not analyze singe-user and multi-user workload separately in each benchmark run
like Power and Throughput Test, but different benchmark configurations may be
used for that purpose.

A specification of CH-benCHmark has to define the additional tables which have
to be added to an existing implementation of TPC-C. Furthermore, the TPC-H-like
queries, the scaling model and the performance metrics have to be specified.
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5.5 Conclusions

In this chapter we presented the mixed workload CH-benCHmark and analyzed
its workload characteristics and performance metrics. Based on this analysis, we
proposed normalized performance metrics that account for data volume growth.
Thereby, we tackled the problem that higher transactional throughput may result
in larger data volume which in turn may result in inferior analytical performance
numbers. The reason why we need the proposed normalized performance metrics is
not data volume growth itself, but the fact that data volume growth varies largely
between different systems under test that support different transactional through-
put rates. An alternative approach would be not to measure peak transactional
and analytical performance, but to measure how much analytical throughput can
be achieved while a fixed transactional throughput rate is fulfilled. We opted for
this approach in the experimental evaluation of MobiDB (see Section 4.5.4). How-
ever, to be able to compare results with other systems, the same amount of fixed
transactional throughput needs to be used. Moreover, a mixed workload benchmark
could measure resource requirements or energy consumption while maintaining fixed
transactional and analytical performance.6

6A similar approach has been proposed by Ashraf Aboulnaga, Awny Al-Omari, Shivnath Babu,
Robert J. Chansler, Hakan Hacigümus, Rao Kakarlamudi and Michael Seibold at Dagstuhl semi-
nar 12282 "Database Workload Management", as part of a proposal for a workload management
benchmark. The key idea is to compare systems by total cost for processing a given workload and
to derive the total cost of a system from resource requirements, energy consumption and penalty
costs for not meeting SLAs/SLOs.
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Chapter 6

Elasticity for Mixed Workloads

Emerging main-memory database management systems, like HyPer [64] or SAP
HANA [44], process business logic inside the DBMS and achieve low response times
at extremely high throughput rates. HyPer achieves outstanding OLTP and OLAP
performance numbers and supports mixed workloads consisting of interaction-free
transactions (OLTP) and read-only analytical queries (OLAP) on the same data,
based on a low-overhead snapshot mechanism. SAP HANA also supports the effi-
cient processing of both transactional and analytical workloads on the same database
by using different storage formats during the life cycle of a record, according to Sikka
et al. [99]. Future cloud business applications could be built on top of such sys-
tems in order to support Operational Business Intelligence efficiently. These emerg-
ing main-memory DBMSs are designed for multi-core servers with huge amounts of
main-memory. However, the resource utilization of such database servers is typically
low, as they are sized for peak loads and often average load is much lower. Today,
multi-tenancy techniques are used to improve resource utilization in cloud comput-
ing scenarios. But huge main-memory requirements of single tenants may preclude
application of multi-tenancy techniques for emerging main-memory DBMSs.

In this chapter, we present an approach for improving the resource utilization
of emerging main-memory DBMSs even if there are no complementary database
workloads, by temporarily running other applications on the database server using
virtual machines. Furthermore, we present an analytical model to derive attractive
service level objectives that can be met by a main-memory DBMS despite being
co-located with arbitrary applications running in VMs.1

1Parts of this work have been published at CLOUD 2012 [96]. Furthermore, parts of this work
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6.1 Challenges

Emerging main-memory database systems are designed for multi-core servers with
huge amounts of main-memory. Today these systems are typically deployed on
dedicated bare metal servers (physical machines, PMs), as illustrated in Figure
6.1 (a). However, resource utilization is often low, because database servers are
typically provisioned for peak loads and often average load is much lower. Especially
for mixed workloads, as the OLAP load typically increases before the end of a
quarter and then often drops significantly, but database servers must be sized for
peak OLAP load. Today, multi-tenancy techniques are used to improve resource
utilization in cloud computing scenarios, as discussed in Chapter 2.2. The best
example is salesforce.com [116]. Furthermore, Soror et al. [101] have shown that
database systems with complementary resource requirements can be consolidated
and advanced multi-tenancy techniques can be employed to further reduce space
and performance overhead of consolidation as discussed by Aulbach et al. [8]. But
huge main-memory requirements of single tenants may preclude application of multi-
tenancy techniques for emerging main-memory database systems, as most or even
all data of co-located tenants has to be kept in main-memory.

APPDB

VM VM

Within VM

DB

Bare Metal

APP

VMDB

PG

Good
Resource Utilization

Low Performance
Overhead

DB in PG
Apps in VMs

PMPM PM
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Figure 6.1: Deployment Approach

have been submitted to ICDE 2013 [94].

136



CHAPTER 6. ELASTICITY FOR MIXED WORKLOADS

Virtualization and server consolidation can be employed to improve resource uti-
lization and reduce operational costs, as discussed by Speitkamp and Bichler [103].
Even if there are no complementary database workloads, the database system and
other applications can be deployed onto the same server using virtual machines
(VMs), as illustrated in Figure 6.1 (b). But unfortunately, running emerging main-
memory database systems within VMs causes huge overhead, because these systems
are highly optimized to get the most out of bare metal servers. In a recent talk2, Prof.
Thomas Neumann demonstrated that virtualization may reduce TPC-C throughput
by 33%. But running these systems on bare metal servers results in low resource
utilization, as discussed above. Thus, both deployment approaches presented so
far have significant disadvantages. Instead, we propose to deploy emerging main-
memory database systems within light-weight containers (process control groups,
PGs) and to run arbitrary other applications alongside these containers using VMs.
This approach allows to improve resource utilization by temporarily running other
applications on the database server without causing too much performance overhead
for the database system. The servers on which these VMs would normally run can
be suspended, to save energy costs. As shown by Graubner et al. [52], power con-
sumption of data centers can be reduced by consolidating applications running in
VMs onto fewer servers and powering off the other servers. Figure 6.1 (c) illustrates
this deployment approach. This deployment approach is made possible by a combi-
nation of novel technologies supported by the Linux kernel, namely Linux Control
Groups and Linux Kernel-based Virtual Machine (Linux KVM).3

Emerging main-memory DBMSs like HyPer and SAP HANA [44] allow to pro-
cess business logic inside the DBMS. Thereby performance may be improved signifi-
cantly, as the number of round-trips between application servers and the DBMS can
be reduced. HyPer minimizes synchronization overhead by processing transactions
sequentially according to the one-thread-per-core model. As transactions are pro-
cessed sequentially, incoming transactions have to wait until preceding transactions
have been processed. For high and bursty arrival rates, execution times of individual

2The talk with the title "Scalability OR Virtualization" took place on November 18th 2011
at "Herbsttreffen der GI-Fachgruppe Datenbanksysteme" in Potsdam, Germany. The talk was
in German, but the slides are in English. A video recording is available online: http://www.

tele-task.de/archive/series/overview/874/ (retrieved 08/28/2012).
3We introduced this concept at CLOUD 2012 in our paper "Efficient Deployment of Main-

memory DBMS in Virtualized Data Centers" [96] and received the Best Student Paper Award.
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transactions thus have to be very low in order to achieve low response times. This
is achieved by keeping all data in main-memory and minimizing synchronization
overhead by processing transactions sequentially. With this approach low response
times and extremely high throughput rates can be achieved. But we need to ensure
that the main-memory allocation is never reduced below a certain lower bound so
that the whole dataset fits into main-memory and swapping is avoided. This re-
quirement needs to be considered when consolidating VMs onto the main-memory
database server. The lower bound depends on two factors: The amount of memory
needed for the actual data and the main-memory demand for processing business
transactions. The former is typically large, but can be reduced by employing com-
pression techniques. According to Hasso Plattner [88], compression rates of factor
20 can be achieved for typical customer data using column-store technology. The
latter is typically small, as only one transaction per core is processed concurrently in
the one-thread-per-core model. If main-memory allocation would be reduced below
this lower bound during runtime, severe interferences are highly probable. The op-
erating system will start to swap data from main-memory to disk and the execution
time of a single transaction would increase dramatically if it touches data that is not
available in main-memory. Thus, pure OLTP workloads do not leave much room for
improvement.

But HyPer supports mixed workloads consisting of interaction-free4 transactions
(OLTP) and read-only analytical queries (OLAP) on the same data and thereby
enables business applications with operational (or real-time) business intelligence
features. For OLTP, we need to ensure that main-memory allocation is not reduced
below a certain lower bound, as discussed above. For mixed workloads, this lower
bound is a bit higher, because additional main-memory is required for snapshots of
the data, as HyPer processes read-only analytical queries in parallel on snapshots
of the data. But HyPer uses special techniques for minimizing the main-memory
and processing overhead of these snapshots5. Apart from the snapshots, analytical
queries require memory for intermediate results, which may be substantially large,
e.g. queries involving large join operations or other pipeline-breakers that require to

4HyPer assumes that there is no user interaction during processing of single transactions, which
is common for high throughput OLTP engines.

5The size of the snapshots depends on main-memory access patterns, as we discussed in Section
4.5.4 and [95], and can be minimized by clustering the current data, that is still modified, as Henrik
Mühe et al. proposed in [80].
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materialize large intermediate results. If arrival rates are high, it may be necessary
to keep these intermediate results in main-memory in order to achieve required
throughput rates. But if query arrival rates are low, intermediate results could
also be stored on disk, if expected response times are large enough to allow for the
required disk I/O. For varying OLAP loads, it depends on the actual load if a lot of
main-memory is required for processing lots of queries in main-memory or if there are
only few queries that can be processed on disk. If the GlobalController would know
about the current OLAP load situation and how it will change in the near future,
main-memory allocation could be changed accordingly. But if the GlobalController
changes main-memory allocation without this knowledge, analytical queries may
miss their SLOs.

6.1.1 Resource Allocation Changes at Runtime

We analyzed how much execution time deteriorates due to OS-swapping, when the
main-memory assignment is reduced while a query is executed. We used HyPer and
our 1TB-server described in Section 6.4 to analyze the execution time for joining
order and order-line tables from the CH-benCHmark presented in Chapter 5 with
500 warehouses. HyPer allows to specify how much main-memory may be used
for a join query and we used Linux Control Groups to enforce further limits on
resource usage, including OS disk caches. Initially, we assigned sufficient main-
memory to keep intermediate results completely in main-memory. When the main-
memory assignment was reduced by 10% shortly after query execution started, query
execution did not terminate even after we waited several hours and we decided to
abort the query. But even if we took the normal execution time as a baseline and
reduced the main-memory assignment by 10% one second before the end of baseline
execution time, the execution time still increased by a factor of 7. Figure 6.2 shows
that execution time grows when the main-memory assignment is further reduced,
again one second before the end of baseline execution time. At a memory reduction
of 50% the execution time increased by a factor of 65. The reductions in execution
time also show the effectiveness of Linux Control Groups. The conclusions we draw
from these experiments is that knowledge about how much main-memory is available
to the DBMS is very important to choose the physical operators and their parameters
right in order to utilize all available main-memory and to avoid OS-swapping.
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Figure 6.2: Effects of Reducing Main-Memory Assignment

Apart from main-memory, processing resources are also very important for query
processing in main-memory DBMSs. With modern virtualization techniques, the
CPU shares and the number of virtual cores of a virtual machine can be changed
at runtime. Providing an application with more main-memory can only result in
improved performance if the larger data volumes in main-memory can be processed
efficiently with the available CPU cores and CPU shares. Today, multi-core CPU
architectures are common and DBMSs need to process queries in parallel in order
to utilize these architectures efficiently. Kim et al. [66] and Blanas et al. [16]
investigate the parallelization of the probably most important DBMS operator, the
join of two relations. They investigate different ways of adapting sort-based as well
as hash-based join algorithms to modern multi-core environments and show that
high performance gains can be achieved. However, join operators not only have to
exploit all resources available at the time they were instantiated, but they should
be able to adaptively adjust the numbers of processing threads to changing resource
allocations, including number of virtual CPU cores. Otherwise additional resources
would be idle until potentially long-running queries are processed completely or new
queries arrive. If the number of CPU cores is reduced, but the join operator does not
reduce its number of processing threads, performance may decrease, as there would
be several threads per CPU core that are all ready to run, because there is no disk
I/O. On the one hand, context-switching would cause a certain overhead and on
the other hand, parallelizing into more threads than necessary is counter-productive
due to suboptimal speedup.
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In the following, we argue that emerging main-memory database systems, should
support changes to resource allocation at runtime in order to improve resource uti-
lization and reduce operational costs. To make spare resources on the database
server available for hosting other applications (running in VMs), resource allocation
of the DBMS has to be adapted at runtime to the current load situation and the
load situation of the near-future. But current commercial DBMSs do not handle
dynamic changes to resource allocation well. We have observed that resource as-
signments should not be reduced without taking precautions and that dynamically
added resources are often not used right away. First, if resource allocation of a
virtual machine is reduced dynamically without reconfiguring the DBMS inside the
VM first, performance may deteriorate disproportionately. For example, dynamic
reduction of main-memory allocation may have severe performance impacts caused
by virtual memory swapping of the operating system running inside the virtual ma-
chine (OS-swapping), as we showed in [96]. Second, dynamically added resources are
often not used efficiently. For example, additional processing resources are idle due
to I/O stalls and additional main-memory would be required to utilize the additional
processing resources. But for using additional main-memory resources, changes to
database configuration parameters are necessary that take a while to become effec-
tive and even may require a restart of the database system (e.g. TimesTen [108]).
Furthermore, long-running queries that are already in-progress when resource al-
location changes may not be able to use the additional resources, because query
operators were instantiated with fixed numbers of processing threads and memory
reservations when the query was started. In the following, we focus on emerging
main-memory database systems, like HyPer, that are more flexible with regard to
resource allocation changes.

For taking resource allocation decisions, accurate monitoring data is required.
But it is difficult to measure the true resource requirements of a DBMS, as these
systems are typically designed to use all the resources they are given. Furthermore,
local adaptive control within the DBMS (e.g. request queuing) makes it difficult to
monitor the actual load from the outside and to predict resource requirements of
the near future. For example, database systems with adaptive workload manage-
ment have a scheduler component which limits the number of requests processed
simultaneously. Thus the utilization of resources does not reflect requests that are
waiting in queue, as resources would still be utilized normally even if the queue
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grows due to spikes in the arrival rate. Recently, Curino et al. [34] proposed a
technique called "buffer pool gauging" to estimate the main-memory requirements
of a traditional disk-based DBMS more accurately. This approach does not follow
the common "black box" monitoring approach, as a probe table is created in the
database and disk access statistics provided by the DBMS are used. We also depart
from the "black box" monitoring approach, but focus on emerging main-memory
DBMSs and propose the following cooperative approach: The DBMS communicates
its resource demand, gets informed about currently assigned resources and adapts
its resource usage accordingly. We assume that main-memory DBMSs can estimate
their current resource demand and their resource demand for the near future quite
accurately, as the DBMS knows about currently processed requests and request wait-
ing in queue. However, when spare resources are actually used by other applications
(running in VMs), DBMS performance may be affected. SLOs defined in SLAs may
be missed, as there is a certain delay until resources used by VMs can be given
back to the DBMS. For example it may be necessary to migrate VMs away to other
servers or to freeze their state and store them on disks of the database server. We
propose an analytical model to derive attractive SLOs which can be met by a main-
memory DBMS that is co-located with arbitrary applications (running in VMs) and
uses the proposed cooperative approach. This analytical model and the cooperative
approach form the basis of Elastic Workload Management, which ensures that the
database system meets SLOs of mixed workloads despite co-location of VMs. There
is related work by Lang et al. [71] that discusses SLO-based hardware provisioning
in the context of multi-tenant database systems. Lang et al. claim to be the first to
study cost-optimizations for multi-tenant performance SLOs in a cloud environment
(Database-as-a-Service). We also focus on SLOs covering performance metrics like
response time and throughput. But we focus on main-memory DBMSs, like Hy-
Per [64] or SAP HANA [44], and propose to consolidate the DBMS with arbitrary
applications running in VMs instead of traditional multi-tenancy.

6.1.2 Elasticity

Today, elasticity typically means that customers of Infrastructure-as-a-Service providers,
like Amazon EC2, can add virtual machines on demand, e.g. via a Web-Service in-
terface. Beyond that, modern virtualization technology allows to migrate virtual
machines between the servers of a server farm. Figure 6.3 shows a server farm con-
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Figure 6.3: Elasticity in the Large (L), Medium (M) and Small (S)

sisting of several servers – or physical machines (PMs) —, that run virtual machines
(VMs) of different sizes, representing different resource requirements. Consolidation
is achieved by assigning several virtual machines to the same physical machine. The
allocation of VMs and the migration of VMs between servers of the server farm is
controlled by a GlobalController. We refer to this as elasticity in the large. To our
knowledge, major service providers do not use VM live migration in production yet
although it is supported by well-known virtualization solutions. Instead remaining
capacity of active servers is sold at lower prices based on supply and demand, e.g.
Amazon EC2 Spot Instances. But VM live migration may make resource allocation
more flexible in the near future. Furthermore, modern virtualization technology
allows to change the resource allocation of virtual machines dynamically, i.e. the
ability to change the amount of assigned main-memory, the amount of CPU shares
and the number of virtual CPU cores while the virtual machine is running. We
refer to this as elasticity in the medium. There already are products, like vmware
vCenter Operations Management Suite, 6 that allow to control the sizing of vir-
tual machines globally and to change the resource allocation of virtual machines
dynamically. To our knowledge, major service providers do not allow customers
to change the resource allocation of virtual machines at runtime. Instead a small
number of instance types are offered, that correspond to a defined amount of re-
sources, and virtual machines have to be restarted to change the instance type.

6http://www.vmware.com/products/datacenter-virtualization/vcenter-operations-management/overview.html

(retrieved 08/28/2012)
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Today IaaS providers promote elastic scale-out of applications across several VMs,
what typically requires special frameworks for distributed application development
and involves changes to application code. In contrast, elasticity in the medium en-
ables elastic scale-up — only limited by the resources of the underlying physical
server, which are substantial for modern multi-core servers — and allows to adapt
resource allocation dynamically to changing demands within short time intervals.
But, applications running inside virtual machines have to be aware of elasticity in
the medium to communicate resource requirements and make the most of resources
that are dynamically allocated at runtime. We refer to this as elasticity in the
small. Elasticity in the small requires some effort for the IaaS customer, but IaaS
providers could support elasticity-aware applications and normal VMs on the same
infrastructure. The benefits of improved resource utilization could be passed on in
the form of lower service fees for elasticity-aware applications. Customers could be
charged based on the amount of dynamically allocated resources according to the
pay-as-you-go model that made IaaS so successful.

Shen et al. [97] propose to minimize resource provisioning costs in cloud com-
puting scenarios by adapting resource allocation based on online resource demand
prediction. They employ elasticity in the medium in the form of "resource capping"
and also elasticity in the large in the form of migrating VMs based on predictions
about conflicting resource requirements. But they do not discuss how the applica-
tions running inside VMs should adapt when resource limits are changed and do not
assume any prior knowledge about the applications running inside VMs. In contrast,
we address elasticity in the small with our cooperative approach and treat database
systems in a special way. In virtualized data centers, all three forms of elasticity
have to work together in order to improve resource utilization, to reduce the num-
ber of active servers and thereby reduce operational costs, including energy costs.
Power consumption of data centers can be reduced by consolidating applications,
including database systems, that run in virtual machines onto fewer servers and
powering off the other servers, as shown by Graubner et al. [52]. Furthermore, Shen
et al. [97] propose to save energy by dynamic CPU frequency scaling. Both tech-
niques may benefit from our cooperative approach, as cooperation allows to allocate
resources based on more accurate information about resource requirements and to
utilize dynamically assigned resources more efficiently. It is undesirable to operate
servers at a medium utilization level, as the power efficiency is not a linear function
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of the server’s load. The two most power efficient operating modes are suspend and
full utilization [11]. Energy efficiency of data centers is an area of active research.
Nishikawa et al. [82] consider energy efficiency in the context of several enterprise
workloads, like OLTP and decision support, and propose considering application
level behaviors to improve timing of power saving actions.

6.2 Elastic Workload Management

VM

freeze

migrate

resize

CPU-
Cores

RAM

Data
OLAP
OLTP

Control Group

restore

Figure 6.4: Elastic Workload Management

Figure 6.4 illustrates a main-memory database system that runs on a modern
multi-core server with many CPU-cores and huge amount of main-memory. The
database system needs resources for keeping the data in main-memory and for pro-
cessing the mixed workload consisting of OLTP and OLAP. The resource allocation
of the database system is "resized" according to the current load situation which
changes over time, especially for OLAP. "Control Group" corresponds to the amount
of resources that are currently assigned to the database system. The remaining re-
sources can be used for running VMs on the database server. These VMs can either
be migrated from other servers or restored from disks of the database server. When
the database system needs more resources, it may be necessary to migrate VMs away
to other servers or to freeze their state and store them on disks of the database server.
The "Control Group" is realized using Linux Control Groups, that provide a light-
weight form of process encapsulation and allow to limit resource usage of a group
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of processes. On the one hand, resource limits of process group containers can be
changed quickly. On the other hand, process group containers do not incorporate
significant overhead, as all the processes are still running on the Linux Kernel of the
hosting server. Moreover, Linux Control Groups can be combined with VMs on the
same host using Linux KVM. As of now it is not possible to live migrate containers
in the same way as VMs. However, main-memory DBMSs are poor candidates for
live-migration anyway, due to high memory demand and data access frequency. We
propose not to live migrate the main-memory DBMS, but other applications running
in VMs.

6.2.1 Local Coordination

As shown in Figure 6.3, the physical resources of a server are divided between the
VMs hosted on the same PM.We propose that each VM should host a LocalController
that communicates with a GlobalController of the server farm to coordinate changes
to resource allocation. On the one hand, the GlobalController dynamically adapts
resource assignments to changing workload demands (elasticity in the medium) and
migrates virtual machines between servers in order to reduce the number of ac-
tive servers (elasticity in the large). It provides information on how much physical
resources are currently assigned to a given VM and informs the LocalController
running inside the VM when the allocation changes. On the other hand, the
LocalController sends hints regarding future resource requirements to the Global-
Controller and controls how queries are processed within the DBMS (elasticity in
the small) in order to make use of dynamically assigned resources. In order to give
hints regarding future resource requirements, the LocalController queues incoming
OLAP query requests and estimates how much resources are required to process
them according to their SLOs. For the DBMS instances, we use process groups
(PGs) instead of real VMs to avoid unnecessary virtualization overhead. All virtual
machines could have local controllers, but in the following we focus on DBMSs.

Coordination allows the DBMS to avoid OS-swapping by starting queries with
appropriate main-memory reservations, as the LocalController knows how much
physical resources are currently available. Once resource allocation changes, the
LocalController is informed. When resource allocation is reduced, we propose to
abort longer-running queries and to restart them with different parameters in order
to avoid OS-swapping. There is related work in the area of workload management by
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Krompass et al. [68] on how to manage long-running queries. In contrast, we focus
on how to prevent queries from taking unexpectedly long due to dynamic changes
to resource allocation by restarting them right away when such changes occur. We
focus on join operators, because joins are common database operations that often
impact the runtime of query execution plans significantly and potentially require
large intermediate results. When resource allocation is increased, it may make sense
to abort longer-running queries that involve joins and to restart them with differ-
ent parameters in order to reduce response times and improve throughput. For
example, if a join query, that was started on-disk using an external join algorithm,
could now be processed in-memory, overall execution time (including aborted partial
execution) may be lower than on-disk execution time, as we showed in [96]. The
LocalController has to decide whether to wait until running (join) queries finish
or to abort and restart them. When resource allocation is reduced below the es-
timated resource requirements of running queries, queries should be restarted even
shortly before completion, because execution times may increase strongly even when
resource allocation is reduced only shortly before a query finishes as we showed in
Section 6.1.1. When resource allocation is increased, the decision whether to restart
a query or not should ideally consider the progress of the query. There is related
work on progress indicators by Luo et al. [74] and recent work by Li et al. [73] that
is complementary to our approach. For simplicity of our prototype implementation,
we decided to restart running queries always when resource allocation changes.

In summary, local coordination allows resource allocation of main-memory DBMSs
to be changed elastically, by communicating resource requirements (including lower
bound on main-memory allocation), and may help to use dynamically assigned re-
sources more efficiently.

6.2.2 Global Coordination

The GlobalController can make use of spare resources on database servers by mi-
grating VMs onto the database servers. Coordination has to ensure, that SLOs for
the mixed database workload are still meet although spare resources are used for
other purposes. With Linux KVM and Linux Control Groups, processing resources
can be used for other purposes and be given back to the DBMS with low overhead.
It is just a matter of prioritization, changing process limits and process context
switching, as VMs are operating system processes. But giving back main-memory
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resources to the DBMS after using them for other purposes with a VM causes a
certain delay, because the main-memory contents of the VM might still be needed
and moving the VM onto another server with VM live migration requires to copy
the memory contents over the network first. To avoid that such delays affect SLOs
for OLTP, a certain amount of main-memory always has to be allocated to the
main-memory DBMS and can never be used for other purposes. This represents the
minimum memory requirement of the DBMS and is made up of the main-memory re-
quired for the operating system (OS), for keeping all data in main-memory (DATA),
for snapshots of the data (SNAP) and for processing OLTP transactions. This min-
imum memory requirement has to be communicated to the GlobalController and
has to be adjusted when data volume grows. The sweet spot is the main-memory
required for intermediate results of OLAP queries. The physical resources are sized
for peak OLAP loads and we assume that the average load is much lower.

Figure 6.5 illustrates the memory requirements of a main-memory DBMS, like
HyPer, and two temporarily co-located VMs. We assume that around two thirds of
the physical memory are reserved (for OS, DATA, SNAP and OLTP) and around one
third of the physical memory can be allocated for OLAP when needed for processing
analytical queries with large intermediate results. Initially main-memory for peak
OLAP loads is assigned to the DBMS, at t1 main-memory allocation of the DBMS
is reduced and shortly afterwards VM1 is migrated onto the database server. At
t2 main-memory allocation of the DBMS is further reduced and shortly afterwards
VM2 is migrated onto the database server. At t3 main-memory allocation of the
DBMS is slightly increased without problems, as sufficient spare memory is available.
At t4 main-memory allocation of the DBMS is further increased. Again there are
no problems, as VM2 has already finished its job and has terminated already. At
t5 there is an issue, the DBMS suddenly requires peak main-memory, but VM1 has
not jet finished its job. Therefore VM1 has to be migrated to another server and
there is a delay until sufficient resources have been returned to the DBMS (t6).
Delays due to VM migration may affect SLOs of OLAP queries, e.g. when resource
requirements increase suddenly due to bursts in arrival rates and the delay causes
too many OLAP queries to miss their response time goals by too far. We propose
to ensure that SLOs are met by limiting the number of times that the resource
allocation of the DBMS is reduced and propose an analytical model described in
Section 6.3.
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Figure 6.5: Coordination of Main-Memory Requirements

6.2.3 Elastic Scheduling

Query arrival rates are often bursty and commercial DBMSs without workload man-
agement extensions typically process incoming queries as fast as possible using all
available resources in a best effort manner. This may lead to unnecessary spikes in
resource consumption. In order to use spare resources with virtualization and server
consolidation, such spikes are counter-productive, because they may lead to unnec-
essary VM migrations. With workload management techniques, incoming queries
can be queued, and a scheduler can decide when to submit queries to the processing
engine depending on execution time estimates and knowledge on response time and
throughput goals (defined as SLOs in SLAs). There is related work by Chi et al.
[28], to schedule queries from diverse customers in a cost-aware way, but they only
consider response time goals. In contrast, we consider response time and through-
put goals defined in compound SLOs (see Section 6.3). Workload management for
traditional DBMSs is very difficult, because it is difficult to predict execution times
accurately, as several queries are executed concurrently even on a single CPU core in
order to mask delays caused by disk I/O. In contrast, main-memory DBMSs allow
to estimate execution times much more accurately, as shown by Schaffner et al. [90].
There are no disk I/O delays as all data is kept in main-memory and in-memory
queries are processed sequentially according to the one thread-per-core model to
save context-switching overhead and to reduce main-memory requirements — only
the intermediate results of one query per CPU core need to be kept in main-memory.
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Figure 6.6: Elastic Scheduling

Instead of processing incoming queries as fast as possible, queries could be pro-
cessed with as few resources as possible while still meeting SLOs. Instead of fre-
quently requiring all resources for short time intervals, it would be better to use
e.g. half the resources for a longer time interval. Thereby spare resources may be
available for sufficiently long time intervals to co-locate VMs. We propose an elastic
scheduling approach called GOMA that is designed for elastic scale-up (elasticity
in the medium) and differentiates between two phases (see Figure 6.6). In the first
phase only the currently assigned resources can be used, but in the second phase all
physical resources can be used and those are always sufficient because the system
is sized for peak loads. The Elasticity Barrier between the two phases is the time
it takes to give all resources back to the DBMS by migrating VMs to other servers.
GOMA tries to fit all queued queries on as few resources as possible. If the queued
queries can be executed on-disk (with very little main-memory) while still meeting
SLOs according to execution time estimates, GOMA does not use more resources
and instead lets the LocalController signal the low resource requirements to the
GlobalController. If the queued queries do not fit on disk, GOMA checks if a quar-
ter (or half, etc.) of the main-memory resources are sufficient. If queries can be
delayed such that their planned processing start time is in phase two and a quarter
(or half, etc.) of the main-memory resources are sufficient for in-memory execution,
the query will be planned as in-memory query. If the query has to be started in
phase one to meet response time goals, the query is planned to be executed with the
currently assigned resources and as soon as possible. If the queued queries do not
fit, all resources are required and if they are not currently assigned, the system is
overloaded. In any case, GOMA lets the LocalController signal the current resource
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requirements to the GlobalController, based on an execution plan for the currently
queued queries. Currently, GOMA takes a very coarse grain approach considering
only quarter (or half, etc.) of the main-memory resources and only inter-query par-
allelization. GOMA does not consider intra-query parallelization and furthermore
assumes that the peak load requires to execute queries with maximum memory re-
quirements on all CPU cores in parallel. This leaves a lot of room for optimization,
but it makes the proof-of-concept a lot easier to understand, because GOMA only
has to consider the number of CPU cores for phase two, as there is always sufficient
main-memory per CPU-core to perform any query.

Figure 6.6 illustrates an example. Q1, Q2 and Q4 are planned to be delayed
as long as possible, Q3 has to be started in phase one to meet its deadline and is
planned to be executed with the Currently Assigned resources. HALF of resources
are sufficient and QUARTER would not be sufficient to meet deadlines for queued
queries, thus HALF resources have to be requested and resource allocation has to
be increased before the Elasticity Barrier is reached.
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Figure 6.7: Intermediate Results In-Memory vs. On-Disk

We assume that there is sufficient memory to process all queries in main-memory
according to SLOs and propose to process queries on disk (with only little main-
memory) if we don’t need to process them in-memory due to throughput require-
ments. The goal is to make more spare main-memory available for other purposes
by employing virtualization and server consolidation. In both cases we need to es-

151



CHAPTER 6. ELASTICITY FOR MIXED WORKLOADS

timate execution times. There is a big difference between in-memory and on-disk
execution times. In order to demonstrate the difference between in-memory and
external join, we performed the same join from CH-benCHmark as described in
Section 6.1.1 on our 1TB-server described in Section 6.4 and varied the amount of
available main-memory. Figure 6.7 shows that there is a huge spike in execution time
if intermediate results do not fit completely in main-memory. Just after the 100%
mark on the x-axis denoting the quotient of required memory and assigned memory,
only little extra memory would be required to keep intermediate results completely
in main-memory, but still execution time increases by a factor of 17 — from 19

seconds to 5 minutes. HyPer used the hash join algorithm in this experiment, which
is a common join algorithm for main-memory DBMSs. The results suggest that join
queries should be processed either completely in-memory or on-disk with only little
main-memory, as more main-memory does not improve execution time much as long
as the join cannot be processed completely in main-memory. There are other join
algorithms, like hybrid hash join [41], that use additional main-memory more effec-
tively and could level off the spike a bit. But in our case trading more main-memory
consumption for lower execution time would only be interesting if the execution of
on-disk hash join (with only little main-memory) takes too long for meeting SLOs.
So far we opt for in-memory execution in this case. Hybrid hash join could allow on-
disk processing for even shorter expected processing times and could be integrated
with our approach. Patel et al. propose a quite accurate model for estimating exe-
cution times of hybrid hash join [87]. Furthermore, there are sort-merge based join
algorithms that also settle for only little main-memory in turn of longer execution
times. We plan to consider new developments like GJoin [51] as future work. GOMA
enables cooperation between LocalController and GlobalController, allows to allo-
cate resources based on more accurate information about resource requirements and
the proposed elastic scheduling approach tries to make spare resource better usable
for co-locating VMs.

6.2.4 Elastic Resource Allocation in the Cloud

The proposed approach is very suitable for cloud computing providers that apart
from Infrastructure-as-a-Service (IaaS) also offer Database-as-a-Service (DbaaS).
Elastic workload management allows to run main-memory DBMSs together with ar-
bitrary VMs on the same host server and thereby enables consolidation across IaaS
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and DbaaS. Software-as-a-Service (SaaS) offerings may be realized on-top of IaaS
and DbaaS. For example, a SaaS business application, like CRM, may use DbaaS to
manage the data and IaaS to run application servers. Consolidation across IaaS and
DbaaS may improve resource utilization when main-memory DBMSs alone cannot
be consolidated due to non-complementary workloads. Elastic workload manage-
ment allows to consolidate them with arbitrary applications running in VMs. For
cloud computing, it is important that customers agree with the service provider
upon SLAs which define the characteristics of the provided service including SLOs,
like maximum (max) response times and minimum (min) throughput rates, and de-
fine penalties if these objectives are not met by the service provider. There are two
different ways of looking at SLOs. On the one hand, the consumer of a service needs
a certain service level in order to be productive. For example, in telemarketing,
there is a known number of agents that call prospective customers over the phone
and have to enter gathered information into a customer relationship management
(CRM) system during the call. In order to be productive in this scenario, end-to-end
response times below one or few seconds are required for almost all requests and the
required throughput depends on the number of agents. Furthermore, supervisors
may use operational (or real-time) business intelligence features of the CRM prod-
uct in order to monitor agent performance and to evaluate the success of marketing
campaigns. For those requests, longer response times of one or few minutes may
be OK and it may be acceptable if sometimes requests take several of minutes to
complete. On the other hand, the provider of a service needs to know what is the
best SLO that can be met by the service. This information is critical in order to
decide what SLOs to include in the SLA of the provided service, especially if the
accepted penalties are significant. For example, the provided service may be a CRM
product with operational (or real-time) business intelligence features, that is offered
according to the SaaS model and relies on a DbaaS offering based on an emerging
main-memory DBMS. As business applications, like CRM, are very data-intensive,
the SLOs of the CRM service mainly depend on the SLOs of the underlying DbaaS
service. We focus on these SLOs and present an analytical model in the next section
(Section 6.3).
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6.3 Analytical Model

In this section, we describe an analytical model to derive an attractive SLO which can
be met by a main-memory DBMS that is consolidated with VMs running arbitrary
applications and uses elastic workload management.

6.3.1 Compound Service Level Objectives

SLOs often involve max response time (grt) and min throughput goals (gtp) and are
typically defined in SLAs. SLOs typically do not guarantee max response times for
100% of the requests, but only for a certain percentile (p) of requests, e.g. 99%. That
means that in our example 1% of the requests could have longer response times. The
actual number of requests that have to meet the max response time goal depends on
the arrival rate, which captures how many requests — sent from consumers of the
service — arrive at the provider of the service. The actual arrival rate may vary over
time, but the service provider only has to be prepared for arrival rates below the min
throughput goal. If more requests arrive, they can be dropped without affecting the
SLOs. Thus, the highest arrival rate that the service provider has to be prepared
for equals the min throughput goal. In the following we refer to this as the peak
arrival rate (ra_p). Arrival rates are typically bursty. The acceptable burstiness
can be limited by defining the time interval length of an arrival window (wa). The
arrival rate and the arrival window length limit the number of requests that may
arrive during any given arrival window. In the worst case, all requests arrive right
at the beginning of the arrival window and still have to be processed according to
response time goals. Thus, the arrival window should form part of the service level
objective to define acceptable burstiness. Compound objectives can be defined to
ensure, that those requests, which do not have to meet the max response time goal,
are not delayed forever. For example, TPC-C requires that the average response
time of all requests is below the percentile response time. Accordingly, we define
compound service level objectives (cSLOs) which require, that the average response
time of all requests (avgrt) is below the percentile response time goal (grt). But the
average response time may depend on the time interval length for which the average
response time of processed requests is computed (measurement window, wm). A
fixed number of delayed requests can be delayed much longer if the measurement
window is longer as there are more compensating requests that are not delayed.
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Thus, the measurement window should form part of the service level objective.
Figure 6.8 summarizes the components of the described compound SLOs. We define
that the service provider has to fulfill the cSLO always, with the only exception of
service unavailability. Put differently, the service is available if requests are processed
according to the cSLO, else it is unavailable. Apart from that, the SLA has to
define a service availability goal, e.g. 99.9% (or "three nines"), and penalties if the
service is unavailable more often than the acceptable downtime, e.g. 8.76 hours
per year. We assume that the service availability goal has to be met by the given
server and possibly cold standby servers using master-slave replication. Hot or warm
standby could allow for separation of work between the different servers, but require
additional resources and therefore do not fit our resource consolidation scenario.
Multi-master replication is an interesting direction for future work.

cSLO:

• percentile (p)

• max response time goal (grt) for p

• min throughput goal (gtp)
(= peak arrival rate (ra_p))

• arrival window (wa)

• measurement window (wm)

• average response time (avgrt) ≤ grt

(has to hold for wm)

Figure 6.8: Compound Service Level Objective (cSLO)

6.3.2 Attractive cSLOs

We take the perspective of the service provider and try to find attractive cSLOs
that can be met by a given service on a given physical server. In our scenario,
the service is a main-memory DBMS, that processes mixed workloads consisting of
transactions (OLTP) and analytical queries (OLAP), and the server is a commodity
server with 32 CPU cores and 1 TB of main-memory. As discussed above, we assume
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that OLTP transaction processing has very tight response time and throughput
requirements. Therefore, we reserve a certain amount of resources for the OLTP
part of the workload. These resources are never used for consolidating VMs onto
the database server. In our running example, we reserve 7 CPU cores and around
900 GB of main-memory for OS, DATA, SNAP and OLTP (see Section 6.2.2), as
main-memory DBMSs keep all data in main-memory all the time. Thus, around 100
GB of main-memory remain for OLAP. In contrast, we assume that the response
time and throughput goals for OLAP are not that tight. Furthermore, we assume
that arrival rates of OLAP request vary largely over time. Therefore, we use these
resources for co-locating VMs onto the database server during phases of low OLAP
load.

For the OLAP requests of our telemarketing example, we choose a reasonable
max response time goal (grt) of 4 minutes on the database server (with network
delays etc., this should allow end-to-end response time goals below 5 minutes) and
a percentile of 99%. For simplicity, we use the same cSLO for all OLAP requests.
For the given server, we estimate a worst-case execution time (em) of 2 minutes for
in-memory processing of a single OLAP request and thus cover reasonable complex
OLAP queries including join operations on large amounts of data. We have to
make worst case assumptions, because the server needs to meet the derived cSLO
always, with the only exception of hardware failures. The worst-case in-memory
execution time estimate should be less than the max response time goal, as the
difference between worst-case and average-case execution time is pretty small for
main-memory DBMSs and some requests may be delayed due to co-location of VMs
as described below. The server of our example fulfills this requirement. We reserved
7 CPU cores for OLTP and reserve one more CPU core for overhead introduced by
elastic workload management. Thus 24 CPU cores (c) remain for OLAP processing.
We choose the highest arrival rate that is supported by the given server as peak
arrival rate (ra_p), in order to find a cSLO that reflects the processing power of the
server. In the following, we use formulas shown in Figures 6.9 and 6.10. According
to Formula 6.1, the server supports a peak arrival rate of 12 requests per minute
(720 requests per hour). As discussed above, the min throughput goal (gtp) equals
the peak arrival rate.

Based on these figures, we can derive the largest possible arrival window. In the
worst case, we have peak arrival rate and all requests arrive at the beginning of
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the given arrival window, thus grt time is available for processing all requests of the
given arrival window (as discussed above grt does not include network delays etc.).
Formula 6.2 describes that grt has to be large enough to process the percentile of
these requests with the given number of CPU cores. From this inequality, we can
derive an upper bound for the largest acceptable arrival window (wa) as shown in
Formula 6.3. The number of requests of the largest burst that can be processed
with inter-query parallelization (]burst), can be computed as shown in Formula 6.4.
Based on this figure, we find an attractive arrival window of 4 minutes according
to Formula 6.5. Larger arrival windows are more attractive, because they allow
for more burstiness. We only consider inter-query parallelization, but intra-query
parallelization is an interesting direction for future work.

Furthermore, we need to determine the shortest possible measurement window
(wm) such that the average response time of all requests is still below grt. If all
requests are processed in-memory, the average response time should be well below
grt, but requests may be delayed due to co-location of VMs. The maximal number
of delayed requests depends on the time it takes to give resources that were used
for VMs back to the database. We refer to this as the Elasticity Delay (ed). VMs
can either be migrated to another server or be frozen and saved to disk. In the
former case, the elasticity delay depends on the available network bandwidth and
in the latter case on the available disk I/O bandwidth. In both cases, the entire
state of the VMs (RAM, registers, etc.) has to be transferred. We decided for the
latter approach, because we did not have a second server with similar capacity and
connected with a high speed network, like InfiniBand. On our server, it takes less
than 2 minutes to freeze and store 24 VMs with around 4 GB memory each on
disk. These VMs correspond to the amount of OLAP resources that can be used
for co-locating VMs. To limit the number of delayed requests per measurement
window, we define that the resource allocation of the database is reduced at most
once per measurement window. Thus, the shorter the measurement window, the
more often the resource allocation of the database can be reduced, e.g. per day. In
the worst case, load jumps from zero to peak after all resources have been taken
away from the main-memory DBMS and load stays at peak until after resources
are given back. Until then, all requests arriving during this elasticity delay — at
most at peak arrival rate — are delayed, because all physical resources are needed
to handle peak throughput as the server is sized for peak load. Thus, the maximal
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ra_p = c× 1

em
(6.1)

grt ≥
ra_p × wa × p

c
× em (6.2)

wa ≤ wa
∗ =

grt × c
ra_p × p× em

(6.3)

]burst = c× b
bra_p × wa

∗c
c

c (6.4)

wa =
]burst
ra_p

(6.5)

]delayed = c× d
dra_p × dee

c
e (6.6)

]delayed ≤ ra_p × wm × (100%− p)) (6.7)

wm ≥
]delayed

ra_p × (100%− p))
(6.8)

δrt = (wa − de) + de = wa (6.9)

maxrt ≤ δrt + (d]delayed
m
e × ed) (6.10)

]all_m = bra_p × wmc (6.11)

]¬delayed = ]all_m − ]delayed (6.12)

delayed∑
rt

= m×
d
]delayed

m
e∑

k=1

(δrt + (k × ed)) (6.13)

]all_a = bra_p × wac (6.14)

Figure 6.9: Formulas
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avgrt_m =
c×∑ ]all_a

c
k=1 (k × em)
]all_a

(6.15)

¬delayed∑
rt

= avgrt_m × ]¬delayed (6.16)

avgrt ≤
∑delayed

rt +
∑¬delayed

rt

]all_m

(6.17)

Figure 6.10: Formulas

number of delayed requests (]delayed) is 24 and can be derived according to Formula
6.6. Of course, other reasons for missing response time goals, like network delays,
also have to be considered, but this is orthogonal to our approach. ]delayed has to
be in accordance with the percentile requirements, this requirement is expressed by
Formula 6.7. From this requirement, we can derive a lower bound of a bit more than
3 hours (200 minutes) for the length of the measurement window (wm), as described
by formula 6.8.

cSLOs require that the average response time of all requests (avgrt) is below the
percentile response time goal (grt). Thus delayed requests cannot be delayed forever.
We propose to process these requests on-disk (with only little main-memory) and
to use the CPU core reserved for elastic workload management in order to avoid
the processing overhead of on-disk processing from affecting in-memory processing
of other requests. The response time of on-disk requests depends on the used multi
programming level (MPL), which defines how many on-disk requests are processed
concurrently — an MPL of one means that requests are processed sequentially. For
our example server, we chose an MPL (m) of 4. Furthermore, we estimate a worst-
case on-disk execution time (ed) of 15 minutes for the given MPL. This estimation has
to be much more conservative than the estimation of in-memory execution times,
because we process on-disk requests concurrently on a single CPU core (masking
delays caused by disk I/O) and due to the complexity of today’s storage solutions
with caches at several levels of the storage hierarchy.

Elastic workload management has to select which requests to process on disk. In
the following, we analyze two promising strategies: Separate Queue and Common
Queue. As discussed above, the average response time depends on the measurement
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window. Thus we derive a second lower bound for the measurement window for
each strategy. The higher one of the two lower bounds is the shortest possible
measurement window. We derive the shortest possible measurement window and
the max. response time for both strategies and choose the strategy with the shorter
measurement window as long as the corresponding max. response time is acceptable,
because the shorter the measurement window, the more often the resource allocation
of the database can be reduced, e.g. per day.

Separate Queue Strategy

The Separate Queue Strategy puts delayed requests into a separate queue during the
elasticity delay and processes them on-disk using the given MPL. The advantage of
this approach is that at most ]delayed requests are delayed. The disadvantage of this
strategy is that the delayed requests have to wait in queue which may result in high
max response time. The max response time can be derived as follows: In the worst
case, delayed requests arrived already at the beginning of the arrival window and the
elasticity delay occurs at the end of the arrival window. Thus the delayed requests
have already been waiting in queue for wa− de before on-disk execution even starts.
Furthermore, if VMs are to be frozen and saved to disk, there is competition for
disk I/O and on-disk requests may have to wait until the end of the elasticity delay
until on-disk request processing starts. In the following, we use formulas shown
in Figures 6.9 and 6.10. The response time delta (δrt) captures this, as shown in
Formula 6.9. Delayed requests are delayed by the mentioned response time delta
and then processed on disk with the given MPL. Thus, max response time (maxrt)
is 94 minutes and can be computed according to Formula 6.10. As can be seen from
this formula, max response time for this strategy highly depends on the on-disk
MPL and thus the performance of the storage solution.

For this strategy, the average response time for the measurement window can
be approximated conservatively as follows. Formula 6.11 shows how the peak num-
ber of requests per measurement window can be computed. Formula 6.12 shows
how the number of requests that are not delayed (per measurement window) can
be computed. The sum of response times of all delayed requests can be computed
according to Formula 6.13. Formula 6.14 shows how the peak number of requests
per arrival window can be computed. This figure is needed to compute the aver-
age response time for in-memory execution, according to Formula 6.15. In order
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to compensate for requests that are delayed due to elasticity, we process all other
requests in-memory. Thus, the sum of response times of all requests that are not
delayed can be computed according to Formula 6.16. Based on these figures, an
upper bound for the average response time of a given measurement window can be
derived according to Formula 6.17. The measurement window has to be larger or
equal the lower bound defined above and large enough such that the corresponding
average response time is less than equal the percentile response time goal. In our
example, the average response time for the lower bound measurement window is 3
minutes 33 seconds and thus meets this requirement. If the lower bound measure-
ment window does not meet this requirement, it is more difficult to find an attractive
measurement window length. Formula 6.17 defines a dependency between the aver-
age response time and the measurement window length. The average response time
can be approximated conservatively as the percentile response time goal. Then the
only remaining variable is the measurement window length and the inequality can
be transformed to find an attractive measurement window length.

Common Queue Strategy

The second strategy is to keep all requests in the same queue and to keep track
of how many requests need to be processed on disk (on-disk request counter). In
the following, we use formulas shown in Figure 6.11. Whenever an on-disk request
finishes, a fresh request can be taken from the common queue and be processed
on-disk until the on-disk request counter has reached zero. The advantage of this
approach is that the max response time is limited by Formula 6.18, as a given on-disk
request waits at most one arrival window in-queue before being processed on-disk.
The idea is that on-disk requests are replaced by newly arriving requests in each
arrival window. If no new requests are available, peak load is over, the remaining
requests can be processed in-memory and the on-disk request counter can be set
to zero. The disadvantage of this strategy is that the average response time may
be higher, because more requests than ]delayed may be delayed. For each group
of concurrently running on-disk requests, a number of additional requests equal to
the current value of the on-disk request counter is delayed per arrival window. To
differentiate between the different kinds of delayed requests, we refer to the original
requests that are delayed on-disk as ]delayedd (see Formula 6.19) and to the additional
request that are delayed in-memory as ]delayedm . On-disk requests are processed in
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groups or "blocks" with MPL (m) and the number of "blocks" required to process all
on-disk requests (]block) can be computed according to Formula 6.20, in our example
6. The measurement window has to be larger than the time required to process
all on-disk requests, as described by Formula 6.21. Using this lower bound for the
measurement window, a lower bound for ]delayedm can be determined according to
Formula 6.22 and Formula 6.23. Based on that Figure, a lower bound for the total
number of delayed requests can be determined according to Formula 6.24. ]delayed_all

has to be in accordance with the percentile requirements and a second lower bound
for the measurement window can be derived according to Formula 6.25 in the same
way as for the other strategy. In our example, this second lower bound for wm is 4100
minutes (or almost 3 days). This is very high in comparison to the measurement
window of the Separate Queue Strategy (200 minutes). In other words, the resource
allocation of the database system can be reduced at most twice per week with this
strategy in comparison to 7 times per day with the other strategy. Therefore we
choose the Separate Queue Strategy, as we deem the corresponding max response
time of 94 minutes acceptable for our telemarketing OLAP scenario.

The analytical model is based on worst-case execution time estimates and em-
ploys conservative approximation, so there might be slightly better cSLOs that could
still be met. But for the derived cSLO we can guarantee that it will always be met
by the given server, with the only exception of hardware failures. This represents a
guaranteed minimal performance goal. Furthermore, hardware failures are covered
by the availability goal defined in the SLA. Moreover, we expect to derive attrac-
tive cSLOs, as we assume that the difference between worst-case and average-case
is pretty small for emerging main-memory DBMSs. Figure 6.12 sums up the figures
of our running example and shows the selected cSLO figures, characteristics of our
example server, derived cSLO figures, the resulting elasticity and expected response
times. In our example, a server with the given characteristics can fulfill the cSLO
while the resource allocation of the DBMS may be reduced 7 times a day (]elasticity).
The arrival window is maximal and the measurement window is minimal. Those fig-
ures can be derived from the other cSLO properties and the server characteristics as
described above. This analysis is based on worst case assumptions, so it is probable
that less requests miss their response time goals and that average response time is
even lower. If the actual goal misses were monitored, it would be possible to reduce
the resource allocation of the DBMS even more often.
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maxrt ≤ wa + ed (6.18)

]delayed_d = ]delayed (6.19)

]block = d
]delayed_d

m
e (6.20)

wm ≥ wm
∗ = ]block × ed (6.21)

]delayed_m∗ = ]delayed_d × b
wm
∗

wa

c
(6.22)

]delayed_m ≥ ]delayed_m∗−(m×
]block−1∑
k=0

k)

(6.23)

]delayed_all ≥ ]delayed_m + ]delayed_d

(6.24)

wm ≥
]delayed_all

ra_p × (100%− p))
(6.25)

Figure 6.11: Formulas
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Selected cSLO Figures

p 99%
grt 4 min

Server Characteristics

c 24
em 2 min
m 4
ed 15 min
de 2 min

Derived cSLO Figures

gtp 12 per min
wa 4 min
wm 200 min

Resulting Elasticity

]elasticity 7 per day

Expected Response Times

avgrt ≤ 3 min 33 sec
maxrt ≤ 94 min

Figure 6.12: Running Example
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6.4 Experimental Evaluation

In the experimental evaluation of [96], we already showed that co-location of VMs
with emerging main-memory database systems, like HyPer, works well for a contin-
uous query workload without spikes that was modeled after the service demand of
a SAP enterprise application used in a large business. Furthermore, we showed that
spikes in demand may cause increased response times that may lead to SLO misses
and SLA violations. The reason is that it takes time to give resources that are used
for VMs back to the DBMS, as VMs need to be migrated to other servers or frozen to
disk first. These delays cause increased response times for demand spikes, when de-
mand was low long enough for co-locating VMs and then demand suddenly increases
heavily. In Section 6.3, we proposed an analytical model for deriving an attractive
cSLO that can be met by our test server even if there are spikes in demand.

For our evaluation, we use the following two workloads. The Bursty Workload
includes a worst-case demand spike and is made up of five bursts (B1, B2, B3, B4,
and B5) that occur in 4 minute intervals. Each burst consists of join queries from
CH-benCHmark that join order and order-line tables. There are three query types
(Q1, Q2 and Q3), corresponding to the same join query, but with different number
of warehouses (750, 1500 and 3000). The estimated worst-case in-memory execution
time of Q1 is 30 second, 1 minute for Q2 and 2 minutes for Q3. The estimated
worst-case on-disk execution time of Q1 is 4 minutes, 8 minutes for Q2 and 15
minutes for Q3. Burst B1 consists of 48 × Q3 and requires all OLAP resources
to meet the cSLO. Burst B2 consists of 24 × Q3 and requires half of the OLAP
resources to meet the cSLO. Burst B3 consists of 24×Q2 and requires one quarter
of the OLAP resources to meet the cSLO. Burst B4 consists of 1×Q1 and can be
executed on-disk while still meeting the cSLO. The last burst represents a demand
spike and there are three variants representing different kinds of spikes: B5a consists
of 96×Q1, B5b consists of 97×Q1 and B5c consists of 48×Q3 that is repeated 50
times. In contrast, the Steady Workload represents continuous peak demand. Every
30 seconds, 24 query requests of type Q1 are sent to the DBMS for a duration of 11
minutes and 30 seconds.

In the following experiments, we show the feasibility of elastic workload manage-
ment and evaluate how much the progress of co-located VMs can be improved by
elastic scheduling, while database service level objectives are met. In order to evalu-
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ate progress of VMs, we use a statistical test program written in R, that runs inside
each VM and that computes the well-known Mandelbrot set boundary which has a
two-dimensional fractal shape. The size of the matrix was chosen such that around 4
GB are required to keep the results of the last 20 iterations in main-memory and the
number of completed iterations indicates the progress made by the statistical test
program. In our experiments, the VMs are only active while being co-located with
the DBMS. Thus, we can sum up the number of completed iterations of all VMs
to determine the progress of co-located VMs. The experiments were run on a com-
modity server with 1 TB of main memory (NUMA, 4 memory controllers) and four
2.27 GHz Processors with 8 CPU cores each (and two Hyper-Threading-Threads
per CPU-Core). As discussed in Section 6.3.2, we assume that 24 CPU-Cores and
around 100 GB of main-memory are available for OLAP, but actual OLAP load
varies over time and spare OLAP resources may be used for co-locating VMs. We
used Linux Control Groups for controlling the resource usage of the DBMS, Linux
KVM for virtualization and the VMs were running Ubuntu Server 11.10 64 bit. 7

We analyzed how co-location of VMs can be improved by elastic scheduling with
GOMA using the Bursty Workload (with the first variant for the last burst). We
compare GOMA with a simple FIFO scheduler that processes requests in arrival
order. Figures 6.13a, 6.13b and 6.13c compare the CPU load, OLAP main-memory

7Because we did not have a second server with sufficient main-memory and high-speed network
connection, we only suspended the VMs and later resumed them from main-memory instead of
migrating VMs between different servers. To account for the expected delay for VM migration, we
added a sleep duration of 4 seconds after suspending a VM, as we assume an elasticity delay of 2
minutes, which should be sufficient for migrating 24 VMs with 4-5 GB main-memory to another
server. Furthermore, we only reserved enough memory to keep data etc. in memory, but we did
not actually load corresponding data sets. We measured how long HyPer takes for executing a
join with a given number of warehouses on our test server when using a given amount of main-
memory. But during the experiments, our test program only slept for the corresponding amount
of time. As part of his master thesis on the topic "Evaluation of Adaptive Workload Management
Techniques for Main-memory Database Systems", Bernd Schultze developed a custom interface to
Linux KVM, which allows to freeze 24 VMs with 4GB main-memory each and to store their state
to the disks of our test server within 2 minutes. As his advisor, I (Michael Seibold) helped him
integrating this new interface with the existing framework. This approach allowed to run the joins
— representing the OLAP queries — during the experiments and to used spare OLAP resources
for running VMs, although the available resources were limited using process control groups. He
repeated the presented measurements and obtained similar results, which will be published in his
master thesis.
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usage and number of co-Located VMs of FIFO and GOMA. The charts on CPU load
and OLAP main-memory usage also contain a dashed line indicating the number of
CPU-cores and main-memory that are requested for OLAP by the LocalController
respectively. Furthermore, a continuous line indicates the number of CPU-cores and
main-memory that has been assigned for OLAP by the GlobalController respec-
tively. With FIFO, co-located VMs completed a total of 6812 iterations and with
GOMA 8835. This indicates that GOMA improved progress of co-located VMs by
almost 30% (29,69%).
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(c) Co-Located VMs

Figure 6.13: Bursty Workload

The table in Figure 6.16 presents the monitored statistics for the analyzed work-
loads and shows that GOMA always meets the cSLO, as the 99% percentile of
response times (prt) is below the max response time goal (grt) of 4 minutes and the
average response time of all requests (avgrt) is also below the percentile response
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time goal (grt). FIFO violates the cSLO for the Bursty Workload. For the Bursty
Workload, the statistics for variant three (with B5c as last burst) is shown. More-
over, Figure 6.16 lists min response time (minrt), max response time (maxrt), total
number of processed requests (]all) and number of delayed requests (]delayed).

Furthermore, we analyzed how GOMA handles different kinds of spikes using
the Bursty Workload and different variants for the demand spike of the last burst.
B5a represents a demand spike to half of peak. GOMA requests all resources,
because of the expected delay until resources are returned to the DBMS, and starts
to process four requests on-disk according the on-disk MPL chosen for our server.
Once the resources are returned to the DBMS, the on-disk requests can be aborted
and will still meet the response time goal after being restarted in-memory according
to execution time estimates. GOMA would abort on-disk requests in this case and
restart them in-memory to reduce average response time. But this Stop+Restart
feature can be disabled with a configuration option. Figure 6.14a shows the CPU
load without Stop+Restart and Figure 6.14b with Stop+Restart. In the former case,
average response time is 194.727 sec and in the latter case it is 67 milliseconds lower
(194.660 sec). B5b represents a demand spike with one more request of Q1 than
B5a. In this variant, GOMA would not abort on-disk requests even if Stop+Restart
is enabled, because after restart in-memory, the response time goal will not be met
anymore according to execution time estimates. This behavior is shown in Figure
6.14c. In all three cases, all requests meet the response time goal according to
execution time estimates and the DBMS now has all resources back. As future
work, GOMA could tell the GlobalController to ignore the last reduction of DBMS
resources in these cases and thus theGlobalController could reduce DBMS resources
more often than ]elasticity per day. The last variant B5c, represents a demand spike
to peak load followed by peak load until the end of the measurement interval. This is
the worst-case scenario and several requests miss the response time goal. We ran this
experiment ten times faster than real-time and without VMs. As shown in Figure
6.14d, GOMA processes 24 requests on-disk (6 blocks of 4 parallel requests over a
duration of 90 minutes) and the other requests in-memory. To meet the cSLO, the
percentile of response times and the average response time of all requests have to
be below the response time goal. This is the case, as shown in the second column
of the table in Figure 6.16.
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(a) Half Peak, No Disk Required, Without Stop+Restart
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(b) Half Peak, No Disk Required, With Stop+Restart
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(c) Half Peak plus One, Disk Required
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(d) Peak

Figure 6.14: CPU Load for Different Kinds of Spikes with GOMA
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(c) Co-Located VMs

Figure 6.15: Steady Workload
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Moreover, we analyzed how GOMA handles workloads that do not contain bursts
using the Steady Workload. Figures 6.15a and 6.15b compare the CPU load and
OLAP main-memory usage of FIFO and GOMA. FIFO processes the requests in
arrival order. When there are sufficient requests, 24 parallel requests are processed
in-memory and four on-disk. CPU load is at peak and OLAP main-memory usage is
low because in the Steady Workload all requests are of query type Q1, which requires
less than 2 GB of main-memory per parallel query for in-memory processing. In the
beginning, GOMA only requests a quarter of the OLAP resources and starts co-
locating VMS as shown in Figure 6.15c, because there are only few requests and
those can be delayed while still meeting the cSLO. As more requests are queued,
GOMA requests more resources. After less than 4 minutes, GOMA uses the same
amount of resources as FIFO. GOMA processes all requests in-memory to keep
average response time low, as there are no demand spikes. After 12 minutes, there
are no new requests and FIFO is done. At this time, GOMA still has queued
requests and processes them according to the cSLO while signaling reduced resource
requirements. As shown in the last two columns of the table in Figure 6.16, both
meet the cSLO for the Steady Workload.

Bursty Steady
FIFO GOMA FIFO GOMA

avgrt 276 sec 209 sec 35 sec 149 sec
minrt 120 sec 60 sec 30 sec 30 sec
maxrt 360 sec 5398 sec 240 sec 238 sec
prt 359 sec 240 sec 240 sec 238 sec
]all 2497 2497 576 576
]delayed 1200 24 0 0

Figure 6.16: Monitored cSLO Fulfillment for Bursty and Steady Workload
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6.5 Conclusions

The proposed elastic workload management approach for emerging main-memory
DBMSs allows to make use of spare resources on database servers by temporar-
ily running other applications on the database server using virtual machines and
ensures that the DBMS meets service level objectives of mixed workloads despite
co-located VMs. The presented experimental results show the feasibility of the pro-
posed approach and demonstrate that resource utilization of database servers can
be improved as co-located VMs make significant progress. Furthermore, the pre-
sented experimental results show that elastic scheduling according to the GOMA
approach can help to make spare resource better usable for co-locating VMs. As
future work, elastic workload management could also be used for intelligent power
management (e.g. hibernate CPU cores or deactivate unused memory banks etc.).
Elastic workload management could help to identify spare resources, that can be
put into power-save mode and to find out when to power them on again. Thereby,
energy costs could be reduced without co-locating VMs. But, intelligent power man-
agement does not improve overall resource utilization. In contrast, consolidation of
applications on formerly dedicated database servers may allow to reduce the total
number of required servers, at least for large data centers.
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Chapter 7

Conclusions

Operational Business Intelligence is complementary to an important class of business
applications and therefore represents an interesting kind of service to be provided in
the cloud. Cloud providers typically employ multi-tenant architectures in order to
reduce costs by consolidating several customers onto the same infrastructure. Multi-
tenancy features should be integrated into next-generation multi-tenant DBMSs in
order to reduce administration and maintenance costs, i.a. by enabling seamless
upgrades. The proposed data model can be used to capture the evolution and ex-
tensibility of a SaaS application explicitly, including data sharing. By supporting
branching, the evolution can be captured along the development history of the cor-
responding application. Cloud services with automated administration procedures
could be deployed on a large farm of commodity servers running independent DBMS
instances. These DBMS instances have to efficiently process mixed workloads that
result from Operational Business Intelligence, and a special purpose main-memory
database system similar to MobiDB may be used. The proposed SaaS architecture
may enable service providers to offer business applications with more powerful an-
alytical features at competitive prices according to the SaaS model. Furthermore,
MobiDB enables service providers to provide strict SLAs with stringent response
time and throughput guarantees. With stricter SLAs it would be easier to compare
different cloud offerings with on-premise solutions and thus cloud computing could
become more attractive for potential customers. Moreover, the presented mixed
workload benchmark could be used for analyzing the suitability of database systems
for Operational Business Intelligence. Finally, cloud computing may foster the de-
velopment of special purpose data management platforms and techniques like elastic
workload management, for improving resource utilization. Improved resource uti-
lization helps to reduce operational costs - including energy costs - and thereby may
promote green computing.
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Appendix: CH-benCHmark Queries

In the following, the SQL code of all 22 analytic queries of the CH-benCHmark is
listed.1

Q1: Generate orderline overview

select ol_number ,
sum( o l_quantity ) as sum_qty ,
sum( ol_amount ) as sum_amount ,
avg ( o l_quantity ) as avg_qty ,
avg ( ol_amount ) as avg_amount ,
count (∗ ) as count_order

from o r d e r l i n e where ol_del ivery_d > ’2007−01−02␣ 00 : 00 : 00 . 000000 ’
group by ol_number order by ol_number

Q2: Most important supplier/item-combinations (those that have the lowest stock level for certain
parts in a certain region)

select su_suppkey , su_name , n_name , i_id , i_name , su_address , su_phone ,
su_comment

from item , supp l i e r , stock , nation , reg ion ,
( select s_i_id as m_i_id ,min( s_quantity ) as m_s_quantity
from stock , supp l i e r , nation , r eg i on
where mod( ( s_w_id∗ s_i_id ) ,10000)=su_suppkey
and su_nationkey=n_nationkey
and n_regionkey=r_regionkey
and r_name l ike ’ Europ%’
group by s_i_id ) m

where i_id = s_i_id
and mod( ( s_w_id ∗ s_i_id ) , 10000) = su_suppkey
and su_nationkey = n_nationkey
and n_regionkey = r_regionkey
and i_data l ike ’%b ’
and r_name l ike ’ Europ%’
and i_id=m_i_id
and s_quantity = m_s_quantity
order by n_name , su_name , i_id

Q3: Unshipped orders with highest value for customers within a certain state

1The SQL code of all 22 queries can also be found at http://www-db.in.tum.de/research/
projects/CH-benCHmark/ (retrieved 07/31/2012).
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select ol_o_id , ol_w_id , ol_d_id , sum( ol_amount ) as revenue , o_entry_d
from customer , neworder , orders , o r d e r l i n e
where c_state l ike ’A%’
and c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and no_w_id = o_w_id
and no_d_id = o_d_id
and no_o_id = o_id
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and o_entry_d > ’2007−01−02␣ 00 : 00 : 00 . 000000 ’
group by ol_o_id , ol_w_id , ol_d_id , o_entry_d
order by revenue desc , o_entry_d

Q4: Orders that were partially shipped late

select o_ol_cnt , count (∗ ) as order_count
from orde r s
where o_entry_d >= ’2007−01−02␣ 00 : 00 : 00 . 000000 ’
and o_entry_d < ’2012−01−02␣ 00 : 00 : 00 . 000000 ’
and exists ( select ∗

from o r d e r l i n e
where o_id = ol_o_id
and o_w_id = ol_w_id
and o_d_id = ol_d_id
and ol_del ivery_d >= o_entry_d )

group by o_ol_cnt
order by o_ol_cnt

Q5: Revenue volume achieved through local suppliers

select n_name , sum( ol_amount ) as revenue
from customer , orders , o rd e r l i n e , stock , supp l i e r , nation , r eg i on
where c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and ol_o_id = o_id
and ol_w_id = o_w_id
and ol_d_id=o_d_id
and ol_w_id = s_w_id
and ol_i_id = s_i_id
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and mod( ( s_w_id ∗ s_i_id ) ,10000) = su_suppkey
and a s c i i ( substr ( c_state , 1 , 1 ) ) = su_nationkey
and su_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ Europe ’
and o_entry_d >= ’2007−01−02␣ 00 : 00 : 00 . 000000 ’
group by n_name
order by revenue desc

Q6: Revenue generated by orderlines of a certain quantity

select sum( ol_amount ) as revenue
from o r d e r l i n e
where ol_del ivery_d >= ’1999−01−01␣ 00 : 00 : 00 . 000000 ’
and ol_del ivery_d < ’2020−01−01␣ 00 : 00 : 00 . 000000 ’
and ol_quantity between 1 and 100000

Q7: Bi-directional trade volume between two nations

select su_nationkey as supp_nation ,
substr ( c_state , 1 , 1 ) as cust_nation ,
extract (year from o_entry_d ) as l_year ,
sum( ol_amount ) as revenue

from supp l i e r , stock , o rd e r l i n e , orders , customer , nat ion n1 , nat ion n2
where ol_supply_w_id = s_w_id
and ol_i_id = s_i_id
and mod( ( s_w_id ∗ s_i_id ) , 10000) = su_suppkey

and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and su_nationkey = n1 . n_nationkey
and a s c i i ( substr ( c_state , 1 , 1 ) ) = n2 . n_nationkey
and (

( n1 . n_name = ’Germany ’ and n2 . n_name = ’Cambodia ’ )
or
( n1 . n_name = ’Cambodia ’ and n2 . n_name = ’Germany ’ ) )

and ol_del ivery_d between ’ 2007−01−02␣ 00 : 00 : 00 . 000000 ’ and ’ 2012−01−02␣
00 : 00 : 00 . 000000 ’
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group by su_nationkey , substr ( c_state , 1 , 1 ) , extract (year from o_entry_d
)

order by su_nationkey , cust_nation , l_year

Q8: Market share of a given nation for customers of a given region for a given part type

select extract (year from o_entry_d ) as l_year ,
sum( case when n2 . n_name = ’Germany ’ then ol_amount else 0 end) /

sum( ol_amount ) as mkt_share
from item , supp l i e r , stock , o rd e r l i n e , orders , customer , nat ion n1 ,

nat ion n2 , r eg i on
where i_id = s_i_id
and ol_i_id = s_i_id
and ol_supply_w_id = s_w_id
and mod( ( s_w_id ∗ s_i_id ) ,10000) = su_suppkey
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and n1 . n_nationkey = a s c i i ( substr ( c_state , 1 , 1 ) )
and n1 . n_regionkey = r_regionkey
and ol_i_id < 1000

and r_name = ’ Europe ’
and su_nationkey = n2 . n_nationkey
and o_entry_d between ’ 2007−01−02␣ 00 : 00 : 00 . 000000 ’ and ’ 2012−01−02␣

00 : 00 : 00 . 000000 ’
and i_data l ike ’%b ’
and i_id = ol_i_id
group by extract (year from o_entry_d )
order by l_year

Q9: Profit made on a given line of parts, broken out by supplier nation and year

select n_name , extract (year from o_entry_d ) as l_year , sum( ol_amount )
as sum_profit

from item , stock , supp l i e r , o rd e r l i n e , orders , nat ion
where ol_i_id = s_i_id
and ol_supply_w_id = s_w_id
and mod( ( s_w_id ∗ s_i_id ) , 10000) = su_suppkey
and ol_w_id = o_w_id
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and ol_d_id = o_d_id
and ol_o_id = o_id
and ol_i_id = i_id
and su_nationkey = n_nationkey
and i_data l ike ’%BB’
group by n_name , extract (year from o_entry_d )
order by n_name , l_year desc

Q10: Customers who received their ordered products late

select c_id , c_last , sum( ol_amount ) as revenue , c_city , c_phone , n_name
from customer , orders , o rd e r l i n e , nat ion
where c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and o_entry_d >= ’2007−01−02␣ 00 : 00 : 00 . 000000 ’
and o_entry_d <= ol_del ivery_d
and n_nationkey = a s c i i ( substr ( c_state , 1 , 1 ) )
group by c_id , c_last , c_city , c_phone , n_name
order by revenue desc

Q11: Most important (high order count compared to the sum of all order counts) parts supplied
by suppliers of a particular nation

select s_i_id , sum( s_order_cnt ) as ordercount
from stock , supp l i e r , nat ion
where mod( ( s_w_id ∗ s_i_id ) ,10000) = su_suppkey
and su_nationkey = n_nationkey
and n_name = ’Germany ’
group by s_i_id
having sum( s_order_cnt ) >

( select sum( s_order_cnt ) ∗ . 005
from stock , supp l i e r , nat ion
where mod( ( s_w_id ∗ s_i_id ) ,10000) = su_suppkey
and su_nationkey = n_nationkey
and n_name = ’Germany ’ )

order by ordercount desc

Q12: Determine whether selecting less expensive modes of shipping is negatively affecting the
critical-priority orders by causing more parts to be received late by customers
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select o_ol_cnt ,
sum( case when o_carr ier_id = 1 or o_carr ier_id = 2 then 1 else 0

end) as high_line_count ,
sum( case when o_carr ier_id <> 1 and o_carr ier_id <> 2 then 1

else 0 end) as low_line_count
from orders , o r d e r l i n e
where ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_o_id = o_id
and o_entry_d <= ol_del ivery_d
and ol_del ivery_d < ’2020−01−01␣ 00 : 00 : 00 . 000000 ’
group by o_ol_cnt
order by o_ol_cnt

Q13: Relationships between customers and the size of their orders

select c_count , count (∗ ) as c u s t d i s t
from ( select c_id , count ( o_id )

from customer l e f t outer join orde r s on (
c_w_id = o_w_id
and c_d_id = o_d_id
and c_id = o_c_id
and o_carr ier_id > 8)

group by c_id ) as c_orders ( c_id , c_count )
group by c_count
order by c u s t d i s t desc , c_count desc

Q14: Market response to a promotion campaign

select 100 .00 ∗
sum( case when i_data l ike ’PR%’ then ol_amount else 0 end) / 1+sum(

ol_amount ) as promo_revenue
from o rd e r l i n e , item
where ol_i_id = i_id and ol_del ivery_d >= ’2007−01−02␣ 00 : 00 : 00 . 000000 ’
and ol_del ivery_d < ’2020−01−02␣ 00 : 00 : 00 . 000000 ’

Q15: Determines the top supplier

with revenue ( supplier_no , tota l_revenue ) as (
select mod( ( s_w_id ∗ s_i_id ) ,10000) as supplier_no ,

sum( ol_amount ) as tota l_revenue
from o rd e r l i n e , s tock
where ol_i_id = s_i_id and ol_supply_w_id = s_w_id
and ol_del ivery_d >= ’2007−01−02␣ 00 : 00 : 00 . 000000 ’
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group by mod( ( s_w_id ∗ s_i_id ) ,10000) )
select su_suppkey , su_name , su_address , su_phone , tota l_revenue
from supp l i e r , revenue
where su_suppkey = suppl ier_no
and tota l_revenue = ( select max( tota l_revenue ) from revenue )
order by su_suppkey

Q16: Number of suppliers that can supply parts with given attributes

select i_name ,
substr ( i_data , 1 , 3) as brand ,
i_pr ice ,
count ( distinct (mod( ( s_w_id ∗ s_i_id ) ,10000) ) ) as suppl i e r_cnt

from stock , item
where i_id = s_i_id
and i_data not l ike ’ zz%’
and (mod( ( s_w_id ∗ s_i_id ) ,10000) ) not in

( select su_suppkey
from s upp l i e r
where su_comment l ike ’%bad%’ )

group by i_name , substr ( i_data , 1 , 3) , i_pr i c e
order by suppl i e r_cnt desc

Q17: Average yearly revenue that would be lost if orders were no longer filled for small quantities
of certain parts

select sum( ol_amount ) / 2 .0 as avg_yearly
from o rd e r l i n e , ( select i_id , avg ( o l_quantity ) as a

from item , o r d e r l i n e
where i_data l ike ’%b ’
and ol_i_id = i_id
group by i_id ) t

where ol_i_id = t . i_id
and ol_quantity < t . a

Q18: Rank customers based on their placement of a large quantity order

select c_last , c_id o_id , o_entry_d , o_ol_cnt , sum( ol_amount )
from customer , orders , o r d e r l i n e
where c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and ol_w_id = o_w_id
and ol_d_id = o_d_id
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and ol_o_id = o_id
group by o_id , o_w_id , o_d_id , c_id , c_last , o_entry_d , o_ol_cnt
having sum( ol_amount ) > 200
order by sum( ol_amount ) desc , o_entry_d

Q19: Machine generated data mining (revenue report for disjunctive predicate)

select sum( ol_amount ) as revenue
from o rd e r l i n e , item
where ( ol_i_id = i_id

and i_data l ike ’%a ’
and ol_quantity >= 1
and ol_quantity <= 10
and i_pr i c e between 1 and 400000
and ol_w_id in ( 1 , 2 , 3 ) )

or ( ol_i_id = i_id
and i_data l ike ’%b ’
and ol_quantity >= 1
and ol_quantity <= 10
and i_pr i c e between 1 and 400000
and ol_w_id in ( 1 , 2 , 4 ) )

or ( ol_i_id = i_id
and i_data l ike ’%c ’
and ol_quantity >= 1
and ol_quantity <= 10
and i_pr i c e between 1 and 400000
and ol_w_id in ( 1 , 5 , 3 ) )

Q20: Suppliers in a particular nation having selected parts that may be candidates for a promo-
tional offer

select su_name , su_address
from supp l i e r , nat ion
where su_suppkey in

( select mod( s_i_id ∗ s_w_id , 10000)
from stock , o r d e r l i n e
where s_i_id in

( select i_id
from item
where i_data l ike ’ co%’ )

and ol_i_id=s_i_id
and ol_del ivery_d > ’2010−05−23␣ 12 : 00 : 00 ’
group by s_i_id , s_w_id , s_quantity
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having 2∗ s_quantity > sum( o l_quantity ) )
and su_nationkey = n_nationkey
and n_name = ’Germany ’
order by su_name

Q21: Suppliers who were not able to ship required parts in a timely manner

select su_name , count (∗ ) as numwait
from supp l i e r , o r d e r l i n e l1 , orders , stock , nat ion
where ol_o_id = o_id
and ol_w_id = o_w_id
and ol_d_id = o_d_id
and ol_w_id = s_w_id
and ol_i_id = s_i_id
and mod( ( s_w_id ∗ s_i_id ) ,10000) = su_suppkey
and l 1 . o l_del ivery_d > o_entry_d
and not exists ( select ∗

from o r d e r l i n e l 2
where l 2 . ol_o_id = l1 . ol_o_id
and l 2 . ol_w_id = l1 . ol_w_id
and l 2 . ol_d_id = l1 . ol_d_id
and l 2 . o l_del ivery_d > l1 . ol_del ivery_d )

and su_nationkey = n_nationkey
and n_name = ’Germany ’
group by su_name
order by numwait desc , su_name

Q22: Geographies with customers who may be likely to make a purchase

select substr ( c_state , 1 , 1 ) as country ,
count (∗ ) as numcust ,
sum( c_balance ) as t o t a c c tba l

from customer
where substr ( c_phone , 1 , 1 ) in ( ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ )
and c_balance > ( select avg (c_BALANCE)

from customer
where c_balance > 0.00
and substr ( c_phone , 1 , 1 ) in ( ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7

’ ) )
and not exists ( select ∗

from orde r s
where o_c_id = c_id
and o_w_id = c_w_id
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and o_d_id = c_d_id)
group by substr ( c_state , 1 , 1 )
order by substr ( c_state , 1 , 1 )
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