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Abstract

The molecular mechanisms and genetic risk factors underlying neurodegenerative dis-

eases such as Alzheimer's (AD) and Parkinson's disease (PD) as well as psychiatric

diseases like stress and depression are only partly understood. However, it is strongly

assumed that these diseases are highly connected either by co-occurrence or being

risk factors for further neurodegeneration. To identify new factors, which may con-

tribute to neurodegeneration, di�erent approaches are taken including proteomics,

genetics, and functional genomics. I established two bioinformatics approaches for

the identi�cation of transcription factor binding site (TFBS) modules in distinct

AD-related genes as well as microRNAs regulating ADAM10 expression concerning

AD.

To detect additional coregulated genes, which may potentially contribute to AD, I

incorporated in the �rst work�ow known multivariate methods like support vector

machines, biclustering, and predicted TFBS modules by using in silico analysis and

over 400 expression arrays from human and mouse. Two signi�cant modules are

composed of binding sites of three TF families: CTCF, SP1F, and EGRF/ZBPF,

which are conserved between human and mouse APP promoter sequences.

Additionally, I applied the multivariate methods of the approach on microarray

datasets of depression as well as PD mouse models to validate this part of the work-

�ow and to unravel the underlying disease-related pathways. Furthermore, several

PD related genes were analysed for TFBSs in�uencing PD pathogenesis and some

TFBSs were veri�ed in the lab.

The second work�ow combines microRNA (miRNA) prediction software with sta-

tistical and AD disease-relevant criteria in contrast to already existing miRNA tar-

get site prediction databases. Three miRNAs (miR-103, miR-107, miR-1306) with

evolutionary conserved binding sites on ADAM10 3'UTR were further analysed by

occurrence in GWAS studies listed in AlzGene database, Gene Ontology analysis

and literature mining. Finally, a luciferase assay ver�es the potential e�ect of these

three miRNAs on ADAM10 3'UTR in SH-SY5Y cells.

An overall network summarizing all predictions and validations of the thesis was es-

tablished showing the connectivity of the neurodegenerative and psychiatric diseases

on the gene regulatory level. This might explain the co-occurrence of neurodegener-

ative and psychiatric diseases as well as their interaction.

The speci�c combination of in silico promoter and multivariate analysis in the �rst

1



Abstract

approach can identify regulation mechanisms of genes involved in multifactorial dis-

eases. The second novel approach using established prediction programs and speci�c

selection criteria with respect to AD successfully identi�es miRNA:mRNA interac-

tions and hence o�ers possibilities for the development of therapeutic treatments of

AD.
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Zusammenfassung

Die molekularen Mechanismen und genetischen Risikofaktoren, welche zu neu-

rodegenerativen Erkrankungen wie Alzheimer und Parkinson sowie zu psychischen

Erkrankungen wie Stress und Depression führen, werden bis jetzt nur zum Teil ver-

standen. Dennoch wird stark davon ausgegangen, dass diese Krankheiten stark

miteinander verknüpft sind entweder durch gemeinsames Auftreten oder dadurch

dass sie ein Risiko für weitere Neurodegeneration darstellen. Um neue Faktoren, die

womöglich zu Neurodegeneration beitragen, zu identi�zieren, werden verschiedene

Ansätze wie z.B. Proteomiks, Genetik und funktionelle Genomik verwendet. In der

vorliegenden Arbeit habe ich zwei neue bioinformtische Ansätze für die Identi�kation

von Modulen von Transkriptionsfaktorbindestellen in verschiedenen mit Alzheimer

verknüpften Genen sowie microRNAs, welche die Expression von ADAM10 in Bezug

auf Alzheimer regulieren, erstellt.

Zur Ermittlung von weiteren ko-regulierten Genen, welche sich möglicherweise auf

Alzheimer auswirken, habe ich in den ersten Ansatz bekannte multivariate Meth-

oden wie Support Vektor Maschinen als auch Biclustering aufgenommen und sage

Module von Transkriptionsfaktorbindestellen vorher, indem ich eine in silico Anal-

yse durchführe und über 400 Expressionsarrays von Mensch und Maus verwende.

Zwei signi�kante Module bestehen aus drei Transkriptionsfaktor-Familien: CTCF,

SP1F und EGRF/ZBPF, welche zwischen der APP Promotorsequenz von Mensch

und Maus konserviert sind.

Zusätzlich wende ich die multivariaten Methoden des Ansatzes auf weitere Microar-

ray Datensätze von Mausmodellen für Depression und Parkinson an, um diesen Teil

des Ansatzes zu validieren und um zugrunde liegende krankheitsrelevante Signalwege

aufzudecken. Darüber hinaus suche ich in einigen Parkinson assoziierten Genen nach

Transkriptionsfaktorbindestellen, welche im Krankheitsverlauf von Parkinson eine

Rolle spielen können. Einige dieser Ergebnisse wurden im Labor bestätigt.

Der zweite Work�ow kombiniert Software zur microRNA Vorhersage mit statis-

tischen und Alzheimer relevanten Kriterien im Gegensatz zu bereits vorhandenen

Datenbanken mit vorhergesagten Zielgenen der microRNAs. Drei microRNAs (miR-

103, miR-107, miR-1306) mit evolutionär konservierten Bindestellen in der ADAM10

3'UTR wurden durch ihr Vorkommen in GWAS Studien, Gene Ontologie Analysen

und Literature Mining näher charakterisiert. Schlieÿlich zeigt ein Luciferase As-

say einen möglichen E�ekt dieser drei microRNA auf ADAM10 3'UTR in SH-SY5Y

3



Zusammenfassung

Zellen.

Ein Gesamtnetzwerk fasst alle Vorhersagen und Validierungen aus meiner Arbeit

zusammen und veranschaulicht die Verknüpfung der neurodegenerativen und psychis-

chen Erkrankungen durch Interaktionen von Genen der verschiedenen Krankheiten.

Interkationen von Genen, die in verschiedenen Krankheiten eine Rolle spielen, kön-

nten eine mögliche Erklärung für das gemeinsame Auftreten und die Interaktion

neurodegenerativer und psychischer Erkrankungen liefern.

Die spezi�sche Kombination von in silico Promotor und multivariaten Analysen

im ersten Ansatz ermöglicht die Identi�zierung der regulatorischen Mechanismen

von Genen, die in multifaktoriellen Krankheiten beteiligt sind. Der zweite neue

Ansatz, welcher bekannte Vorhersageprogramme und spezi�sche Auswahlkriterien

in Bezug auf Alzheimer benutzt, bestimmt erfolgreich miRNA-mRNA Interaktionen

und bietet somit Möglichkeiten für die Entwicklung von therapeutischen Behand-

lungsmöglichkeiten für Alzheimer.

4



Chapter 1

Introduction

1.1 Neurodegeneration

Neurodegenerative diseases lead to loss of neurons resulting in neuronal cell death.

Oxidative stress and mutations in the mitochondrial DNA are incorporated in

the process of aging, which is a risk factor for neurodegenerative diseases such as

Alzheimer's, Parkinson's and Huntington's disease as well as Amyotrophic Lateral

Sclerosis [Shukla et al., 2011]. Beside, depression co-occurs often with neurodegener-

ation and patients su�ering from major depression develop often neurodegenerative

diseases [Zunszain et al., 2011].

1.1.1 Alzheimer's disease

Alzheimer's disease (AD) is the most common form of dementia, which slowly de-

stroys neurons and causes serious cognitive disability [Selkoe and Schenk, 2003].

Characteristics of AD are insoluble amyloid plaques and neuro�brillary tangles in

the brains of AD patients, which extend progressively to neocortical brain areas dur-

ing AD [Crews et al., 2010]. AD exists in a sporadic and familial (heritable) form.

Mutations in amyloid-beta precursor protein (APP), presenilin 1 (PS1), and prese-

nilin 2 (PS2) are associated with early-onset forms of familial AD, whereas sporadic

AD occurs in people over the age of 65 years [Selkoe, 2001].

APP was the �rst gene linked to AD and is located on chromosome 21. APP is

cleaved by di�erent proteases named α-, β-, and γ-secretase (Figure 1.1). These pro-

teases control the generation of the amyloid-β peptide (Aβ), which is considered the

culprit in AD. β- and γ-secretase cleavage leads to Aβ formation. β-secretase is the

aspartyl protease BACE1 [Cole and Vassar, 2008, Roÿner et al., 2006]. A homolog of

BACE1, BACE2, cleaves within the Aβ domain and does not contribute to Aβ gen-

eration. γ-secretase is a heterotetramer consisting of the four subunits PS1 or PS2,

anterior pharynx defective 1 homolog A (APH1A), Nicastrin (NCSTN), and prese-

nilin enhancer (PEN-2) [Steiner et al., 2008]. Aggregates of Aβ are neurotoxic and

start the so-called amyloid cascade, which describes the molecular mechanisms lead-

ing to AD, including formation of plaques and tangles [Selkoe and Schenk, 2003]. The

third protease, the alpha-secretase ADAM10 (a disintegrin and metalloproteinase 10)

5



Chapter 1 Introduction

Figure 1.1: Proteolytic cleavage of APP by α-, β- and γ- secretase. The left side
of the schematic representation shows the non-amyloidogenic pathway processing
the soluble sAPPα fragment. Whereas the other side describes the amyloidogenic
pathway resulting in insoluble and neurotoxic amyloid plaques.

[Lammich et al., 1999, Kuhn et al., 2010], avoids formation of Aβ, because it cleaves

APP inside the Aβ sequence [Fahrenholz, 2007]. Additionally, α-secretase generates

the soluble sAPPα, which enhances memory in normal and amnesic mice [Meziane

et al., 1998]. In AD patients, the amount of sAPPα in the cerebrospinal �uid is

reduced [Lannfelt et al., 1995].

1.1.2 Parkinson's disease

Parkinson's disease (PD) is the second most common neurodegeneration implicating

the loss of nigrostriatal dopaminergic neurons [Braak et al., 2004]. Beside motor

symptoms including resting tremor, bradykinesia and rigidity also non-motor symp-

toms such as depression, anxiety, olfactory and cognitive impairments occur before

diagnosis, which are often not identi�ed and poorly treated [Chaudhuri et al., 2006].

PD is classi�ed into a sporadic and a familial form at which in the majority of cases

sporadic PD is occurring [Davie, 2008]. Oxidative stress and mitochondrial dysfunc-

tion are involved in the pathogenesis of sporadic PD [Zhang et al., 2000] while several

genes are known to be involved in the familial form of PD such as Parkin and DJ-1,

which are autosomal recessive genes. In contrast, SNCA and MAPT are autosomal

dominant PD genes and therefore risk factors for the pathogenesis of PD [Dawson

et al., 2010, Wider and Wszolek, 2007].

6



Chapter 1 Introduction

Parkin protects cells from cell death induced by oxidative stress and is involved in

the mitochondrial biogenesis especially in mitochondrial �ssion and fusion. DJ-1 is

like Parkin neuroprotective preventing mitochondrial damage. The overexpression of

autosomal recessive PD genes leads to protection of neuronal cells [Henchcli�e and

Beal, 2008]. SNCA is found in Lewy bodies, which are characteristic of PD, and

an overexpression of SNCA can lead to sporadic PD [Bogaerts et al., 2008]. MAPT

was discovered in genome-wide association studies (GWAS) to be associated with

PD [Edwards et al., 2010] and is involved in the microtubule network stabilisation

[Garcia and Cleveland, 2001].

In addition to PD-related genes mitochondria dysfunction is strongly associated to

PD. Usually, mitochondrial function plays a role in energy metabolism as well as in

di�erent cellular processes such as stress response and cell death pathways. Muta-

tions in the mitochondrial DNA implicate an increase of cellular stress [Winklhofer

and Haass, 2010]. Several mouse models with decreased mitochondrial DNA ex-

pression studied by Ekstrand et al. [2007] showed more cell death but no change

in oxidative stress. Thus, mitochondrial dysfunction weakens the cellular energy

supply, which possibly leads to cell death, and is associated to aging and neurode-

generation such as PD. Furthermore, several autosomal recessive as well as dominant

PD genes are associated with mitochondria, which links sporadic and familial PD

form [Winklhofer and Haass, 2010].

1.1.3 Stress and depression

Basically, stress and depression are not classi�ed as neurodegenerative diseases, but

their exists a strong association between the diseases. Neurodegeneration as well

as in�ammation seems to be increased in depressed brains, while neurogenesis is

decreased. In�ammation causes an increase of oxidative stress leading to neurode-

generation and as a consequence to depression [Maes et al., 2009].

The symptoms of patients su�ering from depression are manifold. Beside weight

changes according to loss of appetite [Maxwell and Cole, 2009], sleep disturbances, fa-

tigue as well as insomnia occur in the pathogenesis of depression [Franzen and Buysse,

2008]. Furthermore, the dysregulation of hypothalamic-pituitary-adrenocortical

(HPA) axis is associated to this psychiatric disorder.

Normally, stress activates the hypothalamus (Figure 1.2) to secrete corticotropin-

releasing hormone (CRH) leading to adrenocorticotropic hormone (ACTH) release

from the pituitary gland. As a consequence the glucocorticoid cortisol is secreted

from the adrenal cortex and decreases the levels of CRH and ACTH by a negative

feedback loop [de Kloet et al., 2005, Herman and Cullinan, 1997]. In depression the

HPA axis is dysregulated leading to a HPA axis hyperactivity by abnormal function

7
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Figure 1.2: HPA-axis. The HPA-axis responses to stress by releasing CRH, ACTH
and Cortisol, which decreases stress reaction by negative feedback.

of the glucocorticoid receptor (GR). The reason could be the impaired negative feed-

back loop leading to high levels of CRH and ACTH, but also increased in�ammation

is involved in depression reducing GR activity [Pariante and Lightman, 2008].

1.2 Regulatory mechanisms

Di�erent regulatory mechanisms in the cell such as activators and repressors control

metabolic processes and gene expression. Transcription factors and microRNAs bind

to regulatory sites in the DNA sequence and are able to activate and repress genes.

Additionally, SNPs observed in several GWASs alter DNA sequence and as a conse-

quence can induce an increase or decrease in gene expression by modifying binding

sites of activators or repressors.

1.2.1 Transcription factor binding sites

Transcription factors (TFs) bind predominantly to the upstream region of genes regu-

lating transcription either directly or indirectly. Each TF has its own speci�c binding

motif, whereas binding sites are 10 to 30 nucleotides long. Usually, the TF binding

sites (TFBSs) are de�ned by position weight matrices established from several val-

idated binding sites of the corresponding TF. The position weight matrix describes

the preference of the di�erent nucleotides at each position of the TF binding site

[Werner et al., 2003].

TFs with a similar binding motif are grouped to a TF-family. Combinations of TFs

in a de�ned order, distance range, and orientation are known as TFBSs modules

8
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[Döhr et al., 2005]. Modules common to a set of genes, which act together in the

same biological context, are able to control the expression of these gene products

[Cohen et al., 2006]. Conversely, the �nding that the expression of di�erent genes

is coregulated in a certain biological process may indicate that they are functionally

linked in this process. This may be applicable to the identi�cation of new disease-

linked genes, for example, in neurodegeneration.

Several free available as well as commercial programs have been established for the

prediction of TF binding sites. All TF binding site predictions in this thesis were per-

formed by the software from Genomatix incorporating regularly updated TF weight

matrices and a whole genome database of distinct species [Cartharius et al., 2005].

1.2.2 Single nucleotide polymorphisms

Single nucleotide polymorphism (SNP) is a variation in the DNA sequence of just a

single nucleotide. About 90% of all polymorphisms in the human genome are SNPs

[Brookes, 1999]. Most of the SNPs are located in non-coding regions and do not

in�uence gene function. On average 6 SNPs are located in one gene, which are more

likely to manipulate the role of a gene [Collins et al., 1998].

In contrast to synonymous SNPs whereby the amino acid is not changed, nonsyn-

onymous SNPs alter the amino acid sequence and nonsense SNPs introduce a stop

codon. In the genome nonsynonymous SNPs occur much more often than nonsense

SNPs, leading to the assumption that introducing a stop codon is much more

deleterious than altering one amino acid [Yamaguchi-Kabata et al., 2008].

SNPs, which cause a change in regulation, occur e.g. in TF binding sites implicating

di�erent consequences for TFs. Most probably the SNP does not a�ect the TF

binding site, because a TF requires not 100% binding site sequence complementarity.

However, in some cases increased or decreased binding, no binding as well as binding

of a novel TF is possible, which alters gene expression and leads to a disease

outbreak [Chorley et al., 2008].

1.2.3 MicroRNAs

MicroRNAs (miRNAs) are on average 22 nucleotides long and play a pivotal

role in gene regulation. These small RNAs regulate the gene expression post-

transcriptionally by suppression of mRNA translation, stimulation of mRNA

deadenylation and degradation or induction of target mRNA cleavage, but have also

the potential to activate translation [Chekulaeva and Filipowicz, 2009, Vasudevan

and Steitz, 2007]. Over half of the mammalian protein coding-genes are regulated by

miRNAs and most human mRNAs have binding sites for miRNAs [Friedman et al.,

9
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2009]. The interaction of miRNA and target mRNA requires base pairing between

the seed sequence (positions 2-8) of the miRNA at the 5' end and a sequence most

frequently found in the 3' untranslated region (UTR) of the target mRNA [Fabian

et al., 2010].

Two enzymes are essentially involved in the miRNA biogenesis (Figure 1.3) from

Figure 1.3: MicroRNA biogenesis by Drosha and Dicer.

the transcription to the mature miRNA. After transcription, the long primary

miRNA (pri-miR) is cleaved by nuclear RNase III Drosha generating the about

70-nucleotide long pre-miRNA [Lee et al., 2003]. The pre-miRNA is transported

from the nucleus to the cytoplasm in order to cut o� the loop of the pre-miRNA by

Dicer. The generated duplex is processed by helicase developing a single-stranded

22-nucleotide long mature miRNA [Bartel, 2004].

MiRNAs are involved in neuronal functions like neurite outgrowth and brain

development [Hébert and De Strooper, 2009]. They were recently described to

play a role in human neurodegenerative diseases [Satoh, 2010]. Changes in miRNA

expression pro�les or miRNA target sequences could contribute to the development

of PD and AD [Hébert and De Strooper, 2009, Satoh, 2010].

1.3 TFBS promoter analysis (Genomatix)

TFBSs are de�ned by weight matrices with length of 5 - 29 bp. Similar binding

site descriptions are grouped into one TF-family in order to reduce redundancy and

minimize redundant matches. The TFBS matrices recorded in the matrix library

originate from publications with validated binding sites or nucleotide distribution

matrix passing the quality threshold. An essential property of the TFBS matrix is

the core sequence de�ned by the highest conserved stretch of four nucleotides. Addi-
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tionally, optimized matrix thresholds for each individual matrix are de�ned, since the

matrices di�er in length and conservation pro�le. The optimized matrix threshold is

the matrix similarity threshold, which permits maximal three TFBSs of this matrix

in a non-regulatory test sequence with the length of 10000 bp.

The MatInspector identi�es TFBSs in DNA sequences by a three step algorithm.

First, sequences matching the core positions of matrices are identi�ed and the core

similarity is calculated. If the computed core similarity reaches the threshold, the

similarity to the whole matrix is checked and has to reach the optimized matrix

threshold. Finally, overlapping matches of one family are �ltered out for the matches

with the highest score.

Several tools are based on MatInspector such as DiAlignTF and FrameWorker. Di-

AlignTF is a combination of MatInspector and DiAlgin, which establishes multiple

sequence alignments. The identi�cation of functional TFBSs is supported by multi-

ple alignment considering conservation. TFBSs in the local alignment of evolutionary

related sequences are highlighted.

After identi�cation of single TFBSs the user can search by FrameWorker for func-

tional units consisting of at least two TFBSs (modules). The program identi�es

shared TFBS patterns by multiple sequence alignment. The TFBSs of a module are

arranged in a de�ned order, distance range and orientation. Finally, sequences of

whole genomes can be scanned for TFBS modules de�ned by FrameWorker [Carthar-

ius et al., 2005].

1.4 Microarray analysis

Microarray studies measure the changes in expression level for thousands of genes

simultaneously, and therefore are an unbiased approach to identify genes with an

altered expression, for example, in diseases such as AD [Blalock et al., 2004, Miller

et al., 2010].

However, microarray experiments are expensive and the user has to be aware of

noise incorporated in the measured expression values and less robust data analysis

platforms [Iida and Nishimura, 2002, Verducci et al., 2006]. On the other hand

microarrays are used in drug discovery and clinical applications such as developing

biomarkers [Wang and Cheng, 2006]. Aims of the analysis of microarray datasets

include the discovery of gene function [Pan, 2006], getting insights into human

disease progression [Tenenbaum et al., 2008], and prediction of gene regulatory

elements like TFBSs of coregulated genes [Park et al., 2002].

A microarray experiment can be divided into several steps. At the beginning, the

biological problem is constituted as well as which biologically conclusions should be

received from the data contributing to a successful microarray experiment. First,

11
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the experimental design is established by deciding which array technology is used,

whether single- or two-color arrays are appropriate as well as how many biological

replicates of each group have to be measured. Next, data preparation is performed

by visualizing and normalizing raw data in order to remove technical variation

between arrays so that only biological variation is remaining. Finally, data is

analysed by software such as R, which is free available and includes a huge amount

of packages suitable for gene expression analysis. The main goal of the microarray

analysis is to �nd single genes or gene sets, which are di�erentially regulated among

groups of arrays, associated to a biological pathway or function [Slonim and Yanai,

2009].

1.5 MicroRNA target site prediction and databases

A vast majority of miRNA prediction programs and databases have been established

up to date, but miRNA prediction is still a great challenge. Numerous available com-

putational methods predict a large number of genes targeted by miRNAs regulating

gene expression, but only few have been validated experimentally. Many computa-

tional predictions are false positives and therefore have to be �ltered out [Watanabe

et al., 2007].

MiRNA binding sites of targets are classi�ed into 5'-dominant canonical, 5'-dominant

seed only or 3'-compensatory target sites [Brennecke et al., 2005]. Each prediction

program favours speci�c base pairing rules. Additionally, conservation varies between

di�erent prediction algorithms in the number and category of conserved species as

well as in the length of conservation i.e. only seed or entire binding site conservation

is required [Sethupathy et al., 2006]. The requirement of target-site conservation in

di�erent species including far related species is a potential way to reduce the false

positive rate [Lewis et al., 2005].

Another considered feature of miRNA prediction programs is thermodynamic stabil-

ity of the mRNA-miRNA duplex. There is no universally valid threshold, hence the

prediction programs de�ne di�erent limiting values for accepting binding sites as well

as various calculation programs are used leading to di�erent free energy results [Min

and Yoon, 2010]. Finally, comparing the output of various prediction programs the

user should pay attention to di�erent 3'UTR sequences used by distinct prediction

algorithms [Sethupathy et al., 2006].

12
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1.6 Bioinformatics analysis

Computational exploration such as enrichment as well as microarray analysis by

bioinformatics programs facilitates research with an increasing amount of data. Dif-

ferent statistical and machine learning functions are applied in this thesis with the

help of the R software for statistical computing.

1.6.1 Statistical methods

At the beginning of statistical analysis such as evaluation of microarray datasets

often univariate methods are applied analysing large datasets. Univariate methods

consider variables individually and not in relation to each other [Naduvilath and

Dandona, 1998]. Various methods such as mean, p-value as well as foldchange com-

putation are available for describing variables.

While the mean describes average expression level of a group, the foldchange displays

the ratio of two group means and t-test is applied for calculating p-values in order

to e.g. identify di�erentially expressed genes. Additionally, after p-value computa-

tion usually the values are corrected for multiple comparisons, which is also called

p-value adjustment. Microarray datasets measure several thousands of probesets si-

multaneously, whereas the p-value is calculated for each probeset separately, hence

false positive p-values increase with the number of probesets [Zhang and Cao, 2009,

Reiner et al., 2003].

Multivariate methods are adapted considering at least two variables simultaneously

[Naduvilath and Dandona, 1998]. Multivariate analysis such as contingency tables,

support vector machines and clustering procedures are more complex than univariate

methods.

Contingency tables (Figure 1.4), which consider two variables, are appropriate for

enrichment analysis to calculate p-values according to Fisher's test. The value r

reports the number of individuals/observations ful�lling both variables. R and n

describe the quantity of individuals conform to variable B and A, respectively. N

is the overall number of individuals analysed for both variables. After setting the

four values the Fisher's test is applied computing a p-value. Finally, the p-value

reports the signi�cance of the number of individuals ful�lling both variables [Sahai

and Khurshid, 1995].

Fisher's test can be used for large as well as small sample sizes and is categorized as

exact test. The p-value is calculated by the formula of the hypergeometric distribu-

tion [Agresti, 2007].
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Figure 1.4: Contingency table considering two variables A and B as well as the
proportion of the four values r, n, R and N in the contingency table. ¬ = not.

1.6.2 Support vector machine and recursive feature elimination

Support vector machines (SVMs) belong to the supervised learning methods and

are applied in classi�cation and regression analysis. SVM is a large margin classi�er

Figure 1.5: Support vector machine divides objects into two classes (orange and
green) in order to get the broadest possible margin around the hyperplane, which is
free of objects. Support vectors are located on the margin boundary (blue lines).

(Figure 1.5) dividing set of objects (i.e. biological replicates) into classes (i.e. disease,

control) that around the class boundary (hyperplane) the broadest possible range

remains, which is free of objects.

Additionally, nonseparable classes are analysed by soft margin SVM by adjusting

a constant C > 0 (see section 2.1.3). Soft margin classi�ers are suitable for noisy

data such as microarray datasets because a minimal number of misclassi�cations is

permitted [Domeniconi et al., 2005, Cortes and Vapnik, 1995]. If the value of C

is small more misclassi�cations close to the hyperplane are allowed increasing the

14



Chapter 1 Introduction

margin. Whereas a larger value of C implicates a more accurate model permitting

less errors and decreases the margin. Therefore SVM with a larger value of C tends

to over�t [Ben-Hur et al., 2008].

SVMs are appropriate to handle high-dimensional data such as microarray datasets

being accurate with a low error rate [Brown et al., 2000]. Mostly, more than two

classes have to be analysed by SVM. This is easily done by dividing multi classes into

multiple binary classes and analysing each by either one-versus-all (one class and the

rest) or one-versus-one (every pair of classes) method. One-versus-all determines the

class, whose classi�er function has the highest value. In the one-versus-one method

each binary classi�er chooses one class, whose vote is increased by one, and in the

end the class with most votes is assigned [Hsu and Lin, 2002].

Recursive Feature Elimination (RFE) in combination with SVM is a suitable tool

to reduce large number of genes such as on microarrays to a applicable amount for

further analysis (Figure 1.6). SVM-RFE procedure was �rst established by Guyon

Figure 1.6: The recursive feature elimination reduces the number of microarray probe-
sets. Probesets worst in discriminating between classes according to SVM are re-
moved until a suitable number of probesets is reached.

et al. [2002]. The feature selection eliminates recursively in each step a certain

amount of features, which are not good enough in di�erentiating between classes.

SVM classi�cation is applied to rank features. In each elimination step weight values

for each feature e.g. probesets in the case of a microarray analysis are computed

from coe�cients and support vectors followed by calculation of the ranking criterion.

Finally, 10 % of the remaining features with worst ranking criterion are deleted. This

iterative procedure is repeated until a certain amount of features is remaining, which

is suitable for further analysis [Guyon et al., 2002].
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1.6.3 Biclustering

In general, cluster analysis belongs to unsupervised learning methods in data mining.

The main goal of clustering is to group objects into clusters. In principal, objects

belonging to the same cluster are more closely related than objects assigned to dif-

ferent clusters.

Clustering methods are discriminated by several various aspects. Clustering methods

are divided into partitional and hierarchical procedures depending on whether ob-

jects are assigned to one non-overlapping cluster or clusters have subclusters, which

are often illustrated as a tree. Another distinction of clusters is exclusive, overlapping

and fuzzy, which indicates each object belongs to one cluster, objects can be assigned

to more than one cluster and each object belongs to all clusters with assigned prob-

ability for membership, respectively. Furthermore, the clustering procedure is either

complete or partial i.e. every object is assigned to a cluster or some objects are not

grouped into clusters [Hastie et al., Tan et al., 2005].

Especially suitable for analysing gene expression data from microarray datasets are

biclustering procedures. Thereby, simultaneous clustering of conditions and genes

is executed to �nd subgroups of genes as well as conditions. In other words, bi-

clustering is appropriate to identify coregulated genes under di�erent conditions in

microarray experiments. Interesting are biclusters with coherent values on both rows

and columns, which are characterized by an additive model such as in the Plaid model

[Madeira and Oliveira, 2004]. An example is shown in Figure 1.7. Coherent values in

Figure 1.7: Example of an additive bicluster with coherent values. Beside the biclus-
ter the derivation of the coherent values is shown on the right side.

a bicluster are obtained by considering a typical value of the bicluster as well as row

and column o�set [Kerr et al., 2008]. The method Plaid performs two-sided cluster-

ing and considers also overlapping biclusters [Lazzeroni and Owen, 2000]. Allowing

overlapping biclusters (Figure 1.8) is necessary for gene expression datasets, because

genes have usually several biological functions incorporated in more than one path-

way [Kerr et al., 2008].
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Figure 1.8: Two additive overlapping biclusters are illustrated in the middle of the
�gure. The overlapping values 9, 12, 12 and 15 are derived by combining the corre-
sponding values of the two single biclusters like shown in the box below.

1.7 Aim of the thesis

The aim of the work is the identi�cation of regulatory molecular networks in neurode-

generation. Di�erent computational work�ows are developed and evaluated. Finally,

common regulatory mechanisms and disease related genes of neurodegenerative dis-

eases and depression are discovered.

For the identi�cation of regulatory molecular mechanisms in AD two approaches

are developed to identify TFBSs modules and predict miRNA target sites. The

purpose is to identify possibly regulatory TFBSs modules in AD related genes as

well as key genes and miRNAs regulating ADAM10 expression.

The �rst approach identi�es modules of TFBSs in the promoters of coregulated

AD-related genes as well as in AD key genes. I hypothesized that the genes from β-

and γ-secretase complex, which are responsible for Aβ formation, are coregulated.

Thus, I started by analyzing TF binding modules in the genes for β- and γ- sec-

retase by an in silico promoter approach. I included in the work�ow three already

existing microarray datasets, which were established under di�erent conditions and

in summary contain over 400 arrays, for analysis by using state-of-the-art bioinfor-

matics tools focussing on multivariate methods. Multivariate variable selection was

performed because variables (transcripts) contribute only in combination with other

variables to the discrimination of input dataset rather than in isolation, which help

to identify highly correlated genes (i.e., interaction networks) [Trümbach et al., 2010,

Trevino and Falciani, 2006].

I established a second approach to identify miRNAs regulating ADAM10 ex-

pression which therefore might in�uence the progression of AD. The three pro-

grams RNA22, RNAhybrid and miRanda predict potential miRNA binding sites to

ADAM10 3'UTR. I sought to identify the most interesting miRNAs possibly binding

to ADAM10 3'UTR with additional selection criteria in particular whether they play
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a role in AD. Additionally, the most interesting miRNAs were experimentally ver-

i�ed by a luciferase assay. The results show that miR-103, miR-107 and miR-1306

in�uence the expression of ADAM10. These miRNAs could play a role in AD and

therefore are interesting candidates to be further analysed in relation to AD and

could become potential therapeutic targets.

Moreover, TFBSs in PD associated genes such as Parkin, OPA1, MAPT, SNCA

and AMPK are predicted possibly in�uencing PD pathogenesis. Additional infor-

mation concerning the function of the TFs as well as of the target genes in PD and

species conservation helps to limit the number of predicted TFBSs in the promoter

sequences.

An implemented mSVM-RFE method is applied on PD and depression microarray

datasets. For the purpose of evaluating the implemented method but also to identify

PD and depression related genes. Finally, common mechanisms, genes and pathways

of both neurodegenerative diseases and depression are revealed and discussed.

In the end, the validated and predicted interactions of neurodegenerative disease

key genes and miRNAs as well as TFs of this thesis are summarized in a network to

provide a model for the connectivity of the diseases AD, PD as well as stress and

depression.
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Material and methods

2.1 Bioinformatics identi�cation of modules of transcription factor

binding sites

2.1.1 In silico promoter analysis

Promoter analysis was done with Genomatix software (Munich/Germany). All pro-

moter sequences are derived from the promoter sequence retrieval database ElDorado

(Release 4.9, Human Genome NCBI build 37/hg19). The DiAlignTF task of GEMS

Launcher was used to check for conserved TFBSs, which are placed at the same

position in the alignment, between the human and mouse APP promoter sequence

(Matrix Family Library, Version 8.0, Vertebrates; Genomatix: 690 matrices from

162 families). The FrameWorker tool (GEMS Launcher) searches for all modules

composed of two or more TFBSs in aligned promoter sequences. A module is de-

�ned as a set of two or more TFBSs with a de�ned order, distance range between

the individual TFBSs, and strand orientation. A total of 727 matrices from 170

families (Matrix Family Library, Version 8.2, Vertebrates; Genomatix) were used for

the analysis. The ModelInspector searches for all determined modules of TFBSs in

the human promoter library (�rst approach: ElDorado 07�2009: 93372 promoter

regions; second approach: ElDorado 02�2010: 97259 promoter regions; Genomatix

Promoter Database).

2.1.2 Microarray datasets

I used three microarray datasets downloaded from the Gene Expression Omnibus

[Edgar et al., 2002] in this study. The dataset of Blalock et al. [2004] consists of hip-

pocampal probes: 9 controls and 22 AD patients with di�erent severity (GSE1297).

Gene expression was measured using GPL96: A�ymetrix Human Genome U133A

Array (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96) covering

22283 probesets.

The second dataset used in our analysis consists of total RNA of brains from

�ve-month-old double-transgenic (6 ADAM10/APP, 6 dnADAM10/APP, 6 mono-

transgenic APP control) mice (GSE10908) from Prinzen et al. [2009]. Gene ex-
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pression was measured using GPL1261: A�ymetrix Mouse Genome 430 2.0 Ar-

ray (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL1261) covering

45101 probesets.

The third dataset from Webster et al. [2009] consists of human cortical samples: 187

controls and 176 patients with diagnosis of late onset AD (LOAD) (GSE15222). Gene

expression was measured using GPL2700: Sentrix HumanRef-8 Expression Bead-

Chip (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2700) cover-

ing 24354 probesets.

2.1.3 Multivariate analysis

Statistical analysis was performed with R statistical software (R version 2.8.0,

http://www.rproject.org/). Background correction and normalization of the mi-

croarray datasets (GSE1297, GSE10908) was done with the R function expresso from

the R package a�y. The parameter setting was as follows: bgcorrect.method (back-

ground adjustment method) = "mas", normalize.method (normalization method)

= "quantiles", pmcorrect.method (perfect matches and mismatches adjustment) =

"mas", and summary.method (computation of expression values) = "mas". The

dataset GSE15222 is already rank-invariant normalized. I applied multiclass support

vector machines with recursive feature elimination (mSVM-RFE). A SVM consid-

ers a set of objects (e.g. biological replicates) as classes, so that around the class

boundaries the broadest possible range remains, which is free of data points. I used

the svm function from the e1071 package in R for SVM prediction and developed an

algorithm for multiclass gene selection with recursive feature elimination according

to Zhou and Tuck [2007] and Guyon et al. [2002]. I implemented our own mSVM-

RFE method, as described in the following, because such a speci�c combination of

mSVM and RFE is not available in R until now. First, the samples of a microar-

ray dataset are randomly grouped (drawing without replacement) into strati�ed four

folds, which are four equally sized folds (except the number of samples is not a mul-

tiple of the number of folds, then a variation of one exists), such that each class is

uniformly distributed among the four folds, and all combinations of three folds are

used for mSVM-RFE (four combinations for mSVM-RFE). Strati�ed cross validation

has smaller bias and variance than regular cross validation [Kohavi]. mSVM-RFE

starts with all the features of a microarray, in our case gene expression values, and

recursively eliminates 10% of the remaining expression values, which are not good

enough for classifying according to the cost function of the SVM classi�er (based on

the coe�cients and support vectors), until a given number of expression values are

reached. By starting mSVM-RFE, this given number (stop condition for iterations)

is turned over to the program as parameter and in our case this parameter, is 400
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in the �rst part and 1000 in the second part of the work�ow. This grouping into

folds was done three times (to obtain stable results), and mSVM-RFE algorithm was

applied twelve times on di�erent subsets of the original dataset (in total, I did three

groupings into four folds with four times mSVM-RFE per grouping, because of four

combinations of three folds per grouping). I got twelve di�erent gene selections and

computed the frequency of each gene occurring in all the gene selections to identify

the most important genes. The mSVM-RFE output in the �rst part of the work�ow

is restricted to genes occurring at least in 2 out of 12 gene selections, and in the

second part of the work�ow genes occurring at least in 1 out of 12 gene selections

are taken. The gene selection in the second part is less stringent than in the �rst

part of the work�ow, since a rigorous restriction of the number of input genes for

the subsequent biclustering analysis reduces the number of genes in the resulting

clusters. The function svm was used with default settings except the parameters

type = "C-classi�cation", kernel = "linear", cost = 0.1. The cost parameter also

called 'C' constant displays the cost if misclassi�cations occur. The default is one

and the smaller the value the more misclassi�cations are allowed.

The dataset GSE15222 was not �ltered by mSVM-RFE but by the illumina detection

score [Illumina, 2008]. Transcripts that have a detection score ≥ 0.99 in less than

90% of cases or 90% of controls are excluded, and 8650 probesets remain [Webster

et al., 2009]. Furthermore, a two-sample t-test was performed for the expression

values of the remaining 8650 probesets by the R function t-test with default settings,

and afterwards FDR (false discovery rate) correction [Benjamini and Hochberg, 1995]

was applied by the R function p.adjust with method = "fdr". Signi�cantly regulated

genes were considered if the FDR value is equal to or below 0.05.

Pearson's chi-squared tests were performed with the R function chisq.test from the

R package stats to show whether the overlap between two di�erent genesets is sig-

ni�cant. The function chisq.test was used with default settings.

Next, I applied biclustering by the biclust function from the biclust package in R to

the output of the mSVM-RFE and the 8650 probesets of the third microarray study

and used the method BCPlaid according to Turner et al. [2005] to group coregulated

genes into clusters. The method allows a gene to belong to more than one cluster,

and each cluster is de�ned with regard to some, but not necessarily all, samples. In

principle, I used default parameters except the following ones. Parameter setting

for AD patients: cluster = "r" (to cluster rows (probesets)), row.release (threshold

to prune rows in the clusters depending on row homogeneity) = 0.1, col.release (as

before, with columns) = 0.2, shu�e (before cluster is added, its statistical signi�-

cance is compared against random clusters de�ned by this parameter) = 10, back.�t

(after a cluster is added, additional iterations can be done to re�ne the �tting of the
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cluster) = 10, max.layers (maximum number of clusters) = 10, iter.startup (number

of iterations to �nd starting values) = 80, and iter.layer (number of iterations to

�nd each cluster) = 80. Parameter setting for double transgenic mice: cluster =

"r", row.release = 0.3, col.release = 0.5, shu�e = 100, back.�t = 500, max.layers

= 100, iter.startup = 1000, and iter.layer = 1000. Parameter setting for LOAD

patients: cluster = "r", row.release = 0.3, col.release = 0.5, shu�e = 10, back.�t =

100, max.layers = 20, iter.startup = 100, and iter.layer = 100.

The expression pro�les were established with the R function matplot from the R

package graphics. The function was used with default values except col (color of

lines in plot) = c(1), type (type of plot) = "l", and lty (line type) = "solid". The

colored lines of the described genes are added to the plot by matplot function with

the parameter add = TRUE (if TRUE, plots are added to current one), and the

width of the colored lines is enlarged by the parameter lwd = 4.

2.1.4 Enrichment analysis

Each cluster of coregulated genes was explored for enrichment of genes in Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways (version 6.07.2010: 210 pathways

and 5368 genes(human); 206 pathways and 6060 genes(mouse)). After retrieving the

number of coregulated genes in each pathway, the p-value was computed by the R

function �sher.test, and afterwards FDR correction [Benjamini and Hochberg, 1995]

was applied by the R function p.adjust with method = "fdr". For the pathway anal-

ysis, I report the p-value and FDR value. Additionally, I analyzed the enrichment

of the modules in the corresponding cluster of coregulated genes in contrast to the

whole set of human promoters. After searching for each module in human promoters,

once again the p-value computation was performed, and afterwards FDR correction

[Benjamini and Hochberg, 1995] was applied by the R function p.adjust with method

= "fdr". The results are indicated to be signi�cant if the FDR value is equal to or

below 0.05.

2.1.5 Literature mining

Literature search by PubMed was done to extract information about the target genes

of the TF modules identi�ed and their relation to AD. Target genes are genes which

are regulated by TF modules [Cartharius et al., 2005]. To verify the modules, searches

were performed for TFBS-target gene interactions in all PubMed abstracts with

the help of two text mining programs Pathway Studio 7.1 (Ariadne Genomics) and

EXCERBT (MIPS, Helmholtz Zentrum München; http://tinyurl.com/excerbt/)

[Barnickel et al., 2009] based on the natural language processing (NLP) technol-

ogy. Additionally, information about the TFs of the modules was collected from the
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BIOBASE Biological Databases (Wolfenbüttel/Germany): TRANSPATH. Mouse

Genome Informatics (MGI) database (Mouse Genome Database, The Jackson Labo-

ratory, Bar Harbor, Maine; http://www.informatics.jax.org/) [Bult et al., 2008]

was searched for expression tissue of genes, and gene ontology (GO) was used for the

functional annotation and classi�cation of the target genes [Ashburner et al., 2000].

2.2 MSVM-RFE and biclust application

2.2.1 Depression: high and low reactivity

High and low reactivity mice microarray

The dataset established from the mouse model of Touma et al. [2008] consists of hip-

pocampal probes of adult mice: seven high reactivity (HR) and nine low reactivity

(LR) mice. Gene expression was measured using an Illumina gene expression bead-

chip array (type MouseWG-6_V2_0_R2_11278593_A; Illumina, San Diego, CA,

USA). HR mice with a hyperreactivity of the HPA axis show symptoms of melan-

cholic depression and atypical depressive indications were observed in LR mice with

HPA axis hyporeactivity [Touma et al., 2008]. Dataset provided by Regina Widner

(MPI Munich).

MSVM-RFE and biclust parameters

I applied mSVM-RFE to the whole HR LR microarray dataset. For detailed de-

scription of mSVM-RFE see section 2.1.3. The stop condition for iterations is set

to 1000 and the grouping into folds was done ten times. While four mSVM-RFE

runs per iteration are done, in total 40 mSVM-RFE runs were performed resulting

in 40 di�erent gene selections in the end. Genes occurring at least in 1 out of 40

gene selections are taken for further biclustering analysis. The function svm was

used with default settings except the parameters type = "C-classi�cation", kernel =

"linear", cost = 0.1.

Biclustering was applied by the biclust function from the biclust package in R to the

output of the mSVM-RFE (for more detail see section 2.1.3). In principle, default

parameters were used except the following ones: method = BCPlaid() cluster = "r",

row.release = 0.4, col.release = 0.5, shu�e = 10, back.�t = 10, max.layers = 30,

iter.startup = 10, and iter.layer = 40.

The method mSVM-RFE was evaluated by sensitivity and speci�city [Lalkhen and

McCluskey, 2008]:

sensitivity =
true positives

true positives+ false negatives
(1)
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specificity =
true negatives

true negatives+ false positives
(2)

ROC curve was established by calculating sensitivity and speci�city for several

mSVM-RFE frequencies (0, 2, 4, 5, 19, 23, 37, 38, 40).

Serial analysis of gene expression

In contrast to the microarray analysis an alternative transcriptome analysis was

performed the serial analysis of gene expression (SAGE). The same two RNA-pools

from HR and LR mice as in case of the microarray analysis were starting point of

the expressional pro�ling. The library was established according to the standard

protocol of the Applied Biosystems SOLiD 3 System kit (Invitrogen, Paisley, UK).

The preparation involves RNA binding to beads, cDNA synthesis, digestion steps as

well as adapter ligation and generates tags of 60 bp (basepairs) composed of 33 bp

adapter sequence and 27 bp of a speci�c sequence unit from a RNA transcript. The

SOLiD 3 Systems Templated Bead Preparation full-scale protocol was used for the

preparation of template beads. SAGE tag templates, which were extracted from the

gel running with upscale PCR products and puri�ed, were used in the emulsion PCR

to amplify the tag library onto beads resulting in a clonal bead population. Slides

of 41 million beads per pool were sequenced accordingly the Applied Biosystems

SOLiD Analysis Tool v3.5 (Applied Biosystems, Carlsbad, CA, USA). The statistical

analysis of the SAGE experiment comprises a quality control step, the identi�cation

of the adaptor sequence and the restriction enzyme binding site as well as the adaptor

sequence cutting o�. The alignments were computed by the BWA (Burrows-Wheeler

Alignment) algorithm [Li and Durbin, 2009] and mapped to a reduced reference

sequence database. Finally, for each gene symbol the reads were summed up and

Z-scores (logarithm of the HR vs. LR counts) were calculated. Z-score ≥ 2 indicates

a signi�cantly di�erential expression. Dataset provided by Regina Widner (MPI

Munich).

Quantitative real-time PCR

Quantitative real-time PCR experiments were done by Regina Widner (MPI Mu-

nich). Quantitative real-time PCR is a kinetic analysis method allowing the si-

multaneous ampli�cation and measurement of PCR products during each anneal-

ing/extension phase [Higuchi et al., 1993]. The �uorescent reporter signal used in

quantitative real-time PCR (qPCR) was Sybr Green. Beta-2 microglobulin served

as housekeeping gene for standardization of the �uorescent signal of a target gene

[Becker et al., 2004]. The analysis of the qPCR runs was performed by the absolute
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quanti�cation point function of the LightCycler Software 4.05 and the LightCycler

2.0 instrument (Roche Diagnostic, Mannheim). The 2-MMCT algorithm transformed

the crossing points into fold changes [Livak and Schmittgen, 2001]. Intron-spanning

qPCR primers were designed for the ampli�cation of cDNA only. For non-parametric

statistics the Mann-Whitney-U test by the SPSS software (version 16.0) was per-

formed.

Enrichment analysis and literature mining

GO [Ashburner et al., 2000] analysis and literature mining for gene interactions in

all PubMed abstracts were performed by the software Pathway Studio 8.0 (Ariadne

Genomics) based on database ResNet 8.0.

The enrichment of clustered genes and genes occurring in all gene selections after

mSVM-RFE in KEGG pathways (version 7.4.2011: 226 pathways and 6662 genes

(mouse)) was performed according to section 2.1.4.

2.2.2 Parkinson's disease: DJ-1 knockout

DJ-1 microarray

The dataset from Ulrich Hafen (Institute of Developmental Genetics; HMGU Mu-

nich) consists of microglial probes of adult mice: �ve DJ-1 knock-out mice and

5 wildtyp mice. All samples were stimulated with lipopolysaccharide (LPS) for 6

hours. Gen expression was measured using A�ymetrix Mouse Gene ST 1.0 arrays

covering 28853 probesets.

Statistical analysis

The statistical analysis was performed by the R package limma. First a linear model

was �tted to the expression data for each probeset by the function lmFit with default

settings. Next, empirical bayes statistics for di�erential expression on the microarray

dataset was computed by the function eBayes with default settings. Afterwards

Benjamini & Hochberg correction [Benjamini and Hochberg, 1995] was applied by

the R function topTable with adjust="BH".

MSVM-RFE and biclust parameters

MSVM-RFE was applied to the whole gene expression dataset of DJ-1 ko and wild-

type mice stimulated with LPS. For detailed description of mSVM-RFE see section

2.1.3. The stop condition for iterations is set to 500 and the grouping into �ve folds

was done ten times. While �ve mSVM-RFE runs per iteration are done, in total
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50 mSVM-RFE runs were performed resulting in 50 di�erent gene selections in the

end. Genes occurring at least in 1 out of 50 gene selections are taken for further

biclustering analysis. The function svm was used with default settings except the

parameters type = "C-classi�cation", kernel = "linear", cost = 0.1.

The output of the mSVM-RFE was used for biclustering by the biclust function from

the biclust package in R (for more detail see section 2.1.3). Default parameters were

used except the following ones: method = BCPlaid() cluster = "r", row.release =

0.4, col.release = 0.5, shu�e = 10, back.�t = 10, max.layers = 30, iter.startup =

100, and iter.layer = 100.

Enrichment analysis and literature mining

GO [Ashburner et al., 2000] analysis and literature mining for gene interactions in

all PubMed abstracts were performed by the software Pathway Studio 8.0 (Ariadne

Genomics) based on database ResNet 8.0. Shortest path analysis of di�erentially

expressed genes by the Pathway Studio was performed to get indirect interactions of

regulated genes. The resulting network contains also genes, which are not regulated

on the array but needed to connect di�erentially expressed genes of the microarray

analysis.

The enrichment of clustered genes and genes occurring in all gene selections after

mSVM-RFE in KEGG pathways (version 7.4.2011: 226 pathways and 6662 genes

(mouse)) was performed according to section 2.1.4.

PDGene (Version 21.06.2011) database (http://www.pdgene.org/) [Lill et al., 2012],

which is an aggregation of all published genetic association studies, was used to

extract PD relevant genes from the output of the mSVM-RFE and biclustering

analysis. Additional PD related genes were extracted from the PDbase database

(http://bioportal.kobic.re.kr/PDbase/index.jsp) based on expression studies

of the substantia nigra [Yang et al., 2009].

The collection of NFKB target genes (http://www.bu.edu/nf-kb/gene-resources/

target-genes/) by the Biology Department of the Boston University was searched

for mSVM-RFE and biclustering output genes.

2.3 TFBS in key genes of Parkinson's disease

2.3.1 TFBS prediction in Parkin and OPA1

Bioinformatics prediction of CREB/ATF sites in Parkin promoter and of NFKB

sites in OPA1 promoter. All sequences of Parkin and OPA1 are derived from the

promoter sequence retrieval database ElDorado 02-2010 and 08-2011 (Genomatix,

Munich/Germany), respectively. Promoter sequences of Parkin from four di�erent
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mammalian species and of OPA1 from six di�erent mammalian species were aligned

with the DiAlignTF program [Cartharius et al., 2005] in the Genomatix software suite

GEMS Launcher to evaluate overall promoter similarity and to identify conserved

CREB/ATF binding sites (BSs) in Parkin and conserved NFKB BSs in OPA1. The

promoter sequences of Parkin were de�ned as in ElDorado and elongated at the

3' end of the promoter (downstream) by 150 base pairs. The promoter sequences

of OPA1 were de�ned as in ElDorado. For promoter analyses position weight and

matrices of CREB and NFKB were used according to Matrix Family Library Version

8.2 (January 2010) and Version 8.4 (June 2011), respectively. BSs were considered

as "conserved BSs" if the promoter sequences of human and the orthologs can be

aligned in the region of CREB/ATF or NFKB BSs with the help of the DiAlignTF

program (using default settings).

2.3.2 MAPT and SNCA - SNPs in TFBSs

All SNPs of MAPT and SNCA are extracted from PDGene (Version 19.01.2011)

database (http://www.pdgene.org/) [Lill et al., 2012]. MAPT and SNCA are the

two top ranked genes in the PDGene database. The amount of SNPs is restricted to

such ones lying in the promoter or �rst intron.

All sequences of MAPT and SNCA are derived from promoter sequence retrieval

database ElDorado 12-2010. Promoter and �rst intron sequences (de�ned as in El-

Dorado) of MAPT and SNCA from in each case �ve di�erent mammalian species

were analysed for conserved TFBSs by DiAlignTF (Matrix Family Library Version

8.3 (October 2010)). BSs were de�ned as conserved if the sequences of human and

orthologs can be aligned in the region of TFBSs by DiAlignTF program (using de-

fault settings).

Furthermore, TRANSPATH (BIOBASE Biological Databases) was searched for in-

formation about the TFs.

2.3.3 TFBSs prediction in PRKAA1, PRKAA2 and PRKAG1

At �rst, speci�c TF-families for promoter analysis were determined by MatBase

(Genomatix, Munich/Germany) according to GO search terms containing "stress",

"metabolic" and "biosynthetic".

Promoter sequences of PRKAA1, PRKAA2 and PRKAG1 from twelve, nine and

nine di�erent mammalian species, respectively, are derived from promoter sequence

retrieval database ElDorado 8-2011 (promoter de�ned as in ElDorado). Human

promoter sequences of PRKAA1, PRKAA2 and PRKAG1 were analysed by MatIn-

spector (default settings) for BSs of the determined TF-families according to Matrix

Family Library Version 8.4 (June 2011). DiAlignTF (default settings) was used for
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the identi�cation of conserved TFBSs, which potentially bind to a region perfectly

aligned between human and orthologs, of the determined TF-families in orthologous

promoters of PRKAA1, PRKAA2 and PRKAG1.

2.4 MicroRNAs binding to ADAM10

2.4.1 MiRNA target site prediction databases

MiRNA binding sites to target genes were downloaded from seven di�erent databases:

miRBase, 5-Nov-2007, http://www.mirbase.org/ [Gri�ths-Jones et al., 2008]; mi-

croRNA, September 2008 Release, http://www.microrna.org/microrna/home.do

[Betel et al., 2008]; PicTar via UCSC Table Browser, assembly = May 2004

(NCBI35/hg17), group = Regulation, track = PicTar miRNA, http://genome.

ucsc.edu/ [Krek et al., 2005]; PITA, version 6 (31-Aug-2008), http://genie.

weizmann.ac.il/pubs/mir07/index.html [Kertesz et al., 2007]; RNA22, March

2007, http://cbcsrv.watson.ibm.com/rna22.html [Miranda et al., 2006]; TarBase,

June 2008, http://diana.cslab.ece.ntua.gr/tarbase/ [Papadopoulos et al.,

2009]; TargetScan, Release 5, http://www.targetscan.org/ [Friedman et al., 2009].

I established a work�ow considering all miRNA target site predictions downloaded.

2.4.2 MiRNA target prediction

I used three prediction programs RNA22, RNAhybrid, miRanda and predicted all

binding sites of the miRNA sequences to the 3'UTR sequence of human ADAM10.

RNA22 is a pattern-based method for the identi�cation of miRNA-target sites. The

method has high sensitivity, is resilient to noise, can be applied to the analysis of

any genome without requiring genome-speci�c retraining and does not rely upon

cross-species conservation. Focusing on novel features of miRNA-mRNA interac-

tion RNA22 �rst �nds putative miRNA binding sites in the sequence of interest

then identi�es the targeting miRNA and hence allows to identify sites targeted by

yet undiscovered miRNAs. An implementation of RNA22 (19-May-2008) is avail-

able online at http://cbcsrv.watson.ibm.com/rna22.html [Miranda et al., 2006,

Witkos et al., 2011].

The second program RNAhybrid is an extension of the classical RNA secondary

structure prediction algorithm from Zuker and Stiegler [1981]. It �nds the ener-

getically most favorable hybridization sites of a small RNA in a large RNA incor-

porating 'seed-match speed-up', which �rst searches for seed matches in the candi-

date targets and only upon �nding such matches the complete hybridization around

the seed-match is calculated. The user can de�ne the position and length of the

seed region with the option to allow for G:U wobble base pairs in the seed pair-
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ing. Intramolecular base pairings and branching structures are forbidden and sta-

tistical signi�cance of predicted targets is assessed with an extreme value statistics

of length normalized minimum free energies, a Poisson approximation of multiple

binding sites, and the calculation of e�ective numbers of orthologous targets in com-

parative studies of multiple organisms. RNAhybrid, Version 2.1, is available online

at http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ [Rehmsmeier et al.,

2004, Krüger and Rehmsmeier, 2006].

The miRanda algorithm is similar to the Smith-Waterman algorithm, but scores

based on the complementarity of nucleotides (A=U or G≡C) and one G:U wobble

pair is allowed in the seed region but has to be compensated by matches in the 3' end

of miRNA. In order to estimate the thermodynamic properties of a predicted pairing

between miRNA and 3'UTR sequence, the algorithm uses folding routines from the

Vienna 1.3 RNA secondary structure programming library (RNAlib) [Wuchty et al.,

1999]. A conservation �lter is used and optionally some rudimentary statistics about

each target site can be generated. MiRanda, September 2008 Release, is available

online at http://www.microrna.org/microrna/home.do [Witkos et al., 2011, En-

right et al., 2003].

The parameter setting for RNA22 is: maximum number of "UN-paired" bases within

the extent of the seed = 0, extent of seed in nucleotides = 6, minimum number of

paired-up bases that you want to see in any reported heteroduplex = 14, maximum

value for the folding energy in any reported heteroduplex = -25 kcal/mol. The pa-

rameter setting for RNAhybrid is: "-s 3utr_human" ("-s" tells RNAhybrid to quickly

estimate statistical parameters from "minimal duplex energies" under the assump-

tion that the target sequences are human 3'UTR sequences). The parameter setting

for miRanda is the default parameter setting: gap open penalty = -8, gap extend =

-2, score threshold = 50, energy threshold = -20 kcal/mol, scaling parameter = 4.

I retrieved the 3'UTR sequence of ADAM10 (human ADAM10 3'UTR based on

transcript NM_001110 (chr15:58888510-58889745)) from NCBI http://www.ncbi.

nlm.nih.gov/. I downloaded 703 mature miRNA sequences for Homo sapiens from

miRBase, version 13.0 http://www.mirbase.org/ [Gri�ths-Jones et al., 2008].

2.4.3 Extraction of best miRNA predictions

The extraction of miRNAs was applied according to the following selection crite-

ria. I checked for each miRNA how many programs predicted the miRNA to bind

to human ADAM10 3'UTR. The regulation of miRNAs in AD was veri�ed by the

publication of Cogswell et al. [2008], which provides a list of miRNAs expressed in

the tissues hippocampus, cerebellum and medial frontal gyrus. Another possibil-

ity to check the expression of miRNAs in the brain is the Mouse Genome Infor-
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matics (MGI) database (Mouse Genome Database, The Jackson Laboratory, Bar

Harbor, Maine; http://www.informatics.jax.org/) [Bult et al., 2008]. Litera-

ture search by PubMed was done as an additional approval, to search for already

described target genes of the miRNAs, especially for target genes involved in AD.

Mouse ADAM10 3'UTR based on transcript NM_007399 (chr9:70625902-70628036)

from NCBI http://www.ncbi.nlm.nih.gov/ was used for binding site search of

mouse miRNAs from miRBase, version 13.0 http://www.mirbase.org/ [Gri�ths-

Jones et al., 2008]. The parameter setting for RNA22 and miRanda is the same

as for human miRNA binding site prediction at the human ADAM10 3'UTR. The

parameter setting for RNAhybrid is "-d 1.9,0.28" (1.9 is the location parameter and

0.28 the shape parameter of the assumed extreme value distribution). Additionally,

I searched by TargetScan database http://www.targetscan.org/ [Friedman et al.,

2009] and microRNA database http://www.microrna.org/microrna/home.do [Be-

tel et al., 2008] for miRNAs binding to human ADAM10 3'UTR and compared the

TargetScan and microRNA predictions to our list of miRNAs for equal miRNAs.

ADAM10 3'UTR sequences from ten di�erent species were analysed for conserved

regions. The following sequences where taken: human ADAM10 3'UTR from tran-

script NM_001110 (chr15:58888510-58889745), mouse ADAM10 3'UTR from tran-

script NM_007399 (chr9:70625902-70628036), horse ADAM10 3'UTR from tran-

script XM_001498169.1 (chr1:132875124-132876868), dog ADAM10 3'UTR from

transcript XM_858910 (chr30:26596273-26598436), chimp ADAM10 3'UTR from

transcript XM_001172393.1 (chr15:55942343-55944774), chicken ADAM10 3'UTR

from transcript ENSGALT00000034458 (chr10:7949768-7951846), rhesus mon-

key ADAM10 3'UTR from transcript XM_001096908 (chr7:36929437-36932008),

zebra �sh ADAM10 3'UTR from transcript NM_001159314 (chr7:31745579-

31747655), opossum ADAM10 3'UTR from transcript ENSMODT00000011088

(chr1:162230000-162230183), zebra �nch ADAM10 3'UTR from transcript

XR_054746 (chr10:6638729-6639273). For multiple sequence alignment of the ten

ADAM10 3'UTR sequences I applied ClustalW Version 2.1 from the European Bioin-

formatics Institute (EBI) http://www.ebi.ac.uk/ [Larkin et al., 2007, Goujon et al.,

2010]. I used default parameters except: DNA Weight Matrix = 'ClustalW', Clus-

tering = 'UPGMA'. After extraction of the conserved regions between at least seven

species I looked for miRNA binding sites localized in these conserved regions. Addi-

tionally, I determined the conservation (given in percentage) of the miRNA binding

site sequence from human to each species.
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2.4.4 Statistical analysis

Statistical analysis was performed with R statistical software (R 2.8.0, http:

//www.r-project.org/). The p-value was computed by the R function �sher.test

with default settings. The Fisher's exact test is used to examine the signi�cance

of the association (contingency) between the two kinds of classi�cation. Signi�-

cantly regulated genes were considered, if the p-value is equal or below 0.05. I

generated Venn diagrams to see the overlap between target genes of miR-103 and

miR-107 common in 4 out of 6 databases as well as genes in the AlzGene database

(http://www.alzgene.org/; Version: 20.06.2011) [Bertram et al., 2007]. Each set of

target genes of miR-103 and miR-107 common in 4 out of 6 databases as well as the

set of target genes of miR-1306 in the database PITA was explored for enrichment in

gene ontology [Ashburner et al., 2000] by the software Pathway Studio 8.0 (Ariadne

Genomics) based on database ResNet 8.0.

2.4.5 Literature mining and pathway analysis

Literature search by PubMed was done to extract information about the target

genes of the miRNAs resulting from Pathway Studio analysis and their relation to

AD. To verify the miRNAs searches were performed for miRNA interactions in all

PubMed abstracts with the help of the text mining program Pathway Studio 8.0

(Ariadne Genomics) based on the natural language processing (NLP) Technology.

Pathway analysis was done with the software Ingenuity Systems IPA 9.0 (http:

//www.ingenuity.com/) especially with the Path Designer.

2.4.6 Experimental validation

Experiments were performed by Kristina Endres and Sven Reinhardt from the Jo-

hannes Gutenberg-University Mainz [Augustin et al., 2012].

Material

Mature miRNAs and the inactive negative control were from Invitrogen (No.

PM11012, PM13206, PM10632, PM10056). All RNA species were dissolved to 5

pmol/µl in nuclease-free water upon arrival, aliquoted and stored at −20 ◦C.

Cloning of the ADAM10 3'UTR luciferase reporter construct

(Figure 2.1) The 3'UTR of human ADAM10 was ampli�ed from THP-1 chromosomal

DNA using the FailSafe PCR kit (Epicentre) and the following primers:

AD10_3UTR_for 5'GCGGCCGCGCCCATTCAGCAACCCCAG 3'
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Figure 2.1: The ADAM10 3'UTR sequence was ampli�ed from THP-1 chromosomal
DNA with Fail Safe PCR and cloned into the NotI site of the pCMV-GLuc vector.
SH-SY5Y cells were transiently cotransfected with pCMVLuc_ADAM10_3'UTR
together with respective miRNA.

AD10_3UTR_rev 5'GCGGCCGCCACTTGTGCCCGTAGCAGCC 3'.

The obtained DNA fragment was veri�ed by restriction digestion and sequencing.

The 3'UTR was subsequently cloned into the NotI site of the pCMV-GLuc vector

(NEB), which allows to monitor regulated Gaussia luciferase expression in the cell

supernatant.

Cell culture

SH-SY5Y cells were cultivated in phenol red-free DMEM/F12, supplemented with

10% FCS and 1% glutamine at 37 ◦C, 95% air moisture, 5% CO2 and passaged twice

a week with a splitting rate of 1
2 to 1

4 .

3'UTR luciferase reporter assay

Retro-transfection was performed using 0.005 µl Lipofectamine 2000 (Invitrogen) per

µl OptiMEM-medium and 0.1 pmol/µl miRNA (Invitrogen) or negative control. For

combination of miRNA 1306 together with miRNA 103 or 107 a concentration of

0.05 pmol/µl each was used. 2 ng/µl endotoxin-free plasmid DNA of the 3'UTR-

reporter vector were added to 45.000 cells per well in 96 well format. Control cells
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were mock-treated with nuclease-free water instead of RNA molecules.

5 hrs after transfection, the cell supernatant was exchanged to 200 µl culture medium

per well. In a preliminary experiment, 10 µl cell supernatant were collected at various

time points over a 72 hour period; 48 hours were determined to be the optimal incu-

bation time (data not shown). Therefore, 10 µl cell supernatant were aspirated 48

hours after transfection and stored at −20 ◦C until samples were measured. Secreted

Gaussia luciferase was quantitatively analyzed (Renilla-Luciferase assay, Promega)

using the FluostarOptima luminometer (BMG). Cell densities were checked by quan-

titation of protein content in the cell lysate by NanoQuant assay (Roth).
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Results

3.1 Bioinformatics identi�cation of modules of transcription factor

binding sites

3.1.1 Work�ow

The work�ow consists of two di�erent approaches combining in silico TFBS analysis

with multivariate analysis of microarray datasets. Each part of the work�ow the the-

oretical prediction of TFBS modules as well as the establishment of TFBS modules

based on experimental data should result in similar modules in the end.

The �rst approach (Figure 3.1) starts with an alignment between human and mouse

Figure 3.1: Work�ow of bioinformatics analysis of promoter sequences and gene ex-
pression data to identify modules of TFBSs in AD-related genes. The colored boxes
describe the methods which were used. The yellow boxes represent tools of the
Genomatix software (1DiAlignTF, 2FrameWorker, 3ModelInspector), and the blue
box indicates mSVM-RFE or �ltering by illumina detection score. The beginning
and the end of the arrow specify input and output of the methods, respectively. The
gray arrow denotes the comparison of the target genes of the modules with genes
di�erentially regulated in microarray analyses.
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APP promoter sequences to search for conserved TFBSs. The result yielded 22 TF-

BSs (Table 3.1), which are conserved between human and mouse promoter sequences.

TF

family

description TFs

AP1F AP1, Activating protein 1 BATF, BATF3, FOS, FOSB, FOSL1,

FOSL2, JDP2, JUN, JUNB, JUND

AP1R MAF and AP1 related factors BACH1, BACH2, MAF, MAFA, MAFB,

MAFF, MAFG, MAFK, NFE2, NFE2L1,

NFE2L2, NFE2L3, NRL

AP4R AP4 and related proteins TFAP4

CHRE Carbohydrate response elements,

consist of two E box motifs sep-

arated by 5 bp

MLX, MLXIPL

CTCF CTCF and BORIS gene family,

transcriptional regulators with

11 highly conserved zinc �nger

domains

CTCF, CTCFL

E2FF E2F-myc activator/cell cycle reg-

ulator

E2F1, E2F2, E2F3, E2F4, E2F5, E2F6,

E2F7, E2F8, TFDP1, TFDP2, TFPD3

EGRF EGR/nerve growth factor-

induced protein C and related

factors

EGR1, EGR2, EGR3, EGR4, WT1,

ZBTB7A, ZBTB7B

GATA GATA binding factors GATA1, GATA2, GATA3, GATA4,

GATA5, GATA6, TRPS1

GLIF GLI zinc �nger family GLI1, GLI2, GLI3, GLIS1, GLIS2, GLIS3,

ZIC1, ZIC2, ZIC3, ZIC4, ZIC5

HAND Twist subfamily of class B bHLH

transcription factors

HAND1, HAND2, LYL1, MESP1, MESP2,

NHLH1, NHLH2, SCXA, SCXB, TAL1,

TAL2, TCF12, TCF15, TCF3, TWIST1,

TWIST2

NF1F Nuclear factor 1 NFIA, NFIB, NFIC, NFIX

NFAT Nuclear factor of activated T-

cells

ILF2, ILF3, NFAT5, NFATC1, NFATC2,

NFATC3, NFATC4

NOLF Neuron-speci�c olfactory factor EBF1, EBF2, EBF3

NRF1 Nuclear respiratory factor 1 NRF1

PAX3 PAX-3 binding sites PAX3, PAX7

PAX9 PAX-9 binding sites PAX9

RXRF RXR heterodimer binding sites NR1H2, NR1H3, NR1I2, NR1I3, RARA,

RARB, RARG, RXRA, RXRB, RXRG,

THRA, THRB, VDR

SP1F GC-Box factors SP1/GC KLF10, KLF11, KLF16, KLF5, SP1, SP2,

SP3, SP4, SP5, SP6, SP7, SP8
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TF

family

description TFs

XBBF X-box binding factors NFX1, RFX1, RFX2, RFX3, RFX4, RFX5

ZBPF Zinc binding protein factors ZNF148, ZNF202, ZNF219, ZNF281,

ZNF300

ZF5F ZF5 POZ domain zinc �nger ZFP161

ZFHX Two-handed zinc �nger home-

odomain transcription factors

ZEB1, ZEB2

Table 3.1: Conserved TFs between human and mouse APP promoter sequence. Ma-
trix family library version 8.1 (June 2009)

In the next step of the work�ow, the conserved TFBSs and the promoter sequences

of genes involved in Aβ formation (APP, BACE1, PS1/2, PEN-2, APH1A, and

NCSTN) and the homolog of BACE1, BACE2, were used as input to search for all

modules of TFBSs, which occur in a multiple alignment of promoter sequences of

AD key genes. With this �rst approach, I got 17 modules composed of two or more

TFBSs families (Table: 3.2) occurring in a subset of AD key genes.

Module AD key genes - targets of the module

CTCF-E2FF-SP1F hAPP, mApp, BACE1, NCSTN, APH1A

CTCF-SP1F hAPP, mApp, BACE1, PS2, NCSTN, APH1A

E2FF-E2FF-EGRF hAPP, mApp, BACE1, BACE2, PEN-2, APH1A

CTCF-E2FF-EGRF hAPP, BACE2, PEN-2, NCSTN, APH1A

CTCF-E2FF-EGRF hAPP, mApp, BACE1, BACE2, PEN-2, APH1A

CTCF-HAND-SP1F hAPP, mApp, BACE2, PS2

CTCF-SP1F-SP1F hAPP, mApp, BACE1, BACE2

CTCF-NRF1-SP1F hAPP, mApp, BACE1, APH1A

CTCF-EGRF-NRF1 hAPP, BACE2, PS2, PEN-2

CTCF-SP1F-ZBPF hAPP, mApp, BACE2

CTCF-EGRF-ZBPF hAPP, BACE2, PS2

CTCF-NRF1 hAPP, mApp, BACE1, BACE2, PEN-2

CTCF-EGRF-SP1F hAPP, BACE2, PS2

NRF1-ZBPF hAPP, mApp, BACE2, PEN-2, APH1A

CTCF-EGRF hAPP, mApp, BACE1, BACE2, PS1, PEN-2, APH1A

CTCF-E2FF hAPP, mApp, BACE1, BACE2, NCSTN, APH1A

SP1F-ZBPF-ZBPF BACE1, PS1, PEN-2, APH1A

Table 3.2: Modules identi�ed by the �rst approach. 17 modules composed of two or
more TFBSs families. The TFBSs families consist of several TFs (Table 3.1). The
second column speci�es the key genes of AD the TFs of the module putatively bind
to, according to the search of the module in all human promoters by ModelInspector.
Human and mouse APPs are indicated by hAPP and mApp, respectively.
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An analysis of three microarray datasets should verify these modules identi�ed in

the �rst part of the work�ow by searching for signi�cantly regulated genes. The

�rst microarray dataset of AD patients is composed of data from AD patients

at di�erent stages of severity (incipient, moderate and severe AD) and control.

Additionally, I took a second dataset from a transgenic mouse model of AD to

a�rm the results of the AD patients dataset. The probes of the dataset are

extracted from brain. The amount of plaques in the mice was controlled by the

active as well as the dominant-negative (dn) form of α-secretase ADAM10 in order

to imitate the situation of plaque formation in AD brain. The three mouse lines

show di�erent amounts of plaques in the brain. Fewer plaques are found in the

brains of ADAM10/APP mice, medium plaques occur in brains of monotransgenic

APP control mice, and most plaque formation appears in dnADAM10/APP mice.

The reason for di�erent plaque formation is that neurotoxic Aβ peptide levels are

increased, and neuroprotective sAPPα is drastically decreased in dnADAM10/APP

mice, and in ADAM10/APP mice the levels of the APP fragments are vice versa.

The di�erent mouse lines show di�erent stages of plaque formation just like AD

patients at di�erent stages of severity [Postina et al., 2004]. Thus, this AD mouse

model and its microarray dataset are appropriate to be included in this analysis to

verify modules of TFBSs [Prinzen et al., 2009]. The third dataset, which I used,

was established of cortex samples from LOAD patients and controls.

For microarray analysis I applied mSVM-RFE, because it is very accurate and fast

in classi�cation and has a low error rate [Zhou and Tuck, 2007]. RFE is applied

due to the large number of the gene expression values on the microarray and helps

to reduce the search space and avoids over�tting. Each of the TFBSs families is

represented by several TFs (Table 3.1). After searching for these 17 modules in all

human promoters, I limited the result to genes, which have been tested for genetic

association with AD according to GWAS studies collected in the AlzGene database

(http://www.alzgene.org/; Version: 12.05.2010) [Bertram et al., 2007] in order to

get only those target genes possibly involved in AD. AlzGene database is a regularly

updated aggregation of all published genetic association studies including GWAS

performed on AD phenotypes. It is an important resource for AD candidate genes

and contains all considerable genetic association studies and key genes of AD. I

detected the 17 modules in the promoters of 369 putative AD-risk genes.

Subsequently, the 369 putative AD-risk genes were compared to the output from

the mSVM-RFE of microarray datasets. I obtained for the AD patients dataset

in the end 948 genes after mSVM-RFE (frequency ≥ 2) and an overlap with the

putative AD-risk genes of 31 genes. The double-transgenic mice dataset was reduced
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by mSVM-RFE (frequency ≥ 2) to 878 genes with an overlap of 26 to the 369

AD-related genes. A chi-squared test with p-value = 0.05391 shows a statistical

trend. The third dataset from LOAD patients cortex samples was not �ltered by

mSVM-RFE, since it is already reduced by illumina detection score and therefore

consists of only 8650 normalized expression values, which is a suitable number to

apply biclustering. Comparing the 8457 genes of the GSE15222 dataset with the 369

putative AD-risk genes, I got an overlap of 199 genes between these two genesets.

Starting point of the second approach (Figure 3.2) are the three microarray datasets

Figure 3.2: Work�ow of bioinformatics analysis of promoter sequences and gene
expression data to identify modules of TFBSs in AD-related genes. The colored
boxes describe the methods which were used. The yellow box represents the tool
2FrameWorker of the Genomatix software, and the blue boxes indicate multivariate
methods or �ltering by illumina detection score. The beginning and the end of the
arrow specify input and output of the methods, respectively. The scheme at the
end indicates a module composed of three TFBSs (blue, red, and green), which is
common to three promoter sequences with transcription start site at the red arrow.

38



Chapter 3 Results

established from AD patients at three di�erent stages of severity [Blalock et al.,

2004], double-transgenic ADAM10/APP, dominant-negative ADAM10/APP as well

as APP control mice [Prinzen et al., 2009], and AD patients with late onset AD

(LOAD) [Webster et al., 2009]. Not di�erentially regulated genes are excluded

by mSVM-RFE, and regulated genes of these microarrays may potentially play

a role in AD. By mSVM-RFE (frequency ≥ 1), I reduced the dataset of the AD

patients at three di�erent stages of severity from 22283 probesets to 4844 probesets,

and then after biclustering these 4844 probesets, I got �ve and eight clusters of

coregulated genes from two biclustering runs with the same parameter setting. The

double-transgenic mice dataset was reduced by mSVM-RFE (frequency ≥ 1) from

45101 to 5198 probesets, and after biclustering, I obtained 13 clusters of coregulated

genes. The third dataset of LOAD patients is already reduced by illumina detection

score to 8650 probesets, and therefore, I did not apply mSVM-RFE. By biclustering,

I got 18 clusters of coregulated genes. By grouping the regulated genes into clusters

of coregulated genes and searching for modules in the promoters of these coregulated

genes, I got modules possibly responsible for the common regulation of these genes

and also putatively playing an important role in the modi�cation of AD. At the

end, I obtained several modules for each cluster of coregulated genes. The target

genes of three selected modules, which are described in more detail in section 3.1.3,

3.1.4, and 3.1.5, are listed in the supplemental Tables A.1 - A.8. Target genes

are activated or repressed by TF modules and have corresponding TFBSs in their

promoter sequences.

After the whole analysis composed of the �rst and second approach, I got four

di�erent sets of TFBSs modules. I obtained one set of 17 TFBSs modules from

the �rst approach and three sets (one set for each microarray study) of on average

�ve di�erent TFBSs modules per cluster from the second approach. I compared

these four sets with regard to similar modules and found two modules in common:

CTCF-EGRF-SP1F as well as CTCF-SP1F-ZBPF, which are illustrated together

with target genes in Figure 3.3. According to the �rst module, the target genes

VAPA and EIF5 overlap between AD patients and double-transgenic mice dataset,

and the target genes REEP5 and SYP overlap between double-transgenic mice and

LOAD patients dataset. The overlapping target gene ADD3 (adducin 3 (gamma))

between AD and LOAD patients dataset of module CTCF-SP1F-ZBPF is also target

gene of the module KLFS-SP1F-ZBPF, which is common to the three microarray

datasets in the second approach. The third module has additionally overlapping

target genes between AD and LOAD patients dataset: CLU and NUCKS1. The TF

family KLFS includes the TFs: KLF1, KLF2, KLF3, KLF4, KLF6, KLF7, KLF8,

KLF9, KLF12, KLF13, KLF15.
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Figure 3.3: Relations of predicted target genes of three TFBSs modules. This picture
summarizes important target genes of the modules, the relation of target genes to
KEGG pathways playing a role in AD (blue rectangle), and the relation of the target
genes to some AD key genes (red pentagon). The target genes are colored according
to their membership to microarray studies, and some target genes with two colors
are derived from analysis of two di�erent microarray studies. The gray arrows are
the predicted regulations of the target genes by the modules (orange rectangle), and
the black lines indicate that the target gene is part of the corresponding KEGG
pathway. Additionally, three di�erent relations of the target genes to AD key genes
are shown by purple, green, and blue lines, which indicate protein-protein binding,
protein modi�cation, and regulation, respectively.

In general, TFBSs frequently occurring in modules of both approaches are CTCF,

EGRF, SP1F, and ZBPF, but the composition of the TFBSs for a module is

slightly di�erent between the �rst and second approach. The modules of the second

approach mostly contain one TFBS, which is not conserved between human and
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mouse APP promoter.

3.1.2 Modules and con�rmations of TFBSs and AD-risk genes

The �rst common module is composed of the binding sites of the three TF families:

CTCF, EGRF, and SP1F, and the second module consists of CTCF, SP1F, and

ZBPF, which are all conserved between human and mouse APP promoter sequences.

TFs representing both modules are predicted to bind to the promoter sequences

of signi�cantly frequent target genes in the corresponding cluster of the AD pa-

tients dataset (FDR (CTCF-EGRF-SP1F) = 0.0003; FDR (CTCF-SP1F-ZBPF) =

0.0003), of the transgenic mice dataset (FDR (CTCF-EGRF-SP1F) = 4.2 × 10−7;

FDR (CTCF-SP1F-ZBPF) = 1.3× 10−12) and of the LOAD patients dataset (FDR

(CTCF-EGRF-SP1F) = 0.0139; FDR (CTCF-SP1F-ZBPF) = 0.0139), compared to

the incidence in the whole set of human promoters (supplemental Table A.9). The

expression pro�les of the coregulated genes from the three datasets in each module

show similar expression patterns among a subset of microarray samples (Figure 3.4).

Additionally, a third signi�cant module was detected established from a set of

coregulated genes of the AD (Figure 3.4(b)) and LOAD patient's dataset (Figure

3.4(e)). The corresponding motif of this module consists of KLFS, SP1F, and ZBPF

binding sites and occurs in the promoter sequences of several interesting genes in

particular to Clusterin (CLU/APOJ), which is according to AlzGene database the

second most strongly associated gene to AD [Guerreiro et al., 2010]. The enrichment

of the module in the cluster of coregulated genes from the AD patients dataset (FDR

(KLFS-SP1F-ZBPF) = 0.0003) and the LOAD patients dataset (FDR (KLFS-SP1F-

ZBPF) = 0.0139) is signi�cant compared to the occurrence in all human promoters

(supplemental Table A.9).

While most of the transcription factors of all families in the resulting modules play a

role in apoptosis, the transcription factor families have additional di�erent main

functions according to TRANSPATH database. The CTCF zinc �nger proteins

are involved in chromatin remodelling, the early growth response transcription fac-

tors (EGRFs) in learning and memory and brain development, the GC-Box factors

(SP1Fs) in chromatin silencing as well as embryonic development, the zinc binding

protein factors (ZBPFs) in lipid metabolism and the Krueppel-like transcription fac-

tors (KLFSs) in nervous system development and response to stress. Most of the

TFs of the families are expressed in whole brain, hippocampus, or cortex.

To evaluate the importance of the detected modules, I incorporated information of

the AlzGene database. Some target genes of the modules are already mentioned in

AlzGene database to be associated to AD like GOT1 (glutamic-oxaloacetic transam-
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(a)

(b)

Figure 3.4: Clusters of coregulated genes of the AD patients dataset.

inase 1), Gsk3b (CTCF-EGRF-SP1F), Col25a1 (collagen, type XXV, alpha 1), Il33

(interleukin 33), and Tanc2 (tetratricopeptide repeat, ankyrin repeat and coiled-coil

containing 2) (CTCF-SP1F-ZBPF), and CLU (KLFS-SP1F-ZBPF).
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(c)

(d)

Figure 3.4: Clusters of coregulated genes of the double transgenic mice dataset.
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(e)

(f)

Figure 3.4: The �rst two pro�les (a) and (b) are clusters of coregulated genes of
the AD patients dataset. Pro�le (c) and (d) correspond to coregulated genes of the
double-transgenic mice dataset. The �ve lines in pro�le (d) correspond to genes,
which are involved in the MAPK signaling pathway. The last two pro�les (e) and
(f) correspond to coregulated genes of the LOAD patients dataset. On the x-axis,
the sample IDs (speci�ed by accession numbers of GEO/NCBI) incorporated in the
cluster are given, and y-axis indicates values of expression. One gene corresponds
to a single line in the pro�le, and the target genes of the modules as mentioned in
the text are colored. The target genes of the pro�les (a) and (c) were used for the
establishment of the module CTCF-EGRF-SP1F and the pro�les (b) and (d) for the
module CTCF-SP1F-ZBPF, at which (b) was also used for the module KLFS-SP1F-
ZBPF. The target genes of the pro�le (e) were used for the establishment of the
modules CTCF-SP1F-ZBPF and KLFS-SP1F-ZBPF. The target genes of the pro�le
(f) were used to establish the module CTCF-EGRF-SP1F.
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3.1.3 First module CTCF-EGRF-SP1F

Literature mining revealed known relations between the target genes of the �rst

module (supplemental Table A.1, A.2 and A.3) and AD. GNAS is incorporated in

long-term depression and calcium signaling, which occur signi�cantly often in the

cluster of the coregulated genes of the AD patients dataset (p-value = 0.0404, FDR

= 0.0952 (human long-term depression); p-value = 0.0476, FDR = 0.0952 (human

calcium signaling); supplemental Table A.10).

Cacna2d1, a target gene of the double-transgenic mice dataset, is involved in the

mitogen-activated protein kinase (MAPK) signaling in the mouse, and this pathway

is signi�cantly overrepresented among the coregulated genes of the double-transgenic

mice dataset (p-value = 0.0024, FDR = 0.0121; supplemental Table A.10). The tar-

get gene Gsk3b is involved in AD pathway and Wnt signaling (enrichment analysis:

p-value = 0.0021, FDR = 0.0121 (mouse AD pathway); p-value = 0.0206, FDR

= 0.0497 (mouse Wnt signaling); supplemental Table A.10). Another target gene

Ppp3cb (protein phosphatase 3, catalytic subunit, beta isoform) is also involved in

AD and MAPK signaling in the mouse according to KEGG pathways with a signif-

icant enrichment as mentioned before.

Comparing the target genes of this module from the AD patients and double-

transgenic mice microarray study, two overlapping genes are found: EIF5 and VAPA.

A family member of EIF5, EIF2AK2, is listed in AlzGene database. Furthermore,

two overlapping target genes from the double transgenic mice and LOAD patients

dataset were found: SYP, REEP5. SYP expressed in hippocampus and cortex ac-

cording to TRANSPATH database. REEP5 is expressed in the brain and central

nervous system according to MGI database.

3.1.4 Second module CTCF-SP1F-ZBPF

The AD and LOAD patients target genes of the second module (supplemental Ta-

bles A.4, A.5) partially overlap with the AD and LOAD patients target genes of the

third module KLFS-SP1F-ZBPF (supplemental Tables A.6, A.7) such as ADD3 and

CTBP2. Additional hints for the importance of the target genes putatively activated

or repressed by a module were also found for the double transgenic mice target genes

of the second module (supplemental Table A.8).

Coregulated genes of the double transgenic mice are signi�cantly enriched in the

MAPK pathway (enrichment analysis: p-value = 0.0010, FDR = 0.0242; supplemen-

tal Table A.10), incorporating the target genes Cdc42, Map2k4, Mapk1, Mapk9, and

Ppm1a of the second module (Figure 3.4 (d)).

The gene ADD3 overlaps between the target genes of the AD and LOAD patients
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dataset. According to TRANSPATH database, it is known to be upregulated in

amyotrophic lateral sclerosis (ALS) and to play a role in apoptosis.

3.1.5 Additional information of the third module KLFS-SP1F-ZBPF

The AD patients target gene CTBP2 (C-terminal binding protein) is involved in the

Wnt signaling pathway. In this study, one cluster of coregulated genes is signi�cantly

enriched in the human Wnt pathway (p-value = 0.0149, FDR = 0.0464; supplemental

Table A.10).

Comparing the AD and LOAD patients target genes from the third module, three

genes were found in common: ADD3, CLU, and NUCKS1. ADD3 is also in common

for the second module described above.
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3.2 MSVM-RFE and biclust application to other microarray datasets

3.2.1 HR versus LR microarray

The dataset of the HR and LR mice was reduced by mSVM-RFE from 45281

probesets to 6964 probesets, and then after biclustering these 6964 probesets, I got

ten clusters of coregulated genes.

Comparing the genes from the microarray showing an adjusted p-value < 0.05 with

di�erentially expressed genes in SAGE (Z-Score > 2) yields 25 genes in common, at

which 76% of the overlapping genes occur in all gene selections of 40 mSVM-RFE

runs. The remaining genes occur at least in 18 gene selections. All genes occurring

in at least 18 gene selections of 40 mSVM-RFE runs compared with the di�erentially

expressed genes in SAGE results in 48 equal genes, at which 27 genes arise in 40

gene selections.

Genesymbol p-value

qPCR

Signi�cance mSVM-

RFE

foldchange

HR vs LR

outcome

Accn2 0.374 n. s. 0 1 TN

Acot1 0.329 n. s. 37 1.29 TN

Acot11 0.002 ** 40 1.21 TP

Acot13 0.283 n. s. 19 0.74 TN

Adam11 0.018 * 38 1.21 TP

Adam22 0.143 n. s. 40 2.21 FP

Aldh1l1 0.015 * 40 2.04 TP

Ash1l 0.028 * 40 2.22 TP

Cntn6 0.711 n. s. 5 0.78 TN

Crtac1 0.006 ** 40 1.3 TP

Cyp4f13 0.689 n. s. 23 0.75 TN

Cyp4f14 0.001 *** 40 2.3 TP

Cyp4f15 0.002 ** 40 2.51 TP

Cyp4f16 0.329 n. s. 40 1.66 FP

Dap3 0.297 n. s. 40 1.94# FP

Fam116b 0.178 n. s. 0 1 TN

Fam123a 0.085 T 2 0.89 FN

Gabrg2 0.028 * 40 1.54 TP

Hsp90ab1 0.229 n. s. 40 3.12 FP

Mthfd1 0.027 * 40 0.38 TP

Prodh 0.027 * 40 1.32# TP

Pvalb 0.596 n. s. 0 1.02 TN

Rgl1 0.631 n. s. 40 4.26 FP

Sh3gl2 0.045 * 40 1.13 TP
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Genesymbol p-value

qPCR

Signi�cance mSVM-

RFE

foldchange

HR vs LR

outcome

Ssh1 0.033 * 0 0.97# FN

Tesk1 0.159 n. s. 4 2.08 TN

Timp4 0.410 n. s. 40 1.34 FP

Tmem106c 0.916 n. s. 0 0.98 TN

Tmem132d 0.051 T 40 0.44 TP

Ttbk1 0.006 ** 40 6.18 TP

Usp38 0.283 n. s. 40 0.44 FP

Table 3.3: Comparison of qPCR and mSVM-RFE result. Genes tested in qPCR are
listed in alphabetical order with appropriate p-value of the qPCR (column two) and
beside its signi�cance (n. s. not signi�cant, T p-value < 0.1, * p-value < 0.05, **
p-value < 0.01, *** p-value < 0.001) is given [personal communication with Regina
Widner from MPI Munich]. Column four shows the frequency of each gene occurring
in all gene selections of the mSVM-RFE. Beside the foldchange HR versus LR of the
microarray is given (# average foldchange due to more than one probe). The last
column shows the accordance of the qPCR result with the mSVM-RFE result (TP
true positives, TN true negatives, FP false positives, FN false negatives).

31 genes were determined for qPCR analysis [personal communication with Regina

Widner from MPI Munich]. 18 genes were selected according to their adjusted p-

value < 0.05 in the microarray analysis. Four genes were chosen, which showed no

expressional di�erences in the microarray study, in order to test the reliability of the

microarray experiment. Nine genes involved in neurogenesis and neurodevelopment

were also further analysed by qPCR.

The qPCR detected 13 di�erentially expressed genes and two genes showing a

trend in di�erential regulation. 16 genes were con�rmed to be not regulated. The

results of the qPCR experiment are shown in Table 3.3. Additionally, the frequency

of the genes occurring in the mSVM-RFE gene selections as well as the foldchange

on the microarray is shown.

To choose the best cut-o� point of the mSVM-RFE frequency for best sensitivity as

well as best selectivity a receiver operator characteristic (ROC) curve was established

[Lalkhen and McCluskey, 2008] (Figure 3.5). Best cut-o� point is 38, i.e. all genes

occurring in at least 38 mSVM-RFE gene selections are classi�ed to be di�eren-

tially expressed in the microarray (Positives) and the remaining genes are Negatives.

According to the prediction of the mSVM-RFE and the result of the qPCR the genes

are signi�ed as true positive TP, false positive FP, true negative TN or false negative

FN (Table 3.3). Finally, a sensitivity of 87% by (1) and a speci�city of 56% by (2)

was calculated for the mSVM-RFE method.

KEGG enrichment analysis of genes determined by mSVM-RFE occurring in all gene

48



Chapter 3 Results

Figure 3.5: ROC curve. The x-axis describes the false positive rate (1 - speci�city),
while the y-axis represents the true positive rate (sensitivity). The gray and black
line represent the line of zero discrimination and the ROC curve of mSVM-RFE,
respectively. The best cut-o� point for best sensitivity as well as best selectivity is
marked by a red cross.

selections (frequency = 40) reveals three pathways incorporating qPCR validated

genes (supplemental Table A.11). Aldh1l1 is involved in the pathway 'one carbon

pool by folate' in mouse with a signi�cant overrepresentation of the genes detected

by mSVM-RFE with frequency = 40 (enrichment analysis: p-value = 0.0088, FDR

= 0.0372). Other pathways are 'arachidonic acid metabolism' and 'lysine degrada-

tion' including the genes Cyp4f14, Cyp4f15 (cytochrome P450, family 4, subfamily

f, polypeptide 14/15) and Ash1l (absent small and homeotic disks protein 1 ho-

molog), respectively (enrichment analysis: p-value = 0.0344, FDR = 0.0799 (mouse

arachidonic acid metabolism); p-value = 0.0495, FDR = 0.0799 (mouse lysine degra-

dation)).

Additionally, each cluster was analysed for pathway enrichment. Gabrg2 (gamma-

aminobutyric acid (GABA) A receptor, gamma 2) and Sh3gl2, both genes vali-

dated by qPCR and occurring in di�erent clusters, are participating in 'neuroactive

ligand-receptor interaction' and 'endocytosis', respectively (enrichment analysis: p-

value/FDR = 0.0409 (mouse neuroactive ligand-receptor interaction); p-value/FDR

= 0.041 (mouse endocytosis); supplemental Table A.11).

Name Genes p-value FDR

leukotriene metabolic

process

ALOX5AP, CYP4F2, CYP4F16 5.57×10−5 4.57×10−3

ER-associated protein

catabolic process

NPLOC4, FBXO2, FBXO6 0.000213 0.008735
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Name Genes p-value FDR

glycoprotein catabolic

process

FBXO2, FBXO6 0.000748 0.012273

response to lithium ion ACTA1, GSTM5 0.002282 0.020789

glutathione metabolic

process

GSTK1, GSTM5 0.007217 0.039451

negative regulation of

cell adhesion

ADAM22, MYO1F 0.010863 0.046881

response to glucocorti-

coid stimulus

UGT1A10, SPARC, TYMS 0.013517 0.047892

cell adhesion ITGAE, CD97, ADAM22, EMB,

PVRL3, COL20A1, CHST10

0.014601 0.047892

mitochondrial matrix SDHAF1, PRODH, DAP3, ACAA2,

GSTK1, GCDH

0.000455 0.022275

mitochondrion TTC19, SLC25A34, ABCB1B,

RPL10A, SDHAF1, HSP90AB1,

ELAC2, GSTZ1, PRODH, DAP3,

ALDH1L1, MFF, ACAA2, GSTK1,

CCBL2, GCDH, NT5DC3,

MRPL10

0.001958 0.047980

endoplasmic reticulum GOLT1B, TMTC2, UGT1A10,

STX8, ALOX5AP, NPLOC4,

SPAST, CYP4F2, CNPY3, G6PC3,

CYP4F12, CYP4F16, SEC22C

0.005571 0.080511

glutathione transferase

activity

GSTZ1, GSTK1, GSTM5 0.000526 0.011221

glutathione peroxidase

activity

GSTZ1, GSTK1 0.002322 0.027435

glycoprotein binding FBXO2, FBXO6 0.014066 0.050013

Table 3.4: Selected GO terms (column one) of genes determined by mSVM-RFE
occurring in all gene selections with dedicated genes (column two) are shown. p-
value and FDR are given in column three and four, respectively.

Furthermore, GO enrichment analysis was performed for all genes identi�ed by

mSVM-RFE with frequency = 40 and selected signi�cant GO terms are listed in

Table 3.4 with dedicated genes in column two. The �rst eight terms in the table are

biological processes followed by three cellular component terms and three molecular

function terms.
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3.2.2 DJ-1 knockout microarray

The microarray dataset established from DJ-1 knockout and wildtype mice revealed

several di�erentially expressed genes related to PD.

22 probesets with an adjusted p-value < 0.35 are di�erentially expressed between

the di�erent mouse models. Di�erent probesets can correlate to one common gene

and some probesets are not yet assigned to a gene. In total 12 di�erent genes

(supplemental Table A.13) correlate with these 22 probesets.

MSVM-RFE reduced the DJ-1 knockout mice dataset from 28853 probesets to 3481

probesets. Biclustering analysis revealed eight biclusters of coregulated genes by

entering the 3481 probesets obtained by mSVM-RFE.

Literature mining displays indirect interactions of DJ-1/PARK7 to eight genes

(PLOD1, DHRS3, RERE, CLSTN1, UBIAD1, MTHFR, ACOT7, HNMT), which

occur in all gene selections and have an adjusted p-value of < 0.35. Indirect inter-

action means the eight genes are not directly linked to DJ-1 but at least one gene is

connecting both genes via a short path. The associations to DJ-1 are described in

the following.

The genes PLOD1 and PARK7 have a common regulator TGFB1 (transforming

growth factor, beta 1) [Knippenberg et al., 2009, Altraja et al., 2009]. The expres-

sion of DHRS3 is in�uenced by PARK7 via RET (ret proto-oncogene) [Foti et al.,

2010, Oppenheimer et al., 2007]. The di�erentially expressed gene RERE is con-

trolled by PARK7 via HDAC1 (Histone deacetylase 1) [Zhong and Xu, 2008, Wang

et al., 2006]. CLSTN1 is in�uenced by PARK7 via interacting with MAPK1 [Gu

et al., 2009, Vagnoni et al., 2011]. UBIAD1 binds to APOE [Fredericks et al., 2011],

which is upregulated by PARK7 by inhibiting MAPK8 [Pocivavsek and Rebeck, 2009,

Mo et al., 2008]. The activation of MTHFR is reduced by a dominant-negative form

of MAPK8 [Leclerc and Rozen, 2008], at which MAPK8 is inhibited by PARK7 [Mo

et al., 2008]. ACOT7 is controlled by SREBF2 (sterol regulatory element binding

transcription factor 2) [Takagi et al., 2005], which is in�uenced by PARK7 via IL8

(interleukin 8) [McNally et al., 2011, Yao et al., 2006], and ALB (Albumin) [Pérez-Gil

et al., 1990], which regulates the PARK7 interacting gene SNCA [McLaughlin et al.,

2006, Savitt et al., 2006]. The last gene HNMT participates in the same histamine-

metabolizing pathway as its regulator MAOA (monoamine oxidase A) [Boudíková-

Girard et al., 1993], which is controlled by PARK7 over NFE2L2 (nuclear factor

(erythroid-derived 2)-like 2) [Thimmulappa et al., 2002, Clements et al., 2006]. Ad-

ditionally, HNMT is also regulated by IL1B (interleukin 1, beta) [Sakata et al., 1995],

which is directed by PARK7 via SNCA [Roodveldt et al., 2010, Savitt et al., 2006].

Furthermore MTHFR and HNMT are incorporated in the PDGene database and

MTHFR is a NFKB target gene.
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GO enrichment analysis of genes of all mSVM-RFE gene selections reveals biolog-

ical processes like 'response to interleukin-1', 'vesicle-mediated transport', 'response

to stress' and 'cell death' as well as the molecular function 'metal ion binding' (Table

3.5).

Name Genes p-value FDR

response to interleukin-1 MTHFR, HNMT 0.000501 0.032715

vesicle-mediated transport Bet3l, RAB6B, INTS4 0.001545 0.032715

response to stress Ahsa2, PARK7, HNMT 0.001799 0.032715

cell death OPTN, PARK7 0.008953 0.047536

metal ion binding PDZRN4, ZSCAN2, LOC388559,

RERE, POMT2, PRIM1, POLR3B,

PLOD1

0.042089 0.097025

Table 3.5: Selected GO terms (Name) of genes determined by mSVM-RFE occurring
in all gene selections. In column two the genes enriched in the GO term are shown
following by p-value and FDR.

The mSVM-RFE output was further restricted to genes, which are transcriptionally

regulated by NFKB known to play a signi�cant role in PD [Cassarino et al., 2000].

29 di�erent NFKB target genes are obtained, at which 20 genes show direct inter-

actions to each other. GO enrichment analysis shows biological process categories

like 'response to lipopolysaccharide', 'in�ammatory response', 'positive regulation of

interleukin-6 biosynthetic process', 'positive regulation of apoptosis', 'anti-apoptosis',

'response to interleukin-1', 'aging' and 'learning or memory' (Table 3.6).

Name Genes p-value FDR

response to lipopolysaccharide FOS, IL1B, SELE, SELP,

ASS1, DIO2

1.9× 10−8 5.63×10−6

in�ammatory response FOS, IL1B, SELE, SELP,

CD44, TNFRSF4

4.22×10−7 6.26×10−5

positive regulation of interleukin-

6 biosynthetic process

IL1B, IFNG 1.91×10−5 0.000944

positive regulation of apoptosis IL1B, SOD1, IL2RA,

GRIN2A

3.66×10−5 0.001550

anti-apoptosis IL1B, FN1, SOD1, IER3 6.39×10−5 0.002229

response to interleukin-1 SELE, MTHFR 0.000501 0.007424
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Name Genes p-value FDR

aging FOS, IL1B, SOD1 0.000524 0.007491

learning or memory IL1B, GRIN2A 0.001083 0.009586

Table 3.6: Selected GO terms (Name) of genes determined by mSVM-RFE occurring
in at least one gene selection, which are NFKB targets. In column two the genes
enriched in the GO term are shown following by p-value and FDR.

Biclustering of all probesets obtained from mSVM-RFE reveals one interesting

cluster of 41 coregulated genes incorporating NFKB target genes Ccnd2, Cd44

(CD44 antigen) as well as S100a4, from PDGene Ndufs2 (NADH dehydrogenase

(ubiquinone) Fe-S protein 2) as well as Wnk1 (WNK lysine de�cient protein kinase

1) and Kif1b (kinesin family member 1B) listed in PDbase.

KEGG pathway Genes Fisher-Test FDR

Huntington's disease Polr2f, Ep300, Ndufs2, Sdha,

Cox6c

6.05× 10−5 0.000605

Citrate cycle (TCA cycle) Idh3g, Sdha 0.002415 0.010405

Oxidative phosphorylation Ndufs2, Sdha, Cox6c 0.004162 0.010405

Parkinson's disease Ndufs2, Sdha, Cox6c 0.004162 0.010405

Alzheimer's disease Ndufs2, Sdha, Cox6c 0.008381 0.016762

Cell cycle Ccnd2, Ep300 0.035299 0.058832

Table 3.7: Coregulated genes (column two) enriched in KEGG pathways (column
one) are shown with corresponding p-value and FDR in column three and four,
respectively.

Pathway enrichment analysis of the 41 coregulated genes reveals several neurode-

generative diseases like Huntington, PD as well as AD and additional pathways like

'citrate cycle', 'oxidative phosphorylation' and 'cell cycle' (Table 3.7 and supplemen-

tal Table A.12).

Name Genes p-value FDR

microtubule MAP4, MID1, DYNC1H1,

KIF1B, TUBB, CEP170

1.0× 10−5 0.00355

negative regulation of micro-

tubule depolymerization

MAP4, MID1 0.000238 0.012092
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Name Genes p-value FDR

microtubule-based movement DYNC1H1, KIF1B, TUBB 0.000334 0.014805

iron ion binding NDUFS2, KDM3B, KDM5A 0.008378 0.043738

mitochondrial inner membrane NDUFS2, SDHA, COX6C 0.022862 0.061955

cell cycle EP300, CCND2, LATS1 0.026087 0.065602

mitochondrial matrix IDH3G, OXCT1 0.035876 0.078919

magnesium ion binding IDH3G, WNK1, LATS1 0.041236 0.084617

mitochondrion IDH3G, NDUFS2, KIF1B,

SDHA, OXCT1, COX6C

0.042429 0.085490

Table 3.8: Enrichment of coregulated genes (column two) in selected GO terms (col-
umn one). P-value and FDR is shown in column three and four, respectively.

GO enrichment analysis of all 41 coregulated genes was performed and results in

several signi�cant terms. Selected GO terms especially involved in 'mitochondrion',

'microtubule' and 'cell cycle' are shown in Table 3.8.

Literature mining of the 41 coregulated genes from the cluster shows some direct

interactions and various indirect interactions between coregulated genes linked by

interleukins and MAP kinases like MAPK8. Furthermore, key genes of neurode-

generative diseases such as SNCA, several TFs and genes like TNF, INS (insulin),

BCL2 connect as well coregulated genes.
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3.3 TFBSs in key genes of Parkinson's disease

3.3.1 ATF4 binding site in Parkin promoter

The Parkin promoter sequence, which was elongated downstream of the transcription

start site by 150 bp, of human was analysed for conserved ATF4 TFBSs by Geno-

matix software. This CREB/ATF (activating transcription factor 4) TFBS shown

in Figure 3.6 is conserved among the species human, mouse, cow and horse. An ad-

Figure 3.6: Conserved CREB/ATF binding sites in Parkin. Human, mouse, cow and
horse promoter sequences of Parkin, which are elongated downstream of the tran-
scription start site by 150 bp. Red arrow indicates transcription start site (TSS)
and positions are denoted relative to the TSS. The CREB/ATF binding sites are
indicated by semicircles. Red, yellow and blue semicircles are predicted by three
di�erent binding motifs, which correspond to a Genomatix-de�ned family of 14 ma-
trices describing the CREB/ATF binding site. The red and yellow colored binding
site is conserved between human, cow and horse, as well as human and horse, respec-
tively, whereas the blue binding site is conserved across all four species. The green
semicircles (not conserved) are additional binding sites. Downstream of the TSS,
in the �rst intron of Parkin, an additional CREB/ATF binding site is located in
human, mouse and cow. The consensus ATF4 binding site is written in bold letters.
hsa, Homo sapiens (human); mmu, Mus musculus (mouse); bta, Bos taurus (cow);
eca, Equus caballus (horse).

ditional binding site is located downstream of the TSS, in the �rst intron of Parkin,

in human, mouse and cow.
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3.3.2 NFKB binding sites in the promoter of OPA1

I searched for Nuclear factor kappa B/c-rel (NFKB) binding sites in the human

OPA1 promoter by Genomatix software and discovered four binding sites, which

are conserved among the species human, chimp, rhesus monkey, mouse, rat and

horse (Figure 3.7). One NFKB binding site in the human OPA1 promoter is located

Figure 3.7: Conserved NFKB binding sites in OPA1 promoter of human, chimp, rhe-
sus monkey, mouse, rat and horse. Red arrow indicates transcription start site
(TSS) and positions are denoted relative to the TSS. The translation start site
is shown by a red ATG. The NFKB binding sites are indicated by semicircles.
Blue (V$NFKAPPAB.02), green (V$NFKAPPAB65.01), red (V$NFKAPPAB.01)
and yellow (V$NFKAPPAB50.01) binding sites (semicircles) are predicted by four
di�erent binding motifs, which correspond to a Genomatix-de�ned family of seven
matrices describing the NFKB binding site. The blue and green colored binding site
upstream of the TSS and on the plus-strand is conserved between human, chimp
and rhesus monkey as well as mouse and rat, respectively. The green colored bind-
ing site downstream of the TSS and on the plus-strand is conserved between human,
chimp, rhesus monkey and horse. The red and yellow colored binding site on the
minus-strand is conserved between human, chimp and rhesus monkey as well as hu-
man, chimp, rhesus monkey, mouse and rat, respectively. The gray semicircles (not
conserved) are additional binding sites. Homo sapiens (human); Pan troglodytes
(chimp); Macaca mulatta (rhesus monkey); Mus musculus (mouse); Rattus norvegi-
cus (rat); Equus caballus (horse).

upstream of the TSS and three sites are arranged downstream of the TSS, whereas

two sites with a similar motif are overlapping.
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3.3.3 SNPs in TFBSs of MAPT and SNCA promoter and �rst intron

I analysed MAPT and SNCA promoter and �rst intron sequences for TFBSs by

Genomatix software. PD associated SNPs are used to �lter TFBS predictions in

order to get TFs in�uencing PD pathogenesis. PDGene database is an aggregation

of all published genetic association studies of PD phenotypes and contains 58 and 96

SNPs of MAPT and SNCA, respectively. MAPT and SNCA are the two top ranked

genes in the PDGene database. According to PDGene database SNPs have not been

found in the promoter of MAPT but 21 SNPs (supplemental Table A.14) have been

found in the �rst intron. SNCA contains two and seven SNPs (supplemental Table

A.15) in the promoter and �rst intron, respectively. The Figures 3.8 (a) and (b)

show the SNPs in the promoter and �rst intron of MAPT and SNCA and TFBSs

according to the two criteria conservation and core-sequence are colored orange and

blue. The core-sequence is de�ned as the highest conserved, consecutive positions

(usually 4) in the TFBS sequence. Some TFBSs match even both criteria highlighted

(a)

(b)

Figure 3.8: SNPs of MAPT (a) and SNCA (b) from promoter till second exon. The
drawings show the region from promoter till second exon of MAPT and SNCA. SNPs
in this region are marked by gray colored stripes. SNPs located in a conserved TFBS
are colored orange and SNPs being part of the TFBS core-sequence are colored blue.
The corresponding TF-family of the colored SNPs are written above or below.
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by a bicolored stripe like CEBP, ETSF and PCBE. The TFBSs ETSF and PCBE in

MAPT are conserved between human, chimp and cow. The SRFF (serum response

element binding factor) BS lies in a region conserved between human, chimp and rat

and the KLFS BS is additionally conserved to mouse. The strongest conserved TFBS

of MAPT is CEBP in the species human, chimp, mouse, rat and cow. The ETSF BS

of SNCA is conserved in human, chimp and dog and the four TFs AP1R (MAF and

AP1 related factors), KLFS, SP1F and ZF02 are binding to a region additionally

conserved to mouse and cow. Both genes have the TFBSs DEAF, ETSF and KLFS

in common. The association of another TF YY1F and ETSF to PD are discussed in

section 4.3.2 (Discussion).

3.3.4 TFBSs in PRKAA1, PRKAA2 and PRKAG1

The kinases PRKAA1, PRKAA2 and PRKAG1 belonging to the AMP-activated

protein kinase family are possibly regulated by similar TFs at which the AMPK

alpha genes (PRKAA1 and PRKAA2) are supposed to be regulated by the same

TFs. In total 38 TF-families were selected according to GO terms including 'stress',

'metabolic' and 'biosynthetic', because TFs regulating metabolic, bio-energetically

and stress pathways are most interesting in the context of PD and AMPK (PRKAA1,

PRKAA2, PRKAG1). I searched for these 38 TF-families in AMPK genes by the

Genomatix software.

The TFBSs analysis of the human promoters yields several common TFs (Figure

3.9). ZF02 and ETSF are in common for all three genes PRKAA1, PRKAA2 and

Figure 3.9: Common TFBSs in PRKAA1, PRKAA2 and PRKAG1. The picture
shows the promoter of the three genes with the BSs of �ve common TFs marked by
di�erent colors. Red arrow indicates TSS.

PRKAG1 and additionally the corresponding TFs have at least four BSs predicted

in the promoter sequences of all three genes. Furthermore, RXRF, XBBF (x-box

binding factors) and NR2F occur in the promoters of the three genes, but partially

only one site in the promoter is predicted. Additionally, PRKAA1 and PRKAA2
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have the following TFs in common with at least two binding sites in each promoter:

EBOX, NRF1, STAT (signal transducer and activator of transcription). The TFs

IRFF (interferon regulatory factors), HOXF (paralog hox genes 1-8 from the four

hox clusters A, B, C, D) and YY1F are also detected in the promoter sequences of

PRKAA1 and PRKAA2.

The promoter sequences of PRKAA1 from rhesus monkey, chimp, human, mouse,

rat, cow, rabbit, chicken, zebra �nch, western clawed frog, zebra �sh and opossum

were searched for conserved TFs of the initially de�ned TF group.

Name Species related promoter sequence

YY1F rhesus monkey, chimp, human, mouse, rat, cow, rabbit,

chicken, zebra �nch, western clawed frog, zebra �sh, opossum

ZF02 rhesus monkey, chimp, human, mouse, rat, cow, rabbit, zebra

�nch, opossum

STAT rhesus monkey, chimp, human, mouse, rat, cow, opossum

EBOX, ETSF, NRF1 rhesus monkey, chimp, human, mouse, rat, cow

IRFF rhesus monkey, human, cow, rabbit, zebra �sh, opossum

Table 3.9: Conserved TFBSs in PRKAA1 promoter of 12 species. The �rst column
describes the conserved TF-family among the species in column two.

Seven TFs were discovered to be conserved in at least six species including also far-

related animals. YY1F is conserved among all 12 species and the mostly conserved

other TFs are common to at least six species (Table 3.9).

Chimp, human, mouse, rat, cow, chicken, western clawed frog, zebra �sh and opos-

sum promoter sequences of PRKAA2 were scanned for the initially de�ned TFs

conserved in at least three sequences. Eight TFs were found and the strongest con-

served TF between eight species is like in PRKAA1 YY1F. The other conserved TFs

in di�erent species are listed in Table 3.10. The �ve TFs YY1F, ZF02, EBOX, ETSF

and NRF1 are conserved in PRKAA1 as well as in PRKAA2.

Name Species related promoter sequence

YY1F chimp, human, mouse, rat, cow, chicken, western clawed frog,

zebra �sh

ZF02 chimp, human, mouse, rat, cow, opossum

EBOX chimp, human, rat

ETSF, RXRF, MYOD chimp, human, cow
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Name Species related promoter sequence

NR2F chimp, human, western clawed frog

NRF1 chimp, human, mouse

Table 3.10: Conserved TFBSs in PRKAA2 promoter of nine species. The �rst column
describes the conserved TF-family among the species in column two.

Nine species (chimp, human, mouse, rat, dog, cow, pig, horse and rabbit) of

PRKAG1 have conserved BSs of ETSF, FKHD (fork head domain factors), NR2F,

P53F (p53 tumor suppressor), PERO (peroxisome proliferator-activated receptor),

RXRF, SF1F (vertebrate steroidogenic factor) and ZF02. The TFs ETSF and ZF02

are additionally conserved in PRKAA1 and PRKAA2.
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3.4 Computational identi�cation and experimental validation of

microRNAs binding to ADAM10

3.4.1 MicroRNA prediction

The established work�ow (Figure 3.10) obtains miRNAs with possible binding sites to

the human ADAM10 3'UTR. The human miRNAs with its binding sites to human

Figure 3.10: Computational prediction of miRNAs binding to ADAM10 3'UTR.
Three programs RNA22, RNAhybrid and miRanda are used for the prediction of
miRNAs binding to the human ADAM10 3'UTR. After retrieving a list of 236 miR-
NAs by RNA22, RNAhybrid or miRanda I extracted the relevant miRNAs according
to selection criteria: prediction by at least two programs, di�erential regulation in
AD patients [Cogswell et al., 2008], tissue-speci�c expression (MGI), binding to AD
key genes, corresponding mouse miRNA binding to the mouse ADAM10 3'UTR se-
quence predicted by at least two of the three programs, additional prediction by
TargetScan and microRNA and evolutionary conservation.

ADAM10 3'UTR were predicted by the three programs, RNA22, RNAhybrid and

miRanda.

122 miRNAs are predicted by at least two programs to bind to human ADAM10

3'UTR sequence and 52 of them are signi�cant according to expression and the

following selection criteria:

� at least two programs predict the miRNA binding site

� expression of the miRNA in brain provided by the MGI database
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� regulation of the miRNA in AD as described by Cogswell and colleagues (2008)

in the tissues hippocampus, cerebellum and medial frontal gyrus [Cogswell

et al., 2008]

� miRNA binding to a gene, which is involved in AD revealed by literature search

� corresponding mouse miRNA predicted to bind to the mouse ADAM10 3'UTR

sequence by at least two of the three programs

� prediction of the miRNA by other webtools such as TargetScan and microRNA

The 52 miRNAs incorporate none-conserved as well as conserved miRNAs or rather

miRNA binding sites. Filtering according to conservation helps to �nd function-

ally active miRNA binding sites, additionally reduces the number of miRNAs and

improves the selection of candidates for further experimental validations. In the anal-

ysis eleven miRNA binding sites are conserved across at least seven species, at which

four of these miRNAs are also conserved in the evolutionarily far related species

zebra �sh. The only miRNA binding site miR-1306 in the human ADAM10 3'UTR

predicted by all three programs is also conserved in the evolutionarily far related

zebra �sh as well as in mouse, horse, dog, chimp, chicken, rhesus monkey and zebra

�nch (Figure 3.11 (a)). This binding site is located on chromosome 15 positions

58889309�58889324 and the programs RNA22, RNAhybrid and miRanda predicted

the binding energy -32.29, -25.7 and -22.55 kcal/mol, respectively. The conservation

of the miRNA binding site sequence between human and the species mouse, horse,

dog, chimp as well as rhesus monkey is 100%. The conservation of chicken, zebra

�nch and zebra �sh to human in this binding region is 94%, 88% and 75%, respec-

tively.

Other miRNAs predicted to bind to human ADAM10 3'UTR are miR-103 as well

as miR-107 both having the same binding site located on chromosome 15 positions

58889443�58889468. This site is predicted by the two programs RNAhybrid and

miRanda with binding energy -27.9 and -23.66 kcal/mol for miR-103, respectively,

as well as -26.2 and -22.28 kcal/mol for miR-107, respectively. The conservation

of the miRNA binding site sequence between human and the species mouse, horse,

dog and chimp is 96%, while the conservation of chicken, rhesus monkey and �nch

to human is 65%, 100% and 73%, respectively (Figure 3.11 (b) and (c)). Addi-

tionally, miR-202, miR-423-5p, miR-503, miR-184 and miR-922 bind also to the

conserved binding region chromosome 15 positions 58889443-5889473 and miR-330-

5p (chr15:58889149-58889178), miR-671-5p (chr15:58889720-58889745) and miR-432

(chr15:58889688-58889718) bind to a region with good conservation also to the evo-

lutionarily far related species zebra �sh.
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(a)

(b)

Figure 3.11: Conservation of the miR-1306 and miR-103 binding site within the
ADAM10 3'UTR

I choose the three most interesting miRNAs 1306, 107 and 103 according to pre-

dicted binding energy, selection criteria and conservation as well as relation to AD.

Additional analyses were performed with the AlzGene database, further miRNA tar-

get site prediction databases, GO, literature mining and validation experiments to

identify the involvement in AD.

Twelve target genes of miR-1306 (Figure 3.12) were predicted concerning their func-

tion in AD, brain, nervous system or other neurodegenerative diseases and graphi-

cally interrelated by Path Designer (Ingenuity). The predictions rely on TargetScan

while the dedicated functions are Ingenuity Expert Findings or from GO.
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(c)

Figure 3.11: Conservation of the miR-107 binding site within the ADAM10 3'UTR.
The �gure shows the conservation of the miR-1306 (a), miR-103 (b) and miR-107 (c)
binding region (light green) between di�erent species. The blue sequence represents
the miRNA binding to the DNA of di�erent species as listed on the left side. On the
right side the conservation of the miRNA binding region (light green) from di�erent
species to human sequence is given. Nucleotide mismatches in the binding region to
human binding region are marked in red. The lines and colons below the miRNA
sequence show perfect nucleotide matches and G:U/T wobble pairs, respectively.

Figure 3.12: Target gene predictions for miR-1306. Twelve target genes of miR-1306
were predicted by TargetScan concerning their function in AD, brain, nervous system
or other neurodegenerative diseases and graphically interrelated by Path Designer
(Ingenuity). The miRNA is located in the nucleus and the predicted target genes
indicated by blue arrows and blue framed ellipses are located according to their GO
either in the nucleus, cytoplasm or membrane. The functions of the target genes are
denoted by gray lines and gray framed ellipses and derived from GO or Ingenuity
expert �ndings, which are substantiated by literature.
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3.4.2 Prediction of miRNA target genes and their relation to AD

I searched for target gene predictions of the miR-1306, miR-103 and miR-107 in the

six databases miRBase, microRNA, PicTar, PITA, RNA22, as well as TargetScan

(Figure 3.13). The combination of di�erent miRNA target site prediction databases

Figure 3.13: Work�ow for miRNA target site prediction. Seven databases miRBase,
microRNA, PicTar, PITA, RNA22, TargetScan and Tarbase, which is experimentally
supported by miRNA targets, are incorporated in the prediction of miRNA target
sites. The input is a miRNA and the output is a set of target genes common to four
out of six databases. Tarbase contains experimentally supported miRNA targets and
not in-silico predicted miRNA binding sites: all miRNA target genes from Tarbase
are automatically included in the output of the analysis.

and the restriction of the output to four out of six databases in the case of miR-103

and miR-107 are important to reduce the amount of false positive miRNA target

sites in the end. In the case of miR-1306 there is no restriction of the output,

because only the database PITA incorporates predictions for this miRNA. Addition-

ally, Tarbase can be included in the analysis. All miRNA target sites from Tarbase

are automatically included in the output of the analysis. In this case Tarbase does

not contain target genes for the miRNAs: miR-103, miR-107 and miR-1306. The

six miRNA target site prediction databases miRBase, microRNA, PicTar, PITA,

RNA22, and TargetScan contain in total 18915 di�erent (according to EntrezGene)

human genes at which PITA alone contains 16819 genes. The analysis resulted in

156 and 157 target genes for miR-103 and miR-107, respectively, common in four

out of six databases, and 890 target genes for miR-1306 of database PITA.

AlzGene database was used to see for which of the miRNA target genes a genetic as-

sociation with AD has been found. The six miRNA target site prediction databases
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have in total 18915 genes and PITA contains 16819 genes, at which 636 and 591

genes are listed in AlzGene database, respectively. The overlap between AlzGene

database genes and the target genes of miR-103, miR-107 as well as miR-1306 are

12, 14 (Figure 3.14) and 24 genes, respectively (supplemental Table A.16). MiR-103

Figure 3.14: The Venn diagram shows the signi�cant overlap of the target genes of
miR-103 and miR-107 common in four out of six databases as well as the genes of
AlzGene database.

and miR-107 have 130 target genes in common (Figure 3.14, supplemental Table

A.16). Applying a Fisher's exact test I got a p-value of 0.0065, 0.0009 and 0.1904

for the overlap of miR-103, miR-107 and miR-1306, respectively, with the AlzGene

database.

3.4.3 Gene ontology

GO analysis with the predicted target genes of the three miRNAs was done to validate

the functionality of the miRNAs and their involvement to AD. With the help of

the literature mining tool Pathway Studio I searched for molecular functions and

biological processes common to the target genes of the three miRNAs.

Name Overlap p-value FDR GO

Wnt receptor signaling pathway 7 7.68×10−6 0.001365 biological process

nervous system development 9 0.000367 0.018655 biological process

dendrite development 3 0.000613 0.022958 biological process

positive regulation of anti-

apoptosis

3 0.00072 0.024377 biological process

learning 3 0.000777 0.025123 biological process

regulation of neuron apoptosis 2 0.001854 0.030698 biological process

brain development 5 0.002298 0.035521 biological process
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Name Overlap p-value FDR GO

calcium ion binding 15 0.001105 0.036862 molecular function

Notch signaling pathway 3 0.003259 0.040504 biological process

cerebellum development 2 0.006388 0.049366 biological process

metal ion binding 27 0.041212 0.124150 molecular function

Table 3.11: Selected GO terms with an enrichment of miR-103 target genes. The
table shows the GO entities (Name) with enrichment of predicted target genes of
miR-103. Additionally a p-value and FDR value is given. Overlap is the number of
target genes enriched in the GO entity (column 1) belonging to a speci�c ontology
category (column 5).

Name Overlap p-value FDR GO

learning 4 3.33×10−5 0.004544 biological process

brain development 6 0.000351 0.013933 biological process

nervous system development 9 0.00041 0.013939 biological process

dendrite development 3 0.000641 0.016504 biological process

positive regulation of anti-

apoptosis

3 0.000752 0.01791 biological process

regulation of neuron apoptosis 2 0.00191 0.027435 biological process

Notch signaling pathway 3 0.003398 0.041090 biological process

calcium ion binding 14 0.002465 0.048950 molecular function

cerebellum development 2 0.006575 0.051159 biological process

metal ion binding 28 0.018689 0.079914 molecular function

Wnt receptor signaling pathway 3 0.035972 0.087148 biological process

Table 3.12: Selected GO terms with an enrichment of miR-107 target genes. The
table shows the GO entities (Name) with enrichment of predicted target genes of
miR-107. Additionally a p-value and FDR value is given. Overlap is the number of
target genes enriched in the GO entity (column 1) belonging to a speci�c ontology
category (column 5).

Name Overlap p-value FDR GO

metal ion binding 153 1.86×10−8 6.62×10−6 molecular function

nervous system development 33 6.86×10−8 1.36×10−5 biological process

brain development 17 7.06×10−6 0.000785 biological process

calcium ion binding 56 2.08×10−5 0.002116 molecular function

learning 6 0.000321 0.014353 biological process

dendrite development 4 0.010762 0.10343 biological process

Wnt receptor signaling pathway 9 0.012744 0.113187 biological process

67



Chapter 3 Results

Name Overlap p-value FDR GO

positive regulation of anti-

apoptosis

4 0.012987 0.113187 biological process

Notch signaling pathway 5 0.01916 0.124447 biological process

cerebellum development 3 0.024124 0.124447 biological process

regulation of neuron apoptosis 2 0.043731 0.173128 biological process

Table 3.13: Selected GO terms with an enrichment of miR-1306 target genes. The
table shows the GO entities (Name) with enrichment of predicted target genes of
miR-1306. Additionally a p-value and FDR value is given. Overlap is the number of
target genes enriched in the GO entity (column 1) belonging to a speci�c ontology
category (column 5).Overlap is the number of target genes enriched in the GO entity
(column 1) belonging to a speci�c ontology category (column 5).

The Tables 3.11, 3.12 and 3.13 show signi�cant p-values and FDR for selected com-

mon GOs of miR-103, miR-107 and miR-1306, respectively. In total, 37, 45 and

118 signi�cantly overrepresented molecular functions and 154, 163 and 369 signi�-

cantly overrepresented biological processes were identi�ed for miR-103, miR-107 and

miR-1306, respectively.

3.4.4 Literature mining

A network (Figure 3.15) containing already published interactions of miR-103 and

miR-107 with genes involved in AD or included in the AlzGene database was es-

tablished using the literature mining tool Pathway Studio. Genes connected to the

miRNAs are listed in the AlzGene database, involved in miRNA processing or show

a connection to AD pathogenesis by being involved in processes playing a role in AD.

Additionally, both miRNAs are linked by genes and linoleic acid, which is known to

a�ect AD [Liu et al., 2004].
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Figure 3.15: Interaction network of miR-103 and miR-107. The network (established
by Pathway Studio) shows already published interactions between miR-103 as well
as miR-107 and genes known to be involved in AD or neurodegenerative processes.
The di�erent types of proteins or small molecules are indicated by di�erent symbols
and the various interactions like regulation, expression and miRNA e�ect are also
displayed by various arrows.

3.4.5 Experimental validation of bioinformatically predicted miRNAs

The following experiments were done in the context of a cooperation by Kristina

Endres and Sven Reinhardt [Augustin et al., 2012]. For the purpose of validation

cotransfection experiments with a Gaussia reporter vector harbouring the 3'UTR

of ADAM10 downstream of the luciferase coding sequence together with the re-

spective miRNAs were performed. As a positive control miR-122 was used. The

programs RNA22, RNAhybrid and miRanda predicted a miR-122 binding site to

human ADAM10 3'UTR with binding energy -31.2, -25.6 and -21.84 kcal/mol (on

average: -26.21 kcal/mol), respectively, comparable to the miR-1306 binding site

prediction. Time resolved measurement revealed that 48 hrs incubation period re-

sulted in maximal e�ects of the miRNAs in SH-SY5Y cells (data not shown): while

the negative control miRNA had no impact on luciferase activity measured in the

cell supernatant, miR-122 reduced the luminescent signal to 57 % as compared to

water treated control cells (Figure 3.16). The three miRNAs identi�ed by bioin-

formatical approaches and integration of literature mining all showed a signi�cant

decreasing e�ect on the ADAM10 3'UTR-reporter construct: miR-1306 lowered the

luminescent signal to 72%, miR-103 to 55% and miR-107 to 48% of control. While

miR-103 and miR-107 target the same DNA sequence within the ADAM10 3'UTR

(see Figure 3.11), miR-1306 has a binding site in closer proximity to the stop codon.

Therefore miR-1306 and miR-103 or miR-107 were combined, respectively, and ob-

69



Chapter 3 Results

Figure 3.16: Experimental validation of selected miRNAs. SH-SY5Y cells were tran-
siently cotransfected with the Gaussia reporter vector harbouring the 3'UTR of
ADAM10 downstream of the luciferase coding sequence together with the respec-
tive miRNAs. MiR-122, which has been described by Bai et al. [2009] to target
ADAM10, served as a positive control. After 48 hrs of incubation, luminescence
was measured in the cell supernatant. Values obtained for control (water) treated
cells were set to 100%, data represent mean ±SD of three independent experiments
performed in triplicate. *** P < 0.001, ns = not signi�cant, RLU = Relative light
units. [Augustin et al., 2012]

served a slight but signi�cant synergistic e�ect (miR-1306 vs. miR-1306/103 p <

0.001; miR-1306 vs. miR-1306/107 p < 0.001).
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Discussion

4.1 Evaluation of bioinformatics approach

This part of the discussion concentrates on the evaluation of two established work-

�ows for the identi�cation of TFBSs modules and miRNAs regulating key genes of

diseases. Moreover, the implemented mSVM-RFE method was applied on di�erent

microarray datasets with evaluating the function by ROC curve.

4.1.1 Identi�cation of TFBS modules in AD key genes and coregulated genes

The two di�erent approaches of the work�ow start at di�erent points, but in the end

similar modules are obtained. The �rst approach mainly consists of in silico promoter

analyses, which is a commonly accepted procedure to predict TFBSs as well as TFBSs

modules, with additional veri�cation by di�erentially expressed AD-related genes

(Figure 3.1). Whereas the second part of the work�ow from the beginning focuses

on experimental AD datasets to �nd coregulated genes di�erentially expressed and

regulated by the same TFBSs modules.

Sequence conservation is highly predictive in identifying functional active sites [Capra

and Singh, 2007]. The hypothesis is that the key genes of AD (beta- and gamma-

secretase) are supposedly coregulated and therefore I suppose, that they have the

same TFBSs in their promoter regions. TFBSs modules regulating key genes of AD

are thought to play a role in AD. These AD key genes are predominantly responsible

for APP cleavage and involved in plaque formation.

The modules obtained from the second approach mostly contain one TFBS, which is

not conserved between human and mouse APP promoter and therefore these modules

could not be found by the �rst approach focussing on conserved TFBSs. The second

approach focusses on experimental results either from AD patients or AD mouse

models analysed by bioinformatical methods (Figure 3.2). The aim is to get all

groups of coregulated genes of the array, which are di�erentially regulated among

the classes control and AD and therefore could play a role in AD. In the end these

coregulated genes are taken and searched for TFBSs modules, which could regulate

these genes. The idea is, that coregulated genes, which show the same expression

pro�le, are regulated by the same mechanisms such as TFBSs modules. Promoter
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sequences of the coregulated genes were searched for the same binding sites of the TFs

of the module. Slightly di�erent modules between the two approaches are obtained,

but in the end, I have two modules in common, which connect the in silico promoter

analysis with the expression data from microarrays of AD.

The in silico promoter analysis focusses on TFBSs modules and not on single TF-

BSs. Although TFBSs can occur almost anywhere in the promoter and do not show

any pattern with respect to location, TFBSs are often grouped together and such

functional modules have been described in many cases such as in Werner [1999]. The

arrangement of TFBSs of a promoter module seems to be much more limited than

it is suggested by the variety and distribution of TFBSs in the promoter sequence

[Werner, 1999]. However, TFBSs modules found in the promoter of genes suggest

functional connection but do not prove it [Gailus-Durner et al., 2001]. The common

regulation of genes from di�erent gene classes can depend on regulatory modules

of TFBSs, which are often conserved regions in the promoter sequences and there-

fore can be identi�ed, while other TFBSs are non conserved between the promoters

[Klingenho� et al., 2002, Werner, 2003]. Therefore, promoter sequence conservation

is considered in the in silico promoter analysis by human and mouse APP as well as

the used software from Genomatix is also based on sequence conservation.

The Genomatix software used for TFBS prediction has several advantages to other

prediction programs. It provides a database of all promoter sequences of various

species and a huge amount of all known TF matrices and TFBS modules for predic-

tion, which are regularly updated. In addition, setting up multiple sequence align-

ment considering conservation and establishing TFBS modules by oneself is easily

embedded in the software. The graphical output of TFBS predictions o�ers a com-

fortable overview of the analysis.

In this study, commercial software has been used as part of the bioinformat-

ics work�ow, but comparable open-source software and databases can be used as

well. VISTA (http://genome.lbl.gov/vista/index.shtml) and JASPAR (http:

//jaspar.genereg.net/) can be used for the analysis of TFBSs. For litera-

ture mining, STRING (EMBL, http://string-db.org/) and EXCERBT (MIPS,

http://tinyurl.com/excerbt/) are available, and for �nding tissue expression or

binding partners of the genes, the GeneCards database (Weizmann Institute of Sci-

ence, http://www.genecards.org/) is one alternative.

4.1.2 Evaluation of mSVM-RFE method

The implemented multivariate mSVM-RFE method was applied on two di�erent

microarray datasets concerning depression and PD. The multivariate method was

compared to univariate p-value computation and evaluated by qPCR results [per-
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sonal communication with Regina Widner (MPI)].

Univariate DJ-1 knockout microarray analysis yields only 12 signi�cantly regulated

genes including DJ-1 and according to the adjusted p-value smaller than 0.35 (sup-

plemental Table A.13). In many cases more signi�cantly di�erential regulated genes

are observed in a microarray experiment. In the case of HR versus LR the compar-

ison of di�erentially expressed SAGE genes with genes determined by mSVM-RFE

occurring in at least 18 gene selections yields nearly twice as much common genes

than compared to the di�erentially expressed genes on the microarray (adjusted p-

value < 0.05). Leading to the �rst statement, that mSVM-RFE is not as strict as

the univariate t-statistics using an adjusted p-value in dividing the genes in unregu-

lated and di�erentially expressed genes. Di�erentially expressed genes not recognized

by the adjusted p-value are detected by mSVM-RFE and not excluded for further

analyses and validations.

For this reason and to consider genetical interactions multivariate analysis by

mSVM-RFE was adopted. MSVM-RFE is not as stringent as t-statistics with sub-

sequent computation of the adjusted p-value considering also interactions between

the genes and might detect interesting genes not considered by the adjusted p-value.

MSVM-RFE restricts the DJ-1 microarray to 40 genes best di�erentially regulated

(frequency = 50) among wildtype and DJ-1 knockout incorporating also the 12 regu-

lated genes with an adjusted p-value < 0.35. This expanded amount of di�erentially

regulated genes is appropriate for further GO analysis and literature mining. In ad-

dition the combination of univariate and multivariate methods as well as additional

gene information help to sort the genes prior to experimental validation. The more

analysis evaluate the gene to be di�erentially regulated in DJ-1 knockout versus

wildtype the more this gene should be validated in the lab.

Due to the validation of genes from the HR versus LR microarray dataset by qPCR

[personal communication with ReginaWidner (MPI)] the mSVM-RFE function could

be evaluated. For dividing genes in possibly di�erentially regulated genes and not-

regulated genes the frequency threshold (frequency of a gene occurring in the gene

selections) of mSVM-RFE is set more stringent to at least 38. This cut-o� point of

38 is chosen, because most of the genes pass with few failures yielding the highest

possible sensitivity and speci�city. The ROC curve (Figure 3.5) identi�es the optimal

cut-o� point, where the false positive rate is lowest (x-axis) and the true positive

rate is highest (y-axis). This leads to a high sensitivity of 87% and a lower speci�city

of 56% of the mSVM-RFE analysis. This is not con�icting, because the higher one

evaluation value, the lower is the second evaluation value [Lalkhen and McCluskey,

2008]. High sensitivity means nearly all di�erentially expressed genes are predicted by

mSVM-RFE being regulated and only few interesting genes are lost. The speci�city
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is lower than the sensitivity, but half of the unregulated genes are correctly rejected

by mSVM-RFE, which recognizes almost 87% of all di�erentially expressed genes.

Concluding, mSVM-RFE recognizes more di�erentially regulated genes by consid-

ering the interactions amongst the gene expression levels than an adjusted p-value

< 0.05, which was calculated by a t-test for the expression levels of each gene sepa-

rately. Therefore, interactions of the genes are considered by multivariate methods

and regulatory molecular networks can be detected by the analysis.

4.1.3 Established work�ow for miRNA target site prediction

Up to date numerous miRNA target site prediction databases are available incorpo-

rating plenty of false positive miRNA target predictions. A speci�c context such as a

particular disease or miRNA expression in certain brain regions is not considered by

these databases. Additionally, conservation is often not enough considered and com-

paring predictions of di�erent databases is hindered by various 3'UTR sequences used

in databases. The database miTALOS represents an interesting approach identifying

pathways regulated by miRNAs as well as considering tissue expression [Kowarsch

et al., 2011]. The work�ow established in this thesis (Figure 3.10) combines speci�c

selection criteria for the identi�cation of miRNAs in�uencing the pathogenesis of AD

by regulating ADAM10.

Instead of looking up miRNA target sites of ADAM10 in the miRNA target site

prediction databases, I predicted the binding sites of human miRNAs to human

ADAM10 3'UTR by the three programs, RNA22, RNAhybrid and miRanda, with

the aim to yield a more accurate miRNA target site prediction. The same 3'UTR

sequence was used for all three prediction programs to compare the results. Due to

the fact that the three prediction programs focus on di�erent aspects for miRNA

target site prediction (pattern-based search, seed matching, conservation, energy or

structure) various properties of the target sequence as well as of the miRNA binding

behaviour are covered (section 2.4.2).

To consider di�erent aspects of the distinct prediction algorithms at least two pro-

grams should predict a miRNA binding site. Each program focusses on a speci�c

characteristic of miRNA binding site and thus neglects other important aspects of

the binding site considered by another di�erent miRNA prediction program. Be-

sides, the miRNA should be expressed in the tissue brain for regulating ADAM10

with regard to AD. Moreover, miRNAs showing di�erential expression levels in brain

regions a�ected by AD such as hippocampus, cerebellum and medial frontal gyrus

strengthen the assumption that they play a role in the pathogenesis of AD.

An additional con�rmation of a miRNA being involved in AD is a binding site

to a target gene, which is involved in AD, described in the literature. Thus the

74



Chapter 4 Discussion

miRNA might regulate also other AD key genes possibly leading to a coregulation

of the disease genes by the miRNA. Furthermore, the miRNA prediction is strength-

ened by the corresponding mouse miRNA binding to the mouse ADAM10 3'UTR

sequence predicted by at least two of the three miRNA prediction programs RNA22,

RNAhybrid and miRanda. To con�rm the predicted miRNAs also other webtools

with precompiled results were considered by searching for miRNAs predicted to bind

to ADAM10.

Consideration of conservation across species (Figure 3.11), including those ob-

viously not developing AD, was chosen as a �lter criterion because a correlation

between miRNA conservation and disease susceptibility has in general been sug-

gested by Lu et al. [2008]. The selection procedure therefore excludes non-conserved

miRNA binding sites, which also might be relevant for development of the disease

but are not lost by being included in the list of 52 miRNAs according to the speci�c

selection criteria except conservation. In regard to AD being a human disease, future

analysis of non-conserved miRNAs might also represent a valuable approach which

I did not follow in the context of this thesis.

4.1.4 Prediction of miRNA target genes and their relation to AD

To con�rm the relationship of the three miRNAs (miR-103, miR-107 and miR-1306)

to AD I searched for target gene predictions of these miRNAs in the six databases

miRBase, microRNA, PicTar, PITA, RNA22, as well as TargetScan (Figure 3.13).

The database Tarbase has a special position, because in contrast to the other six

databases Tarbase contains experimentally supported miRNA targets and not in-

silico predicted miRNA binding sites. In contrast to the other six databases Tarbase

doesn't contain false positive miRNA target sites. Therefore, target genes of Tarbase

are directly included in the output, while target genes of the other six databases have

to be in common to at least four databases to be incorporated in the output list.

As I focus on miRNAs playing a role in AD, I used the AlzGene database to investi-

gate which target genes of the miRNAs have a possible genetic association with AD.

The number of miRNA target genes for each miRNA listed in the AlzGene database

was determined. The p-value shows that 12 (p-value = 0.0065) and 14 (p-value =

0.0009) are signi�cant high numbers of overlapping genes between the target genes

of miR-103 and miR-107 and the AlzGene database, respectively (Figure 3.14). The

signi�cant high amount of AD-related target genes suggests that miR-103 and miR-

107 might play a role in AD. It is not remarkable that the p-value for the overlap

of miR-1306 (p-value = 0.1904) with the AlzGene database is not signi�cant as the

restriction to four out of six databases was not possible, which consequentially leads
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to the inclusion of a lot of false positive target genes in the 890 target genes of

miR-1306.

4.1.5 GWAS

The publicly available databases AlzGene and PDGene are regularly updated ag-

gregations of all published genetic association studies including GWAS performed

on AD and PD phenotypes, respectively. These databases contain all considerable

genetic association studies and key genes of AD and PD.

Concerning the SNPs the advantages and disadvantages of GWAS are discussed in

several publications. Variants in a population are grouped into two forms: rare vari-

ants of large e�ect and common variants of small e�ect. A variant can be linked to

di�erent characteristics and mutations are associated to the same disease or trait in

di�erent populations [Visscher et al., 2012]. Genotype-by-environment interactions

and epigenetic in�uences can not be discovered by GWAS as well as heritability is

not incorporated. GWAS detected less variants of moderate e�ect, but thousands of

common variants, which comprise nearly all the genetic variance in GWASs [Gibson,

2012].
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4.2 Regulatory network in Alzheimer's disease

This section focusses on AD pathogenesis particularly on coregulated genes related

to AD and regulated by TFBSs modules. A hypothetical regulatory network is

established. In addition, miR-103, miR-107 and miR-1306 were identi�ed to regulate

ADAM10 expression.

4.2.1 TFBSs modules and their relation to AD

Three signi�cant modules CTCF-EGRF-SP1F, CTCF-SP1F-ZBPF and KLFS-

SP1F-ZBPF were obtained from the combination of in-silico promoter analysis with

statistical analysis of microarrays of patients studies and mouse models (section 3.1).

First, additional information about the TFs incorporated in the TFBSs modules was

collected from TRANSPATH database. Several TFs show a link to AD either by

expression in appropriate tissues or involvement in AD related pathways.

Several TFs of EGRF, SP1F, ZBPF and KLFS families show a mRNA or protein

expression in brain at which mRNA of KLF3 and KLF7 are expressed in midbrain

and hippocampus, respectively. An occurrence of EGR1, EGR2, KLF10 and KLF6

protein is seen in hippocampus, cerebral cortex, cerebellum and hippocampus, re-

spectively. These brain regions are associated to AD. In AD patients gray matter

is reduced in the midbrain [Whitwell et al., 2007] as well as plaques and tangles are

observed in the hippocampus [Rapp et al., 2006]. Increased amyloid beta-peptides

and atrophy as well as neuronal loss occur in cerebral cortex and cerebellum, re-

spectively [Schmechel et al., 1993, Sjöbeck and Englund, 2001]. This strengthens

the assumption, that the TFBSs and as a consequence the TFBSs modules play a

regulatory function in AD pathogenesis.

The TFs CTCF and KLF1 are associated to the chromatin remodeling process.

Chromatin remodeling, which is a dynamic and highly regulated process, is linked

to AD and memory function. Alterations in chromatin structure occur in many

neurodegenerative diseases like AD and the inhibition of histone deacetylases could

be considered as a therapeutic treatment for AD patients with memory impairment

[Lee and Ryu, 2010].

Fraser et al. [2010] showed an overall reduction of fatty acids in AD especially for

stearic acids in frontal and temporal cortex as well as arachidonic acids in the tem-

poral cortex. An additional intake of n-3 (omega-3) fatty acids and consumption

of �sh once a week possibly reduces the risk of su�ering from AD [Morris et al.,

2003]. TRANSPATH database reveals the TF SP1 to be involved in the fatty acid

biosynthetic process.

Lipids are involved in the regulation of APP processing. A possibility for pre-
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venting AD or therapeutic treatment of neurodegeneration could be to target lipid

metabolism for example by lowering cholesterol levels [Grösgen et al., 2010]. The TF

ZNF202 is part of the lipid metabolism.

The AD key gene PS1 (γ-secretase) is required for neural development especially for

the decision between postmitotic neurons and neural progenitor cells. The absence of

PS1 causes premature di�erentiation of neural progenitor cells [Handler et al., 2000].

In addition to PS1 also the TF SP3 incorporated in the TF-family SP1F regulates

neuron di�erentiation.

MAPK and Wnt receptor pathway, which incorporate the TF KLF5, play a role in

AD. An activation of MAPK pathways can be observed in vulnerable neurons of

AD patients by regulating cellular processes, which are a�ected in AD [Zhu et al.,

2002]. Wnt signaling pathway plays an important role in brain development and a

damage in the Wnt pathway leads to the onset and development of AD [De Ferrari

and Inestrosa, 2000].

Furthermore, brain development and especially environmental in�uences during this

process are linked to AD by prede�ning APP expression and regulation in older

brains. An exposure to plumb during brain development leads to a change in APP

expression and this may in�uence the amyloidogenesis later in life [Basha et al.,

2005]. The TF EGR2 is linked to AD by being involved in the brain development

process.

A response to oxidative stress during development could be the inhibition of DNA

methylation in APP, which leads to an increase of APP and as a consequence also

of Aβ [Zawia et al., 2009]. Several TFs SP1, SP3, SP4 and KLF4 are known to be

involved in the pathway response to stress and possibly in�uence AD via this process.

Learning (EGR1, EGR3, KLF9) and Memory (EGR1, EGR3, SP4) as well as the

nervous system development (KLF7, KLF9) are associated with AD via the APOE

(Apolipoprotein E) receptors (LDL receptor related proteins), which are AD risk

genes. This receptors are required for nervous system development, in�uence the

expression of APP as well as learning and memory by controlling synaptic functions

[Herz, 2009, Herz and Chen, 2006]. This processes participating in the progression

of AD link the three TF families EGRF, SP1F and KLFS with the pathogenesis of

AD.

Additionally, regulations of AD key genes by the transcription factors CTCF,

EGR1, SP1, and ZNF202 as known from the literature con�rm the three modules.

The TF EGR1 is known to upregulate the AD key gene PS2, which has an upstream

promoter P1 and a downstream promoter P2. Neuronal cells show a EGR1 repression

of P1 activity by 50% and P2 is upregulated by direct binding of EGR1 [Renbaum

et al., 2003].
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CTCF binds to APBβ domain, a nuclear factor binding site in proximal APP

promoter, as well as acts as a transcriptional activator in the promoter of APP

[Vostrov and Quitschke, 1997]. APOE is repressed by ZNF202 (ZBPF) according to

TRANSPATH database. The mRNA regulation of APOE and ZNF202 is inverse:

APOE is upregulated while ZNF202 shows reduced expression [Langmann et al.,

2003].

SP1 can regulate both β-secretase genes, BACE1 and BACE2. The overexpression

of SP1 upregulates BACE2 promoter activity and the TF is required for BACE2

transcription [Sun et al., 2005]. The expression of BACE1 is controlled by SP1,

which was also shown in vivo, in addition BACE1 is a downstream target of the TF

SP1 [Christensen et al., 2004].

Additionally, SP1 activates the transcription of PS1 by several BSs upstream and

downstream from the initiation site [Pastorcic and Das, 1999]. Two GC-elements,

which are SP1 (GC-box factor) sites, in the promoter of APP regulate the expression

[Pollwein et al., 1992].

In addition, I found SP1 signi�cantly regulated on the LOAD patients microarrays

(FDR = 3.4× 10−9), which is in agreement with the results of a dysregulation and

upregulation of this transcription factor in AD [Citron et al., 2008, Santpere et al.,

2006]. This strengthens the occurrence of the TF SP1F in all three modules possibly

regulating AD related genes.

Taken together, all TF families of the modules are linked to AD. The TFs are

either expressed in the appropriate brain regions, involved in pathways playing a

role in AD or regulate AD key genes as known from literature.

Coregulated genes in AD

Literature mining revealed known relations between the coregulated target genes of

the TFBSs modules and AD con�rming the modules CTCF-EGRF-SP1F, CTCF-

SP1F-ZBPF and KLFS-SP1F-ZBPF. Furthermore, several target genes and their

linkage to AD are discussed to strengthen the signi�cance of the three TFBSs mod-

ules.

GNAS is predicted to be the target gene of the �rst module CTCF-EGRF-SP1F

(section 3.1.3) and involved in calcium signaling and long-term depression. An up-

regulation of calcium signaling leads to amyloid metabolism with neuronal cell apop-

tosis [Berridge, 2010]. Another target gene Gsk3b regulates the APP accumulation

after Aβ formation [Takashima et al., 1995]. An over-representation of coregulated

genes incorporating also Gsk3b in the AD as well as Wnt pathway was revealed.

Additionally, the TF KLF3 (BKLF), a member of the KLFS TF family, which is

incorporated in the third module KLFS-SP1F-ZBPF, binds the AD patients target
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gene CTBP2 in vivo [Turner et al., 2003], which is also involved in the Wnt signaling

pathway. Wnt pathway has been found to prevent neurodegenerative diseases like

AD by inhibiting Aβ-dependent cytotoxic e�ects [Cerpa et al., 2009].

CTBP2 (target gene of AD patients dataset) a target gene of the module CTCF-

SP1F-ZBPF (section 3.1.4) and KLFS-SP1F-ZBPF (section 3.1.5) binds ZNF219, a

member of the ZBPF TF family, in vitro [Hildebrand and Soriano, 2002]. The target

gene Cdc42 of the module CTCF-SP1F-ZBPF (section 3.1.4) seems also be involved

in AD by regulating synapse formation in neurons and Cdc42-GTPase activity is

increased in neurons stimulated with Aβ1−42. Additionally, Cdc42 is upregulated

in neuronal populations of AD brains in comparison to controls [Mendoza-Naranjo

et al., 2007]. In the MAPK pathway the coregulated genes of the double trans-

genic mice dataset are signi�cantly enriched incorporating the target genes Cdc42,

Map2k4, Mapk1, Mapk9, and Ppm1a. Some studies indicate that Mapk9 possibly

interacts with SP1 and the JNK pathway targets SP1 [Chuang et al., 2008, Higuchi

et al., 2004].

Overlapping target genes of the module between di�erent microarray studies pro-

vide more evidence for the functionality of the module. Additional text mining

revealed a strong connection of seven genes to AD and neurodegeneration.

The target gene EIF5 (eukaryotic translation initiation factor 5) (section 3.1.3) is

not mentioned in AlzGene database, but in the EIF2 regulation pathway, it is down-

stream from its family member EIF2AK2. Another member of the gene family,

EIF2alpha, is also linked to AD. The phosphorylation of EIF2alpha leads to termi-

nation of global protein translation and induces apoptosis. In addition, degenerative

neurons in AD brain show high immunoreactivity for phosphorylated EIF2alpha

concluding that phosphorylation of EIF2alpha is associated with the degeneration of

neurons in AD [Chang et al., 2002]. Additionally, GSK3B, which is involved in AD

pathway, EIF5, EIF2AK2, and EIF2alpha play a role in the regulation of EIF2 ac-

cording to BioCarta (http://www.biocarta.com/pathfiles/h_eif2Pathway.asp).

Thus, the possibility arises, that EIF5 is also involved in AD and neurodegeneration.

Another overlapping target gene VAPA, a vesicle-associated membrane protein, (sec-

tion 3.1.3) interacts with its family member VAPB through the transmembrane do-

main [Hamamoto et al., 2005], and both are reduced in human ALS patients, an-

other neurodegenerative disease. Additionally, both genes interact with lipid binding

proteins; especially VAPA is involved in lipid export [Wyles et al., 2002] and neu-

rite outgrowth [Saita et al., 2009]. The mutation VAPB-P56S, which forms stable

aggregates that are continuous with the endoplasmic reticulum (ER) and mitochon-

dria and impairs normal VAP function, may result in abnormal lipid transport and

biosynthesis and induce slow degeneration of neurons [Teuling et al., 2007]. Approx-
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imately 30% of ALS patients with dementia have AD [Hamilton and Bowser, 2004].

A strong connection between VAPA and AD exists via a second neurodegenerative

disease ALS as well as by abnormal lipid processes.

SYP, a synaptic vesicle marker and a common target gene of the module from the

double transgenic mice and LOAD patients dataset (section 3.1.3), was colocalized

with the reactivity of APP and PS1, two key genes of AD. SYP is also localized in

the synaptosomal vesicles, where also an association of N- and C-terminal PS1 frag-

ments and APP was detected [Beher et al., 1999]. Other diseases associated with

SYP are schizophrenia, ALS, and dementia according to TRANSPATH database.

The promoter region of SYP contains four SP1 binding sites located within 100 bp

from the transcription start point [Bargou and Leube, 1991]. An abnormally elevated

SYP level in the frontal cortex and hippocampal molecular layer exists in old mice

lacking BACE1. Studies demonstrate that the absence of BACE1 eliminates plaque

pathology. Additionally, SYP de�cits correlate with levels of soluble Aβ, and the

loss of the associated presynaptic protein SYP is a key pathological feature of AD

[McConlogue et al., 2007]. SYP seems to be involved in several distinct neurode-

generative diseases and has several links to key genes of AD as well as to TFs from

TFBSs modules.

The fourth overlapping gene REEP5 (receptor accessory protein 5) (section 3.1.3)

induces apoptosis according to GO. A common characteristic in the brains of pa-

tients su�ering from neurodegenerative diseases like AD is massive neuronal death

due to apoptosis, and furthermore apoptotic cell death has been found in neurons

and glial cells in AD [Shimohama, 2000]. Several studies have shown the direct e�ect

of REEP5 on shaping ER tubules and propose that this protein is involved in the

stabilization of highly curved ER membrane tubules. The peripheral ER consists of

a network of membrane tubules and in the study by Voeltz et al. [2006] IP3 (inositol

trisphosphate) receptor was a candidate to be involved in ER network formation

as well as rapid Ca2+ e�ux correlating with ER network formation [Voeltz et al.,

2006]. Moreover, there exist indications that ER stress is involved in AD pathogen-

esis [Salminen et al., 2009]. The ER can release stored Ca2+ through ER membrane

receptor channels like IP3, and some �ndings suggest that perturbed ER Ca2+ home-

ostasis contributes to the dysfunction and degeneration of neurons that occur in AD

[Mattson, 2010]. REEP5 plays a role in AD by several ER mechanisms.

ADD3, which overlaps between the target genes of the AD and LOAD patients

dataset (section 3.1.4) and is a common target gene of TFBSs module CTCF-SP1F-

ZBP and KLFS-SP1F-ZBPF (section 3.1.5), plays a role in apoptosis, which leads

to neuronal death in AD. Furthermore it belongs to the adducin family of proteins,

which is involved in postsynaptic changes in the actin cytoskeleton that occur as a
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result of synaptic activation. A study from 2005 suggests that adducin is involved

in setting synaptic strength, as well as synaptic plasticity underlying learning and

memory [Rabenstein et al., 2005, Porro et al., 2010]. Memory loss is the primary and

one of the earliest clinical symptoms of AD, and studies suggest that aging supports

the formation of soluble Aβ assemblies, which implicate negative e�ects on memory

[Ashe, 2001]. ADD3 is possibly a new detected gene involved in AD by in�uencing

synpatic functions leading to learning and memory de�cits.

Genome-wide association studies in AD have detected CLU to be involved in develop-

ing AD by �nding a strong association for an intronic single nucleotide polymorphism

[Guerreiro et al., 2010]. Biologically, CLU seems to be involved in the pathogenesis

of AD by interacting with di�erent molecules like lipids or amyloid proteins [Jones

and Jomary, 2002], but also in brains of AD patients the level of CLU mRNA is sig-

ni�cantly higher than in control brains [Oda et al., 1994]. Furthermore, APP/PS1

transgenic mice showed increased plasma CLU, age-dependent increase in brain CLU,

and amyloid and CLU colocalization in plaques [Thambisetty et al., 2010]. Another

disease associated with CLU is ALS and according to GO, CLU, which has increased

protein levels in frontal cortex and hippocampus in AD [Lidström et al., 1998], is

involved in lipid transporter activity, apoptosis, and neuron development. Addition-

ally, CLU is determined by KLF4 overexpression [Dang et al., 2003] and contains

binding sites for SP1 [Jin and Howe, 1997]. Both TFs are incorporated in the third

module (section 3.1.5) and in combination with the AD-related target gene CLU

verify the importance of the module for AD pathogenesis.

The overlapping target gene NUCKS1 (nuclear casein kinase and cyclin-dependent

kinase substrate 1) (section 3.1.5) is known to be a strongly associated gene to PD

[Satake et al., 2009], another neurodegenerative disease. A study by Wilson et al.

[2003] showed that progression of classical symptoms of PD in old person is asso-

ciated with eight times as likely to develop AD as well. The results of this study

suggest a strong link between progressive motor impairment and the development

of AD. Interestingly, pathologic �ndings like Lewy bodies are similar to PD and de-

mentia, and perhaps there is a connection in how the two diseases progress over time

[Wilson et al., 2003]. Furthermore, NUCKS1 may play a role in cell proliferation

[Grundt et al., 2007]. The proliferation of neural progenitor cells is reduced in mice

transgenic for a mutated form of amyloid precursor protein, transgenic mouse model

of AD, that causes early onset familial AD, and it was shown that Aβ can a�ect the

proliferation of neural progenitor cells [Haughey et al., 2002]. NUCKS1 is involved

in PD and in AD by cell proliferation connecting both neurodegenerative diseases.

Concluding, literature search and mining revealed several interesting target genes

showing a strong connection to AD such as SYP and CLU strengthening the as-
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sumption that the TFBSs module may be part of neurodegenerative processes as

observed in AD. Furthermore, a possible new gene involved in AD, ADD3, was iden-

ti�ed.

Regulatory network in AD

Taken together, all relations of the target genes to the modules, AD key genes and

KEGG pathways as described in 4.2.1 are shown in Figure 3.3. The three modules

composed of TFs, which are mainly expressed in brain and mostly associated with

AD by AD related pathways, are connected to each other by common target genes or

KEGG pathways playing a role in AD. Some target genes have known relations to AD

key genes further verifying the relation of the modules with their target genes to AD.

Promising is the fact that three microarray studies with di�erent platforms, stages

of AD in patients and varying amounts of plaques in an AD mouse model have in the

end two modules in common. Additionally, one module common to two microarray

studies includes the target gene CLU, which is the second most strongly associated

gene to AD according to AlzGene database. Although the datasets are di�erent, I

got in the end signi�cantly regulated target genes of the modules, which are even

the same between datasets of di�erent species and brain tissues, again verifying the

signi�cance of the three modules for AD.

In order to verify the modules the TFBSs target interactions could be validated

by a knockout (or knockdown) of single or combinations of TFs in mice and mea-

suring the expression compared to wildtype mice by qPCR of the best downstream

candidate genes. Another possible experiment would be the screening for SNPs in

the sequences of the candidate genes from postmortem AD patient's DNA.

4.2.2 MicroRNAs predicted to regulate ADAM10

Several miRNAs were predicted to bind to human ADAM10 3'UTR and eleven

miRNAs were selected according to the speci�c selection criteria as described in

section 4.1.3. The most signi�cant miRNA concerning the speci�c selection criteria

is miR-1306, the exclusive miRNA predicted by all three miRNA prediction pro-

grams. The second most signi�cant miRNAs possibly binding to human ADAM10

3'UTR are miR-103 as well as miR-107. Additionally, eight miRNAs with a highly

conserved binding region were predicted, but these eight miRNAs have no indication

to be involved in AD (Table 4.1).

83



Chapter 4 Discussion

miRNA ∅
kcal/mol

Speci�c selection

criteria

tissue Conservation

zebra �sh

1306 -26.85 predicted by 3 programs,

mouse ADAM10

+

107 -24.24 targets BACE1, predicted

by TargetScan, literature

for AD, mouse ADAM10

103 -25.78 predicted by TargetScan,

literature for AD, mouse

ADAM10

hippocampus,

cerebellum

330-5p -27.20 predicted by microRNA,

mouse ADAM10

hippocampus +

432 -22.81 predicted by microRNA cerebellum +

423-5p -22.1 mouse ADAM10 hippocampus,

medial frontal gyrus

671-5p -27.61 mouse ADAM10 +

922 -27.99 predicted by microRNA

503 -25.41 predicted by microRNA,

mouse ADAM10

202 -25.33 predicted by microRNA,

mouse ADAM10

184 -23.33 mouse ADAM10

Table 4.1: List of predicted miRNAs binding to a conserved region of human
ADAM10 3'UTR. The best eleven predicted miRNAs, which bind to a conserved
region of human ADAM10 3'UTR, are shown with the average predicted binding en-
ergy in kcal/mol (column 2). Column 3 describes additional veri�cations of the miR-
NAs from literature, if the miRNA is also predicted to bind to the mouse ADAM10
3'UTR or other prediction programs predicting the miRNA. Column 4 speci�es in
which tissue the miRNA is regulated in AD according to Cogswell et al. [2008] and
the conservation of the binding region in zebra �sh is marked with + in the last
column.

Table 4.1 shows a list of the highest ranking miRNA binding site predictions accord-

ing to the speci�c selection criteria. The three most signi�cant miRNAs 1306, 107

and 103 were selected for further analyses.

MiR-107 and miR-103 are downregulated with age [Noren Hooten et al., 2010] as

well as in AD gray matter [Wang et al., 2011] and repress the translation of co�lin,

an intracellular actin-modulating protein. In brains of a transgenic mouse model

of AD the level of miR-103 and miR-107 is decreased while the co�lin protein level

is increased which results in the formation of rod-like structures [Yao et al., 2010].

Furthermore, miR-107 expression is decreased even in the earliest stages of AD. As
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miR-107 regulates beta-site APP-cleaving enzyme 1 (BACE1) it might be involved in

accelerated disease progression [Wang et al., 2008a]. The downregulation of miR-103

and miR-107 with age could concern a protective e�ect against plaque formation be-

cause reduced levels of these miRNAs would lead to an increased level of the predicted

target ADAM10 and its neuroprotective product sAPPα in brains of AD patients.

Experimental observations of strong inhibition (> 44%) of ADAM10 expression in

the reporter assay upon application of miR-103 and miR-107 would coincide with

such a possible protective in�uence on amyloid pathology (section "Experimental

validation of bioinformatically predicted miRNAs"). According to the publication

from Cogswell et al. [2008] miR-103 is di�erentially expressed in hippocampus and

cerebellum in AD. In addition, the program TargetScan veri�es the same binding

site of miR-103 and miR-107 to human ADAM10.

The most signi�cant miR-1306 is further analysed due to its good conservation to

the far related species zebra �sh (Figure 3.11a) with only one mismatch in the seed

region. It is the only miRNA whose binding site to human ADAM10 is predicted

by all three programs RNA22, RNAhybrid and miRanda, which strengthens the

assumption that this binding site is functionally active. Additionally, as shown in

Figure 3.12 the hypothesis is veri�ed that miR-1306 is associated to AD: Twelve

predicted target genes of miR-1306 are involved in processes and functions playing

a role in AD, the nervous system and other neurodegenerative diseases. MiR-1306

possibly regulates genes like the cholinergic receptor, nicotinic, alpha 4 (CHRNA4),

tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) and mitogen-

activated protein kinase kinase 4 (MAP2K4), which are associated to AD by the

functions frontotemporal dementia, demyelination of neurons and Huntington's dis-

ease, respectively.

The miR-1306 predicted target gene MAP2K4 has been found to be involved in AD

and is putatively regulated by modules of transcription factor binding sites [Augustin

et al., 2011]. Furthermore, miR-1306 is located on chromosome 22 within the second

exon of DiGeorge syndrome critical region gene 8 (DGCR8), which is essential for

miRNA biogenesis by being a subunit of the microprocessor complex [Wang et al.,

2007]. Evers et al. [2006] presents a case of a DiGeorge syndrome patient with the

typical deletion in chromosome band 22q11.2, which contains DGCR8, su�ering from

dementia.

Additionally, a putative miR-1306 target gene common in four out of six databases,

RXRA (retinoid X receptor, alpha) (supplemental Table A.16), is mentioned in Alz-

Gene database. Seven SNPs were identi�ed in RXRA acting as risk factor for AD

[Kölsch et al., 2009]. Furthermore, ADAM10 is regulated by retinoic acid, at which

the alpha-isotype of RAR massively participates in�uencing ADAM10 gene expres-
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sion [Tippmann et al., 2009].

Concluding, several strong associations of the three most signi�cant miRNAs to AD

pathogenesis were already found in literature.

Molecular functions and processes of predicted miRNA target genes

Gene Ontology analysis (Table 3.11-3.13) represents an overview of the molecular

functions and processes with an enrichment of the predicted target genes of miR-103,

miR-107 and miR-1306. The molecular function 'calcium ion binding' is signi�cant

in all three miRNA analyses and is considered to be involved in AD (Table 3.11-

3.13). Calcium ions are found in an elevated level in tangle-bearing neurons of AD

patients compared to healthier neurons [Nixon et al., 1994]. Further, an abnormal

increase of intracellular Calcium ion levels in neurites associated with Aβ deposits

was demonstrated in a mouse model of AD [Mattson, 2010].

An additional evidence is given by the signi�cant enrichment of genes, which are

involved in biological processes 'learning', 'brain development' and 'nervous sys-

tem development' (Table 3.11-3.13), that the three miRNAs are involved in AD.

Mouse models with an overexpression of ADAM10 showed a positive e�ect of the α-

secretase on learning and memory and mice with a dominant-negative mutant form

of ADAM10 had learning de�ciencies [Postina et al., 2004]. Environmental in�uences

occurring during brain development prede�ne the expression and regulation of APP.

As a consequence levels of APP and Aβ are increased causing AD later in life [Zawia

et al., 2009]. The Aβ fragments forming plaques are of varying length depending

on the site of cleavage. The Aβ42 fragment is a ligand for the cellular prion protein

(PRNP), which is essential for the development of the nervous system [Kim and Tsai,

2009].

Genes linked to miRNAs and their relation to AD

Further evidence for the association of miR-103 and miR-107 to AD was provided

by the established network of genes being involved in AD pathogenesis and directly

interacting with miR-103 as well as miR-107. This network (Figure 3.15) allowed

con�rming the relation of the two miRNAs to AD by genes linked to both miRNAs

and AD.

The genes dicer 1, ribonuclease type III (Dicer1) and TAR (HIV-1) RNA binding

protein 2 (TARBP2) targeted by miRNA-103 and miRNA-107 are components of

the miRNA-processing complex [Boominathan, 2010]. Besides those two genes, a

link between the two miRNAs is provided by linoleic acid [Parra et al., 2010], which

probably a�ects AD by increasing the expression of PS1 and Aβ [Liu et al., 2004].

Another target gene in the network, Granulin (GRN), is regulated by miR-107 [Wang

86



Chapter 4 Discussion

et al., 2010] which regulates BACE1 as well [Wang et al., 2008a]. Therefore both

genes might be involved in neurodegenerative diseases especially AD. The tumor

suppressors TP53 as well as TP73 appear to regulate the processing of miR-107

[Boominathan, 2010]. MiR-103 increases the expression level of fatty acid binding

protein 4 (FABP4) while its expression is reduced by TNF [Xie et al., 2009]. All six

genes linked to the miRNAs 103 and 107 GRN, BACE1, TP53, TP73, FABP4 and

TNF are included in the AlzGene database, hence putatively playing a role in AD.

The four remaining target genes cyclin-dependent kinase 2 (CDK2), cAMP respon-

sive element binding protein 1 (CREB1), nuclear factor I/A (NFIA) and vascular

endothelial growth factor A (VEGFA) of the network are mentioned in literature

to be involved directly or in processes developing AD. MiR-103 directly binds and

represses CDK2 and CREB1 through 3'UTR binding [Liao and Lönnerdal, 2010].

CDK2 is a key regulator in neuronal di�erentiation with the downregulation of CDK2

as fundamental event [Dobashi et al., 1995] and neuronal di�erentiation is regulated

by PS1, a major key gene of AD [Wines-Samuelson et al., 2005]. The transcription

factor CREB1 is involved in learning and memory. A direct involvement in AD is

seen in some mouse models, where its activity is impaired [Puzzo et al., 2005].

NFIA is negatively regulated by miR-107 [Garzon et al., 2007] and plays an im-

portant role in the formation of the corpus callosum in the developing brain. The

disruption of NFIA results in agenesis of the corpus callosum [das Neves et al., 1999],

whereas the size of the corpus callosum is signi�cantly reduced in AD patients [Teipel

et al., 2002]. The expression of the hypoxia-regulated gene VEGFA is decreased by

miR-107 [Yamakuchi et al., 2010]. Additionally, it is known, that SNPs within the

VEGFA promoter region are associated with increased risk for AD, by reducing the

neuroprotective e�ect of VEGFA [Del Bo et al., 2005].

These �ndings of the literature mining and the involvement in AlzGene database

con�rm the biological role of the genes in neurodegenerative processes especially in

AD and hence the involvement of miR-103 and miR-107 in AD is veri�ed.

Experimental validation of bioinformatically predicted miRNAs

To demonstrate that the selected miRNAs 1306, 103 and 107 directly regulate

ADAM10 expression by interaction with the 3'UTR of the human gene, validation

experiments were performed (Figure 3.16) [Augustin et al., 2012]. Mir-122 has been

identi�ed and validated as an important regulator of ADAM10 in hepatocellular car-

cinoma by an experimental approach [Bai et al., 2009] and therefore served as positive

control for the validation experiments. The reduction by miR-122 is even higher than

the one observed in the initial publication from Bai et al. [2009] but might be due to

the di�erent reporter enzymes or cell lines used. The selected miRNAs 1306, 103 and
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107 reduced the luminescent signal to 72%, 55% and 48%, respectively, and the pos-

itive control miR-122 showed a similar reduction to 57%. These experimental results

suggest an in�uence of miR-103, miR-107 and miR-1306 on ADAM10 expression.

Nevertheless, the biological impact of either miRNA has to be elucidated further, e.g.

by mRNA and protein measurements. Assessing the e�ect of the selected miRNAs

on pathological features in AD mouse models would also help to understand their

distinct role in pathogenesis. However, this experiment shows that the computa-

tional work�ow developed in this work (section 4.1.3) consisting of miRNA binding

site prediction programs and the ranking of the results by speci�c selection criteria

is a suitable tool for the identi�cation of miRNAs in�uencing key genes of diseases

such as AD.
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4.3 Regulatory network in Parkinson's disease

This part of the discussion concentrates on PD pathogenesis especially on genes

related to PD and their regulation by TFBSs as well as their relation to DJ-1.

Autosomal dominant (MAPT, SNCA, OPA1) and autosomal recessive (Parkin, DJ-

1) PD genes are analysed as well as genes of AMP-activated protein kinase. Finally,

the NFKB pathway and its relation to PD and PD related genes is discussed.

4.3.1 CREB/ATF binding site in Parkin promoter

The conservation of the CREB/ATF binding site in the Parkin promoter region

among the species human, mouse, cow and horse (Figure 3.6) supports the possi-

bility, that this site might be functional relevant [Cohen et al., 2006, Zhang and

Gerstein, 2003]. An additional binding site located in the �rst intron of Parkin

might also play a role in the regulation of Parkin. Bouman et al. [2011] validated the

binding of ATF4 to the conserved binding site in the Parkin promoter. Endoplas-

mic reticulum stress causes an upregulation of ATF4 and Parkin. Whereas the TF

c-Jun is binding to the same TF site in the Parkin promoter, but inhibiting Parkin

expression. This leads to a competition of both TFs for one binding site in Parkin

promoter. Concluding, the upregulation of Parkin by ATF4 after mitochondrial or

ER stress inhibits stress-induced cell death [Bouman et al., 2011] and thus possibly

prevents the loss of dopaminergic neurons and the pathogenesis of PD.

4.3.2 SNPs matching TFBSs in MAPT and SNCA regulatory region

The focus of this analysis lies on the identi�cation of functionally active TFBSs with

the help of PD related SNPs falling in the core-sequence of the BS or lying in a

conserved BS (Figure 3.8). Conservation of a BS suggests a functional active TFBS

and a SNP located in the core-sequence of a TFBS has a powerful e�ect on the

binding site [Klingenho� et al., 2002, Werner, 2003]. Hong et al. [2011] observed

several SNPs located in TFBSs of genes e.g. in AKAP13 (a kinase (PRKA) anchor

protein 13) a regulatory SNP is associated with blood pressure and matches a GATA3

(GATA binding protein 3) TFBS. SNPs located in these binding sites hit a potentially

functional TFBS and the change of only one nucleotide in especially the core-sequence

leads to deactivation or modi�cation of the binding site. Thus, TFs can no more bind

or other TFs bind to the site possibly leading to a misregulation of the gene.

The detected TFBSs (Figure 3.8) possibly regulating MAPT and SNCA rely on

SNPs located in the BS. There is the hypothesis that both autosomal dominant

genes, MAPT and SNCA, are commonly regulated for example by TFBSs, which

are in common for both genes such as the detected TFs DEAF, ETSF and KLFS
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(section 3.3.3). The TF Elk-1 (ETS domain-containing protein) belonging to the

ETSF family interacts with SNCA by forming a complex. Additionally, both genes

bind to the MAP kinase ERK-2/MAPK1 [Iwata et al., 2001]. ETSF is predicted to

bind to both MAPT and SNCA.

YY1F predicted to bind to MAPT by Genomatix (section 3.3.3) is related to PD.

Arawaka et al. [2006] already reported that YY1 belonging to the YY1F family

regulates the PD-related gene G-protein-coupled receptor kinase 5 (GRK5). GRK5

is accumulated in Lewy Bodies and phosphorylates SNCA possibly in�uencing the

development of PD [Arawaka et al., 2006].

Finally, the detected TFBSs supposedly in�uencing the expression of MAPT and

SNCA seem to be more probably to have an involvement on PD like other TFBSs

due to PD-related SNPs located in TFBSs.

4.3.3 Common TFBSs in PRKAA1, PRKAA2 and PRKAG1

The kinases PRKAA1, PRKAA2 and PRKAG1 belonging to the AMP-activated

protein kinase family are possibly regulated by similar TFs at which the AMPK

alpha genes (PRKAA1 and PRKAA2) are supposed to be regulated by the same

TFs. Furthermore PRKAA2 is already listed in PDGene database being associated

to PD.

The initial restriction of the TFs to those being involved in cellular or oxidative

stress, metabolic and bioenergetic incorporating biosynthetic pathways reduces the

search space in order to get functionally TFs in the right context. All three genes

are supposed to be involved in stress, metabolic and biosynthetic pathways in the

context of PD. AMPK is activated by metabolic stress and regulates energy balance

in organisms by altering cellular metabolism in order to produce ATP. It seems to be

an optimal therapeutic target for several metabolic diseases due to its involvement in

essential cellular mechanisms [Ronnett et al., 2009]. Furthermore, AMPK is activated

in PD and seems to increase cell viability in PD and prevents cell death [Choi et al.,

2010].

ETSF, common predicted to all three genes (Figure 3.9), is known to form a complex

with the PD-related gene SNCA [Iwata et al., 2001] and the conservation strengthens

the assumption that TFs from ETSF family are functionally active in regulating

AMPK subunits. The strongest conserved TF YY1F in the genes of the AMPK alpha

subunit (Table 3.9, 3.10) was already described in section 4.3.2 to be involved in PD

by regulating the PD-related gene GRK5 [Arawaka et al., 2006]. YY1 incorporated

in the YY1F family is expressed in adult rodent brain especially in the hippocampus

as well as in neurons [Rylski et al., 2008]. Beside, both TFs have predicted binding

sites in MAPT and SNCA (section 4.3.2). NRF1, which is in common predicted
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for PRKAA1 and PRKAA2, is downregulated in PD substantia nigra and striatum

[Shin et al., 2011]. Additionally, NRF1 regulates the mitochondrial activity, while

dysfunction of mitochondria plays a central role in the pathogenesis of PD [Piao

et al., 2012].

4.3.4 PD related genes identi�ed in a DJ-1 knockout mouse model

Microglia from DJ-1 knockout and wildtype mouse model was stimulated with LPS

to study the role of DJ-1 under neuroin�ammation conditions in the etiopathology

of PD [personal communication Ulrich Hafen (IDG, HMGU)]. Systemic LPS causes

chronic neuroin�ammation and progressive neurodegeneration by loss of dopaminer-

gic neurons like observed in PD [Qin et al., 2007]. LPS induces microglial activation

and microglial activation plays a key role in the initiation and progression of PD [Liu

and Bing, 2011].

Literature mining reveals a great network of indirect interactions between signif-

icantly regulated genes on the microarray dataset and DJ-1 (section 3.2.2). This

network indicates, that the genes di�erentially expressed between wildtype and DJ-

1 knockout mice are in�uenced by DJ-1. Further GO enrichment analysis of the

signi�cantly expressed genes (Table 3.5) reveals several GO terms associated to PD

e.g. 'response to stress'. This strengthens the assumption, that these di�erentially

expressed genes caused by the DJ-1 knockout are involved in PD pathogenesis. The

GO terms comprise 'cell death', 'metal ion binding', 'in�ammatory response', 'ag-

ing', 'citrate cycle', 'microtubule' etc. and their relation to PD is described in the

following.

Several signi�cant expressed genes identi�ed by mSVM-RFE in all gene selections

are linked to GO terms related to PD (Table 3.5). According to the microarray

dataset these genes change their expression level after knocking out DJ-1 result-

ing in processes in�uencing PD as well as neurodegeneration. Baulac et al. [2009]

shows that oxidative stress, which can cause changes in the mechanisms of cellular

signaling, leads to an upregulation of DJ-1 in a morpholino-based zebra�sh model,

which shows responsiveness of DJ-1 to cellular stress. Additionally, DJ-1 expression

is also increased in AD brains [Baulac et al., 2009]. Moreover, mutations of DJ-1

cause cell death induced by oxidative stress, which is characteristic for PD [Taira

et al., 2004]. Besides, metal ions are incorporated in the oxidative stress process and

were already discussed for drug targets treating neurodegeneration [Gaeta and Hider,

2005]. Several publications report an in�uence of interleukin-1 mutations in distinct

populations on PD. In Taiwan population a polymorphism in interleukin-1α is as-

sociated to late-onset sporadic PD [Wu et al., 2007]. Whereas in Turkish patients a

mutation in interleukin-1β is linked to sporadic PD [Arman et al., 2010]. A Finnish
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population shows once again an in�uence of the interleukin-1β polymorphism on PD

[Mattila et al., 2002]. Vesicle-mediated transport seems also to be involved in PD.

The type of transport by synaptic vesicles is altered in neurodegeneration and may

be involved in PD pathogenesis [Esposito et al., 2011].

Besides, all NFKB target genes identi�ed by mSVM-RFE method were analysed

for enrichment in GO terms playing a role in PD and neurodegeneration (Table 3.6).

In�ammatory response is linked to the LPS stimulation as a consequence and funda-

mental process in PD brains. Chronic in�ammation is associated to various neurode-

generative diseases like AD and PD. Moreover, microglia is involved in in�ammation

by phagocytosing damaged cells and also intact cells in the neighbourhood leading

to the degeneration of dopaminergic neurons [Kim and Joh, 2006]. Apoptosis was

already very early discussed to be a consequence and not a cause of in�ammation

leading to the resolution of in�ammation [Haanen and Vermes, 1995]. Collier et al.

[2011] describes another factor aging to be the major risk of PD. The same mech-

anisms in the cell can be observed during aging compared to dopaminergic neuron

loss in PD. Furthermore they suggest that aging promotes a state prior to PD and

additional genetic as well as environmental parameters increase neuronal cell death

in PD compared to normal aging [Collier et al., 2011]. The GO term 'learning and

memory' is a typical characteristic of AD, but in PD patients the risk increases to

develop AD as well [Wilson et al., 2003], which was already described in section 4.2.1.

After identifying the signi�cantly expressed genes on the microarray dataset these

genes were grouped into groups of coregulated genes possibly regulated by the same

mechanisms or involved in the same biological processes or molecular functions.

Hence KEGG and GO analysis of the coregulated genes was performed to search

for common pathways, functions as well as cellular components.

One interesting cluster of coregulated genes with enrichment in neurodegenerative

KEGG pathways and 'citrate cycle', 'cell cycle' and 'oxidative phosphorylation' was

established (Table 3.7). The study of Folch et al. [2011] describes patients su�ering

from neurodegenerative diseases, which show an upregulation of cell cycle proteins

in the brain. Cell cycle is involved in cell death by increasing the expression of E2F1

(E2F transcription factor 1), which might cause neuronal apoptosis [Folch et al.,

2011]. Moreover, abnormal cell cycle processes were observed in dopaminergic neu-

rons in PD, which might be a therapeutic treatment target [Höglinger et al., 2007].

In addition, GO analysis reveals several interesting GO terms with an enrichment

of coregulated genes incorporating 'microtubule' and 'mitochondria' as well as 'cell

cycle' (Table 3.8). The PD-related gene Parkin in�uences microtubule stabilization

leading to a protection of dopaminergic neurons [Feng, 2006] and Lrrk2 is also inter-

acting with microtubules by PD mutations enhancing Lrrk2-microtubule association
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[Kett et al., 2012]. Lrrk2 is involved in PD and close associated with the cytoskele-

ton including microtubules [Parisiadou and Cai, 2010]. Due to this enrichment of

coregulated genes in microtubule associated GO terms (Table 3.8) I would suggest

DJ-1 also to be involved in microtubule stabilization.

The coregulated genes of this interesting cluster were also overrepresented in the

GO term 'magnesium ion binding' (Table 3.8). Hashimoto et al. [2008] showed in

a rat PD model that magnesium stops the decline of dopaminergic neurons in the

substantia nigra caused by a toxic substance and implicates a positive e�ect on the

length of neurites. Possibly, magnesium prevents the degeneration of dopaminergic

neurons [Hashimoto et al., 2008].

Signi�cantly regulated genes of the DJ-1 knockout microarray have still to be val-

idated in the lab, but the above described associations of the gene functions to PD

help to decide which genes to validate in detail. In the end, I suggest several genes

as candidates for further validations as described in the following with decreasing

signi�cance. The genes are ordered according to speci�c selection criteria.

Two genes worthwhile for further analysis are Mthfr and Hnmt: both genes have an

adjusted p-value below 0.35 (supplemental Table A.13) and occur in all mSVM-RFE

gene selections. They are linked to DJ-1 by indirect interactions as well as incor-

Figure 4.1: Expression values of Mthfr and Hnmt on microarray. The blue and
red line show mean and standard error of the mean in the case of LPS stimulation
and control treatment, respectively. The x-axis describes knockout (KO) as well as
wildtype (WT) mice and the y-axis shows the values of expression.

porated in PDGene database. Mthfr is regulated by Tnfrsf1a (tumor necrosis factor

receptor superfamily, member 1A) and Hnmt polymorphism is already associated
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with PD [Palada et al., 2012].

Hnmt is required for degradation of histamine, which causes in�ammatory processes

leading to dopaminergic degeneration [Haas et al., 2008]. Accordingly, the Hnmt

expression of wildtype mice not stimulated with LPS is signi�cantly increased com-

pared to knockout mice (Figure 4.1) leading to the assumption that the level of

histamine is decreased and as a consequence in�ammation and loss of dopaminergic

neurons is prevented under wildtype conditions.

Mthfr, methylenetetrahydrofolate reductase, expression is also signi�cantly increased

in wildtype mice stimulated with LPS (Figure 4.1). A SNP detected in Mthfr was

observed to increase the levels of homocysteine as well as to be responsible for PD

pathogenesis [Alatab et al., 2011]. An elevated level of homocysteine leads to ox-

idative stress and mitochondrial dysfunction as well as neuronal degeneration such

as in PD [Duan et al., 2002]. This strengthens the hypothesis that increased (wild-

type mice) and decreased (knockout mice) Mthfr expression implicates decreased and

increased homocysteine levels, respectively. Whereas high levels of homocysteine re-

sults in PD.

The next gene Plod1 is also signi�cantly regulated according to adjusted p-value

(supplemental Table A.13) and mSVM-RFE as well as interacts indirectly with DJ-

1. In addition, it forms a complex with DJ-1 and AR (Androgen receptor) [Tillman,

2007].

Further genes showing the same signi�cances like Plod1, but which do not have

known relationship to PD, are Acot7, Dhrs3, Ubiad1, Clstn1 and Rere. Ankrd33b

(ankyrin repeat domain 33B) and Rab6b (ras-related protein Rab-6B) are signi�-

cantly expressed according to mSVM-RFE and the adjusted p-value (supplemental

Table A.13). Additionally, several NFKB target genes from the mSVM-RFE output

are Ccnd2, S100a4, Ass1, Miip, Fn1, Fos and Serpine1, which could be validated by

qRT-PCR as well as in-situ hybridization.

4.3.5 NFKB pathway related to PD

In mitochondria of PD patients an increased NFKB activity is observed and the

activation of NFKB supports cell survival and performs antiapoptotic, which may

lead to a protection of dopaminergic neurons [Cassarino et al., 2000]. Furthermore,

it was shown that the PD-related gene Parkin activates signaling by NFKB pathway,

which leads to neuroprotection. Hence a disruption in this signaling pathway may

lead to the pathogenesis of PD and thus would be a therapeutic treatment target of

PD [Henn et al., 2007].

The NFKB pathway is known to be associated to PD. Thereby genes signi�cantly

regulated in the DJ-1 knockout microarray were searched for NFKB target genes
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(section 3.2.2), possibly also involved in PD. Several signi�cant genes identi�ed by

mSVM-RFE are NFKB target genes such as Ccnd2, S100a4, Ass1, Miip, Fn1, Fos

and Serpine1 and further GO analysis shows association of these genes to PD (Table

3.6) suggesting NFKB pathway to be in�uenced by the DJ-1 knockout.

DJ-1 knockout and wildtype probes were treated with LPS for 6 hours. This fact

might explain the signi�cant enrichment of the NFKB target genes derived from the

mSVM-RFE analysis in the GO term 'response to lipopolysaccharide' (3% of genes

from this category). There have been established already a lot of in vivo and vitro

LPS PD models, because LPS causes in�ammatory dopaminergic neurodegeneration

[Dutta et al., 2008].

Conserved NFKB binding sites were predicted by Genomatix in the autosomal

dominant PD gene OPA1 (section 3.3.2). OPA1 regulates the mitochondrial function

and mitochondrial dysfunction is associated with PD [Winklhofer and Haass, 2010].

The conservation of four NFKB binding sites in OPA1 promoter (Figure 3.7) support

the possibility, that these sites might be functional relevant [Cohen et al., 2006].

Müller-Rischart et al. [2013] has shown that NFKB regulates OPA1. The association

of OPA1 and NFKB and the involvement of OPA1 in PD was examined more closely

by Müller-Rischart et al. [2013]

NFKB binds to the PD-related gene OPA1 in�uencing PD pathogenesis. Addi-

tionally, several signi�cantly regulated genes in the DJ-1 knockout mouse model are

also NFKB target genes verifying the involvement of these genes in the pathogenesis

of PD.

4.3.6 Regulatory network of PD genes as well as predicted and validated

TFBSs

As a conclusion from the results of section 4.3 a hypothetical network of all PD genes

analysed for TFBSs was established (Figure 4.2) incorporating known interactions of

the PD genes from literature and predicted as well as validated TFBSs to PD genes.

This network shows a possible regulation of PD genes by TFBSs and the relations

of the PD genes to each other. Parkin is known to bind to SNCA [Choi et al.,

2001] and physically interacts with MAPT [Moussa, 2009]. Additionally, there is a

direct interaction between SNCA and MAPT by SNCA possibly favouring MAPT

phosphorylation [Lei et al., 2010]. OPA1 is an indirect target for Parkin, PRKAA1 as

well as SNCA connected by BCL2. Furthermore, OPA1 is also regulated by CASP3

(caspase 3), which is controlled by SNCA, MAPT as well as PRKAG1 via KCNN4

(potassium intermediate/small conductance calcium-activated channel). PRKAA1

and PRKAA2 are linked by being subunits of AMPK alpha. OPA1 is regulated by

NFKB [Müller-Rischart et al., 2013] and Parkin by ATF4 [Bouman et al., 2011],
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Figure 4.2: Concluding hypothetical PD network with predicted and validated TFBS.
Analysed PD genes are shown in blue ellipses, whereas genes connecting PD genes
are marked by gray ellipses. TFs are grouped in orange boxes. NFKB and ATF4
have already been validated to regulate OPA1 and Parkin, respectively, which is
expressed by a green arrow. Not yet validated TFBSs but predicted ones are shown
by red arrows. Several conserved TFs can possibly bind to PRKAG1. SNCA and
MAPT are putatively regulated by one of the three common TFs, while PRKAA1
and PRKAA2 are supposedly controlled by one of the �ve common and conserved
TFs.

the control of the other �ve genes (shown by blue ellipses in Figure 4.2) through a

predicted TF have still to be con�rmed.
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4.4 Regulatory network in stress and neurodegeneration

This section focusses on the association of AD and depression. Additionally, the

relation of depression to PD and AD by mitochondrial processes as well as MAPK

pathway is discussed, respectively.

4.4.1 Depression related pathways identi�ed in HR/LR mouse models

HR and LR mice established by Touma et al. [2008] with a hyper- and a hypo-

reactivity of the HPA axis, respectively, were used to reveal genes related to depres-

sion. The LR mice behave in an untypical depressive manner whereas the HR mice

show a melancholic depressive like behaviour [Touma et al., 2008].

KEGG enrichment analysis (section 3.2.1) reveals three pathways incorporating

genes, which occur in all mSVM-RFE gene selections. These pathways play a role

in depression, stress or anxiety and are described in the following.

The pathway 'one carbon pool by folate' is linked to neurodegneration by folate,

which is involved in the one-carbon-metabolism and lack of folate leads to e.g.

changes in DNA methylation. Disorder in one-carbon-metabolism is associated with

neurodegeneration like AD and neuropsychiatric diseases like depression [Kronen-

berg et al., 2009]. Depression is linked to low levels of folate and a therapeutic

treatment of the disease could be the ingestion of folic acid and vitamin B12 [Coppen

and Bolander-Gouaille, 2005]. Furthermore, low levels of folate are also linked to

cognitive impairment [Kim et al., 2008] connecting dementia with depression.

The di�erentially expressed genes are overrepresented in another KEGG pathway

'arachidonic acid metabolism'. Arachidonic acid belongs to the fatty acids and is

associated with bipolar disorder (manic depression). Additionally, it was shown that

the signaling of arachidonic acid is increased in bipolar disorders and several anti-

manic drugs target and as a consequence decrease arachidonic acid cascade kinetics

and enzymes [Rao and Rapoport, 2009]. A signi�cantly increased concentration of

arachidonic acid was also observed in brain regions of a rat model for depression

[Green et al., 2005].

The third pathway is 'lysine degradation'. Smriga et al. [2002] showed in rats, that

a lack of lysine leads to an increase in stress-induced anxiety. Additionally, a sup-

plement with lysine in people consuming lysine de�cient diet results in a decrease of

anxiety and stress [Smriga et al., 2004]. Anxiety is linked to psychiatric disorders

like depression [Gross and Hen, 2004].

Other KEGG pathways in two di�erent biclusters with an enrichment of coregulated

genes are 'neuroactive ligand-receptor interaction' and 'endocytosis' (section 3.2.1).

Postsynaptic AMPAR (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid recep-
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tor) endocytosis is a �nal step in the expression of various forms of long term de-

pression [Wang, 2008].

GO analysis of genes determined by mSVM-RFE and occurring in all gene selec-

tions revealed several GO terms associated to depression such as the cellular compo-

nent 'endoplasmic reticulum' (Table 3.4). Endoplasmic reticulum stress is supposed

to be connected to stress-related depression disorders [Ishisaka et al., 2011a]. Re-

straint stress leads to an upregulation of endoplasmic reticulum related genes in

mouse brain regions via increase of corticosterone [Ishisaka et al., 2011b], which be-

longs to the group of glucocorticoids. Glucocorticoids regulate irreversible neuronal

cell death in the hippocampus and an increased glucocorticoid level is connected to

a shrinkage of the hippocampus and to depression [Sapolsky, 2000].

The alkali metal lithium implicates a protective e�ect against bipolar disorders [Wood

et al., 2004]. The treatment of depressive disorders by lithium was discovered very

early by Cade [1949] and lithium is probably the most important psychotropic drug

used decades ago [Mitchell and Hadzi-Pavlovic, 2000]. A long-term treatment of bipo-

lar and other major a�ective disorder patients with the mood stabilizer lithium re-

duces the risk of completed and attempted suicide [Baldessarini et al., 2006]. Lithium

is able to protect the hippocampus from negative consequences of chronic stress and

hence would indirectly prevent the break out of depression [Wood et al., 2004]. The

GO term 'response to lithium ion' (Table 3.4) comprises genes di�erentially expressed

on the microarray dataset: genes such as ACTA1 (actin, alpha 1) and GSTM5 (glu-

tathione S-transferase, mu 5) are possibly targets for treatment with lithium to

prevent depression pathogenesis.

4.4.2 The link between depression and AD

The HR versus LR microarray dataset analysis as well as the search for TFBSs

modules in coregulated genes related to AD revealed associations between the neu-

rodegeneration AD and depression.

Two signi�cantly expressed genes of the HR versus LR microarray dataset, which

have been validated by qPCR (Table 3.3) [personal communication with Regina

Widner from MPI Munich], show a relation to AD pathogenesis. Ttbk1 (Tau-tubulin

kinase-1) is known to be involved in AD. Sato et al. [2008] discovered a higher expres-

sion of Ttbk1 in AD patients brain compared to control brain and Ttbk1 transgenic

mice showed learning and memory de�cits in addition to an accumulation of tau

and an increased neuro�lament phosphorylation. Ttbk1 has been suggested to be

a fundamental gene in AD leading to memory dysfunction [Sato et al., 2008]. The

upregulation of Ttbk1 in HR mice (foldchange (HR versus LR) = 6.18), which show

symptoms of melancholic depression, leads to a direct link between AD and depres-

98



Chapter 4 Discussion

sion as well as stress by Ttbk1.

The AD related gene Sh3gl2 (endophilin 1) was validated by qPCR (Table 3.3) [per-

sonal communication with Regina Widner from MPI Munich]. Ren et al. [2008]

showed an elevated expression of Sh3gl2 in brains of AD patients leading to an in-

crease of JNK and as a consequence to neuronal cell death. Moreover, endophilin 1

re�ects the interplay of ABAD (amyloid binding alcohol dehydrogenase) and Aβ and

hence detects the development of AD in the patient [Ren et al., 2008]. Concluding,

the expression of Ttbk1 as well as Sh3gl2 is increased in depression as well as in AD,

suggesting a co-occurrence of both diseases.

An additional performed literature search reveals several interactions between de-

pression and AD. Depression accelerates the cognitive decline in AD patients, which

possess more plaque and tangle formation in the hippocampus brain region than

AD patients without being depressed in their lifetime [Rapp et al., 2006]. Lack of

folic acid, which is essential for the nervous system, is linked to depression as well

as increases the risk of AD [Reynolds, 2002]. Additionally, Solas et al. [2010] re-

vealed that old rats exposed to stress early in life show elevated levels of Aβ and

BACE1 indicating an ascending amyloidogenic processing of APP. The combination

of aging and stress in�uences cognition and develops AD [Solas et al., 2010]. In

AD patients depression may appear earlier than typical AD symptoms like memory

de�cits [Geerlings et al., 2000].

Furthermore, coregulated genes of the AD patients microarray dataset are enriched

in the KEGG pathway 'long-term depression' (section 3.1.3). An enhancement of

long-term depression leads to loss of memory initiated by long-term potentiation

[Berridge, 2010]. The study from Zhang et al. [2010] shows that the gene expression

of APP and GNAS, which is incorporated in the cluster of coregulated genes as well

as in long-term depression, is signi�cantly upregulated in patients with endogenous

depression. Interestingly, clinically signi�cant depression develops in at least 40%

of all demented patients [Wragg and Jeste, 1989], and depressive symptoms like

signi�cant loss of appetite, insomnia, and fatigue occur commonly in the course of

AD [Tune, 1998].

It seems reasonable to assume that the exposure to depression and stress even

before AD leads to an acceleration and exacerbation of AD pathogenesis, which is

also visible in a stronger plaque formation. But also typical depressive symptoms

occur in the course of AD. These aspects make it di�cult to decide which disease

occurs �rst and consequently leads to the second disease. Additionally, both diseases

have seemingly the same risk genes identi�ed with the HR/LR mice and AD patients

microarray dataset analysis as well as common risk factors such as folic acid. Key

genes of AD show a signi�cant high regulation in depression and even APP levels
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are increased in mice stressed by forced swim test suggesting APP to be involved in

stress-responsive pathways [Tsolakidou et al., 2010].

4.4.3 The role of mitochondria in depression and PD

The study of the PD (DJ-1 knockout mice) and depression (HR and LR mice) mi-

croarray dataset as well as the OPA1 promoter analysis revealed the mitochondrium

to be involved in PD and depression.

GO analysis of genes determined by mSVM-RFE occurring in all gene selections

from the HR versus LR microarray dataset (Table 3.4) revealed several categories,

which play a role in stress and depression. Interestingly, GO analysis concerning cel-

lular components revealed the 'mitochondrial matrix' as well as the 'mitochondrion'

to be the best two hits. Genes, which were detected to be signi�cantly enriched in the

mitochondrion and hence are functionally active in this cellular compartment, are

according to the mSVM-RFE analysis di�erentially expressed between the two mouse

models HR and LR. Furthermore, two enriched genes, Prodh (proline dehydrogenase

(oxidase) 1) and Aldh1l1, are additionally validated by qPCR (Table 3.3) [personal

communication with Regina Widner (MPI)] to be upregulated in HR compared to

LR mice. The subcellular location of the products of the di�erentially expressed

genes in the mitochondrion leads to the assumption that mitochondrial functions

are also changed or even disturbed in depression leading to alteration in the cellular

energy supply and stress response, which are typical mitochondrial functions [Winkl-

hofer and Haass, 2010]. Shao et al. [2008] already revealed, that psychiatric diseases

like schizophrenia and major depression show a dysfunction of the mitochondrion by

diminished gene expression and cumulative impairment in general.

The mitochondrion in conjunction with oxidative stress is a central component in

neurodegenerative diseases [Shukla et al., 2011]. A reduced mitochondrial function

is observed in aged people and mitochondrial malfunction emerges in neurodegener-

ative diseases, at which the electron transfer is decreased and impairment through

oxidation occurs [Navarro and Boveris, 2010].

One interesting cluster of coregulated genes from the DJ-1 knockout experiment

with enrichment in neurodegenerative KEGG pathways was established (Table 3.7).

In addition, GO enrichment analysis reveals several interesting GO terms incorporat-

ing once again 'mitochondrion' as well as 'mitochondrial matrix' (Table 3.8). These

mitochondrial enriched genes are di�erentially expressed between DJ-1 knockout and

wildtype according to mSVM-RFE.

An additional TFBS analysis of the OPA1 promoter revealed NFKB binding sites

as described in section 4.3.5 and NFKB activity is known to be increased in PD in

mitochondria [Cassarino et al., 2000]. The PD-related gene OPA1 plays a central
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role in mitochondria by being involved in inner membrane fusion in the mitochondria

(Mitofussion) [Winklhofer and Haass, 2010]. Mitochondrial fragmentation and de-

creased ATP levels induced by PINK1 and Parkin loss of function are prevented by

overexpression of OPA1 [Lutz et al., 2009]. OPA1 downregulation causes mitochon-

drial fragmentation followed by disorganization of the cristae structure and �nally

leads to apoptosis [Olichon et al., 2003]. Mitochondrial dysfunction is associated

with PD and several PD-related genes like PINK1, Parkin and OPA1 are involved in

regulating mitochondrial function [Winklhofer and Haass, 2010]. Glasl et al. [2012]

showed that neurons in PINK1-de�ciency mice, a mouse model for early phases of

PD, have less fragmented mitochondria. Consequently, dysfunction of mitochondria

linked to aging and neurodegeneration may be a primary cause for PD and hence

mitochondria could be a drug target for therapeutic treatment of PD [Muqit et al.,

2006].

Neurodegenerative diseases such as PD seem to be connected to psychiatric dis-

orders by the cellular component mitochondria. But also literature reveals an as-

sociation between PD and depression. Aarsland et al. [2012] reviewed that around

35% of PD patients su�er from depression as well as mild depression seems to be

present in the whole etiopathology of PD and is a risk factor for moderate to severe

depression. In both diseases genes with di�erential expression compared to wildtype

are overrepresented in mitochondria. Hence, mitochondria possibly plays a central

role in the occurrence of both diseases simultaneously or even a central role not only

in PD but also in the pathology of depression.

4.4.4 MAPK pathway associated to AD and depression

The TFBSs module analysis revealed several coregulated AD related genes of the

double-transgenic mice dataset to be involved in the MAPK signaling pathway link-

ing MAPK pathway with AD. Literature search revealed an association of MAPK

signaling to depression, too.

Cacna2d1 (Figure 3.4c), a target gene of the TFBSs module CTCF-EGRF-SP1F

from the double-transgenic mice dataset, is involved in the MAPK signaling pathway

(section 3.1.3). The MAPK signaling pathway is signi�cantly overrepresented in a

second cluster of coregulated genes from the double-transgenic mice dataset (sec-

tion 3.1.4). The second cluster of coregulated genes establishing the TFBSs module

CTCF-SP1F-ZBPF comprises the MAPK associated genes Cdc42, Map2k4, Mapk1,

Mapk9, and Ppm1a (Figure 3.4d). The striking enrichment of coregulated genes

from a microarray dataset with AD background con�rms the association of MAPK

signaling and AD.

Additional literature search strengthens the relation of the genes enriched in the sig-

101



Chapter 4 Discussion

naling pathway to AD. PS1, a AD key gene, inhibits the Map2k4 activity [Kim et al.,

2001]. The phosphorylation of Mapk1, an extracellular signal-regulated kinase (Erk),

is activated by Aβ, and this Erk signal is involved in repression of L-glutamate up-

take in astrocytes possibly defending neurodegeneration in the pathogenesis of AD

[Abe and Misawa, 2003]. The ubiquitously expressed Mapk9 (JNK2) phosphory-

lates APP and amyloid precursor-like protein 2 (APLP2) induced by cellular stress.

The phosphorylation is involved in neural functions and AD pathogenesis [Taru and

Suzuki, 2004]. Genes involved in MAPK signaling are regulated by AD key genes as

well as regulate the expression of AD key genes either preventing or even promoting

AD pathogenesis.

Additionally, the activation of Erk cascades through EGF (epidermal growth factor)

yields an increased CTCF expression showing that CTCF is a downstream target of

Erk cascades [Li and Lu, 2005]. Furthermore, CTCF is also incorporated in the TF-

BSs modules (section 3.1.3 and 3.1.4) established from the MAPK signaling related

genes. MAPK pathway is involved in the production of proin�ammatory cytokines

in the hippocampus induced by Aβ and is a potential target for future therapeutics

in AD [Munoz et al., 2007].

MAPK signaling plays an important role in depression and is associated to CRH, a

crucial gene of the HPA axis in the stress response pathway. Dermitzaki et al. [2002]

showed that CRH phosphorylates p38 MAPK by activating CRHR1 (Corticotropin

releasing hormone receptor 1) transmitting signals as well as CRH and cAMP in-

crease the activity of the MAPK pathway [Kovalovsky et al., 2002]. Furthermore,

Wefers et al. [2012] demonstrated an increased depression-like behaviour in the brains

of adult mice by inhibiting MAPK signaling, which is incorporated in the develop-

ment of brain, long-term memory and antidepressant response. Therefore, MAPK

signaling may be involved in the regulation of depression-like behaviour and MAP

kinase phosphatases are possibly new targets for the development of antidepressant

drugs [Wefers et al., 2012].

MAPK links AD and depression by being a common pathway of both diseases. It

seems that the dysfunction of MAPK pathway promotes the pathogenesis of both

diseases. But as previously discussed in section 4.4.2 if depression is a AD-associated

condition, a presenting symptom of the disease, or a risk factor for AD pathogenesis

has not been fully understood until now and has to be further analysed.

102



Chapter 4 Discussion

4.5 Hypothetical regulatory molecular network in neurodegenerative

diseases

The validated and predicted interactions of neurodegenerative diseases and depres-

sion are summarized in a hypothetical regulatory molecular network. It comprises

Figure 4.3: The hypothetical network summarizes all analyses of the thesis incorpo-
rating TFBSs, microRNA and microarray analysis for AD, PD and depression. The
network is in detail explained in the text.
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key genes and di�erentially regulated genes of the three discussed diseases as well

as predicted microRNAs, TFs and TFBSs modules of this thesis (Figure 4.3). The

red boxes correspond to the three de�ned TFBSs modules of AD possibly regulat-

ing the genes connected by blue arrow in the network [Augustin et al., 2011]. The

miRNAs seemingly in�uencing the expression of ADAM10 are described in orange

colored boxes [Augustin et al., 2012]. The lilac highlighted genes are derived from

the HR versus LR microarray analysis and were successfully validated in the lab

by qPCR [personal communication with Regina Widner (MPI)]. Furthermore, these

genes show a good connectivity either directly or indirectly to AD- and PD-related

genes. The green TFs are predicted to regulate PD key genes. The regulation of

Parkin and OPA1 by the TFs ATF4 and NFKB, respectively, was validated in the

lab [Bouman et al., 2011, Müller-Rischart et al., 2013]. ETSF possibly regulates

MAPT and SNCA veri�ed by conserved binding sites and PD associated SNPs,

which are located in the TF core-sequences of both genes, as well as by literature

describing an involvement of the TF in PD. The genes in the blue ellipses are the

most promising candidates for further validations of the DJ-1 knockout microarray

dataset. Beside, the gray colored genes are AD- and PD-related genes or at least

genes showing a connection to neurodegenerative diseases as well as some genes for

connecting the whole network.

Additionally, a strong link between AD and PD is given by connections of APP

to MAPT, Parkin as well as OPA1. The network contains not all known relations

between the genes and the diseases in order to maintain a clear representation. De�-

nitely, more associations between AD and PD are described in the literature. While

depression related genes (lilac ellipses) are distributed over the whole network being

involved in both neurodegenerative diseases, AD and PD related genes are separated.

But a strong relationship is clearly visible in the middle of the network connecting

the upper AD part with the PD section below.

The Aβ fragments derived from APP cleavage by beta- and gamma-secretases lead

to neurotoxic amyloid plaques as described in section 1.1.1. Rosen et al. [2010] showed

in AD brains an interaction of Aβ with Parkin decreasing the Aβ level. Whereas

the knockdown of Parkin increases the amount of Aβ [Rosen et al., 2010]. Parkin

seems to have a protective e�ect in producing much less amyloid plaques. Moreover,

the presence of Aβ fragments leads to a changed MAPT expression level producing

more cerebrospinal �uid tau and hence leading to more neurodegeneration [Kauwe

et al., 2008]. Additionally, Aβ levels are negatively correlated with OPA1 levels, i.e.

overexpression of APP decreases OPA1 expression. Concluding, Aβ fragments con-

tribute to mitochondrial fragmentation by in�uencing mitochondrial �ssion/fusion

leading to mitochondrial and neuronal dysfunction [Wang et al., 2008b].
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Chapter 4 Discussion

This network suggests a molecular connection of the diseases to each other and

might explain the co-occurrence of the diseases either as accessory symptom or

longterm side e�ect. Especially, stress and depression appear to be risk factors

for AD and PD.

105



Chapter 5

Conclusion

Two established bioinformatics approaches for TFBSs module and miRNA identi�-

cation were evaluated. The TFBSs module approach searches for common regulatory

TFBSs modules in coregulated AD-related genes as well as in AD key genes in�uenc-

ing the pathogenesis of AD. Common TFBSs modules were obtained by combining

in silico analysis with an approach relying on expression values of AD related genes.

Moreover, the multivariate methods of the established work�ow were applied on

depression as well as PD microarray datasets and the implemented mSVM-RFE

method was evaluated by ROC curve recognizing almost 87% of all di�erentially

expressed genes. Concluding, multivariate methods consider interactions amongst

the gene expression levels and hence regulatory molecular networks can be detected.

Additionally, a computational approach for the identi�cation of miRNAs puta-

tively in�uencing the expression of ADAM10 was generated. The miRNA target

site prediction approach is a combination of the prediction software and speci�c se-

lection criteria for �ltering out false positive miRNA predictions: disease relevance,

speci�city of expression and evolutionary conservation of binding sites.

Many of the coregulated genes identi�ed to be target genes of modules of TFBSs

have links to the molecular mechanisms of AD. In particular, the binding sites of

the TF families: CTCF, EGRF, KLFS, SP1F, and ZBPF are proposed for further

investigations and could provide potential targets for therapeutic treatment of AD

and other neurodegenerative diseases. Already known regulation mechanisms of

target genes by TFs con�rm these modules, such as CLU, which is linked to AD.

Additionally, several target genes like ADD3, which are not yet described as AD-

related genes, are possibly involved in AD pathogenesis.

A potential functionality of the selected miRNAs 103, 107 and 1306 on ADAM10

3'UTR was con�rmed by 3'UTR luciferase reporter assay. These experiments under-

line the reliability of my computational approach. The miRNA work�ow can also be

applied to key genes of other diseases with adjustment of the selection criteria accord-

ing to the scienti�c research interest. This approach provides a new selection tool

for identi�cation and ranking of AD-related miRNAs, but to elucidate a profound

pathological role of selected candidates further experiments have to be done.

106



Chapter 5 Conclusion

Signi�cantly regulated downstream targets of DJ-1 such as Hnmt and Mthfr were

identi�ed to be PD related genes and the in�uence of both genes on the pathogenesis

of PD was discussed. Moreover, the relation of NFKB and PD was considered in

the analysis by focussing on NFKB target genes, which seem to be regulated in PD.

Additionally, NFKB BSs were identi�ed in the OPA1 promoter and validated by

Müller-Rischart et al. [2013]. Beside, OPA1 playing an important role in mitofussion

also Parkin is associated to mitochondria being targeted by ATF4 after mitochondrial

stress [Bouman et al., 2011]. Moreover, several TFBSs were predicted in autosomal

recessive and dominant PD genes and veri�ed by literature search.

Di�erentially expressed genes related to depression were experimentally veri�ed

by qPCR [personal communication with Regina Widner from MPI Munich] con�rm-

ing the predictions obtained by the mSVM-RFE method. Regulatory mechanisms

linking depression and AD as well as PD were identi�ed. AD and depression have

seemingly the same risk genes and risk factors such as de�ciency of folic acid. Fur-

thermore, AD key genes are signi�cantly high expressed in depression. MAPK sig-

naling pathway was discovered to be a common pathway of coregulated AD related

genes and is a underlying pathway in CRH signaling. Literature search revealed

also an association between PD and depression. Additionally, genes from the PD

and depression microarray dataset were detected to be signi�cantly enriched in the

mitochondrion. The interaction between both diseases was discussed and even a new

relationship to mitochondrial processes in depression was revealed.

Finally, a hypothetical overall network combining all predictions and validations

of TFBSs, miRNAs and key genes of neurodegenerative diseases shows possible con-

nections between the di�erent diseases.
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Appendix

List of abbreviations

Aβ . . . . . . . . . . . . . Amyloid-beta

ACOT7 . . . . . . . . Acyl-CoA thioesterase 7

ACTH . . . . . . . . . Adrenocorticotropic hormone

AD . . . . . . . . . . . . Alzheimer's disease

ADAM10 . . . . . . A disintegrin and metalloproteinase 10

ADD3 . . . . . . . . . Adducin 3

Aldh1l1 . . . . . . . . Aldehyde dehydrogenase 1 family, member L1

ALS . . . . . . . . . . . Amyotrophic lateral sclerosis

AMPK . . . . . . . . . AMP-activated protein kinase

APH1A . . . . . . . . Anterior pharynx defective 1 homolog

APOE . . . . . . . . . Apolipoprotein E

APP . . . . . . . . . . . Amyloid-beta precursor protein

Ass1 . . . . . . . . . . . Argininosuccinate synthase 1

ATF . . . . . . . . . . . Activating transcription factor

BACE1 . . . . . . . . Beta-site APP-cleaving enzyme 1

BACE2 . . . . . . . . Beta-site APP-cleaving enzyme 2

BCL2 . . . . . . . . . . B-cell CLL/lymphoma 2

bp . . . . . . . . . . . . . Basepairs

BS . . . . . . . . . . . . . Binding site

Ca2+ . . . . . . . . . . . Calcium

Cacna2d1 . . . . . . Calcium channel, voltage-dependent, alpha2/delta subunit 1

cAMP . . . . . . . . . Cyclic adenosine monophosphate

Ccnd2 . . . . . . . . . Cyclin D2

Cdc42 . . . . . . . . . . Cell division cycle 42

CDK2 . . . . . . . . . Cyclin-dependent kinase 2

CEBP . . . . . . . . . Ccaat/Enhancer Binding Protein

CLSTN1 . . . . . . . Calsyntenin 1

CLU . . . . . . . . . . . Clusterin

CREB . . . . . . . . . cAMP-responsive element binding proteins

CRH . . . . . . . . . . . Corticotropin-releasing hormone

CTBP2 . . . . . . . . C-terminal binding protein 2

CTCF . . . . . . . . . CTCF and BORIS gene family, transcriptional regulators with 11 highly

conserved zinc �nger domains

DEAF . . . . . . . . . Homolog to deformed epidermal autoregulatory factor-1 from D. melanogaster

DGCR8 . . . . . . . . DiGeorge syndrome critical region gene 8

DHRS3 . . . . . . . . Dehydrogenase/reductase (SDR family) member 3

DJ-1/PARK7 . . Parkinson protein 7
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List of abbreviations

dnADAM10 . . . . Dominant-negative ADAM10

EBOX . . . . . . . . . E-box binding factors

EGR . . . . . . . . . . . Early growth response

EGRF . . . . . . . . . EGR/nerve growth factor-induced protein C and related factors

EIF . . . . . . . . . . . . Eukaryotic translation initiation factor

EIF2AK2 . . . . . . Eukaryotic translation initiation factor 2-alpha kinase 2

EIF2alpha . . . . . Eukaryotic translation initiation factor-2 alpha

ER . . . . . . . . . . . . . Endoplasmic reticulum

Erk . . . . . . . . . . . . Extracellular signal-regulated kinase

ETSF . . . . . . . . . . Human and murine ETS1 factors

FABP4 . . . . . . . . Fatty acid binding protein 4

FDR . . . . . . . . . . . False discovery rate

FN . . . . . . . . . . . . . False Negative

Fn1 . . . . . . . . . . . . Fibronectin 1

Fos . . . . . . . . . . . . FBJ osteosarcoma oncogene

FP . . . . . . . . . . . . . False Positive

GNAS . . . . . . . . . Guanine nucleotide binding protein (G protein), alpha stimulating activ-

ity polypeptide 1

GO . . . . . . . . . . . . Gene Ontology

GR . . . . . . . . . . . . Glucocorticoid receptor

GRK5 . . . . . . . . . G-protein-coupled receptor kinase 5

GRN . . . . . . . . . . . Granulin

Gsk3b . . . . . . . . . Glycogen synthase kinase 3 beta

GWAS . . . . . . . . . Genome-wide association studies

HNMT . . . . . . . . . Histamine N-methyltransferase

HPA . . . . . . . . . . . Hypothalamic-pituitary-adrenocortical

HR . . . . . . . . . . . . High reactivity

IP3 . . . . . . . . . . . . Inositol trisphosphate

JNK . . . . . . . . . . . c-Jun NH2-terminal kinase

KEGG . . . . . . . . . Kyoto Encyclopedia of Genes and Genomes

KLF . . . . . . . . . . . Kruppel-like factor

KLFS . . . . . . . . . . Krueppel-like transcription factors

LOAD . . . . . . . . . Late onset Alzheimer's disease

LPS . . . . . . . . . . . Lipopolysaccharide

LR . . . . . . . . . . . . . Low reactivity

Lrrk2 . . . . . . . . . . Leucine-rich repeat kinase 2

Map2k4 . . . . . . . . Mitogen-activated protein kinase kinase 4

MAPK . . . . . . . . . Mitogen-activated protein kinase

MAPT . . . . . . . . . Microtubule-associated protein tau

MGI . . . . . . . . . . . Mouse Genome Informatics

Miip . . . . . . . . . . . Migration and invasion inhibitory protein

miRNAs . . . . . . . MicroRNAs

mSVM-RFE . . . Multiclass support vector machine recursive feature elimination
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

AP3S1 1176 protein binding, protein transporter activity, transporter activity

BAI2 576 G-protein coupled receptor activity, brain-speci�c angiogenesis

inhibitor activity

C1orf95 375057 -

C20orf24 55969 molecular function, protein binding

CD164 8763 protein binding

EFNB2 1948 ephrin receptor binding

EIF5 1983 GTP binding, GTPase activity, nucleotide binding, translation

factor activity, nucleic acid binding, translation initiation factor

activity

EPAS1 2034 DNA binding, RNA polymerase II transcription factor activ-

ity, enhancer binding, histone acetyltransferase binding, pro-

tein binding, protein heterodimerization activity, contributes to

sequence-speci�c DNA binding, signal transducer activity, spe-

ci�c RNA polymerase II transcription factor activity, transcrip-

tion coactivator activity, transcription factor binding

GLUD1 2746 ADP, ATP, GTP, NAD binding, glutamate dehydrogenase activ-

ity, glutamate dehydrogenase activity, identical protein binding,

leucine binding, nucleotide binding, oxidoreductase activity, pro-

tein binding

GNAS 2778 GTP binding, GTPase activity, guanyl nucleotide binding, iden-

tical protein binding, molecular function, nucleotide binding,

protein binding, signal transducer activity

MCTP1 79772 calcium ion binding, NOT calcium-dependent phospholipid bind-

ing

NFIB 4781 transcription factor activity

NPTX2 4885 metal ion binding, molecular function, sugar binding

RB1CC1 9821 protein binding

RHEB 6009 GTP binding, GTPase activity, metal ion binding, nucleotide

binding, protein binding
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

VAPA 9218 protein binding, protein heterodimerization activity, signal

transducer activity, structural molecule activity

Table A.1: AD patients target genes of the module CTCF-EGRF-SP1F derived from
biclustering analysis with eight clusters. The columns describe the Gene symbol,
GeneID and the molecular function as described in GO.

Gene

symbol

EntrezID Molecular function

Abi2 329165 -

Brunol5 319586 molecular function

Cacna2d1 12293 calcium channel activity, ion channel activity, metal ion binding,

protein binding, voltage-gated calcium channel activity, voltage-

gated ion channel activity

Ccdc47 67163 calcium ion binding

Dennd5a 19347 Rab GTPase binding, protein binding

Eid1 58521 protein binding, speci�c transcriptional repressor activity, tran-

scription corepressor activity

Eif5 217869 GTP binding, binding, nucleotide binding, translation initiation

factor activity

Gsk3b∗) 56637 ATP binding, beta-catenin binding, glycogen synthase kinase 3

activity, integrin binding, ionotropic glutamate receptor binding,

kinase activity, nucleotide binding, p53 binding, protein binding,

protein kinase activity, protein serine/threonine kinase activity,

tau-protein kinase activity

Hnrnpk 15387 DNA binding, RNA binding, nucleic acid binding, protein bind-

ing, single-stranded DNA binding

Jmjd1c 108829 metal ion binding, molecular function, oxidoreductase activity,

acting on single donors with incorporation of molecular oxygen,

incorporation of two atoms of oxygen

Klc1 16593 binding, microtubule motor activity, motor activity, protein

binding

Myh10 77579 ADP, ATP binding, actin binding, actin �lament binding, actin-

dependent ATPase activity, calmodulin binding, micro�lament

motor activity, motor activity, nucleotide binding, protein bind-

ing

N�x 18032 DNA binding, protein binding, transcription activator activity,

transcription factor activity

Nptxr 73340 pentraxin receptor activity, protein complex binding
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

Pafah1b1 18472 dynein intermediate chain binding, hydrolase activity, micro-

tubule binding, phosphoprotein binding, protein complex bind-

ing, protein homodimerization activity

Pde10a 23984 3',5'-cyclic-GMP phosphodiesterase activity, 3',5'-cyclic-

nucleotide phosphodiesterase activity, cAMP binding, catalytic

activity, cyclic-nucleotide phosphodiesterase activity, drug

binding, hydrolase activity, metal ion binding, nucleotide

binding

Pebp1 23980 ATP binding, lipid binding, kinase binding, mitogen-activated

protein kinase binding, nucleotide binding, peptidase inhibitor

activity, protein kinase binding, receptor binding, serine-type en-

dopeptidase inhibitor activity

Ppp3cb 19056 calcium-dependent protein serine/threonine phosphatase activ-

ity, calmodulin binding, hydrolase activity, metal ion binding,

phosphoprotein phosphatase activity, protein heterodimerization

activity, protein serine/threonine phosphatase activity

Prei4 74182 carbohydrate binding, catalytic activity, glycerophosphodiester

phosphodiesterase activity, hydrolase activity, phosphoric diester

hydrolase activity

Ptbp2 56195 RNA binding, mRNA binding, nucleic acid binding, nucleotide

binding, protein binding

Rab6 19346 ATPase activator activity, GTP binding, nucleotide binding, pro-

tein N-terminus binding, protein binding

Reep5 13476 protein binding, receptor activity

Sgtb 218544 Binding, protein heterodimerization activity, protein homod-

imerization activity

Syp 20977 SH2 domain binding, identical protein binding, protein binding,

protein complex binding, syntaxin-1 binding, transporter activ-

ity

Tmed7 66676 molecular function

Tsc22d1 21807 transcription factor activity

Tspan2 70747 molecular function

Ttc7b 104718 molecular function

Ubr3 68795 ligase activity, metal ion binding, protein binding, ubiquitin-

protein ligase activity, zinc ion binding

Vamp2 22318 SNARE binding, calmodulin binding, myosin binding, phospho-

lipid binding, protein binding, protein complex binding, syntaxin

binding, syntaxin-1 binding

Vapa 30960 protein heterodimerization activity, structural molecule activity

Wdr6 83669 molecular function
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

Ywhae 22627 enzyme binding, monooxygenase activity, protein binding, pro-

tein complex binding, protein domain speci�c binding

Ywhaq 22630 monooxygenase activity, protein domain speci�c binding

Table A.2: Double transgenic mice target genes of the module CTCF-EGRF-SP1F
derived from biclustering analysis with 13 clusters. The columns describe the Gene
symbol, GeneID and the molecular function as described in GO. ∗) incorporated in
AlzGene database

Gene

symbol

EntrezID Molecular function

ATP1A3 478 ATP binding, ATPase activity, coupled to transmembrane move-

ment of ions, phosphorylative mechanism, hydrolase activity,

acting on acid anhydrides, catalyzing transmembrane move-

ment of substances, metal ion binding, monovalent inorganic

cation transmembrane transporter activity, nucleotide binding,

sodium:potassium-exchanging ATPase activity

ATP6V1A 523 ATP binding, hydrogen ion transporting ATP synthase activity,

rotational mechanism, hydrolase activity, acting on acid anhy-

drides, catalyzing transmembrane movement of substances, nu-

cleotide binding, proton-transporting ATPase activity, rotational

mechanism

CALY 50632 clathrin light chain binding, dopamine receptor binding

CCK 885 hormone activity, neuropeptide hormone activity, protein bind-

ing

EEF1A2 1917 GTP binding, GTPase activity, nucleotide binding, protein bind-

ing, translation elongation factor activity, translation factor ac-

tivity, nucleic acid binding

GARS 2617 ATP binding, glycine-tRNA ligase activity, nucleotide binding,

protein dimerization activity

GOT1∗) 2805 L-aspartate: 2-oxoglutarate aminotransferase activity, car-

boxylic acid binding, phosphatidylserine decarboxylase activity,

pyridoxal phosphate binding

NAPB 63908 binding

NELL2 4753 calcium ion binding, protein binding, structural molecule activity

PNMA2 10687 protein binding

REEP5 7905 molecular function, protein binding
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

SYP 6855 SH2 domain binding, calcium ion binding, cholesterol binding,

identical protein binding, protein complex binding, syntaxin-1

binding, transporter activity

Table A.3: LOAD patients target genes of the module CTCF-EGRF-SP1F derived
from biclustering analysis with 18 clusters. The columns describe the Gene symbol,
GeneID and the molecular function as described in GO. ∗) incorporated in AlzGene
database

Gene

symbol

EntrezID Molecular function

ADD3 120 actin binding, calmodulin binding, metal ion binding, protein

kinase C binding, structural constituent of cytoskeleton

CDC42EP4 23580 GTP-Rho binding, protein binding

CTBP2 1488 NAD or NADH binding, cofactor binding, oxidoreductase ac-

tivity, acting on the CH-OH group of donors, NAD or NADP

as acceptor, protein binding, transcription repressor activity

FXN 2395 2 iron, 2 sulfur cluster binding, ferric iron binding, ferrous iron

binding, iron chaperone activity, iron-sulfur cluster binding,

protein binding

MAFF 23764 sequence-speci�c DNA binding, transcription factor activity

NBPF14 25832 -

PAX6 5080 DNA binding, protein binding, sequence-speci�c DNA binding,

transcription factor activity

RAB31 11031 GTP binding, GTPase activity, nucleotide binding

RHOQ 23433 GBD domain binding, GTP binding, GTPase activity, nu-

cleotide binding, pro�lin binding, protein binding

SEPT9 10801 GTP binding, GTPase activity, nucleotide binding, protein

binding

SOX10 6663 RNA polymerase II transcription factor activity, enhancer

binding, chromatin binding, identical protein binding, pro-

moter binding, protein binding, transcription coactivator ac-

tivity

SUV420H1 51111 histone methyltransferase activity (H4-K20 speci�c), methyl-

transferase activity, protein binding, transferase activity

TMEM184B 25829 -
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

ZBTB16 7704 DNA binding, double-stranded DNA binding, identical protein

binding, metal ion binding, protein C-terminus binding, pro-

tein binding, protein domain speci�c binding, protein homod-

imerization activity, speci�c transcriptional repressor activity,

transcription factor/repressor activity, zinc ion binding

Table A.4: AD patients target genes of the module CTCF-SP1F-ZBPF derived from
biclustering analysis with �ve clusters. The columns describe the Gene symbol,
GeneID and the molecular function as described in GO.

Gene

symbol

EntrezID Molecular function

ADD3 120 actin binding, calmodulin binding, metal ion binding, protein

kinase C binding, structural constituent of cytoskeleton

ATG10 83734 Atg12 ligase activity, ligase activity, protein binding

CXorf41 139212 -

EEF1D 1936 protein binding, signal transducer activity, translation elonga-

tion factor activity, translation factor activity, nucleic acid bind-

ing

GLUL 2752 ATP binding, glutamate decarboxylase activity, glutamate-

ammonia ligase activity, identical protein binding, ligase activity,

lyase activity, nucleotide binding

MT3 4504 antioxidant activity, copper ion binding, metal ion binding, zinc

ion binding

NUCKS1 64710 -

PIP4K2B 8396 1-phosphatidylinositol-4-phosphate 5-kinase activity, 1-

phosphatidylinositol-5-phosphate 4-kinase activity, ATP

binding, kinase activity, nucleotide binding, protein binding,

receptor signaling protein activity, transferase activity

RBX1 9978 NEDD8 ligase activity, ligase activity, metal ion binding, protein

binding, contributes to ubiquitin-protein ligase activity, zinc ion

binding

RPL35 11224 mRNA binding, protein binding, structural constituent of ribo-

some

SHCBP1 79801 SH2 domain binding, protein binding

Table A.5: LOAD patients target genes of the module CTCF-SP1F-ZBPF derived
from biclustering analysis with 18 clusters. The columns describe the Gene symbol,
GeneID and the molecular function as described in GO.
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

ADD3 120 actin binding, calmodulin binding, metal ion binding, protein

kinase C binding, structural constituent of cytoskeleton

CDC42EP4 23580 GTP-Rho binding, protein binding

CLU∗) 1191 misfolded protein binding, protein binding

CTBP2 1488 NAD or NADH binding, cofactor binding, oxidoreductase ac-

tivity, oxidoreductase activity, acting on the CH-OH group of

donors, NAD or NADP as acceptor, protein binding, transcrip-

tion repressor activity

FXN 2395 2 iron, 2 sulfur cluster binding, ferric iron binding, ferrous iron

binding, iron chaperone activity, iron-sulfur cluster binding,

protein binding

NFE2L1 4779 protein dimerization activity, sequence-speci�c DNA binding,

transcription cofactor activity, transcription factor activity

NUCKS1 64710 -

PAX6 5080 DNA binding, protein binding, sequence-speci�c DNA binding,

transcription factor activity

RAB31 11031 GTP binding, GTPase activity, nucleotide binding

RHOQ 23433 GBD domain binding, GTP binding, GTPase activity, nu-

cleotide binding, pro�lin binding, protein binding

SEPT9 10801 GTP binding, GTPase activity, nucleotide binding, protein

binding

STOM 2040 protein binding

SUV420H1 51111 histone methyltransferase activity (H4-K20 speci�c), methyl-

transferase activity, protein binding, transferase activity

TRAM1 23471 protein binding, receptor activity

WNK1 65125 ATP binding, molecular function, nucleotide binding, pro-

tein binding, protein kinase inhibitor activity, protein ser-

ine/threonine kinase activity, transferase activity

ZBTB16 7704 DNA binding, double-stranded DNA binding, identical protein

binding, metal ion binding, protein C-terminus binding, pro-

tein binding, protein domain speci�c binding, protein homod-

imerization activity, speci�c transcriptional repressor activity,

transcription factor/repressor activity, zinc ion binding

Table A.6: AD patients target genes of the module KLFS-SP1F-ZBPF derived from
biclustering analysis with �ve clusters. The columns describe the Gene symbol,
GeneID and the molecular function as described in GO. ∗) incorporated in AlzGene
database
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

ADD3 120 actin binding, calmodulin binding, metal ion binding, protein

kinase C binding, structural constituent of cytoskeleton

ATG10 83734 Atg12 ligase activity, ligase activity, protein binding

CKB 1152 ATP binding, creatine kinase activity, nucleotide binding, pro-

tein binding

CLU∗) 1191 misfolded protein binding, protein binding

CXorf41 139212 -

EEF1D 1936 protein binding, signal transducer activity, translation elonga-

tion factor activity, translation factor activity, nucleic acid bind-

ing

GLUL 2752 ATP binding, glutamate decarboxylase activity, glutamate-

ammonia ligase activity, identical protein binding, ligase activity,

lyase activity, nucleotide binding

NUCKS1 64710 -

PIP4K2B 8396 1-phosphatidylinositol-4-phosphate 5-kinase activity, 1-

phosphatidylinositol-5-phosphate 4-kinase activity, ATP

binding, kinase activity, nucleotide binding, protein binding,

receptor signaling protein activity, transferase activity

RPL35 11224 mRNA binding, protein binding, structural constituent of ribo-

some

SHCBP1 79801 SH2 domain binding, protein binding

Table A.7: LOAD patients target genes of the module KLFS-SP1F-ZBPF derived
from biclustering analysis with 18 clusters. The columns describe the Gene symbol,
GeneID and the molecular function as described in GO. ∗) incorporated in AlzGene
database

Gene

symbol

EntrezID Molecular function

1500012F01Rik 68949 -

Acsl1 14081 ATP binding, acetate-CoA ligase (ADP-forming) activity,

catalytic activity, ligase activity, long-chain fatty acid-CoA

ligase activity, nucleotide binding

Actr10 56444 protein binding

Add1 11518 T cell receptor binding, actin binding, calmodulin binding,

metal ion binding, structural molecule activity

Adss 11566 GTP binding, adenylosuccinate synthase activity, ligase

activity, magnesium ion binding, metal ion binding, nu-

cleotide binding

Atp11b 76295 ATP binding, hydrolase activity, molecular function, nu-

cleotide binding
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

Atp8b2 54667 ATP binding, ATPase activity, coupled to transmembrane

movement of ions, phosphorylative mechanism, hydrolase

activity, hydrolase activity, acting on acid anhydrides, cat-

alyzing transmembrane movement of substances, magne-

sium ion binding, metal ion binding, nucleotide binding,

phospholipid-translocating ATPase activity, protein bind-

ing

BC018507 218333 molecular function

Brsk2 75770 ATP binding, kinase activity, magnesium ion binding,

metal ion binding, nucleotide binding, protein kinase ac-

tivity, protein serine/threonine kinase activity, transferase

activity

Bzw1 66882 binding, molecular function

Ccl27a 20301 Cytokine activity, protein binding

Cdc42 12540 GTP-dependent protein binding, GTPase activity,

mitogen-activated protein kinase kinase kinase binding,

nucleotide binding, protein binding

Cdc42se2 72729 molecular function

Col25a1∗) 77018 molecular function

Ctnna2 12386 Cadherin binding, structural molecule activity

D10Ertd610e 52666 Rho guanyl-nucleotide exchange factor activity, guanyl-

nucleotide exchange factor activity, protein binding

D1Ertd622e 52392 molecular function

Dlat 235339 acyltransferase activity, dihydrolipoyllysine-residue acetyl-

transferase activity, lipoic acid binding, protein binding,

transferase activity

Dnpep 13437 aminopeptidase activity, hydrolase activity, metal ion bind-

ing, metallopeptidase activity, peptidase activity, zinc ion

binding

Dpysl4 26757 hydrolase activity, acting on carbon-nitrogen (but not pep-

tide) bonds, protein binding

Eif1ay 66235 RNA binding, molecular function, translation initiation fac-

tor activity

Epb4.1l1 13821 actin binding, binding, cytoskeletal protein binding, protein

binding, structural molecule activity

Fam135a 68187 molecular function

Fam169a 320557 molecular function

Fam49b 223601 molecular function

Fbxo3 57443 -

Fkrp 243853 Transferase activity

Fnbp1 14269 Lipid binding, protein binding
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

Foxj3 230700 DNA binding, sequence-speci�c DNA binding, transcrip-

tion factor activity

Fry 320365 molecular function

Gabra4 14397 GABA-A receptor activity, chloride channel activity, ex-

tracellular ligand-gated ion channel activity, ion channel

activity, receptor activity

Gabrb3 14402 GABA-A receptor activity, chloride channel activity, ex-

tracellular ligand-gated ion channel activity, ion channel

activity, receptor activity

Gria2 14800 PDZ domain binding, extracellular-glutamate-gated ion

channel activity, ion channel activity, ionotropic glutamate

receptor activity, protein binding, protein kinase binding,

receptor activity

Hdgfrp3 29877 chromatin binding, growth factor activity

Hnrnpu 51810 ATP, DNA, RNA binding, nucleic acid binding, nucleotide

binding, protein binding

Hspa12a 73442 ATP binding, molecular function, nucleotide binding

Il33∗) 77125 Cytokine activity

Khdrbs1 20218 RNA binding, SH3 domain binding, SH3/SH2 adaptor ac-

tivity, protein binding, transcription repressor activity

Kndc1 76484 Ras guanyl-nucleotide exchange factor activity, guanyl-

nucleotide exchange factor activity, kinase activity, protein

binding, protein serine/threonine kinase activity

Larp5 217980 RNA binding, molecular function, nucleic acid binding

Map2k4 26398 ATP binding, JUN kinase kinase activity, MAP kinase ki-

nase activity, kinase activity, mitogen-activated protein ki-

nase kinase kinase binding, nucleotide binding, protein ki-

nase activity, protein serine/threonine kinase activity, pro-

tein tyrosine kinase activity, transferase activity

Mapk1 26413 ATP binding, MAP kinase 2 activity, RNA polymerase II

carboxy-terminal domain kinase activity, kinase activity,

mitogen-activated protein kinase kinase kinase binding, nu-

cleotide binding, phosphotyrosine binding, protein binding,

protein kinase activity, protein serine/threonine kinase ac-

tivity, transcription factor binding, transcription regulator

activity, transferase activity

Mapk9 26420 ATP binding, JUN kinase activity, MAP kinase activ-

ity, caspase activator activity, kinase activity, mitogen-

activated protein kinase kinase kinase binding, nucleotide

binding, protein binding, protein kinase activity, protein

serine/threonine kinase activity, transferase activity
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

March7 57438 ligase activity, metal ion binding, molecular function, zinc

ion binding

Mll5 69188 histone-lysine N-methyltransferase activity, metal ion bind-

ing, methyltransferase activity, protein binding, transferase

activity, zinc ion binding

Mtap4 17758 -

Nap1l1 53605 protein binding

Nr2f1 13865 DNA binding, ligand-dependent nuclear receptor activity,

metal ion binding, receptor activity, sequence-speci�c DNA

binding, steroid hormone receptor activity, transcription

activator activity, transcription factor activity, zinc ion

binding

Ola1 67059 ATP binding, GTP binding, hydrolase activity, molecular

function, nucleotide binding

Pcmt1 18537 S-adenosylmethionine-dependent methyltransferase activ-

ity, methyltransferase activity, protein binding, protein-

L-isoaspartate (D-aspartate) O-methyltransferase activity,

transferase activity

Pcsk2 18549 endopeptidase activity, hydrolase activity, peptidase activ-

ity, protein complex binding, serine-type endopeptidase ac-

tivity

Pfn1 18643 Rho GTPase binding, actin binding, phosphatidylinositol-

4,5-bisphosphate binding, protein binding, receptor binding

Polr1d 20018 Protein binding

Ppm1a 19042 catalytic activity, hydrolase activity, magnesium ion bind-

ing, manganese ion binding, metal ion binding, phospho-

protein phosphatase activity, protein C-terminus binding,

protein serine/threonine phosphatase activity

Prpf39 328110 Binding, molecular function

Psma7 26444 endopeptidase activity, hydrolase activity, peptidase activ-

ity, threonine-type endopeptidase activity

Ptpra 19262 hydrolase activity, phosphatase activity, phosphoprotein

phosphatase activity, protein complex binding, protein ty-

rosine phosphatase activity, receptor activity

Ptprz1 19283 hydrolase activity, phosphoprotein phosphatase activity,

protein binding, receptor activity

Rasgef1b 320292 guanyl-nucleotide exchange factor activity, molecular func-

tion

Rnf115 67845 ligase activity, metal ion binding, protein binding, zinc ion

binding

Rundc3b 242819 molecular function
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Target genes of TFBS modules

Gene

symbol

EntrezID Molecular function

Sesn3 75747 molecular function

Slc23a2 54338 L-ascorbate:sodium symporter activity, L-ascorbic acid

transporter activity, symporter activity, transporter activ-

ity

Srrm1 51796 DNA binding, RNA binding, NOT RNA binding

Ssx2ip 99167 actinin binding, protein binding

Tanc2∗) 77097 binding, molecular function

Tlk1 228012 ATP binding, kinase activity, molecular function, nu-

cleotide binding, protein kinase activity, protein ser-

ine/threonine kinase activity, transferase activity

Tm7sf3 67623 molecular function

Trim3 55992 Metal ion binding, protein binding, zinc ion binding

Ttll1 319953 ligase activity, molecular function, tubulin-tyrosine ligase

activity

Txndc14 66958 molecular function

Ube2e2 218793 ATP binding, ligase activity, molecular function, nu-

cleotide binding, small conjugating protein ligase activity,

ubiquitin-protein ligase activity

Zbtb4 75580 metal ion binding, molecular function

Zc3h14 75553 molecular function

Table A.8: Double transgenic mice target genes of the module CTCF-SP1F-ZBPF
derived from biclustering analysis with 13 clusters. The columns describe the Gene
symbol, GeneID and the molecular function as described in GO. ∗) incorporated in
AlzGene database
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Enrichment analysis

Dataset TFBS module r n R N p-value

AD patients

CTCF-EGRF-SP1F 17 8885 68 97259 0.0001

KLFS-SP1F-ZBPF 17 9649 66 97259 0.0002

CTCF-SP1F-ZBPF 16 8742 66 97259 0.0002

double

transgenic mice

CTCF-SP1F-ZBPF 76 13296 232 101113 1.79×10−14

CTCF-EGRF-SP1F 35 11123 119 101113 3.5× 10−8

LOAD patients

CTCF-SP1F-ZBPF 11 16118 26 97259 0.0017

KLFS-SP1F-ZBPF 11 17417 26 97259 0.0033

CTCF-EGRF-SP1F 14 13910 45 97259 0.0041

Table A.9: TFBS module enrichment analysis. The �rst and second column describe
the dataset and the TFBS module, respectively. N is the overall number of promoter
regions in the corresponding genome from the Genomatix database ElDorado (NCBI
build 37) and R corresponds to the amount of promoters in the appropriate clus-
ter. n and r are the number of promoters in the genome and cluster, respectively,
maintaining the TFBS module (column 2). The four parameters are used for p-value
computation (last column).

TFBS module KEGG pathway r n R N p-value

CTCF-EGRF-SP1F

Long-term depression 2 69 25 5368 0.0404

Calcium signaling pathway 3 177 25 5368 0.0476

MAPK signaling pathway 7 265 43 6060 0.0024

Alzheimer's disease 6 191 43 6060 0.0021

Wnt signaling pathway 4 149 43 6060 0.0206

CTCF-SP1F-ZBPF MAPK signaling pathway 8 265 48 6060 0.0010

KLFS-SP1F-ZBPF Wnt signaling pathway 3 150 19 5368 0.0149

Table A.10: TFBS modules: KEGG pathway enrichment analysis. The �rst and
second column describe the TFBS module and the KEGG pathway, respectively. N
is the amount of genes of all human (5368) and mouse (6060) KEGG pathways and R
corresponds to the number of genes in the appropriate cluster used for TFBS module
prediction and also contained in the KEGG pathways. n is the number of genes in
the KEGG pathway (column 2) and r are all genes in the cluster being involved in the
KEGG pathway (column 2). The four parameters are used for p-value computation
(last column).
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Enrichment analysis

Dataset KEGG pathway r n R N p-value

mSVM-RFE

One carbon pool by folate 2 18 53 6662 0.0088

Arachidonic acid metabolism 3 90 53 6662 0.0344

Lysine degradation 2 45 53 6662 0.0495

Cluster
Neuroactive ligand-receptor interaction 2 277 8 6662 0.0409

Endocytosis 2 220 10 6662 0.0410

Table A.11: HR versus LR microarray: KEGG pathway enrichment analysis. The
�rst column describes the dataset for KEGG enrichment analysis either genes occur-
ring in all gene selections of mSVM-RFE or coregulated genes of a cluster. The second
column shows the KEGG pathway. N is the amount of genes of all mouse KEGG
pathways and R corresponds to the number of genes in the appropriate dataset,
which are also contained in the KEGG pathways. n is the number of genes in the
KEGG pathway (column 2) and r are all genes in the dataset being involved in the
KEGG pathway (column 2). The four parameters are used for p-value computation
(last column).

KEGG pathway r n R N p-value

Huntington's disease 5 190 16 6662 6.05× 10−5

Citrate cycle (TCA cycle) 2 31 16 6662 0.0024

Oxidative phosphorylation 3 140 16 6662 0.0042

Parkinson's disease 3 140 16 6662 0.0042

Alzheimer's disease 3 180 16 6662 0.0084

Cell cycle 2 125 16 6662 0.0353

Table A.12: DJ-1 knockout microarray: KEGG pathway enrichment analysis. Coreg-
ulated genes of one cluster were analysed for enrichment in KEGG pathways (column
1). N is the amount of genes of all mouse KEGG pathways and R corresponds to the
number of genes in the cluster, which are also contained in the KEGG pathways. n
is the number of genes in the KEGG pathway (column 1) and r are all genes in the
cluster being involved in the KEGG pathway (column 1). The four parameters are
used for p-value computation (last column).
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DJ-1 knockout microarray: genes adjusted p-value < 0.35

Gene information rawp adj.P.Val foldchange

Probeset Gene

symbol

Entrez

ID

LPS ko

vs.

LPS wt

LPS ko

vs.

LPS wt

LPS

ko

vs.

LPS

wt

Ctrl

ko

vs.

Ctrl

wt

LPS

ko

vs.

Ctrl

ko

LPS

wt

vs.

Ctrl

wt

10518774 Park7 57320 7.63×10−9 0.00022 0.06 0.05 0.83 0.76

10510129 Dhrs3 20148 3.89×10−7 0.00562 2.02 1.6 0.57 0.45

10518520 Ubiad1 71707 2.03×10−6 0.01948 1.89 1.73 0.97 0.89

10510687 Acot7 70025 2.97×10−6 0.02145 0.49 0.63 1.11 1.45

10510270 Mthfr 17769 8.36×10−6 0.02412 0.42 0.92 1.34 2.91

10510552 Rere 68703 3.45×10−5 0.09047 1.39 1.23 0.74 0.66

10522744 Mthfr 17769 4.47×10−5 0.10750 0.67 1 1.07 1.59

10428004 Ankrd33b 67434 6.08×10−5 0.13493 0.78 1.02 1.5 1.95

10510482 Clstn1 65945 7.61×10−5 0.15678 1.59 1.34 1.02 0.86

10480459 Hnmt 140483 0.00016 0.27257 0.73 0.43 0.79 0.46

10518408 Plod1 18822 0.00022 0.31861 0.61 0.68 0.63 0.71

10510061 Pramef8 242736 0.00025 0.34772 0.73 0.88 0.83 1.01

10588283 Rab6b 270192 0.00027 0.34772 0.76 0.34 1.17 0.52

Table A.13: Genes with adjusted p-value < 0.35 of DJ-1 knockout microarray anal-
ysis. The �rst three columns describe the gene by probeset ID, Gene symbol and
Entrez ID. Column 4 and 5 show p-value and adjusted p-value of the classes LPS
knockout versus LPS wildtype. The last four columns specify the foldchange (linear
ratio) between the di�erent classes.
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MAPT and SNCA - SNPs in TFBSs

Poly

name

Study name Chr

position

TFBS family

rs3744456 Camuzat, 2008

PMID: 18785640

43972176 V$PRDM

rs3744457 Mizuta, 2006

PMID: 16500997

43972915 V$EGRF, V$EBOX, V$PAX9,

V$PAX5, V$DMTF

rs1560310 Oliveira, 2004

PMID: 15459824

43978534 V$GFI1, V$CREB

rs1467966 Tobin, 2008

PMID: 18509094

43984399 V$YY1F, V$CEBP, V$HMTB,

V$ETSF, V$IKRS, V$XBBF

rs1467967 Das, 2009

PMID: 19450659

43986179 V$RUSH, V$ABDB

rs17563965 Maraganore, 2005

PMID: 16252231

43990919 V$PAX6, V$KLFS, V$LEFF, V$BTBF

rs17563986 Saad, 2010

PMID: 21084426

43991272 -

rs3785880 Camuzat, 2008

PMID: 18785640

43993376 V$PARF, V$HNFP, V$ETSF,

V$EGRF, V$KLFS, V$SP1F

rs35908989 Camuzat, 2008

PMID: 18785640

43994021 V$KLFS, V$MAZF, V$RXRF

rs17649641 Maraganore, 2005

PMID: 16252231

43997372 V$RUSH, V$MYBL, V$MOKF

rs767057 Oliveira, 2004

PMID: 15459824

43998822 -

rs4792894 Camuzat, 2008

PMID: 18785640

43999203 V$CREB, V$ZF35, V$GLIF

rs242556 Camuzat, 2008

PMID: 18785640

44002250 V$HEAT, V$NFAT, V$E2FF

rs17564829 Maraganore, 2005

PMID: 16252231

44006601 V$TALE, V$SRFF

rs17650417 Maraganore, 2005

PMID: 16252231

44013103 V$PCBE, V$YY1F, V$EVI1, V$TALE

rs11867549 Simon-Sanchez, 2009

PMID: 19915575

44013235 -

rs2435205 Fung, 2006

PMID: 17052657

44018764 V$KLFS
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MAPT and SNCA - SNPs in TFBSs

Poly

name

Study name Chr

position

TFBS family

rs242557 Camuzat, 2008

PMID: 18785640

44019712 V$KLFS, V$CP2F, V$STAT

rs242559 Tobin, 2008

PMID: 18509094

44025888 V$NR2F

rs242562 Fidani, 2006

PMID: 16552760

44026739 V$DEAF, V$NFKB, V$ETSF,

V$ZF01, V$NOLF

rs17571857 Maraganore, 2005

PMID: 16252231

44035706 V$NF1F, V$SRFF, V$PERO,

V$RXRF, V$LEFF

Table A.14: All SNPs of MAPT lying in the �rst intron. The study, which revealed
the polymorphism (column 1), with corresponding PubMedID as well as the position
of the SNP in the human genome is shown in column 2 and 3, respectively. All
predicted TF-families with binding site located at the SNP are listed in the last
column.

Poly

name

Study name Chr

position

Gene

region

TFBS family

rs3756059 Kobayashi, 2006

PMID: 17078049

90757272 1. Intron V$MYBL, V$GREF, V$OVOL

rs1372519 Fung, 2006

PMID: 17052657

90757309 1. Intron V$HAND, V$ZICF, V$CTCF,

V$FKHD

rs2870027 Kobayashi, 2006

PMID: 17078049

90757312 1. Intron V$HAND, V$ZICF, V$CTCF

rs3756063 Kobayashi, 2006

PMID: 17078049

90757394 1. Intron V$RXRF

rs1372520 Kobayashi, 2006

PMID: 17078049

90757505 1. Intron V$BRN5, V$IRFF, V$ETSF,

V$RXRF, V$AP1R

rs2245801 Kobayashi, 2006

PMID: 17078049

90757840 1. Intron V$DEAF, V$DMTF, V$ETSF,

V$PAX3, V$HEAT, V$YY1F

rs2301136 Kobayashi, 2006

PMID: 17078049

90757843 1. Intron V$DEAF, V$DMTF, V$ETSF,

V$PAX3

rs2301135 Farrer, 2001

PMID: 11532993

90758389 Promoter V$KLFS, V$SP1F, V$ZF02,

V$AP1R

rs3216775 Kobayashi, 2006

PMID: 17078049

90758437:

90758438

Promoter V$GATA

Table A.15: All SNPs of SNCA lying in the promoter and �rst intron. The study,
which revealed the polymorphism (column 1), with corresponding PubMedID, the
position of the SNP in the human genome as well as the SNCA gene region is shown
in column 2, 3 and 4, respectively. All predicted TF-families with binding site located
at the SNP are listed in the last column.
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Predicted microRNA target genes

Gene symbol Entrez geneID miR target gene / AlzGene DB gene

ABCA1 19 miR-1306, AlzGeneDB

ABHD2 11057 miR-103, miR-107

AC007546.6-201 400073 miR-103, miR-107

ADAM10 102 miR-1306, AlzGeneDB

ADAM7 8756 miR-103, miR-107

AMOT 154796 miR-103, miR-107

APH1A 51107 miR-1306, AlzGeneDB

AQP11 282679 miR-103, miR-107

ARHGAP5 394 miR-103, miR-107

Ari2 10425 miR-103, miR-107

ARL6IP2 64225 miR-103, miR-107

ARNT 405 miR-103, miR-107

ARPC2 10109 miR-103, miR-107

BACH2 60468 miR-103, miR-107

BDNF 627 miR-103, miR-107, AlzGeneDB

BMX 660 miR-103, miR-107

BSDC1 55108 miR-103, miR-107

BTG2 7832 miR-103, miR-107

C20orf39 79953 miR-103, miR-107

C21orf55 54943 miR-1306, AlzGeneDB

C2orf42 54980 miR-103, miR-107

C5orf41 153222 miR-103, miR-107

CACNA2D1 781 miR-103, miR-107

CACNB2 783 miR-1306, AlzGeneDB

CAPZA2 830 miR-103, miR-107

CCNE1 898 miR-103, miR-107

CDK5R1 8851 miR-103, miR-107, AlzGeneDB

CDK6 1021 miR-103, miR-107

CELSR2 1952 miR-103, miR-107

CHD1 1105 miR-103, miR-107

CHEK1 1111 miR-103, miR-107

CHRNA3 1136 miR-1306, AlzGeneDB

CHRNA4 1137 miR-1306, AlzGeneDB

CLCN5 1184 miR-103, miR-107

COBLL1 22837 miR-103, miR-107

COX15 1355 miR-1306, AlzGeneDB
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Predicted microRNA target genes

Gene symbol Entrez geneID miR target gene / AlzGene DB gene

CPEB3 22849 miR-103, miR-107

CPNE6 9362 miR-103, miR-107

CXCL12 6387 miR-1306, AlzGeneDB

CXorf23 256643 miR-103, miR-107

CYP19A1 1588 miR-1306, AlzGeneDB

DCBLD2 131566 miR-103, miR-107

DCUN1D4 23142 miR-103, miR-107

DICER1 23405 miR-103, miR-107

DKFZp564E0482 79012 miR-103, miR-107

DLL1 28514 miR-103, miR-107

DSC1 1823 miR-1306, AlzGeneDB

DVL1 1855 miR-103, miR-107, AlzGeneDB

EIF4B 1975 miR-103, miR-107

EIF5 1983 miR-103, miR-107

ENSA 2029 miR-103, miR-107

ESR1 2099 miR-103, miR-107, AlzGeneDB

ESRRA 2101 miR-103, miR-107

EXOC5 10640 miR-103, miR-107

FAM81A 145773 miR-103, miR-107

FBXW7 55294 miR-103, miR-107

FOXJ2 55810 miR-103, miR-107

FRYL 285527 miR-103, miR-107

FSTL4 23105 miR-103, miR-107

GALNTL6 442117 miR-103, miR-107

GNA11 2767 miR-1306, AlzGeneDB

GPATCH8 23131 miR-103, miR-107

HPCAL1 3241 miR-1306, AlzGeneDB

IGF1 3479 miR-1306, AlzGeneDB

IGF1R 3480 miR-1306, AlzGeneDB

IHH 3549 miR-103, miR-107

JAKMIP2 9832 miR-103, miR-107

JUB 84962 miR-103, miR-107

KIAA0774 23281 miR-103, miR-107

KIAA1005 23322 miR-103, miR-107

KIAA1033 23325 miR-103, miR-107

KIAA1726 85463 miR-103, miR-107

KIAA2018 205717 miR-103, miR-107

KIF21A 55605 miR-103, miR-107

KIF23 9493 miR-103, miR-107

KLHL6 89857 miR-103, miR-107

LDLR 3949 miR-1306, AlzGeneDB

LRP1 4035 miR-103, miR-107, AlzGeneDB
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Predicted microRNA target genes

Gene symbol Entrez geneID miR target gene / AlzGene DB gene

LRP2 4036 miR-103, miR-107, AlzGeneDB

LRP8 7804 miR-1306, AlzGeneDB

LRRN3 54674 miR-103, miR-107

MECP2 4204 miR-103, miR-107

MED26 9441 miR-103, miR-107

MFN2 9927 miR-103, miR-107

MTMR4 9110 miR-103, miR-107

MYB 4602 miR-103, miR-107

MYH9 4627 miR-103, miR-107

N4BP1 9683 miR-103, miR-107

NAV2 89797 miR-103, miR-107

NEDD9 4739 miR-107, AlzGeneDB

NF1 4763 miR-103, miR-107

NOTCH2 4853 miR-103, miR-107

NOVA1 4857 miR-103, miR-107

NR4A3 8013 miR-103, miR-107

NTRK2 4915 miR-103, miR-107, miR-1306, AlzGeneDB

OTUD4 54726 miR-103, miR-107

PCGF5 84333 miR-103, miR-107, AlzGeneDB

PDE3B 5140 miR-103, miR-107, AlzGeneDB

PELI2 57161 miR-103, miR-107

PER3 8863 miR-103, miR-107

PIK3R1 5295 miR-103, miR-107, AlzGeneDB

PLAG1 5324 miR-103, miR-107

PLCB1 23236 miR-103, miR-107

PLS3 5358 miR-103, miR-107

PPARD 5467 miR-1306, AlzGeneDB

PPARGC1A 10891 miR-1306, AlzGeneDB

PRKAB2 5565 miR-107, AlzGeneDB

PRKG1 5592 miR-103, miR-107

PTH 5741 miR-103, miR-107

RAB11FIP2 22841 miR-103, miR-107

RAI14 26064 miR-103, miR-107

RANGRF 29098 miR-103, miR-107

RASSF5 83593 miR-103, miR-107

RBM24 221662 miR-103, miR-107

RGS4 5999 miR-103, miR-107, AlzGeneDB

RNF38 152006 miR-103, miR-107

RUNX1T1 862 miR-103, miR-107

RXRA 6256 miR-1306, AlzGeneDB

SAP130 79595 miR-103, miR-107

SCN1A 6323 miR-103, miR-107
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Predicted microRNA target genes

Gene symbol Entrez geneID miR target gene / AlzGene DB gene

SCN2A2 6326 miR-103, miR-107

SEPT3 55964 miR-1306, AlzGeneDB

SEPT8 23176 miR-103, miR-107

SH2D2A 9047 miR-103, miR-107

SH3GL2 6456 miR-103, miR-107

SIPA1L2 57568 miR-103, miR-107

SLN 6588 miR-103, miR-107

SNRK 54861 miR-103, miR-107

SNX3 8724 miR-103, miR-107

SPINK5 11005 miR-103, miR-107

SPRED1 161742 miR-103, miR-107

ST8SIA3 51046 miR-103, miR-107

SYNJ1 8867 miR-103, miR-107

TANC2 26115 miR-1306, AlzGeneDB

TARBP2 6895 miR-103, miR-107

TBC1D19 55296 miR-103, miR-107

TDG 6996 miR-103, miR-107

TGFBR3 7049 miR-103, miR-107

TLK1 9874 miR-103, miR-107

TNFRSF1B 7133 miR-1306, AlzGeneDB

TSPAN8 7103 miR-103, miR-107

UBE4A 9354 miR-103, miR-107

UMOD 7369 miR-103, miR-107

UPF2 26019 miR-103, miR-107

VAMP1 6843 miR-103, miR-107

VCP 7415 miR-103, miR-107, AlzGeneDB

VDP 8615 miR-103, miR-107

WDR22 8816 miR-103, miR-107

WNT3A 89780 miR-103, miR-107

YTHDC1 91746 miR-103, miR-107

YWHAH 7533 miR-103, miR-107

ZBTB10 65986 miR-103, miR-107

ZC3H12B 340554 miR-103, miR-107

ZKSCAN1 7586 miR-103, miR-107

ZNF449 203523 miR-103, miR-107

Table A.16: The table shows a list of predicted target genes of miR-103, miR-107,
miR-1306 common in 4 out of 6 DBs. The target genes are either listed in AlzGene
DB and target gene of at least one miRNA or target gene of at least two miRNAs
(column 3). Beside the gene symbol the Entrez GeneID is given.
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