
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

Stochastic and Deterministic Methods for

3D Shape Registration

Chavdar Papazov

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Huckle

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Darius Burschka

2. Associate Prof. Dr. Antonis A. Argyros, Univ. of Crete/Griechenland

Die Dissertation wurde am 26.09.2012 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 02.09.2013 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:papazov@in.tum.de

Abstract

In this thesis, we develop deterministic and stochastic approaches for rigid and

deformable 3D shape registration and the closely related problem of 3D object

recognition and pose estimation.

We introduce an algorithm for the rigid registration of point clouds without any

correspondence information available and without making any assumptions about

the initial alignment of the input data. The problem is converted to the minimization

of a non-linear cost function which we design to be especially robust to noise and

outliers. In order to compute a globally optimal solution independent of the initial

alignment of the point clouds, we present a new global optimization approach. It is

an adaptive stochastic sampler which uses a generalized binary space partitioning

tree and allows to efficiently optimize non-linear objective functions over complex

shaped search spaces.

Rigid registration, as discussed in this thesis, assumes that there are only two shapes,

e.g., two different views of the same physical object. If we want to simultaneously

register multiple shapes to a shape which represents several objects, we end up with

the problem of 3D object recognition and pose estimation. We develop a solution

based on a robust geometric descriptor, a hashing technique and an efficient localized

RANSAC-like sampling strategy. We show that the proposed sampling strategy

significantly reduces the complexity of the method, namely, from cubic to linear.

This allows to integrate the recognition in a robotic object grasping system without

causing noticeable delays in the manipulation process.

Furthermore, we drop the restriction of rigidity and develop an algorithm for pair-

wise deformable 3D shape registration. We introduce a unified framework to study

deformable registration together with deformation-based shape modeling which is a

highly relevant research topic in computer graphics. Thus, both problems are put

on the same theoretical footing which allows to investigate convergence issues and

computational aspects of both problems in a unified way. Representing a shape by

a collection of rigid cells connected to each other by elastic strings makes it possible

to model elastic deformations and to develop provably numerically stable energy

minimization methods.

Finally, the presented algorithms are evaluated on a variety of real data sets and

compared with several state-of-the-art approaches. Furthermore, some of the meth-

ods developed in this thesis are currently employed in an industrial setting as part

of an automated truck engine painting pipeline and others are part of a real-world

robotic object grasping system.

Acknowledgements

First of all, I want to thank my supervisor Prof. Darius Burschka for giving me the

opportunity to do my PhD in his group. I want to thank him for all the insightful

discussions, for his advice and especially for giving me the freedom to build up and

develop my own ideas.

The GRASP project provided the funding for the major part of my stay at TUM

and thus made the development of this thesis possible. Many thanks go to all the

colleagues involved in this project for making it an exciting forum for exchanging

scientific ideas in the areas of robotics and computer vision.

Furthermore, I want to thank all the members of our chair for Robotics and Em-

bedded Systems at TUM for being such great colleagues. Special thanks go to my

colleagues and passionate cooks from the Hochbrück division, namely (sorted alpha-

betically), Elmar Mair, Susanne Petsch, Juan Carlos Ramirez de la Cruz and Oliver

Ruepp, for the funny lunch breaks and epic table soccer battles.

I wish to thank my family, Mariya Papazova, Chavdar Petrov Papazov and Yavor

Papazov as well as my girlfriend Martina Ivanova for their love and endless support.

I also want to thank all my friends which I neglected so often especially in the tough

phases of writing this thesis.

Contents

1 Introduction 1

1.1 What is 3D Shape Registration and 3D Object Recognition? 4

1.1.1 Applications in Science and Technology 6

1.2 Contributions and Overview . 8

2 Stochastic Optimization for Rigid 3D Shape Registration 9

2.1 Related Work . 10

2.1.1 Rigid Point Set Registration . 10

2.1.2 Optimization-Based Point Set Registration 12

2.1.3 Stochastic Optimization . 12

2.2 Registration as a Minimization Problem . 13

2.2.1 Definition of the Model Scalar Field . 13

2.2.2 Cost Function Definition . 15

2.3 Stochastic Adaptive Search for Global Minimization 16

2.3.1 Generalized BSP Trees . 17

2.3.2 Problem Definition . 18

2.3.3 Overall Algorithm Description . 18

2.3.4 Tree Initialization . 19

2.3.5 Leaf Selection . 19

2.3.6 Tree Expansion . 20

2.3.7 Stopping Rule . 21

2.3.8 Remark . 21

2.4 The Space of Rigid Transforms . 21

2.4.1 Parametrization of Rotations . 22

2.4.2 Hierarchical Decomposition of the Rotation Space 23

2.4.3 Uniform Sampling from Spherical Boxes 25

2.4.4 Computation of the Search Space and the G-BSP Tree 26

iii

CONTENTS

3 3D Object Recognition: Many-to-One Rigid Shape Registration 27

3.1 Related Work . 29

3.2 Notation and Basic Algorithms . 30

3.2.1 Fast Surface Registration . 30

3.2.2 RANSAC . 31

3.3 Method Description . 32

3.3.1 Model Preprocessing Phase . 32

3.3.2 Online Recognition Phase . 33

3.3.3 Time Complexity . 37

4 A Unified Framework for Shape Modeling and Deformable 3D Shape Regis-

tration 39

4.1 Related Work . 41

4.1.1 Deformation-Based 3D Shape Modeling 41

4.1.2 Deformable 3D Shape Registration . 42

4.2 Shape Representation . 44

4.3 Energy Formulation and Minimization . 46

4.3.1 Problem Formulation . 46

4.3.2 Numerical Minimization . 48

4.3.3 Shape Covers and Cell Types . 51

4.4 Deformation-Based Shape Modeling . 55

4.5 Deformable Shape Registration . 57

4.5.1 Computation of the Target Positions and Their Weights (Correspondence

Estimation) . 57

4.5.2 Convergence Issues . 58

5 Experimental Results 59

5.1 Rigid 3D Shape Registration . 59

5.1.1 Kernel Comparison . 60

5.1.2 Comparison with State-of-the-Art . 61

5.1.3 Dependence on the Cooling Speed . 63

5.1.4 Further Examples . 64

5.2 3D Object Recognition . 66

5.2.1 Recognition of a Single Object in Occluded Scenes 66

5.2.2 Recognition of Multiple Objects in Noisy Scenes 67

5.2.3 Comparison . 69

5.2.4 Runtime . 70

5.3 Deformable 3D Shape Registration . 71

5.3.1 Range Scan Pairs . 71

5.3.2 Complete Source Model and an Incomplete Target Scan 73

iv

CONTENTS

5.3.3 Comparison . 75

5.3.4 Deformable Hand Tracking . 76

6 Conclusions and Future Work 83

6.1 Conclusions . 83

6.2 Future Work . 85

A Vision-Based Robotic Grasping of Known Objects 87

A.1 Robotic Object Manipulation . 88

A.2 Experiments . 90

A.2.1 “Blind” Impedance Controlled Grasping 90

A.2.2 Vision-Based Impedance Controlled Grasping 91

A.2.2.1 Single Standing Objects . 92

A.2.2.2 Object Pile . 92

A.2.2.3 Table Cleanup . 93

B Knowledge Transfer through Deformable Registration 95

Author’s Publications 97

References 99

v

vi

Chapter 1

Introduction

3D shape registration is a long-standing highly relevant research topic in the field of geometry

processing with many important applications in domains as diverse as life sciences, reverse

engineering, image processing and entertainment and multimedia. The closely related problem

of 3D object recognition can be seen as the “Holy Grail” of computer vision: it is one of the

oldest, most fundamental and still widely studied problems in this area. A computer system able

to robustly and efficiently recognize its surrounding is very useful in robotics, manufacturing

and human-machine interaction. In fact, the development of most of the algorithms presented

here is motivated by questions arising in these fields.

Two major classes of shape registration and object recognition approaches can be distin-

guished: appearance-based methods (operating on 2D images) and methods working with 3D

data (point clouds, meshes, etc). As the name suggests, the appearance-based algorithms use

only the object’s appearance usually captured by different 2D images [7]. This class can be

further subdivided into local and global methods. The local approaches deal with so-called fea-

tures which are small, distinctive parts of the object’s projection onto the image, e.g., corners,

edges or small patches with characteristic form or texture properties. Provided a set of input

images showing the object(s) of interest, the usual strategy of the local methods (e.g., [8]) is

first to detect a set of features, describe and store them in a database. Next, given an image

representing the scene in which the objects are supposed to be recognized, the same procedure

is repeated. However, the detected scene features are not stored but rather matched to those

in the database in order to create object hypotheses. The last step consists of verifying the

hypotheses using, e.g., RANSAC [9] or the generalized Hough transform [10]. Describing each

of these steps in detail is beyond the scope of this thesis—the interested reader is referred

to [11, 7].

The global appearance-based methods operate with the whole image or at least with a

large portion of it. In a training phase, the information contained in the region of interest

is projected to a lower-dimensional subspace in which a comparison can be performed more

efficiently [7]. This is often achieved using dimensionality reduction techniques like principle

1

1. INTRODUCTION

(a) (b)

Figure 1.1: (a) A good match between a template image representing the object of interest (left)

and a scene (right). (b) However, it turns out, that the beer bottle is a sticker put on the surface

of a mug (image courtesy of Radu Bogdan Rusu [16]).

component analysis (PCA) [12], independent component analysis (ICA) [13] and non-negative

matrix factorization (NMF) [14]. The online phase can be performed by sliding a window

over the scene image and testing each part whether it is consistent with some of the patches

processed in the training phase. Refer to [15, 7] for more details.

Since the global approaches use more information than the local ones, the former are con-

sidered as more discriminative whereas the latter can better deal with occluded objects [7].

However, in order to be useful, all appearance-based methods should be invariant to transla-

tion, rotation, scale and perspective projection as well as to changes in illumination. Although

significant progress has been made in this direction this still remains a very challenging task.

In contrast, methods working with 3D data do not have to deal with these problems. As al-

ready mentioned above, a great deal of this work is motivated by applications in the field of

robotic object manipulation. Vision-based robotic object grasping, in particular, needs object

recognition and pose estimation methods which operate on 3D data and not on 2D images.

The reasons are twofold. First, in order to perform a stable grasp, it is very important to

know the true 3D geometric shape of the object. The 2D appearance of an object may provide

completely wrong hints about its shape. This is illustrated in Figure 1.1. The beer bottle is

apparently successfully recognized and localized in the scene (Figure 1.1(a)). However, after

zooming out (Figure 1.1(b)), it turns out that the bottle is actually a sticker put on the surface

of a mug. A robot trying to grasp the bottle will most probably fail since the mug has a different

geometry.

The second reason in favour of 3D techniques has to do with the pose of the object in space.

Clearly, not only the 3D shape but also the position and orientation of the object is crucial for

a successful grasp. The 2D object appearance may provide misleading information about the

object pose since texture elements may be misaligned with respect to the object surface. This

often happens to labels of household objects like grocery items.

2

These are the reasons why we put the focus of this thesis on the 3D processing techniques.

However, there are also difficulties which go along with this paradigm. The acquisition of 3D

data is anything but trivial. Compared to the 2D image formation in digital cameras, the

process of 3D reconstruction is computationally more demanding and much more error-prone.

Reviewing all available techniques is far beyond the scope of this thesis. Instead, we provide a

short discussion on two common approaches along with their pros and cons.

The non-invasive (or passive) 3D reconstruction from a set of 2D images is a major class

of 3D scene digitization approaches. Stereo reconstruction [17] and bundle adjustment [18]

are two well-known representatives. These techniques have a great potential and very diverse

application domains ranging from indoor robot navigation and exploration [19, 20] to building

reconstruction from satellite image data [21]. Unfortunately, the methods tend to be noisy

and produce rather sparse reconstructions in the case of textureless objects which are often

encountered in home environments.

The invasive (or active) approaches belong to another class of reconstruction algorithms.

They capture the scene geometry in an active way by, e.g., projecting a known light pattern

in the scene. Using a digital camera the projection is captured and the depth information is

inferred from the way the pattern is deformed [22, 23]. This active process makes the recon-

struction more robust and precise and more independent on the particular surface properties of

the scene objects. However, the light emitted by natural sources, like the sun, might interfere

with the projected light pattern and prevent a successful reconstruction. This limits the usage

of many active sensors to indoor close range scenarios with no direct sun irradiation. A further

limitation of the active sensors is that only one can be active at a time since otherwise they

could interfere each other.

No matter what 3D data acquisition technique is employed there are difficulties common

to all of them: (i) noise and outliers are inevitable for any physical sensor, (ii) holes in the

reconstruction are common, even for active sensors, in the case of highly specular surfaces and

(iii) usually, only partial reconstructions are available since the sensors capture only the facing

side of an object. For a shape registration or object recognition algorithm to be useful it has

to deal adequately with all these problems. This is taken into account while developing the

methods in this thesis.

Several approaches to rigid 3D shape registration convert the problem to the minimization

of the sum of squared distances between corresponding points on the input shapes [24, 25, 26].

This results in methods which are sensitive to noise and outliers. We design a cost function

which is much more robust to noise, outliers and missing data. Furthermore, a common feature

of most existing algorithms [24, 27, 25, 26] is to use a local optimization method which makes

the registration result strongly dependent on the initial alignment of the shapes. To avoid this

dependency, we develop a new stochastic approach for global optimization.

Many 3D object recognition approaches rely on finding corresponding features between the

model shapes and the scene [28, 29, 30, 31, 32, 33]. This, however, is based on the assumption

3

1. INTRODUCTION

rigid registration

(a) (b)

Figure 1.2: Rigid registration of two range scans.

that the objects of interest have distinctive points, e.g., the tip of a nose of a face or the corners

of the eyes. Unfortunately, many objects, like cylinders or spheres, do not possess such unique

parts. This makes the feature-based methods to degenerate to brute force search [34]. A further

strategy is to model the objects as an assembly of simple parametric shapes (primitives) and to

detect those shapes and their spatial relationships in an input scene [35, 36, 37]. This approach

limits the recognition system to objects which can be approximated reasonably well by the

chosen type of primitives. In contrast, we do not pose any restrictions on the geometry of the

objects—they can be as simple as spheres or as complicated as children’s toys like teddy bears,

rabbits etc.

Similar to the rigid version, the deformable 3D shape registration problem is also often

solved by minimizing a cost function defined on a suitable deformation space. Several authors

parametrize the shape deformation by using one affine matrix per shape point [38, 39, 40].

This gives rise to highly underdetermined systems which are usually regularized by introducing

additional stiffness terms. The resulting cost functions have many unknowns which leads to

high-dimensional and computationally heavy optimization problems usually solved with general-

purpose optimizers. Instead, we design a framework tailored to the problem at hand and

develop an energy minimization algorithm which is very efficient in terms of both computational

complexity and memory.

More detailed discussions on related work will be given in Chapters 2, 3 and 4.

1.1 What is 3D Shape Registration and 3D Object Recog-

nition?

To put it briefly, 3D shape registration is the problem of finding a spatial transform which

aligns one shape to another. This “definition” gives rise to several questions: (i) what is a

shape, (ii) what type of transform are we looking for and (iii) how do we measure alignment

quality? Precise answers will be given later in the chapters of the thesis. At this point, we will

provide an intuitive idea to the reader:

4

1.1 What is 3D Shape Registration and 3D Object Recognition?

rigid registration deformable registration

(a) (b) (c)

Figure 1.3: Rigid and deformable registration of two 3D shapes.

(i) A 3D shape is a bounded subset of 3D space representing a real, physical object. Examples

of shapes are point clouds, surface meshes, volumetric meshes and voxel grids, just to name

a few

(ii) We are looking for a spatial transform which brings one of the two input shapes close to

the other. In the case of rigid shape registration, it is a rigid transform, whereas in the

more general case of deformable registration, it is a not too distortive mapping from a

shape to 3D space.

(iii) Alignment quality is measured by means of a real-valued cost (or energy) function which

is defined on the shape to be aligned.

The concept of rigid/deformable 3D shape registration is best explained by examples. Fig-

ure 1.2 shows two scans of a doll head. After capturing the front side, the model was rotated

and scanned again in order to be reconstructed more completely. However, the scans are mis-

aligned when rendered in the coordinate system of the scanner (Figure 1.2(a)). This is due to

the fact that the rotation was not taken into account. A rigid registration of the scans leads to

the desired result (Figure 1.2(b)).

In some situations, like scanning an object while it undergoes a non-rigid motion, solely

applying rigid transforms is not sufficient to bring the shapes in a close correspondence. Fig-

ure 1.3(a) shows two arm scans which differ by an articulated motion. Obviously, a rigid regis-

tration does not lead to a precise alignment (Figure 1.3(b)), whereas a deformable registration

does (Figure 1.3(c)).

A problem closely related to 3D shape registration is the one of 3D object recognition

and pose estimation. The setting is the following: instead of having two shapes (partially)

representing one and the same physical object, we have multiple shapes, called models, and

a further data set, called scene, which contains parts (of some) of the models. The task is to

identify the models that are present in the scene and to determine their position and orientation.

In other words, we have the task to register several shapes (object models) to another shape

(the scene) which contains subsets of the models. In this sense, object recognition and pose

estimation can be viewed as many-to-one shape registration. Figure 1.4 provides an example.

5

1. INTRODUCTION

(a) (b) (c)

(d)

Figure 1.4: 3D object recognition and pose estimation. (a) The scene consisting of several

objects on a table. In this particular example, the objects the system is supposed to recognize and

localize are the boxes and the rabbit. The black objects on the right and the rubber on the left are

not of interest. (b) Depth map of the scene computed by a Kinect sensor [41]. Red corresponds

to scene points close to the sensor and blue to those which are further away. (c) The 3D scene

reconstruction provided by Kinect. (d) The recognition and pose estimation result shown from

two different viewpoints. The scene points are shown in blue and the recognized models are shown

as yellow meshes and superimposed over the scene.

1.1.1 Applications in Science and Technology

As already mentioned at the beginning, both 3D shape registration and 3D object recognition

and pose estimation have a variety of important applications in many areas of science and

technology. We include a brief list of specific applications in several different domains.

• Life Sciences:

– A topic that receives much attention in biology and medicine is the creation of

so-called standard spatial atlases. Such an atlas is a geometrical model of, e.g., a

human organ built by averaging multiple surfaces each one representing an organ of

a particular individual. In order to compute the atlas, the input surfaces have to be

6

1.1 What is 3D Shape Registration and 3D Object Recognition?

aligned to each other in a rigid or deformable manner in order to establish pointwise

correspondences needed for the average computation [42].

– Medical image segmentation can also benefit from robust rigid/deformable shape

registration techniques. For example, in order to segment a human organ in a com-

puter tomography (CT) image set, an atlas can be rigidly or deformably registered

to the image stack by defining a force field attracting the atlas surface to the organ

boundaries in the CT scan.

– A further topic of interest in the life sciences is locomotion analysis. The first step

in this process is to extract the motion of a particular patient. This can be done

using deformable shape registration techniques as follows. Given a mesh model of the

object of interest and an input stream of range scans capturing the motion, the model

can be sequentially registered to the scans. An appropriate temporal interpolation

of the mesh vertex positions yields a trajectory from the first to the last frame in

the scan sequence. This information can be used to extract the underlying skeletal

motion which is the one needed for locomotion analysis.

• Robotics: Vision-based object manipulation is an active research topic in robotics. In

order to operate safely and robustly in chaotic, uncontrolled and dynamically changing

environments, robots can not rely on hard-coded knowledge about that environment. Effi-

cient and robust 3D object recognition techniques are very useful to provide the necessary

updates of the scene knowledge.

• Human-Machine Interaction: A direction of research within the area of human-machine

interaction deals with new interaction methods which go beyond the desktop metaphor

such as multi-touch tabletops. One example is the re-appropriating of everyday objects

as interactive devices: suppose a speaker is about to give a talk but she forgot to take

a laser pointer. Is there any non-technical reason for not being able to pickup a pen,

point towards the projection screen and let a red dot appear at the right spot? A 3D

object recognition and pose estimation algorithm can be of great help for the technical

realization of this scenario: the pen in the hand of the speaker and the projection screen

can be localized and the pointing direction of the pen can be determined in order to

compute the intersection point with screen.

• Entertainment Industry: Motion capturing is the process of digitizing the movements

of one or more real actors. In the context of film and game production, the recorded

moves are transferred to a virtual character to make its motion natural and realistic look-

ing. Similar to the locomotion analysis discussed above, a deformable shape registration

technique can be used to capture the actor’s motion.

7

1. INTRODUCTION

1.2 Contributions and Overview

The contributions of this thesis are the following:

1. We develop a new method for robust rigid 3D shape registration.

(a) Its distinctive feature is extreme robustness to noise and outliers in the data sets.

This is achieved by carefully designing a cost function based on an inverse distance

kernel known to be insensitive to noise and outliers.

(b) A globally optimal alignment is achieved by a new efficient stochastic global opti-

mization algorithm.

(c) A new technique of decomposing the space of rotations in equally sized parts is

presented and used in conjunction with the stochastic optimization method.

2. A new efficient 3D object recognition and pose estimation algorithm is introduced. It

is based on a robust geometric descriptor, a hashing technique and an efficient localized

RANSAC-like sampling strategy. No assumptions about the geometric complexity of the

shapes are made. Furthermore, the main procedure in the algorithm has a linear time

complexity and is highly parallelizable which makes it possible to use the algorithm for,

e.g., robotic object manipulation tasks without causing noticeable delays in the overall

process.

3. We introduce a unified framework for deformation-based shape modeling and deformable

3D shape registration. Using the same theoretical framework allows to simultaneously

solve both problems and prove the convergence of the resulting energy minimization al-

gorithms.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the rigid 3D shape

registration method. Chapter 3 is about 3D object recognition and pose estimation. Chapter 4

introduces the unified framework for 3D shape modeling and deformable 3D shape registration.

In Chapter 5, the proposed methods are experimentally validated on a variety of real data

and compared with several state-of-the-art approaches. Chapter 6 draws some conclusions and

discusses possible directions of future research. Appendix A demonstrates how our 3D object

recognition and pose estimation method can be used to support the robotic grasping of known

objects in occluded, dynamically changing environments. Appendix B includes an application of

our deformable registration algorithm to the problem of knowledge transfer between geometric

models.

8

Chapter 2

Stochastic Optimization for Rigid

3D Shape Registration

In this chapter, we introduce a rigid 3D shape registration algorithm based on global stochastic

optimization of a noise and outlier robust cost function. The problem at hand is formulated as

follows. Given two finite point sets M = {x1, . . . ,xm} ⊂ R3 and D = {y1, . . . ,yn} ⊂ R3, find a

rigid transform T : R3 → R3, such that the point set T (D) = {T (y1), . . . , T (yn)} is optimally

aligned in some sense to M. M is referred to as the model and D as the data (point) set. Note

that in this chapter, we do not need any connectivity information, i.e., the input shapes are

represented by point clouds. Points from M and D are called model points and data points,

respectively. In Figure 2.1, a model and a data set are shown before and after rigid registration.

Even though T is restricted to be a rigid transform, i.e., T (x) = Rx + t, with R being a

rotation matrix and t a translation vector, the problem remains hard because of several reasons:

(i) no initial pose estimation is available, (ii) no correspondences between the points are known,

(iii) the point sets are incomplete and (iv) corrupted by noise and outliers.

Contributions and Chapter Overview

The algorithm we propose in this chapter aims to robustly solve the rigid point set registra-

tion problem in the case of noisy, outlier corrupted and incomplete point sets with unknown

correspondences between the points. Our main contributions are (i) a noise and outlier resis-

tant cost function, (ii) a stochastic approach for its global minimization, (iii) a technique for

a hierarchical decomposition of the rotation space in disjoint parts of equal volume and (iv) a

procedure for uniform sampling from spherical boxes.

The rest of the chapter is organized as follows. After reviewing related work in Section 2.1,

we define, in Section 2.2, the task of aligning two point sets as a minimization problem and

introduce our cost function. Section 2.3 presents a stochastic approach for global minimization.

9

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

(a) (b) (c) (d) (e)

Figure 2.1: Rigid point set registration obtained with our method. The input point sets, model

and data, are shown in (a) and (b), respectively. Although rendered as meshes no surface infor-

mation (like normals) is used for the registration. Note that the scans are noisy and only partially

overlapping. (c), (d) Our registration result (shown from two different viewpoints) obtained with-

out noise filtering, local ICP refinement [24] or any assumptions about the initial pose of the input

scans. (e) A closer view of the part marked by the rectangle in (d). Observe the high quality of

the alignment.

In Section 2.4, we motivate the choice of the rotation space parametrization we use in combi-

nation with our minimization approach and introduce a technique for a hierarchical rotation

space decomposition. Furthermore, a procedure for uniform sampling from spherical boxes is

described.

2.1 Related Work

2.1.1 Rigid Point Set Registration

One class of rigid point set registration approaches consists of methods designed to solve the

initial pose estimation problem1. These methods compute a more or less coarse alignment

between the point sets without making any assumptions about their initial position and ori-

entation in space. Classic initial pose estimators are the generalized Hough transform [43],

geometric hashing [44] and pose clustering [45]. These algorithms are guaranteed to find the

optimal alignment between the input point sets. However, because of their high computational

cost and/or high memory requirements, these methods are only applicable to small data sets.

Johnson et al. introduced in their work [28] local geometric descriptors, called spin images,

and used them for pose estimation and object recognition. The presented results are impressive,

but no tests with noisy or outlier corrupted data were performed. Gelfand et al. [29] developed

a local descriptor which performs well under artificially created noisy conditions, but still,

defining robust local descriptors in the presence of significant noise and a large amount of

outliers remains a difficult task.

A more recent approach to the initial pose estimation problem is the robust 4PCS algorithm

introduced by Aiger et al. [34]. It is an efficient randomized generate-and-test approach. It

1Pose = position (translation) + orientation (rotation).

10

2.1 Related Work

selects an appropriate quadruple Q (called a basis) of nearly coplanar points from the model

set M and computes the optimal rigid transform between Q and each of the potential bases in

the data set D and chooses the best one. In order to achieve a high success probability, the

procedure is repeated several times for different bases Q ⊂ M. Note, however, that the rigid

transform, found by the algorithm, is optimal only for the two bases, i.e., for eight points. In

contrast to this, the rigid transform computed by our rigid registration method is optimal for a

large amount of points of the input shapes and thus we expect to achieve higher accuracy than

the 4PCS algorithm. This is further validated in the experimental results in Section 5.1.

Since the accuracy of the pose computed by the above mentioned methods is insufficient

for many applications, an additional pose refinement step needs to be performed. The pose

refining algorithms represent another class of registration approaches. The most popular one is

the Iterative Closest Point (ICP) algorithm. Since its introduction by Chen and Medioni [46],

and Besl and McKay [24], a variety of improvements has been proposed in the literature. A good

summary as well as results in acceleration of ICP algorithms have been given by Rusinkiewicz

and Levoy [47]. A major drawback of ICP and all its variants is that they assume a good initial

guess for the pose of the data point set (with respect to the model). This pose is improved

in an iterative fashion until an optimal rigid transform is found. The quality of the solution

heavily depends on the initial guess.

Recently, a variety of registration algorithms based on robust statistics has been proposed.

Granger and Pennec [48] formulated the rigid point set registration as a general maximum

likelihood estimation problem which they solved using expectation maximization principles.

Tsin and Kanade [49] introduced the kernel correlation approach as an extension of the well-

known 2D image correlation technique to point sets. The shapes are represented by a collection

of kernel functions each one centered at a model/data point. If each point in the model set has

a close counterpart in the data set the kernel correlation value is large. Thus the registration

problem is converted to the maximization of the kernel correlation of the input point sets. An

extension of this approach through a Gaussian mixture model was proposed by Jian and Vemuri

[50]. Instead of using one-to-one correspondences between the points of the input sets, the

above cited methods work with multiple, weighted correspondences. Although this significantly

widens the basin of convergence the resulting computational cost limits the applicability of the

algorithms to small point sets only [51].

A further class of rigid registration methods is based on particle filtering. Ma and Ellis [52]

pioneered the use of the unscented particle filter for registration of surfaces in the context of

computer-assisted surgery. A major limitation of the method is its running time: it takes 1.5

seconds for a data set consisting of 15 points. Moreover, outlier robustness was not addressed

by the authors. Further interesting approaches from this class are the algorithm of Moghari and

Abolmaesumi [53] which is based on the unscented Kalman filter and the point set registration

method via particle filtering and stochastic dynamics introduced by Sandhu et al. [54]. Although

11

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

these algorithms have a band of convergence significantly wider than the one of local optimizers,

they still depend on the initial alignment of the point sets.

2.1.2 Optimization-Based Point Set Registration

Solving the registration problem by minimizing a cost function with a general-purpose optimizer

has already been introduced in the literature. Depending on the choice of either a global or

a local optimization procedure the corresponding registration approach belongs to the class of

initial pose estimators or pose refining methods, respectively.

Breuel [55] used a deterministic branch-and-bound method to globally maximize a quality

measure which counts the number of data points a given rigid transform brings within an ε-

neighborhood of some model point. Although this method always finds the global optimal

solution its computational cost seems to be very high since only planar rigid transforms (with

three degrees of freedom) were considered.

Olsson et al. [56] also used a deterministic branch-and-bound algorithm to globally minimize

the sum of squared distances between corresponding entities (points, lines or planes) in the

model and data sets. This method is guaranteed to find the global optimal solution, however,

at a high computational cost: a problem consisting of 10 point-to-plane, 4 point-to-line and 4

point-to-point correspondences is solved in about 10 seconds. Furthermore, when applied in

the case of point set registration, the correspondences between the points have to be known in

advance which is seldom the case in a real world setting.

Another deterministic solver based on Lipschitz global optimization theory was introduced

by Li and Hartley [57]. On the positive side, the method does not assume any known corre-

spondences across the point sets and it always solves the problem in a globally optimal way.

Unfortunately, the algorithm is very costly (about 18 minutes for input sets consisting of 200

points each) and it is based on some unrealistic assumptions: (i) the model and data sets have

exactly the same number of points, (ii) there are no outliers and (iii) there is no missing data,

i.e., there is a 100% overlap between model and data.

Mitra et al. [25], Pottmann et al. [26] and Fitzgibbon [27] also formulated the registration

problem as a minimization of a geometric cost function. For its minimization, however, a local

optimization method is used. This results in the already mentioned strong dependence on a

good initial transform estimation.

2.1.3 Stochastic Optimization

Stochastic optimization has received considerable attention in the literature over the last three

decades. Much of the work has been devoted to the theory and applications of simulated

annealing (SA in the following) as a minimization technique [58, 59, 60]. A comprehensive

overview of this field is given in [61]. A major property of SA algorithms is their “willingness”

to explore regions in the search space in which the objective function apparently takes values

12

2.2 Registration as a Minimization Problem

greater than the current minimum [62]. This is what makes SA algorithms able to escape

from local minima and makes them suitable for global minimization. A known drawback of

SA algorithms is the fact that they waste a lot of iterations in generating candidate points,

evaluating the objective function at these points, and finally rejecting them [61]. In order to

reduce the number of rejections, Bilbro and Snyder [63] select candidate points from “promising”

regions of the search space, i.e., from regions in which the objective function is likely to have

low values. They achieve this by adapting a k-d tree to the objective function each time a

new candidate point is accepted. If, however, the current point is rejected, the tree remains

unchanged. This is a considerable waste of computation time since the information gained

by the (expensive) evaluation of the objective function is not used. In contrast to this, our

algorithm adapts a generalized BSP tree at every iteration and thus uses all the information

collected during the minimization. Furthermore, the use of a generalized BSP tree allows for a

minimization over complex shaped spaces and not only over rectangular regions as in the case

of [63].

2.2 Registration as a Minimization Problem

Consider, we are given a model point set M = {x1, . . . ,xm} ⊂ R3 and a data set D =

{y1, . . . ,yn} ⊂ R3. Suppose, we have a continuous function g : R3 → R, called the model

scalar field, which attains a small value at the model points xi, i ∈ {1, . . . ,m} and increases

with increasing distance between the evaluation point and the closest model point. Our aim is

to find a rigid transform T (x) = Rx + t for a rotation matrix R and a translation vector t such

that the function

f(T) =

n∑
j=1

g(T (yj)), yj ∈ D (2.1)

is minimized. This definition of f is based on the following idea common for many registration

algorithms: we seek a rigid transform that brings the data points as close as possible to the

model points.

2.2.1 Definition of the Model Scalar Field

Given the model point set M = {x1, . . . ,xm}, we want our model scalar field g : R3 → R to

attain its minimal value at the model points, i.e.,

g(xi) = gmin ∈ R, ∀xi ∈M, (2.2)

and to attain greater values at all other points in R3, i.e.,

g(x) > gmin, ∀x ∈ R3 \M. (2.3)

Define

dM(x) = min
xi∈M

‖x− xi‖ (2.4)

13

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

to be the distance between a point x ∈ R3 and the set M, where ‖ · ‖ is the Euclidean norm in

R3. If we set

g(x) = dM(x), (2.5)

we get an unsigned distance field which is employed in ICP [24]. It is obvious that this choice

for g fulfills both criteria (2.2) and (2.3).

Mitra et al. [25] and Pottmann et al. [26] considered in their work more sophisticated scalar

fields. They assumed that the model point set M consists of points sampled from an underlying

surface Φ. The scalar field g at a point x ∈ R3 is defined to be the squared distance from x to

Φ. In this context, g is called the squared distance function to the surface Φ. We refer to [25]

for details on computing the squared distance function and its approximation for point sets.

The version of g given in (2.5) and the ones used by Mitra et al. [25] and Pottmann et al. [26]

are essentially distance fields. This means that g(x) approaches infinity as x gets infinitely far

from the point set. This has the consequence that a registration technique which minimizes a

cost function based on an unbounded scalar field will be sensitive to outliers in the data set.

This is because data points lying far away from the model point set will have great impact on

the sum in (2.1) and thus will prevent the minimization algorithm from converging towards the

right alignment. A similar problem arises in the case of model and data sets with low overlap.

In this case, there will be a lot of data points which have no corresponding model points and

vice versa. The distance between such a data point and the closest model point will be large

and thus will deteriorate the sum in (2.1). A simple way to overcome this is just to exclude

data points which are too far away from the model set. However, this strategy introduces

discontinuities in the cost function which cause a problem for many optimization methods.

Fitzgibbon presented in his work [27] a more convenient way to alleviate these difficulties

which does not lead to a discontinuous cost function. He proposed to use either of the following

two robust kernels:

g(x) = log

(
1 +

d2
M(x)

σ

)
(Lorentzian kernel) (2.6)

or

g(x) =

{
d2
M(x) if dM(x) < σ

2σdM(x)− σ2 otherwise
(Huber kernel). (2.7)

However, we still have limdM(x)→∞ g(x) = ∞ for both kernels as in the case of (2.5). Thus a

cost function based on (2.6) or (2.7) will still be sensitive to outliers. We further validate this

in the experimental results presented in Section 5.1.

To avoid this sensitivity, we propose to use a bounded scalar field satisfying (2.2) and (2.3)

and having the additional property

lim
dM(x)→∞

g(x) = 0. (2.8)

We set

g(x) = −ϕ (dM(x)) , (2.9)

14

2.2 Registration as a Minimization Problem

φ
(x

)

x

(a)

-1.0

0.0

(b)

α = 0.1 α = 1

Figure 2.2: (a) The inverse distance kernel (defined in (2.12)) for three different α values. (b)

The model scalar field gα (defined in (2.13)) based on the inverse distance kernel from (a) for

α = 0.1 and α = 1. In this example, the Stanford bunny is used as the model set. gα is visualized

by evaluating it at a number of points lying on the three planes and mapping the scalar values to

colors.

where ϕ : R∗ → R∗, for R∗ = {x ∈ R : x ≥ 0}, is a strictly monotonically decreasing continuous

function with

max
x∈R∗

ϕ(x) = ϕ(0) and (2.10)

lim
x→∞

ϕ(x) = 0. (2.11)

In our implementation, we use an inverse distance kernel of the form

ϕ(x) =
1

1 + αx2
, α > 0 (2.12)

because it is computationally efficient to evaluate and can be controlled by a single parameter

α (see Figure 2.2(a)). This results in the following model scalar field:

gα(x) = − 1

1 + α (dM(x))
2 , α > 0. (2.13)

It is easy to see that (2.2), (2.3) and (2.8) hold. Different values for α in (2.13) lead to different

scalar fields. The greater the value the faster gα(x) convergences to zero as dM(x) → ∞ (see

Figure 2.2(b)). In Section 2.2.2, we will discuss how to choose a suitable value for α and why

this particular form of gα leads to an outlier robust cost function.

2.2.2 Cost Function Definition

The group of all rigid transforms in R3 is called the special Euclidean group and is denoted by

SE(3). At the beginning of Section 2.2, we formulated the rigid point set registration problem

as a minimization problem over SE(3). Using a parametrization of SE(3) we convert f in (2.1)

to a real-valued scalar field f : R6 → R of the form

f(ϕ,ψ, θ, x, y, z) =

n∑
j=1

gα(R(ϕ,ψ, θ)yj + (x, y, z)), (2.14)

15

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

where y1, . . . ,yn are the data points, gα is the model scalar field defined in (2.13), R(ϕ,ψ, θ)

is a rotation matrix parametrized by ϕ,ψ, θ and (x, y, z) ∈ R3 is a translation vector. In or-

der to achieve good optimization performance, it is very important to choose the appropriate

parametrization of the rotation group. We employ an axis-angle based parametrization which

is especially well suited for our branch and “stochastic bound” minimization method. Further-

more, we introduce a new technique for a hierarchical decomposition of the rotation space in

spherical boxes and describe a procedure for uniform sampling from them. Since the advantages

of these techniques are best seen in the context of our minimization algorithm we postpone the

detailed discussion to Section 2.4 after the introduction of the minimization method in Sec-

tion 2.3.

A global minimizer of gα defines a rigid transform that brings the data points close to the

model points. What makes the proposed cost function robust to outliers is the fact that outlier

data points have a marginal contribution to the sum in (2.14) depending on α. More precisely,

given a positive real number d, we can compute a value for α such that |gα(x)| is less than an

arbitrary δ > 0, if dM(x) > d holds. In this way, the contribution of an outlier point to the

sum in (2.14) can be made arbitrary close to zero and gα will behave like an outlier rejector.

However, too large values for α will lead to the rejection of data points which do not have exact

counterparts in a sparsely sampled model set, but still are not outliers. In our implementation

we set

d =
1

4
min{bboxx(M),bboxy(M),bboxz(M)}, (2.15)

δ = 0.1, (2.16)

where bbox(M) denotes the bounding box of the model point set and bboxs(M), s ∈ {x, y, z}
is the extent of the bounding box along the x, y or z axis. Using the absolute value of the right

side of (2.13) and solving for α yields

α =
1− δ
δd2

. (2.17)

The cost function given in (2.14) is nonconvex and has multiple local minima over the search

space (see [57] where this is experimentally verified for a similar cost function). Using a local

optimization procedure—common for many registration methods—will lead in most cases to a

local minimizer of f and thus will not give the best alignment between model and data. To avoid

this, we employ a new stochastic approach for global minimization described in the following

section.

2.3 Stochastic Adaptive Search for Global Minimization

Our stochastic minimization approach is inspired by the simulated annealing (SA) method of

Bilbro and Snyder [63]. The main difference between their work and a typical SA algorithm is

the way how the minimizer candidates are generated. As we already mentioned in Section 2.1.3,

16

2.3 Stochastic Adaptive Search for Global Minimization

SA algorithms are known to waste many iterations in sampling candidate points in the search

space, evaluating the cost function at these points and finally rejecting them [61]. In order to

reduce the number of rejections, Bilbro and Snyder [63] sampled the points from a distribution

which is modified iteratively during the minimization such that its modes are built around

minimizers of the cost function. They achieved this by building a k-d tree and sampling the

candidates from those leaves of the tree which cover “promising” regions of the search space,

i.e., regions in which the cost function is likely to attain low values. Although this leads to

fewer candidate rejections and thus saves computation time the method in [63] still has two

drawbacks. First, the candidate points are sampled directly from the tree leaves which are n-

dimensional boxes of the form [a1, b1]× ...× [an, bn], where [ai, bi] ⊂ R is a closed interval. This

strategy is based on the implicit assumption that the search space can be covered efficiently

by such boxes. This, however, is not the case if we have a more complex shaped space, e.g.,

the space of rotations (see Section 2.4). Second, the k-d tree used in [63] is updated only if the

generated candidate is accepted. In the case of a rejection, the tree remains unchanged. This

is a waste of computation time since the information gained by the (expensive) cost function

evaluation is not used.

We account for the first drawback by formulating our minimization algorithm using a more

general spatial data structure, namely, a generalized binary space partitioning tree (which we

will call a G-BSP tree in the following). As opposed to classic BSP trees (see, e.g., [64]),

we do not require that the subspaces represented by the tree nodes are convex sets. Thus

we can minimize efficiently over more complex shaped search spaces like, e.g., the space of

rotations (details are provided in Section 2.4). To avoid the second drawback, i.e., to use all the

information gained by the cost function evaluation, we update the tree at every iteration—even

in the cases of bad minimizer candidates. This apparently minor modification leads to a rather

different algorithm than [63] and enables a faster rejection of the regions in which the cost

function is likely to have high, i.e., poor values and thus speeds up the convergence.

2.3.1 Generalized BSP Trees

A BSP tree is a spatial data structure which decomposes Rn in a hierarchical manner. At

each subdivision stage, the space is subdivided by a hyperplane in two disjoint partitions of

arbitrary size. Thus the resulting decomposition consists of arbitrarily shaped convex polygons

[64]. Each node of the tree has exactly two or zero child nodes. A node with zero children is

called a leaf. If we drop the assumption that the space partitioning is performed by planes we

get a generalized BSP tree (G-BSP tree). This results in a decomposition made up of subspaces

of arbitrary shape.

17

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

η0
0

η00
1 η01

1

η000
2 η001

2

X000

X001 X01
X0=X

X00

a0 b0

a1

b1 Xs

X s0 X s1

x s

x s1 :=x s
x s0

bisection

ηs
k

ηs0
k1 ηs1

k1

(a) (b)

Figure 2.3: (a) An example of a two-dimensional G-BSP tree and a rectangular search space X.

In this case, the G-BSP tree is a two-dimensional k-d tree. (b) Expanding the leaf ηks . In this

example, after the bisection of ηks , the point xs lies in the box Xs1, hence ηk+1
s1 adopts the pair

(xs, f(xs)) from ηks . For the other child, ηk+1
s0 , a point xs0 is sampled uniformly from Xs0 and the

objective function is evaluated at that point.

2.3.2 Problem Definition

Given a set X ⊂ Rn (the search space) and a bounded function f : X→ R our aim is to find a

global minimizer of f , i.e., an x∗ ∈ X such that

f(x∗) ≤ f(x) ∀x ∈ X. (2.18)

The following assumptions about X should hold:

• X ⊂ Rn is a bounded set of positive volume (Lebesgue measure in Rn).

• There is an algorithm of acceptable complexity which can build a G-BSP tree for X such

that each two subsets of X at the same level of the tree are of equal volume (have the

same Lebesgue measure in Rn).

• X is simple enough for sampling algorithms of acceptable complexity to be able to sample

uniformly from the G-BSP tree nodes, i.e., from the subsets of X represented in the

G-BSP tree.

2.3.3 Overall Algorithm Description

We use a G-BSP tree to represent the n-dimensional search space X. The root η00 is at the 0th

level of the tree and represents the whole space X0 = X. η00 has two children, η100 and η101,

which are at the next level. They represent the subsets X00 and X01, respectively, which are

disjoint, have equal volume and their union equals X0. In general, a node ηks (where k ≥ 0 and

s is a binary string of length k + 1) is at the kth level of the tree and has two children, ηk+1
s0

and ηk+1
s1 , which are at the next, (k+ 1)th, level. The volume of ηks is 1/2k of the volume of X.

This concept is easily visualized in the case n = 2 and X and its subsets being rectangles (see

Figure 2.3(a)).

18

2.3 Stochastic Adaptive Search for Global Minimization

During the minimization, the G-BSP tree is built in an iterative fashion beginning at the

root. The algorithm adds more resolution to promising regions in the search space, i.e., the

tree is built with greater detail in the vicinity of points in X at which the objective function

attains low values. The overall procedure can be outlined as follows:

1. Initialize the tree (Section 2.3.4) and set an iteration counter j = 0.

2. Select a “promising” leaf according to a probabilistic selection scheme (Section 2.3.5).

3. Expand the tree by bisecting the selected leaf. This results in the creation of two new

child nodes. Evaluate the objective function at a point which is uniformly sampled from

the subset of one of the two children (Section 2.3.6).

4. If a stopping criterion is met (Section 2.3.7) terminate the algorithm, otherwise increment

the iteration counter j and go to step 2.

2.3.4 Tree Initialization

For every tree node ηks the following items are stored: (i) a set Xs ⊂ X and (ii) a pair (xs, f(xs))

consisting of a point xs, uniformly sampled from Xs, and the corresponding function value f(xs).

The tree is initialized by storing the whole search space X and a pair (x0, f(x0)) in the root.

2.3.5 Leaf Selection

At every iteration, the search for a global minimizer begins at the root and proceeds down the

tree until a leaf is reached. In order to reach a leaf, we have to choose a concrete path from

the root down to this leaf. At each node, we have to decide whether to take its left or right

child as the next station. This decision is made probabilistically. For every node, two numbers

p0, p1 ∈ (0, 1) are computed such that p0 + p1 = 1. Arriving at a node, we choose to descend

via either its left or right child with probability p0 or p1, respectively. We make these left/right

decisions until we reach a leaf.

Computation of the Probabilities p0 and p1 The idea is to compute the probabilities in a

way such that the “better” child, i.e., the one with the lower function value, has greater chance

to be selected. We compute p0 and p1 for each node ηks based on the function values associated

with its children ηk+1
s0 and ηk+1

s1 . Let fs0 and fs1 be the function values associated with ηk+1
s0

and ηk+1
s1 , respectively. The following criterion should be fulfilled:

fs0 < fs1 ⇔ p0 > p1. (2.19)

If fs0 < fs1 we set

p0 = (t+ 1)/(1 + 2t), p1 = t/(1 + 2t), (2.20)

19

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

for a parameter t ≥ 0. For t→∞ we get p0 = p1 = 1
2 and our minimization algorithm becomes

a pure random search. Setting t = 0 results in p0 = 1 and p1 = 0 and makes the algorithm

deterministically choosing the “better” child of every node which leads to the exclusion of a

large portion of the search space and in most cases prevents the algorithm from finding a global

minimizer. For fs1 < fs0 we set

p0 = t/(1 + 2t), p1 = (t+ 1)/(1 + 2t). (2.21)

Probabilities Update From the discussion above it becomes evident that t should be cho-

sen from the interval (0,∞). For our algorithm the parameter t plays a similar role as the

temperature parameter for a simulated annealing algorithm [58] so we will refer to t as tem-

perature as well. Like in simulated annealing, the search begins at a high temperature level

(large t) such that the algorithm samples the search space quite uniformly. The temperature

is decreased gradually during the minimization process so that promising regions of the search

space are explored in greater detail. More precisely, we update t according to the following

cooling schedule:

t = tmax exp(−vj), (2.22)

where j ∈ N is the current iteration number, tmax > 0 is the temperature at the beginning of

the search (for j = 0) and v > 0 is the cooling speed which determines how fast the temperature

decreases.

2.3.6 Tree Expansion

After reaching a leaf ηks , the set Xs associated with it gets bisected in two disjoint subsets

Xs0 and Xs1 of equal volume. The corresponding child nodes are ηk+1
s0 and ηk+1

s1 , respectively.

In this way, we add more resolution in this part of the search space. Next, we evaluate the

new children, i.e., we assign to the left and right one a pair (xs0, f(xs0)) and (xs1, f(xs1)),

respectively.

Note that the parent of ηk+1
s0 and ηk+1

s1 , namely, the node ηks , stores a pair (xs, f(xs)). Since

Xs = Xs0 ∪ Xs1 and Xs0 ∩ Xs1 = ∅ it follows that xs is contained either in Xs0 or in Xs1.

Thus we set

(xs0, f(xs0)) = (xs, f(xs)) if xs ∈ Xs0 or (2.23)

(xs1, f(xs1)) = (xs, f(xs)) if xs ∈ Xs1. (2.24)

To compute the other pair, we sample a point uniformly from the appropriate remaining set

(Xs0 or Xs1) and evaluate the function at this point (see Figure 2.3(b) for the case n = 2 and

X and its subsets being rectangles).

Tree Update During the search we want to compute the random paths from the root down

to a certain leaf such that promising regions—leaves with low function values—are visited more

often than non-promising ones. Thus, after evaluating a new created leaf, we propagate its

20

2.4 The Space of Rigid Transforms

(possibly very low) function value as close as possible to the root. This is done by the following

updating procedure. Suppose that the parent point xs is contained in the set Xs1 belonging to

the new created child ηk+1
s1 . Therefore, we randomly generate xs0 ∈ Xs0, compute f(xs0) and

assign the pair (xs0, f(xs0)) to the child ηk+1
s0 . Updating the tree consists of ascending from

ηk+1
s0 (via its ancestors) to the root and comparing at every parent node ηju the function value

f(xs0) with the function value of ηju, i.e., with f(xu). If f(xs0) < f(xu) we update the current

node by setting (xu, f(xu)) = (xs0, f(xs0)) and proceed to the parent of ηju. The updating

procedure terminates if we reach the root or no improvement for the current node is possible.

Note that if f(xs0) is the lowest function value found so far, it will be propagated to the

root, otherwise it will be propagated only to a certain level l ∈ {1, . . . , k+ 1}. This means, that

every node contains the minimum function value (and the point at which f takes this value)

found in the subset associated with this node. Since the root represents the whole search space,

it contains the point we are interested in, namely, the point at which f takes the lowest value

found up to the current iteration.

2.3.7 Stopping Rule

We break the search if the following two criteria are fulfilled. (i) The leaf ηks selected in the

current iteration has a volume which is smaller than a user predefined value δv > 0. (ii) The

absolute difference between the minimal function value found so far and the function value

computed in the current iteration is less than a user specified δf > 0.

The first condition accounts for the desired precision of the solution and the second one

assures that the algorithm makes no significant progress any more.

2.3.8 Remark

We want to emphasize that it is very important that each two nodes at the same tree level are of

equal volume. As already mentioned in Section 2.3.2, the points are uniformly sampled within

the tree nodes. In this case, if two differently sized nodes at the same tree level are selected

equally often, the part of the search space represented by the smaller node will be sampled

more densely than the other part. Thus, the algorithm will possibly prefer regions of the search

space only because the G-BSP tree is constructed in a particular way and not because of the

cost function.

2.4 The Space of Rigid Transforms

As already mentioned in Section 2.2.2, the choice of a parametrization of SE(3) (the group

of rigid transforms) is an important issue since different parametrizations lead to different

optimization performance. We decompose SE(3) into a translational and a rotational part.

While parametrizing translations is straightforward special care is needed when dealing with

21

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

rotations since the geometry of the rotation space is more complex than the geometry of R3.

In the following, we concentrate on the rotation space.

In view of our branch and “stochastic bound” minimization method, three specific prob-

lems have to be solved. (i) We need to parametrize rotations. (ii) We have to hierarchically

decompose the rotation space in disjoint parts of equal volume. In other words, a G-BSP tree

has to be computed in which the nodes represent equally sized parts of the rotation space. (iii)

We need to sample points (i.e., rotations) uniformly from each leaf of the G-BSP tree. These

issues are discussed separately in the next three subsections.

2.4.1 Parametrization of Rotations

There are many ways how to parametrize 3D rotations. Discussing all of them is beyond the

scope of this work. An excellent introduction to this topic is included in the books by Kanatani

[65] and A. Watt and M. Watt [66] in the context of computer vision and computer graphics,

respectively. The set of all 3 × 3 rotation matrices is a group (under matrix multiplication)

which is referred to as SO(3). A parametrization of SO(3) is a mapping R : U→ SO(3), where

U is a subset of R3 since every rotation has three degrees of freedom.

Parametrizing rotation matrices using Euler angles is probably the most widely used tech-

nique which is, however, inefficient in conjunction with our minimization method. This is

due to the fact that Euler angles are a redundant representation of rotations. In order to

represent all elements in SO(3) the following range, E, for the three Euler angles is needed:

E = [0, 2π) × [0, 2π) × [0, π]. However, the corresponding parametrization R : E → SO(3),

which is given in [65], is not one-to-one. There are infinitely many combinations of Euler angles

(within the range E) which lead to the same rotation matrix (see [66]). A minimization method

like ours which considers the whole search space will waste computation time exploring regions

in E which should be completely ignored because they do not lead to “new” rotation matrices.

The same applies to deterministic branch-and-bound methods (see, e.g., [67]).

In order to avoid this difficulty, we employ a redundant-free rotation space parametrization

based on the axis-angle representation of SO(3). According to Euler’s theorem (see [65]), each

rotation in R3 can be represented by an axis specified by a unit vector n and an angle θ of

rotation around it. n can itself be parametrized using spherical coordinates ϕ and ψ:

n = (sin(ψ) cos(ϕ), sin(ψ) sin(ϕ), cos(ψ)). (2.25)

Figure 2.4(a) visualizes this concept. In order to represent all rotation matrices, we need to

consider the following range for the spherical coordinates (ϕ,ψ) and the rotation angle θ:

(ϕ,ψ, θ) ∈ [0, 2π)× [0, π]× [0, π) = R. (2.26)

The resulting parametrization R : R → SO(3), which can be found in [65], is a one-to-one

mapping between R and SO(3).

22

2.4 The Space of Rigid Transforms

x 

(a) (b)




y

z

x 





y

z

n

Figure 2.4: (a) The axis-angle based parametrization of SO(3). The two bold dots in the figure

represent a point before and after rotation by the angle θ around the axis defined by the unit

vector n, which is itself parametrized using spherical coordinates (ϕ,ψ). (b) The rotation space

represented as the open ball in R3 with radius π. The spherical coordinates (ϕ,ψ) of the point

(shown as a bold dot) define the rotation axis and the distance to the origin gives the angle θ of

rotation. The bold lines depict a spherical box.

2.4.2 Hierarchical Decomposition of the Rotation Space

According to the axis-angle representation and to (2.26), it is possible to identify the set of

rotations with the open ball O(π) ⊂ R3 with radius π located at the origin (see Figure 2.4(b)).

Thus a straightforward way to decompose the rotation space is to enclose O(π) in the cube

C(π) = [−π, π]3 and to divide C(π) into smaller cubes by simply bisecting the x, y or z axis.

Hartley and Kahl [67] used this technique in conjunction with a deterministic branch-and-

bound minimization method to estimate the essential matrix and to solve the relative camera

pose problem. However, if combined with our minimization algorithm, this technique leads to

two problems. First, the sub-cubes of C(π) which do not lie within O(π) have to be ignored

since the rotations they represent are included in other cubes within O(π). This gives rise to

nodes in the corresponding G-BSP tree which have only one “legal” child. Second, the sub-cubes

of C(π) which are partially intersecting O(π) represent a smaller region of the rotation space

than sub-cubes at the same tree level which are fully enclosed in O(π). Thus the minimization

algorithm will prefer rotations which are close to the boundary of O(π).

We solve these two problems by changing the shape of the building blocks of the decompo-

sition. Since we are dealing with a three-dimensional ball the most natural shape is the shape

of a spherical box (see Figure 2.4(b)). In ball coordinates, we define a spherical box B to be a

point set of the form

B = {(ϕ,ψ, θ) : (ϕ,ψ, θ) ∈ [ϕ1, ϕ2)× [ψ1, ψ2)× [θ1, θ2)}, (2.27)

where [ϕ1, ϕ2)× [ψ1, ψ2) is the range of the spherical coordinates and [θ1, θ2) limits the distance

of the points to the origin. Decomposing the rotation space means to hierarchically subdivide

23

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

split along
the  axis

split along
the  axis

split along
the  axis

Figure 2.5: Decomposing the rotation space (represented by a solid ball) into spherical boxes of

equal volume. In this example, only one spherical box at each splitting step is further decomposed.

O(π) into disjoint spherical boxes of equal volume (see Figure 2.5). Note that the volume of B

is given by

volB(ϕ1, ϕ2, ψ1, ψ2, θ1, θ2) =

∫ ϕ2

ϕ1

∫ ψ2

ψ1

∫ θ2

θ1

θ2 sinψdθdψdϕ (2.28)

= (ϕ2 − ϕ1)(cosψ1 − cosψ2)
θ32 − θ31

3
. (2.29)

Our aim is to consecutively cut B along the ϕ, ψ or θ axis such that the resulting pieces have

the same volume. Since volB depends in a different way from each of the ball coordinates ϕ, ψ

and θ we get a different rule for cutting along each axis. We are looking for

ϕ ∈ (ϕ1, ϕ2), ψ ∈ (ψ1, ψ2), θ ∈ (θ1, θ2) (2.30)

such that

volB(ϕ1, ϕ) = volB(ϕ,ϕ2), (2.31)

volB(ψ1, ψ) = volB(ψ,ψ2), (2.32)

volB(θ1, θ) = volB(θ, θ2), (2.33)

where, for the sake of clarity, volB is expressed as a function of two variables only, namely, the

ones defining the interval which is currently cut. Using (2.29) to solve the equations (2.31)–

(2.33) leads to

ϕ =
ϕ1 + ϕ2

2
, ψ = arccos

(
cosψ1 + cosψ2

2

)
, θ =

3

√
θ31 + θ32

2
. (2.34)

Thus we fully specified how to hierarchically decompose the space of rotations in disjoint

equally sized parts such that a G-BSP tree can be built. Furthermore, the shape of the parts

is optimally tailored to our minimization algorithm.

24

2.4 The Space of Rigid Transforms

2.4.3 Uniform Sampling from Spherical Boxes

Our method for sampling points uniformly from a spherical box is grounded on the following

basic result from Statistics called the inverse probability integral transform. Since it is proved

in many textbooks (e.g., in [68]) we state it here without a proof.

Theorem 1. Let F be a cumulative distribution function (c.d.f.) on R and let U be a random

variable uniformly distributed in [0, 1]. Then the random variable X = F (U)−1 has c.d.f. F .

Based on this result we perform the uniform sampling from a spherical box B = [ϕ1, ϕ2)×
[ψ1, ψ2)× [θ1, θ2) in three steps:

1. Sample a ϕ uniformly from [ϕ1, ϕ2).

2. Sample a ψ from [ψ1, ψ2) according to a c.d.f. F2 such that the point in R3 with spherical

coordinates (ϕ,ψ) is uniformly distributed on the spherical patch P = [ϕ1, ϕ2)× [ψ1, ψ2).

3. Sample a θ from [θ1, θ2) according to a c.d.f. F3 such that the point in R3 with ball

coordinates (ϕ,ψ, θ) is uniformly distributed in the spherical box B.

Step 1 is easy to perform. In step 2, we need to compute the area of a spherical patch (of the

unit 2-sphere) as a function of an interval [ϕ1, ϕ2)× [ψ1, ψ2):

areaP(ϕ1, ϕ2, ψ1, ψ2) =

∫ ϕ2

ϕ1

∫ ψ2

ψ1

sinψdψdϕ (2.35)

= (ϕ2 − ϕ1)(cosψ1 − cosψ2). (2.36)

Thus the c.d.f. we need in step 2 is given by

F2(ψ) =
areaP(ϕ1, ϕ2, ψ1, ψ)

areaP(ϕ1, ϕ2, ψ1, ψ2)
(2.37)

=
cosψ1 − cosψ

cosψ1 − cosψ2
, (2.38)

Analogously, we see that the c.d.f. in step 3 is given by

F3(θ) =
volB(ϕ1, ϕ2, ψ1, ψ2, θ1, θ)

volB(ϕ1, ϕ2, ψ1, ψ2, θ1, θ2)
(2.39)

=
θ3 − θ31
θ32 − θ31

, (2.40)

where (2.40) follows from (2.29). Note that both F2 and F3 can easily be inverted and we can

use Theorem 1 to sample according to F2 and F3 and hence uniformly from a spherical box.

25

2. STOCHASTIC OPTIMIZATION FOR RIGID 3D SHAPE REGISTRATION

2.4.4 Computation of the Search Space and the G-BSP Tree

Now since all details regarding the parametrization and decomposition of SO(3) and the sam-

pling from spherical boxes are given, we define the search space X and specify how to build the

corresponding G-BSP tree. We set

X = R× bbox(M), (2.41)

where R is, according to (2.26), the domain of the axis-angle based parametrization of SO(3)

and bbox(M) (the bounding box of the model M) represents the translational part of the search

space. Since bbox(M) is a rectangular box of the form [x1, x2] × [y1, y2] × [z1, z2] ⊂ R3 it can

easily be broken up into smaller boxes of the same size by simply bisecting it along the x, y or

z axis.

The root η00 of the G-BSP tree represents the whole set X. The child nodes of the root,

namely, η100 and η101, represent the subsets X0 and X1, respectively, resulting from cutting the

0th interval of X—which is [0, 2π) in (2.26)—using the rule (2.34)1. In general, a node ηks

(where k ≥ 0 and s is a binary string of length k+ 1) is at the kth level of the tree, represents a

subset Xs of the 6D search space and has two children, ηks0 and ηks1. The child nodes represent

the sets Xs0 and Xs1, respectively, which are computed by cutting the (k mod 6)th interval of

Xs according to (2.34) if 0 ≤ k mod 6 ≤ 2 (rotational part) or by dividing it in the middle if

3 ≤ k mod 6 ≤ 5 (translational part).

26

Chapter 3

3D Object Recognition:

Many-to-One Rigid Shape

Registration

In the context of 3D shape registration, treated in the previous chapter, the input consists of

a single model and a single data set which are assumed to (partially) represent one and the

same object. In this chapter, we drop this assumption and consider multiple models and a

data set, called scene, which is allowed to contain data from several objects plus background

clutter. This leads to the problem of 3D object recognition and pose estimation which can

loosely be formulated as follows. Given a set O = {M1, . . . ,Mq} of object models and a

scene S, the task is to identify the objects present in the scene and to estimate their position

and orientation. The output of an object recognition and pose estimation algorithm is a list

{(Mk1 , T1), . . . , (Mkr , Tr)} of pairs, with Mkj ∈ O being a recognized model instance and Tj

being the rigid transform which aligns Mkj to the scene S. In this sense, 3D object recognition

can be seen as many-to-one rigid shape registration. Thus, a shape registration method could

be used in a straightforward manner to solve the problem by sequentially matching each model

to the scene. This, however scales bad with number of models.

For the sake of simplicity, in the rest of the text, we mean by “object recognition” both

object identification and pose estimation. Sometimes we also use the term object detection.

One may pose the question why did we study rigid registration in Chapter 2 for it is a

special case of object recognition. The reason is that an object recognition method is fed the

object models in advance—prior to the actual recognition. The only input which is provided

“on the fly” is the 3D scene in which the objects are supposed to be detected. This allows a

recognition algorithm to pre-process the models in an offline phase in order to ease the online

detection. In contrast, a registration method processes both shapes right away without an extra

(computationally more or less expensive) preparation phase.

27

3. 3D OBJECT RECOGNITION: MANY-TO-ONE RIGID SHAPE
REGISTRATION

Figure 3.1: Three views of a typical recognition result obtained with our method. The scene is

shown as a blue mesh and the four recognized model instances are rendered as yellow point clouds

and superimposed over the scene mesh (see Section 5.2 for details).

In this thesis, we discuss a special instance of the object recognition problem given by the

following assumptions.

(i) Each model is a finite set of points with corresponding surface normals.

(ii) Each model represents a non-transparent object.

(iii) The scene is a range image.

(iv) Each transform which aligns a recognized model instance to the scene is a rigid transform.

Even under these assumptions the problem remains hard because of several reasons: usually,

there are scene parts not belonging to any of the objects of interest, i.e., there is background

clutter; the input is typically corrupted by noise and outliers; the objects are only partially

visible due to occlusions and scan device limitations. Figure 3.1 shows a 3D scene and the

recognized model instances. Note that the objects are highly occluded.

Contributions and Chapter Overview

In this chapter, we present an efficient algorithm for 3D object recognition in the presence of

clutter and occlusions in noisy, unsegmented range data. Our approach operates directly on

unsegmented point clouds provided by a range scanner. This does not require scene segmen-

tation which may be quite time consuming and error-prone. More specifically, we make the

following contributions. (i) A new efficient, localized RANSAC-like sampling strategy is intro-

duced. (ii) We use a hash table for rapid retrieval of pairs of oriented model points which are

similar to a sampled pair of oriented scene points. This allows to efficiently generate object and

pose hypotheses. (iii) We provide a complexity analysis of our sampling strategy and derive a

formula for the number of iterations required to recognize the objects with a predefined success

probability.

28

3.1 Related Work

The rest of the chapter is organized as follows. Related work is reviewed in Section 3.1. In

Section 3.2, we establish some notation and explain in more detail two algorithms which are

important to our work. Our 3D object recognition approach is introduced in Section 3.3.

3.1 Related Work

Object recognition should not be confused with object classification/shape retrieval. The latter

methods only measure the similarity between a given input shape and shapes stored in a model

library [69]. Usually, they do not estimate a transform which maps the input to the recognized

model. Moreover, the input shape is assumed to be a subset of some of the library shapes. In

our case, however, the input contains points originating from multiple objects and scene clutter.

Since 3D object recognition is closely related to rigid 3D shape registration, several methods

we already reviewed in Section 2.1 can be modified and employed for object recognition: the

voting approaches (generalized Hough transform [10], pose clustering [45], geometric hashing

[70] and tensor matching [71]) and the feature-based approaches (spin images [28], local feature

histograms [72], 3D/harmonic shape context [73], intrinsic isometry invariant descriptors [74]

and manifold harmonic bases [75]).

Another way to tackle the problem is to model an object as an assembly of basic shapes

(primitives) and to recover these shapes and their spatial relationships from an input scene.

Many types of primitives can be used within this part-based framework: generalized cylinders

[76], superquadrics [77], implicit polynomials [78], geometric primitives [79], and parametric

shapes [80]. Methods for efficient recovering of superquadrics from range data were introduced

in [35, 36, 37]. However, despite their efficiency, the part-based approaches are limited to a

certain shape class, namely, the one which can be described by the chosen set of primitives.

In [81], a hashing technique similar to ours was proposed. It is a learning-based method

employing a multiple-attribute hash table for efficient 3D object recognition. On the positive

side, attribute uncertainties are taken into account and the number of attributes as well as the

size of the hash table bins are calculated automatically. However, the system cannot handle

free-form objects and in the presented experimental results only objects composed of single-

colored surfaces are used. Furthermore, the method relies on a segmentation to identify the

planar or cylindrical surface patches the objects are made of.

A further hashing technique was proposed in [82]. Based on a hash table, a fast indexing

into a collection of geometry descriptors of single model points is performed. In contrast, our

hash table stores descriptors of pairs of oriented model points (called doublets). This allows to

efficiently query the model doublets similar to a sampled scene doublet and it makes it very

easy to compute the aligning rigid transform since it is uniquely defined by two corresponding

doublets. Moreover, in [82], multiple range images are aligned to each other in order to build

a more complete scene representation and a foreground/background segmentation is executed.

In contrast, our method operates on a single range image and does not require segmentation.

29

3. 3D OBJECT RECOGNITION: MANY-TO-ONE RIGID SHAPE
REGISTRATION

Furthermore, the test scenes used in [82] contain a single object, whereas we deal with multiple

objects per scene.

3.2 Notation and Basic Algorithms

An oriented point u = (pu,nu) consists of a point pu ∈ R3 and a corresponding surface normal

nu ∈ R3, ‖nu‖ = 1. Accordingly, an oriented point pair (u,v) is a pair of two oriented points

u = (pu,nu) and v = (pv,nv).

3.2.1 Fast Surface Registration

Assume S = {u = (pu,nu)} is a surface represented by a finite set of oriented points. According

to [83], for a pair of oriented points (u,v) = ((pu,nu), (pv,nv)) ∈ S×S, a descriptor f : S×S→
R4 is computed as

f(u,v) =


f1(u,v)
f2(u,v)
f3(u,v)
f4(u,v)

 =


‖pu − pv‖
∠(nu, nv)

∠(nu, pv − pu)
∠(nv, pu − pv)

 , (3.1)

where ∠(a, b) is the angle between the vectors a and b. In order to register two surfaces S1

and S2, each one represented by a set of oriented points, the method proceeds as follows. It

samples uniformly oriented point pairs (u,v) ∈ S1 × S1 and (w,x) ∈ S2 × S2 and computes

and stores their descriptors f(u,v) and f(w,x) in a four-dimensional hash table. This process

continues until a collision occurs, i.e., until f(u,v) and f(w,x) end up in the same hash table

cell. Computing the rigid transform T which aligns (u,v) to (w,x) gives a transform hypothesis

which registers S1 to S2. Figure 3.2 illustrates the alignment. More formally,

T = FwxF
−1
uv (3.2)

is computed based on the pairs’ local coordinate systems, each one represented by a 4×4 matrix

(homogeneous coordinates) Fuv respectively Fwx. We have

Fuv =

(puv×nuv

‖puv×nuv‖
puv

‖puv‖
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

)
(3.3)

where puv = pv − pu and nuv = nu + nv. Fwx is defined analogously by replacing the indices

u and v in (3.3) with w and x, respectively. The transform hypothesis T generated in this way

is evaluated by transforming the points of S1, i.e., p′i = Tpi, ∀pi ∈ S1 and counting those p′i
which fall within a certain ε-band of S2.

According to [83], this process of generating and evaluating hypotheses is repeated until

either of the following stopping criteria is met: (i) a hypothesis is good enough, (ii) a predefined

time limit is reached or (iii) all combinations are tested. Unfortunately, non of these criteria

is well-grounded: the first two are ad hoc and the third one is computationally infeasible. In

30

3.2 Notation and Basic Algorithms

pu

pv

nu

nv

Fuv

px

pw

nw

nxFwx

T = Fwx F uv
−1

S1 S2

Figure 3.2: Computing the rigid transform T which aligns S1 to S2 based on the local coordinate

systems Fuv and Fwx of the oriented point pairs (u,v) and (w,x), respectively. See text for details

on Fuv and Fwx.

contrast, we derive the number of iterations required to recognize model instances with a pre-

defined success probability. Furthermore, we modify this technique in a way which allows for

the simultaneous matching of all object models to the scene.

3.2.2 RANSAC

RANSAC [9] can be seen as a general approach for model recognition. It works by uniformly

drawing minimal point sets from the scene and computing a transform which aligns the model

with the minimal point set. A minimal point set is the smallest point set which uniquely

determines a given type of transform. In the case of rigid transforms, it is a point triple. The

score of the aligning transform is the number of transformed model points which lie within an

ε-band of the scene. After a certain number of trials the model is considered to be recognized

at the locations defined by the transforms which achieved a score higher than a predefined

threshold.

The probability PS of recognizing the model in N trials equals the complementary of N

consecutive failures [80], i.e.,

PS = 1− (1− PM)N , (3.4)

where PM is the probability of recognizing the model in a single iteration. Solving for N gives

the number of trials needed to recognize the model in the scene:

N =
ln(1− PS)

ln(1− PM)
. (3.5)

Note that since PS ≈ 1 and PM ≈ 0, one can safely assume that N ≥ 1.

The RANSAC approach is conceptually simple, general and robust against outliers. Unfortu-

nately, its direct application to the 3D object recognition problem is computationally expensive.

In order to compute an aligning rigid transform, we need two corresponding point triples—one

from the model and one from the scene. Assuming that the model is completely contained in

the scene, the probability of drawing two such triples in a single trial is PM (n) = 3!
(n−2)(n−1)n ,

where n is the number of scene points. Since PM (n) is a small number we can approximate the

31

3. 3D OBJECT RECOGNITION: MANY-TO-ONE RIGID SHAPE
REGISTRATION

denominator in (3.5) by its Taylor series ln(1 − PM (n)) = −PM (n) + O(PM (n)2) and obtain

the number of trials as a function of the number of scene points:

N(n) ≈ − ln(1− PS)

PM (n)
= O(n3). (3.6)

In Section 3.3.3, we will show that using oriented point pairs and our localized sampling strategy

leads to a reduction of the time complexity from O(n3) to O(n).

There are many modifications of the classic RANSAC scheme. Some recently proposed

methods like ASSC [84] and ASKC [85] significantly improve outlier robustness by using a

different score function. However, these variants are not designed to enhance the performance

of RANSAC. In [86], an efficient RANSAC-like registration algorithm was proposed. However,

it is not advisable to directly apply the method to 3D object recognition since it will require a

sequential matching of each model to the scene. In [80], another efficient RANSAC variant for

primitive shape detection was introduced. The method is related to ours since the authors also

used a localized minimal point set sampling. Their method, however, is limited to the detection

of planes, spheres, cylinders, cones and tori.

3.3 Method Description

Our object recognition method consists of two phases. The first one, the model preprocessing,

is performed offline. It is executed only once and does not depend on the scenes in which the

objects have to be recognized. The online recognition is the second phase. It is executed on the

scene using the model representation computed in the offline phase. In the rest of this section,

we describe both phases in detail and discuss the time complexity of our algorithm.

3.3.1 Model Preprocessing Phase

We assume that each object model is represented by a finite set M = {u = (pu,nu)} of

oriented points. For a given object model M, we sample the pairs of oriented points (u,v) =

((pu,nu), (pv,nv)) ∈M×M for which pu and pv are approximately d units apart from each

other. For each such pair, the descriptor f(u,v) = (f2(u,v), f3(u,v), f4(u,v)) is computed

according to (3.1) and stored in a three-dimensional hash table. Note that f1 is not part of the

descriptor since a fixed distance d is used. In contrast to [83], not all pairs of oriented points

are considered, but only those with ‖pu − pv‖ ∈ [d− δd, d+ δd], for a given tolerance value δd.

This has several advantages. It reduces the space complexity from O(m2) to O(m), where m

is the number of model points (this empirical measurement is further discussed in [34]). Using

a large d results in wide-pairs which allow a more stable computation of the aligning rigid

transform than narrow-pairs do [34]. Furthermore, a larger d leads to fewer pairs which means

that computing and storing descriptors of wide-pairs results in less populated hash table cells.

Thus, we will have to test fewer transform hypotheses in the online recognition phase and will

save computation time.

32

3.3 Method Description

However, the pair width d should not be too large since occlusions in real world scenes would

prevent sampling a pair with points from the same object. For a typical value for d, there are

still many pairs with similar descriptors which leads to hash table cells with too many entries.

We avoid this overpopulation, by removing as many of the most populated cells to keep only a

fraction K of the original number of pairs (in our implementation K = 0.4). This results in an

information loss about the object shape which we take into account in the online phase of the

algorithm.

In order to compute the final representation of all models M1, . . . ,Mq, each Mi is processed

in the way described above using the same hash table. In this way, a simultaneous recognition

of all models is possible instead of sequentially matching each one of them to the scene. Fur-

thermore, in order to keep track of which pair belongs to which model, every hash table cell

stores the pairs in separate model-specific lists.

3.3.2 Online Recognition Phase

The input to the online recognition algorithm is a set O = {M1, . . . ,Mq} of object models and

a scene range image S. The output is a list T = {(Mk1 , T1), . . . , (Mkr , Tr)}, where Mkj ∈ O

is a recognized model instance and Tj is a rigid transform (an element of the special Euclidean

group SE(3)) aligning Mkj to the scene. Before turning to the details, it is advisable to read

Algorithm 1 although some of the steps may not be completely clear at this point. In the rest

of this section, the lines we are referring to are the lines of Algorithm 1.

Searching for closest points (line 8) and for points lying on a sphere around a given point

(line 6) have to be performed very often in the online recognition phase. Thus, a fast execution

of these operations is of great importance for the runtime of the algorithm. An efficient way to

achieve this is to use an octree [87].

Step 1) Initialization

In step 1 of the algorithm, an octree with a fixed leaf size L (the edge length of a leaf) is

constructed for the input scene points. The full octree leaves (the ones containing at least one

point) are voxels ordered in a regular axis-aligned 3D grid and have unique integer coordinates.

Two full leaves are considered neighbors if their corresponding integer coordinates differ by not

more than 1. Next, a down-sampled scene S∗ is created by setting its points to be the centers

of mass of the full octree leaves. The center of mass of a full leaf is the average of the points it

contains. In this way, a one-to-one correspondence between the points in S∗ and the full octree

leaves is established. Two points in S∗ are neighbors if the corresponding leaves are neighbors.

33

3. 3D OBJECT RECOGNITION: MANY-TO-ONE RIGID SHAPE
REGISTRATION

input : a set O = {M1, ...,Mq} of object models;

a scene range image S;

output: a list T = {(Mk1 , T1), ..., (Mkr , Tr)}, with Mkj ∈ O and Tj ∈ SE(3);

// 1) initialization

1 compute an octree for the scene S to produce a modified scene S∗;

2 T← ∅; // an empty solution list

// 2) number of iterations

3 compute the number N of iterations;

4 repeat N times

// 3) sampling

5 sample a point pu uniformly from S∗;

6 compute L = {x ∈ S∗ : ‖x− pu‖ ∈ [d− δd, d+ δd]};
7 sample a point pv uniformly from L;

// 4) normal estimation

8 estimate normals nu at pu and nv at pv;

9 (u,v) = ((pu,nu), (pv,nv));

// 5) hash table access

10 fuv = (f2(u,v), f3(u,v), f4(u,v)); // see (3.1)

11 access the model hash table cell at fuv and

12 get its oriented model point pairs (uj ,vj);

// 6) generate and test

13 foreach (uj ,vj) do

14 get the model M of (uj ,vj);

15 compute the rigid transform T that aligns (uj ,vj) to (u,v); // see (3.2)

16 if µ accepts (M, T) then

17 T← T ∪ (M, T);

18 end

19 end

20 end

// 7) conflicting hypotheses removal

21 remove conflicting hypotheses from T;

Algorithm 1: Online recognition phase.

Step 2) Number Of Iterations

In this step, the number N of iterations is estimated such that all objects in the scene will

be recognized with a certain user-defined probability. This will be explained in detail in Sec-

tion 3.3.3.

34

3.3 Method Description

Step 3) Sampling

As in classic RANSAC, we sample minimal sets from the scene. In our case, since we use

normals, a minimal set consists of two oriented points. In contrast to RANSAC, they are

not sampled uniformly and independently of each other. Only the first point, pu, is drawn

uniformly from S∗. The second one, pv, is drawn uniformly from the scene points in S∗ which

are approximately within a distance d from pu. To achieve this, we first retrieve the set L of

all full leaves intersecting the sphere with center pu and radius d, where d is the pair width

used in the offline phase (see Section 3.3.1). This can be performed very efficiently due to the

hierarchical structure of the octree. Finally, a leaf is drawn uniformly from L and pv is set to

be its center of mass.

Step 4) Normal Estimation

We estimate the normals nu and nv at the points pu and pv by performing a PCA: nu and

nv are set to be the eigenvectors corresponding to the smallest eigenvalues of the covariance

matrix of the points in the neighborhood of pu and pv. The result of this step is the oriented

scene point pair (u,v) = ((pu,nu), (pv,nv)).

Step 5) Hash Table Access

In line 10, fuv = (f2(u,v), f3(u,v), f4(u,v)) is computed according to (3.1). Next, in lines 11

and 12, fuv is used as a key to the model hash table to retrieve all model pairs (uj ,vj) similar

to (u,v).

Step 6) Generate and Test

For each (uj ,vj), its model M is retrieved (line 14) and the rigid transform T which aligns

(uj ,vj) to (u,v) is computed according to (3.2) (line 15). This results in the hypothesis that

the model M is in the scene at the location defined by T . Finally, the hypothesis is saved in

the solution list T if it is accepted by the acceptance function µ (line 16).

Acceptance Function

µ consists of a visibility term and a penalty term. Similar to RANSAC, the visibility term,

µV , is proportional to the number mV of transformed model points which fall within a certain

ε-band of the scene. More precisely, we set µV (M, T) = mV /m, where m is the total number of

model points. µV is an approximation of the visible object surface area expressed as a fraction

of the total object surface area. Thus, µV can be interpreted as an estimation of the object

visibility in the scene.

In contrast to RANSAC, our algorithm contains an additional penalty term, µP , which is

proportional to the number of transformed model points which occlude the scene. Obviously, a

correctly recognized and localized non-transparent object should not occlude any visible scene

35

3. 3D OBJECT RECOGNITION: MANY-TO-ONE RIGID SHAPE
REGISTRATION

(a) µV = 4/12, µP = 0. (b) µV = 3/12, µP = 2/12.

Figure 3.3: A 2D top schematic view of the same scene (blue dashed line) with two different

model hypotheses (models are shown as gray boxes). The lines of sight are shown as thin black

lines originating from the scanning device. In (a), 4 (out of 12) model points match the scene and

no model points are occluding scene points. In (b), 3 model points match the scene and 2 model

points (marked by the ellipse) are occluding scene points. The resulting values for µV and µP are

shown below the corresponding figure.

points when the scene is viewed from the viewpoint of the range scanner. In other words, if

we view the scene from the perspective of the scanning device, we will not be able to see scene

points lying behind the localized model since we cannot see through non-transparent surfaces.

The penalty term penalizes hypotheses which violate this condition. It is computed by counting

the number mP of transformed model points which are between the projection center of the

range image and a range image pixel and thus are “occluding” reconstructed scene points. We

set µP (M, T) = mP /m, where m is the number of model points.

For (M, T) to be accepted by µ as a valid hypothesis it has to fulfill

µV (M, T) > V and µP (M, T) < P, (3.7)

where V ∈ [0, 1] is a visibility and P ∈ [0, 1] a penalty threshold. In Figure 3.3, a simple scene

is shown with two different model hypotheses and the corresponding values for µV and µP .

The visibility threshold is one of the most crucial parameters in the algorithm. In Section 5.2,

we experimentally examine how this threshold affects the recognition and the false positives

rates of our method. In the case of perfect data, the penalty threshold P should be 0. However,

since we are dealing with real range images, we use P = 0.05.

Step 7) Conflicting Hypotheses Removal

A hypothesis (M, T) “explains” a subset P ⊂ S∗ if there are points from T (M) lying in the

octree leaves corresponding to P. After accepting (M, T), the points explained by it are not

removed from S∗ because there could be a better hypothesis, i.e., one which explains a superset

36

3.3 Method Description

of P. We call hypotheses conflicting if the intersection of the point sets they explain is non-

empty. In other words, conflicting hypotheses transform their models such that they intersect

in space.

Since the scene points explained by the accepted hypotheses are not removed from S∗, there

are many conflicting ones in the solution list T after the execution of the main loop (lines 4

to 20) of Algorithm 1. To filter the weak hypotheses, we construct a so-called conflict graph.

Its nodes are the hypotheses in T and an edge is connecting two nodes if the hypotheses are

conflicting ones.

To produce the final output, the solution list is filtered by performing a non-maximum

suppression on the conflict graph. We borrow this technique from image processing. To perform

a non-maximum suppression on a gray-scale image, the pixel under observation is set to zero

(it is suppressed) if its value is not a maximum in a window placed around that pixel. In this

case, the window defines the neighborhood of each pixel. In the case of our conflict graph,

the neighborhood is defined by the graph structure. Using the neighborhood of each node, we

perform non-maximum suppression essentially in the same way as in image processing: a node

η is suppressed if there is a better one in its neighborhood, i.e., a node which explains more

scene points than η.

3.3.3 Time Complexity

The dominating factor in the complexity of the proposed method is the number N of iterations

needed to recognize all models with a predefined success probability (see the main loop of

Algorithm 1, lines 4 to 20). In the following, we discuss the dependency of N on the number

of scene points.

Consider a scene S∗ consisting of |S∗| = n points and a model instance M therein consisting

of |M| = m points. In Section 3.2.2 on RANSAC, we derived the number N = ln(1−PS)
ln(1−PM)

of iterations required to recognize M with a predefined success probability PS , where PM is

the probability of recognizing M in a single iteration. Again in Section 3.2.2, we obtained

PM ≈ 1/n3 which resulted in the cubic time complexity of RANSAC. In the following, we show

that our sampling strategy and the use of the model hash table lead to a significant increase of

PM and thus to a reduction of the complexity.

If P (pu ∈M,pv ∈M) denotes the probability that both points are sampled from M (lines

5 and 7 of Algorithm 1), then the probability of recognizing M in a single iteration is

PM = KP (pu ∈M,pv ∈M), (3.8)

with K being the fraction of oriented point pairs for which the descriptors are stored in the

model hash table (see Section 3.3.1). Using conditional probability and the fact that P (pu ∈
M) = m/n we can rewrite (3.8) to obtain

PM = (m/n)KP (pv ∈M|pu ∈M). (3.9)

37

3. 3D OBJECT RECOGNITION: MANY-TO-ONE RIGID SHAPE
REGISTRATION

P (pv ∈M|pu ∈M) denotes the probability to sample pv from M given that pu ∈M. Recall

from Section 3.3.2 that pv depends on pu because it is sampled uniformly from the set L of

scene points which are close to the sphere Sd(pu) with center pu and radius d, where d is the

pair width used in the offline phase. Assuming that the visible object part has an extent larger

than 2d and that the reconstruction is not too sparse, L contains points from M. In this case,

P (pv ∈M|pu ∈M) = |L ∩M|/|L| is well-defined and greater than zero.

Let us discuss C := |L∩M|/|L|. It depends on the scene clutter, the number of outliers and

the extent and shape of the visible object part. If all scene points originate from known objects

(in particular there is no background) and if the objects are well separated then |L ∩M| = |L|
since the sphere Sd(pu) intersects scene octree leaves containing only points from the object

pu belongs to. In this extreme case, we have C = 1. On the other hand, occluded scenes with

many outliers can be constructed in which Sd(pu) intersects only objects other then the one

pu belongs to. This leads to C = 0 and simply means that the object is too occluded to be

recognized.

In our implementation, we estimate C by 1/4. This accounts for up to 75% outliers and

scene clutter. Thus, we obtain for PM as a function of n (the number of scene points)

PM (n) = (m/n)KC. (3.10)

Approximating the denominator ln(1−PM (n)) in (3.5) by its Taylor series −PM (n)+O(PM (n)2)

we obtain for the number of iterations

N(n) ≈ − ln(1− PS)

PM (n)
=
−n ln(1− PS)

mKC
= O(n). (3.11)

This shows that the number of iterations depends linearly on the number n of scene points.

Furthermore, Eq. (3.11) provides means for computing the number of iterations required to

recognize the model instances with the desired success probability PS .

38

Chapter 4

A Unified Framework for Shape

Modeling and Deformable 3D

Shape Registration

In this chapter, we drop the assumption of rigidity we had till now and develop a unified

framework for deformation-based 3D shape modeling and deformable 3D shape registration.

We start with a short introduction to these two problems.

Deformation-based shape modeling is an active research topic in computer graphics with

important applications ranging from automotive design to character animation in film and game

production. Loosely speaking, it is the task of warping a shape in a “natural” and physically

plausible way such that the warped version shares the distinctive features of the original. Since

this is usually done in an interactive, user-guided session, defining the deformation should be

intuitive and easy to perform. Pick-and-drag interfaces are particularly well-suited, since they

provide a simple way of defining the shape deformation by setting positional constraints on it:

the user picks a point (with the mouse) on the shape and either sets it to be fixed or drags it

to a new position. The rest of the shape should deform in a realistic way.

For a deformation to look “natural” and physically plausible, it has to fulfil (at least) two

criteria: (i) the displacements defined by the user have to be propagated smoothly over the

shape and (ii) the deformation has to be detail-preserving, meaning that local shape details

should not be unnecessarily distorted, that is, they should move as rigidly as possible instead

of being stretched, twisted or sheared.

Furthermore, since the modeling is a user-guided process, a deformation technique has to be

efficient enough to run at interactive frame rates and it has to be numerically stable, no matter

how severe is the deformation implied by the user constraints.

The shape deformation algorithm developed in this chapter has all the above mentioned

properties.

39

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

The second problem we treat within the proposed unified framework is deformable 3D shape

registration. It is a fundamental problem in geometry processing with applications in the fields

of computer vision, computer graphics and medical image processing, just to name a few (see

introduction in Chapter 1). In recent years, 3D geometry acquisition techniques have been

developed which allow to capture the surface of deforming objects in real time [88, 41]. In

order to analyze the motion of the object it is important to register subsequent scans and/or

to register a complete geometric model to the scans. Since the object is undergoing a non-rigid

motion, rigid registration algorithms [1, 5, 6, 3] can not be used adequately in this setting.

The problem of deformable shape registration can loosely be defined as follows. Given a

shape M, called model, and a shape D, called data set, find a “reasonable” deformation F

that brings M “close” to D. We will introduce the shape representation used in this chapter

in Section 4.2. The deformation we are looking for is a mapping F : M → R3. To choose

a reasonable one from the space of all mappings, we have to impose some constraints on the

deformation. This is called regularization of F . In our approach, F is implicitly regularized since

it is obtained by minimizing a deformation energy which is carefully designed to favor smooth,

feature-preserving, not too distortive deformations. The closeness of shapes is measured based

on closest-point search.

We assume that the input shapes are roughly pre-aligned. This holds in a variety of situa-

tions like in the case of scanning a deforming object at high frame rates such that the inter-frame

displacements are small.

Contributions and Overview

We propose a unified framework for shape modeling and deformable 3D shape registration.

Within this framework, we develop an efficient, numerically stable energy minimization algo-

rithm which solves, with minimal adaptation, both problems.

We model the input shapes as a collection of rigid cells connected to each other with elastic

strings. By changing the type of the cells (edges, triangles, tetrahedra, prisms, cubes, etc.), we

show that several non-linear shape deformation techniques [89, 90, 91, 92, 93, 94] can be seen

as special cases of our general approach.

The rest of the chapter is organized as follows. After reviewing related work in Section 4.1,

we introduce our shape representation in Section 4.2. In Section 4.3, we present the unified

framework by introducing our energy function and a numerical procedure for minimizing it.

Sections 4.4 and 4.5 focus on deformation-based shape modeling and deformable 3D shape

registration, respectively.

40

4.1 Related Work

4.1 Related Work

4.1.1 Deformation-Based 3D Shape Modeling

Interactive deformation-based shape editing is a well-studied and still active research field in

computer graphics and there is a large variety of existing approaches. Most of them can be

classified as either linear or non-linear techniques.

A good overview over linear deformation methods can be found in [95, 96]. Tensor-product

spline surfaces and spline-based freeform deformations [97, 98, 99, 96] are among the most com-

mon shape modeling and deformation techniques. The user defines a surface by manipulating

control points of some sort of a control lattice (planar rectangular grid, volumetric lattice, wire-

frame collection, etc.). These techniques provide a great deal of flexibility and freedom to the

designer, however, they usually need a lot of user guidance for generating physically plausible

surface/solid deformations.

Another class of linear techniques consists of methods minimizing linearized elastic energies.

The surface is considered to be a thin physical shell and an energy functional which penalizes

stretching and bending is defined [100]. However, since a non-linear minimization of this energy

is computationally too expensive to perform at interactive frame rates, the energy is usually

simplified and linearized [101, 102]. Further conceptually similar approaches were presented

in [103, 104, 105, 106].

A further class of linear methods does not directly operate on spatial coordinates but rather

modifies differential surface properties and uses them to reconstruct the desired deformed sur-

face [107, 108, 109, 110]. Some approaches [109, 111] deform the surface by constructing a

target gradient field based on the user input and then computing a surface mesh which matches

the field in least square sense. Other methods [107, 108] manipulate Laplacians of the mesh

vertices instead of using a gradient field. They compute initial Laplacians for the initial (unde-

formed) state of the surface which are modified using the user constraints and the new mesh is

computed based on the modified Laplacians. For more details, refer to the provided references.

All above cited linear deformation techniques produce significant artifacts when the user

input implies large shape deformations. Some methods deal well with large translations [106]

but have difficulties with large rotations. Others [111, 110] exhibit the opposite behavior.

Deformations containing both large rotational and translational parts remain a challenge for

linear methods.

This is the reason why researchers started to investigate non-linear techniques. In [90], a

prism-based non-linear shape deformation technique, called PriMo, was proposed. First, a thin

layer of rigid prisms enveloping the input mesh is created by extruding the mesh triangles in

both directions along the vertex normals. The prisms which share a face are connected to each

other by elastic joints. In the initial, rest state of the shape, the shared prism faces coincide,

i.e., the joints have zero thickness and the deformation energy is zero. If, however, the shape

is deformed, some of the joints have to be stretched since the prisms are kept rigid. This leads

41

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

to an energy increase. Although defined as an integral over the prism faces, the deformation

energy simplifies to a quadratic expression in the four face vertices. Thus, the authors [90] solve

a quadratic minimization problem under the constraints of prism rigidity.

The PriMo deformation approach was extended in [92]. Instead of dealing with thin prisms

the authors propose to embed the input shape in a volumetric grid of cubes with adaptively

varying size. The energy formulation is similar to [90] and, again, the cells are kept rigid during

minimization. As it will become clear in Section 4.4, we can treat both approaches [90, 92]

within our framework by changing the type of cells we use.

In [112], another deformation approach based on shape embedding was proposed. The

authors created a so-called deformation graph by distributing its nodes uniformly over the

input shape and by connecting each graph node with the k closest ones. An affine transform

is then associated to each graph node and an energy function which is a weighted sum of

three terms is formulated: one term penalizes differences of the affine transforms from rigid

motions, the second one penalizes differences between the affine matrices of neighboring graph

nodes and the third one makes sure that the user-defined constraints on the deformation are

met. The affine matrices minimizing this energy are smoothly blended over the shape vertices

to produce the final shape deformation. Although this technique produces naturally looking

deformations, comparable to ours, it is considerably more complicated to implement than our

method. Furthermore, the individual energy terms listed above are weighted in an ad-hoc

manner to compute the sum.

Another non-linear shape deformation technique, which can be assimilated in our defor-

mation framework, was introduced in [91]. The input mesh is considered as a collection of

overlapping cells, each one consisting of the triangles adjacent to a mesh vertex. The energy

to be minimized penalizes differences between the form of each cell in the initial, undeformed

mesh state and the current, deformed one. The minimization is performed with a two-step algo-

rithm: first, for a given set of fixed cell rotations, optimal translations are computed which are

then kept fixed to compute optimal cell rotations in the second step. Both steps take the user

constraints on the deformation into account. The authors used a linear deformation technique

to compute the initial point for this non-linear optimization procedure.

4.1.2 Deformable 3D Shape Registration

As in the context of rigid 3D shape registration (Chapter 2) and 3D object recognition (Chap-

ter 3), feature-based methods can be used for deformable registration as well. However, since

we are dealing with non-rigid transforms, the employed feature descriptors should be invari-

ant to the type of deformation the input data is undergoing [30, 31, 32, 33]. However, as

already discussed in the previous two chapters, detecting feature points and establishing the

correspondence can be problematic especially in the presence of noise and missing data. Fur-

thermore, many shapes do not have distinctive features which gives rise to many ambiguous

correspondences and the matching algorithm degenerates to a brute force search [34].

42

4.1 Related Work

A different strategy is to transform the shapes to a canonical representation in a suitable

space in which the correspondence problem is easier to solve. Several papers [113, 114, 115, 116]

proposed to compute isometry-invariant embeddings of the original shapes in a low-dimensional

Euclidean space and to establish the correspondence using rigid registration algorithms. These

methods, however, tend to be costly and, moreover, fail for incomplete data (caused by surface

holes, partial views, etc.).

The methods cited so far solve the correspondence problem even in the presence of significant

deformations and without making any assumptions about an initial alignment of the shapes.

However, the deformations are restricted to isometries (an exception is [32] which can handle

an additional global or local scaling). Furthermore, the actual warp between the shapes has

to be computed in an additional step using the established correspondences as constraints

[89, 93, 92, 94]. In contrast to this, our method is not restricted to a particular family of

transformations and it efficiently computes both a dense correspondence and a warp between

the shapes.

There is a variety of registration algorithms specialized to articulated shapes. [117] presented

a framework for deformable marker-based fitting of a high-resolution template to 3D scans of

different humans in the same pose. In [118] a deformable model was learned that is able to

synthesize realistic muscle deformations based on the pose of an articulated human skeleton.

Both methods can be used for human shape completion as well. Further shape completion

algorithms which use deformable registration modules were presented in [119, 120]. In [121],

a fully automatic approach for articulated shape registration was proposed. The problem is

converted to a discrete labeling problem and solved via graph cuts. However, this seems to be

very costly since the authors report processing times of more than an hour for shapes consisting

of around 12,000 points.

A further class of non-rigid registration algorithms consists of iterative solvers. They de-

form the source shape in an iterative fashion until an “optimal” alignment to the target shape

is achieved. Many methods in this class are extensions of the classic ICP algorithm [46, 24].

In [122], a non-rigid registration technique was introduced which decomposes the input scans

in a coarse-to-fine hierarchical manner in overlapping rigid pieces which are aligned separately.

However, the resulting deformation is not continuous which can lead to artifacts in the over-

lapping regions. Furthermore, the procedure has a quadratic time complexity in the number of

pieces. In [123], the discontinuity issue was resolved by incorporating a global thin-plate splines

warp which guarantees the smoothness of the solution. A generalization of this method to the

simultaneous matching of multiple scans was proposed in [124].

Instead of assuming a one-to-one correspondence between the shape points, one-to-many re-

laxations can be used in order to enlarge the basin of convergence and thus to increase robustness

to imprecise initializations. Significant contributions along these lines are the softassign and

deterministic annealing technique [125] and the coherent point drift algorithm [126]. A statis-

tical registration approach without explicitly establishing point-to-point correspondences was

43

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

proposed in [49]. The input point sets are modeled as probability distributions and a distance

measure between them is minimized over the transform space. Recently, a Gaussian mixture

models-based approach [127] was proposed which can be seen as a generalization of [125, 49, 126].

However, these algorithms compute registration results which are not as precise as ours and are

much slower than our method (see the experimental comparisons in Section 5.3.3).

A deformable ICP extension was introduced in [38]. The authors formulated a cost function,

similar to the one used in [117], which measures the quality of a given non-rigid alignment

between the shapes. The deformation is modeled using one affine 3× 4 transformation matrix

per shape point. This gives rise to a cost function of 12m variables, where m is the number of

points in the source shape. In order to solve this highly underdetermined system, a stiffness

term (a regularizer) is introduced. It penalizes differences between the transformation matrices

of neighboring points.

A similar strategy was proposed in [40]. The authors iteratively minimized an error measure

which is based on an elastic convolution between the difference of corresponding points in the

shapes. This is the 3D surface patch analog to 2D template matching commonly used in image

processing. In [39], the deformation is also modeled using one affine transformation matrix per

point. The cost function comprises four energy terms and depends on 15m+ 6 variables. The

authors minimized it with the Levenberg-Marquardt algorithm.

Note that the iterative methods cited above model the deformation in a very redundant way:

many more degrees of freedom are introduced than needed to describe an arbitrary motion of

a system of m points in R3. This results in high-dimensional and computationally heavy

optimization problems which are often solved with general purpose optimizers. In contrast,

we use a home-grown, two-step minimization algorithm which avoids to repeatedly solve large

linear systems which is usually done during the minimization of non-linear cost functions. Our

method is easy to implement and it is very efficient in terms of both computational complexity

and memory.

4.2 Shape Representation

Definition 1. We represent a shape S = (V,T) by a pair consisting of a finite vertex set V and

an underlying topology structure T, where

• V = {v1, . . . ,vm} is the set of vertices with initial positions x0
1, . . . ,x

0
m ∈ R3 and

• T = {αi = (vi1 , . . . ,vik) : viq ∈ V} is the set of cells, i.e., edges (k = 2), triangles (k = 3)

and/or polyhedra (k ≥ 4).

In the following, the current position of a vertex vi is denoted by xi ∈ R3. Figure 4.1(a)

shows a simple shape consisting of vertices connected by edges.

Let S = (V,T) be a shape and C = {C1, . . . ,Cn} a collection of cells specifically tailored to

S as follows. Each cell Cj is defined by specifying its type (edge, triangle, tetrahedron, etc.)

44

4.2 Shape Representation

v2

v5

v4

v3

v6

v1

C2

v21

v24

v34

v33

v13
v15

v65

v62

v52

v51

v42

v41

v45v43

v44

(a) (b)

C3

C5

C1

C4

Figure 4.1: (a) A simple shape having six vertices v1, . . . ,v6 and ten edges. (b) A cover con-

sisting of five triangular cells C1, . . . ,C5. For example, v1 corresponds to v13 and v15 and the

neighborhoods of v1 are Ns
1 = {v3,v4,v6} and Nc

1 = {v13,v15}.

edge star triangle tetrahedron

Figure 4.2: Cells of different type.

and the vertices it consists of. Figure 4.2 shows various types of cells. More formally, each

Cj = (vj1j , . . . ,vjvj) consists of v vertices, where vjrj is a doubly indexed vertex positioned

at xjrj ∈ R3. The first index, jr, is the id of the corresponding vertex in V and the second

one, j, is the cell id. For example, v25 corresponds to v2 ∈ V, denoted by v2 ↔ v25 and it

is part of C5, denoted by v25 ∈ C5. Note that C consists of cells distinct than the ones in T.

Furthermore, each cell in C has its own vertex set which can be modified independently, that

is, without altering the other cells or the shape S. Having this concept in mind, we introduce

the following

Definition 2. A cover of a shape S = (V,T) is a collection C = {C1, . . . ,Cn} of cells of the

same type such that for each shape vertex vi ∈ V there is at least one vij ∈ Cj with vi ↔ vij.

In particular, all cells in a cover have the same number of vertices.

Figure 4.1(b) shows a cover of the shape shown in Figure 4.1(a). We call the vertices in V

shape vertices and the ones belonging to the cells in C cover vertices. Furthermore, the cells in

T are called shape cells and the ones in C cover cells.

Definition 3. Given a shape S = (V,T) and a cover C, we define two types of neighborhoods

of a vertex vi ∈ V:

45

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

v23
v2

v22

v13

v43
v4

v41

v31v3

v32

v12 v1 v11

(a) (b)

v2

v4

v3

v1

Figure 4.3: (a) A mesh in a rest state. (b) A cover consisting of triangular cells in a non-minimum

energy state. The elastic strings connecting the shape vertices v1, . . . ,v4 to their corresponding

cover vertices are indicated by the bold lines. The length of the strings is used to measure

deformation energy.

• The shape neighborhood Ns
i is the set of shape vertices which share a shape cell with vi:

Ns
i = {vj ∈ V : ∃αk ∈ T such that vi ∈ αk and vj ∈ αk}. (4.1)

• The cover neighborhood Nc
i is the set of cover vertices corresponding to vi:

Nc
i = {vij ∈ Cj : Cj ∈ C and vi ↔ vij}. (4.2)

To provide an example, both neighborhoods of v1 are listed in the caption of Figure 4.1.

4.3 Energy Formulation and Minimization

Given a shape S = (V,T), we first compute a cover C = {C1, . . . ,Cn} made of cells of a certain

type. We think of the cells as rigid elements connected to each other by elastic strings: each

cover vertex vij ∈ Cj is connected by a string to its corresponding shape vertex vi ∈ V. When

the shape is in its initial (rest) state, each string has length zero, since the positions of vij and

vi coincide, and the system is in a minimum energy state. Obviously, the string lengths are

preserved if we rigidly transform the whole shape together with the cover cells. If, however,

some shape vertices or cells are moved independently then the length of the strings attached to

them increases and so does the energy. Figure 4.3 provides an example. The idea to model shape

deformations by using rigid cells connected to each other by elastic joints was first proposed

in [90].

4.3.1 Problem Formulation

Having the concept of rigid cells connected by elastic strings in mind, we now formulate a shape

deformation energy. Recall that the positions of vertices vi and vij are denoted by xi ∈ R3 and

46

4.3 Energy Formulation and Minimization

xij ∈ R3. The geometrical configuration of all source shape vertices v1, . . . ,vm ∈ V is specified

by the point X = (x1, . . . ,xm) ∈ R3m. Similarly, the geometrical configuration of a cover cell

Cj = (vj1j , . . . ,vjvj) with v vertices is defined by the point Yj = (xj1j , . . . ,xjvj) ∈ R3v and the

geometry of the whole cover C is given by the point Y = (Y1, . . . ,Yn) = (. . . ,xij , . . .) ∈ R3nv,

where n is the number of cells in the cover. (Recall that all cover cells have the same number

of vertices.)

Next, we formulate the deformation energies ξi and σj of a vertex cover neighborhood Nc
i

and a cell Cj , respectively:

ξi =
∑

vij∈Nc
i

‖xi − xij‖2, (4.3)

σj =
∑

vij∈Cj

‖xi − xij‖2, (4.4)

Although these expressions look quite similar, the terms involved in the sums are not the same.

In (4.3), Nc
i and thus vi are fixed and the sum goes over the vij ’s corresponding to vi, i.e., j is

the running index. In (4.4), the cell Cj is fixed and we are summing over the pairs vi ↔ vij of

corresponding vertices which means that the running index is i. If we want to emphasize the

dependence of the cell deformation energy on the cover vertex positions xij , we write σj(Yj).

In order to register a source to a target shape (see Section 4.5), each shape vertex vi may

have a target position qi ∈ R3 which attracts it and thus influences the shape deformation. We

model this by adding an additional term to the energy defined in (4.3):

ηi = wi‖xi − qi‖2 +
∑

vij∈Nc
i

‖xi − xij‖2, (4.5)

where wi > 0 weights the influence of qi. We will discuss weighting issues in Section 4.5.1.

Thus, the deformation energy of a shape S = (V,T) given a cover C and a set {q1, . . . ,qm} of

target positions is

E(X,Y) =
∑
vi∈V

ηi =
∑
vi∈V

wi‖xi − qi‖2 +
∑

vij∈Nc
i

‖xi − xij‖2
 . (4.6)

In order to make the role of the cells of the cover more explicit (which will be needed in the

next section) we rewrite (4.6) in the following way:

E(X,Y) =
∑
vi∈V

(
wi‖xi − qi‖2 + ξi

)
(4.7)

=
∑
vi∈V

wi‖xi − qi‖2 +
∑
vi∈V

ξi (4.8)

=
∑
vi∈V

wi‖xi − qi‖2 +
∑
Cj∈C

σj . (4.9)

The last equality follows from the fact that
∑

vi∈V ξi =
∑

Cj∈C σj which is easy to see since in

both sums each ‖xi − xij‖2 is evaluated exactly once.

47

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

The minimization problem we want to solve is

min
X,Y∈R3m×R3nv

E(X,Y) (4.10)

s.t. each Cj ∈ C is rigid (up to scale). (4.11)

It is the second condition, namely, that each cell Cj is kept rigid, which prevents the shape from

degenerating even under strong deformations and makes the numerical computation stable. If

we want to include local scale in the deformation/registration process, Cj should be rigid up

to scale, i.e., the motion of the cells is defined by similarity transforms.

4.3.2 Numerical Minimization

Let a shape S = (V,T) be given in an initial, rest configuration X0 = (x0
1, . . . ,x

0
m) ∈ R3m and

in a current, deformed state X̃ = (x1, . . . ,xm) ∈ R3m. Let C = {C1, . . . ,Cn} be a cover with

geometrical configuration Y0 = (Y0
1, . . . ,Y

0
n) = (. . . ,x0

ij , . . .) ∈ R3nv which is identical to the

one of the shape S. This means that each cover vertex vij ∈ Cj has initial position x0
ij identical

to the initial position of its corresponding shape vertex vi, that is, x0
ij = x0

i .

Furthermore, let {q1, . . . ,qm} be given, where qi ∈ R3 is the (fixed) target position of the

shape vertex vi ∈ V. Using X̃ and Y0 as a starting point, we propose to solve (4.10) subject

to (4.11) using a simple and efficient algorithm consisting of the following two steps which are

repeated until convergence:

1. (a) Consider all xi’s as constant and compute for each cell Cj the rigid/similarity trans-

form Tj which minimizes σj(Tj(Y
0
j)) in (4.9).

(b) For each cell Cj update its vertex positions: xij := Tj(x
0
ij).

2. Consider all xij ’s as constant and compute the xi’s which solve (4.10).

Tj(Y
0
j) denotes the pointwise application of Tj to Y0

j , i.e., Tj(Y
0
j) = (Tj(x

0
j1j

), . . . , Tj(x
0
jvj

)).

The minimization procedure is more rigorously formulated in Algorithm 2. It obviously con-

verges since each step leads to an energy decrease: the first one decreases
∑
σj in (4.9) and the

second one decreases each term in the outer sum in (4.6).

Step 1.

The minimization involved in the first step of the proposed numerical procedure (line 7 in

Algorithm 2) is called the absolute orientation problem and is often encountered in different

fields as part of different computational problems [24, 89, 128]. We seek the similarity transform

Tj , defined by a scale factor s ∈ R, a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3,

which minimizes

σj(Tj(Y
0
j)) =

∑
vij∈Cj

‖xi − (sRx0
ij + t)‖2, (4.12)

48

4.3 Energy Formulation and Minimization

input : – shape S = (V,T); each vi ∈ V has rest position x0
i and current position x̃i;

– cover C = {C1, . . . ,Cn}; each cover vertex vij ∈ Cj has initial position x0
ij equal to the

initial position of its corresponding shape vertex vi, i.e., x0
ij = x0

i ;

– set {q1, . . . ,qm} of target positions qi ∈ R3;

output: a pair (X,Y) ∈ R3m × R3nv solution of (4.10) s.t. (4.11);

// Initialization

1 k := 1;

2 Xk := (x̃1, . . . , x̃m);

3 Yk := (Y0
1, . . . ,Y

0
n) = (. . . ,x0

ij , . . .);

// Minimization

4 repeat

// Step 1.

5 set Xk constant;

6 for Cj ∈ C do

7 compute a transform Tj which minimizes σj
(
Tj(Y

0
j)
)

=
∑

vij∈Cj
‖xki − Tj(x0

ij)‖2;

8 end

9 Yk+1 := (T1(Y0
1), . . . , Tn(Y0

n));

// Step 2.

10 set Yk+1 constant and solve Xk+1 := argmin
X∈R3v

E(X,Yk+1) (see (4.10));

// Prepare for the next iteration

11 k := k + 1;

12 until
∣∣E(Xk,Yk)− E(Xk−1,Yk−1)

∣∣ > ε;

13 return (Xk,Yk);

Algorithm 2: The algorithm solving (4.10) subject to (4.11). The transform Tj in line 7 is

either a rigid or a similarity transform. The Xk returned by the algorithm defines a (local)

minimum energy state of the shape.

where xi is the current fixed position of the shape vertex vi and x0
ij denotes the initial position

of the cover vertex vij . We adopt the solution presented in [128]. For the sake of clarity we

define

sj =
1

|Cj |
∑

vij∈Cj

xi, (4.13)

c0j =
1

|Cj |
∑

vij∈Cj

x0
ij , (4.14)

with |Cj | being the number of vertices of Cj . Next, a linear deformation matrix A is computed:

A =
∑

vij∈Cj

(xi − sj)(x
0
ij − c0j)

T , (4.15)

49

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

and the optimal rotation R is extracted from the singular value decomposition A = UΣV T in

the following way:

R = UCV T , C = diag(1, . . . , 1,det(UV T)), (4.16)

where the diagonal matrix C assures that R is a rotation and not a reflection. The scale factor

is given by

s =

√√√√ ∑
vij∈Cj

‖xi − sj‖2∑
vij∈Cj

‖x0
ij − c0j‖2

(4.17)

and the translation vector is computed as

t = sj − sRc0j . (4.18)

Once we have computed the optimal transform for each cell, the cover vertex positions are

updated for the next iteration:

xij := sRx0
ij + t. (4.19)

Performing the update with s = 1 results in a shape regularizer which is well-suited to model

as-rigid-as-possible deformations. Using Eq. (4.17) allows to include local scale.

The rigid transform-based regularizer was first introduced in [89] for the generation of phys-

ically plausible animations of deforming objects. Further improvements, again, for animating

deformations, were proposed in [93, 94]. Including local scale and using this technique in the

context of non-rigid shape registration was first proposed in [2].

Step 2.

The second step (line 10 in Algorithm 2) is easy to perform, since all we have to do is to compute

the derivative of E (see (4.6)) with respect to X = (x1, . . . ,xm), denoted by ∇XE, and solve

the linear system of equations ∇XE = 0 for X. More precisely, we have to solve

∇XE =


∇x1η1
∇x2

η2
...

∇xm
ηm

 = 0. (4.20)

Fortunately, since the vi’s are not directly connected to each other but only over (fixed) cover

vertices, each ∇xi
ηi depends only on xi. Thus, (4.20) consists of m independent equations

stacked on top of each other. The optimal xi is the solution of ∇xi
ηi = 0, that is, using (4.5),

the solution of

wi(xi − qi) +
∑

vij∈Nc
i

(xi − xij) = 0, (4.21)

which is

xi =
1

wi + |Nc
i |

wiqi +
∑

vij∈Nc
i

xij

 , (4.22)

where |Nc
i | denotes the number of elements in Nc

i .

50

4.3 Energy Formulation and Minimization

(a) (b)

fold

Figure 4.4: (a) The shape can be folded by rotating the upper triangle around the edge without

changing edge lengths, i.e., without increasing the deformation energy. (b) Making the shape rigid

by inserting an additional edge connecting the vertices opposite to the existing edge.

Remark Recall that at the end of Section 4.1.2 on related work we criticized several de-

formable registration approaches on the basis that they introduce many more degrees of free-

dom than necessary to model a general motion of a system of m points in R3. At the same

time, we use the concept of a shape cover which requires to copy shape vertices together with

additional topological information depending on the particular cell type. However, this is done

very effectively, since just a single copy of the shape is enough because only the initial and the

current shape state have to be stored during the minimization. In the case of edge cells, only

the initial edge lengths are needed which means that we do not even have to copy the shape

vertices.

4.3.3 Shape Covers and Cell Types

In this section, we discuss how to compute a shape cover and, what is more important, what

type of cells to use. As we will see in Section 4.4, the particular cell type has a strong effect on

the deformation result. Moreover, for certain types, the computation of the optimal transform

in line 7 in Algorithm 2 gets much simpler which significantly speeds up the processing. We

discuss thoroughly edges and star cells and provide a short discussion on other cell types as

well.

Edge Cells

An edge is a pair of vertices connected to each other. Employing edges leads to a minimization

method which strives to preserve lengths and essentially behaves like a mass-spring system.

Note, however, that we are interested only in the equilibrium state of the system and not in

simulating its dynamical behaviour. We compute a cover of edge cells in the following way. If

the shape consists of vertices and edges only, we include the edges in the cover. Otherwise,

they are extracted from the triangles/polyhedra of the shape. In either case, we end up with a

framework in R3 which we think of as a collection of straight, stiff rods connected by articulated

joints at the vertices.

In order for our minimization to make sense, we have to make sure that the framework

is rigid, i.e., inflexible. Otherwise it is not guaranteed that a deviation from the undeformed

51

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

lijlij

Figure 4.5: The vertices of a stretched (compressed) edge are translated innwards (outwards)

until the edge attains its rest length lij .

d ij

2
=

∥x i
*
−x j

*
∥−lij

2

xi
* x j

*
lij

lij

xi
* x j

*xi x j

(a) (b)

u

lij

xi
* x j

*x j xi

Figure 4.6: (a) The displacement vector u (shown in green) and the length difference dij used

in Theorem 2. (b) The two configurations (xi,xj) which are solutions to (4.23) subject to (4.24).

In the lower subfigure, the four points are drawn slightly off the straight (dashed) line they are

supposed to lie on, in order to see the connectivity between the points. Obviously, the solution

shown in the upper subfigure leads to a lower value for f as claimed in Theorem 2.

shape state leads to an energy increase. This is due to the fact that flexible frameworks can

deform continuously without changing their edge lengths. Figure 4.4(a) provides an example.

In the case of manifold surface meshes, we make the corresponding framework rigid, by in-

serting an antagonist to each existing (inner) edge by connecting the vertices opposite to it

(see Figure 4.4(b)). This guarantees that the mesh cannot be deformed continuously without

varying the energy. In the case of manifold tetrahedral meshes, the framework consisting of

the edges of the tetrahedra is rigid, since each tetrahedron is a rigid element, rigidly connected

(over its faces) to its neighboring elements.

An advantage of an edge cover is that the absolute orientation problem (line 7 in Algo-

rithm 2) is much simpler and faster to solve. Given a deformed (i.e., stretched or compressed)

edge with its vertices vi and vj placed at x∗i ∈ R3 and x∗j ∈ R3, our aim is to solve

min
xi,xj∈R3

f(xi,xj) = ‖xi − x∗i ‖2 + ‖xj − x∗j‖2, (4.23)

s.t. g(xi,xj) = ‖xi − xj‖2 − l2ij = 0, (4.24)

where lij is the length of the edge (vi,vj) in the initial, undeformed shape state. Instead of

applying the general method outlined in the first step in Section 4.3.2, we solve the problem

by simply translating the vertices along the edge axis until the edge attains its original, rest

length. Figure 4.5 illustrates this. We put it formally in the next theorem.

52

4.3 Energy Formulation and Minimization

Theorem 2. The solution of (4.23) subject to (4.24) is given by

xi = x∗i + u, (4.25)

xj = x∗j − u, (4.26)

where u is the displacement vector

u =
dij
2

x∗j − x∗i
‖x∗j − x∗i ‖

, (4.27)

with dij = ‖x∗j − x∗i ‖ − lij being the difference between the current and the initial edge length

(see Figure 4.6).

Proof. Set M = {(x,y) ∈ g−1(0) ⊂ R6 : ∇g(x,y) 6= 0} and note that both f and g are

differentiable functions. According to the method of Lagrange multipliers [129, Chapter 2], if

f attains a local minimum or maximum on M at the point (xi,xj) ∈ M, then there exists a

λ ∈ R such that

∇f(xi,xj) = λ∇g(xi,xj), (4.28)

which is equivalent to

(xi − x∗i) = λ(xi − xj) (4.29)

(xj − x∗j) = λ(xj − xi). (4.30)

These two equations imply that the vectors xi−x∗i , xj−x∗j and xj−xi are collinear which means

that all solutions to our problem lie on the line through x∗i and x∗j . Furthermore, adding (4.29)

to (4.30) yields

(xi − x∗i) = −(xj − x∗j) (4.31)

which implies

‖xi − x∗i ‖ = ‖xj − x∗j‖. (4.32)

To sum up, our solution (xi,xj) lies on the line through x∗i and x∗j and the distance between

xi and x∗i equals the distance between xj and x∗j . There are only two pairs of points satisfying

this and the constraint g = 0 at the same time. They are illustrated in Figure 4.5(b) and the

one for which f attains a smaller value is given by (4.25) and (4.26), as claimed.

Despite the simplicity and computational efficiency of the resulting energy minimization

algorithm, an edge-based cover leads to many local minima of the energy landscape. This is

especially problematic when employing the method in the context of deformation-based shape

modeling where the user might define positional constraints on the vertices which lead to strong

shape deformations. Thus, it is advisable to use edge-based covers only in situations in which

small deformations are expected.

Next, we investigate another cell type which is computationally more expensive but leads

to a very well-behaved energy function.

53

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

v2

v5

v4

v3

v6

v1

C6

v56

v46 v66

v16

Figure 4.7: An input triangular mesh and a star cell C6. The cover cell is slightly displaced

in order to see the strings (shown in red) connecting the cover vertices with their corresponding

shape vertices.

Star Cells

Given a shape S = (V,T), recall from Definition 3 on page 45 how the shape neighborhood Ns
i

of the vertex vi is defined. Based on that, the star cells of a cover C = {C1, . . . ,Cn} are defined

as

Cj = {vij : vi ↔ vij for all vi ∈ {vj} ∪Ns
j}. (4.33)

This means that the vertices of Cj are the ones corresponding to vj and all its shape neighbors.

To put it differently, Cj is just a copy of vj and its shape neighborhood Ns
j . Figure 4.7

illustrates the star cell corresponding to the shape vertex v6.

In order for a shape cover consisting of star cells to be useful we need the following

Assumption 1. Each cell Cj consists of at least three non-collinear vertices.

If this is not the case, the solution of the absolute orientation problem is not unique, i.e.,

we are left with some extra degrees of freedom which make it possible to deform the shape

without increasing the deformation energy. Fortunately, Assumption 1 holds for many shape

representations, like triangular/tetrahedral meshes and voxel grids. For example, in the case of

a triangular mesh, each vertex is part of at least one triangle, i.e., it has at least two neighbors

which results in cover cells with at least three non-collinear vertices.

If the shape cover consists of star cells, the first step of the energy minimization requires to

solve the absolute orientation problem in the general way outlined at the end of Section 4.3.2.

This is computationally more expensive then the special solution for the edges presented above.

However, if Assumption 1 holds, star cells lead to an energy function which has a unique global

minimum. This is due to the fact that each vertex displacement, different than a global rigid

transform of all vertices, inevitably leads to a cell distortion and thus to an energy increase.

Other Cell Types

Many other cells types can be used within our deformation framework. In general, for a par-

ticular cell type to be of practical use, it has to lead to an energy function which increases as

54

4.4 Deformation-Based Shape Modeling

input shape
x i2

pick and manipulate minimize

x i1

x i3

x i4
x i4

x i2

x i1

x i3

Figure 4.8: Simple example of the shape modeling process. (a) The input shape. (b) Fixing

vi1 ,vi2 ,vi3 and moving vi4 to xi4 . (c) Final shape state after minimizing the deformation energy

taking the positional constraints xi1 , . . . ,xi4 into account.

soon as a displacement different than a global rigid transform is applied to the shape and/or

its cover. In the previous two paragraphs, we saw that under certain conditions this is the case

for edges and star cells.

4.4 Deformation-Based Shape Modeling

In this section, we employ our energy minimization approach to create smooth, naturally looking

shape deformations. This is done in an interactive, user-guided modeling session. Given a shape

S = (V,T), the first step is to compute a cover C consisting of cells of a certain type. The cell

type has significant influence on the final result as we will see later in the section. Next, the user

defines constraints on the deformation by picking vertices and modifying/fixing their positions.

Taking these constraints into account, optimal positions for the unconstrained shape vertices

are computed by minimizing the deformation energy as described in Section 4.3. Figure 4.8

illustrates the modeling process.

The user input is easily incorporated in our minimization framework by treating the positions

xi1 , . . . ,xik of the vertices the user manipulates as constants in Equation (4.6). Furthermore,

there are no target positions q1, . . . ,qm in the context of shape modeling (they are used for

shape registration only). Thus, the deformation energy simplifies to

E(X,Y) =
∑
vi∈V

∑
vij∈Nc

i

‖xi − xij‖2 (4.34)

and the optimal xi is given by (except it is provided by the user)

xi =
1

|Nc
i |

∑
vij∈Nc

i

xij . (4.35)

The first step of the energy minimization (line 7 in Algorithm 2) is unchanged since all xi’s are

anyway treated as constants and there are no qi’s involved.

Figure 4.9 shows several hand gestures created with our deformation algorithm. On the

left side of the figure, the hand is shown in its rest configuration. On the right side, several

55

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

undeformed
shape state

different hand gestures

Figure 4.9: Different hand gestures created in an interactive, user-guided modeling session using

our deformation-based shape modeling technique with star cells.

small edge­based
deformations based on star cells edge­based

Figure 4.10: Comparison between edge-based and star cell-based deformation.

deformation results are shown. The only input provided by the user is the positions of the shape

vertices marked by the red dots. Some of them are moved and others are left at their original

positions. The rest of the shape is deformed according to our numerical procedure. Note the

strong deformation in the examples which, however, is no problem for our method when star

cells are used to compute the shape cover.

The situation is different, when edges are used. Figure 4.10 provides a qualitative comparison

between deformation results for a star cell and an edge shape cover. Although, an edge-based

cover yields good results for small deformations, it fails when the deformation becomes large

which is clearly visible on the right side of Figure 4.10.

We end this section with some comments on how other shape modeling approaches can be

treated within our framework. If we compute a shape cover consisting of prisms by extruding

the triangles of a surface mesh in both directions along the vertex normals, we essentially

get the PriMo approach presented in [90]. This results in an energy function with a unique

global minimum since each prism is kept rigid and is connected with four strings to each of its

neighbors. Thus, a non-rigid motion of the shape leads to an energy decrease.

If we embed the input shape in a cubical grid and consider the grid as the shape and the cubes

as the cover cells, we get a shape editing approach similar to [92]. Again, the resulting energy

function has a unique global minimum at the initial shape state. Similarly, computing a shape

cover made of cells as the ones used in [89, 91, 93, 94] essentially results in the corresponding

shape deformation technique.

56

4.5 Deformable Shape Registration

4.5 Deformable Shape Registration

In this section, we treat the problem of deformable shape registration in the following setting.

Given a source shape S = (V,T) and a target shape S′ = (V′,T′), our aim to bring the source

“close” to the target without distorting the former “too much”. This can naturally be treated

within our energy minimization framework: (i) setting the qi’s (see the energy function (4.6))

to be on the target shape makes sure that the source gets attracted to it and (ii) by adjusting

the weights wi we can find a balance between a close shape match and a low shape distortion.

Larger weights make S get closer to S′, however, at the expense of a larger distortion.

4.5.1 Computation of the Target Positions and Their Weights (Cor-

respondence Estimation)

In the following, we define a pointwise correspondence between source and target. As already

discussed in Section 4.1.2, there is a substantial amount of work in the field of non-rigid corre-

spondence estimation [32, 33, 31, 30, 130]. These methods solve the problem without making

any assumptions about the initial alignment of the shapes but, unfortunately, tend to be costly.

Since we assume that the input shapes are roughly pre-aligned, computing the target positions

for the source vertices based on closest-point search is fast and yields good results. Define

cp(x) = argmin
vk∈V′

‖x− xk‖. (4.36)

to be the position of the target vertex closest to x ∈ R3. Using this operator, we set

qi = cp(xi), (4.37)

where xi is the current position of the source vertex vi ∈ V. In this way, each source vertex

gets a corresponding target position on S′.

Setting different weights wi in the energy function (4.6) allows to trust some target positions

more than others or even to completely ignore some of them: setting wi = 0 means that vi will

move only according to its adjacent cover cells and will not be directly influenced by the target

shape.

Again, based on the assumption that the input shapes are roughly pre-aligned, it does not

make sense to consider vertices as corresponding ones if they are too far apart. Moreover, in

the case of registering a complete object model to an incomplete range scan, we want to ignore

model vertices not facing the scan. Along this line of thoughts, we compute the weights based

on two criteria: (i) how far is a source vertex to its closest target vertex and (ii) how well do the

shape normals at corresponding vertices match. Furthermore, we include an additional global

weight wg ∈ (0, 1) which does not depend on a particular vertex and allows us to globally adjust

how “fast” the source is moving to the target. Thus, we end up with three types of weights per

target point which are multiplied to give a single scalar

wi = wdiw
n
i w

g, (4.38)

57

4. A UNIFIED FRAMEWORK FOR SHAPE MODELING AND
DEFORMABLE 3D SHAPE REGISTRATION

where d stands for distance, n for normal agreement and g for global. The individual weights

are computed as follows.

wdi =

{
1 if ‖cp(xi)− xi‖ ≤ d,
0 otherwise,

(4.39)

where [0, d] is the range of influence of the target shape. For wni we have

wni =

{
n(vi) ·n(v′j) if ∠

(
n(vi),n(v′j)

)
< 90◦,

0 otherwise,
(4.40)

where n(v) denotes the normal at a vertex v and v′j is the target vertex corresponding to the

source vertex vi.

4.5.2 Convergence Issues

For the convergence of the minimization algorithm presented in Section 4.3.2, it is essential

that both the target positions and the weights are constant. However, it is never the case that

the closest-point search yields the semantically correct correspondences and the right weights

at the very first iteration. Rather, it provides an approximation which needs to be refined

in the process of minimization. On the other hand, we do not want to sacrifice the provable

convergence of the method.

It is easy to see that updating the target positions according to (4.36) at every iteration

still leads to a convergent algorithm. Let qki denote the target position for vi ∈ V in the

k-th iteration. In the next, (k + 1)-th, iteration the new target position qk+1
i is computed as

qk+1
i := cp(x

k+1
i). This leads to

wi‖xk+1
i − qk+1

i ‖2 ≤ wi‖xk+1
i − qki ‖2. (4.41)

since we have either qk+1
i = qki , i.e., the closest-point search did not yield a closer target

position, or the new qk+1
i is closer to xk+1

i than the old qki . In either case (4.41) holds which

implies that computing the target points at each iteration based on closest-point search does

not increase the energy of the system and the algorithm converges.

Unfortunately, the situation is different for the weights. Updating them at every iteration

according to (4.38) – (4.40) does not necessary lead to a decreasing sequence of weights which,

in turn, could lead to an energy increase/decrease and thus to oscillations. However, we experi-

mentally noticed that good registration results can be achieved even when updating the weights

only a fixed, pre-defined number of times. In this way, the energy level can not oscillate and

convergence is again guaranteed.

58

Chapter 5

Experimental Results

In this chapter, we describe the experiments we performed with our methods and explain and

analyze the results. There is a separate section devoted to each of the three algorithms presented

in the previous three chapters. All tests were performed on a laptop with a 3GHz CPU, 4GB

RAM and a Linux operating system. The algorithms are implemented in C++.

5.1 Rigid 3D Shape Registration

In this section, we test our rigid registration method, presented in Chapter 2, on a variety of

point sets. The parameter values used in the experiments are given in Table 5.1.

Since our method is a probabilistic one, it computes each time a (slightly) different result. In

order to make a statistical meaningful statement about its performance, we run 100 registration

trials for each pair of inputs and report the mean performance values. We measure the success

rate and the accuracy under varying amount of noise and outliers in the input sets. The success

rate gives the percentage of registration trials in which a transform which is close to the global

optimal one is found. The accuracy is measured using the RMS error (see [29]). The type of

noise added to some of the model and data sets is Gaussian and the outliers are simulated by

Parameter Defined in Value

cost d Eq. (2.15) 1/4(min bbox side(M))

function δ Eq. (2.16) 0.1

cooling tmax Eq. (2.22) 50.0

schedule v Eq. (2.22) 0.00008

stopping δv Sec. 2.3.7 1◦ rot. and 1% transl.

rule δf Sec. 2.3.7 0.1

Table 5.1: The parameter values used in the rigid point set registration experiments. The value

of δv equals the volume of a spherical box with side one degree times the volume of a box with

sides equal to one percent of the sides of the bounding box of the model point set.

59

5. EXPERIMENTAL RESULTS

80% outliers 100% outliers

model set
35,947 points

1,366 points
20% outliers

1,822 points
60% outliers

2,050 points
80% outliers

2,278 points
100% outliers

Figure 5.1: (Top row) The model set shown as a blue mesh. The outlier corrupted data sets

rendered as yellow point clouds. (Bottom row) Typical registration results obtained with our

algorithm based on the inverse distance kernel.

drawing points from a uniform distribution within the bounding box of the corresponding point

set. We report the number of outliers as percentage of the original number of points and not

as percentage of the points in the corrupted set. For example, 100% means that there are as

many outliers as inliers. We did it so because the results in [34], which we use for comparison,

are reported in this way.

We also measure the number of cost function evaluations and the computation time for

varying cooling speed v (defined in (2.22)). We analyze the robustness of our method using two

different kernels in the cost function. Furthermore, we report how two state-of-the-art regis-

tration approaches perform on the same point sets and compare the runtime of our algorithm

with the one of a deterministic branch-and-bound method. In the following, we describe each

test scenario in detail.

5.1.1 Kernel Comparison

First, the success rate and the accuracy of our method are tested with two different kernels,

namely, the inverse distance kernel (2.12) used in our cost function and the Huber kernel (2.7)

used in [27]. The point sets involved in this test together with some typical registration results

are shown in Figure 5.1. Even though the model is rendered as a mesh, only the vertices are

used for the registration. Note that the data sets are incomplete and sparser than the model.

60

5.1 Rigid 3D Shape Registration

(a) (b) (c) (d)

Figure 5.2: (a) The success rate as a function of the percentage of outliers in the data sets shown

in Figure 5.1. (b) The RMS error between the ground truth pose and the estimated pose as a

function of the percentage of outliers. (c), (d) Comparison of our method with two state-of-the-art

rigid registration algorithms.

Furthermore, outliers are added only to the data sets. This case occurs in real world scenarios

in which one has a complete (relatively clean) model of an object and wants to align it to a low

quality data set which only partially represents the object (due to occlusion and scene clutter).

Observe the high quality of the alignment shown in the bottom row in Figure 5.1 even in the

presence of a significant amount of outliers. A registration trial took between 9 and 17 seconds

depending on the number of points (which are provided in Figure 5.1).

As already mentioned in Section 2.2.1, we expect a registration method which minimizes a

cost function based on the unbounded Huber kernel to have difficulties with outlier corrupted

data sets. This is confirmed by the results of this test case which are summarized in the

Figures 5.2(a) and 5.2(b).

In Figure 5.2(a), the success rate of our registration algorithm is shown when using the

inverse distance kernel (2.12) (our kernel) and the Huber kernel (2.7). Note that our kernel

leads to an almost constant success rate of 100% even in the presence of a very large amount

of outliers whereas at the level of 100% outliers the registration completely fails if the Huber

kernel is used.

In Figure 5.2(b), the RMS error as a function of the percentage of outliers is shown for the

inverse distance kernel and the Huber kernel. Only the successful trials are used for computing

the RMS error. Note that our kernel leads to much more precise registration results which are

almost independent of the amount of outliers.

5.1.2 Comparison with State-of-the-Art

Alignment Precision In the second test case, we align two partially overlapping parts of

the Coati model under varying conditions. This time, noise and outliers are added to both

the model and the data set. This situation occurs in practice when building a complete object

model out of multiple partially overlapping scans. We compare our results with the ones

reported in [34] which are obtained with the robust 4PCS algorithm and a state-of-the-art local

descriptor-based approach (LD). A combination of spin-images and integral invariants are used

61

5. EXPERIMENTAL RESULTS

40% outliers 100% outliers clean sets σ = 2.0 σ = 10.0

40% outliers 100% outliers clean sets σ = 2.0 σ = 10.0

Figure 5.3: Registration of partially overlapping noisy and outlier corrupted point sets. The

models are shown in blue whereas the data sets in yellow. (Top row) Partial scans of the Coati

model degraded by noise or outliers. (Bottom row) Typical registration results computed with

our algorithm.

as local descriptors. We perform the tests on the point sets used in [34]. This allows for a

precise comparison without the need of re-implementing either of the two algorithms.

The model and data sets together with typical registration results obtained with our method

are shown in Figure 5.3. σ of Gaussian noise or the amount of outliers as percentage of the

original number of input points is indicated below each figure. One σ unit equals 1% of the

bounding box diagonal length of the corresponding point set. 5, 000 randomly sampled points

from each point set are used for the registration. The results are obtained without any noise

or outlier removal, ICP refinement [24] or assumptions about the initial pose of the point sets.

Each registration trial took about 33 seconds.

In the Figures 5.2(c) and (d), we plot our results together with the ones reported in [34].

Note that the graphs corresponding to 4PCS and LD end by σ = 4.0 and 40% outliers. This is

because the authors of [34] did not test their methods on point sets with more noise or outliers

whereas we did. Observe that our algorithm is quite insensitive to noise and outliers and it

outperforms both other methods. The alignment is measured using the RMS error between

the model and the data after registration. One unit corresponds to 1% of the bounding box

diagonal length of the model set.

62

5.1 Rigid 3D Shape Registration

points 40 60 80 100 150 200

time (sec)

b&b [57]
10.2 48.6 107.5 156.2 722.1 1103.2

time (sec)

our alg.
2.0 2.1 2.3 2.4 2.8 3.1

Figure 5.4: (Left) Computation time comparison of our algorithm and the box-and-ball (b&b)

registration algorithm of Li and Hartley [57]. (Right) Runtime of our algorithm as a function of

the number of input points.

Figure 5.5: From left to right: success rate, RMS error, number of cost function evaluations and

computation time of our registration algorithm as a function of the cooling speed v.

Processing Time In the third test scenario, we compare the computation time of our algo-

rithm with the one of the registration method of Li and Hartley [57] which is based on global

deterministic Lipschitz optimization theory. We run these tests on a slower PC with a 2.2 GHz

CPU in order to make a fair comparison with [57]. The results are summarized on the left in

Figure 5.4. For a point set of 200 points, our algorithm outperforms [57] by three orders of

magnitude.

The right side in Figure 5.4 shows the dependence of the computation time on the number

of input points. The figure clearly indicates a linear time complexity. Model and data used in

this test case are down-sampled copies of the outlier-free version of the data set shown in the

top row of Figure 5.1. In all tests, our method achieved a success rate of 100%.

5.1.3 Dependence on the Cooling Speed

Next, we measure the performance of our method for varying cooling speed v defined in (2.22).

We report the results in Figure 5.5. Model and data used in this test consist of 100 points

randomly sampled from the outlier-free version of the data set shown in the top row of Figure 5.1.

One RMS error unit equals 1% of the bounding box diagonal length of the point set.

If the cooling speed is too high (> 0.0025), the optimization algorithm often gets stuck in

a local minimum of the cost function landscape which explains the low success rate and the

high RMS error in the first two graphs in Figure 5.5. Clearly, lower cooling speed means more

iterations which is the reason for the increase of the number of cost function evaluations and

63

5. EXPERIMENTAL RESULTS

model and data three different views of the registration result

Figure 5.6: (Left) The complete model of a box (shown in green; 236, 089 points) and three

views of the very low quality data set (shown in red; 9, 623 points). (Right) Our method robustly

achieved the right alignment in 10 out of 10 trials.

Figure 5.7: Registration result in the case of a noisy and very sparsely reconstructed data set

(shown by the red “curve”) and a complete noise-free model (transparent green mesh).

processing time (last two graphs in Figure 5.5). Our algorithm achieves a success rate of 100%

and an RMS error below 0.5 for less than 2.5 seconds (for point sets consisting of 100 points).

5.1.4 Further Examples

Finally, we demonstrate the ability of our method to deal with partially overlapping and very

sparsely sampled point sets corrupted by noise and outliers which are not artificially generated

but originate in scan device imprecision.

In Figure 5.6, we show that our method successfully computes the right registration even in

the case of an extremely degraded data set which represents only a subset of the model. The

data set was obtained with a correlation-based stereo algorithm under poor lighting conditions.

5, 000 out of the 9, 623 data points were randomly sampled and used for the registration. Each

registration trial took about 30 seconds. The high amount of noise and outliers which almost

completely destroy the shape of the object makes this a very challenging example.

Figure 5.7 illustrates the stability of our algorithm when dealing with very sparsely sampled

data sets. Note that in this case the state-of-the-art integral volume descriptor (used in [29])

will fail since the curve which represents the data set does not enclose a volume in R3. Local

64

5.2 3D Object Recognition

model and data set three different views of the registration result

Figure 5.8: Registration of noisy point sets with low overlap.

model optimal solutiondata nearly optimal
solution

Figure 5.9: Point sets leading to a cost function which has two almost equally low minima.

descriptors which use surface normals like, e.g., spin images [28], will fail as well since in general

the normal of a curve which lies on a surface does not match the surface normal.

Figure 5.8 shows a typical registration result for partially overlapping points sets. Although

rendered as meshes only points are used for the registration. Note that the input scans, shown

on the left, represent different parts of the face and the model set (the blue one) contains no

parts of the neck.

Note that our registration method can lead to incorrect results for a class of shapes for which

several almost equally good alignments exist and the registration ambiguity can be dissolved

by small scale features only. An example of such a shape is a large cup with a small handle. In

this case, the corresponding point sets lead to a cost function with several local minima which

are almost as “good” as the global one. Figure 5.9 provides an example for such a difficult case.

The nearly optimal solution differs from the optimal one by a rotation of the data set by 180◦

about the axis which corresponds to the upright orientation of the bottle.

65

5. EXPERIMENTAL RESULTS

Chef Parasaurolophus T­Rex Chicken Chicken 2SnailRabbit

(a) (b)

Vase

Figure 5.10: The models used in the tests of the 3d object recognition algorithm. (a) Models

provided by [71]. (b) Our own scans made with a low-cost light intersection-based scanning device.

(a) 62.3% object occlusion (b) 70.4% object occlusion (c) 86.2% object occlusion

Figure 5.11: The test scenes used for the Chef model recognition. The level of occlusion for the

Chef is indicated for each scene. On the left of each subfigure, the input scene is shown as a blue

mesh, whereas on the right, the recognized Chef model is placed at the location computed by our

algorithm and rendered as a yellow mesh.

5.2 3D Object Recognition

In this section, we experimentally validate the 3D object recognition algorithm proposed in

Chapter 3. The object models involved in the tests are shown in Figure 5.10. All scenes used in

the test cases were digitized with a Minolta VIVID 910 scanner [131] and provided by [71]. An

exception are the scenes shown in the Figures 3.1 and 5.15 which are our own scans made with

a low-cost light intersection-based DAVID laser scanner [132]. Examples and more information

about the scenes will be given in the following subsections.

In Appendix A, a further experimental validation of the object recognition method within

a real-world robotic object grasping scenario is provided.

5.2.1 Recognition of a Single Object in Occluded Scenes

In the first test scenario, we examined how the success rate and the false positives rate of the

recognition algorithm depend on the most important parameter, namely, the visibility threshold

(introduced in Section 3.3.2) and the actual object occlusion in a scene. According to [28], the

occlusion of an object model is given by

occlusion = 1− visible model surface area

total model surface area
. (5.1)

66

5.2 3D Object Recognition

0.050.150.250.35
0

0.5

1

1.5

2

visibility threshold

s
u

c
c
e

s
s
 /

 f
a

ls
e

 p
o

s
.

success rate
false positives

(a) 62.3% object occlusion

0.050.150.250.35
0

0.5

1

1.5

2

visibility threshold

s
u

c
c
e

s
s
 /

 f
a

ls
e

 p
o

s
.

success rate
false positives

(b) 70.4% object occlusion

0.050.150.250.35
0

0.5

1

1.5

2

visibility threshold

s
u

c
c
e

s
s
 /

 f
a

ls
e

 p
o

s
.

success rate
false positives

(c) 86.2% object occlusion

Figure 5.12: The success rate and the mean number of false positives as functions of the visibility

threshold for three different scenes each one containing the Chef model at an occlusion level of

(a) 62.3%, (b) 70.4% and (c) 86.2%.

The aim of this test was to establish a value for the visibility threshold which, on the one

hand, results in a high success rate even in highly occluded scenes, and on the other hand

leads to as few as possible false positives. In this experiment, only the model of the Chef

(Figure 5.10(a)) was used for recognition in three different scenes each one containing a total of

three or four objects. The Chef was present in each scene at different locations and at different

levels of occlusion (self-occlusion as well as occlusion caused by the other objects). The three

test scenes together with typical recognition results are shown in Figure 5.11.

Since the recognition algorithm is a probabilistic one, we ran 100 trials on each scene and

computed the recognition (success) rate and the mean number of false positives in the following

way. We visually inspected the result of each trial. If object A (in this case only the Chef) was

recognized k times (0 ≤ k ≤ 100), then the recognition rate for A is k/100. The mean number

of false positives is (k1 + ...+ k100)/100, where ki is the number of false alarms in the i-th trial.

The results of the test are summarized in Figure 5.12. As expected, the visibility threshold

had to fall below a certain value, namely, 1−occlusion in order to achieve a positive recognition

rate. More importantly, the plots suggest that the number of false positives practically does not

depend on the actual level of occlusion but mainly on the visibility threshold: in all three cases

it starts to grow when the visibility threshold falls below 0.15. In summary, it can be said that

the method achieved a recognition rate of 1.0 in highly occluded scenes (up to 85% occlusion)

at the cost of no false positives. In order to handle more occlusion the visibility threshold had

to fall below 0.15 which gave rise to some false positives.

5.2.2 Recognition of Multiple Objects in Noisy Scenes

In this scenario, we tested the algorithm under varying noisy conditions. The four models

involved are shown in Figure 5.10(a) and the noise-free scene is shown in Figure 5.13(a). We

degraded the noise-free scene with zero-mean Gaussian noise with different variance values σ2.

67

5. EXPERIMENTAL RESULTS

(a) Noise-free (b) (c)2=0.25 2=1.0

Figure 5.13: (a) Noise-free scene. (b), (c) Recognition results for data sets degraded by zero-

mean Gaussian noise for different variance σ2 (given as percentage of the bounding box diagonal

length of the scene). The left side of each subfigure shows the scene, whereas the right side shows

the scene plus the recognized models at the estimated locations.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

σ
2

re
c
o

g
n

it
io

n
 r

a
te

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

σ
2

fa
ls

e
 p

o
s
it
iv

e
s

(b)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

σ
2

R
M

S
 e

rr
o

r

(c)

Figure 5.14: (a) Recognition rate, (b) mean number of false positives and (c) RMS error as

functions of the variance σ2 of Gaussian noise. Note that the RMS error is computed for the

successful trials only. Both σ2 and the RMS error are given as percentage of the bounding box

diagonal length of the scene.

Again, 100 recognition trials on each noisy scene were performed and the recognition rate, the

mean number of false positives and the RMS error (RMSe) were computed as functions of σ2.

For two point sets P and Q and a transform T the RMS error measures how close each

point qi ∈ Q comes to its corresponding point pi ∈ P after transforming Q by T [29]. The

smaller the error the closer the alignment between the point sets. More formally,

RMSe(P,Q, T) =

√√√√ 1

N

N∑
i=1

‖pi − T (qi)‖2, (5.2)

with N being the number of points. Since the ground truth location of each model in the

test scene is known, the RMS error of the rigid transform computed by our method was easily

calculated1. Note that we did not compute the RMS error for the transformed model and the

scene but for the transformed model and the same model placed at the ground truth location.

Figure 5.13(b) and (c) exemplary show typical recognition results for two of the twelve noisy

scenes. The results of the tests are reported in Figure 5.14.

1The ground truth rigid transform for the models is available on http://www.csse.uwa.edu.au/~ajmal/

68

http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html

5.2 3D Object Recognition

Figure 5.15: Typical recognition results obtained with our method for three test scenes. The

scenes are shown as blue meshes and the recognized model instances are rendered as yellow point

clouds and superimposed over the meshes. Some of the scenes contain unknown objects (the left

and the right one). Note that the scene reconstruction contains only small portions of the objects.

Next, we demonstrate the ability of our method to deal with data sets corrupted by noise

which is not artificially generated but originates in scan device imprecision. Note that the

scenes used in [28] and [71] are dense and have a relatively good quality. We use a low-cost

light section based scanner which gives sparser and noisier data sets. The models used in this

test scenario are shown in Figure 5.10(b). Typical recognition results of our method are shown

in Figure 3.1 and Figure 5.15.

5.2.3 Comparison

Next, we compared the recognition rate of our algorithm with the spin images [28] and the tensor

matching [71] approaches on the same 50 data sets used in [71]. This made a direct comparison

possible without the need of re-implementing either of the two algorithms. The models of the

four toys involved in the tests are shown in Figure 5.10(a). The toys (not necessarily all four

of them) are present in the scenes in different positions and orientations. Since each scene was

digitized with a laser range finder from a single viewpoint the back parts of the objects were

not visible. Furthermore, the toys were usually placed such that some of them occluded others

which made the visible object parts even smaller. Four (out of the 50) test scenes are shown

in Figure 5.11 and Figure 5.13(a). Again, we ran 100 recognition trials on each scene and

computed the recognition rate for each object in the way described in Section 5.2.1. Since the

occlusion of every object in the test scenes was known we report the recognition rate for each

object as a function of its occlusion.

The result of the comparison is summarized in Figure 5.16(a). The recognition rate of our

algorithm for each object as a function of its occlusion is indicated by the continuous lines. The

dashed lines give the recognition rate of the spin images and the tensor matching approaches

on the same scenes as reported in [71]. Our algorithm outperforms both other methods. Note

recognition.html

69

http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html

5. EXPERIMENTAL RESULTS

60 70 80 90

1.0

0.8

0.6

0.4

0.2

65 75 85

T-Rex
Chicken

Para
Chef

Tensor Matching
Spin Images

0.0

Our algorithm

re
co

gn
iti

o
n

ra
te

% occlusion

(a)

55,000 100,000 145,000

5

7

9

11

13

15

num. of scene points

c
o

m
p

.
ti
m

e
 (

s
e

c
)

(b)

1 2 3 4

5

9

13

17

num. of CPU cores

c
o

m
p

.
ti
m

e
 (

s
e

c
)

(c)

Figure 5.16: (a) Comparison with spin images [28] and tensor matching [71]. (b) Computation

time as a function of the number of scene points for the simultaneous recognition of seven models.

(c) Runtime as a function of the number of used CPU cores for the recognition of seven models

in a scene consisting of around 60,000 points.

that the chef was recognized in all trials, even in the case of occlusion over 91%. The blue dots

represent the recognition rate in the three chicken test scenes in which our method performed

worse than the other algorithms. This was due to the fact that in these scenes only the chicken’s

back part was visible which contains strongly varying normals which made it difficult to compute

a stable aligning transform.

Our method needed in average about 7.5 seconds for the recognition of the objects in each

scene and sampled about 450 oriented point pairs per scene. For a comparison, 250 tensors,

respectively, 4000 spin images per scene were used in the experiments performed in [71].

5.2.4 Runtime

We experimentally validated the linear time complexity of our algorithm in the number of scene

points. Eleven different data sets were involved in this test case—a subset from the scenes used

in the comparison test case (Section 5.2.3). Note that we did not take a single data set and

down/up-sampled it to get the desired number of points. Instead, we chose eleven different

scenes with varying scene extent, number of points and number of objects. This suggests that

the results will hold for arbitrary scenes. We report the results of this test in Figure 5.16(b).

The plot indicates a linear complexity.

Note that the iterations of the main loop of the recognition algorithm (lines 4 to 20 of

Algorithm 1) can be executed independently of each other which makes it possible to run them

in parallel. This is a very important issue since parallel computing has become the dominant

paradigm in computing architectures, mainly in the form of multicore processors [133]. In

Figure 5.16(c), we report the processing time as a function of the used CPU cores. Note that

the parallel execution on four cores runs more than three times faster than on a single core.

This indicates a great potential for further speed-up when more CPU cores become available.

70

5.3 Deformable 3D Shape Registration

initial
alignment

registration
result

source shape
1,944 points

target shape
37,954 points

Figure 5.17: Registering two range images representing the front part of the same hand in two

different poses. The data sets were obtained with a 3D geometry scanner [88] and are publicly

available on the authors webpage.

5.3 Deformable 3D Shape Registration

In this section, the deformable registration algorithm, proposed in Chapter 4, is experimentally

validated on a variety of real data sets.

In order to evaluate the algorithm quantitatively, we measure the source shape distortion

and the RMS error between source and target and plot them versus the iteration number. First,

we define the vertex distortion as

dis(vi) =
1

|Ns
i |
∑

vj∈Ns
i

|‖xi − xj‖ − lij |
lij

, (5.3)

where Ns
i is the set of shape vertex neighbors of vi (see Definition 3 in Section 4.2), xj is

the current position of vertex vj and lij is the distance between vi and vj in the initial,

undeformed shape state. If we consider the source shape as a mass-spring system in which each

two neighboring vertices are connected by a spring, each term in (5.3) gives the strain of the

spring (xi,xj) (see [134]). Using dis(vi), we define the distortion of the source shape S as

dis(S) =
1

m

∑
vi∈S

dis(vi), (5.4)

with m being the number of source shape vertices. The RMS error between the source S and

the target S′ is given by

RMSe(S, S′) =

√
1

m

∑
vi∈S

‖xi − cp(xi)‖2, (5.5)

where m is the number of source shape vertices and cp(xi) is the target point closest to vi ∈ S

(see (4.36) in Section 4.5.1).

5.3.1 Range Scan Pairs

First, we run our method on pairs of range scans representing the same object in different poses.

Figures 5.17 to 5.21 show the data sets used in the test. The scans are shown as they were

71

5. EXPERIMENTAL RESULTS

initial
alignment

source shape
1,574 points

target shape
31,467 points

registration
result

Figure 5.18: Range scans representing the back part of the same hand in two different poses.

The poses differ not only by the local bending deformation of the fingers but also by a global

translation. The data sets were obtained with a 3D geometry scanner [88] and used in [40].

source shape
1,760 points

target shape
39,175 points

registration
result

initial
alignment

Figure 5.19: Registering two facial expressions. Note that the scans are noisy and incomplete.

Our methods correctly aligns the shapes even in areas of low overlap.

captured by the scanning devices without any additional alignment. These configurations are

used as starting point for our registration algorithm.

Figure 5.17 shows a range scan pair which is part of a sequence representing a slowly closing

hand. The inter-frame displacement is small and mainly caused by the bending finders. The

registration computed with our method together with the deformation measure and the RMS

error are shown on the right side of the figure.

Figure 5.18 shows a further example of a closing hand. This time, there is a larger bending

deformation plus an additional global translation. As is to be expected from the initial config-

uration of the scans the RMS error at the beginning of the registration is larger. Furthermore,

since the fingers bend more than in the last example the amount of deformation required to

register the scans is larger. This is confirmed by the plots on the right side of the figure.

Figure 5.19 demonstrates the ability of our algorithm to deal with incomplete data. Note

that there are many holes in both scans caused by self-occlusion and scan device imperfection.

Our method successfully registers the scans even in areas of low overlap as the magnified parts

of the figure show.

Figure 5.20 shows registration of an articulated object, namely, a bending arm. Note that

there is a significant deformation between the scans. This is a challenging example for feature-

72

5.3 Deformable 3D Shape Registration

source shape
1,800 points

target shape
35,271 points

initial alignment registration result

Figure 5.20: Registration of a bending arm.

initial
alignment

registration
result

target
23,383 points

source
1,726 points

Figure 5.21: Registering a closing and rotating hand.

based methods since the scans are smooth and lack distinctive features. Our method successfully

recovers the deformation as depicted in the figure.

In Figure 5.21, a further example of a moving hand is shown. Additionally to the local

deformation caused by the closing fingers this example contains a significant global rotation.

5.3.2 Complete Source Model and an Incomplete Target Scan

In the tests performed so far, the source and target represented more or less the same part

of the deforming object: the same side of a hand, face or an arm. Although there were some

points on the one scan without a counterpart on the other (especially in the face example in

Figure 5.19), an almost one-to-one correspondence between the shapes was established.

In this section, we present a couple of more involved test cases in which a complete model

of an object (the source) has to be registered to a deformed, incomplete scan (the target).

This is challenging since large parts of the model have no corresponding parts on the scan. To

get more stable results and less shape distortion, we tetrahedralized the models prior to the

registration. This is possible since they are closed, i.e., water-tight meshes. We performed the

tetrahedralization with TetGen1.

1TetGen is a quality tetrahedral mesh generator and a 3D Delaunay triangulator which is freely available at

http://tetgen.org.

73

http://tetgen.org

5. EXPERIMENTAL RESULTS

target shape
(two views)
31,833 points registration result (four views)

initial alignment (three views)source shape
(two views)
658 points; 1,912 tetrahedra

Figure 5.22: Registering a complete geometric model of a hand to a partial range scan. In the

last row, the registered model is shown transparent in order to better see the underlying target.

The first example, shown in Figure 5.22, demonstrates the registration of a complete model

of a hand to a partial scan of another hand in a different pose. Note that source and target

do not stem from the same individual. Furthermore, the front side of the hand is not fully

covered by the target scan and the back side is completely missing. This means that more than

half of the source points have no counterparts on the target. Still, our algorithm successfully

registered the data sets as can be seen in Figure 5.22. Note the two “jumps” in the shape

distortion and RMS error plots at iterations 153 and 218 and note that the curves become quite

flat just before that. This is due to the fact that the algorithm converged with the current

set of weights (see Equation (4.38) on page 57) which resulted in recomputing the weights and

continuing the minimization. This usually leads to higher weights for the target positions due

to better agreement between the source and target normals (see Equation (4.40) on page 58)

which explains the sudden drop of the RMS error and the increase of the shape distortion.

In the next test case, a model of an arm is registered to a partial scan of the same arm in

a different pose (see Figure 5.23). Besides providing shape distortion and RMS error plots, we

visualize the distortion directly on the registered model by mapping the vertex distortion (see

Equation (5.3)) to colors (ranging from blue to red) and shading each mesh triangle according

to the colors of its vertices. Note that the front part of the fist in the target scan is almost

completely missing and the initial alignment of the shapes is quite imprecise. Nevertheless, our

74

5.3 Deformable 3D Shape Registration

data set

method Fig. 5.17 Fig. 5.18 Fig. 5.19 Fig. 5.20 Fig. 5.21

GMM+TPS 0.04 0.6 0.05 0.8 0.10 1.4 0.08 1.4 0.06 2.1

GMM+GRBF 0.03 0.8 0.03 0.9 0.07 2.4 0.05 2.2 0.06 2.5

SDA+TPS 0.09 0.7 0.09 0.7 0.11 1.2 0.08 1.3 0.08 0.9

CPD+GRBF 0.30 1.4 0.30 1.2 0.20 1.5 0.30 3.6 0.20 1.7

KC+TPS 0.04 0.6 0.05 0.8 0.10 1.3 0.08 1.4 0.06 1.8

KC+GRBF 0.03 0.8 0.03 0.9 0.09 2.2 0.06 2.2 0.07 2.4

our algorithm 0.02 0.4 0.02 0.4 0.04 0.8 0.04 1.3 0.03 0.8

dis RMSe dis RMSe dis RMSe dis RMSe dis RMSe

Table 5.2: Comparing the quality of the registration computed by our algorithm and six state-

of-the-art approaches for the scans shown in Figures 5.17 to 5.21. The shape distortion (dis) is

dimensionless and the RMS error (RMSe) is given in millimeters.

method achieves a good registration. As it can be seen from the distortion map in the last row

in Figure 5.23, a distortion takes place mainly in those regions of the surface which experience

the largest deformation in reality: the elbow and the wrist.

Note that in both examples, in contrast to the ones presented in the previous Section 5.3.1,

the RMS error converges to a value significantly larger than 0. This is due to the fact that

all source points are involved in the computation of the RMS error and not only those which

have corresponding target points (i.e., the ones with positive target weights wi). Since there

are many model points with no counterparts, the RMS error remains large even for a good

registration between source and target.

5.3.3 Comparison

In this section, we compare the performance of our method (both registration quality and

runtime) with the performance of several state-of-the-art non-rigid registration algorithms: the

softassign + deterministic annealing (SDA) approach [125], the kernel correlation-based (KC)

method [49], the coherent point drift (CPD) algorithm [126] and the Gaussian mixture models-

based (GMM) algorithm [127]. Note that the KC [49] and the GMM [127] methods can perform

the registration using two different deformation models, namely, thin plate splines (TPS) and

Gaussian radial basis functions (GRBF). This effectively results in six different registration

methods which we will denote as follows: SDA+TPS is the abbreviation for [125], CPD+GRBF

stands for [126], KC+TPS, KC+GRBF denote [49], and GMM+TPS, GMM+GRBF stand for

[127], depending on which deformation model is employed.

We used an implementation of the above mentioned methods which can be downloaded from

http://gmmreg.googlecode.com and ran them on the same hardware and on the same data

sets as our algorithm. Figures 5.17 to 5.21 show the data sets used in the test. The scans are

shown as they were captured by the scanning devices without any additional alignment. These

configurations were used as starting point for all registration algorithms.

75

http://gmmreg.googlecode.com

5. EXPERIMENTAL RESULTS

data set

method Fig. 5.17 Fig. 5.18 Fig. 5.19 Fig. 5.20 Fig. 5.21

GMM+TPS 497 315 273 332 453

GMM+GRBF 361 244 237 269 267

SDA+TPS 1004 621 501 642 1033

CPD+GRBF 4389 2443 1368 2269 5952

KC+TPS 491 314 273 331 451

KC+GRBF 361 243 237 267 267

our algorithm 1.36 1.16 1.1 2.72 2.1

Table 5.3: Computation time (in seconds) taken by our algorithm and six state-of-the-art

approaches for the registration of the scans shown in Figures 5.17 to 5.21.

The quality of the registration computed by the algorithms is compared using the source

shape distortion measure (5.4) and the RMS error (5.5). Table 5.2 shows the results of the

comparison. Our algorithm outperforms the others in all test cases. In all but one test, we

achieved both a lower RMS error and a lower shape distortion. In only one case (Fig. 5.20),

the SDA+TPS method led to an RMS error equal to ours, however, at the cost of a higher

distortion.

The results of the runtime comparison are summarized in Table 5.3. Our algorithm clearly

outperforms all six methods with the difference in processing time being up to three orders of

magnitude.

5.3.4 Deformable Hand Tracking

Finally, we qualitatively tested our method on two range scan sequences representing a hand

which undergoes an articulated motion. Although tracking is not the focus of this thesis, we

demonstrate that our method can be applied to this challenging problem and that it achieves

good results. Refer to [135, 136, 137] for specialized algorithms for articulated hand tracking.

The range scans used in this section are provided by the Computer Graphics and Visualization

lab at the Technische Universität Dresden1.

The test scenario is the following. The source shape (the yellow mesh shown in Figure 5.22)

is registered sequentially to the frames of the range scan sequence. The result for the current

frame is used as initialization for the next one. Both sequences are single-view, meaning that

the deforming hand is captured only from one viewpoint.

The first sequence consists of 166 frames. Figure 5.24 exemplary shows some of them and

the corresponding registration results. Note that towards the end of the sequence, the scans

get noisy and very incomplete. This is due to the fact that only a small portion of the hand is

facing the scanning device. Nevertheless, our method successfully tracks the hand.

1http://cgv.inf.tu-dresden.de/3dscanning/datasets.html

76

http://cgv.inf.tu-dresden.de/3dscanning/datasets.html

5.3 Deformable 3D Shape Registration

The second test sequence is more challenging and consists of 430 frames. Besides undergoing

an articulated motion, the hand rotates several times (by the wrist being twisted). Thus,

the forehand which originally faces the scanner gets completely occluded and the backhand

becomes visible. Figure 5.25, on pages 80, 81 and 82, exemplary shows some frames and the

corresponding registration results. Note that our method successfully tracks the hand while it

is rotating in the frames 136–161 and 228–249 even though little information is provided due to

severe occlusion. Furthermore, as frames 291 and 303 show, our algorithm can deal with very

sparse and noisy scans.

After frame 330, the method loses the fingers while the hand is closing. This has to do with

the distance threshold d, used in Equation (4.39) on page 58, which was set to 6mm in this

experiment. This implies that the pointwise source-to-target correspondences are rejected if

the distance between the points is more than 6mm. Due to scan device limitations the fingers

disappear during the hand closing (frames 330–334) and reappear as the hand is already made

to a fist (frame 349). However, by that time, all source shape points on the fingers are further

away than 6mm from the corresponding target points. Setting the distance threshold to a

larger value does not solve the problem. Instead, it leads to strong shape distortions and self-

intersections since source shape parts with no counterparts in the scan can be wrongly attracted

to distant scan regions. Nevertheless, our method is able to correctly recover the global rotation

of the hand in the frames 361–430 even though the scans are noisy and only partially represent

the fist.

77

5. EXPERIMENTAL RESULTS

registration result (three views and a close­up on the fist)

target shape (one view and two close­ups on the fist)
47,735 points

source shape (two views)
2,576 points; 8,190 tetrahedra

initial alignment (three views)

per­vertex distortion values mapped to colors – the hotter the color the higher the distortion

Figure 5.23: Registering a complete geometric model of an arm to a partial scan of the same

arm in a significantly different pose.

78

5.3 Deformable 3D Shape Registration

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

frame 4 frame 27 frame 47 frame 60 frame 75 frame 80

frame 94 frame 103 frame 110 frame 125 frame 145 frame 166

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

Figure 5.24: Sample frames of the tracking results obtained with our method. The target scans

are shown in blue in the 1st and 4th row. In the 2nd and 5th row, the registered source shape

is shown in yellow. The 3rd and 6th row show the registered source shape overimposed over the

corresponding target scan.

79

5. EXPERIMENTAL RESULTS

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

frame 5 frame 40 frame 57 frame 70 frame 80 frame 95

frame 102 frame 116 frame 136 frame 148 frame 155 frame 161

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

Figure 5.25: Sample frames of the tracking results obtained with our method (continued on the

next page). The target scans are shown in blue in the 1st and 4th row. In the 2nd and 5th row,

the registered source shape is shown in yellow. The 3rd and 6th row show the registered source

shape rendered over the corresponding target scan.

80

5.3 Deformable 3D Shape Registration

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

frame 173 frame 191 frame 228 frame 235 frame 243 frame 249

frame 260 frame 267 frame 271 frame 277 frame 291 frame 297

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

Figure 5.25 (continued): Sample frames of the tracking results obtained with our method

(continued on the next page).

81

5. EXPERIMENTAL RESULTS

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

frame 303 frame 310 frame 320 frame 330 frame 334 frame 349

frame 361 frame 367 frame 381 frame 401 frame 415 frame 430

ta
rg

et
 s

ca
ns

re
gi

st
er

ed
so

ur
ce

 s
ha

pe
re

gi
st

er
ed

so
ur

ce
 &

 t
ar

ge
t

Figure 5.25 (continued): Sample frames of the tracking results obtained with our method.

82

Chapter 6

Conclusions and Future Work

In this thesis, we presented algorithms for rigid/deformable 3D shape registration and 3D

object recognition and pose estimation. We took into account the requirements posed in the

introductory Chapter 1, namely, robustness to noise and outliers and the ability to deal with

partial views and holes in the data reconstruction. In the next two sections, we draw some

conclusions and discuss possible directions for future investigation.

6.1 Conclusions

We introduced a new technique for pairwise rigid registration of point clouds. Our method is

based on a noise robust and outlier resistant cost function which itself is based on an inverse

distance kernel. One of the main messages is that a registration method which minimizes an

objective function based on an unbounded kernel will be sensitive to noise and outliers in the

point sets. This was fully validated by comparisons between our kernel and the Huber kernel

(see Section 5.1).

A further property of the rigid registration algorithm is that it does not rely on any initial

estimation of the globally optimal rigid transform. This was achieved by employing a new

stochastic algorithm for global optimization. In order to minimize efficiently over complex

shaped search spaces, like the space of rotations, we generalized the BSP trees and introduced

a new technique for hierarchical rotation space decomposition. Furthermore, we derived a new

procedure for uniform point sampling from spherical boxes.

Tests on a variety of point sets showed that the proposed method is insensitive to noise

and outliers and can cope very well with sparsely sampled and incomplete data sets. Compar-

isons showed that our algorithm is by three orders of magnitude faster than a deterministic

branch-and-bound method. Furthermore, it outperformed a recently proposed generate-and-

test approach and a state-of-the-art local descriptor-based method in terms of accuracy and

robustness.

83

6. CONCLUSIONS AND FUTURE WORK

The presented rigid registration algorithm is based on the assumption that both input point

clouds are (partially) representing one and the same object. However, in some situations,

like sorting grocery items by a robot (see Appendix A), we are interested in simultaneously

registering several object models to a scene which contains data from multiple objects plus

background clutter. This led us to the problem of 3D object recognition and pose estimation.

We presented a solution able to robustly recognize and localize objects in partially reconstructed

and unsegmented scenes.

The algorithm is based on a robust geometric descriptor, a hashing technique and an efficient,

localized RANSAC-like sampling strategy. We provided a theoretical complexity analysis and

derived a formula for computing the number of iterations required to recognize the objects with

a predefined success probability. The result of the complexity analysis, namely a linear time

dependency on the number of scene points, was experimentally validated. Tests on real range

data confirmed that our method performs well on complex scenes in which only small parts

of the objects are visible. In a direct comparison with the spin images [28] and the tensor

matching [71] approaches, our method performed better in terms of recognition rate.

In Appendix A, a further experimental validation with the DLR Lightweight-Robot III [138]

showed how well this new method can be exploited for grasping in unstructured and cluttered

environments. The presented solution is capable of quickly recognizing and robustly grasping

known objects from an unsorted pile of different everyday items. This is extremely useful for

typical service robotics or industrial co-worker tasks.

Furthermore, we dropped the assumption of rigidity and developed a deformable 3D shape

registration method. We introduced a unifying framework which allowed to treat deformation-

based shape modeling together with deformable shape registration. We focused on modeling

as-rigid-as-possible shape deformations which can be optionally augmented with local scale.

In contrast to many recent methods, our approach is not formulated within a general-purpose

optimization framework. The minimization of high-dimensional, non-linear cost functions is

computationally very demanding since it involves the repeated solution of large linear systems.

Instead, we rely on a simple numerical minimization scheme tailored to the problem at hand.

The proposed solution proved to be very efficient since an experimental comparison to six state-

of-the-art approaches showed that our algorithm outperforms them in terms of both registration

quality and processing time. Furthermore, we experimentally validated our method on a variety

of real range scans and demonstrated that it performs well on noisy and incomplete data.

Appendix B showed an application of our deformable registration method to the problem

of knowledge transfer between geometric models. More precisely, we demonstrated how the

proposed method can be used to map stable grasping points from one object model to another.

This can be generalized and used for an automatic transfer of many different kinds of data

associated with a geometric model, e.g., texture coordinates, friction parameters, pressure values

and many more.

84

6.2 Future Work

6.2 Future Work

This thesis offers several directions for future research. In the following few paragraphs, we

propose some possible methods specific improvements.

Stochastic Optimization We plan to further investigate the proposed stochastic optimiza-

tion method from a theoretical point of view. More specifically, we will prove the asymptotic

convergence of the method, i.e., prove that, with probability 1, the sequence

{f(xk)}k∈N,

where f is the cost function and xk is a candidate point in the space of rigid transforms,

converges to the minimum of f for k → ∞ [139]. Besides this, the rate of convergence is

also of interest. A further issue is to determine, for a given function f and a probability p, the

parameter set for which the algorithm will converge to a global minimum of f with a probability

equal or higher that p.

3D Object Recognition There is still room for improvement of the proposed 3D object

recognition method. First, we would like to further reduce the number of false positives by

modifying the acceptance function introduced in Section 3.3.2. In its current version, the

visibility term of the function just counts the number of transformed model points which fall

within a certain ε-band of the scene and divides it by the total number of model points. If the

result exceeds the visibility threshold and the transformed object model does not occlude to

much of the scene, the hypothesis is accepted. Essentially, this is only a 0th order approximation

of the scene by the model since only points are taken into account. A first order approximation

can be achieved by taking the normal agreement into account. A second order approximation

would require the model and scene to have the same curvature at the contact points. In this

way, a more precise alignment will be needed in order for a hypothesis to be accepted which will

reduce the number of false positives. On the other hand, curvature estimation is challenging in

presence of noise in the input data. This is the reason why we think that a first order contact

would be a good tradeoff between shape approximation and robustness to noise.

A second improvement concerns the processing speed of the algorithm. So far, each hypoth-

esis generated by aligning an oriented point pair from the hashtable with one sampled from the

scene is tested by transforming the model points and evaluating the acceptance function. This

takes around 90% of the whole processing time. Instead, we plan to discretize the space of rigid

transform by dividing it in a finite number of bins. Thus, a hypothesis will be evaluated if and

only if the bin it ends up in is free. This will avoid evaluating similar hypotheses which should

significantly reduce the processing time.

85

6. CONCLUSIONS AND FUTURE WORK

Deformable 3D Shape Registration The proposed deformable registration method is uni-

versal in the sense that it can be applied to arbitrary deformable objects, like arms, hands, faces,

etc. However, if the application area, e.g., human body registration, is specified in advance it

could be beneficial to integrate domain-specific knowledge. This can be done by incorporating

a kinematical model which will be used to compensate for large articulated motion while the

deformable registration will be used for the fine alignment. We expect this to both enlarge

the basin of convergence of the method and reduce shape distortion since the gross motion is

accounted for by a model with fewer degrees of freedom.

A further possibility to improve robustness could be to treat the registration problem within

an extended Kalman filter framework, where the state prediction is performed by a domain-

specific (e.g., physical, biomedical, etc.) model and the state update is done by the registration

method proposed in this thesis.

86

Appendix A

Vision-Based Robotic Grasping

of Known Objects

In this appendix, we demonstrate how our 3D object recognition approach presented in Chap-

ter 3 can be used to support a real-world object manipulation task. The recognition is integrated

into a robotic system to allow a robotic manipulator to grasp objects in unstructured, dynam-

ically changing scenes. In order to perform such tasks in non-industrial environments, a robot

cannot rely on hard-coded knowledge about the scene structure (Figure A.1). Since human ac-

tions, in particular, modify the environment in a way which cannot be foreseen, a vision-based

object recognition and localization system is very useful for providing the necessary updates of

the scene knowledge.

In recent years, advances in 3D geometry acquisition technology have led to a growing

interest in object recognition and pose estimation techniques which operate directly on 3D

data. Furthermore, as already mentioned in the introductory Chapter 1, the knowledge of the

3D geometric shape and the pose of an object greatly facilitates the execution of a stable grasp.

The 2D appearance of an object may not provide reliable information about its pose in space

because surface texture elements may be misaligned (as it often happens to labels of household

objects). Furthermore, 2D techniques have to deal with changes in viewpoint and illumination.

Contributions and Overview

The efficiency of our 3D object recognition algorithm (see Chapter 3) allows its seamless integra-

tion into a grasping framework, where the recognition interleaves with the actual manipulation

task without causing noticeable delays in the overall process. The method shows its potential in

a complex experimental use-case. We employ the DLR Lightweight Robot III (LWR-III) [138],

which is equipped with a Cartesian impedance control method and is able to react to envi-

ronment disturbances and to process faults caused by unexpected contact forces in real-time.

Using the proposed 3D object recognition method, impedance control with reactive recovery

87

A. VISION-BASED ROBOTIC GRASPING OF KNOWN OBJECTS

Figure A.1: A robot operating in a household environment.

strategies, and a simple grasp planner the robot quickly and robustly grasps objects from un-

sorted and cluttered piles. Furthermore, in case of failures, it reacts accordingly and continues

the process if possible. This grasping application demonstrates how the integration of com-

puter vision and soft-robotics leads to a robotic system capable of acting in unstructured and

occluded environments.

In Section A.1, the robot and its overall control concept for robust and sensitive grasping

are shortly described. Section A.2 presents some experimental results. For more details please

refer to [3].

A.1 Robotic Object Manipulation

The object recognition is only one link in the overall processing chain. In order to enable the

robot to perform the recognition together with the object manipulation in a loop and to recover

from faulty grasps, the overall process is controlled by a hybrid state automaton. The scheme

is based on the work in [140, 141, 142] and relies on the disturbance observer introduced in

[143]. The high-level schematic is shown in Figure A.2 and consists of the following phases:

1. Go to overview : The robot moves to an overview pose in order not to occlude the scene.

2. Recognize objects: Recognize the objects in the scene (see Chapter 3).

3. Select a grasp: Select an object (from the list of recognized ones) together with a suitable

grasp.

4. Grasp object : The robot performs the grasp on the selected object.

5. Carry away : The robot carries the object to the place designated for it.

6. Place down: The robot softly and safely puts the object on its place.

88

A.1 Robotic Object Manipulation

�������������	

����
�����������

��������������

������������

�������	��

��������	

��������

��������

��������

Figure A.2: Hybrid state automaton for controlling the overall object manipulation process. The

logical clauses A,B and C defining the transition conditions, are the following: A = no object,

B = no grasp and C = collision ∨ grasp failure. A grasp is considered as a failure if the robot

gripper completely closes.

Next, phase 3 will be shortly explained. The phases 4, 5 and 6 are out of the scope of this work

and will not be discussed any further (refer to [3] for more details).

The first step in the manipulation chain is the selection of an object (from the list of

recognized ones returned by the recognition method) together with a suitable grasp. Each

object in the database is associated with a finite set of plausible grasps. A grasp G (also called

grasp frame) consists of an orientation and a position of the robot end effector relative to the

object. The orientation is represented by a 3 × 3 rotation matrix. Its last column is a vector,

called the approach vector vappr, which is aligned with the z-axis of the end effector and points

towards the object.

The idea of the grasp selection is to go for the up most object, i.e., the one whose center of

mass has the largest z-coordinate. This is measured according to the world coordinate system

which has its z-axis, zw, perpendicular to the table the objects are placed on. More details on

the scene setup will be given in Section A.2.2. Next, among the grasp frames associated with

the selected object, the one with the lowest

cost(G) = w1crit1(G) + w2crit2(G), (A.1)

is chosen, where

crit1(G) = ∠(−vappr, zw) (A.2)

is the alignment of the end effector with respect to the z-axis of the world coordinate system

and

crit2(G) = |ϕwrist0 − ϕwristreq |, (A.3)

89

A. VISION-BASED ROBOTIC GRASPING OF KNOWN OBJECTS

RuskAmicelliSoda Club

Figure A.3: The models used in the test scenarios (our own scans made with the low-cost DAVID

laser scanner [132]).

is the absolute difference between ϕwrist0 , a desired (neutral) wrist orientation, and ϕwristreq , the

one required to perform the grasp. In our implementation, we set the weights in Equation (A.1)

to w1 = 3 and w2 = 1 which makes the end effector alignment more important than the wrist

orientation. Note that in Equation (A.2) the negative of vappr is used in order to point in the

same direction as zw. Furthermore, the selected grasp is discarded if it is “too parallel” to the

table plane, i.e., if crit1(G) ≥ ϕz (we set ϕz = 30◦). If this is the case, then the next lower

object is inspected.

To acquire the grasping motion, the selected grasp frame G is projected 0.1 m along the

approach vector.

A.2 Experiments

In this section, we experimentally validate the “blind” impedance controlled grasping strategy

(Section A.2.1) and the grasping capabilities of the vision-based impedance controlled sys-

tem (Section A.2.2). We used the 7-degrees-of-freedom Cartesian impedance controlled DLR

Lightweight robot III [138] developed at the German Aerospace Center (DLR). It was mounted

on a table and covered an area of approximately 2.5 square meters. The scene was digitized

with a Kinect sensor [41]. Since all objects were standing on or above the table, its plane was

detected in each range image (using a simple RANSAC procedure) and all points belonging to

the plane or lying below were removed. The object models involved in the tests are shown in

Figure A.3 and the experiment setup is shown in Figure A.4.

A.2.1 “Blind” Impedance Controlled Grasping

In this section, we conducted a series of grasping experiments with the aim to find a set of

impedance parameters that maximizes the grasping success in the presence of simulated object

pose errors. Since such errors are inevitable for any object recognition and pose estimation

algorithm which deals with real-world data, we find it useful to determine a parameter set

which makes the robot as insensitive as possible to these inaccuracies.

We altered the robot’s Cartesian translation stiffness in y-direction (denoted by Kt,y) and its

rotation stiffness in x-direction (denoted by Kr,x). These directions are the lateral compliance

90

A.2 Experiments

Kt,y[N/m] Kr,x[Nm/rad] success [%]

1 200 20 60

2 200 75 80

3 200 200 90

4 750 20 70

5 750 75 80

6 750 200 40

7 2000 20 50

8 2000 75 60

9 2000 200 70

Table A.1: Grasping success with varying stiffness for a translational object pose error of 1.5 cm.

object

test scenario Soda Club Amicelli Rusk

single standing objects 100% 95% 95%

object pile 95% 95% 90%

Table A.2: Success rates in the grasping experiments.

along the gripper motion and the rotation perpendicular to this. Due to the inherent structure

of the gripper, they are the significant parameters governing the grasping process. The object

involved in this test scenario was the soda club bottle shown in Figure A.3. The object pose

error was simulated by translating the bottle by 1.5 cm in a random direction parallel to

the table in front of the robot. We performed ten grasping trials for each of the following

stiffness configurations: “soft”, “moderately stiff” and “rigid”. The success rate is listed in

Table A.1. The optimal values (line 3) correspond to a soft (very compliant) translation and a

rigid rotation behavior. A soft translation and a moderately stiff rotation (line 2) as well as a

moderate stiffness in both translation and rotation (line 5) led to good success rates too.

A.2.2 Vision-Based Impedance Controlled Grasping

In this section, we experimentally validate the overall vision-based impedance controlled grasp-

ing system. The models used in these tests are shown in Figure A.3. We started with grasping

single standing objects, moved on to object grasping from an unsorted pile and finished with a

more complex task of cleaning up a table.

91

A. VISION-BASED ROBOTIC GRASPING OF KNOWN OBJECTS

Figure A.4: The setup of the vision-based grasping experiments. The robot has grasped a green

soda club bottle and is about to put it in the further red bin. The Kinect sensor can be seen in

the upper right corner. In the lower left corner, the range image and the recognized models are

shown (before the bottle has been taken away) from a viewpoint close to the one of the sensor.

A.2.2.1 Single Standing Objects

In the first scenario, multiple grasps were performed on single standing objects (see Figure A.5).

We varied the pose of the objects such that all pre-saved grasp poses were executed. A grasp

trial was considered successful if the object was correctly recognized, grasped and carried to the

right place (table corner for the rusk box or one of the red bins for the Amicelli box/soda club

bottle). We ran ten trials for each object pose and recorded the number of successful trials.

The results are summarized in the first row of Table A.2. One grasp failed for the Amicelli

and the rusk box, respectively. This was due to the fact that the alignment computed by the

matching algorithm was too imprecise.

A.2.2.2 Object Pile

Next, the robot performed multiple grasps on a pile consisting of seven objects placed next

and on top of each other. Again, we changed the positions of the items such that the robot

tried all pre-saved grasp poses for each object. A grasp was considered successful if the robot

picked a correctly recognized object and carried it to the right place. After an object had been

taken away, we built up a new pile, i.e., the robot had to deal every time with a full pile. This

experiment added some additional difficulties to both the geometry matching and the robot

control algorithms. Obviously, the risk of recognition failures increased since there were more

92

A.2 Experiments

Figure A.5: (Left) The single standing object grasping scenario. (Middle, Right) two input range

images (top) and the recognition results (bottom) for the rusk and the Amicelli box, respectively.

The points off the plane (used for matching) are shown in light blue.

objects in the scene. Besides that, objects in a pile are in a more unstable configuration (from

a physical point of view) compared to single standing ones. This made it more difficult for the

impedance-based control to compensate for matching imprecision. We performed ten trials for

each grasp pose and recorded the number of successful trials. The results are compiled in the

second row of Table A.2. As to be expected, the failure rate increased compared to the first

grasping experiment.

A.2.2.3 Table Cleanup

In the last test scenario, we let the robot repeatedly perform a more complex task, namely,

cleaning up the table in front of it. Seven objects were randomly placed on a pile which

resulted in highly cluttered and occluded scenes. The task to the robot was to pick each object,

put it away and halt when it “believes” that the table is empty. The recognition process was

restarted each time an object was carried away. Thus, the robot was able to deal with the

changing scene and with unforeseen situations which happened during the cleanup like, e.g., an

object falling off the pile. The task was accomplished if at the end each object was at the place

designated for it. This time we did not consider it a failure when an object slipped out of the

gripper as long as it was picked up later on and left in the right place. After each cleanup trial

we built up a new pile and let the robot perform the task again. We repeated this 15 times and

counted the number of successful trials. The robot achieved a success rate of 80%. Figure A.6

exemplary shows one cleanup process. More examples can be seen on youtube1,2.

1http://www.youtube.com/watch?v=RuZ605o60LQ&feature=relmfu
2http://www.youtube.com/watch?v=pFyIPNxRZ8w&feature=relmfu

93

http://www.youtube.com/watch?v=RuZ605o60LQ&feature=relmfu
http://www.youtube.com/watch?v=pFyIPNxRZ8w&feature=relmfu

A. VISION-BASED ROBOTIC GRASPING OF KNOWN OBJECTS

Figure A.6: (Left to right, top to bottom) A sequence of images showing the robot cleaning up

the table. The first and the last image show the beginning and the end of the task, respectively.

Each in-between shot shows the robot in the moment of grasping an object. Note that the first

Amicelli box and all bottles are placed in a lying orientation in the red bins and are not visible

from this point of view.

94

Appendix B

Knowledge Transfer through

Deformable Registration

In this appendix, we discuss how our deformable registration method can be used to transfer

knowledge between geometric models. What we mean by that is best explained by an example.

In the case of object grasping, there is usually additional information associated with an object

model, like stable grasp points on the object’s surface. These are the points which should be

preferred when a robotic gripper is about to establish a physical contact with the object to be

grasped. In that case, if a recognition method localizes the model in the scene, the physical

object can be grasped according to the saved points. However, we wish to use that information

for objects which are similar but not identical to the one we have a model of, i.e., we need to

transfer knowledge from one geometric primitive to another. The transfer can be done either

online from a model to a part of a scene (i.e., right after the model has been localized) or offline

from one model to another.

We provide an example which demonstrates how our deformable registration method (see

Chapter 4) can be used for the offline transfer of grasp points from a hexagonal box to a round

bottle. First, the models are rigidly aligned using the rigid registration method proposed in

Chapter 2. The result is shown in Figure B.1(a). Next, the deformable registration algorithm

is applied to compensate for the differences in the geometry and to map the box to the bottle.

The process is shown at several time instances in Figure B.1(b). The degree of distortion is

visualized on the deforming box surface using colors—blue/red stands for a scale down/up while

green means no change in scale.

Note that the regularizer, part of the deformable registration process, strives to minimize

stretching which explains why at the end of the registration the box surface is bent so much

and looks like a paper bag with the air been extracted. After the registration, the information

associated with each vertex in the box model can be transferred to the corresponding (closest)

bottle vertex. The degree of distortion computed for each shape vertex can be used as an

95

B. KNOWLEDGE TRANSFER THROUGH DEFORMABLE REGISTRATION

(a) Box & bottle after
rigid registration

(b) Deformable registration process

Figure B.1: Shape registration for transfer of grasp points from a box to a bottle. (a) The box

(shown as a wireframe model) is rigidly registered to the bottle. (b) The deformation process at

several time instances. At the end, the box is also shown as a wireframe model over the bottle.

indication for the reliability of the transferred grasp point—the larger the distortion the more

unreliable the grasp point. Indeed, as can be seen in Figure B.1(b), the green surface regions

at the bottle lid and the middle part of the bottle body are certainly better suited for a stable

grasp than the blue/orange ones at the bottle neck and the top part of the lid.

96

Author’s Publications

[1] Chavdar Papazov and Darius Burschka. Stochastic Optimization for Rigid

Point Set Registration. In Proceedings of the 5th International Symposium on Visual

Computing (ISVC’09), 2009.

[2] Chavdar Papazov and Darius Burschka. Deformable 3D Shape Registration

Based on Local Similarity Transforms. Computer Graphics Forum (special issue

SGP’11), 30, 2011. 50

[3] Chavdar Papazov, Sami Haddadin, Sven Parusel, Kai Krieger, and Darius

Burschka. Rigid 3D Geometry Matching for Grasping of Known Objects in

Cluttered Scenes. International Journal of Robotics Research, 31(4), 2012. 89

[4] Chavdar Papazov, Vincent J. Dercksen, Hans Lamecker, and Hans-Christian

Hege. Visualizing Morphogenesis and Growth by Temporal Interpolation of

Surface-Based 3D Atlases. In Proceedings of the 2008 IEEE International Symposium

on Biomedical Imaging: From Nano to Macro, 2008.

[5] Chavdar Papazov and Darius Burschka. An Efficient RANSAC for 3D Ob-

ject Recognition in Noisy and Occluded Scenes. In Proceedings of the 10th Asian

Conference on Computer Vision (ACCV’10), 2010.

[6] Chavdar Papazov and Darius Burschka. Stochastic Global Optimization for

Robust Point Set Registration. Computer Vision and Image Understanding, 115, 2011.

97

AUTHOR’S PUBLICATIONS

98

References

[7] Peter M. Roth and Martin Winter. Survey of Appearance-Based Methods for

Object Recognition. Technical report, Institute for Computer Graphics and Vision, Graz

University of Technology, 2008. 1, 2

[8] David G. Lowe. Object Recognition from Local Scale-Invariant Features. In

Proceedings of the International Conference on Computer Vision (ICCV’99), 1999. 1

[9] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: a

Paradigm for Model Fitting with Applications to Image Analysis and Auto-

mated Cartography. Commun. ACM, 24(6):381–395, 1981. 1, 31

[10] Dana H. Ballard. Generalizing the Hough Transform to Detect Arbitrary

Shapes. Pattern Recognition, 13(2):111–122, 1981. 1, 29

[11] Martin Winter. Spatial Relations of Features and Descriptors for Appearance Based

Object Recognition. PhD thesis, Faculty of Computer Science, Graz University of Technology,

Austria, 2007. 1

[12] Ian T. Jolliffe. Principal Component Analysis. Springer, 2002. 2

[13] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Anal-

ysis. John Wiley & Sons, 2001. 2

[14] Daniel D. Lee and H. Sebastian Seung. Learning the Parts of Objects by

Non-Negative Matrix Factorization. Nature, 401, 1999. 2

[15] Peter M. Roth. On-line Conservative Learning. PhD thesis, Faculty of Computer

Science, Graz University of Technology, Austria, 2008. 2

[16] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments. PhD thesis, Computer Science Department, Technische Universität

Müchen, Germany, October 2009. 2, vii

[17] Myron Z. Brown, Darius Burschka, and Gregory D. Hager. Advances in

Computational Stereo. IEEE Trans. Pattern Anal. Mach. Intell., 25(8):993–1008, 2003.

3, 2

99

REFERENCES

[18] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W.

Fitzgibbon. Bundle Adjustment - A Modern Synthesis. In Vision Algorithms:

Theory and Practice, International Workshop on Vision Algorithms, pages 298–372, 1999.

3, 2

[19] Jason J. Corso, Darius Burschka, and Gregory D. Hager. Direct Plane Track-

ing in Stereo Images for Mobile Navigation. In ICRA, pages 875–880, 2003. 3, 2

[20] Darius Burschka. Vision-Based Exploration of Indoor Environments at an Example of

a Binocular Stereo System. PhD thesis, Technische Universität Müchen, Germany, 1999. 3,

2

[21] Dong-Min Woo and Dong-Chul Park. Stereoscopic Building Reconstruction

Using High-Resolution Satellite Image Data. In ACIS-ICIS, pages 194–198, 2011. 3,

2

[22] Philipp Fechteler, Peter Eisert, and Jürgen Rurainsky. Fast and High Res-

olution 3D Face Scanning. In Proceedings of the International Conference on Image

Processing (ICIP’07), 2007. 3

[23] P. Fechteler and P. Eisert. Adaptive Color Classification for Structured Light

Systems. In Computer Vision and Pattern Recognition Workshops (CVPRW’08). IEEE

Computer Society Conference on, 2008. 3

[24] P. Besl and N. McKay. A Method for Registration of 3-D Shapes. IEEE Trans.

PAMI, 14(2), 1992. 3, 10, 11, 14, 43, 48, 62, vii, x, 40

[25] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas. Registration of Point

Cloud Data from a Geometric Optimization Perspective. In Symposium on Geom-

etry Processing, pages 23–31, 2004. 3, 12, 14

[26] H. Pottmann, Q.-X. Huang, Y.-L. Yang, and S.-M. Hu. Geometry and Conver-

gence Analysis of Algorithms for Registration of 3D Shapes. International Journal

of Computer Vision, 67(3):277–296, 2006. 3, 12, 14

[27] Andrew W. Fitzgibbon. Robust registration of 2D and 3D point sets. Image

Vision Comput., 21(13-14):1145–1153, 2003. 3, 12, 14, 60

[28] A. Johnson and M. Hebert. Using Spin Images for Efficient Object Recognition

in Cluttered 3D Scenes. IEEE Trans. PAMI, 21(5):433–449, 1999. 3, 10, 29, 65, 66, 69,

70, 84, xi, xii, 64, 68

[29] N. Gelfand, N. Mitra, L. Guibas, and H. Pottmann. Robust Global Registra-

tion. Eurographics Symposium on Geometry Processing, pages 197–206, 2005. 3, 10, 59, 64,

68, xi, 40, 67

100

REFERENCES

[30] Stefanie Wuhrer, Zouhour Ben Azouz, and Chang Shu. Posture Invariant

Surface Description and Feature Extraction. In CVPR, 2010. 3, 42, 57, 55

[31] Huai-Yu Wu, Hongbin Zha, Tao Luo, Xu-Lei Wang, and Songde Ma. Global

and Local Isometry-Invariant Descriptor for 3D Shape Comparison and Partial

Matching. In CVPR, 2010. 3, 42, 57, 55

[32] M. M. Bronstein and I. Kokkinos. Scale-Invariant Heat Kernel Signatures for

Non-Rigid Shape Recognition. In CVPR, 2010. 3, 42, 43, 57, 55

[33] D. Raviv, M. M. Bronstein, A. M. Bronstein, and R. Kimmel. Volumetric Heat

Kernel Signatures. In 3DOR, 2010. 3, 42, 57, 55

[34] D. Aiger, N. Mitra, and D. Cohen-Or. 4-Points Congruent Sets for Robust

Pairwise Surface Registration. ACM Trans. Graph., 27(3), 2008. 4, 10, 32, 42, 60, 61,

62, x, 11

[35] Franc Solina and Ruzena Bajcsy. Recovery of Parametric Models from Range

Images: The Case for Superquadrics with Global Deformations. IEEE TPAMI,

12(2):131–147, 1990. 4, 29

[36] Sven J. Dickinson, Dimitris N. Metaxas, and Alex Pentland. The Role of

Model-Based Segmentation in the Recovery of Volumetric Parts From Range

Data. IEEE TPAMI, 19(3):259–267, 1997. 4, 29

[37] Georg Biegelbauer, Markus Vincze, and Walter Wohlkinger. Model-based

3D object detection. Mach. Vis. Appl., 21(4):497–516, 2010. 4, 29

[38] Brian Amberg, Sami Romdhani, and Thomas Vetter. Optimal Step Nonrigid

ICP Algorithms for Surface Registration. In CVPR, 2007. 4, 44

[39] Hao Li, Robert W. Sumner, and Mark Pauly. Global Correspondence Opti-

mization for Non-Rigid Registration of Depth Scans. Comput. Graph. Forum, 27(5),

2008. 4, 44

[40] R. Sagawa, K. Akasaka, Y.S. Yagi, H. Hamer, and L.J. Van Gool. Elastic

Convolved ICP for the Registration of Deformable Objects. In 3DIM, 2009. 4, 44,

72, xii, 71

[41] Kinect for Xbox 360. http://www.xbox.com/en-US/kinect, 2011. Accessed:

20/04/2011. 6, 40, 90, vii, 2, 5, 83

[42] Hans-Christian Hege. Current Applications of Scientific Visualization. IT –

Information Technology, 46(3):142–147, 2004. 7, 4

101

http://www.xbox.com/en-US/kinect

REFERENCES

[43] Y. Hecker and R. Bolle. On Geometric Hashing and the Generalized Hough

Transform. IEEE Trans. on Systems, Man, and Cybernetics, 24, 1994. 10

[44] H.J. Wolfson and I. Rigoutsos. Geometric Hashing: an Overview. Computa-

tional Science & Engineering, IEEE, 4:10–21, 1997. 10

[45] G. Stockman. Object Recognition and Localization via Pose Clustering. Com-

puter Vision, Graphics, and Image Processing, 40(3):361–387, 1987. 10, 29

[46] Y. Chen and G. Medioni. Object Modeling by Registration of Multiple Range

Images. Robotics and Automation, Proceedings., IEEE International Conference on,

3:2724–2729, 1991. 11, 43, 40

[47] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algorithm. 3DIM,

pages 145–152, 2001. 11

[48] S. Granger and X. Pennec. Multi-scale EM-ICP: A Fast and Robust Approach

for Surface Registration. in: ECCV, Proceedings, pages 418–432, 2002. 11

[49] Y. Tsin and T. Kanade. A Correlation-Based Approach to Robust Point Set

Registration. in: ECCV, Proceedings, pages 558–569, 2004. 11, 44, 75, 74

[50] B. Jian and B. C. Vemuri. A Robust Algorithm for Point Set Registration

Using Mixture of Gaussians. in: ICCV, Proceedings, pages 1246–1251, 2005. 11

[51] Toru Tamaki, Miho Abe, Bisser Raytchev, and Kazufumi Kaneda. Softassign

and EM-ICP on GPU. in: 2nd Workshop on Ultra Performance and Dependable Accel-

eration Systems (UPDAS), Proceedings, 2010. 11

[52] B. Ma and R. E. Ellis. Surface-Based Registration with a Particle Filter. in:

MICCAI, Proceedings, pages 566–573, 2004. 11

[53] Mehdi Hedjazi Moghari and Purang Abolmaesumi. Point-Based Rigid-Body

Registration Using an Unscented Kalman Filter. IEEE Trans. Med. Imaging,

26(12):1708–1728, 2007. 11, 12

[54] Romeil Sandhu, Samuel Dambreville, and Allen Tannenbaum. Point Set Reg-

istration via Particle Filtering and Stochastic Dynamics. IEEE Trans. PAMI,

32(8):1459–1473, 2010. 11, 12

[55] Thomas M. Breuel. Implementation techniques for geometric branch-and-

bound matching methods. Computer Vision and Image Understanding, 90(3):258–294,

2003. 12

102

REFERENCES

[56] Carl Olsson, Fredrik Kahl, and Magnus Oskarsson. Branch-and-Bound

Methods for Euclidean Registration Problems. IEEE Trans. PAMI, 31(5):783–794,

2009. 12

[57] Hongdong Li and Richard I. Hartley. The 3D-3D Registration Problem Re-

visited. in: ICCV, Proceedings, pages 1–8, 2007. 12, 16, 63, x, 62

[58] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.

Equation of State Calculations by Fast Computing Machines. The Journal of

Chemical Physics, 21(6):1087–1092, 1953. 12, 20, 13

[59] V. Cerny. Thermodynamical Approach to the Traveling Salesman Problem:

An Efficient Simulation Algorithm. Journal of Optimization Theory and Applications,

45:41–51, 1985. 12, 13

[60] S. Kirkpatrick, C.D. Gelatt, and M. Vecchi. Optimization by Simmulated

Annealing. Science, 220(4598):671–680, 1983. 12, 13

[61] P. Pardalos and E. Romeijn, editors. Handbook of Global Optimization 2. Nonconvex

Optimization and Its Applications. Kluwer Academic Publishers, 2002. 12, 13, 17

[62] D. Bulger and G. Wood. Hesitant Adaptive Search for Global Optimisation.

Math. Program., 81:89–102, 1998. 13

[63] G. Bilbro and W. Snyder. Optimization of Functions with Many Minima. IEEE

Trans. on Systems, Man, and Cybernetics, 21(4):840–849, 1991. 13, 16, 17

[64] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

17

[65] K. Kanatani. Group-Theoretical Methods in Image Understanding. Springer Series in

Information Sciences. Springer, 1990. 22, 23

[66] A. Watt and M. Watt. Advanced Animation and Rendering Techniques. Addison-

Wesley, 1992. 22

[67] Richard I. Hartley and Fredrik Kahl. Global Optimization through Rotation

Space Search. International Journal of Computer Vision, 82(1):64–79, 2009. 22, 23

[68] N. Madras. Lectures on Monte Carlo Methods. American Mathematical Society, 2002.

25

[69] Zhouhui Lian, Afzal Godil, Benjamin Bustos, Mohamed Daoudi, J. Hermans,

Shun Kawamura, Y. Kurita, Guillaume LavouÃ c©, H.V. Nguyen, Ryutarou

Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, Martin Reuter, Ivan Sipiran, Dirk

Smeets, Paul Suetens, Hedi Tabia, and Dirk Vandermeulen. SHREC’11 Track:

103

REFERENCES

Shape Retrieval on Non-Rigid 3D Watertight Meshes. In Proceedings of the Euro-

graphics Workshop on 3D Object Retrieval (3DOR’11), 2011. 29

[70] Y. Lamdan and H.J. Wolfson. Geometric Hashing: A General and Efficient

Model-Based Recognition Scheme. In ICCV, 1988. 29

[71] Ajmal S. Mian, Mohammed Bennamoun, and Robyn A. Owens. Three-

Dimensional Model-Based Object Recognition and Segmentation in Cluttered

Scenes. IEEE TPAMI, 28(10):1584–1601, 2006. 29, 66, 69, 70, 84, xi, xii, 64, 68

[72] Günter Hetzel, Bastian Leibe, Paul Levi, and Bernt Schiele. 3D Object

Recognition from Range Images Using Local Feature Histograms. In CVPR,

pages 394–399, 2001. 29

[73] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra

Malik. Recognizing Objects in Range Data Using Regional Point Descriptors.

In ECCV, pages 224–237, 2004. 29

[74] Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. A Concise and Prov-

ably Informative Multi-Scale Signature Based on Heat Diffusion. Comput. Graph.

Forum, 28(5):1383–1392, 2009. 29

[75] Huai-Yu Wu, Hongbin Zha, Tao Luo, Xulei Wang, and Songde Ma. Global

and Local Isometry-Invariant Descriptor for 3D Shape Comparison and Partial

Matching. In CVPR, pages 438–445, 2010. 29

[76] T.O. Binford. Visual Perception by a Computer. In IEEE Conf. on Systems and

Control, 1971. 29

[77] A.H. Barr. Superquadrics and Angle-Preserving Transformations. Computer

Graphics and Applications, 1(1):11 –23, 1981. 29

[78] Daniel Keren, David B. Cooper, and Jayashree Subrahmonia. Describing Com-

plicated Objects by Implicit Polynomials. IEEE TPAMI, 16(1):38–53, 1994. 29

[79] Geoffrey Taylor and Lindsay Kleeman. Robust Range Data Segmentation

using Geometric Primitives for Robotic Applications. In SIP, pages 467–472, 2003.

29

[80] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient RANSAC for

Point-Cloud Shape Detection. Comput. Graph. Forum, 26(2):214–226, 2007. 29, 31, 32

[81] Lynne Grewe and Avinash C. Kak. Interactive Learning of a Multiple-Attribute

Hash Table Classifier for Fast Object Recognition. Computer Vision and Image

Understanding, 61(3):387–416, 1995. 29

104

REFERENCES

[82] Bogdan Matei, Ying Shan, Harpreet S. Sawhney, Yi Tan, Rakesh Kumar,

Daniel F. Huber, and Martial Hebert. Rapid Object Indexing Using Local-

ity Sensitive Hashing and Joint 3D-Signature Space Estimation. IEEE TPAMI,

28(7):1111–1126, 2006. 29, 30

[83] Simon Winkelbach, Sven Molkenstruck, and Friedrich M. Wahl. Low-Cost

Laser Range Scanner and Fast Surface Registration Approach. In Pattern Recog-

nition, 28th DAGM Symposium, Proceedings, pages 718–728, 2006. 30, 32, 29

[84] Hanzi Wang and David Suter. Robust Adaptive-Scale Parametric Model Esti-

mation for Computer Vision. IEEE TPAMI, 26(11):1459–1474, 2004. 32, 31

[85] Hanzi Wang, Daniel Mirota, and Gregory D. Hager. A Generalized Kernel

Consensus-Based Robust Estimator. IEEE TPAMI, 32(1):178–184, 2010. 32, 31

[86] C.-S. Chen, Y.-P. Hung, and J.-B. Cheng. RANSAC-Based DARCES: A New

Approach to Fast Automatic Registration of Partially Overlapping Range Im-

ages. IEEE Trans. PAMI, 21(11):1229–1234, 1999. 32, 31

[87] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer-Verlag, 2 edition, 2000. 33, 34

[88] Thibaut Weise, Bastian Leibe, and Luc J. Van Gool. Fast 3D Scanning with

Automatic Motion Compensation. In CVPR, 2007. 40, 71, 72, xii

[89] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus H.

Gross. Meshless Deformations Based on Shape Matching. ACM TOG, 24(3), 2005.

40, 43, 48, 50, 56

[90] Mario Botsch, Mark Pauly, Markus H. Gross, and Leif Kobbelt. PriMo: Cou-

pled Prisms for Intuitive Surface Modeling. In Symposium on Geometry Processing,

2006. 40, 41, 42, 46, 56

[91] Olga Sorkine and Marc Alexa. As-Rigid-As-Possible Surface Modeling. In

Symposium on Geometry Processing, pages 109–116, 2007. 40, 42, 56

[92] Mario Botsch, Mark Pauly, Martin Wicke, and Markus H. Gross. Adaptive

Space Deformations Based on Rigid Cells. Comput. Graph. Forum, 26(3), 2007. 40,

42, 43, 56

[93] Alec R. Rivers and Doug L. James. FastLSM: Fast Lattice Shape Matching

for Robust Real-Time Deformation. ACM TOG, 26(3), 2007. 40, 43, 50, 56

[94] D. Steinemann, M. A. Otaduy, and M. Gross. Fast Adaptive Shape Matching

Deformations. In SCA, 2008. 40, 43, 50, 56

105

REFERENCES

[95] Mario Botsch and Olga Sorkine. On Linear Variational Surface Deformation

Methods. IEEE Trans. Vis. Comput. Graph., 14(1):213–230, 2008. 41

[96] Olga Sorkine and Mario Botsch. Tutorial: Interactive Shape Modeling and

Deformation. In EUROGRAPHICS, 2009. 41

[97] Thomas W. Sederberg and Scott R. Parry. Free-Form Deformation of Solid

Geometric Models. In SIGGRAPH, pages 151–160, 1986. 41

[98] William M. Hsu, John F. Hughes, and Henry Kaufman. Direct Manipulation

of Free-Form Deformations. In SIGGRAPH, pages 177–184, 1992. 41

[99] Karan Singh and Eugene Fiume. Wires: A Geometric Deformation Technique.

In SIGGRAPH, 1998. 41

[100] Demetri Terzopoulos, John C. Platt, Alan H. Barr, and Kurt W. Fleischer.

Elastically Deformable Models. In SIGGRAPH, pages 205–214, 1987. 41

[101] George Celniker and Dave Gossard. Deformable Curve and Surface Finite-

Elements for Free-Form Shape Design. In SIGGRAPH, pages 257–266, 1991. 41

[102] William Welch and Andrew Witkin. Variational Surface Modeling. In SIG-

GRAPH, pages 157–166, 1992. 41

[103] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive Multiresolution

Mesh Editing. In SIGGRAPH, pages 259–268, 1997. 41

[104] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. In-

teractive Multi-Resolution Modeling on Arbitrary Meshes. In SIGGRAPH, pages

105–114, 1998. 41

[105] Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution Signal

Processing for Meshes. In SIGGRAPH, pages 325–334, 1999. 41

[106] Mario Botsch and Leif Kobbelt. An Intuitive Framework for Real-Time

Freeform Modeling. ACM Trans. Graph., 23(3):630–634, 2004. 41

[107] Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Christian

Rössl, and Hans-Peter Seidel. Differential Coordinates for Interactive Mesh

Editing. In SMI, pages 181–190, 2004. 41

[108] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian

Rössl, and Hans-Peter Seidel. Laplacian Surface Editing. In Symposium on Ge-

ometry Processing, pages 179–188, 2004. 41

106

REFERENCES

[109] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and

Heung-Yeung Shum. Mesh Editing with Poisson-Based Gradient Field Manipu-

lation. ACM Trans. Graph., 23(3):644–651, 2004. 41

[110] Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. Linear

Rotation-Invariant Coordinates for Meshes. ACM Trans. Graph., 24(3):479–487,

2005. 41

[111] Rhaleb Zayer, Christian Rössl, Zachi Karni, and Hans-Peter Seidel. Har-

monic Guidance for Surface Deformation. Comput. Graph. Forum, 24(3):601–609,

2005. 41

[112] Robert W. Sumner, Johannes Schmid, and Mark Pauly. Embedded Deforma-

tion for Shape Manipulation. ACM TOG, 26(3), 2007. 42

[113] Asi Elad and Ron Kimmel. On Bending Invariant Signatures for Surfaces.

IEEE TPAMI, 25(10), 2003. 43

[114] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Gener-

alized Multidimensional Scaling: A Framework for Isometry-Invariant Partial

Surface Matching. PNAS, 103(5), 2006. 43

[115] Stefanie Wuhrer, Chang Shu, Prosenjit Bose, and Zouhour Ben Azouz. Pos-

ture Invariant Correspondence of Incomplete Triangular Manifolds. International

Journal of Shape Modeling, 13(2), 2007. 43

[116] Stefanie Wuhrer, Chang Shu, and Prosenjit Bose. Posture Invariant Corre-

spondence Of Triangular Meshes In Shape Space. In 3DIM, 2009. 43

[117] Brett Allen, Brian Curless, and Zoran Popovic. The Space of Human Body

Shapes: Reconstruction and Parameterization from Range Scans. ACM TOG,

22(3), 2003. 43, 44

[118] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun,

Jim Rodgers, and James Davis. SCAPE: Shape Completion and Animation of

People. ACM TOG, 24(3), 2005. 43

[119] Vladislav Kraevoy and Alla Sheffer. Template-Based Mesh Completion. In

Symposium on Geometry Processing, 2005. 43

[120] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus H. Gross, and

Leonidas J. Guibas. Example-Based 3D Scan Completion. In Symposium on Ge-

ometry Processing, 2005. 43

[121] Will Chang and Matthias Zwicker. Automatic Registration for Articulated

Shapes. Comput. Graph. Forum, 27(5), 2008. 43

107

REFERENCES

[122] Leslie Ikemoto, Natasha Gelfand, and Marc Levoy. A Hierarchical Method

for Aligning Warped Meshes. In 3DIM, 2003. 43

[123] Benedict Brown and Szymon Rusinkiewicz. Non-Rigid Range-Scan Alignment

Using Thin-Plate Splines. In 3DPVT, 2004. 43

[124] Benedict Brown and Szymon Rusinkiewicz. Global Non-Rigid Alignment of

3-D Scans. ACM TOG, 26(3), 2007. 43

[125] Haili Chui and Anand Rangarajan. A New Point Matching Algorithm for

Non-Rigid Registration. CVIU, 89(2-3), 2003. 43, 44, 75, 74

[126] Andriy Myronenko and Xubo B. Song. Point Set Registration: Coherent

Point Drift. IEEE TPAMI, 32(12), 2010. 43, 44, 75, 74

[127] B. Jian and B. Vemuri. Robust Point Set Registration Using Gaussian Mixture

Models. IEEE TPAMI, 2011. 44, 75, 74

[128] Andriy Myronenko and Xubo B. Song. On the Closed-Form Solution of the

Rotation Matrix Arising in Computer Vision Problems. CoRR, abs/0904.1613,

2009. 48, 49

[129] C. H. Edwards Jr. Advanced Calculus of Several Variables. Dover Books on Mathe-

matics, 1994. 53

[130] Yun Zeng, Chaohui Wang, Yang Wang, Xianfeng Gu, Dimitris Samaras, and

Nikos Paragios. Dense Non-Rigid Surface Registration Using High-Order Graph

Matching. In CVPR, 2010. 57, 55

[131] Konica Minolta. Minolta VIVID 910. http://www.konicaminolta.com/instruments/

products/3d/non-contact/vivid910/index.html, 2011. Accessed: 18/09/2011. 66, 64

[132] DAVID Laser Scanner. DAVID Vision Systems. http://www.david-

laserscanner.com/, 2012. Accessed: 16/07/2012. 66, 90, xiii, 64, 82

[133] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester

Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The

Landscape of Parallel Computing Research: A View from Berkeley. Technical

report, EECS Department, University of California, Berkeley, 2006. 70, 69

[134] Huamin Wang, James O’Brien, and Ravi Ramamoorthi. Multi-Resolution

Isotropic Strain Limiting. ACM TOG, 29(6), 2010. 71, 70

108

REFERENCES

[135] Iasonas Oikonomidis, Nikolaos Kyriazis, and Antonis A. Argyros. Markerless

and Efficient 26-DOF Hand Pose Recovery. In Proceedings of the Asian Conference

on Computer Vision (ACCV’10), pages 744–757, 2010. 76

[136] I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient Model-Based 3D Track-

ing of Hand Articulations Using Kinect. In Proceedings of the British Machine Vision

Conference (BMVC’11), 2011. 76

[137] N. Kyriazis, I. Oikonomidis, and A. Argyros. A GPU-Powered Computational

Framework for Efficient 3D Model-Based Vision. Technical Report TR420, ICS-

FORTH, July 2011. 76

[138] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and

G. Hirzinger. The DLR Lightweight Robot – Lightweight Design and Soft

Robotics Control Concepts for Robots in Human Environments. Industrial Robot

Journal, 34(5):376–385, 2007. 84, 87, 90, 79

[139] Zelda B. Zabinsky. Stochastic Adaptive Search for Global Optimization. Kluwer Aca-

demic Publishers, 2002. 85

[140] S. Haddadin, M. Suppa, S. Fuchs, Tim Bodenmüller, A. Albu-Schäffer, and

G. Hirzinger. Towards the Robotic Co-Worker. In International Symposium on

Robotics Research (ISRR2009), Lucerne, Switzerland, 2009. 88, 80

[141] Sven Parusel, Sami Haddadin, and Alin Albu-Schäffer. Modular State-Based

Behavior Control for Safe Human-Robot Interaction: A Lightweight Control

Architecture for a Lightweight Robot. In IEEE Int. Conf. on Robotics and Automation

(IROS2011), Shanghai, China, 2011. 88, 80

[142] S. Fuchs, S. Haddadin, S. Parusel, M. Keller, and A. Kolb. Coopera-

tive Bin-Picking with Time-of-Flight Camera and Impedance Controlled DLR

Lightweight Robot III. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS2008), pages 4862–4867, 2010. 88, 80

[143] S. Haddadin, A. Albu-Schäffer, A. De Luca, and G. Hirzinger. Collision De-

tection & Reaction: A Contribution to Safe Physical Human-Robot Interaction.

In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2008), Nice, France, pages

3356–3363, 2008. 88, 80

109

	1 Introduction
	1.1 What is 3D Shape Registration and 3D Object Recognition?
	1.1.1 Applications in Science and Technology

	1.2 Contributions and Overview

	2 Stochastic Optimization for Rigid 3D Shape Registration
	2.1 Related Work
	2.1.1 Rigid Point Set Registration
	2.1.2 Optimization-Based Point Set Registration
	2.1.3 Stochastic Optimization

	2.2 Registration as a Minimization Problem
	2.2.1 Definition of the Model Scalar Field
	2.2.2 Cost Function Definition

	2.3 Stochastic Adaptive Search for Global Minimization
	2.3.1 Generalized BSP Trees
	2.3.2 Problem Definition
	2.3.3 Overall Algorithm Description
	2.3.4 Tree Initialization
	2.3.5 Leaf Selection
	2.3.6 Tree Expansion
	2.3.7 Stopping Rule
	2.3.8 Remark

	2.4 The Space of Rigid Transforms
	2.4.1 Parametrization of Rotations
	2.4.2 Hierarchical Decomposition of the Rotation Space
	2.4.3 Uniform Sampling from Spherical Boxes
	2.4.4 Computation of the Search Space and the G-BSP Tree

	3 3D Object Recognition: Many-to-One Rigid Shape Registration
	3.1 Related Work
	3.2 Notation and Basic Algorithms
	3.2.1 Fast Surface Registration
	3.2.2 RANSAC

	3.3 Method Description
	3.3.1 Model Preprocessing Phase
	3.3.2 Online Recognition Phase
	3.3.3 Time Complexity

	4 A Unified Framework for Shape Modeling and Deformable 3D Shape Registration
	4.1 Related Work
	4.1.1 Deformation-Based 3D Shape Modeling
	4.1.2 Deformable 3D Shape Registration

	4.2 Shape Representation
	4.3 Energy Formulation and Minimization
	4.3.1 Problem Formulation
	4.3.2 Numerical Minimization
	4.3.3 Shape Covers and Cell Types

	4.4 Deformation-Based Shape Modeling
	4.5 Deformable Shape Registration
	4.5.1 Computation of the Target Positions and Their Weights (Correspondence Estimation)
	4.5.2 Convergence Issues

	5 Experimental Results
	5.1 Rigid 3D Shape Registration
	5.1.1 Kernel Comparison
	5.1.2 Comparison with State-of-the-Art
	5.1.3 Dependence on the Cooling Speed
	5.1.4 Further Examples

	5.2 3D Object Recognition
	5.2.1 Recognition of a Single Object in Occluded Scenes
	5.2.2 Recognition of Multiple Objects in Noisy Scenes
	5.2.3 Comparison
	5.2.4 Runtime

	5.3 Deformable 3D Shape Registration
	5.3.1 Range Scan Pairs
	5.3.2 Complete Source Model and an Incomplete Target Scan
	5.3.3 Comparison
	5.3.4 Deformable Hand Tracking

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	A Vision-Based Robotic Grasping of Known Objects
	A.1 Robotic Object Manipulation
	A.2 Experiments
	A.2.1 ``Blind'' Impedance Controlled Grasping
	A.2.2 Vision-Based Impedance Controlled Grasping
	A.2.2.1 Single Standing Objects
	A.2.2.2 Object Pile
	A.2.2.3 Table Cleanup

	B Knowledge Transfer through Deformable Registration
	Author's Publications
	References

