
Context-aware Computing: a Survey Preparing a
Generalized Approach

Robert Schmohl, Uwe Baumgarten ∗

Abstract—Present approaches utilizing awareness
of context specialize on their unique domain of em-
ployment. Although similarities between those ap-
proaches exist, the concepts and systems utilized in
this context are vastly heterogeneous. Our goal is
the abstraction of the current situation in context-
aware computing and the development of generalized
concepts for approaching the development of context-
aware systems. We put our focus on ubiquitous com-
puting and mobile services, since those are especially
suitable for employing awareness of contextual infor-
mation. This paper presents the first step in this en-
deavor, consisting of an in-depth survey of context-
aware computing and the presentation of our future
plans to proceed in this project.

Keywords: context awareness, context models, context

management systems, mobile services, heterogeneity

1 Introduction

The rapid evolution of mobile computing has had a
concurrent effect on related research domains such as
context-aware computing [1]. This has lead to a vast
amount of experimental systems being employed for a
large spectrum of use cases. Due to the individual focus
of each approach on its target domain, naturally, all of
the approaches make the current state of context-aware
computing appear heterogeneous. Nevertheless, most ap-
proaches express a certain amount of common character-
istics.

Our focus is set on identifying common concepts in
context-aware computing approaches, which allows us to
devise a general concept for context-aware system devel-
opment. This paper presents a snapshot of the current
state of context-aware computing, which we plan to use as
a foundation for further pursuing our objective. We have
analyzed several concepts excelling awareness of context
and we have consecutively identified their common char-
acteristics. The result of this analysis, which we present
to conclude this paper, form the base for the concep-
tualization of generalizing context aware computing ap-
proaches.

∗Technische Universität München, Department of In-
formatics, 85478 Garching, Germany, schmohl@in.tum.de,
baumgaru@in.tum.de

The rest of this paper is structured as follows: section
2 introduces the definitions of context. Section 3 dis-
cusses how contextual information can be abstracted and
represented by context models. In section 4, we summa-
rize architectural characteristics common in most context
management approaches. Section 5 concludes this paper
by constructing a general architecture for context man-
agement systems based on the survey presented here, and
it gives an outlook on our future work.

2 Context Definition

Context awareness is the ability of capturing and process-
ing contexts. Context comprises of contextual informa-
tion which may be retrieved from heterogeneous sources
[2]. Concluding, context may be defined as follows:

• Generally speaking. context is any situation to char-
acterize situation of an entity (place, person, object)
relevant to the integration of user and application,
including the user and application themselves. Con-
cluding, context is a set of the associated situations
and actions [3, 2]

• Practically, context is the physical surrounding of a
device, which is captured by sensors of the device or
the infrastructure. A device’s awareness of context
may further be categorized as either direct, denot-
ing the context is captured by the device’s sensors,
or indirect, in case context is acquired by the infras-
tructure [4].

3 Context Modeling

Context modeling is the process of abstracting and rep-
resenting contextual information for further processing.
According to [2], this particularly includes the following
aspects:

• identification of the most appropriate contextual in-
formation, that can model well enough the specific
context in a certain domain.

• identification and modeling of relations among pieces
of contextual information



• identification of possible dynamic changes in contex-
tual information and thus, modeling appropriate re-
actions to such changes

Hence, modeling context is a technique focusing on how
to find and relate contextual information, that captures
the observation of certain worlds of interest [2]. It de-
composes into 2 subsequent phases: First, characteristics
from real world are abstracted conceptually. Afterward,
this concept is mapped on a context model representing
the contextual information. We are about to discuss both
phases in the subsequent subsections 3.1 and 3.2.

3.1 Conceptual Approach

Context modeling approaches can be classified into two,
not necessarily disjoint, taxonomies [2]:

• Context Theoretic Modeling : This approach aims at
representing context primarily by fusing information
describing situations of entities, that are dynami-
cally changing by the occurrence of actions affecting
those entities and thus their situations. There are
two alternatives in the context theoretical modeling
approach. On the one hand, context may either be
described situation-centric as he composition of all
entities’ situations derived from events/activities in-
volving those entities. On the other hand, the activ-
ities themselves can be used to describe situational
context, by applying probabilities to the activities of
of being performed.

• Context Conceptual Modeling : This type of context
modeling describes context as concepts and the re-
lations among such concepts. Furthermore, such
type of modeling categorizes context according to its
prevalent characteristics. It subdivides into 2 closely
related alternatives. For one, context is described as
a conceptual graph, where concepts and its interrela-
tions are directly mapped to a graph’s vertices (con-
cepts) and edges (relations). This approach can be
refined into an alternative, where sets of prepositions
describe context. Similar to the direct approach, the
statements of propositional languages are visualized
as a graph leaving it to be interpreted as a concep-
tual graph of semantics.

3.2 Context Models

In order to create a context model, the conceptual model
from section 3.1 has to be implemented appropriately by
abstracting the conceptual model into structured infor-
mation. Our survey has resulted in identifying the fol-
lowing set of context models [5, 6]:

• Key-value models: Those are the most simple data

structures associating context attributes with spe-
cific values of contextual information.

• Markup scheme models: These models consist of hi-
erarchical data structures based on markup tags in-
cluding attributes and comments. They are usually
implemented as derivatives of SGML [7]. In some
cases, markup scheme models are used to describe
context as extensions of Composite Capabilities /
Preferences Profile (CC/PP) [8] and User Agent Pro-
file (UAProf) [9] to cover the high dynamics of con-
textual information.

• Graphical models: A quite intuitive approach to
model context is to represent contextual entities and
their relationships graphically. the most prominent
examples are Unified Modeling Language (UML)
[10], which is a suitable due to its generic struc-
ture paired with a strong graphical component; and
Object-Role Modeling (ORM) [11], which can be
nicely utilized to represent context graphically by
identifying facts and enriching those with types and
roles.

• Object-oriented-models consist of encapsulating con-
textual information into objects. The information
can only be accessed through well defined interfaces
and is therefore hidden to from other objects. Due
to the nature of object-oriented modeling this ap-
proach emphasizes reusability and controlled access
to contextual information.

• Logic-based models represent a highly formal model-
ing approach. It is based on logics, which define con-
ditions on which concluding expressions or facts may
be derived from sets of other expressions or facts.
Those conditions are described by rules in a formal
system, so that the facts, expression and rules put
all together define the context.

• Ontology-based models use ontologies, which are used
to represent concepts and relations between con-
cepts. They represent a uniform way for specify-
ing the model’s core concepts as well as subconcepts
and facts, thus enabling contextual knowledge shar-
ing and reuse.

Current research indicates, that ontologies are the most
expressive context representation models [12, 6]. Ontolo-
gies provide a powerful paradigm for context modeling
offering rich expressiveness and the supporting the dy-
namic aspects of context awareness. However, they re-
quire ontology engines managing the ontologies in use.
Those engines generally have high requirements on re-
sources, requiring the employing architecture to support
those. This may have negative performance impacts on
local context processing, where resource-constrained de-
vices are employed [12].



As stated, ontologies represent concepts and relationships
between concepts. Abstractions from the real world are
usually mapped to concepts with relations interconnect-
ing those concepts according to their real-world equiva-
lents’ relations [13, 14].

The ontologies representing individual entities must often
be implemented in a certain frame to function properly.
This frame is the same for all entities implying the need
of ontologies being reusable. For this reason, ontology
models often consist of two components[3, 14, 13]:

• General ontology : Those ontologies represent the
general part of the model, which is used by all in-
stances. It applies for all entities as it is. General
ontologies are therefore used as a frame for ontologies
representing entities.

• Specific ontologies: Those are employed entity-
specific. Each entity may have unique characteris-
tics, that are represented by its own specific ontology
only.

Beside their descriptive purposes, ontologies define sets
of rules, that are utilized by the inference engines using
the context model to calculate the current context [3].

3.3 Further Aspects of Context Modeling

An interesting aspect of context awareness is the utiliza-
tion of distance of contextual relevance as presented by
Roman et al. [15]. This approach conceptualizes context
to be distributed on all participating nodes in a network.
But a single node in the network is usually not interested
in the complete context in the network, but rather only
in relevant contextual information in its vicinity, which
consist of the contextual data available at the proximate
nodes. Thus, each node may define its context boundary,
depending on its individual preferences. This boundary is
therefore individually rooted at the respective node defin-
ing its relevant context.

Another important aspect to be mentioned is the the het-
erogeneity of mobile environments, which has a periph-
eral impact on context modeling. Especially the following
aspects are to be regarded [12]:

• Software heterogeneity : Context models may have to
address certain application requirements. Hence, the
presence of heterogeneous software may have to be
considered. Additional problems arise when hetero-
geneous context models are to be employed simulta-
neously [16].

• Architectural heterogeneity : Context models may be
bound to specific network domains, because only
some context information may be relevant. Multiple
heterogeneous networks may have to be considered.

Biegel et al. [17] propose an interesting way of handling
probabilistic aspects of context modeling. Their context-
aware system employs a context model, which encapsu-
lates a situational context into context hierarchies, which
represent sets of actions by means of generalization and
specialization (e.g. moving -¿ running). Those hierar-
chies define the actions possible in such situations. To
enrich the context with the probability of those action
to be taken, the activities in the hierarchy are repre-
sented by Bayesian networks [18], that are constructed
from context sensors. Those networks allow a probabilis-
tic conclusion on the actions represented in the context
hierarchy.

4 Architectures of context-aware Sys-
tems

In this section we focus on how context aware systems are
generally implemented. We especially emphasize archi-
tectural issues of component composition and the work-
flow of context management systems.

4.1 Components

The composition of context-aware systems is is charac-
terized by a high degree of heterogeneity. However, all
approaches agree in decoupling context capturing and
context processing from application composition [3] by
encapsulating the context management logic into mid-
dlewares.

An analysis of the architectures of multiple context-aware
systems presented in various publications [4, 19, 17, 3, 12,
20] identifies the following abstract components shared by
the majority of those approaches:

• Context sensors: Those sensors exist either as pieces
of hardware sensing the physical environment, or as
software component providing data from other con-
text sources [19, 2]. The primary task of both sensor
types is the acquisition of raw data for further re-
finement into contextual information. Concluding,
we can depict the following types of sensors [4]: (1)
visual and auditory, (2) location, (3) environmental
sensors such as motion detectors or thermostats, and
(4) software sensors, i.e. software components, that
draw information from context sources other than
the environment.

• Context capturing interface: Data acquired by sen-
sors is usually uncertain and difficult to interpret
by high-level components [6]. For this reason, sen-
sor data needs to be refined for further processing
by deriving a higher level of context from uncertain
multi-modal sensor data - a process, that may be
called sensor fusion [17]. It is characterized by re-
fining raw sensor data into data structures, that are



utilizable for higher application levels, thus provid-
ing a proper interface for the sensed environments
[4]. Such data structures may reach from simple data
types to sophisticated mechanisms, such as Bayesian
networks [18] for probability calculations [17].

• Context repository : The context repository stores
the current context. It consists of the according data
structures used to represent the context model.

• Context reasoning : The context reasoning compo-
nent is responsible for inferencing new context based
on the current contextual information in the con-
text repository and new contextual data acquired
through the context capturing interface. This pro-
cess is put in practice by inference engines, that work
on the basis of rules [17, 19]. They fetch the contex-
tual information from the repository and the contex-
tual updates from the context capturing interfaces as
input parameters, and they output an updated con-
text model, that is committed to the context repos-
itory. Rules can be either of global or local scope.
Global rules affect the entire context model, local
rules however have an effect on local entities only
[3].

• Context API : The context API provides an inter-
face for context-aware applications to actually uti-
lize contextual information [12]. The employment
of such an interface implements the commonly ac-
cepted paradigm of separating context management
from application logic [3].

• Context application: Applications accessing the con-
text API can actually use the contextual information
for their application-specific purposes. This includes
the automatic execution of services based triggered
by special contextual conditions, as well as the dis-
covery and allocation of resources relevant to the cur-
rent context [21]. The aspect of context application
especially emphasizes the deployment of legacy ap-
plications [19].

• Communication interface: Since a context-aware
system is distributed in nature, communication
needs to be handled appropriately. This especially
concerns the reasoning mechanisms, which may want
to commit contextual updates into the network, and
context capturing components, that may request
contextual information from other nodes in the net-
work.

• Actuators: Actuators are the counterparts of sen-
sors, that may be utilized as a result of a contextual
update [17].

4.2 Layered Architecture

In addition to a flat representation of a generic context-
aware system (as presented in section 4.1), such may be

abstracted into a hierarchy of layers, with each layer rep-
resenting information on a specific level of detail [3]:

• lexical level: signals from sensors are abstracted into
basic context events

• syntactical/representation level: context events are
translated to atomic context information, such as
matching sensor data to real-world-properties

• reasoning level: basic context information is refined
and organized, context information is fused into a
reasonable representation suitable for more sophisti-
cated processing

• planning level: context is evaluated, changes in con-
text are detected, reactions to context changes are
planned and scheduled

• interaction level: reactions to context changes are
executed in form of personal and collaborative inter-
actions with the user and other hosts

4.3 Workflow

So far, we have put our focus on the static aspects of
context-aware systems only. To describe the dynamic
behavior of such a system we can derive the workflow
of capturing, storing and utilizing contextual information
from the static architecture from sections 4.1 and 4.2 by
extracting the components’ tasks and putting those in
sequence reasonably.

1. Context sensing : Detection and representation of
contextual information [21]

(a) Acquisition of sensor data (low-level context):
Raw data is captured by sensors, representing
contextual information on the lowest level of
abstraction (sensors on the lexical level) [3].

(b) Refinement of sensor data: Raw data acquired
by sensors is interpreted and represented in
data structures to provide a higher level of con-
text (context capturing interface on the syntac-
tical level) [3].

2. Context update and management : The refined and
well presented contextual information is fetched and
merged into the context repository. The overall con-
text is updated in the process (context reasoning and
context repository on the reasoning level) [3].

3. Application of context : The most current contex-
tual information is fetched from the context reposi-
tory through the context API [12] to be used by the
context-aware application. This may occur by both
pushing or pulling the information to the application



level, dependent on the implementation of the appli-
cation. The use of the current context includes the
following aspects:

• Contextual adaptation: Context-aware applica-
tions automatically adapt to the current con-
text by updating/executing their according ser-
vices and their internal states [21]. (context ap-
plication on the planning level [3]).

• Contextual resource discovery : The dynamic
state of the context requires the dynamic lo-
cation and association of resources relevant to
the user’s context.

• Context augmentation: The user’s context is
enriched by digital data, which is presented ac-
cordingly to the user.

4.4 Aspects of computational distribution

Even though approaches featuring a centralized context
management component are generally realizable, almost
all of the current research emphasizes either distributed
systems or hybrid approaches, where centralized compo-
nent act as a subordinate system supplement. This fact
implies, that software providing context-awareness is de-
ployed as middleware on the nodes in the distributed sys-
tem.

Since context-aware computing emphasizes the use of mo-
bile devices, certain hardware restrictions must be con-
sidered [22]. Those especially encompass shortcomings
in power supply, communication bandwidth, processing
capabilities and storage. In addition, we face significant
limitations in providing a user interface due to the lack
of space.

Another interesting aspect of a decentralized system en-
ables us to post the definition of context spaces [19], which
has peripheral similarity to the context boundary aspect,
introduced in section 3.3 [15]. A context space is set of
nodes, that commonly share information. That implies
a bounded locality of context allowing a distinction be-
tween local and global context aware applications: the
local ones only access the contextual information in their
context space, global context-awareness denotes the uti-
lization of the global context consisting of all subordinate
contexts in the respective context spaces.

4.4.1 Modularity

Since context-aware middleware needs to be deployed on
a large number of devices, additional requirements re-
garding scalability and maintainability need to be consid-
ered. As stated before, the most significant architectural
cut consists of separating the context management sys-
tem from the context-aware application [3]. This enables

the deployment of individual applications on the same
context management system.

However, the context management system itself may have
be applied to different use cases - basically requiring dif-
ferent context management systems. Hence, unitizing the
context management system seems reasonable [20]. A
component used by all context management system may
be used as a generic component on all devices. This usu-
ally includes the acquisition and provision of contextual
information. Specific context-processing components can
then be deployed on top of the generic ones. They usually
implement the mechanisms how context is individually
processed (update, storage, context API).

4.5 Heterogeneity Aspects

As on context models, heterogeneity has an impact on
middleware design as well [12]:

• Hardware heterogeneity : Servers, workstations and
mobile devices in a context-aware system have very
different characteristics and capabilities, especially
concerning platforms, network technologies, compu-
tational power. The challenge in middleware design
is to make it deployable on all of those device types.

• Software heterogeneity : The software running on the
devices may differ highly, too. This encompasses the
presence of different operating systems and applica-
tions.

• Architectural heterogeneity : The communication be-
tween various nodes may not be uniformly defined
neither. This heterogeneity aspect comprises of the
existence of different network architectures and com-
munication protocols.

5 Conclusion

In this paper we have evaluated the current spectrum of
research on context-aware computing and we have identi-
fied common characteristics among the diverse realization
approaches. In this section, we summarize the results and
conclude this paper by deriving a general architecture for
context-aware systems.

The core of each system excelling awareness of context
is the context model storing the current contextual in-
formation. As we have stated earlier, ontologies are the
first choice made by most research groups due to their
high degree of expressiveness. Since the employment of
ontologies requires decent hardware capabilities, one may
be forced to fall back on less demanding context models
if the available hardware is constrained.

Concluding from our analysis of implemented architec-
tures we can derive a general conceptual architecture for



a context management system providing contextual infor-
mation for context-aware applications. Figure 1 visual-
izes this concept employing all of the relevant components
discussed earlier in section 4.1.

Context Capturing Interface

Inference Engine

Actuators ...

�����������������������
�����������������������
�����������������������
�����������������������

Context Application Interaction Level

C
om

m
un

ic
at

io
n 

In
te

rf
ac

e

Planning Level

Reasoning Level

SW−Sensors

Context API

Syntactical Level

Lexical Level

Context Repository

R
ul

es

Sensors

Figure 1: General Architecture

Additionally, the figure shows the architecture layered in
levels of abstraction, as introduced in section 4.2. Each
component has been assigned to the corresponding layer.

The workflow of recognizing, updating and utilizing con-
text is strongly inspired by the procedure described in
section 4.3. Sensors (which may explicitly include soft-
ware components as well) acquire raw environmental
data, which is refined by the context capturing inter-
face into contextual information. The raw data is ab-
stracted into discrete data structures so that it can be
processed further by software at all. The contextual in-
formation is then committed to the context repository,
which is responsible for the persistent storage of the con-
text using an appropriate context model. The context
repository controls the access to the contextual data and
therefore functions as an interface to both the rest of the
context-aware system and any user applications utiliz-
ing the context. The manual of altering the context is
encoded into inference rules, which are enforced by the
inference engine. Both the rules and contextual infor-
mation are loaded by the inference engine, which subse-
quently updates the context in the repository according
to the inference rules. Since we are dealing with a dis-
tributed system, contextual updates may be propagated
to other nodes via the communication interface, which is
attached to the communication hardware. The inference
engine may also trigger any actuators, that are affected
by the context update. The context API provides access
to the context for user applications, and it represents the
architectural cut between context management and con-
text utilization as we have argued earlier and as it has
been explicitly demanded by Christopoulou et al.[3]. The
context API has direct access to the context repository,

meaning it reads the current context and commits user
updates into the context. The inference engine may also
notify user applications through the context API, if in-
ferencing new context requires it.

At this point, we can distinguish 3 types of contextual
updates:

• Environment : Contextual information is gathered
by the sensors.

• Inference Engine: New context is derived indepen-
dently by the inference engine using its appropriate
rules.

• User : The user commits data to the context through
the context API.

A question remaining after the discussions presented here
is the utilization aspect of our work. Context-awareness
is applicable in many utilization domains. On the one
hand, the utilization of context is very suitable in dis-
tributed systems due to their dynamic behavior making
context to change very quickly. This aspect makes mobile
service development one the prime targets of our work.
On the other hand, another interesting application do-
main is the development of internet services. Keeping
this in mind, hybrid approaches implementing web-based
mobile services are an important target group, too [1, 23].

An important aspect, which has yet been handled periph-
erally, is the presence of heterogeneity in several concep-
tualization domains. The analysis of this issue is the next
step on our road map to progress in the project presented
in this paper. It will allow us to refine our conceptual-
ization under the aspect of the influence of heterogeneity
factors.

The subsequent steps will aim at creating a prototype,
which will basically implement the ideas presented in this
paper.

References

[1] Robert Schmohl and Uwe Baumgarten. Mobile ser-
vices based on client-server or p2p architectures
facing issues of context-awareness and heteroge-
neous environments. In PDPTA ’07: Proceedings
of the 2007 international conference on parallel and
distributed processing techniques and applications,
pages 578–584. CSREA Press, 2007.

[2] Christos B. Anagnostopoulos, Athanasios Tsounis,
and Stathes Hadjiefthymiades. Context awareness in
mobile computing environments. Wirel. Pers. Com-
mun., 42(3):445–464, 2007.



[3] Eleni Christopoulou, Christos Goumopoulos, and
Achilles Kameas. An ontology-based context man-
agement and reasoning process for ubicomp applica-
tions. In sOc-EUSAI ’05: Proceedings of the 2005
joint conference on Smart objects and ambient intel-
ligence [14], pages 265–270.

[4] Hans W. Gellersen, Albercht Schmidt, and Michael
Beigl. Multi-sensor context-awareness in mobile
devices and smart artifacts. Mob. Netw. Appl.,
7(5):341–351, 2002.

[5] Mehdi Khouja, Carlos Juiz, Isaac Lera, Ramon Puig-
janer, and Farouk Kamoun. An ontology-based
model for a context-aware service oriented architec-
ture. In SERP 07: Proceedings of the 2007 Interna-
tional Conference on Software Engineering Research
and Practice, 2007.

[6] Thomas Strang and Claudia Linnhoff-Popien. A con-
text modeling survey. In Proceedings of the Work-
shop on Advanced Context Modelling, Reasoning and
Management associated with the 6th International
Conference on Ubiquitous Computing (UbiComp),
Nottingham., 2004.

[7] Standard generalized markup language (iso
8879:1986). http://www.iso.org, October 2007.

[8] Composite capabilities / preferences profile.
http://www.w3.org/Mobile/CCPP/, October 2007.

[9] User agent profile. http://www.wapforum.org, Oc-
tober 2007.

[10] Unified modeling language. http://www.uml.org,
October 2007.

[11] Object role modeling. http://www.orm.net, October
2007.

[12] Ricardo Couto A. da Rocha and Markus Endler.
Evolutionary and efficient context management in
heterogeneous environments. In MPAC ’05: Pro-
ceedings of the 3rd international workshop on Mid-
dleware for pervasive and ad-hoc computing, pages
1–7, New York, NY, USA, 2005. ACM Press.

[13] Mohammad Rezwanul Huq, Nguyen Thi Thanh
Tuyen, Young-Koo Lee, Byeong-Soo Jeong, and
Sungyoung Lee. Modeling an ontology for manag-
ing contexts in smart meeting space. In SWWS ’07:
Proceedings of the 2007 International Conference on
Semantic Web and Web Services, 2007.

[14] Eleni Christopoulou and Achilles Kameas. Gas on-
tology: An ontology for collaboration among ubiq-
uitous computing devices. In International Journal
of Human-Computer Studies [3], pages 664–685.

[15] Gruia-Catalin Roman, Christine Julien, and
Qingfend Huang. Network abstractions for context-
aware mobile computing. In ICSE ’02: Proceedings
of the 24th International Conference on Software
Engineering, pages 363–373, New York, NY, USA,
2002. ACM Press.

[16] Wieland Schwinger. Exploring model engineering
techniques for the integration of heterogeneous con-
text models. In Proceedings of the 5th Interna-
tional Conference in Computing and Multimedia
(MoMM2007), pages 65–76, 2007.

[17] Gregory Biegel and Vinny Cahill. A framework for
developing mobile, context-aware applications. per-
com, 00:361, 2004.

[18] Finn V. Jensen. Bayesian Networks and Decision
Graphs. Springer, Berlin (ISBN 978-0387952598),
2002.

[19] Carsten Jacob, David Linner, Ilja Radusch, and
Stephan Steglich. Loosely coupled and context-
aware service provision incorporating the quality
of rules. In ICOMP 07: Proceedings of the 2007
International Conference on Internet Computing.
CSREA Press, 2007.

[20] Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang,
and Sandeep K. S. Gupta. Reconfigurable context-
sensitive middleware for pervasive computing. IEEE
Pervasive Computing, 1(3):33–40, 2002.

[21] Teddy Mantoro and Chris Johnson. Location his-
tory in a low-cost context awareness environment.
In ACSW Frontiers ’03: Proceedings of the Aus-
tralasian information security workshop conference
on ACSW frontiers 2003, pages 153–158, Dar-
linghurst, Australia, Australia, 2003. Australian
Computer Society, Inc.

[22] Roy Want and Trevor Pering. System challenges
for ubiquitous & pervasive computing. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 9–14, 2005.

[23] Robert Schmohl, Uwe Baumgarten, and Lars Koeth-
ner. Content adaptation for heterogeneous mobile
devices using web-based mobile services. In Pro-
ceedings of the 5th International Conference in Com-
puting and Multimedia (MoMM2007), pages 77–86.
sterrecihische Computergesellschaft, 2007.


