Realizing Consistent Event Ordering in Distributed Shared Memory Systems

Tobias Landes,alg Preil3inger
Institut fur Informatik
Technische Universit Minchen
Germany

Abstract How to construct a consistent view on mere message
passing systems has already been examined by Lamport
A large number of tasks in distributed systems can gnq othersZ, 3, 4]. In prior work [1] we have extended
be traced down to the fundamental problem of attain- these considerations to a system model featuring a dis-
ing a consistent global view on a distributed computa- tripyted shared memory and thus created a formal base
tion. Based on our previous theoretical work concerning for the implementation of these concepts. In the doc-
consistent event ordering in systems featuring both mes{;ment at hand we explain and discuss the proceedings,
sage passing and distributed shared memory facilities, in proplems, and practical experiences during the realiza-
the paper at hand we discuss the more practical issuesiion. We are not aware of any related work present-
solutions, and results presenting themselves during thejng an actual realization of the construction of a consis-

process of actually realizing and implementing the con- tent global view on a system featuring distributed shared
struction of consistent global views on such systems. memory.

Keywords: distributed system, distributed shared mem- This document is structured as follows. In section
Ory, Consistency’ observation, imp|ementation we brleﬂy summarize the most reIeVant theore“cal re-

sults of our previous work concerning consistent event
ordering in distributed shared memory systeitjs $ec-

tion 3.1 generally describes the practical measures that
must be taken to gather all the relevant information. In

The transition from conventional, pseudo-parallel S€ction3.2we briefly introduce the experimental system

systems to distributed systems is characterized by theVhich served as the base for our implementation. Sec-
benefit of real parallelism on the one hand, and a signif- fion 3.3 discusses how the consistent global view is to
icantly higher level of complexity on the other. While it P€ obtained. Sectiod.4 describes how the gathering of
is relatively straightforward to determine the current sys- information is done in our particular system, and section
tem state or the effects of the last operation in a pseudo_3.5_d|scusses the regultmg performance issues. Section
parallel system, in a distributed system, because of reaf-6illustrates the realization by means of an example ex-
parallelism, this is (in general) a non-trivial problem. ~ €cution, and sectioA summarizes the paper.

The lack of global time and the asynchronous paral-
lel execution of concurrent instructions in different pro- 2 Consistent Event Ordering In Theory
cesses prevent the system’s current state from being char-
acterizable by a simple global glance on the execution. Assembling a consistent view on a running system re-
However, many tasks in controlling and managing dis- quires the comprehension of all relevant computational
tributed systems need to establish a global system stategvents and their mutual causal dependencies. This sec-
e.g. monitoring, breakpointing, debugging, or automatedtion briefly summarizes the theoretical conditions for the
management. gathering of the required information, as we elaborated

So what we need is a consistent global view on the in detail in [1]. The granularity of the events taken into
system. “Consistent” means that what we see is a stateonsideration generally depends on the application of the
that is meaningful in the sense that it has, or could have,consistent view to be generated, but should allow for cer-
occurred in the system execution, considering all the tain events which are crucial to the tracing of the causal
causal dependencies among the states of the individuatiependencies among the events (i.e. send, receive, write,
execution activities. Such a consistent global view is and read events). In the next subsection a description of
generally sufficient as a base for the tasks mentionedour system model is given, along with all events of spe-
above. cial interest mentioned above.

1 Introduction

2.1 System Model can also be seen agpeeconditionto e‘]’ . Intuitively, this
| ¢ del a distributed tati means for example that a message can not be received
nour system model, a distributed computation CoNn- e it has been sent (or, a memory value can not be

sists of a finite SeP = {py, pz,..., P} Of N PrOCESSES o0y afore it has been written).df - € ande! A €,
The processes communicate with each other in two ways.) ! !
thene! ande’j’ are said to beoncurrenf and may be ex-

First, they can communicate by sending and receiving i i
ecuted in parallel since none of them can causally affect

messageswhich are only assumed to be delivered re-
liably and with a finite delay. The second way is es- € Other. We denote concurrency gifle]. In [1] we

tablished by alistributed shared memoi®SM) which proved that any total event order respecting the DSMS
allows for passive memory objects or addresses to becausality relation is consistent with the events’ causal de-
shared among the processes through the basic operatiorRENdeNncies.

of reading and writing. We call systems with DSH- Since the constructive building of an event order re-
tributed shared memo.ry SyStef@SMS) specting the above relation is np-complete, we defined

Any processp; consists of a sequence efents E— arestricted DSMS causality relatiof based on write-

| — . .
{el,€,...} which are totally ordered by an ordering re- order and read-mapping as proposed by Gibbons and Ko-
lation — called theprogram order Each event is atomic rach [L4]. The write-orderis the total order of all write

on the chosen abstraction level and changestieof events to the same memory location as o_ccurred inan
the process. observed system execution. Titead-mappingds a func-

tion that assigns to each read event the corresponding

write event as actually observed during execution. Read-

mapping and write-order enhance the general causality
Of particular interest for considerations regarding the relation by providing valuable information that allows to

global behaviour of systems with interacting processesconstruct a sequentially consistent total event order in

are events representing the sending or receiving of a mes©O(n log(n)).

sage, i.esendandreceive eventsThis is because these Definition 2.2. Let >, totally order all write events

events establish synchronization dependencies among,,,, to the same location, respectively. L&t :

the processes and thus extend the local program ordegg,,, — EyxaU{L} be a read-mapping function that

to a partial global ordering of events. LampdZ} €alled maps every read event to its corresponding write event,

this the “happened before” relation, and defined it as theor to L if no write event accessed that location before.

transitive closure of the program order and the natural The restricted DSMS causality relatio® is the small-

causal send-receive dependencies. In our model, due test relation satisfying the following five conditions:

the presence of DSM, there exist even more events thatyg e c E : if g — ej, theng = ¢;.

in analogy to the send and receive events, establish devqge&j/ € E: if €is asend event amgT is the receive

pendencies thus extending the “*happened before” rela- gyent of the same message theins &/,
tion and reducing the number of consistent total event ; L !
Ve, ej € Ew(y) ! if & >wo €, then g = ¢;.

orden.ngs. Th_ese are 'Fr_read andwrite events, which Ve € Erya One of the following two cases must match:
describe reading or writing access to a shared memory .) ;
(i) Jew € Bwxa: (frm(€) =ew) and (ey = €)

address. In1] we therefore explained and defined the

2.2 Causal Dependencies

DSMS causality relatioas follows: and(vey € Bw(y \ {ew} r
) if (ew>wo &), then (e= g)).
Definition 2.1. Let Eryja be the set of all read events (i) (frm(e) =L1) and(Vex € Eyy : €= &).

reading the valua from locationx, let Eyy), be the set Ve, e, e € E: if & & gj andej = &, then & = &
of all write events writinga to locationx. The DSMS
causality relation= is the smallest transitive order rela-
tion satisfying the following three conditiorts:

(1)Ve,ej €E: if & — €j, theng > g.

(2) Ve, el cE: if g'is asend event arg] is the receive

Note that the total event orders satisfying the re-
stricted DSMS causality relation are only a subset of all
possible consistent total orders, which is a drawback in
comparison to the DSMS causality relation (Definition
2.1). The benefit of the restricted relation is that it en-

event of the same message, thefns- 93,/ ables us to construct a consistent total order efficiently,
(3) Ve € Erixja One of the following cases must hold: because of additional information collected during sys-
(1) Jew € BEwa: (Bw £"¢) and tem execution. For more details on these topics, $ee [
(Ve € Bwe \ {ew} : (8= ew) or (ex" &y)). _
(i) Vex€Ewy : (=" &) and 2.3 Event Lattice

Ver € Erip ¢ case (i) must match, foa 7 b. A suitable tool for the visualization of events and their

mutual dependencies as they occur in our system envi-

ronment (see next section) is avent latticeas proposed

in [10]. The lattice structure originates from the nest-

ing of processes and the dependencies between the cre-

1 g ~* e is the common notation for a transitive path-irfrom & to ation of a process through its “father” and its own start-
gj. ing event (initialization). An analogous dependency is

If g = ¢, thene] is regarded as beingausally de-
pendenton €, since it can only be executed if the ex-
ecution ofe’ has already been finished. Therefoeg,

established through the fact that the termination eventsection3.3.1we explain how this problem can, in our
of a process has to occur before the destruction of thespecific application of constructing the event lattice, be
process through its “father”. This synchronous termina- worked around by using direct event references.

tion concept establishes the complete nesting not only

in process creation but in the dependencies and informa-))

tion flow as well, and distinguishes the event lattice from 3:1.2 Observing Memory Access. Recording the
other event graphs. Additionally we add to the lattice €vents described in secti@and their mutual causal de-
the causal dependencies deriving from process cooperaPendencies is complicated especially by the presence of
tion, as described in secti@?2 An Example of anevent @ Shared memory. In our system, the usual sending and

lattice will be explained in sectioB.6and illustrated in ~ "€C€iving of messages is already implemented, in suit-
figure 1. able libraries which can easily be extended by record-

ing mechanisms. The same approach is used, in some
systems with low DSM usage, for the shared memory.
But in MoDiS, the shared memory access is partly based
on direct machine instructions. The distributed shared

pendencies and consistency given in secfipwe now memory is mapped directly into the virtual memory of

describe problems, experiences, and solutions occurringfl process by using the page fault mechanism. There it

in the process of realization. SectiBri explains issues emains as long as it is valid. SO.’ gfter'the initial access,
and possible solutions which are independent of the spe2"Y further access can not be distinguished from a local
cific system environment used for implementation. Then MOy aCCess any more. F_urthermo_re, it must be rec-
we briefly describe MoDiS, our experimental system, ognlzed whether an access 1s a reading or wntmg one,
and its concepts as far as they are relevant for the work3'Ven that these have different causal dependencies, as

presented in this paper. In the sections following there- exp\)/l\;auned m;egﬂoﬁ.z | bl hes q
after we will discuss the actual realization and illustrate . ¢ examined several possible approaches to recora-
the results by means of an example. ing DSM access events. One of these is based on appro-

priate hardware support. Standard ix86 computers fea-
ture hardware debug registers which are able to trigger
controlled exception handling whenever a memory ad-
Some general problems in tracing and recording thedress is accessed. However, this feature is not sufficient
events and dependencies described in se@ipresent as a solution because there are only four such registers
themselves independently of a given implementation en-each of which can monitor an address range of 4 Byte.
vironment. One fundamental problem is, of course, the Clearly, this would cut down the DSM way too much.
effect on system performance. This issue will be dis- Another approach can be derived from debugging
cussed in sectioB.5. In the following two subsections techniques, as they are used, for example, by the gdb
we will point out the problems in dynamic process sys- (GNU Project debugger). Software watchpoints can be
tems and in observing concurrent memory accesses. used to monitor memory access. However, this requires
the execution of a process in single step mode and drops
3.1.1 Dynamic Process SystemOur system model ~Performance by factor 100, which is totally unaccept-
assumes a finite set of processes as description of th@ple, at least for our purpose. o =
activities in a computation. In the literature concern- 1he only really satisfying solution is modifying the
ing consistent event ordering in message passing systemsompiler. The drawback, regarding the transferability to
this set of processes is always assumed as being constaf{her systems and applications, is the necessity to re-
over time (e.g. in2, 3, 4]), which in practice is actually ~ compile all applications for the distributed system us-
an exception. In our realization we therefore consider aind the modified compiler. With our experimental sys-
dynamically changing set of active processes as a subieM MoDiS, however, this is no problem at all, due to
set of all processes present in the system. This renderdh€ language based approach of the system itself. Dur-
usual mechanisms like vector cloci B, 7] unusable. Ing the compiler analysis of the high-level programming
Landes 8] proposes an extension of vector clocks which language, reading and writing memory references can

is meant to be suited for dynamic process systems and’@ additionally examined. At this point, the compiler
could be used for our implementation. But even this so- ¢an generate additional code for memory access event

lution is not quite unproblematic. Let the system provide &cording. So the analysis can be performed statically,
a service that processes incoming requests by spawningnd only the necessary recording operations have to be
respective service processes. The set of active processé&€cuted in runtime, which minimizes the performance
at a given time should not be very high, but the overall 0SS

set of active and terminated processes would be poten-

tially unlimited, which requires explicit measures to pre- 3 o Implementation System: MoDiS

vent the clock values to also grow unchecked. Landes

[8] gives an extensive discussion on this issue and states In this section we briefly describe a few relevant as-
that it is resolvable, but only with considerable effort. In pects of the experimental system MoDiS, which is the

3 Realizing a Consistent Event Ordering

Based on the formal definition concerning causal de-

3.1 System Independent Realization Issues

basis and environment for our implementation of consis- way it is ensured that an order over the clock values im-
tent event recording. plicitly reflects the causal dependencies. An ewanith
MoDiS (Model orientedDistributedSystems, devel- atime value greater than that of an everis causally de-
oped at the chair for operating systems and system archipendent ore’ (see, for example4]). This logical time
tecture of the Munich Technical University) is best char- can be used as base for the construction of the event lat-
acterized as a language-based top-down driven approactice. For each entryin the vector time stamp of an event
to developing distributed systems. The instructions eit has to be checked whether the event of the respective
defining the application are specified in the object-basedprocess with the local time stanxps already part of the
high-level programming language INSElIn{egration graph. If this is the case for all vector entriescan be
and Separation SupportingExperimental Language). added to the graph.
MoDiS pursues a single system approach: compiler, run- The other option is to gradually record direct (non-
time environment, DSM manager, and communicator aretransitive) dependencies. If we assume that every event
part of the system, as is operating system functional-e in the system has a unique identifigr then we are
ity. The gcc (GNU Compiler Collection) based compiler able to record with each event a list of its direct causal
gic (GNU INSEL compiler, 13]) transforms the abstract predecessors. Since we assume a granularity such that
specification into an executable program containing botheach event may send or receive at most one message, the
application and management components. All transfor-length of this list may only vary between 1 and 2. ket
mation mechanisms and all information gathered during be a send event with identifigr. With the corresponding
the transformation are part of the system. This conceptreceive event’ we only have to record the identifigyin
ensures high availability of information and thus sup- order to be able to trace the direct dependencz ofi e.
ports automated management for application oriented us-The unique event IDs can be realized as a combination of
age of the distributed hardware resources. a node identifier, a process identifier, and a process-local
A detailed explanation of the MoDiS concepts can event counter. The size in bytes of these event IDs may
be found in 1] and [12]. Crucial to the work pre- vary with the size of the system but is constant in any
sented in this paper are the integrated INSEL compiler particular system. The event lattice construction based
gic, the communicator, and the DSM manager, as theyon events marked in this way can be performed as fol-
could be extended to suit our realization of consistent lows: For each recorded evenit is checked whether all

event recording. the (1 or 2) entries in its direct dependency list reference
events that are already part of the graph. In this ease
3.3 Constructing the Event Lattice can be added to the graph without harming consistency.

]]) Otherwise the same check is performed recursively for
Our purpose is to gradually visualize the progress of ine Jist entries.

the computation in execution using an event lattice (see Comparing the two options one has to consider two
2.3). During runtime, this lattice is generated step-by- gitferent aspects. First, the space needed for the event
step from the recorded events. Therefore, the graph conyecording and, second, the suitability for the construction
sists of events that have already occurred and directecy the event lattice as our consistent view on the system.
edges between them. An edge from everib event The great advantage of vector clocks is the fact that each
¢ meanse = €. To ensure the consistency of such a (ime stamp contains information not only about direct
partly constructed grap@ one must be careful to only ¢ a150 about indirect (transitive) dependencies. Given
add event®' to the graph whose dependencies are ful- g events and their time values one can easily and def-
filled, i.e. every (transitive) p_redecessor event is alreadyinite|y decide whether they are concurrent or dependent
part of the graphe’ € G only if Vele=-€:ec€ G. The (and in which way). This is not possible with the direct-
necessary edges have to be added accordingly. dependence method. A path search has to be performed,

in both directions, to decide whether one can be reached
3.3.1 \Vector Clocks vs. Direct-DependenceThe from the other or not. However, if the events are not to be
central task in constructing consistent views in dis- compared in general but to be used for the particular pur-
tributed concurrent systems is to trace the causal de{pose of constructing the event lattice during runtime (or
pendencies among the events, as specified by the relasimilar applications), then comparing arbitrary events is
tions given in sectior2.2 We consider two different not necessary and the great disadvantage opposite vector
approaches to achieve this: The dependencies can belocks does not matter.

traced implicitly using logical clocks, i.e. dynamic vec- The space required to record direct dependencies is
tor clocks as mentioned in secti@nl.1, or explicitly by constant, whereas vector time stamps grow with the
direct references to causal predecessor events. number of processes created in the system. A garbage

A logical clock adjusts the incrementing rules of the collection as proposed i8] is expensive and reduces
clock value to the causal dependencies. Because, for exthe advantage of vector clocks as mentioned above,
ample, the receive event of a message is always depensince only events remain comparable between which no
dent on the send event of the same message, a vector timgarbage collection has been carried out.
value of the send event is piggybacked on each message For our purpose, which is to construct a gradually
and the receive event is assigned a higher value. In thiggrowing event lattice representing the progress of the

computation, the direct-dependence method is clearly toare no integrated synchronization mechanisms for shared
be preferred. We do not need the informational advan-memory objects (i.e. memory object access is interrupt-

tage (transitivity) of the clock based approach and canible), so we have to regard single memory addresses as
make use of the superior efficiency of tracing only direct objects. In systems featuring access synchronization,

(non-transitive) dependencies. any number of memory references might be modeled as
a single access event, as long as they can be performed
3.4 Collecting Necessary Information atomically.

- . _ The recorded events are combined to the event lattice
Prerequisite to the construcyon method explame_d as explained in sectioB.3. The following sections give
above are the.evc.-:‘nts of the running system, marked W'thsome performance considerations and an illustrating ex-

the IDs of their direct causal predecessors. The follow- ample.

ing section describe how to collect this information with

respect to the event dependencies as given in by the re-

stricted DSMS causality relation. All events relevant 3.5 Performance

for process synchronization are recorded, which are, in Monitoring a running system always induces some
MoDiS, creation and destruction of child processes, mes- 1 ount of performance loss. This can generally be justi-
sage passing, and distributed shared memory access. D?fed by (at least) two different arguments.
pendent on the specific use meant to be made of the gen- First, one can decide to use the system monitoring
erated event lattice, one could just as well design and im'only in 1debugging mode where the performance loss is
plement events of finer granularity. However, this would " 0o oot “However as Séftinger showed in quan-
induce considerably more effort since more events wouldtum physics by means’of his famous thought experiment
.hav'e' to be recorded. For our purpose this would not beWith the cat [L5], that an observed system may act dif-
justified. ferently from an unobserved one. So it may be that not
all errors occurring in the productive system show in the
3.4.1 Process Order. Process order is captured im- gpserved debugging mode (or vice versa).
plicitly for all recorded events, because the unique gecond, there are many applications in which perfor-
event identifier contains, amongst others, a scalar eventance plays a minor role in comparison to other require-
counter on a per-process base (3&&1). ments, e.g. availability, security, or reliability. Not only
in systems controlling dangerous facilities can a system
3.4.2 Message Passing SystenCapturing the send- fault be disastrous, but also in economical fields. Ob-
receive dependency is implemented by piggybacking theserving such systems can be a very reasonable measure
identifier ie of the send event on the message. The re-in fulfilling quality requirements, even at the expense of
ceiver registers the receive event along withs one of system performance.
its two direct dependencies. Both of these measures can Processing the recorded events by constructing the
be taken by the MoDiS communicator module. MoDiS event lattice and using it for analysis and visualization
supports a special case of message passing, which is thef the system’s execution can be done in a process ex-
so-called operation oriented rendezvous concept. Thewernal to the system on a machine which is not part of
dependencies deriving from this concept are explainedthe system, so it is of no relevance apart from a certain

by means of an example in secti8ré. increase in network load, which might suit a given appli-
cation better than increased system load. What remains
3.4.3 Distributed Shared Memory. In section3.1we is the gathering of information which is actually signifi-

explained why, at least for our purpose, the only reason-cant for the performance penalties.

able way to monitor memory access is to have the com- In the cases of process creation and message passing
piler produce additional code. The INSEL compiler gic the recording of events and their IDs can be ignored,
analyzes every memory access and generates code whegiven the very small overhead which is only a fraction

it detects access to DSM as occurring in INSEL instruc- of the time needed to create a process or send a message
tions like, for example, variable assignments, compositeover a standard network.

expressions, or function calls. The read-write dependen- The only really significant contribution to the over-
cies described in sectidh?2 are realized using system- head arises from the memory observation. Every DSM
unique object identifiers. Each object in the DSM is access requires between 4 and 6 additional memory ac-
assigned such an ID, which is, in practice, the virtual cesses, and an increment instruction. A (very generous)
address in the shared address space along with a scalampper bound for the performance loss can therefore be
counter. Read and write access are recorded by the rungiven as a factor of six as compared to the normal system
time environment. The access event is marked with theexecution. However, as proven in practice, the behaviour
object ID and the incremented scalar time stamp of theis significantly better than that because, first, only a part
access. By means of mutual exclusion we ensure theof all program instructions are actually memory oper-
atomicity of the memory access and its recording. The ations, and, second, only a part of all memory opera-
size of the memory objects depends on the memory im-tions reference the DSM. In order to be able to describe
plementation and language concepts. In MoDiS therethe performance penalties more precisely, measurements

ACTOR_INIT guested function and returns the result to the caller, who
is then allowed to continue.
Figure 1 shows an initial process, who creates an-
ACTOR_CREATE qther process just after its OWATTOR.INIT event. The
first event of the new process is, agalC,TOR_INIT, but
! causally dependent on the fatheRs TOR_CREATE, the
ACTOR_INIT dependencies resulting of process creation and termina-
DSM_WRITE tion are shown as dashed edges. The respective process
order, i.e. the concurrent execution threads are marked
R as slightly thicker black edges. The father process writes
CORDER_CALLS to the distributed shared memory and then synchronizes
: with its child process using a C-order. The C-order
CORDER_CALLRECV is initiated by an event calledORDER CALLSEND, 0On
: which the evenCORDER CALLRECYV is dependent. Dur-
ing the execution of the called function the caller is
blocked, which is visible in the figure through the de-
pendencies of the evertORDERRETRECV on both
CORDERCALLSEND and CORDERRETSEND The C-
order dependencies are shown as thin black edges. The
DSM_WRITE function called in this rendezvous performs a write ac-
‘ cess on the memory location that has previously been
accessed by the caller. The write-order dependencies
(see sectior) are drawn as dotted edges. At the end the
father process captures its terminated child in the event
ACTOR_JOIN and then terminates itself.

As can be observed, the event lattice constructed us-
ing the methods presented in this paper, clearly shows
all and causal dependencies (as demanded in seftion
Thus one can, for example, easily decide which events
- -ACTORfTERM are concurrent, and use this information for automated

DSM_READ :
system management, debugging or other purposes.

CORDER_EXEC

CORDER;RETSEND

. CORDER_RETRECV

pe
ACTOR_JOIN
4 Conclusion
.ACTOR_TERM In this paper, we presented a realization of construct-
ing consistent views on distributed computations featur-
Figure 1: Constructed Event Lattice ing both message passing and DSM facilities. This re-

quires that events along with their mutual causal depen-
dencies as described by relations givenlible recorded

and comparisons of representative applications with and@nd processed. We examined different methods for cap-
without observation will yet have to be performed. turing memory access events and explained their respec-
tive issues. Furthermore we compared, with respect

to dynamic process systems, vector-based clocks and a
3.6 Example direct-dependence approach, discussing the advantages
and disadvantages of each.

Figure 1 shows an event lattice of a simple MoDiS The actual realization of the event recording and event
system, constructed as described in this paper. Thdattice construction have been explained in the context
events are visualized as squares, their mutual dependernf the experimental system MoDiS and illustrated by an
cies as directed edges. Memory access events are coloregkample.
white, process creation and termination events grey, and The captured event lattices are the basis for two di-
rendezvous events (a special case of message passinggctions in future research. On the one hand, we have
black. to further examine the event capturing itself with respect

The operation oriented rendezvous, called C-order, isto granularity and performance. On the other hand, it
a message based process synchronization mechanism imust be explored in how far the view on system gained
MoDiS. First, the caller has to execute a call event, which through these methods is suited as a tool to analyze and
is blocking. The callee has to perform an event for the re- control distributed systems, in order to render them more
ceiving of the message. Then the callee executes the remanageable, fault-free, and secure.

Acknowledgments

We thank Prof. Dr. Peter Paul Spies and Dr. Chris-
tian Rehn for their suggestions and valuable comments[15]
in discussions on our work. Further we thank Sebastian
Haas for the practical work he did within the scope of his
diploma thesis9].

(1]

(2]

(3]

(4]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

References

Jorg PreiBinger and Tobias Landes. Fundamentals for
Consistent Event Ordering in Distributed Shared Mem-
ory Systems. In Hamid R. Arabnia, editdProceed-
ings of the International Conference on Parallel and
Distributed Processing Techniques and Applications,
PDPTA '05 pages 890-896, Las Vegas, NV, 2005.

Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. @ommunications of
the ACM 21(4), pages 558-565, July 1978.

K. Mani Chandy, Leslie Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. In
ACM Transactions on Computer Systewal. 3, no. 1,
pages 63-75, February 1985.

Ozalp Babaglu, Keith Marzullo. Consistent Global
States of Distributed Systems: Fundamental Concepts
and Mechanisms. In Sape Mullender, edifistributed

Systemschapter 5, pages 97-145. Addison Weslé&y, 2
edition, 1993.

Friedemann Mattern. Virtual Time and Global States of
Distributed Systems. In M. Cosnard et al., edit®rp-
ceedings of the Workshop on Parallel and Distributed
Algorithms pages 215-226, Elsevier Science Publishers
B.V., North-Holland, 1989.

Colin Fidge. Timestamps in Message-Passing Systems
that Preserve the Partial Ordering. Rroceedings of

the 11" Australian Computer Science Conferengages
55-66, February 1988.

Colin Fidge. Logical Time in Distributed Computer Sys-
tems. InComputer 24(8), pages 28—-33, August 1991.

Tobias Landes. Dynamic Vector Clocks for Consistent
Ordering of Events in Dynamic Distributed Applications.
Document submitted for publication to PDPTA ;Qrit-

ten 2005.

Sebastian Haas. Erfassung konsistenter Sichten von
verteilten, nebegdufigen Systemen (german only).
Diploma Thesis, Technische Unive&iMinchen, Insti-

tut fur Informatik 2005.

Peter P. Spies. Ereignisvénde - ein flexibles Beschrei-
bungsinstrumentariumif die Entwicklung verteilter
Systeme (german only). IRBT'98-Fachgespich Cot-
tbus, 1998.

Peter P. Spies et al. Concepts for the construction
of distributed systems (german only). BFB-Bericht
342/09/96 A TUM-I9618technical report, Technische
Universitat Miinchen, 1996.

C. Eckert and M. Pizka. Improving resource management
in distributed systems using language-level structuring
concepts. InJournal of Supercomputingl3(1), pages
33-55, January 1999.

Markus Pizka. Design and implementation of the
gnu insel-compiler (gic). INSFB-Bericht 342/09/97 A
TUM-I9713 technical report, Technische Univegdit
Miinchen, 1997.

[14]

[16]

[17]

Phillip B. Gibbons and Ephraim Korach. Testing Shared
Memories. InSIAM J. Comput.vol. 26, no. 4, pages
1208-1244, 1997.

E. Schbdinger. Die gegenirtige Situation in der Quan-
tenmechanik. IfNaturwissenschaften 2®p. 807-812;
823-828; 844-849 (1935).

Friedemann Mattern. Efficient Algorithms for Dis-
tributed Snapshots and Global Virtual Time Approxima-
tion. In Journal of Parallel and Distributed Computing
18(4), pages 423-434, August 1993.

Neeraj Mittal, Vijay K. Garg. On Detecting Global Pred-
icates in Distributed Computations.Rioceedings of the
215t IEEE International Conference on Distributed Com-
puting Systems (ICDC3)ages 3—-10, April 2001.

	Introduction
	Consistent Event Ordering In Theory
	System Model
	Causal Dependencies
	Event Lattice

	Realizing a Consistent Event Ordering
	System Independent Realization Issues
	Dynamic Process System
	Observing Memory Access

	Implementation System: MoDiS
	Constructing the Event Lattice
	Vector Clocks vs. Direct-Dependence

	Collecting Necessary Information
	Process Order
	Message Passing System
	Distributed Shared Memory

	Performance
	Example

	Conclusion
	Acknowledgments
	References

