Fundamentals for Consistent Event Ordering
in Distributed Shared Memory Systems

Jorg Preil3inger, Tobias Landes
Institut fur Informatik
Technische Universat Miinchen
Germany

Abstract With the paper at hand, we focus on an extension of this
common model by accounting for an abstract memory to
A large number of tasks in distributed systems can be be shared by the distributed processes. Some related work
traced down to the fundamental problem of attaining a con- has been presented by BafadgMarzullo in [1] and by
sistent global view on a distributed computation. This prob- Li/Girard in [15], both in the context of general consistency
lem has been addressed by a number of studies which fomodels and their verification respectively. Our goal is the
cus on systems with message passing as their only meansonsolidation of all the relevant parts of the related work
of interprocess communication. In the paper at hand we ex-on the one hand, and the suggestion of a set of useful def-
tend this restricted system model by additionally accounting initions, interconnections, and basic considerations on the
for an abstract memory to be shared by the processes. Webther. This work is meant as a base to be worked upon and
specify necessary and sufficient conditions for constructingto be further refined in future research.
a consistent global view on such systems and present help- The document is organized as follows. In sectwe
ful definitions, which are meant to be a solid formal base for present the concepts, results, and terminology in the con-
further studies. text of message passing systems since these are an impor-
tant base for our work. In sectiodwe gradually extend
these concepts by introducing a shared memory and the re-
sulting problems, and by giving and refining basic defini-
tions. We also prove a theorem that states necessary and
sufficient conditions for a consistent global order. Section
1 Introduction summarizes the paper.

Keywords: distributed system, distributed shared memory,
consistency, event order, observation

In distributed computing there is a large number of tasks
which can all be traced down to the fundamental problem of

constructing a consistent global view on a distributed com- Virtually all existing considerations regarding consistent

putation. Examples of these tasks are monitoring, break-yie\s on distributed computations focus on a system model
pointing, debugging, and the detection of deadlocks or {nat has its distributed processes communicate solely via
global predicates in general. All of these tasks are part of yessages sent from one process to another. Starting with the
the necessary effort to better understand, design, and contrglyijestone papetd] of Chandy and Lamport in 1985, the un-
distributed systems. _ _ derlying system models of distributed consistency consider-
The fundamental problem of constructing a consistent yiions whether they aim at system monitoring, breakpoint-
global view derives from the need to issue meaningful state—ing or detecting global predicates for debugging purposes,
ments about a whole distributed computa}tion on the onépave been widely the same and vary only in minor assump-
hand, and the lack of a global common time base on theyions Since our work is an extension of these examinations,

other. The latter issue must be overcome by ordering theis section will briefly summarize the most important con-
events of the computation based on their mutual causal degpts, results and terminology concerning consistent views
pendencies rather than a global clock. Several approacheg, mere message passing systems.

and solutions have been given, with varying focus and back-

ground, in the related work of Lampoﬂ][5] and many oth- 2.1 System Model
ers. But all of these authors based their examinations on a
system model that has its distributed processes communi- In the basic model, a distributed computation consists of
cate solely via messages sent from one process to another.a finite setP = {ps, p2,..., pn} 0Of n processes The pro-

2 Mere Message Passing Systems

pl: ell el2 : el3 cl4 ingful global state, which is not trivial due to the fact that
p2: €21 2 ‘ recv(m) —i 24 the system lacks a global clock. A meaningfukonsistent
RS S S global stateor consistent cdtis one that may have occurred

p3: send(m) = e32 f e33 e34 in an actuatun of the computation (though there is no way

to ensure it actually has). Essentially, this means that for ev-

ery local process state present in the global state, all events

on which it causally depends must also be reflected by local

Figure 1: Dependencies and Cuts states present in the global state. For example, the global
state must not include a process state that reflects the pro-
cess to have received a message, when the included state of

cesses c_ommunlcate only by send_lng and ECENMES- the sender does not yet reflect the corresponding send event.
sage_swhmh are assu_med t_o _be delivered reliably and with Figurel gives an example showing a consistent and an in-
2;52;%?(;3&;2?3?;3 Iitnl‘:‘haelsoor disrstl;]r:;ﬂ;c:tbt::nnggi'ﬁonsistent cut for a computation involving two processes. A
- . : ut divides the computation into a “past” and a “future” sec-
which establishes the notion BfFO channels FIFO chan- P P

| be imol ted b ina logical tor clock tion, defining the set of process states it consistsasfthe
NEis can be Implemented by using logical or vector clocks “present”. The global state is consistent if no causal depen-

[2][1]- . dency (according to Definitio@.1) points from the future
Any processp; consists of a sequence efients E= o the past

{Ql’elz""} which are totally ordered by an ordering rela- Algorithms that allow arobserveror monitorprocess to

tion - called theprogram order Each event is atomic on assemble a consistent global state or adapt the general prob-
the viewed abstr.act|on' level and changes St.meOf the .__lem to generating distributed breakpoints have been given
process. Of partl_cular interest for cons |derat|_ons regardlngin [5] to [14]. Due to the restricted system model and since
the global behaviour .Of systems W'th Interacting processes, .4 process events are already totally ordered by the
are events representing the sending or receiving of a mes'program order, the problem is essentially reduced to catch-

Ssgﬁt’ I.e.tseglidind rﬁcﬁlrvii(zawtainas ghls Edbﬁc?user;hense thing the causal dependencies arising from message passing
events establish synchronization dependencies among g g y,q only means of interprocess communication.

processes and thus extend the local program order to a par-
tial global ordering=- of events. Lamport]] called this the
“happened before” relation, and defined it in the following 3 Systems with Distributed Shared Memory
way as the transitive closure of the program order and the
natural causal send-receive dependencies: In this section we are going to expand the basic system
model described above by accounting for a shared memory
Definition 2.1. The *happened before” relation=> is the a5 a very powerful and intuitive means of interprocess com-
smallest relation satisfying the following conditions: If munication. We will not consider the nature of this mem-
e — ¢, thene! = & If gis a send event ang isthe ory: it may be physically distributed with the sharing imple-
receive event of the same message, #en e}’ If &= e{ mented by an underlying abstraction software as well as a
ande‘j’ = €, theng' = €. non-distributed physically shared memory. In the following
we will refer to the memory as a distributed shared memory
If &= e/, thene] is regarded as beingausally depen- (DSM). As in the previous sections, the goal is to establish a
denton g, since it can only be executed if the execution of consistent view on a specific distributed computation, which
& has already been finished. Therefagecan also be seen |eads to the basic problem of constructing a consistent order
as apreconditionto e’ll Intuitively, this means for example of events. Systems with DSM are abbreviated DSMS in
that a message can not be received before it has been sengontrast to MPS which denotes mere message passing sys-

If & e/ ande] 4 €, thene! ande) are said to beoncur- tems as described in the previous section.
rent, and may be executed in parallel since none of them can

causally affect the other. We denote concurrencgt!.

Process order — external causal dependency - ---»

inconsistent cut = —----- consistentcut ~ ------

3.1 Differences to Message Passing Systems

2.2 Consistent Views The task of ordering the computational events consis-

.]) . tently is significantly more complex in DSMS than in MPS
Given this system model, one can begin to examine the
issues of retrieving a consistent view on a specific compu-1 Since in mere message passing systems both cuts and global states can
tation. The view has to reflect thgdobal stateof the com- be given by a set of local states, one for each process, the terms are used
putation, which is, naturally, the set of the states of all the gnézrgggri]ggzbly throughout this section. For a more detailed discussion
processes involved. The fundamental problem is to assem= T arrows between the events of a process can also be seen as the pro-

ble the local process states in a way that guarantees a mean-cess's states.

for several reasons. The important issue in both cases isvhen observing distributed computations, the distinction is
the passing of information among the processes. Any pos-very important because the concern is the behaviour of all
sible flow of information makes the receiver potentially de- processes, including multiple processes on one processor.
pendent on the provider, and the detection of these causaConsidering the processor order instead of the program or-
dependencies is essential for deriving a consistent event order would mean a loss of information regarding the potential
der. Obviously, the flow of information is much harder to concurrency of causally independent events on a given pro-
trace in DSMS than in MPS. Whereas a message is uniquecessor. The lost information could be significant for some
and delivers information from one sender to one specific applications of the consistent view, for example load bal-
receiver, memory objects are generally used to pass infor-ancing based on possible performance gains by maximizing
mation anonymously to an unspecified group of (possible) parallelism through process migration. Since our goal is
readers and could be replicated on several physical locationdo gather more information about a distributed system, our
at the same time, each copy possibly holding a different only choice is to base our work on the program order, which
value (depending on the consistency model of the DSM). we will from now on callprocess ordeto highlight the con-

We will apply the knowledge of MPS to suit the addi- trast to the processor order.
tional needs of analyzing DSMS. In particular we expand Analogous to the send-receive dependencies, there exist
the system model by introducing read and write events, write-read dependencies for shared memory locations. We
which are assumed to atomically accebared memory lo- abbreviate a write event/ read event that writes/reads a value
cations We will refine the “happened before” relation in ato/from the logical memory locatiomasW(x)a/R(x)a. A
order to support our goals concerning DSMS. The refined value can only be read from a location after it was written to
“happened before” relation will be based on formally de- it, so any read everiR(x)a of a valuea from locationx must
fined sufficient requirements to totally order the observed be ordered after the first respective write ewiik)a of that
events consistently. We will further elaborate the depen- value to that location. This is similar to the send-receive
dency relation by adding requirements that serve to reducedependency, with the difference that several identical write
the complexity of ordering the events consistently and are events may have occurred. So we claim that at least one
based on the work of Gibbons and Koradi8][matching write event must have happened before the first

The variety of consistent orders depends on the con-read event. There is one exception to this rule: Every mem-
sistency model of the DSM. A given order of events may ory location has an undefined and thus arbitrary state before
be considered consistent in a system implementing releasehe first value is written to it. As a consequence, a read
consistency, that may never have occurred in system re-event could potentially read any value from a location if it
specting sequential consistency. The consistency modebnly could occur before the first write event, with all other
specifies the behaviour of a DSMS regarding concurrent causal dependencies left unharmed. Regardless of the sense
memory accesses and thus is essential for the decisiorof such improperly synchronized system behaviour is this
whether an order of the access events is to be consideredase possible and therefore has to be considered consistent.
consistent or not. For a survey on DSM consistency modelsAny further read events reading other values from the same
see Adve and Gharachorloo’s tutoridb]. In the next sec- location must of course be ordered after any such question-
tion the consistency model independent order restrictionsable read event. We regard this case with the objective of
are presented. Afterwards, we explain the influence of thecompleteness, even if it won't often occur in real systems.
consistency model on finding a consistent event order, based We extend the definition of “happened before” to the
on the widely used sequential consistency. following preliminary DSMS causality relatior with

Ew(xa/Erixa meaning a subset of all everits consisting

3.2 Consistency Model Independent Order of all eventsiV (x)a/R(x)a:

The program order, as given by Lamport, allows two Definition 3.1. Let Eg(y), be the set of all read events read-
different interpretations for distributed systems. In the re- ing the valuea from locationx and letEyyx) be the set of all

search of ConSIStency model verification the program Orderwnte events to locatiom. Thepre“mmary DSMS Causa“ty

is interpreted as the total order of all events on one processokelation 2 is the smallest relation satisfying the following
[16][17][18] without a distinction by process. We will call three conditions:

this theprocessor ordeto mark the contrast to th@ogram Ve,ej € E: if = ej, theng R g.
order —, which we see strictly as the total order of local Ve € Erya: One of the following two cases must hold:
events for each process. It is obvious that only global orders (i) Jew € Bwpga© Gw 2

respecting the program order can be consistent. For consis-
tency model verification, the distinction between processor

and program order is unimportant because one can assume) b o o
that only one process is running on each processor. But V&.&j,& € E: if & = e ande; = &, thene = .

(i) Vex€ By : (€= &) and
Ver € Erxp : case (i) must match, foa # b.

3.3 Consistency Model Dependent Order event that accessed it. So we claim that a read eRgna

could have occurred after any write event writing the value
The consistency model of a distributed shared mem- a to locationx. Additionally, we have to account for the

ory specifies what orders of potentially concurrent mem- case that the unknown initial value of the memory location

ory access events are allowed to effectively occur. Adve could be read as described in chaf@et The preliminary

and Gharachorloo recapitulated 9] that “effectively, the DSMS causality relation defined above is not sufficient for

consistency model places restrictions on the values that carthese demands, so we state the following theorem:

be returned by a read in a shared-memory program execu-

tion.” Consequently, a consistent observation requires to 1neorem 1. Let Erx), be the set of all read events read-

construct the observed event order with respect to the givenIng the valuea from locationx, let By, be the set of all

consistency model. In fact, the consistency model providesWrlte events writinga to locationx. Respecting the follow-

an abstraction from the actual implementation. ing three condition_s is n.ecessary and sufficient for any total
Sequential consistency is a widely used and semanti-Order> to be cor?s_|sten]t.

cally simple consistency model, so, in favor of better under- 8 :22(’ i{é E) I; :"g aejéé:fjne?/e:teé mé[is the receive

standing, we will use it to demonstrate how the consistency | .

model affects the process of ordering events consistently. event of the same message, thefn- e>]’
This proceeding should also give a basic idea of how to ap- (3) V€ € Eria One of the following cases must hold:
ply a similar approach to other models in continuative work. (i) Jew € Bwxa: (8w >"€) and

Sequential consistency was defined by Lamp20}, [and (Vex € Bwx \ {&w} 1 (&x>"ew) or (e =" &)).
cited by Raynal21] informally as follows: Sequential con- (i) Vex€Eww : (e>" &) and
sistency “states that a multiprocess program executes cor- Ve € Egyp : case (i) must match, foa # b.

rectly if its results C.OU|d have been produced b_y executing Proof: First we prove that every condition is necessary for
that program on a single processor system. This means tha}:my total order to be consistent. Remember that an order
an execution is correct if we can totally order its operations is consistent if and only if it coﬁld have occurred during
in such a way that (1) the order of operations in each pro- . ' .

; T~ an execution of the system. The first two conditions are
cess is preserved, and (2) each read gets the last preVmus'éfirectly derived from Lamport’s happened-before relation
written value last referring here to the total order.” Order-

) . . . and their necessity is known from MPS][Suppose the
ing events consistently regarding the process order is not Qotal order= is consistent but harms condition (3). During

Forroet’)’l?;Taigrfit;te:‘?nﬁilgigd{) :/r\]/ﬁligg?/sa?c;re]feineh;?grel\r;lidsbe- the system’s execution a read event could read either a value
i ' : .7 that was initially in the memory, if no write event accessed

but is used as a base for all our DSMS relations in this S€C-4 2t memorv location so far. or a value that was written b

tion. Providing the necessary information can be done usinga Write eve?]/t There are t\,/vo possibilities frto harm y

the common t.echniques based on '09‘0‘?" clocks, just like in condition (3). .In the first case orders two read evenes ¢

MPS. In add|t|o.n, we'have to order all wrlte_and read events. Eroa aNde; € Eryp, reading different values, before the

Events accessing different memory locations are causally

.) . very first write event to locatiow, which could not happen
independent (if there are no other dependencies) so that aNY, an actual execution and thus leads to a contradiction to

order respecting their process order and message passing being consistent. In the second caseprders a write

dependencies can be considered consistent. This is Whyeventa(€ Ewp between a write evers, € Ey s and
X W (x)a

T e e M fllwing e v B Tis means it a ead
y) P event returns an already overwritten value, which could not
rPlappen in a sequentially consistent shared memory system

actual memory locations or replicas. . .
Y P and thus leads again to a contradiction.

e s NoW e prove Tl h conifons sated i Theore
must be ordered after a ma¥chin write event bput before theare sufficient for any total order to be consistent. Suppose

.) g N ! to have a total ordek- respecting all the conditions that
next write event to that location, “next” referring here to the . _ . A :

. . . is inconsistent. Consequently, orders an eveng after
total order and “matching” to any write event that wrote the ith h . diti h hi
read value to the memory location, without differentiating € without arming our con ftions, whereas this sequence
between identical write events Thé necessar reconditionCOUId not occur in an actual execution. There are three
for reading a valuafrom Iocatio'nxisthe existen}cl:é\)of value possibilities for an order to be inconsistent. In the first
9 case,g happens before; according to the process order

Causaly depondent on e specic wie ovent that acual 22U YENs belonging o the same process), bt s orcered
y aep b yej%*a. In this case the assumption thatholds condition

wrote the value, but as dependent on the state of the mem-
ory location, which in turn is dependent on the last write ! e ~* g is the common notation for a transitive path-irfrom g to e;.

(1) leads to a contradiction. The second case is similar, withwhich is abbreviated-y,,, € =wo € Meaning thag; is or-
ej being the receipt and the sending of the same mes- dered afteg;.
sage, and contradictory to condition (2). Third, aread event In real systems identical values can be written to the
€j € Erxa can only occur if the memory locationholds same memory location by different processes. A read event
the valuea, which is only the case if the last write event, ac- reading such a value can generally be ordered after any of
cording to-, that accessed locationwrote valuea. Thus those identical write events. Although these ordering pos-
the — by assumption — inconsistent ordewould not order sibilities are often restricted by other dependencies, a read
read eveng; € Eg), after a write eveng € Ey(x)a With- event can naturally always be ordered after the write event
out other write events in between, or it would order at least that in fact wrote the read value during the observed ex-
two different read events € Ery), ande; € Egy), before ecution. The read-mapping is a functidpn : Egya —
the very first write event accessing that location. Both casesEyyx)a U {L} that assigns to each read event the unique ac-
lead to a contradiction due to condition (3). O tually corresponding write event. Again the read-mapping
This leads to our final definition of theSMS causality =~ must be collected during the system execution to provide its
relation =, with Ew(x denoting the set of all write events serviceable information for the construction of a total event

to memory locatiorx: order in which each read event is ordered after the mapped

o)]] write event. The read events themselves are only ordered by
Definition 3.2. A DSMS causality relatios® is any tran- process order (and possibly indirectly by message passing)
sitive order relation satisfying the conditions demanded by hecause reads of different processes are (potentially) con-
Theoreml. current and may be executed in parallel. If a read event reads

the initial value of a memory location, the read-mapping

maps it toL, in which case it must be ordered before the

first write event to the corresponding memory location.
Given this additional information we can definerex

stricted DSMS causality relatio& based on DefinitioB.2,

the provided write-ordes-,o, and the read-mappingm:

Due to Theorent, any partial or total event order re-
specting this relation is consistent.

Another problem is the constructive building of a partial
or total order that respects this relation. As Gibbons and
Korach showed in their work about the verification of con-
sistency models1[g], the problem of finding a sequentially
consistent total order of events in shared memory systemsDefinition 3.3. Let -y, totally order all write eventgyx)
is, without further information, np-complete. Two problems to the same location, respectively. Lén @ Erixja —
remain for finding such a total order: Ewxal{L} be aread-mapping function that maps every

read event to its corresponding write event, orltdf no

e The order of several write eventy, € Eyy to the write event accessed that location before. Tésricted

same memory location. DSMS causality relatior’ is the smallest relation satis-
]) fying the following four conditions:
e The mapping of a read evesf c Ery, to a write Ve,e cE: if g = e, theng = ¢
eventey € Eyy(x)a, after which it can be ordered with- Ve, € € B © If & =wo €, thene = ej.
out harming other dependencies. Ve € Eria One of the following two cases must match:

(i) 3ew € Bwa: (frm(e) =ew) and (e, =€) and
(Vex € Bwx) \ {8}
if (ew>wo &), then (e &,)).

(i) (frm(e) =L) and(Vex € By y : €= &).

e cE: if g & e andej = g, theng = &

Gibbons and Korach introduced thgite-order and the
read-mappingand proved that by providing this additional
information a sequentially consistent total order can be con-
structed inO(n log(n)). This leads to even more order re-
strictions and therefore to less total orders possibly detected. ve.ej,
But, and this is good enough for many applications, it al- Note that the total event orders satisfying the restricted
ways yields a consistent total order — assuming the sharedDSMS causality relation are only a subset of all possible
memory actually implements sequential consistency — be-consistent total orders, which is a drawback in comparison
cause the additional order restrictions are won from the ac-to the DSMS causality relation (Definitid2). The benefit
tual occurrence of the events in the observed execution. Weof the restricted DSMS causality relation is that it enables
will now explain their results, and then adjust our defini- us to construct a consistent total order efficiently. This is
tion of the DSMS causality relation to an order restricting why we base the remainder of this paper on the restricted
version as a basis for efficient implementations. relation.

The write-order is the total order of all write events to the Now that we can construct a total order of events, we
same memory location as occurred in the observed systentan define consistent cuts and consistent global states for
execution. This information must be collected during the DSMS as a global state or cut that does not violate the re-
execution and then be provided to the ordering algorithm. stricted DSMS causality relation in the sense that it reflects
The total order is constructed with respect to the write-order, the effect of a dependency but not its cause or origin:

Definition 3.4. LetP = {py, pz,..., pn} be the finite set of P! V! Weol We2 ————— Wkl
processes anf the set of all events. L& be a cut consist- p2: w2 R recv(m) ——— R(x)2
ing of the set of local process sta®s- {s1,%,...,5} and

E. = {e,e,...,en} be the set of events respectively pre-
ceding the states i8 LetE, =E; U {q | & = €, j € Ec} Process order ——
be the set of all events in the “past” of the c@.is acon-
sistent cuif the following condition holds:Vve,ej c E : if
e = ej andej € E, theng € Ey,.

p3: send(m) R(y)1 W(x)2 — = R(x)2

Figure 2: Events ordered by process order

i ; ; 1 Wyl —= W0l Wix) mmmmm e e e = Weol
In mere MPS any cut as defined above is equivalent to”" V&' % VWL - W2 D

a global state since the state of the system is properly charv2: wix2 —Ll R(x)1 — recv(m) %ﬁ RG2” '
acterized by a complete set of the local states of the pro- ' - k
cesses,as is, by definition, the cut. In DSMS the situation
is inherently different because a global state, seen as a comHappened before ——» Write-order ---» Read-mapping ---»
prehensive description of the system'’s state providing all the _ . .
information necessary, for example, to take a snapshot to bér:eI?alLJtirgnS: Events ordered by the restricted DSMS causality
used as a rollback breakpoint, is required to reflect not only

the process states, but also the state of the shared memory.

Since acquiring a memory state consistent with a given cut
is a complex and difficult task, in this paper we will capture
it implicitly by defining the global state based on the totally
ordered history that has led to the cut’s process staléss
history is given by theZ- relation and implicitly provides
us with the means to reconstruct the memory state by an
swering the guestion which one was the last write to each
memory location, respectively. Note that we require the
initial state of each memory location, as only then we can
reconstruct it in the case that no write operation has been
performed up to the given global state.

p3: send(m) 4> R(y)1 of W(x)2/ h\ R(x)2 :

spaced out according to the rule that the causal effect must
be ordered right of its dependencies, so that they can be
viewed as being partially ordered with respect to the rela-
tion. To say it informally, the more to the left an event
_is arranged the earlier it happened in the causality chain.
The normal arrows denote the “happened before” relation
as known from MPS, which is still the base of our relations.
Thesendm) andrecv(m) events indicate that the message
passing paradigm and its ordering rules are applicable as
known. The dashed arrows display the write-order included
in the restricted DSMS causality relation: All write events
Definition 3.5. LetP, C, S Ec andE, be defined as of Def- to the same location are ordered totally as observed during
inition 3.4. A global stateis a tupleT = (Ep,), whereE, system execution. The read-mapping included in the rela-
is totally ordered by-. If C is consistent ane- respects all tjon is shown by the dotted arrows. This ensures every read
the conditions demanded by Theorérfwhich both=-and event being ordered after the corresponding write event, but

= do), T is aconsistent global state before any further write events to the respective location.
_ For example, the two read everRéx)2 of p2 and p3 are
3.4 lllustrations ordered after the second wrké(x)2, but before location

is overwritten byW(x)1 of pl. The events displayed verti-
cally one below the other are causally independent and thus

read and write events, and a passed message. The events aggneurrent; no directed pqth leads from one to th? other.
only ordered by process order, other dependencies are not Any total ordgr respecting the relatlon Is consistent. To
displayed and thus consistently ordering the events totally, respect the relation means graphically that for every arrow

in order to identify a consistent cut or global state, would be thg ?V?nt Et Its OI’IgtIanS ordered kt)eforet(left Ofr)] ?e (Tven(tj 'F
an np-complete task. Without further information no global points to. Every set of concurrent events (each displayed in

states of the system can be specified and thus no conclusion?;ne_vertlcal row) can be ordered to any sequence. By per-
about the underlying system can be drawn. muting the concurrent events, all consistent total orders re-

Figure 3 presents the same events with the restricted specting Fhe restricted DSMS causality rel_ation can be con-
DSMS causality relation drawn in. The relation is split structed, i.e. the total order can start with either eVé(y)1

up into the parts derived from “happened before” rela- of p1,W(x)2 of p2 orsendm) of process p3.

tion, write-order and read-mapping. The events are already Every line that could be Qrawn In Figué se‘[‘)arat'lyng
the events of each process into two sets — the “past” to the

1 That is, if every message sent is saved with the corresponding state sqeft and the future to the right — without having an arrow
that messages currently in transit as to a given cut can be properly re- i P :
sent. This feature can be postulated w.l.0.g., which we will do for the beglnn!ng in the future ar?(_j ending in the paSt’_ would display
remainder of this paper. a consistent cut. If, additionally, the events in the past are

2 This is actually more information than required for a global state. totally ordered with respect to the relation, the cut defines

We now provide two figures illustrating the discussed re-
sults. Figure2 shows three processps, p2 andp3, several

a consistent global state consisting of the ordered events in [6] Jerry Fowler, Willy Zwaenepoel. Causal Distributed Break-
the past, which also determines the memory content.

4 Conclusion

In this paper, we presented a formal basis for construct-
ing consistent views on distributed computations on top of

a DSM. Based on research work in the field mere message

[7]

(8]

passing systems, we have formalized the relations that cover
the causal dependencies in DSM systems. We proved that
the conditions respected by the DSMS causality relations [©]

are necessary and sufficient for total event order to be con-

sistent, and thus for a consistent observation of these sys-
tems. According to the research in the field of the verifica-

tion of shared memory consistency models, we refined our

relations to a more restrictive version in favor of efficient

implementations: the restricted DSMS causality relation. [
This relation enables to construct a consistent total event

order in acceptable time, based on additional information
collected during the observation. In future work, efficient
methods for this information collection must be developed.
We have defined consistent global states and consistent cuts

based on the restricted DSMS causality relation. The for- (13

mal basis formed in this paper is the first step towards the
realization of observing distributed DSM systems and an-

alyzing behaviour and properties of these systems, which
will lead to DSM systems more manageable, understand-

able, and fault-free than they are now.

Acknowledgments

We thank Prof. Dr. P.P. Spies and Dr. C. Rehn for their
suggestions and valuable comments in discussions on our
work.

(1]

(2]

(3]

(4]

5]

References

Ozalp Babaglu, Keith Marzullo. Consistent Global States
of Distributed Systems: Fundamental Concepts and Mecha-
nisms. In Sape Mullender, editdjstributed Systemshap-

ter 5, pages 97—145. Addison Wesle§f 2dition, 1993.

Leslie Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. II€ommunications of the ACM
21(4), pages 558-565, July 1978.

Friedemann Mattern. Efficient Algorithms for Distributed
Snapshots and Global Virtual Time Approximation Jwur-
nal of Parallel and Distributed Computingl8(4), pages
423-434, August 1993.

Neeraj Mittal, Vijay K. Garg. On Detecting Global Pred-
icates in Distributed Computations. Proceedings of the
215 IEEE International Conference on Distributed Comput-
ing Systems (ICDCSpages 3—10, April 2001.

K. Mani Chandy, Leslie Lamport. Distributed Snapshots:
Determining Global States of Distributed SystemsARM
Transactions on Computer Systemal. 3, no. 1, pages 63—
75, February 1985.

(10]

(12]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

points. InProceedings of the 0 International Conference
on Distributed Computing Systeppages 134-141, 1990.

Madalene Spezialetti, Phil Kearns. Efficient Distributed

Snapshots. IProceedings of § International Conference
on Distributed Computing Systeppages 382—-388, 1986.

S. Venkatesan. Message-optimal incremental snapshots. In
Proceedings of the'® International Conference on Dis-
tributed Computing Systemsages 53-60, Newport Beach,
CA, June 1989.

Hon F. Li, T. Radhakrishnan, K. Venkatesh. Global State De-
tection in Non-FIFO Networks. IRroceedings of the'? In-
ternational Conference on Distributed Computing Systems
pages 364-370, September 1987.

Ten H. Lai, Tao H. Yang. On Distributed Snapshotdriior-
mation Processing Letter@5(5), pp. 153-158, May 1987.

11] Carroll Morgan. Global and Logical Time in Distributed Al-

gorithms. Ininformation Processing Letter20(5), pages
189-194, May 1985.

Barton P. Miller, Jong-Deok Choi. Breakpoints and Halting

in Distributed Programs. IRroceedings of the'8 Interna-
tional Conference on Distributed Computing Systepagies
141-150, June 1988.

] Dieter Haban, Wolfgang Weigel. Global Events and Global

Breakpoints in Distributed Systems. Rroceedings of the
215t Annual Hawaii International Conference on System Sci-
ences Volume 1l, pages 166175, IEEE Computer Society,
January 1988.

Richard Koo, Sam Toueg. Checkpointing and Rollback-
Recovery for Distributed Systems. IBEE Transactions on
Software EngineeringSE 13(1), pp. 23-31, January 1987.

Hon F. Li, Gabriel Girard. A Hierachy of View Consisten-
cies and Exact Implementations. Rroceedings of 1999
Workshop on Software Distributed Shared Mem&tyodes,
pages 109-114, June 1999.

Anne E. Condon and Alan J. Hu. Automatable verification
of sequential consistency. Proceedings of the #Bannual
ACM symposium on Parallel algorithms and architectures
pages 113-121, 2001.

Shaz Qadeer. Verifying Sequential Consistency on Shared-
Memory Multiprocessors by Model Checking. MEEE
Trans. Parallel Distrib. Systvol. 14, no. 8, pages 730-741,
2003.

Phillip B. Gibbons and Ephraim Korach. Testing Shared
Memories. InSIAM J. Comput.vol. 26, no. 4, pages 1208—
1244, 1997.

Sarita V. Adve and Kourosh Gharachorloo. Shared Memory
Consistency Models: A Tutorial. lEEE Computervol. 29,
no. 12, pages 66-76, 1996.

Leslie Lamport. How to Make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs.|HEE
Transactions on Computersol. 28, no. 9, pages 690—691,
1979.

Michel Raynal. Sequential Consistency as Lazy Lineariz-

ability. In Proceedings of the % annual ACM symposium
on Parallel algorithms and architecturepages 151-152,
2002.

	Introduction
	Mere Message Passing Systems
	System Model
	Consistent Views

	Systems with Distributed Shared Memory
	Differences to Message Passing Systems
	Consistency Model Independent Order
	Consistency Model Dependent Order
	Illustrations

	Conclusion
	References

