
Fundamentals for Consistent Event Ordering
in Distributed Shared Memory Systems

Jörg Preißinger, Tobias Landes
Institut für Informatik

Technische Universität München
Germany

Abstract

A large number of tasks in distributed systems can be
traced down to the fundamental problem of attaining a con-
sistent global view on a distributed computation. This prob-
lem has been addressed by a number of studies which fo-
cus on systems with message passing as their only means
of interprocess communication. In the paper at hand we ex-
tend this restricted system model by additionally accounting
for an abstract memory to be shared by the processes. We
specify necessary and sufficient conditions for constructing
a consistent global view on such systems and present help-
ful definitions, which are meant to be a solid formal base for
further studies.

Keywords: distributed system, distributed shared memory,
consistency, event order, observation

1 Introduction

In distributed computing there is a large number of tasks
which can all be traced down to the fundamental problem of
constructing a consistent global view on a distributed com-
putation. Examples of these tasks are monitoring, break-
pointing, debugging, and the detection of deadlocks or
global predicates in general. All of these tasks are part of
the necessary effort to better understand, design, and control
distributed systems.

The fundamental problem of constructing a consistent
global view derives from the need to issue meaningful state-
ments about a whole distributed computation on the one
hand, and the lack of a global common time base on the
other. The latter issue must be overcome by ordering the
events of the computation based on their mutual causal de-
pendencies rather than a global clock. Several approaches
and solutions have been given, with varying focus and back-
ground, in the related work of Lamport [2][5] and many oth-
ers. But all of these authors based their examinations on a
system model that has its distributed processes communi-
cate solely via messages sent from one process to another.

With the paper at hand, we focus on an extension of this
common model by accounting for an abstract memory to
be shared by the distributed processes. Some related work
has been presented by Babaoğlu/Marzullo in [1] and by
Li/Girard in [15], both in the context of general consistency
models and their verification respectively. Our goal is the
consolidation of all the relevant parts of the related work
on the one hand, and the suggestion of a set of useful def-
initions, interconnections, and basic considerations on the
other. This work is meant as a base to be worked upon and
to be further refined in future research.

The document is organized as follows. In section2 we
present the concepts, results, and terminology in the con-
text of message passing systems since these are an impor-
tant base for our work. In section3 we gradually extend
these concepts by introducing a shared memory and the re-
sulting problems, and by giving and refining basic defini-
tions. We also prove a theorem that states necessary and
sufficient conditions for a consistent global order. Section4
summarizes the paper.

2 Mere Message Passing Systems

Virtually all existing considerations regarding consistent
views on distributed computations focus on a system model
that has its distributed processes communicate solely via
messages sent from one process to another. Starting with the
milestone paper [5] of Chandy and Lamport in 1985, the un-
derlying system models of distributed consistency consider-
ations, whether they aim at system monitoring, breakpoint-
ing or detecting global predicates for debugging purposes,
have been widely the same and vary only in minor assump-
tions. Since our work is an extension of these examinations,
this section will briefly summarize the most important con-
cepts, results and terminology concerning consistent views
on mere message passing systems.

2.1 System Model

In the basic model, a distributed computation consists of
a finite setP = {p1, p2, . . . , pn} of n processes. The pro-

send(m)

e11p1:

p2:

p3:

e12

e22

e32

e13

recv(m)

e33

e14

e34

e21 e24

consistent cutinconsistent cut

external causal dependencyProcess order

Figure 1: Dependencies and Cuts

cesses communicate only by sending and receivingmes-
sages, which are assumed to be delivered reliably and with
a finite delay. Sometimes it is also assumed that the mes-
sages be delivered exactly in the order they have been sent,
which establishes the notion ofFIFO channels. FIFO chan-
nels can be implemented by using logical or vector clocks
[2][1].

Any processpi consists of a sequence ofevents Ei =
{e1

i ,e
2
i , . . .} which are totally ordered by an ordering rela-

tion → called theprogram order. Each event is atomic on
the viewed abstraction level and changes thestateof the
process. Of particular interest for considerations regarding
the global behaviour of systems with interacting processes
are events representing the sending or receiving of a mes-
sage, i.e. sendand receive events. This is because these
events establish synchronization dependencies among the
processes and thus extend the local program order to a par-
tial global ordering⇒ of events. Lamport [2] called this the
“happened before” relation, and defined it in the following
way as the transitive closure of the program order and the
natural causal send-receive dependencies:

Definition 2.1. The “happened before” relation⇒ is the
smallest relation satisfying the following conditions: If
ex

i → ey
i , thenex

i ⇒ ey
i . If ex

i is a send event andey
j is the

receive event of the same message, thenex
i ⇒ ey

j . If ex
i ⇒ ey

j

andey
j ⇒ ez

k, thenex
i ⇒ ez

k.

If ex
i ⇒ ey

j , theney
j is regarded as beingcausally depen-

denton ex
i , since it can only be executed if the execution of

ex
i has already been finished. Therefore,ex

i can also be seen
as apreconditionto ey

j . Intuitively, this means for example
that a message can not be received before it has been sent.
If ex

i 6⇒ ey
j andey

j 6⇒ ex
i , thenex

i andey
j are said to beconcur-

rent, and may be executed in parallel since none of them can
causally affect the other. We denote concurrency byex

i ‖e
y
j .

2.2 Consistent Views

Given this system model, one can begin to examine the
issues of retrieving a consistent view on a specific compu-
tation. The view has to reflect theglobal stateof the com-
putation, which is, naturally, the set of the states of all the
processes involved. The fundamental problem is to assem-
ble the local process states in a way that guarantees a mean-

ingful global state, which is not trivial due to the fact that
the system lacks a global clock. A meaningful orconsistent
global stateor consistent cut1 is one that may have occurred
in an actualrun of the computation (though there is no way
to ensure it actually has). Essentially, this means that for ev-
ery local process state present in the global state, all events
on which it causally depends must also be reflected by local
states present in the global state. For example, the global
state must not include a process state that reflects the pro-
cess to have received a message, when the included state of
the sender does not yet reflect the corresponding send event.
Figure1 gives an example showing a consistent and an in-
consistent cut for a computation involving two processes. A
cut divides the computation into a “past” and a “future” sec-
tion, defining the set of process states it consists of2 as the
“present”. The global state is consistent if no causal depen-
dency (according to Definition2.1) points from the future
to the past.

Algorithms that allow anobserveror monitorprocess to
assemble a consistent global state or adapt the general prob-
lem to generating distributed breakpoints have been given
in [5] to [14]. Due to the restricted system model and since
the local process events are already totally ordered by the
program order, the problem is essentially reduced to catch-
ing the causal dependencies arising from message passing
as the only means of interprocess communication.

3 Systems with Distributed Shared Memory

In this section we are going to expand the basic system
model described above by accounting for a shared memory
as a very powerful and intuitive means of interprocess com-
munication. We will not consider the nature of this mem-
ory; it may be physically distributed with the sharing imple-
mented by an underlying abstraction software as well as a
non-distributed physically shared memory. In the following
we will refer to the memory as a distributed shared memory
(DSM). As in the previous sections, the goal is to establish a
consistent view on a specific distributed computation, which
leads to the basic problem of constructing a consistent order
of events. Systems with DSM are abbreviated DSMS in
contrast to MPS which denotes mere message passing sys-
tems as described in the previous section.

3.1 Differences to Message Passing Systems

The task of ordering the computational events consis-
tently is significantly more complex in DSMS than in MPS

1 Since in mere message passing systems both cuts and global states can
be given by a set of local states, one for each process, the terms are used
interchangeably throughout this section. For a more detailed discussion
see section3.3.

2 The arrows between the events of a process can also be seen as the pro-
cess’s states.

for several reasons. The important issue in both cases is
the passing of information among the processes. Any pos-
sible flow of information makes the receiver potentially de-
pendent on the provider, and the detection of these causal
dependencies is essential for deriving a consistent event or-
der. Obviously, the flow of information is much harder to
trace in DSMS than in MPS. Whereas a message is unique
and delivers information from one sender to one specific
receiver, memory objects are generally used to pass infor-
mation anonymously to an unspecified group of (possible)
readers and could be replicated on several physical locations
at the same time, each copy possibly holding a different
value (depending on the consistency model of the DSM).

We will apply the knowledge of MPS to suit the addi-
tional needs of analyzing DSMS. In particular we expand
the system model by introducing read and write events,
which are assumed to atomically accessshared memory lo-
cations. We will refine the “happened before” relation in
order to support our goals concerning DSMS. The refined
“happened before” relation will be based on formally de-
fined sufficient requirements to totally order the observed
events consistently. We will further elaborate the depen-
dency relation by adding requirements that serve to reduce
the complexity of ordering the events consistently and are
based on the work of Gibbons and Korach [18].

The variety of consistent orders depends on the con-
sistency model of the DSM. A given order of events may
be considered consistent in a system implementing release
consistency, that may never have occurred in system re-
specting sequential consistency. The consistency model
specifies the behaviour of a DSMS regarding concurrent
memory accesses and thus is essential for the decision
whether an order of the access events is to be considered
consistent or not. For a survey on DSM consistency models
see Adve and Gharachorloo’s tutorial [19]. In the next sec-
tion the consistency model independent order restrictions
are presented. Afterwards, we explain the influence of the
consistency model on finding a consistent event order, based
on the widely used sequential consistency.

3.2 Consistency Model Independent Order

The program order, as given by Lamport, allows two
different interpretations for distributed systems. In the re-
search of consistency model verification the program order
is interpreted as the total order of all events on one processor
[16][17][18] without a distinction by process. We will call
this theprocessor orderto mark the contrast to theprogram
order →, which we see strictly as the total order of local
events for each process. It is obvious that only global orders
respecting the program order can be consistent. For consis-
tency model verification, the distinction between processor
and program order is unimportant because one can assume
that only one process is running on each processor. But

when observing distributed computations, the distinction is
very important because the concern is the behaviour of all
processes, including multiple processes on one processor.
Considering the processor order instead of the program or-
der would mean a loss of information regarding the potential
concurrency of causally independent events on a given pro-
cessor. The lost information could be significant for some
applications of the consistent view, for example load bal-
ancing based on possible performance gains by maximizing
parallelism through process migration. Since our goal is
to gather more information about a distributed system, our
only choice is to base our work on the program order, which
we will from now on callprocess orderto highlight the con-
trast to the processor order.

Analogous to the send-receive dependencies, there exist
write-read dependencies for shared memory locations. We
abbreviate a write event / read event that writes/reads a value
a to/from the logical memory locationx asW(x)a/R(x)a. A
value can only be read from a location after it was written to
it, so any read eventR(x)a of a valuea from locationx must
be ordered after the first respective write eventW(x)a of that
value to that location. This is similar to the send-receive
dependency, with the difference that several identical write
events may have occurred. So we claim that at least one
matching write event must have happened before the first
read event. There is one exception to this rule: Every mem-
ory location has an undefined and thus arbitrary state before
the first value is written to it. As a consequence, a read
event could potentially read any value from a location if it
only could occur before the first write event, with all other
causal dependencies left unharmed. Regardless of the sense
of such improperly synchronized system behaviour is this
case possible and therefore has to be considered consistent.
Any further read events reading other values from the same
location must of course be ordered after any such question-
able read event. We regard this case with the objective of
completeness, even if it won’t often occur in real systems.

We extend the definition of “happened before” to the
following preliminary DSMS causality relation

p⇒ with
EW(x)a/ER(x)a meaning a subset of all eventsE, consisting
of all eventsW(x)a/R(x)a:

Definition 3.1. Let ER(x)a be the set of all read events read-
ing the valuea from locationx and letEW(x) be the set of all
write events to locationx. Thepreliminary DSMS causality
relation

p⇒ is the smallest relation satisfying the following
three conditions:
∀ei ,ej ∈ E : if ei ⇒ ej , thenei

p⇒ ej .
∀e∈ ER(x)a : one of the following two cases must hold:

(i) ∃ew ∈ EW(x)a : ew
p⇒ e.

(ii) ∀ex ∈ EW(x) : (e p⇒ ex) and
∀er ∈ ER(x)b : case (i) must match, fora 6= b.

∀ei ,ej ,ek ∈ E: if ei
p⇒ ej andej

p⇒ ek, thenei
p⇒ ek.

3.3 Consistency Model Dependent Order

The consistency model of a distributed shared mem-
ory specifies what orders of potentially concurrent mem-
ory access events are allowed to effectively occur. Adve
and Gharachorloo recapitulated in [19] that “effectively, the
consistency model places restrictions on the values that can
be returned by a read in a shared-memory program execu-
tion.” Consequently, a consistent observation requires to
construct the observed event order with respect to the given
consistency model. In fact, the consistency model provides
an abstraction from the actual implementation.

Sequential consistency is a widely used and semanti-
cally simple consistency model, so, in favor of better under-
standing, we will use it to demonstrate how the consistency
model affects the process of ordering events consistently.
This proceeding should also give a basic idea of how to ap-
ply a similar approach to other models in continuative work.

Sequential consistency was defined by Lamport [20], and
cited by Raynal [21] informally as follows: Sequential con-
sistency “states that a multiprocess program executes cor-
rectly if its results could have been produced by executing
that program on a single processor system. This means that
an execution is correct if we can totally order its operations
in such a way that (1) the order of operations in each pro-
cess is preserved, and (2) each read gets the last previously
written value,last referring here to the total order.” Order-
ing events consistently regarding the process order is not a
problem since it is already included in the “happened be-
fore” relation (Definition2.1) which was defined for MPS,
but is used as a base for all our DSMS relations in this sec-
tion. Providing the necessary information can be done using
the common techniques based on logical clocks, just like in
MPS. In addition, we have to order all write and read events.
Events accessing different memory locations are causally
independent (if there are no other dependencies) so that any
order respecting their process order and message passing
dependencies can be considered consistent. This is why
from now on we focus on events respectively accessing the
same memory location. The assumption that the DSM im-
plements sequential consistency enables us to abstract from
actual memory locations or replicas.

The second part of Raynal’s sequential consistency def-
inition (2) means that every read event of a specific value
must be ordered after a matching write event, but before the
next write event to that location, “next” referring here to the
total order and “matching” to any write event that wrote the
read value to the memory location, without differentiating
between identical write events. The necessary precondition
for reading a valuea from locationx is the existence of value
a in location x. Thus we do not regard the read event as
causally dependent on the specific write event that actually
wrote the value, but as dependent on the state of the mem-
ory location, which in turn is dependent on the last write

event that accessed it. So we claim that a read eventR(x)a
could have occurred after any write event writing the value
a to locationx. Additionally, we have to account for the
case that the unknown initial value of the memory location
could be read as described in chapter3.2. The preliminary
DSMS causality relation defined above is not sufficient for
these demands, so we state the following theorem:

Theorem 1. Let ER(x)a be the set of all read events read-
ing the valuea from locationx, let EW(x)a be the set of all
write events writinga to locationx. Respecting the follow-
ing three conditions is necessary and sufficient for any total
order� to be consistent:1

(1) ∀ei ,ej ∈ E : if ei → ej , then ei � ej .
(2) ∀ex

i ,e
y
j ∈ E : if ex

i is a send event andey
j is the receive

event of the same message, thenex
i � ey

j .
(3) ∀e∈ ER(x)a one of the following cases must hold:

(i) ∃ew ∈ EW(x)a : (ew �∗ e) and
(∀ex ∈ EW(x) \{ew} : (ex �∗ ew) or (e�∗ ex)).

(ii) ∀ex ∈ EW(x) : (e�∗ ex) and
∀er ∈ ER(x)b : case (i) must match, fora 6= b.

Proof: First we prove that every condition is necessary for
any total order to be consistent. Remember that an order
is consistent if and only if it could have occurred during
an execution of the system. The first two conditions are
directly derived from Lamport’s happened-before relation
and their necessity is known from MPS [5]. Suppose the
total order�̇ is consistent but harms condition (3). During
the system’s execution a read event could read either a value
that was initially in the memory, if no write event accessed
that memory location so far, or a value that was written by
a write event. There are two possibilities for�̇ to harm
condition (3). In the first casė� orders two read eventsei ∈
ER(x)a andej ∈ ER(x)b, reading different values, before the
very first write event to locationx, which could not happen
in an actual execution and thus leads to a contradiction to
�̇ being consistent. In the second case,�̇ orders a write
eventex ∈ EW(x)b between a write eventew ∈ EW(x)a and
following read eventse∈ ER(x)a. This means that a read
event returns an already overwritten value, which could not
happen in a sequentially consistent shared memory system
and thus leads again to a contradiction.

Now we prove that the conditions stated in Theorem1
are sufficient for any total order to be consistent. Suppose
to have a total ordeṙ� respecting all the conditions that
is inconsistent. Consequently,�̇ orders an eventei after
ej without harming our conditions, whereas this sequence
could not occur in an actual execution. There are three
possibilities for an ordeṙ� to be inconsistent. In the first
case,ei happens beforeej according to the process order
(both events belonging to the same process), but is ordered
ej�̇∗ei . In this case the assumption that�̇ holds condition

1 ei �∗ ej is the common notation for a transitive path in� from ei to ej .

(1) leads to a contradiction. The second case is similar, with
ej being the receipt andei the sending of the same mes-
sage, and contradictory to condition (2). Third, a read event
ej ∈ ER(x)a can only occur if the memory locationx holds
the valuea, which is only the case if the last write event, ac-
cording to�̇, that accessed locationx wrote valuea. Thus
the – by assumption – inconsistent order�̇ would not order
read eventej ∈ ER(x)a after a write eventei ∈ EW(x)a with-
out other write events in between, or it would order at least
two different read eventsei ∈ ER(x)a andej ∈ ER(x)b before
the very first write event accessing that location. Both cases
lead to a contradiction due to condition (3). �

This leads to our final definition of theDSMS causality
relation c⇒, with EW(x) denoting the set of all write events
to memory locationx:

Definition 3.2. A DSMS causality relationc⇒ is any tran-
sitive order relation satisfying the conditions demanded by
Theorem1.

Due to Theorem1, any partial or total event order re-
specting this relation is consistent.

Another problem is the constructive building of a partial
or total order that respects this relation. As Gibbons and
Korach showed in their work about the verification of con-
sistency models [18], the problem of finding a sequentially
consistent total order of events in shared memory systems
is, without further information, np-complete. Two problems
remain for finding such a total order:

• The order of several write eventsew ∈ EW(x) to the
same memory location.

• The mapping of a read eventer ∈ ER(x)a to a write
eventew ∈ EW(x)a, after which it can be ordered with-
out harming other dependencies.

Gibbons and Korach introduced thewrite-orderand the
read-mapping, and proved that by providing this additional
information a sequentially consistent total order can be con-
structed inO(n log(n)). This leads to even more order re-
strictions and therefore to less total orders possibly detected.
But, and this is good enough for many applications, it al-
ways yields a consistent total order – assuming the shared
memory actually implements sequential consistency – be-
cause the additional order restrictions are won from the ac-
tual occurrence of the events in the observed execution. We
will now explain their results, and then adjust our defini-
tion of the DSMS causality relation to an order restricting
version as a basis for efficient implementations.

The write-order is the total order of all write events to the
same memory location as occurred in the observed system
execution. This information must be collected during the
execution and then be provided to the ordering algorithm.
The total order is constructed with respect to the write-order,

which is abbreviated�wo, e1 �wo e2 meaning thate2 is or-
dered aftere1.

In real systems identical values can be written to the
same memory location by different processes. A read event
reading such a value can generally be ordered after any of
those identical write events. Although these ordering pos-
sibilities are often restricted by other dependencies, a read
event can naturally always be ordered after the write event
that in fact wrote the read value during the observed ex-
ecution. The read-mapping is a functionfrm : ER(x)a 7→
EW(x)a∪{⊥} that assigns to each read event the unique ac-
tually corresponding write event. Again the read-mapping
must be collected during the system execution to provide its
serviceable information for the construction of a total event
order in which each read event is ordered after the mapped
write event. The read events themselves are only ordered by
process order (and possibly indirectly by message passing)
because reads of different processes are (potentially) con-
current and may be executed in parallel. If a read event reads
the initial value of a memory location, the read-mapping
maps it to⊥, in which case it must be ordered before the
first write event to the corresponding memory location.

Given this additional information we can define are-
stricted DSMS causality relationr⇒ based on Definition3.2,
the provided write-order�wo, and the read-mappingfrm:

Definition 3.3. Let�wo totally order all write eventsEW(x)
to the same location, respectively. Letfrm : ER(x)a 7→
EW(x)a∪{⊥} be a read-mapping function that maps every
read event to its corresponding write event, or to⊥ if no
write event accessed that location before. Therestricted
DSMS causality relationr⇒ is the smallest relation satis-
fying the following four conditions:
∀ei ,ej ∈ E : if ei ⇒ ej , then ei

r⇒ ej .
∀ei ,ej ∈ EW(x) : if ei �wo ej , then ei

r⇒ ej .
∀e∈ ER(x)a one of the following two cases must match:

(i) ∃ew ∈ EW(x)a : (frm(e) = ew) and (ew
r⇒ e) and

(∀ex ∈ EW(x) \{ew} :
if (ew �wo ex), then (e r⇒ ex)).

(ii) (frm(e) =⊥) and(∀ex ∈ EW(x) : e r⇒ ex).
∀ei ,ej ,ek ∈ E : if ei

r⇒ ej andej
r⇒ ek, then ei

r⇒ ek.

Note that the total event orders satisfying the restricted
DSMS causality relation are only a subset of all possible
consistent total orders, which is a drawback in comparison
to the DSMS causality relation (Definition3.2). The benefit
of the restricted DSMS causality relation is that it enables
us to construct a consistent total order efficiently. This is
why we base the remainder of this paper on the restricted
relation.

Now that we can construct a total order of events, we
can define consistent cuts and consistent global states for
DSMS as a global state or cut that does not violate the re-
stricted DSMS causality relation in the sense that it reflects
the effect of a dependency but not its cause or origin:

Definition 3.4. Let P = {p1, p2, . . . , pn} be the finite set of
processes andE the set of all events. LetC be a cut consist-
ing of the set of local process statesS= {s1,s2, . . . ,sn} and
Ec = {e1,e2, . . . ,en} be the set of events respectively pre-
ceding the states inS. Let Ep = Ec ∪ {ei | ei

r⇒ ej , ej ∈Ec}
be the set of all events in the “past” of the cut.C is acon-
sistent cutif the following condition holds:∀ei ,ej ∈ E : if
ei

r⇒ ej andej ∈ Ep thenei ∈ Ep.

In mere MPS any cut as defined above is equivalent to
a global state since the state of the system is properly char-
acterized by a complete set of the local states of the pro-
cesses,1 as is, by definition, the cut. In DSMS the situation
is inherently different because a global state, seen as a com-
prehensive description of the system’s state providing all the
information necessary, for example, to take a snapshot to be
used as a rollback breakpoint, is required to reflect not only
the process states, but also the state of the shared memory.
Since acquiring a memory state consistent with a given cut
is a complex and difficult task, in this paper we will capture
it implicitly by defining the global state based on the totally
ordered history that has led to the cut’s process states.2 This
history is given by the r⇒ relation and implicitly provides
us with the means to reconstruct the memory state by an-
swering the question which one was the last write to each
memory location, respectively. Note that we require the
initial state of each memory location, as only then we can
reconstruct it in the case that no write operation has been
performed up to the given global state.

Definition 3.5. Let P, C, S, Ec andEp be defined as of Def-
inition 3.4. A global stateis a tupleT = (Ep,�), whereEp

is totally ordered by�. If C is consistent and� respects all
the conditions demanded by Theorem1 (which both c⇒ and

r⇒ do),T is aconsistent global state.

3.4 Illustrations

We now provide two figures illustrating the discussed re-
sults. Figure2 shows three processesp1, p2 andp3, several
read and write events, and a passed message. The events are
only ordered by process order, other dependencies are not
displayed and thus consistently ordering the events totally,
in order to identify a consistent cut or global state, would be
an np-complete task. Without further information no global
states of the system can be specified and thus no conclusions
about the underlying system can be drawn.

Figure 3 presents the same events with the restricted
DSMS causality relation drawn in. The relation is split
up into the parts derived from “happened before” rela-
tion, write-order and read-mapping. The events are already
1 That is, if every message sent is saved with the corresponding state so

that messages currently in transit as to a given cut can be properly re-
sent. This feature can be postulated w.l.o.g., which we will do for the
remainder of this paper.

2 This is actually more information than required for a global state.

W(x)1

R(x)1

R(y)1

W(x)2

recv(m)

W(x)2

W(x)1

R(x)2

R(x)2

Process order

W(x)2

send(m)

W(y)1p1:

p2:

p3:

Figure 2: Events ordered by process order

W(x)2

send(m)

W(y)1 W(x)2 W(x)1W(x)1

R(y)1

recv(m)

W(x)2

R(x)2

R(x)2

R(x)1

p1:

p2:

p3:

Happened before Read−mappingWrite−order

Figure 3: Events ordered by the restricted DSMS causality
relation

spaced out according to the rule that the causal effect must
be ordered right of its dependencies, so that they can be
viewed as being partially ordered with respect to the rela-
tion. To say it informally, the more to the left an event
is arranged the earlier it happened in the causality chain.
The normal arrows denote the “happened before” relation
as known from MPS, which is still the base of our relations.
Thesend(m) andrecv(m) events indicate that the message
passing paradigm and its ordering rules are applicable as
known. The dashed arrows display the write-order included
in the restricted DSMS causality relation: All write events
to the same location are ordered totally as observed during
system execution. The read-mapping included in the rela-
tion is shown by the dotted arrows. This ensures every read
event being ordered after the corresponding write event, but
before any further write events to the respective location.
For example, the two read eventsR(x)2 of p2 and p3 are
ordered after the second writeW(x)2, but before locationx
is overwritten byW(x)1 of p1. The events displayed verti-
cally one below the other are causally independent and thus
concurrent; no directed path leads from one to the other.

Any total order respecting the relation is consistent. To
respect the relation means graphically that for every arrow
the event at its origin is ordered before (left of) the event it
points to. Every set of concurrent events (each displayed in
one vertical row) can be ordered to any sequence. By per-
muting the concurrent events, all consistent total orders re-
specting the restricted DSMS causality relation can be con-
structed, i.e. the total order can start with either eventW(y)1
of p1,W(x)2 of p2 orsend(m) of process p3.

Every line that could be drawn in Figure3, separating
the events of each process into two sets – the “past” to the
left and the future to the right – without having an arrow
beginning in the future and ending in the past, would display
a consistent cut. If, additionally, the events in the past are
totally ordered with respect to the relation, the cut defines

a consistent global state consisting of the ordered events in
the past, which also determines the memory content.

4 Conclusion

In this paper, we presented a formal basis for construct-
ing consistent views on distributed computations on top of
a DSM. Based on research work in the field mere message
passing systems, we have formalized the relations that cover
the causal dependencies in DSM systems. We proved that
the conditions respected by the DSMS causality relations
are necessary and sufficient for total event order to be con-
sistent, and thus for a consistent observation of these sys-
tems. According to the research in the field of the verifica-
tion of shared memory consistency models, we refined our
relations to a more restrictive version in favor of efficient
implementations: the restricted DSMS causality relation.
This relation enables to construct a consistent total event
order in acceptable time, based on additional information
collected during the observation. In future work, efficient
methods for this information collection must be developed.
We have defined consistent global states and consistent cuts
based on the restricted DSMS causality relation. The for-
mal basis formed in this paper is the first step towards the
realization of observing distributed DSM systems and an-
alyzing behaviour and properties of these systems, which
will lead to DSM systems more manageable, understand-
able, and fault-free than they are now.

Acknowledgments

We thank Prof. Dr. P.P. Spies and Dr. C. Rehn for their
suggestions and valuable comments in discussions on our
work.

References

[1] Özalp Babaŏglu, Keith Marzullo. Consistent Global States
of Distributed Systems: Fundamental Concepts and Mecha-
nisms. In Sape Mullender, editor,Distributed Systems, chap-
ter 5, pages 97–145. Addison Wesley, 2nd edition, 1993.

[2] Leslie Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. InCommunications of the ACM,
21(4), pages 558–565, July 1978.

[3] Friedemann Mattern. Efficient Algorithms for Distributed
Snapshots and Global Virtual Time Approximation. InJour-
nal of Parallel and Distributed Computing, 18(4), pages
423–434, August 1993.

[4] Neeraj Mittal, Vijay K. Garg. On Detecting Global Pred-
icates in Distributed Computations. InProceedings of the
21st IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), pages 3–10, April 2001.

[5] K. Mani Chandy, Leslie Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. InACM
Transactions on Computer Systems, vol. 3, no. 1, pages 63–
75, February 1985.

[6] Jerry Fowler, Willy Zwaenepoel. Causal Distributed Break-
points. InProceedings of the 10th International Conference
on Distributed Computing Systems, pages 134–141, 1990.

[7] Madalene Spezialetti, Phil Kearns. Efficient Distributed
Snapshots. InProceedings of 6th International Conference
on Distributed Computing Systems, pages 382–388, 1986.

[8] S. Venkatesan. Message-optimal incremental snapshots. In
Proceedings of the 9th International Conference on Dis-
tributed Computing Systems, pages 53–60, Newport Beach,
CA, June 1989.

[9] Hon F. Li, T. Radhakrishnan, K. Venkatesh. Global State De-
tection in Non-FIFO Networks. InProceedings of the 7th In-
ternational Conference on Distributed Computing Systems,
pages 364–370, September 1987.

[10] Ten H. Lai, Tao H. Yang. On Distributed Snapshots. InInfor-
mation Processing Letters, 25(5), pp. 153–158, May 1987.

[11] Carroll Morgan. Global and Logical Time in Distributed Al-
gorithms. In Information Processing Letters, 20(5), pages
189–194, May 1985.

[12] Barton P. Miller, Jong-Deok Choi. Breakpoints and Halting
in Distributed Programs. InProceedings of the 8th Interna-
tional Conference on Distributed Computing Systems, pages
141–150, June 1988.

[13] Dieter Haban, Wolfgang Weigel. Global Events and Global
Breakpoints in Distributed Systems. InProceedings of the
21st Annual Hawaii International Conference on System Sci-
ences, Volume II, pages 166–175, IEEE Computer Society,
January 1988.

[14] Richard Koo, Sam Toueg. Checkpointing and Rollback-
Recovery for Distributed Systems. InIEEE Transactions on
Software Engineering, SE 13(1), pp. 23–31, January 1987.

[15] Hon F. Li, Gabriel Girard. A Hierachy of View Consisten-
cies and Exact Implementations. InProceedings of 1999
Workshop on Software Distributed Shared Memory, Rhodes,
pages 109–114, June 1999.

[16] Anne E. Condon and Alan J. Hu. Automatable verification
of sequential consistency. InProceedings of the 13th annual
ACM symposium on Parallel algorithms and architectures,
pages 113–121, 2001.

[17] Shaz Qadeer. Verifying Sequential Consistency on Shared-
Memory Multiprocessors by Model Checking. InIEEE
Trans. Parallel Distrib. Syst., vol. 14, no. 8, pages 730–741,
2003.

[18] Phillip B. Gibbons and Ephraim Korach. Testing Shared
Memories. InSIAM J. Comput., vol. 26, no. 4, pages 1208–
1244, 1997.

[19] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory
Consistency Models: A Tutorial. InIEEE Computer, vol. 29,
no. 12, pages 66–76, 1996.

[20] Leslie Lamport. How to Make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs. InIEEE
Transactions on Computers, vol. 28, no. 9, pages 690–691,
1979.

[21] Michel Raynal. Sequential Consistency as Lazy Lineariz-
ability. In Proceedings of the 14th annual ACM symposium
on Parallel algorithms and architectures, pages 151–152,
2002.

	Introduction
	Mere Message Passing Systems
	System Model
	Consistent Views

	Systems with Distributed Shared Memory
	Differences to Message Passing Systems
	Consistency Model Independent Order
	Consistency Model Dependent Order
	Illustrations

	Conclusion
	References

