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Abstract

In the past two decades, transcranial ultrasound (TCUS), i.e. non-invasive
B-mode imaging through the temporal bone window of the skull, has been
established as a technique for diagnosis of neurological movement disorders
such as Parkinson’s Disease (PD). Although the TCUS method bears high
potential, especially for early diagnosis and screening of PD, it is also critized
since it requires a lot of experience from the sonographer, e.g. for finding a
suitable cut-plane through the midbrain.

In this thesis, we pursue a paradigm shift of the TCUS method from regular
2D ultrasound to 3D-TCUS. We argue that the extension to 3D makes the
technique more objective and facilitates acquisition for less experienced TCUS
sonographers. It also allows for volumetric analysis of diagnostically relevant
substantia nigra hyper-echogenicities (SNE) for the first time in this field.

As a first contribution, we propose to acquire 3DUS bi-laterally through
both temporal bone windows, in order to maximize the available information
on the target region. This acquisition is affected by linear and non-linear
distortions, e.g. due to mis-calibration and speed-of-sound deviations in
bone. We therefore formulate this scenario as a general multi-view 3DUS
reconstruction problem, where each view is affected by diffeomorphic, non-
linear distortions unknown during acquisition. For simultaneous recovery
and compensation in an arbitrary number of 3D views, we introduce a novel
compounding scheme, which performs several inter-dependent segmentation,
registration and reconstruction steps to reach an optimal joint compounding.
A statistical shape model (S5SM) aids as a geometric prior and regularizes the
reconstruction by constraining deformation fields within the manifold of legal
anatomic shapes.

For segmentation of anatomic target regions, we propose two novel ap-
proaches for general detection of surfaces and lesions in 3DUS data, which
are adapted to the local echo responses caused by US physics. The methods
include 1) a (semi-)automatic segmentation in 3D-TCUS using an explicit, SSM-
regularized active surface method with a localized region-based cost function
and 2) an automatic detection of hyper-echogenic lesions using a probabilistic
Random Forest classification, which generates fuzzy posteriors for 3DUS voxels
based on descriptors of local intensity and contrast. We furthermore introduce
a novel approach for the formulation of a Random Forest spatial prior which
can be jointly learned during the Random Forest training stage.

We demonstrate the translational relevance of our approaches for early
diagnosis of PD using an unprecendented dataset of 22 subjects, with 11 di-
agnosed PD patients and 11 healthy controls. Based on feature sets extracted
from volumetric segmentations, we report on first, promising results of au-
tomatically distinguishing healthy controls from PD patients using Support
Vector Machine classification, with sensitivities and specificities up to 90.9%
and 72.3%, respectively. We believe that our findings mark the first steps
towards an objective, robust and routinely applicable computer-aided system
for early diagnosis of PD in future.

iii






Zusammenfassung

In den letzten zwei Jahrzehnten hat sich transkranieller Ultraschall (TKUS),
d.h. Ultraschall durch das temporale Knochenfenster des Schédels, als Metho-
de zur Diagnostik neurologischer Bewegungsstorungen wie dem Parkinson
Syndrome (PS) etabliert. Trotz vielversprechender Ergebnisse, insbesondere fiir
Frith-Diagnostik und zur Vorsorge-Untersuchung, wird die TKUS-Methode
kritisiert, da die Untersuchung viel Erfahrung benétigt, z.B. zur Ermittlung
der optimalen Schnittebene durch das Mittelhirn.

In dieser Doktorarbeit verfolgen wir einen Paradigmenwechsel der TKUS
Methode von reguldrem 2D Ultraschall zu einem 3D Ansatz, der die Methode
objektiver werden ldsst und die Akquise auch fiir weniger erfahrene TKUS
Untersucher erleichtert. Dariiberhinaus erlaubt eine 3D Akquise zum ersten
Mal eine volumetrische Analyse diagnostisch relevanter Hyper-Echogenitidten
der Substantia Nigra (SNE).

Um die Bild-Information in der Zielregion zu maximieren, fithren wir
zunichst eine bi-laterale 3D Daten-Akquise durch beide temporalen Knochen-
fenster ein. Derlei Aufnahmen sind mit linearen und nicht-linearen Verzerrun-
gen behaftet, z.B. aufgrund von Fehl-Kalibrierungen oder Abweichungen der
Schallgeschwindigkeit in Knochengewebe. Wir formulieren diese Aufnahme-
technik daher allgemein als ein multi-laterales 3DUS Rekonstruktions-Problem,
in dem jede Ansicht durch ein diffeomorphes, nicht-lineares Feld verzerrt
ist, welches zum Zeitpunkt der Aufnahme unbekannt ist. Fiir eine neuartige,
gleichzeitige Kompensation in einer beliebigen Anzahl an 3D Ansichten, fithren
wir mehrere voneinander abhiéngige Segmentierungs-, Registrierungs- und
Rekonstruktionsschritte durch, um eine optimale Konsensus-Rekonstruktion
zu erzielen. Ein statistisches Form-Modell (SFM) dient als geometrische Re-
gularisierung, die die Deformationsfelder wihrend der Rekonstruktion auf
anatomisch sinnvolle Formen beschréankt.

Fiir die Segmentierung der anatomischen Zielregionen entwickeln wir zwei
neuartige Ansédtze zur generellen Detektion von Oberflichen und Lasionen
in lokal-echogenen 3DUS Daten. Diese Methoden beinhalten 1) eine semi-
automatische Segmentierung mittels einer expliziten, SFM-regularisierten
Aktive-Oberflachen-Methode mit einer lokalisierten Kostenfunktion und 2)
eine automatische Detektion von hyper-echogenen Lasionen mittels einer pro-
babilistischen Random-Forest Klassifizierung, die auf lokalen Intensitdts- und
Kontrast-Deskriptoren basiert. Wir prasentieren zudem einen neuartigen An-
satz, um Vorwissen iiber rdumliche Verteilung von SNEs in der Lernphase des
Random-Forest Klassifizierers mit einzubeziehen.

Wir demonstrieren die Relevanz unserer Methoden fiir die Parkinson-
Friihdiagnostik erstmalig anhand eines klinischen Datensatzes mit 11 diagno-
stizierten Parkinson Patienten und 11 gesunden Kontrollprobanden. Mittels
volumetrischer Merkmale aus den 3D Segmentierungen und Support-Vector-
Machines prédsentieren wir vielversprechende Ergebnisse zur automatischen
Klassifizierung von PS Patienten und gesunden Kontrollprobanden. Sensiti-
vitdt und Spezifitdten erreichen jeweils bis zu 90.9% und 72.3%. Wir sehen
dies als einen ersten Schritt zu einem objektiveren, robusten und routineméafSig
anwendbaren, computer-assistierten Diagnosesystem fiir PS in Zukunft.
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Introduction

Parkinson’s disease is a neuro-degenerative disease that has been known since
the early 19 century. So far, neither the causes for development of Parkinson’s
disease (PD) are fully known, nor a cure for the disease has been found. While
the search for the possibility of a cure for PD is still ongoing, one branch of
research is dedicated towards improving the diagnostic methods which allow
for detecting PD, in particular at an early stage, since an early detection may
help in treating the disease symptoms and decelerate its progression.

Neurological research of the past two decades has shown that signs of
PD can be detected using transcranial ultrasound (TCUS), a non-invasive
sonographic technique which allows for imaging of central brain regions
involved in the control of movements. Tissue alterations in these regions
associated with PD can be visualized as local bright speckle patches, so-called
hyper-echogenicities, in the area of the substantia nigra (SN). These changes
may be visible up to several years before typical motor symptoms of PD occur,
i.e. several years before the typical time point for PD diagnosis today.

The research of this thesis is dedicated towards an extension of this sono-
graphic technique from 2-dimensional (2D) to 3-dimensional (3D) imaging,
and the development of techniques for automatic quantification of SN hyper-
echogenicities. We present the first steps towards a system for computer-aided
diagnosis and early detection of PD, which is robust and more objective than
the current method in 2D, while still being applicable in clinical routine. At
the end of this chapter, in section 1.4, we give a detailed list of our main con-
tributions, towards achieving these goals. We also give a structural overview
of this thesis and the main publications created during our research.

In this chapter, as an introduction, we first describe Parkinson’s disease, i.e.
its history, symptoms, treatment and state-of-the-art methods for diagnosis.
Next, we explain the relevance of transcranial ultrasound (TCUS) for PD
diagnosis and its potential for early detection of the disease. We recapitulate
the neurological research of the past two decades on TCUS for PD diagnosis
and summarize the diagnostic capability of this technique for PD, in order to
lay a solid foundation and medical arqument for the work performed in this thesis.
We continue by describing issues with the TCUS technique by citing critical
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CHAPTER 1: INTRODUCTION

remarks by other researchers in the medical community and how we hope to
improve on the shortcomings of the TCUS technique by extending the method
to 3D. Based on this, we enlist the contributions made in this thesis and give
an outline for the overall structure of this document.

1.1 Medical Background - Parkinson’s Disease

Transcranial ultrasound (TCUS) has been applied for Parkinson’s disease (PD)
diagnosis and early detection of the disease. Next to PD, TCUS has also
been shown to have diagnostic value for several other neurological movement
disorders. Since PD is one of the main clinical applications to which our
contributions in this thesis can be applied, we will explain the most important
facts about this disease in the following.

Frequency: PD is a disease mostly affecting elderly patients. Most patients
present themselves with an onset of the disease between 55 to 66 years [102].
Approximately 1 million individuals in the US alone are affected. In the US,
PD is the second most common neurodegenerative disease next to Alzheimer’s
disease [102].

History: Parkinson’s disease (PD) is a neurodegenerative disorder of basal
ganglia in the midbrain area. The disease is named after the English physician
James Parkinson (1755 — 1824). He observed similarities across a group of
patients showing motor disfuctions such as “involuntary tremulous motion,
with lessened muscular power |...], a propensity to bend the trunk forward,
and to pass from a walking to a running pace; the senses and intellects being
uninjured”. He described six cases, three of them observed by himself and three
of them reported to him, in his seminal publication ”An Essay of the Shaking
Plasy” in the year 1817 [112]. Triggered by this publication, medical research
observed many more cases and lead to a finer classification of the disease,
with additional symptoms such as rigidity being classified and highlighted by
Charcot and Vulpian in 1861 [97].

Parkinson subtypes and symptoms: Since its discovery, Parkinson’s disease
(PD) has been further investigated and a larger family of diseases have been
identified, all of which are summarized under the term “Parkinsonism”. There
are four main subtypes of Parkinsonism, summarized by Jankovic [77]:

o Idiopathic Parkinson’s disease (IDP): Accounting for around 90% of all
cases of Parkinsonism, IDP is its most common form, and is hence also
called primary subtype. Idiopathic means that the concrete reason for
development of the disease is unknown.

o Acquired or symptomatic Parkinson’s disease: Also called the secondary
subtype of PD, acquired PD is caused as a side effect of e.g. medication
intake, other neurological disorders or other illnesses. In contrast to
idiopathic PD, the secondary PD subtype can be reversible, if the cause
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of PD can be identified and if no permanent neurological damage has
been caused so far.

o Hereditary Parkinsonism: In general, PD is of non-genetic origin, however,
in 15% of cases, PD patients have a first-degree relative who also were
diagnosed with the disease and specific types of genetic mutations have
been shown to cause PD in around 5% of patients [98].

o Atypical Parkinson’s disease: This subtype, also termed ”Parkinson plus
syndrome”, describes cases of Parkinson-like symptoms with additional
symptoms. Typical forms are multiple systems atrophy (MSA), progres-
sive supranuclear palsy, corticobasal degeneration and dementia with
Lewy bodies [133].

Concerning symptoms, there are early symptoms, which might indicate
onset of the disease and actual disease symptoms. Early symptoms are difficult
to detect and often have to be recollected by patients after onset of the main
PD symptoms during anamnesis discussions with the treating physician. As
Parkinson denotes [112]: “"The first symptoms perceived are a slight sense of
weakness, with a proneness to trembling in some particular part; sometimes in
the head, but most commonly in one of the hands and arms.”

After onset of the disease, the main symptoms of Parkinsonism are sepa-
rated into motor and non-motor symptoms [77].

There are four main motor symptoms of PD which are often referred to as
the “cardinal” symptoms of PD [77]. These are tremor at rest, rigidity, slowing
of movement and postural instability. These symptoms are not always present
in patients at onset of PD. For example, while the symptom tremor is the most
common PD symptom, around 30% of individuals do not show this symptom
in the beginning of the disease. It is hence important to note that it can be
difficult to detect PD at very early stages of the disease, in particular at time points
before typical motor symptoms occur [77].

Non-motor symptoms of PD include autonomic dysfunction, neuropsy-
chiatric effects, sleep difficulties as well as sensory deficiencies such as loss
of smell [77]. The most common neuropsychiatric effects include changes in
mood, cognitive abilities and behavior. For example, around 50% of patients
develop a depression during the progression of the disease [102].

Anatomical background and cause: The midbrain, also called mesencephalon,
is an approximately 2x2x1cm sized region of the brain, which forms the upper
part of the brainstem. It contains several conglomerates of nerve cells, so called
nuclei, which are involved in visual, auditory, and motor functions of the
human brain [2].

It is well known that a degeneration of cells in one type of midbrain
nuclei, namely the Substantia Nigra (SN) (see figure 5.1), lies at the source of
Parkinson’s disease (PD) [168]. In PD patients, cells in the SN decay slowly
throughout the progression of the disease. One of the functions of nigro-striatal
cells in the SN is to produce dopamine, which is an important neurotransmitter
involved in motor functions. The death of these nigro-striatal cells causes a
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CHAPTER 1: INTRODUCTION

depletion of dopamine in other parts of the brain, thereby causing the cardinal
motor symptoms of Parkinson’s disease, i.e. slowed movement, tremor, and
muscular rigidity.

The decay of SN cells is accompanied by a build-up of ferrite deposits. It is
argued that these deposits cause slight hyper-echogenicities (i.e. local, bright
speckle patches) in the SN area, if visualized with transcranial ultrasound
(TCUS). The main motivation of this thesis is the computer-aided detection and
analysis of these hyper-echogenicities in 3D-TCUS.

Pathophysiologically, PD is categorized as a synucleopathy, which means
that a protein normally used for membrane stabilization (alpha-synuclein)
aggregates for unknown reasons and forms pathological inclusions. These
are known as ‘Lewy bodies’, named after their discoverer, Fritz Heinrich
Lewy, in 1912. The mechanism by which cell death is triggered is unknown.
Histological post-mortem analysis of SN in PD patients show neuronal loss and
accumulation of Lewy bodies, identifying them as a key pathological feature
of PD [111].

Treatment methods: Just as the exact mechanism of the disease is unknown,
there is also no cure for PD available at present. However, there exist both
non-surgical and surgical treatment methods which can partly reduce the
symptoms.

Usually, therapy is commenced non-surgically through administration of
drugs, mainly dopamine agonists and monoamine oxidase type B (MAO-B)
inhibitors in the early stage of the disease and levodopa (L-DOPA) in the later
stage. While the first two types of medication are not as effective in improving
motor control as L-DOPA, the latter can lead to motor control complications
induced by the drug itself [157].

In later stages of the PD, once control with medication achieves only un-
satisfactory results, or if medication is inefficient early on, there is also the
possibility for surgical treatment [158]. The most common form of surgical
treatment of PD is Deep Brain Stimulation (DBS). In DBS, an electrode is im-
planted into basal ganglia around the midbrain area, such as the Subthalamic
Nucleus in PD. The target region is stimulated with a stimulation device which
is often referred to as a "brain pacemaker”. Consequently, motor dysfunctions
can be significantly reduced, sometimes to an extent making further admin-
istration of drugs unnecessary. Next to PD, a wide area of movement and
also neuropsychiatric disorders can be treated, including dystonia [19] and
depression [100]. Recently, patients with further disorders such as epilepsy,
obsessive-compulsive disorder, substance abuse, Alzheimer’s-type dementia
and traumatic brain injury have undergone DBS surgery [134]. Side effects,
however, can be caused by misplacement of the electrode and unwanted stim-
ulation of adjacent brain areas, leading to e.g. visual impairment or further
neuropsychiatric effects [81].

The relevance of early diagnosis of PD: Recent studies and meta-reviews
have argued that it is beneficial to detect PD at an early stage and start treat-
ment at time of diagnosis, since an early administration of certain drugs such

4
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as levodopa [160] or the MAO-B inhibitor rasagiline [147] can decelerate the
further progression of the disease and potentially delay motor symptoms, if PD
was detected at a pre-motor stage. For example, Schapira and Obeso conclude
in their review [135] that early administration of dopaminergic drugs and
symptomatic treatment lead to an “early restoration of of basal ganglia physi-
ology”, which will “support compensatory events and delay the irreversible
modification of circuitry that characterizes the clinical progression of PD. Such
an effect will lead to lasting clinical benefit for the patient”.

Diagnostic methods and usage of medical imaging methods: According to
Brooks [31], the diagnostic process usually begins with patients presenting
themselves with symptoms of tremor, stiffness or slowness, indicating possible
PD. However, medical imaging can play an important role even in early stage
of diagnosis (cf. figure 1.1).

Medical imaging at this early stage of diagnosis is limited to non-invasive
methods such as MRI and transcranial US. As Brooks reports [31], MRI scans
can help in excluding the possibility that structural lesions are causing PD-like
symptoms. However, it is important to note that up to now, MRI is not useful
as a method to detect pathological changes in the SN [31], e.g. ferric deposits,
since scan protocols with sufficiently high diagnostic sensitivity and specificity
still have to be identified [105].

Transcranial ultrasound can be used for detection of hyper-echogenicities,
due to pato-physiological changes in the SN. If lesions can be excluded as the
cause due to MRI and if transcranial US yields an abnormally large hyper-
echogenic SN area, further imaging methods can be applied. A diagnostic
gold-standard method is provided with Single-photon emission computed
tomography (SPECT) or Positron emission tomography (PET), yielding almost
perfect diagnostic reliability, with sensitivity of 97% and specificity of 100%
[161]. In SPECT and PET, the dopamine metabolism of the brain can be
visualized with specific, gamma-emitting radioisotopes. PD can be diagnosed
since the metabolism of affected patients differs from that of healthy subjects.
However, cost, duration and invasiveness for SPECT scans are comparably
high. Eventually, a definitive diagnostic result can only be given post-mortem,
after “histological demonstration of intra-neuronal Lewy body inclusions in
the substantia nigra compacta” [31].

Within the spectrum of available imaging methods for PD diagnosis, the
role of transcranial US can be seen as a low-cost and non-invasive imaging
method with comparably high diagnostic accuracy [23, 168, 169]. It is therefore
useful as a strong indicator for PD diagnosis [22], even at an early stage [24],
motivating its usage for screening of large populations to make possible an
early treatment of PD, prior to motor symptom stage [31].

In the following chapter, we will explain the history of transcranial US
imaging for PD diagnosis, its strengths and shortcomings and how we intend
to contribute to this field with this thesis.

Summary - Parkinson’s disease (PD) facts relevant to this thesis:
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Figure 1.1: Medical imaging methods used for diagnosis of PD (image repro-
duced and adapted by courtesy of Professor David ] Brooks MD [31], Head of
the Centre for Neuroscience, Imperial College London.

e PDis relatively difficult to diagnose in early stage due to vague symptoms,
which are often not detected by the patient themselves [77].

o Early detection of PD is relevant for containment and deceleration for
nigro-striatal loss [24].

e Transcranial ultrasound (TCUS) is a small but important building block
in the initial stages of PD diagnosis, among the wide range of applicable
medical imaging methods as described by Brooks [31]. Compared to MR],
TCUS is complementary, since MRI is useful to exclude other lesions,
but not yet useful for highly sensitive and specific detection of ferrite
deposits in the SN [105].
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1.2 Medical Motivation - Transcranial Ultrasound
for Diagnosis of Neurological Movement Dis-
orders

1.2.1 History of Transcranial Ultrasound for PD Diagnosis

In the past two decades, medical research mainly originating from research
centers in Germany has investigated the usage of transcranial ultrasound
(TCUS) for initial and differential diagnosis of neurological movement orders.
First investigations in the mid-nineties discovered that pato-physiological
changes in the substantia nigra (SN) of the midbrain can be observed in
transcranial ultrasound (TCUS).

In a seminal work by Becker et al. [14], a study cohort of 60 subjects was
scanned using the TCUS technique. Out of the 60 subjects, 30 subjects were
previously diagnosed with Parkinson’s disease (PD) and 30 subjects were used
as a control group, showing no Parkinsonian symptoms. All subjects were
scanned transcranially through the pre-auricular acoustic bone window, also
called temporal bone window. The authors described anatomic structures
visible in TCUS, if the ultrasound probe was tilted in axial direction while
maintaining an axial cut-plane of the brain (see figure 1.2), paying particular
attention to the “pontine and mesencephalic brainstem, the basal ganglia, the
width of the ventricular system, and the supra-tentorial white matter” [14].
The echogenicity and echo-texture of these areas were compared between the
PD group and the group of healthy controls. In 28 control subjects and 13 PD
patients, the SN was undetectable by TCUS. Two non-PD controls and five
PD patients showed a weakly hyperechogenic SN, while in 12 PD patients,
the SN showed a distinctly enlarged hyper-echogenic tissue response in the
area of SN. In terms of diagnostic accuracy, this amounted to a test with 40%
sensitivity and 100% specificity. The authors also found a correlation between
the amount of SN hyper-echogenicity and both severity and duration of PD
(p < 0.001). Furthermore, the authors of this study identified a statistically
significant enlargement of the mean widths of third ventricle in PD patients,
compared to non-PD controls.

Triggered by these initial findings, other research groups investigated the
value of TCUS scanning of the midbrain for diagnosis of neurological move-
ment disorders such as PD. In the following, several groups and studies were
able to confirm the results from [14]. Two notable groups having achieved
excellent diagnostic value of the TCUS method include the group around Prof.
Daniela Berg et al. [22] from University of Tiibingen, Germany, and the group
around Prof. Uwe Walter et al. [168] from University of Rostock, Germany.

In 2002, Berg et al. [23] associate the hyper-echogenic appearance of the SN
in PD patients with increased iron contents in the SN, which is backed up by PET
examinations in a group of alive patients as well as post-mortem histochemical
analyses. In a paper from 2006, they hypothesize that SN hyper-echogenicity
is a pre-motor symptom and can help in early detection of the disease and
consequently be used as a basis for neuroprotection [20]. In 2010, an analysis of
the intra- and inter-observer reproducibility was published [99], demonstrating
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excellent agreement and correlation across four expert observers assessing SN
hyper-echogenic area in 2D TCUS (cf. chapter 4.4).

While Berg et al. have systematically assessed the potential of TCUS
for early detection of PD, the group around Walter et al. have focused on
demonstrating the potential of TCUS for differential diagnosis of PD and also
other neurological movement and neuropsychiatric disorders. In 2007, Walter
et al. [168] investigated the usability of B-mode TCUS for differential diagnosis
of PD and discriminating between Parkinsonism and idiopathic PD. The study
cohort encompassed 138 patients with sporadic idiopathic PD, 21 with multiple-
system atrophy (MSA-P) and 22 with progressive supranuclear palsy (PSP).
In this cohort, 7 subjects had unsuitable bone windows, preventing TCUS
scans (3.8%). Like Becker et al. [14, 13] and Berg et al. [23, 20], the authors
found that the area of SN echogenicity was an important salient feature for
distinguishing the groups. Different combination of TCUS features were able to
distinguish atypical PD (MSA-P or PSP) from idiopathic PD with sensitivities
of up to 84% and specificities consistently above 97%. Using only the SN
hyper-echogenic area as a feature for distinguishing MSA-P from PD even
resulted in a sensitivity of 90% and specificity of 98%.

Based on observations made during experiments with TCUS and PD di-
agnosis, reference groups formed the hypothesis that SN hyper-echogenicity
emerges notably long before a detectable onset of typical PD motor symptoms, such as
tremor or rigidity. Thus, SN hyper-echogenicity can serve as a disease marker
and potential factor in early detection of PD, making TCUS a potential tool for
early PD diagnosis in a cheap, non-invasive and widely available manner.

Very recently, this hypothesis was confirmed in a large, multi-center study,
in which three clinical research centers combined their efforts over a duration
of 37 months, resulting in the study of Berg et al. from 2011, [24]. This study
tested 1847 individuals over 50 years age without any evidence for PD or any
other neurodegenerative disease at baseline, i.e. at the beginning of the study.
A final resulting group of 1535 subjects could undergo reassessment after 37
months. Among this group, 11 cases of incident PD were diagnosed in the
follow-up period. In participants with enlarged hyper-echogenic SN at baseline,
relative risk for incident PD was 17.4 times higher than for normo-echogenic
participants. The study authors reported that elderly patients with enlarged SN
hyper-echogenicity had a “17 times higher and thus highly increased risk to develop
incident PD” [24]. They concluded that TCUS may be a promising primary
screening method to define a risk population for imminent PD. Consequently,
the hope of medical researchers is to be able to use TC-US as a screening
method for PD in future, especially since as mentioned, the degeneration of
SN cells cannot yet be visualized by Computed Tomography (CT) or Magnetic
Resonance Imaging (MRI) [105, 31].

1.2.2 Transcranial Ultrasound for Diagnosis of Other Neuro-
logical Disorders

With growing experience in the TCUS technique, there were also other patho-
logical changes identified which are visible in TCUS and which relate to other

8
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disorders than PD. Since then, TCUS has been shown to be a non-invasive,
low-cost and fast method for identifying several neurological disorders-related
pathological changes within the midbrain and its surroundings. There has
been an increasing number of diseases that have shown signal alterations
detectable by this method, including atypical Parkinson syndromes [16] [170]
[169], depression [15] [13], dystonia [108] and multiple sclerosis [70] [171].

In their review on TCUS technique and applications, Skoloudik and Walter
[150] summarize all known TCUS abnormalities, related diseases and discrimi-
nated conditions in a table, which we reproduce in table 1.1.

TCS abnormality Related condition Discriminated condition
SN hyper-echogenicity Parkinson’s disease Atypical parkinsonian syndrome
Corticobasal degeneration Progressive supranuclear palsy
Dementia with Lewy bodies Alzheimer dementia
SN hypo-echogenicity Restless legs syndrome
BR hypo-echogenicity Unipolar depression Bipolar affective disorders
LN hyper-echogenicity Idiopathic dystonia Psychogenic dystonia
Atypical parkinsonian syndrome Parkinson’s disease
Wilson’s disease Parkinson’s disease
CN hyper-echogenicity Huntington’s disease Other choreatic disorders?

Table 1.1: Characteristic echogenicity changes of deep brain structures in
PD and other neurological movement disorders (SN = substantia nigra, LN
= lenticular nucleus, BR = brainstem raphe, CN = caudate nucleus) (from
Skoloudik and Walter [150]).

1.2.3 Issues and Critique at the Technique

Given the high diagnostic value and good study results of the TCUS technique
for neuropsychiatric and neurological movement disorders, TCUS has estab-
lished itself as a diagnostic tool both in research as well as in clinical routine
among several clinical groups. However, despite the promising properties
of TCUS, there are also downsides and critical assessments in the medical
community.

One issue of the TCUS method recurrently criticized is its dependency
upon the examiner’s experience, which is accompanied by a high subjectivity
leading to a limited inter- and intra-observer reliability [149] [162]. A recent
study which compared diagnostic reliability given different observers and
different ultrasound systems showed divergent results and therefore concluded
that the TCUS technique is not yet ready for screening large populations [162].
This meta-analysis found a broad range of sensitivity varying from 48-100% as
compared to the final clinical diagnosis.

Another unresolved issue of this method is the dependency upon an ad-
equate temporal acoustic bone window. Apparently, this aspect also causes
inconclusive results in around 13% of cases (average of 35 studies, analyzed in
a meta-review by Vlaar et al., [163]). It is important to note that the acoustic
bone window quality is indeed a limiting factor of the TCUS technique. While
there has been work investigating the compensation of phase aberration effects
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occurring due to sound waves transversing the bone layer [75], there is cur-
rently no way to overcome the fundamental physical limitations of ultrasound
penetrating thick bone layers and still achieve B-mode imaging. One possible
way to still obtain ultrasound echoes through thicker skull regions is to transmit
waves with very low frequency on the order of 0.5-1MHz, e.g. for trans-skull
fluid detection [152] or intra-operative brain shift monitoring using shear mode
transcranial ultrasound [176]. However, up to now, the signal response in their
system is restricted to A-mode ultrasound [176], i.e. a temporally varying echo
response on a single scanline (see chapter 2 for more details on ultrasound
physics and modalities).

In summary, even if performed by expert sonographers, TCUS cannot be
applied in approximately 10% of people, due to insufficient bone windows,
as observed in the 1847-person study of Berg et al. [24]. Since no B-mode
images can be obtained in 2D, the same failure rate applies to the 3D methods
proposed in this thesis and can be seen as a general limitation of the TCUS
technique.

While not a limitation, there is one further open question with the TCUS
technique. It is not fully known how and why the hyper-echogenicities in the
substantia nigra (SN) occur. As mentioned before, Parkinson’s disease (PD)
is accompanied by a build-up of ferrite deposits in the SN, although it is not
known whether this is the cause or an effect of the disease. It is hypothesized
but not yet confirmed that the pathological substrate of the hyper-echogenic
abnormalities in PD are probably iron deposits [23], causing micro-scattering
of ultrasound waves and the formation of hyper-echogenic speckle patterns.

10
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1.3 Transcranial Ultrasound Specifics

In the last sections, we summarized the potential of TCUS for diagnosis of
neurological movement disorders, but we also reported critical remarks. Similar
to other application areas of medical ultrasound, TCUS is a difficult technique
to master and requires long-term expertise until it can be properly applied for
diagnostic purposes [161, 162].

In this section, we will explain the workflow and the most important param-
eters of transcranial ultrasound (TCUS) imaging and describe the advantages
of this imaging modality which also make it attractive for screening of large
populations. We will then continue by explaining image properties, artifacts
and distortions which make TCUS overall difficult to master. In chapter 2, we
will explain the physical backgrounds of TCUS imaging and medical ultra-
sound in general, as well as where these artifacts come from. Before that, at
the end of this introduction, we will explain the contributions of this thesis
and how we plan to overcome the shortcomings of TCUS with the methods
proposed in this thesis.

Technique and Workflow: An international consensus guideline has been
formed about the workflow of the TCUS examination, e.g. concerning patient
positioning, transducer placement and imaging parameters. A concise and
comprehensive explanation of the clinical workflow of TCUS examinations is
given by Skoloudik and Walter in [150].

The patient is placed in supine position, i.e. lying with his back on a bed
or in a leaning chair, with the physician at the head of the examination table.
The transcranial ultrasound transducer is placed at the pre-auricular bone
window, in posterior or middle position of the window, as seen in figure 1.2A.
Pressing the TCUS transducer firmly to the bone window, it is first aligned to
the orbitomeatal plane!. Then, the scan-plane is tilted in a sweeping motion to
reach standardized axial scanning planes, as depicted in figure 1.2B. The solid
line depicts the standard orbitomeatal plane for mesencephalon examination,
in which ”“substantia nigra, red nucleus and brainstem raphe can be assessed”
[150]. The dashed line depicts the axial scanning plane at thalamic level, at
which the ”third ventricle, frontal horns, thalamus, lenticular and caudate
nucleus are assessed” [150].

Upon identification of the optimal scan-plane, the image is frozen and
the measurement tools from the ultrasound machine are used to manually
outline the relevant anatomic features. For example, for PD diagnosis, these
are so-called SN hyper-echogenicities (SNE), i.e. irregularly bright speckle
patches within the area of the SN. For diagnostic analysis, the size of the
cross-sectioned 2D area of SNEs is measured and compared against a reference
value, while relative brightness is not considered in clinical practice, the SNEs
are manually outlined and the US machine measures the area in units of [cm?].
An US-machine specific threshold for this area (e.g. above 0.25mm? for SNE in
PD diagnosis, [168]) then determines the diagnostic outcome.

Ithe orbitomeatal can be roughly described as the plane spanning between the eyes and the
two ear canals
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Figure 1.2: (A) Patient positioning and transducer location at pre-auricular bone
window and (B) transcranial probe scan-planes for examination of midbrain,
various basal ganglia and ventricular system, as described in [150] (images
reproduced and adapted by courtesy of Prof. Dr. med. Uwe Walter, Associate
Clinic Director, Klinik fiir Neurologie und Poliklinik, Universitdtsklinikum
Rostock, Germany, email for approval received 07. August 2012).
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Imaging parameters: In order to be able to non-invasively penetrate the
skull bone using ultrasound, the wave frequency with which the brain is being
insonified has to be kept low. Operating frequencies of TCUS typically lie in the
range of 2-5 MHz [21]. For better orientation during the 2D scan, it is helpful
to see the opposite cranial wall in the B-mode image. This requires a large scan-
depth of 14-16cm, which is reduced if needed [150]. Time-gain compensation
(TGC) has to be set such that the deep scan depth is compensated, e.g. a linear
ramp [168]. Dynamic range is set to 45-50 dB [103, 124, 150]. It should be noted
that these settings vary depending on the ultrasound machine. While several
recommendations for settings on wide-spread machines such as the Siemens
Acuson Antares (Siemens AG, Erlangen, Germany) have been described before
[168], it is advised to establish new optimal settings for a previously unused
machine.

Scanning at low frequencies of 2-5 MHz has the advantage that sound can
penetrate deep into the human brain, up until reaching the opposite cranial
wall at a distance of roughly 14cm and giving a comparably large field-of-view
given the phased-array geometry of transcranial transducers. Depending on the
quality of the pre-auricular bone window, TCUS allows for a clear delineation
of the midbrain and other anatomical structures, such as the opposite cranial
wall, as visible in figure 1.3.

Shortcomings and challenges: Figure 1.3 also shows several challenges and
shortcomings of TCUS. Depending on the physiology of the pre-auricular
bone window, image contrast in TCUS can be low and anatomic boundaries
can vanish (cf. figure 1.3, bottom left), up to a degree that makes the image
unusable (cf. figure 1.3, bottom right).

Due to the low scanning frequency, image quality is relatively low and
decreases further with increasing penetration depth. The large wavelength
at frequencies of 2-4 MHz results in low axial and lateral image resolution
(see section 2.1 for reasons and a general explanation of US image physics).
For example, using an Elegra sonographic scanner (Siemens, Erlangen, Ger-
many) and a scanning frequency of 2.5 MHz, axial image resolution lies at
approximately 0.7 mm while lateral resolution lies at about 3mm, as reported
in [124]. Scanning through the skull bone leads to significant absorption of
sound energy, leading to low image contrast and signal-to-noise ratio (SNR).
Furthermore, the large wavelength results in large and inconsistent speckle
patterns which reduce the signal-to-noise ratio (SNR) further in the images.
Scanning through skull bone also introduces non-linear and unknown distor-
tions, especially at non-orthogonal probe angles, due to refraction phenomena.
Also, common medical ultrasound machines make wrong assumptions about
the speed of sound in brain and particularly skull bone tissue, resulting in
de-focusing phenomena and aberrations of ultrasound wave phases [75].

The low contrast, SNR, missing anatomic boundaries and non-linear dis-
tortions make TCUS a challenging image modality, which partly explains why
physicians require plenty of experience in order to be able to reach high
diagnostic accuracy using 2D TCUS images [99, 163].
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Figure 1.3: Four examples of transcranial ultrasound (TCUS) images in 2D.
The midbrain and substantia-nigra hyper-echogenicities within the midbrain
are highlighted with a white dashed outline. Top left: the example shows a
TCUS image quality given an optimal bone window, leading to comparably
high contrast and complete anatomic outlines of midbrain and SN. Top right:
the image was taken through a medium-quality bone window with lower
contrast and less visible anatomy surrounding the midbrain. Bottom left: the
image shows a low-quality situation, with partly missing midbrain boundaries,
low contrast, few visible anatomic features and low contrast of the opposite
cranial wall. Bottom right: in about 10% of subjects, the bone window does
not allow sufficient sound energy to penetrate the skull [24]. This leads to
un-interpretable images, both in 2D and 3D.
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1.4 Thesis Contributions and Structure

As explained, the TCUS in 2D is a very promising technique with high po-
tential and possibly far-reaching consequences for detection and diagnosis of
Parkinson’s disease and other neurological movement disorders, in particular
at an early stage. However, we have also described the critiques of this technique
and the challenges of this image modality.

In this thesis, we propose several methods for making the TCUS technique
easier to use and more objective, while expanding the research possibilities in
terms of diagnostic value due to the extension of the technique into 3D.

In the following, we will explain the contributions of this thesis in detail,
where each contribution will be laid out by dedicated chapters:

Chapter 3 - System design and first acquisitions of TCUS data in 3D: We
propose, for the first time, to extend the TCUS examination method to 3D by
using a 3D Freehand Ultrasound approach. Through an additional reference
tracking target attached to the forehead, we acquire data bi-laterally and
reconstruct it into a joint volume, which partly allows for compensating low-
quality bone windows. We record an unprecedented 3D-TCUS dataset with
a significant cohort-size of 11 diagnosed PD patients and 11 healthy controls
for comparison between the groups. Using manual expert segmentations, we
perform the first quantitative analyses of 3D SN hyper-echogenicities and
report first volumetric measures of anatomy. The system design and initial
data analysis were incrementally presented at multiple medical conferences
[117, 120, 118] and eventually awarded by the German Parkinson Association
in 2011 [119].

Chapter 4 - First multi-observer study and first steps towards computer-
aided diagnosis: Using two different segmentations of the 22-subject dataset
by an expert and novice observer, we perform the first multi-rater study based
on volumetric measures of anatomy. We report the first values for correlation
between volume measures and compare them to 2D, given a first indication that
the objectivity of TCUS is increased by using analyses in 3D. Using decision-
making and machine-learning methods, we demonstrate that the patient- and
control-groups can be separated with sensitivities and specificities of up to
91% and 72%, respectively. The results have been published in the Journal for
Ultrasound in Medicine and Biology [121].

Chapter 5 - (Semi-)automatic midbrain segmentation: Manual segmenta-
tion of target anatomies in 3D ultrasound volumes is tedious and would take
too much time if executed in clinical routine. We therefore propose to perform
the segmentation of midbrain and SN hyper-echogenicities in a computer-
assisted manner. In chapter 5, we propose a computer-aided segmentation
method for the midbrain, since this facilitates the following step of SN detec-
tion. Previous work in literature is restricted to 2D midbrain segmentation
and is often performed in a manual manner. In contrast to that, we present
a (semi-)automatic approach for volumetric segmentation of the midbrain in
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3D ultrasound volumes, based on an explicit active surface method, which
is extended using a midbrain shape prior and localized region-based cost
function for robust and accurate performance. The approach was published
at the International Conference for Medical Image Computing and Computer
Aided Intervention (MICCAI) 2011 [2].

Chapter 6 - Automatic detection of Substantia Nigra Echogenicities: Once
the midbrain outline has been identified using manual or computer-aided
segmentation, the inside voxels have to be classified to identify SN echogenic-
ity regions, which eventually yields the diagnostically valuable information.
While previous work is again restricted to 2D B-mode images and ranges from
morphological operations to supervised classification of intensity features, we
propose a probabilistic approach based on Random Forest classification. Using
illumination-invariant local intensity descriptors and a novel prior incorporat-
ing the spatial location of the SN within the midbrain, we perform a fuzzy
classification of midbrain voxels, leading to a probabilistic posterior map of
SN voxel probabilities. The approach was published at MICCAI 2012 [113].

Chapter 7 - Towards improved reconstruction of bi-lateral TCUS volumes:
When acquiring transcranial ultrasound images, scanning through the skull
bone introduces non-linear distortions, spatial mis-registration and phase
aberrations. Slight mis-calibration of the 3D Freehand Ultraosund system
leads to additional linear registration errors between the bilateral volumes. In
this chapter, we propose a first step towards a compensatory reconstruction
technique, which uses a sequence of inter-dependent segmentation, registration
and reconstruction steps (JSR2) to combine images taken from the left and
right bone window into one joint volume. We present first results on simulated
midbrain 3DUS data and on several cases of the 22-subject dataset.
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Basics of Ultrasound
Imaging

In order to better understand the image formation of transcranial ultrasound
(TCUS) images and medical ultrasound in general, this section is dedicated to
explaining the basic physical properties of ultrasound. We will explain the fun-
damentals of wave formation and its propagation in human tissue, including
phenomena like transmission, reflection and scattering. We will furthermore
explain how these phenomena can be generated and measured using ultra-
sound transducers in order to create the grey-valued images which are usually
used in clinical practice, including 2D images as well as 3D US image volumes.
At several points, we will draw conclusions related to TCUS imaging, e.g.
by explaining the physical background for typical TCUS image artifacts and
challenges described in the introduction.

2.1 Basic Ultrasound Physics

We begin by explaining the basic principles of wave generation and propagation
of wavefronts emanating from point-sources. Next, we explain the principles
of interaction of a single ultrasound beam with tissue. This lays the foundation
for ultrasound imaging and provides basic explanations for tissue appearance
in actual ultrasound images (see section 2.1.2). At the end of this section, we
revisit our medical problem and explain implications of learned physical US
principles for TCUS imaging.

2.1.1 Wave generation and propagation

Ultrasound is a type of sound wave which propagates through human tissue as
its medium. The wave is generated by mechanical excitation through a sound
inducer. In medical ultrasound, these inducers are typically piezo-electric
elements. The front face of each piezo-electric element serves as a membrane
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which can generate oscillating high-frequency excitations in the MHz range.
The excitation is created spatially close to human tissue and by using acoustic
coupling measures such as coupling gel, the excitation is transferred into
human tissue through the piezo-electric membrane, which pushes the adjacent
tissue. This creates high-frequency regions of compression and rarefaction of
the molecules in the tissue [67]. Through neighbor-to-neighbor interactions,
these compression and rarefaction regions are propagated through the tissue,
creating the ultrasonic waves which lie at the fundament of medical ultrasound
imaging.

Just like electromagnetic waves, ultrasound waves have basic properties,
such as speed of sound ¢, frequency f and wavelength A. These three wave
parameters have the following important, linear dependency [67]:

c=f-A 2.1)

From equation 2.1, we can see that the speed of sound with which the wavefront
travels through human tissue depends linearly on frequency and wavelength
of the excitation. Since the speed of the soundwave is approximately constant
in human tissue, increasing the frequency leads to a reciprocal decrease of the
wavelength.

Ultrasound is defined as mechanical waves with frequencies higher than
the range that is audible to humans, i.e. with frequencies exceeding 20 kHz.
However, the frequencies of medical ultrasound lie much higher, typically in
the range of 1-40 MHz. The average speed of ultrasound in human tissue
assumed by modern medical ultrasound scanners lies at 1540 m/s. Based
on the above explained inverse-dependency between ultrasound frequency and
wavelength, we can calculate that medical ultrasound wavelengths lie between
1.5mm and 0.038mm.

It is important to note that medical ultrasound devices assume an average
and constant speed of 1540 m/s for human tissue. However, the actual speed
of sound depends on the tissue type. Table 2.1 enumerates the speed of sound
in different types of human tissue.

Axial, lateral and temporal resolution: In the following, we will explain
three types of resolution important in an ultrasound imaging system, namely
longitudinal, lateral and temporal resolution.

The longitudinal resolution (also called axial, radial or depth resolution)
describes the resolution along the ultrasound beam, i.e. in direction in which
the wave is traveling. It describes the smallest possible distance between two
objects so that the ultrasound system can still display them as separate objects.
This resolution is determined by two factors, the wavelength A and the spatial
pulse length (SPL) [67]. The SPL describes the length of the pulse which is
modulated onto the carrier wave with a certain wavelength A (cf. figure 2.1)
and often is a multitude of A, depending on the number of wave cycles n which
the ultrasound system uses to form the pulse. The longitudinal resolution r
can be calculated from these two factors as:

SPL  n-A _ n-
= = — =

(9}

~
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Density Velocity Acoustic impedance

Material (kg/m3) (m/s) (kg/m2/s)
Air 1.2 330 0.0004
Water (20°C) 1000 1480 1.48
Liver 1060 1550 1.64
Muscle 1080 1580 1.7
Fat 952 1459 1.38
Brain 994 1560 1.55
Kidney 1038 1560 1.62
Spleen 1045 1570 1.64
Blood 1057 1575 1.62
Bone 1912 4080 7.8
Lung 400 650 0.26
Soft tissue average

(e.g. abdomen) 1060 1540 1.63

Table 2.1: Speed of sound in different types of soft tissue in the human body
(from [67]).

As this formula states, the minimum resolvable distance between two objects is
directly dependent on the wavelength and indirectly dependent on the system
frequency, i.e. higher frequencies allow for resolving smaller structures and
thus increase logitudinal resolution.

The lateral resolution (also called angular, azimuthal or transverse resolution)
describes the ability to “distinguish, as separate entities, two objects adjacent
to each other oriented perpendicular to the beam axis” and is thus “a major
factor in the quality of diagnostic ultrasound imaging” [67]. Lateral resolution
is determined by the beamwidth of the imaging system, which for its part
is determined by factors such as ceramic geometry, frequency, focusing and
distance of the transducer [9]. For focusing, several single-element piezo-
crystals are put in a geometric arrangement and excited with a carefully chosen
set of time delays for each element, reducing side lobes and focusing individual
wavefronts into a spot of high sound intensity at distance F in front of the
transducer face (see also section 2.2 and figure 2.2). The formula for beam
width w of a single transmitter piston can be given as [67]:

L _L4F _14FC
22 2af’

2.3)

where 2a stands for the aperture of the transducer’s front face and F stands for
the focal length of the transducer.

The temporal resolution of the system describes the temporal update rate
with which new images (single scanlines, 2D images or even 3D volumes) can
be generated. The temporal resolution depends mainly on line density and
penetration depth [51, 67], since the machine has to wait until the furthest
desired tissue has been insonified and the echo has traveled back to the
transducer. For example, at a penetration depth of 15cm and an assumed speed
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N

Figure 2.1: Modulation of an excitation pulse (orange curve) onto a carrier
wave (grey curve) with wavelength A. The resulting modulated pulse (blue
curve) is used for excitation of a longitudinal ultrasonic wave insonifying the
tissue.

of sound of 1540 m/s, the travel times for transmit and receive of a single
scanline amount to approximately 0.195ms. A typical 2D ultrasound image is
made up of several scanlines. Assuming 128 scanlines, the time necessary to
acquire the information for a single image takes roughly 25ms, resulting in a
maximum possible update rate of 40Hz.

2.1.2 Interaction with Human Tissue

The interactions between the ultrasonic wave and human tissue cause sim-
ilar wave behavior as observed in light, including reflection, transmission,
refraction, scattering, diffraction, divergence, interference and absorption [67].
Different types of tissue in the human body have different acoustic impedances

Z, which can be calculated using tissue density p and speed of sound ¢ (see
table 2.1 for examples of speeds of sounds in different types of human tissue),
ie.

Z=p-c (2.4)

The so-called impedance mismatch, i.e. the difference in acoustic impedances
between adjacent tissue layers, causes reflection, the most important physical
effect in medical ultrasound imaging. For two tissue types with impedances
Z1 and Z; (with tissues Z; and Z, lying proximal and distal to the transducer
respectively) and for perpendicular incidence of the sound beam onto the
tissue boundary, we can calculate the reflection coefficient «,, which describes
the percental sound energy that is reflected at the tissue boundary:

Zo — 71\ 2
= (22— 2t 2.
o (Zz+Zl> @3)

The amount transmitted at the tissue boundary and allowed to travel further
into tissue can be calculated as:

47,7,

a=1—a, = 2122 _
(Z1+ Zn)?

(2.6)

For specular reflection, i.e. for perpendicular incidence of the sound beam
onto the tissue boundary, these equations for transmission and reflection are
independent of the frequency [67].
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Another important physical phenomenon in medical ultrasound is scattering.
Scattering occurs when the wavefront hits tiny reflectors, whose size is on
the order of the wavelength or smaller. Each of these small scatterers cause a
reflection of the soundwave as a point-source. The overlay of such a myriad of
acoustic point-sources cause a complex pattern of constructive and destructive
wave interferences [67], resulting in an overall brighter appearance for a large
number of micro-scatterers. For example, a high amount of these reflectors are
present in soft tissue, causing a so-called hyper-echogenic (brighter) appearance
in US images, while fluid-filled cavities such as cysts contain less micro-
scatterers and thus appear in a so-called hypo-echogenic (darker) manner.

Depending on the speed of sound between two adjacent tissue types,
another type of sound wave interaction occurs, namely refraction. If a sound
wave front hits the tissue boundary in a non-perpendicular angle, the sound
wave does not travel further in a straight line after the tissue boundary, but
experiences an angular deviation from its original path. The angular deviation
is described by “Snell’s law” [67]:

ci sin 91‘
c; sin6;’

2.7)

where 6; is the incident angle, 0; is the transmitted angle, c; is the speed of
sound in the incident tissue and c; is the speed of sound in the transmitted
tissue.

In contrast to reflection and refraction, where ultrasound energy was re-
turned to the transducer, the process of absorption causes a dissipation of energy
into tissue and a conversion into other energy forms, mostly heat [67]. The
amount of absorption is determined by the speed of sound, the viscosity and
the relaxation time of the tissue. Scattering also causes a loss of energy and the
combined effects of scattering and absorption result in the so-called attenua-
tion of ultrasonic beam energy. The reduction in acoustic energy due to the

combined effects of absorption and scattering follows an exponential function
[67]:

Po = Pmax €Xp (—az), (2.8)

where py is the peak pressure amplitude of the beam at depth z, pmax the initial
peak pressure amplitue of the beam, z the distance of the wavefront from the
transducer face and a the attenuation coefficient. The coefficient a = a; + « is a
sum of of the scattering coefficient a; and the absorption coefficient «. The unit
for these coefficients is called neper [Np].

For example, brain tissue causes an attenuation of a = 0.098Np/cm, while
skull bone has a more than 20 times higher value of 2 = 2.3Np/cm, both at
a frequency of 1 MHz [67]. In terms of decibel (dB), the attenuation in brain
tissue at 1 MHz amounts to a energy reduction of 0.85 dB per cm, while in
skull bone, the reduction is as high as 20 dB per cm. The half-value layer (HVL)
or half-value thickness of material is the thickness of tissue that will reduce the
sound intensity to half its original value. For a scanning frequency of 2 MHz,
which is common to TCUS imaging, the HVL of brain tissue is 2cm [67].
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2.1.3 Implications for Transcranial Ultrasound

In summary, there are several important physical properties of wave propaga-
tion which are relevant to the topic of this thesis:

e Visual echoes in brain ultrasound images are caused by wave reflec-

tions at boundaries between brain tissue regions with different acoustic
impedances.

The speeds of sound in skull bone and brain tissue are different from the
average speed of sound in human tissue assumed by medical ultrasound
devices. This causes aberrations of the ultrasound wave phase [75] and
non-linear distortion of the image. Also, the ultrasound beam is de-
focused, causing a decrease in lateral image resolution and an overall
deterioration of image quality. Furthermore, this causes a mis-assessment
of distance between ultrasound transducer and tissue boundaries, also
referred to as longitudinal mis-registration [67].

Skull bone tissue is a highly attenuating material and the attenuation
increases linearly with frequency. Thus, low-frequency ultrasound on
the order of 2-5 MHz has to be used to penetrate the bone layer [150],
which in return reduces longitudinal tissue resolution and leads to large
speckle patterns.

Microscopic objects with sizes on the order of ultrasound wavelength
or smaller cause micro-scattering. Such areas appear brighter in the
ultrasound image and are hence called hyper-echogenic. As hypothesized
by reference groups in TCUS [23, 168, 99], ferrite deposits in the area
of decayed SN cells cause micro-scattering and are responsible for the
hyper-echogenic appearance of the SN in Parkinson disease patients.
However, so far it has not been possible to confirm this hypothesis.

According to Snell’s law, sound waves hitting tissue boundaries at non-
perpendicular angles are non-linearly refracted. At the interface of skull
bone and brain, this refraction is important for the most lateral US
scanlines in the 2D image, i.e. the further away from the midbrain, the
more the sound beams got refracted, leading to increased de-focusing
and distortion in the lateral image regions. In TCUS, this is visible as
notably decreasing image quality towards the lateral edges of the US fan
(see figure 1.3).
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2.2 Beamforming and Transducer Geometries

Medical ultrasound systems feature a range of transducers types which can be
applied for different application areas. Transducers are made up of several pis-
tons which create acoustic pulses that are transmitted into tissue. Transmission
occurs only if sufficient acoustic coupling is provided, which is why transducer
housings provide acoustic bonding and ultrasonic coupling gel is provided
to eliminate the air gap between the transducer surface and the patient’s skin.
There are various possibilities for geometric arrangement of piezo-elements in
transducers. Three common geometries are linear, curvilinear and phased-array
transducers.

Beamforming: In order to create beams with low lateral extent and thus high
lateral resolution, several transducer elements at a time are used to generate
an electronically focused beam. A sub-group of elements from the overall
transducer arrays fire acoustic pulses with a previously computed sequence
of individual time delays (see figures 2.2A and 2.3). The time delays are
computed such that the individual wavefronts create destructive interference
in all angular directions from 0 = [—90°...90°] except in axial direction, i.e.
for & = 0, where constructive interference ideally should lead to a laterally
narrow acoustic pulse with high energy. This basic principle of electronic
beam-focusing is called delay-and-sum beamforming [83], i.e. in a sub-array
with M piezo-elements, the output signal z(f) can be defined as an amplitude-
weighted and time-delayed sum of the M individual elements’ acoustic impulse

responses Y, (t):

M-1

z(t) = Y wnym(t — Aty), (2.9)

m=0
where the amplitude weights w,, are called the array’s shading and the set of
time delays At;, is called the array pattern [83]. Array shading and pattern
are optimized such that the beam’s shape becomes highly focused and side
lobes become suppressed as much as possible. Side lobes are un-desired fields
of high acoustic energy in non-axial angular direction, i.e. 8 # 0°. Since
side-lobes can be considered as weakened beams into other, un-desired angular
directions, they create tissue responses from areas which are un-desired for the
current beam. This leads to image clutter and angular mis-registrations, which
is why ultrasound transducer and systems are designed to suppress side lobes
as much as possible.

By changing the time delays of the array’s sub-group of elements, the beam
can not only be focused, but the wavefront can also be directed into a certain
direction (see figure 2.2B). This process is called electronic beam-steering [83].
Through both focusing and beam-steering, a transducer array can be utilized
to scan the tissue with acoustic rays in spatially ”discrete” directions which are
called scan-lines.

Proper array shading and array patterns are usually implemented in the
ultrasound machine and are only manually variable if a research interface
is provided (e.g. as in the Sonix RP ultrasound machine with research SDK,
Ultrasonix, Toronto, Canada). Since the exact theory and optimization of
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proper beam-forming and beam-steering techniques are out of scope for this
thesis, we refer the interested reader to [83] and [80].

Transducer geometries: As mentioned, piezo-elements in the transducer are
commonly arranged in a linear or curvilinear arrangement, as seen in figure 2.3.

Linear arrays can provide good temporal and spatial resolution, but the
transducer’s ROI is limited by the width of the array. Hence, if a wide ROI
is desired, the large width of the transducer’s footprint makes it difficult to
properly maintain contact to the patient’s skin surface [67].

Curvilinear arrays produce large fan-shaped sector images since the trans-
ducer elements are arranged along an arc. Similar to linear arrays, groups of
elements are fired together in order to generate focused acoustic pulses with
high-energy wave-fronts. Scan-lines are oriented in perpendicular direction
from the curved transducer surface. The focus qualities at the edges of the fan
are similarly high as in the image center, but due to the angular orientation of
scan-lines, the “gaps” between rays increase with higher distances from the
transducer surface.

This disadvantage is also present in phased-array transducers. As described,
the fan-shaped image geometry is generated artificially through electronic
beam-steering. Analogously, the lateral image resolution decreases radially
from the transducer surface, and the “gaps” between acoustic rays have to be
filled with polar interpolation in the so-called scan conversion process (see
chapter 2.3). In contrast to curvilinear arrays, however, focusing properties for
scan-lines at the fan edges deteriorate compared to rays around the centerline
[67, 83].

With regard to transcranial imaging and this thesis, it should be noted that
transcranial ultrasound is mostly performed with phased-array transducers, due
to their small footprint and the possibility to acquire images through a small
window with a relatively large ROI. However, as Hedrick notes, imaging with a
linear phased-array at low frequencies increases the number and intensities of
side lobes for each element [67]. Additionally, the regular spacing of elements in
the array causes so-called grating lobes, which occur due to summation of low-
intensity side-lobes from the individual array elements. These secondary lobes
can contain significant energy and lead to clutter, reduced image contrast and
spatial mis-registrations, in particular at highly reflective interfaces (e.g. brain
tissue to contra-lateral skull-bone) [67]. Additionally, side- and grating-lobe
suppression becomes increasingly difficult for large steering angles [67, 83].
These physical phenomena provide further explanation for the low image
quality of TCUS.
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Figure 2.2: (A) Electronic focusing and (B) beam-steering of ultrasonic rays
using multiple elements and spatial array processing (images adapted from
[80]).
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Figure 2.3: Common transducer geometries in medical ultrasound. Linear
arrays are used for e.g. vessel imaging while curvilinear arrays are used for
e.g. abdominal imaging. Transcranial ultrasound is typically performed using
phased-array transducers due to their small footprint (image adapted from
[80]).
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Figure 2.4: Digital signal processing steps necessary to create a clinically usable
B-mode image from raw RF ultrasound data.

2.3 RF and B-Mode Ultrasound

As discussed in the last section, ultrasound transducers contain an array
of piezo-elements which serve as pistons transmitting acoustic waves into
human tissue. Through electronic focusing and beam-steering techniques, the
transducer produces narrow beams of high acoustic energy. These beams are
used to sequentially insonify narrow strips in front of the transducer. The
returning echo are detected as so-called scanlines by the ultrasound system.

By cycling through sub-groups of array elements or through adaptation of
delay patterns in transfer- and receive-mode, the beam can be steered in an-
gular direction to create a sweep of scanlines. The received and beam-formed
scan-lines are digitized and stored in a matrix with scan-lines as columns
and longitudinal echo intensity samples as rows. Rows are increasingly am-
plified depending on their depth, in order to compensate for the increasing
absorption of ultrasound energy in the tissue. This process in called time-gain
compensation (TGC). The data matrix after beam-forming and TGC is called
radio-frequency (RF) or raw ultrasound data (RF-US). The steps for generation
of RF-US data explained until now are visualized in figure 2.4A.

Numerous analogue and digital signal processing steps, which will be
explained in the following, are necessary to create a clinically interpretable
ultrasound image from the RF-US echo amplitudes acquired at the transducer
front face. Figure 2.4B displays the individual signal processing components at
each step.

RF data processing: The first digital processing step on received RF scanlines
is to perform a bandpass filtering in order to reduce noise and limit the
signal to the band of clinically relevant signal frequencies. Bandpass filters
can be implemented using a sequence of finite-impulse-response (FIR) filters
such as a low-pass and a high-pass filter in sequence, or a direct band-pass
implementation, e.g. using Butterworth filters [7]. Further processing steps
may be implemented in a clinical ultrasound device, however, the exact filtering
steps are often proprietary.

Envelope detection: Each column in a RF data matrix represents a single
scanline after beamforming, TGC and bandpass filtering. The received ultra-
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sound signal is still modulated with the frequency of the carrier wave and
needs to be demodulated and the envelope of the signal has to be found. As
described by Misaridis in [106], the amplitude-modulated RF signal can be
expressed as a real-valued scalar signal function f(x) in the spatial domain:

f(x) = A(x)cos 2t fox + ¢ (x)], (2.10)

where A(x) is the amplitude-modulation function, fj is the base frequency of
the carrier wave and ¢ (x) is the phase modulation function.

For signal processing, and in particular envelope detection and demodula-
tion, it is advantageous to work with a complex-valued signal representation
called analytic signal. The analytic signal better represents a signal’s structural
information by decomposing it into its local amplitude and local phase [164].
For example, it has been demonstrated that by using the analytic signal and its
structural decomposition, local phase and intensity information can be used
for improved non-rigid registration of ultrasound images [177]. The analytic
signal f4(x) of a signal f(x) is defined as:

fa(x) = f(x) —ifu(x) (211)

where fi(x) is the Hilbert transform of the real-valued signal f(x). The
Hilbert transform is defined in spatial and frequency domain as [177]:

1 > f(r)dr o

fu)=— [ % s Fy(w) = F(w) - -sign(w)  (212)

From the definition of the Hilbert transform in frequency domain, one can

see that in frequency space, the negative-valued frequency components of the

analytic signal cancel each other out, and in the range of positive frequencies,

the spectrum is twice the spectrum of the original signal. In frequency domain,

we can thus denote the analytic signal as [177]:

Fy(w) = F(w) - [1+ sign(w)] (2.13)

Using this definition, the local phase of the signal f(x) can be computed as:

®(x) = tan ! < J{;f&) (2.14)

The envelope function can be computed as the local energy A(x) of the signal

fx):
Aenv(x) = A(x) = [|Ifa(x)] = 1/ f2(x) + fR(x). (2.15)

In practical terms, the envelope function inverts negative-valued samples
of the original RF signal and forms a tight envelope around the peaks of the
resulting signal.

Compression and re-sampling: The obtained envelope signal still contains
high-frequency information of spatial samples in longitudinal beam direction.
However, the dynamic range of the signal is too high for visual perception by
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humans. For example, in transcranial imaging, a dynamic range of around
45-50dB is recommended ([150], see chapter 1.3). This range of amplitudes
has to be compressed into a visually perceptible range. Although medical
ultrasound devices use proprietary means for signal intensity compression, one
basic step in most devices is a logarithmic compression of the signal, which
enhances the differences between low-amplitude image regions. Another
necessary compression step is a re-sampling of signal bit-depth, also called
quantization. Ultrasound machines typically process signal information in
a 12-16bit representation, while displaying on a typical computer monitor
requires an 8-bit representation. For this, the enveloped, log-compressed RF
data is re-sampled and quantized at an 8-bit resolution for further processing
and displaying in the machine. Overall, the compression and re-sampling of
image sample intensities I can be summarized as [67]:

_ _log(I/Imin) _
Icompressed =255 <log ( L/ Imin) (2.16)

where Inin and Imax denote a lower and upper threshold for original signal in-
tensities that should still be considered in the compressed range. The obtained
values can be stored as an 8-bit character array for further processing.

Scan conversion: In contrast to linear arrays, where all scanlines face away
from the transducer perpendicularly and parallel to each other, curvilinear
arrays and phased-array transducers perform an angular variation of the beam
direction. After RF scanline have been acquired and processed, they are stored
in a matrix array in polar coordinates, i.e. in terms of beam angle (matrix
columns) and sample depth (matrix rows). In order to visualize the echo re-
flections in a spatially correct manner, a transformation from polar coordinates
to Euclidean coordinates has to be performed. The necessary information
can be calculated if exact transducer specifications and scan settings are avail-
able. After polar transformation, image pixels falling between rays have to be
interpolated, e.g. by using bi-cubic interpolation [67].

B-mode post-processing: After all steps described above, a so-called ultra-
sound B-mode image is obtained. Typically, however, clinical ultrasound ma-
chines still perform several post-processing steps on the grey-valued images in
order to further improve visual perception of the image for the physician. The
overall goal is to suppress artifacts without diagnostic value while highlighting
image features and artifacts which carry diagnostic information. Example
operations performed after scan-conversion can include contrast-enhancement
[67], edge-enhancement as well as global or local smoothing methods, such
as speckle-constrained denoising [91, 153] and other despeckling techniques.
For surveys on speckle reduction methods, we refer the interested reader to
[148, 86].
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2.4 3D Ultrasound

The past few chapters explained the physical background of 2D ultrasound
imaging and the B-mode image formation process. In this thesis, we make
use of an extension from 2D to 3D ultrasound to investigate potential im-
provements of the 2D method. 3D ultrasound is a relatively young medical
imaging technique, but due to its many advantages has already found appli-
cations in several clinical areas such as abdomen, pelvis and breast imaging,
cardiovascular applications and ultrasound-guided interventions [110].

There are several technologies [123] for acquisition of 3D ultrasound vol-
umes, based on two basic approaches. The first approach is to compound a
3D volume by acquiring a set of 2D images along with information about the
3D spatial position and orientation of each ultrasound image in 3D space. The
2D images and 3D pose are combined to reconstruct a volume, e.g. through
forward or backward compounding techniques [175]. The second fundamental
approach is to use a 2-dimensional array of transducer elements and perform
electronic beam-steering in all three volumetric directions, instead of only in a
plane.

3D ultrasound through spatial compounding: For the first approach, it is
necessary to obtain the 3D pose of the transducer for every obtained 2D image.
Several solutions exist for this problem. One way is to mechanically steer the
transducer element array, e.g. using a micro-step-motor. This approach is
used in so-called “wobbler transducers” by steering the array in a tilt motion
(see figure 2.5A), and creating e.g. a cone-shaped volume. The advantages
of this approach are that the system is calibrated by design, the micro-step-
motor delivers highly accurate 3D pose information and the mechanic parts are
encased together with the imaging array in the transducer’s housing, making
on-site calibrations unnecessary. However, the footprint of wobbler transducers
is usually large, effectively limiting the maneuverability of the transducer.
This limits wobbler transducer to special anatomies, such as fetal imaging
or abdominal imaging e.g. of the liver [123]. Currently, we are not aware
of clinically available transcranial wobbler transducers, probably due to the
conflict between footprint of wobbler transducers compared to the small size
of the pre-auricular bone window for TCUS imaging, which limits the usability
of this approach for our work.

Another approach for 3D pose retrieval is to use an external tracking device,
e.g. an electromagnetic (EM) or optical tracker. As long as the tracking device
maintains good tracking conditions (e.g. keeping a small distance from the field
generator in EM tracking or maintaining an uninterrupted line-of-sight between
camera and tracking target in optical tracking), the examining physician is able
to change the transducer pose in an arbitrary direction (see figure 2.5B), which
is why this approach is coined ”3D freehand ultrasound”. The 3D Freehand
method combines the advantages of superior image resolution of a regular
transcranial transducer and the ability to perform arbitrary transducer motions
during acquisition, which is why we utilize 3D Freehand sonography in this
thesis (see chapters 3.1 for a description of our recording setup and 3.2 for the
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necessary calibration procedures). The 3D freehand ultrasound technique has
also been used in other fields of neurological and neurosurgical research, e.g.
for intra-operative guidance [156, 128], ultrasound-based brain shift analysis
[129] or transcranial color-Doppler based detection of vascular abnormalities,
i.e. cerebral aneurysms [90].

Transducers with 2D matrix arrays: The other, fundamentally different method
for 3D scanning is to utilize a 2D matrix array of transducer elements. Similar
to a 1D-array, which is useful for electronic steering of focused ultrasound
beams in a 2D plane, a 2D array can be used for electronic beam-steering in
3D and creating inherently three-dimensional B-mode scans [67]. Several thou-
sand transducer elements are necessary for proper 3D beam-steering, making
this technique technologically much more complex and ultrasound devices
significantly more expensive. Also, up to now, the volumetric resolution of
2D matrix array scans is lower than for regular 1D transducer arrays, making
its usage inside a 3D freehand ultrasound system a more practical choice for
3D-TCUS scanning. Nevertheless, the 2D matrix array technology bears many
advantages, such as inherent 3D scanning without the necessity for a recon-
struction step. One of the most significant advantages is that 3D volumes can
be obtained much faster, allowing for high-frequency volumetric scans at up
to 60 frames per second. This makes in-vivo examination of the beating heart
possible, enabling detailed analysis and modeling of the heart, in particular
when combined with other modalities such as 4D CT [74].

In summary, 3D Freehand offers the best resolution and is more suited
for static TCUS tissue imaging bi-laterally than e.g. wobbler arrays or 2D
matrix arrays. However, it is important to note that the methods proposed
in the following chapters can also be applied onto other means of 3D B-
mode US acquisition such as 2D matrix arrays. Therefore, the methods are
complementary to current state-of-the-art as well as to future developments of
these techniques.
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Figure 2.5: Different approaches and acquisition geometries for 3D scanning:
A) mechanically steered “wobbler” array, B) 3D freehand ultrasound scan and
C) 2D matrix arrays with electronic beamsteering.
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2.5 Ultrasound Image Simulation

Based on the physical properties explained in the last sections, ultrasound
wave propagation, tissue interaction and ultrasound images as a whole can
be simulated, e.g. for purposes of ultrasound training [28], multi-modal
registration [174, 136, 94] or ultrasound system design [78].

Towards the end of this thesis, in chapter 7, we will utilize MRI volumes,
cropped around the midbrain region, to simulate 3DUS volumes and create a
gold-standard dataset for experiments towards improved 3DUS reconstruction.
The requirements for the simulation are low in terms of image quality, but the
speed needs to be high, due to the necessity to simulate in 3D.

In the following, we describe three main types of ultrasound simulation,
namely ray-based, wave-based or convolution-based simulation. Based on this,
we will argue why we use convolution-based simulation in our experiments.

Ray-based simulation uses the analogy of optical rays and takes into account
their respective physics [84]. This simulation method has been used for multi-
modal registration of US to pre-operative CT [174, 136, 94] as well as for fast
simulation during ultrasound training [28].

The basic principle is to approximate a desired “tissue” area by a digital
map of acoustic impedance regions representing different tissue types. From
equation 2.4, we recall that impedance is a function of tissue density and
speed of sound, i.e. Z = p - c. Since ultrasound machines assume a constant
speed of sound in tissue, impedance becomes directly dependent on the tissue
density. Such information can be gained from other imaging modalities such
as CT, where the assumption is made that tissue density correlates with the
Hounsfield unit quantifying the amount of X-ray radiation absorption [174].
Therefore, the image intensities in a given CT volume can serve as a relative
impedance map for ray-based ultrasound simulation. These intensities are re-
sampled along rays representing the ultrasound scanlines. Recalling equations
2.5 and 2.6 for acoustic reflection and transmission percentages, we can denote
the reflected sound intensities If and transmitted sound intensities If for the
k-th sample along the ray as [94]:

Zo — 71\ 2
=22 21 2.17
47,7
If=1-—"1"_ (2.18)
(Zl + Zz)

where If‘ is the incoming sound intensity, Z; the previous and Z; the
next impedance at the k-th sample, in direction from transducer apex to scan-
line end. Given these prerequisites, reflection and transmission maps can be
calculated for the tissue and subsequently scan-converted and blended into
an ultrasound-approximating image using a recursive calculation of image
intensities at each sample k [94]:

=1 .k
=y >0 2.19)
1 k=0,
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Figure 2.6: Example image for ray-based ultrasound simulation of the liver,
simulated from a CT angiography volume, showing reflection map (left),
transmission map (middle left), the fused image and ray-based simulation
(middle right) and an original ultrasound image of the same anatomy (right)
(image reproduced from PhD thesis of Wolfgang Wein [173], by courtesy of the
author, email for approval received 24. August 2012).

An example simulation image [173] can be seen in figure 2.6. A highly acceler-
ated implementation for solving this recursive calculation utilizing modern-PC
Graphics Processing Units (GPU) has been described by Kutter et al. in [94].
It should be noted that ray-based approaches usually aim at modeling only
the major ultrasound-tissue interaction principles, such as reflection and trans-
mission. Refraction usually is ignored since this would require a refraction
coefficient map with the same size of the volume or image. Also, refraction
only has a minor effect on ultrasound image appearance [94]. Furthermore,
ray-based simulations are not capable of simulating fine-scale sound-tissue
interactions such as scattering. For incorporation of scattering phenomena
and simulating speckle patterns, other approaches have to be used, such as
semi-transparent overlays of speckle maps precomputed through wave-based
simulation [136] or through learned texture maps from a database of speckle-
rich US images [182].

Wave-based simulation allows for simulation of more complex ultrasound
phenomena such as interference, scattering and diffraction [84]. The basic
principle of wave-based simulation is to simulate wave-front propagations
through tissue, emanating from a virtual ultrasound transducer that is simu-
lated in detail as well, including individual piezo-elements, their apertures and
beam-steering mechanisms (see chapter 2.2).

Once an ultrasound pulse has been emitted using the simulated transducer
model, the wave propagates through tissue and is reflected and scattered
by inhomogenities of density and speed of sound. Similar to the ray-based
approach, the received field can be approximated or simulated if quantitative
values for the underlying scatterer field are assumed. In contrast to ray-based
simulation, wave-based simulation is based on solving an appropriate wave
equation [78].

A linear model for acoustic wave propagation in an inviscid fluid is given
by:

S =V =0 (2.20)

where p is the acoustic pressure of the wave and cy the equilibrium speed of
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sound.

In order to account for changes of wave propagation due to variations
in the medium concerning e.g. density and diffusivity, as well as non-linear
effects, more sophisticated, non-linear models of wave propagation are often
considered. In [116], Pinton et al. describe a non-linear full-wave equation for
wave propagation in an attenuating medium as:

o 1p 5Fp B Fp 1, ¢

2o T dap + ock or2 + pv p m;rsm =0  (221)

The first two terms are equal to the terms of the linear wave equation, again

with p standing for acoustic pressure and c for equilibrium speed of sound.

The third term models thermoviscous diffusivity, with a diffusivity parameter

J, which can be expressed as a function of the absorption coefficient a as

5 = 2ac®/w?, with w being the angular frequency. The fourth term models

nonlinearity, with a non-linearity parameter  and p standing for the medium’s

density. The fifth term models variations in density of the insonified medium.
The last v terms model relaxation mechanisms following the condition:

. Ac
Cm + WmGm = umwmavzp- (2.22)

This relaxation equation depends on a selected frequency-dependent attenua-
tion law, which models v peaks at characteristic frequencies wy, with weight a,,.
The changes in speed of sound Ac must adhere to the Kramers-Konig relation
to preserve causality [116].

For simulation, it is important to note that the material parameters cy, 6, p and
can be functions of space [116]. In practice, this means that similar to ray-based
simulation, a spatial grid of material parameters can be modeled, representing
a region of virtual human tissue. Sound propagation through this tissue region
can be simulated by using equation 2.21 and applying a numerical solving
mechanism such as finite differences [84] to approximate a solution. Different
solving mechanisms are available in literature, e.g. using a fast GPU-based
solving of the first four terms in equation 2.21 [84]. A linear wave propagation
model was used to create "FIELD II”, a complex software package which is now
widely used [116] for complete simulation of arbitrary ultrasound transducer
geometries and excitation, allowing for simulation-guided design of whole
ultrasound systems [79].

Wave-based simulations offer high-fidelity ultrasound image results with
a high resemblance to real-life ultrasound images and speckle, since effects
such as reverberation, dynamic focusing, apodization and micro-scattering
are all accounted for by the wave propagation model. However, the solving
mechanism is computationally very expensive, in particular for 3D simulations,
with high requirements concerning processor power and available memory.

For example, Pinton et al. [116] achieve a highly realistic simulation of
wave propagation in 3D on a digital tissue phantom based on histological scans
from a section of the abdominal wall, wiht a ground area of approximately
6x4 cm. Insonification was simulated at 2.1MHz, assuming point scatterers of
40 ym diameter and a 5% speed of sound deviation in virtual tissue from the
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2.5 ULTRASOUND IMAGE SIMULATION

Figure 2.7: Fast, wave-based ultrasound simulation of a digital scattering phan-
tom, based on a GPU-accelerated solver for the Westervelt wave propagation
model (image reproduced by courtesy of Karamalis et al. [84]).

assumed average speed of 1540 m/s. Calculation on 56-processor Linux cluster
with 64bit architecture required 90GB RAM and approximately 32 hours of
run-time [116]. Single 2D-image simulations using Field II take on the order of
10 hours and more [79], while the GPU-accelerated simulation of Karamalis et
al. [84] takes approximately 80 minutes for a 2D image simulation. In summary,
wave-based ultrasound image simulation creates excellent approximations of
real-life ultrasound images (see figure 2.7), but at the cost of high computational
demands, making this technique not very practical for 3D simulations.

Convolution-based simulation: A third basic approach for ultrasound simu-
lation is based on a convolution of an artificial scatterer map with a sinc-shaped
point spread function (PSF), which simulates the system response of the US
system in a simplified manner. The basic principle was proposed by Bamber et
al. in [8]. Since then, different convolution-based methods have been proposed,
e.g. based on fast convolution in ultrasound k-space (FUSK) [69], or fast 2D /3D
simulation based on sequential 1D convolutions (COLE) with a space-invariant
PSD for echocardiography [59]. The resulting simulations lack reverberation
phenomena and artifacts such as shadowing, but still create visually realistic
ultrasound images, in particular concerning speckle appearance, as can be
seen in figure 2.8. Most importantly, however, the speed-up of computation
compared to wave-based simulation is dramatic. A comparison between FUSK,
COLE and Field II for 3D simulation on a small virtual tissue sample con-
ducted by Gao et al. [60], for example, yielded a speed-up on the order of 1000,
reducing computation time from approximately 12 hours to 25 seconds using
COLE.

As mentioned, in chapter 7.3.3, we will describe how we use a convolution-
based simulation method to create crude but fast simulations of 3D ultrasound
of the midbrain region from edge-filtered MRI, which allow us to investigate
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Figure 2.8: Fast, convolution-based ultrasound simulations of a digital scat-
tering phantom, based on convolution of the scattering particles with a con-
volution kernel approximating the emitted wave pulse. The image shows
a comparison between convolution-based methods COLE [59] (left), FUSK
[69] (middle) and wave-based simulation using Field II [78] (right). (image
reproduced from Gao et al. [60]).

a novel and advanced reconstruction method for bi-lateral ultrasound of the
midbrain in chapter 7. We utilize convolution-based simulation for two reasons:
1) The quality and realism of simulated images are sufficiently high for a region-
based segmentation algorithm to pick up anatomic boundaries and 2) the speed
of simulation is faster by three magnitudes.
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Data Acquisition

3.1 Bi-lateral Transcranial 3D Freehand Ultrasound
Setup

As described in section 2.4, the currently best way for obtaining 3D transcranial
ultrasound (3D-TCUS) image volumes is to use the "3D Freehand Ultrasound”
approach. In that section, we also described the general setup for volumetric
ultrasound acquisition in a 3D Freehand system. In the data acquisitions for
our main study in this thesis, we used a clinical ultrasound scanner (Siemens
Acuson Antares, Siemens AG, Erlangen, Germany) with a 2-4 MHz probe. At-
tached to the probe was a tracking target for detection by a clinically approved
optical tracking device (NDI Polaris Spectra; Northern Digital Inc, Waterloo,
ON, Canada). The 2D B-Mode or color Doppler images were duplicated from
the ultrasound scanner using a high-resolution frame-grabber card (Unigraf
UFG-05; Unigraf Inc., Espoo, Finland). An ultrasound probe calibration step
using the Single Wall method was performed prior to the image acquisition,
a more detailed explanation of the calibration procedure is given in section
3.2.2. Additional to the regular 3D Freehand setup, which includes a track-
ing target for the ultrasound probe, we recorded the position of the subject’s
head with an additional optical tracking target attached to the forehead, as
illustrated in Fig. 3.1. First, this allowed for compensating any head motion
during acquisition and second, it allowed us to reconstruct ultrasound scans
from different positions with respect to the head into one single volume. This
enabled a reconstruction of 3D ultrasound sweeps from the left and right bone
windows into one bi-lateral volume.

Throughout the rest of this thesis, we will use the following notation for
transformation matrices:

t t
Ctarget ='ge Tsource : Csource/ (31)

where Cigrget denotes the target coordinate system, Csource the source coordinate
system and targetT  .ce denotes a transformation from the source into the target
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Figure 3.1: Setup for the bi-lateral 3D freehand ultrasound acquisition transcra-
nially.

coordinate system. Concatenations of matrices mathematically describe linear
transformation chains along different coordinate system.

As illustrated in Fig. 3.1, the main transformations of interest in the
bi-lateral freehand US system are the 4x4 tracking matrices Y5 Tyo,14 of the
ultrasound transducer and REFTyy,,; of the reference target attached to the
subject’s forehead. Please note that the tracking targets US and REF move
rigidly with respect to each other if the patient head moves during acquisition.
Hence, head motion is compensated if the ultrasound probe tracking data is
used in the coordinate system of the reference target.

A detailed breakdown of the transformation steps for transducer calibration
and 3D volume reconstruction are given in chapters 3.2.2 and 3.3, respectively.
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3.2 ULTRASOUND PROBE CALIBRATION

3.2 Ultrasound Probe Calibration

3.2.1 3D Freehand Calibration Procedures in Literature

In order to obtain the spatial relation between the tracking target mounted to
the ultrasound probe and the 2D ultrasound image floating in 3D space in front
of the transducer, an ultrasound probe calibration step has to be performed,
before 3D acquisitions can be performed.

In general, the probe calibration step consists of sequential scans of a gel-
or water-immersed calibration phantom with known geometric properties,
during which the ultrasound probe is continuously tracked. The appearance
of the phantom geometry in the 2D ultrasound images can then be detected
in order to obtain 2D pixel locations of relevant geometric phantom features.
Depending on the phantom design, a mathematical dependency containing
the desired calibration matrix can be formulated between the 3D pose of the
tracking target and the appearance of phantom features in the 2D ultrasound
image. Once a sufficient set of 3D transducer poses and corresponding 2D
pixel coordinates for features in the US image has been collected, the desired
calibration matrix can be solved for, e.g. using least-squares approximation or
other optimization techniques.

In a Master thesis supervised during this PhD thesis (see appendix section
B.4), the literature on ultrasound calibration has been extensively reviewed
and summarized [38]. Further surveys of 3D freehand ultrasound calibration
methods can be found in [104] and [71]. A wide range of calibration phantom
geometries exist, along with suitable feature detection methods as well as
mathematical correspondences to solve for the calibration matrix. The most
widely used phantom geometries are displayed in figure 3.2. Depending on
the geometry of the phantom, features in the 2D US image can range from
single intersection points (single cross-line or three-wires phantom), point sets
(z-phantom) or pre-defined feature points such as corners or edges (2D shape
alignment phantom) to complete intersection lines (single-plane, membrane or
Cambridge phantom).

Each phantom design has its own advantages and drawbacks in terms
of construction complexity, usability, complexity of automatic segmentation,
quickness and reported accuracy. A comparative overview over these param-
eters was assembled in [38], the results are given in table 3.1. In this thesis,
we utilized a single-wall phantom with a nylon membrane for probe calibra-
tion, since it is comparatively cheap and easy to construct, while offering an
acceptable accuracy which is reported to be in the mid-range of all calibration
methods [38]. Since we calibrate the probe previous to acquisition and since
our target is rigidly fixed to the ultrasound transducer, calibration has to be
performed only once and thus the comparatively long duration required for
calibration when using a single-wall phantom (approximately 15-30 minutes)
can be neglected.
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Figure 3.2: Illustration for various calibration methods, summarized in the

Master thesis of Mei Chuan Chen (supervised in this PhD thesis).

Easy to Easy of Automatic Accuracy

construct usability segmentation (mm)
Single cross-wire + - - 1.12 + 0.04
Three-wire - + - 218 +0.15
Single wall ++ + + 1.63 + 0.04
Cambridge - + + 1.33 +0.23

2D shape alignment - - - +2.28
z-phantom + ++ +- 1.5 +2.46

Table 3.1: Advantages, drawbacks and accuracies of US probe calibration

methods in related literature (from [38]).
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3.2.2 Single-wall Membrane Phantom Calibration

For 3D freehand ultrasound probe calibration using a single-wall phantom,
a water-immersed nylon plane is scanned from various probe positions and
angles. The transformation relevant for calculation of the desired calibration
matrix are depicted in figure 3.3. As mentioned before, in terms of notation,
please note that a transformation matrix denoted as 8T, represents a rigid
4x4 transformation matrix from coordinate system A into coordinate system
B. Each rigid transformation contains six parameters, three for Euler rotation
angles (¢, 0, ¢) and three for translation (x, y, z). From these, the transformation
BT, can be calculated as:

Ta(9,0,,%,y,2) =
cosfcosyp —cos¢siny +singsinfcosy singsiny +cos¢psinfcosyp  x
cosfsiny  cosdcosyp +singsinfsiny  —singcosyp +cosPsinfsiny y

—sin6 sin ¢ cos 6 cos ¢ cos 0 z
0 0 0 1
(3.2)

When scanning the phantom, the intersection of the ultrasound image plane
with the phantom plane results in a line intersection. Two points p; and p, can
be defined for each intersection line /;, where each point has image coordinates
(Pixs Piy), and x,y represent the column and row indices of the intersection
point in pixel coordinates. The y-coordinate (or row index) of the points has to
be corrected for speed of sound of ultrasound in water. According to Marczak
[101], the speed of ultrasound in a water bath of temperature T [K] can be
calculated as:

o(T) = ((((2.787860 - 107 - T — 1.398845 - 10 ©) - T+
3.287156 - 10%) - T—
5.799136 - 1072) - T+ (3.3)
5.038813) - T+
1.402385 - 10°;

Please note that once calibration has been performed using the single-wall
phantom and including this speed-of-sound compensation, it is not important
which speed of the sound any future medium will have. Once the geometric
configuration of the transducer tracking target and the origin of the image
plane have been determined, this geometry will stay rigid, independent of the
scanned medium in front of the transducer.

The complete transformation chain, transforming a 2D line point from the
ultrasound image onto its physical location (pf, pf y) on the calibration plane
can be denoted as:
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Figure 3.3: Transformation matrices for single-wall calibration of a 3D freehand
ultrasound transducer.

F
Pix P%x
PhantomPlaneT Transducer —1 USPlane T—l T Piy | _ pi,y
Tracker * Tracker Transducer ~ * Scale 0 - F _p
p iz
1 1
(3.4)

The constraint in this equation is that line intersection points have a zero
z-value in the phantom coordinate system. The two (arbitrarily) selected line
intersection points for each image yield two projections. Since equation 3.4
cannot be solved analytically, the following cost function can be defined [71]:

i=1

fplane = ; ((Pfiz)z + (pgiz)z) (3.5)

In the equation above, N denotes the number of acquired phantom images.
If the pixel scalings in x— and y—direction are previously determined (e.g. by
several line measurements using the US machine’s built-in measuring tool,
or through a SDK research interface to the machine), equation 3.5 becomes a
function of nine variables, six for the rigid calibration matrix and three for the
unknown calibration plane (since we assume the plane to have infinite extent,
we do not care for its x/y-offset or for the rotation around its plane normal,
but we only need to solve for two rotational offsets and one z-offset from the
world coordinate system). By minimizing the cost defined in equation 3.5, we
thus simultaneously solve for both the desired calibration as well as for the
location of the phantom plane in world coordinates. The minimization can be
performed e.g. with a Levenberg-Marquardt optimizer.

In terms of implementation, we used the "UltrasoundCalibration” applica-
tion plugin provided by the CAMPAR framework of the CAMP group [146]
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Figure 3.4: Physical setup of the ultrasound probe calibration procedure.

and later implemented an independent US calibration program using MATLAB.
The CAMPAR plugin features synchronized data stream acquisition from the
US machine and the 3D tracker, the logical and mathematical backend and
solver as well as a Ul front-end to perform all necessary steps for ultrasound
probe calibration. The steps include a tool for ultrasound fan geometry set-
ting, automatic line detection, speed-of-sound compensation given a measured
water bath temperature, a pixel scaling tool, temporal and spatial calibration
as well as a simple evaluation tool. Evaluation is performed qualitatively
and once a calibration matrix has been calculated. The calibration quality is
assessed by re-projecting the virtual plane into the current 2D US image, given
the current 3D pose of the transducer. The intersection is calculated in pixel
space and overlayed onto the US image, where it can be compared to the actual
visible intersection line. An image of the physical calibration setup with a 6
degree-of-freedom (DOF) mechanical arm holding the ultrasound probe, the
ultrasound machine, tracking system and calibration computer can be seen in
figure 3.4.
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3.3 3D Ultrasound Reconstruction

Temporal synchronization of image and tracking data: During 3D Freehand
acquisition, two streams of data are collected, one containing ultrasound B-
mode or RF images and the other one containing 3D image pose. Since these
data streams come from different, unsynchronized devices, the data pairs
have to be synchronized using acquisition timestamps. In order to obtain one
tracking datum per US image, each US image is associated with its two nearest
tracking poses using the recorded timestamps. The exact tracking pose for
each US image is then obtained using a linear interpolation between the two.
Linear interpolation for translation is straightforward. For the rotational part,
quaternions are interpolated using spherical linear interpolation (SLERP) [144].

Selection of ROI and bounding box: Once synchronized pairs of images
and 3D poses have been obtained, the 3D locations of all 2D pixel in world
coordinates can be calculated using the transformation chain in equation 3.6.
Before reconstruction, the region-of-interest (ROI) for reconstruction can be
determined by calculating the corner-points of all 2D images floating in 3D
space and positioning a bounding box around all images. The bounding box
orientation can also be pre-determined e.g. by selecting one of the 2D images
as a reference slice. This is helpful to orient the 3D volume along a certain
desired cut-plane through the anatomy:.

Backward compounding: For reconstruction, the bounding box is rasterized
in a grid of isotropic voxels. We denote the set of all voxel locations in the
grid as X, the 3D position of the i-th voxel as x;, and the intensity at this voxel
location as I (x;).

Reconstruction is performed using a so-called backward-compounding
technique [175], in which the intensity of each 3D voxel is calculated using a
mapping of nearby 2D pixel intensities. The concrete implementation used in
our study is explained in the PhD thesis of our project partner Tassilo Klein
[89], the most important details are explained in the following.

The pixels p; = (piq, piy,0,1) " from each 2D US image can be transformed
T
onto its location in 3D space p?P = (pi?, pi? e 1) using the following

transformation chain:

3D

P Pix

p; _ World —1 Transducer —1 Piy

P3 - Transducer TUSPlane ’ TSC“IE 0 (3'6)
iz
1 1

By transforming all pixel locations into 3D space, we can associate each
pixel to its nearest voxel. Thus, for each voxel x;, we obtain a set A(x;) of
associated pixels with intensities I(p;) and distances d(x;, pj) = ||x; — pj|| to
the voxel center. A maximum distance D can be defined in order to constrain
the amount of pixels taken into account to calculate the voxel intensity. This
results in the following set of relevant pixel intensities per voxel:
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A(x;) = {(di(xi, pj), 1(pj)) 1d; < D;d; = ||x;i — pj| } B.7)

The calculation of the voxel intensity I(x;) is performed through a weighting
or selection function f (A (x;)). Some common options for the weighting or
selection function are [175]:

Nearest Neighbor Selection:
The voxel intensity I(x;) is set to the intensity of the pixel p; which is closest
to the voxel centroid.

f(A(x)) =1 (p)) d; (xi, pj) = min {d;} (3.8)

The advantage is that original pixel intensities appear in the final reconstruction,
which results intensity distributions that stay true to the original intensity
distributions of 2D images. However, most of the acquired 2D US information
is discarded when this selection is performed.

Inverse Distance Weighting:

The voxel intensity I(x;) is calculated by a weighted mean of all associated
pixel intensities, the weights for each pixel intensity are calculated as the
normalized inverse distance to the voxel centroid [143]:

j=1 K
d]

flA@) =Y 1(p))

n Zﬁ_l dk #

The factor p > 1 is a smoothness parameter that controls the decay of influence
for pixel intensities, with increasing distance.

Gaussian Weighting:
For smooth reconstructions, distances can be weighted using an isotropic 3D
Gaussian distance weighting kernel:

27:1 I(p;) exp (—djz-/(ﬂ)
Yo (<4/e)

f(A(x)) = (3.10)

The parameter ¢ represents the width of the kernel and thus again controls the
decay of influence for pixel intensities, with increasing distance.

45



CHAPTER 3: DATA ACQUISITION

3.4 Clinical Dataset Acquisition with 23 Subjects

Using the aforementioned Freehand 3D-TCUS recording system, we acquired a
dataset with volumetric midbrain and SN acquisition. For quantitative analysis
of our dataset as well as for development and validation of segmentation algo-
rithms, a medical expert performed a full, manual and volumetric segmentation
of the target region in 3D. In order to compare midbrain appearance of healthy
people and Parkinson’s Disease (PD) patients, we acquired a small cohort of
11 people for each group. We would like to denote that given the volumetric
acquisition, the size of the dataset and the manual expert segmentation on
the data, this 3D dataset is unprecedented in the community of diagnostic
ultrasound for neurology.

3.4.1 Demographic and Anamnetic Details

We performed data acquisition as described on 23 subjects consisting of 11 PD
patients (mean age 65.8 y, s.d.: .9; 4 female/7males) and 12 healthy controls
(mean age 55.6 y, 5.d.-9.0; 6 female/5males). Patients were diagnosed as idio-
pathic PD according to the UK Parkinson’s Disease Society Brain Bank [72]. On
average, subjects from the PD group had a disease duration of 6.4 yrs. (s.d. 3.8)
and Hoehn & Yahr scores varied from 1.0-3.5 (mean 2.1, +/-0.8). One healthy
subject had to be excluded due to an insufficient bone window, prohibiting
proper visualization of the midbrain region (4.3%), which is slightly lower than
the expected exclusion rate from 2D transcranial ultrasound examinations (see
also chapter 4.4). All subjects participated after given consent. Ethics approval
for our study was provided by the Ethical committee of the medical faculty
of the Ludwig-Maximilians-University of Munich, Germany. Demographic
details are summarized in table 4.1 for healthy controls and in table 4.2 for
Parkinson patients.

3.4.2 Ultrasound settings and Sonographer Details

All scans were performed by one investigator experienced with 2D ultrasound
of the midbrain (AP). On each temporal side, the US probe was adjusted to
screen midbrain structures and was moved slowly to scan the whole volume
under consideration of cranial, caudal, anterior and posterior alignments.
Between two to four of these scans of approximately 30 seconds length were
acquired. This corresponded to a total of 1000 2D image frames for each subject
and for each bone window side. The settings of the ultrasound machine were
as follows: Tissue Harmonic Imaging (THI), 14cm penetration depth, S-curve
shaped time gain compensation. These settings correspond to previously
published recommendations [22, 150] (see chapter 1.3), except for the fact
that we used THI in our study, due to a visually clearer emphasis of SN
echogenicities. Since our evaluation of 3D data was novel, no established
reference cut-off values were known and the same settings were applied in all
acquisitions, no unwanted bias was introduced.
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3.4.3 Manual Segmentation for Establishing Goldstandard

A manual segmentation was performed on the resulting 3DUS volumes by a
medical expert! blinded for the diagnosis of the patient, in order to obtain train-
ing data for the classification algorithm. For this procedure, we used ITK Snap
software as segmentation user interface [181]. Segmentation was performed on
12 reconstructed slices (slice thickness: 0.45 mm) in axial direction leading to
segmentation of a slab with 5.4 mm thickness. The first slice to be segmented
began 1.35 mm caudal to the slice on which the ground of the third ventricle
was visible. Subsequent slices were segmented in a caudal direction. In each
slice, three areas of interest were segmented, the outline of the midbrain, and
outlines of the hyper-echogenic areas within the right and left SN.

Mathematically, we denote the acquired image volume as a 3-dimensional
subspace Q; — IR® and the segmentation as a classification function C : Q) —
¢, which maps each voxel x € ) onto a label c. This label denotes whether
the voxel belongs to the midbrain (¢ = 1), hyper-echogenicities of the right
SN (c = 2), hyper-echogenicities of the left SN (¢ = 3) or to the background
(c=0).

C(x) = c <€ {0,1,2,3}, where x € O; C R® (3.11)

Slice-wise manual segmentation of these detectable structures was followed
by a calculation of the corresponding volumes by software. The average
duration for manual segmentation of one volumetric was approximately 20
minutes. An example of these scans, combining US image information from
both temporal lobes into one volume can be seen in figure 3.5.

1Dr. Annika Plate, Neurologische Klinik und Poliklinik, Klinikum der LMU Grosshadern,
Munich, Germany
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Figure 3.5: Bi-lateral 3D-TCUS reconstruction (left) of one subject from the
22-subject study, a 2D bi-lateral cross-cut through the 3D volume without (top
middle) and with manual expert segmentations created in ITK Snap [181]
(top right), as well as a magnification of the midbrain area. The midbrain
segmentation is highlighted in red, SN right is displayed in green, SN left as
blue.
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Towards Computer Aided
Diagnosis of Parkinson’s
Disease Using 3D TCUS

4.1 Objective and Motivation

In the last chapter, we described our bi-lateral 3D-TCUS system and acquisition
setup as well as the acquisition of the first 3D-TCUS dataset for diagnosis
of neurological movement disorders together with our clinical partners at
the "Neurologische Klinik und Poliklinik” (LMU Klinikum Grosshadern, Mu-
nich, Germany). As described, the dataset contains scans from 11 previously
diagnosed Parkinson’s Disease (PD) patients and 11 healthy controls.

All 3D-TCUS datasets were labeled by a medical expert, who was experi-
enced in the regular 2D technique. In this chapter, we describe the extraction of
several single- and multi-dimensional feature sets from these 3D segmentations
and automatic classification of subjects into healthy/PD classes.

In the regular 2D-TCUS technique for PD diagnosis, classification is per-
formed by thresholding the area of measured SN hyper-echogenicities (SNEs)
in 2D B-mode images [168, 22, 99]. Here, we follow a similar assumption,
namely that an excess volumetric amount of 3D SNEs is an indicator for PD.
Since we measure separate volumes for both sides of SNEs and the midbrain,
we also investigate multi-dimensional feature vectors and non-linear classifica-
tion using machine learning techniques such as Support Vector Machines.

In this chapter!, the objective is to perform a first quantitative analysis
of our 22-subject dataset and investigate for the first time whether 3D mea-
surements can be principally used for computer-aided diagnosis of midbrain
abnormalities.

I This chapter is based on and extends the paper submission 3D Sonographic Examination of
the Midbrain for Computer-Aided Diagnosis of Movement Disorders” to the journal “Ultrasound
in Medicine & Biology” [121]
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Using 3D TCUS

4.2 Materials and Methods

In this chapter, several methods are used towards computer-aided diagnosis.
All methods are based on a previous 3D segmentation of and volumetric
measurement of left and right SNEs as well as the midbrain volume. Here, we
make use of manual expert segmentations (see chapter 3.4.3). Later, in chapters
5 and 6, we will propose methods for automatic segmentation and volume
measurement.

For automatic classification of subjects into the classes “healthy control”
vs. “PD patient”, we experiment with several single- and multi-dimensional
features, which are explained in the following. Next, we will explain the
single-dimensional classification using ROC analysis and multi-dimensional
classification using non-linear Support Vector Machines (SVM). As a final step,
we will provide a comparison of both raters using a set of segmentation overlap
and correlation measures, as a small but first inter-rater observability analysis
on 3D-TCUS data.

4.2.1 Single-dimensional and multi-dimensional feature sets

In order to distinguish PD patients from healthy control subjects, it is necessary
to choose distinguishing features from the acquired 3DUS datasets and the
manual segmentations. Since no studies on diagnosis of neurological movement
disorders using transcranial 3DUS have been reported on so far, we decided
to derive sets of single-dimensional and multi-dimensional features from
the manual segmentation and compare the classification performance. The
following single-dimensional feature sets were evaluated:

o Larger side 3D SN volume (absolute): i.e. the volume of the larger
of both 3D-segmented SN hyper-echogenicity regions. This measure is

given in mm?.

o Larger side 3D SN volume (relative): i.e. the larger of both hypere-
chogenic SN 3D-regions, divided by the overall volume of the midbrain.
The rationale for the midbrain volume division is to normalize the SN
echogenicities with the midbrain size, which implicitly represents the
brain size and anatomic visibility due to acoustic bone window quality.
This measure is given in percent.

e Sum of 3D SN volumes (absolute): i.e. the sum of 3D-segmented SN

echogenicity volumes in the left and right hemisphere, measured in mm3.

e Sum of 3D SN volumes (relative): ie. the sum of segmented SN
echogenicity volumes in the left and right hemisphere, divided by the
overall midbrain volume, similar to above as a brain size and bone
window normalization factor.

o Largest 2D area: i.e. the largest 2D area of SN echogenicities in any one
of the two hemispheres and on a single slice. This feature is comparable
to the 2D transcranial sonography method which is currently performed
in related work.
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The following multi-dimensional feature sets were evaluated:

e VolumeSNLeft and VolumeSNRight (absolute): i.e. a 2D-feature vec-
tor made up of the volumes of SN echogenicities in the left and right
hemispheres.

e VolumeSNLeft and VolumeSNRight (relative): i.e. a 2D-feature vector
made up of the relative volumes of SN echogenicities in the left and
right hemispheres, each normalized as mentioned above by the midbrain
volume

e VolumeSNLeft and VolumeSNRight and VolumeMidbrain (absolute):
i.e. a 3D-feature vector made up of the volumes of SN echogenicities in
the left and right hemispheres and the midbrain volume.

The feature sets were used to design classifiers which automatically distin-
guish between the Parkinson patients (PP) and the healthy controls (HC). Differ-
ent classification methods were used. For classification of single-dimensional
features, we utilized the method of receiver-operating-characteristic (ROC)
curve analysis, which allows to find a hard threshold or cut-off for the analysed
parameter. For multi-dimensional feature sets, we utilized Support-Vector-
Machines (SVM), a non-linear supervised classification method from the ma-
chine learning domain. Both methods will be explained in the following
sections.

4.2.2 Single-dimensional classification using ROC curves

For single-dimensional feature classification, we perform a receiver-operating-
characteristic (ROC) curve analysis [65], which is an often-used tool in medical
tests in order to determine an optimal cut-off or threshold value, e.g. for a
diagnostically relevant measurement variable [185].

The ROC curve analysis is based on the principle of binary testing. In a
binary test, a population of test objects is classified in two classes (e.g. positive
vs. negative, healthy vs. diseased). In our case, the test itself is a simple
test based on a binary thresholding of one of the single-dimensional features
described in the previous section. For example, we classify a subject as PD
patient, if the feature “Larger side 3D SN volume (absolute)” exceeds a threshold
7. In ROC analysis, the threshold 7 is varied along the feature values present
in the dataset. Since the class c; for every subject i is known beforehand, the
classification quality can be measured for each 7;. The classification quality
measures can be derived from the confusion matrix, also known as contingency
table:

The ROC curve plot visualizes the classification accuracy by assuming the
value T; as the current threshold and calculating the False Positive Rate (FPR;)
and the True Positive Rate (TPR;) for this particular test. This is repeated for
all feature values 7; in the dataset. Each pair of classification result values
(FPR;, TPR;) is plotted in the ROC curve. Furthermore, we can calculate the
f-measure (also called F;-score) for each classification result. The F;-score is
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Figure 4.1: Contingency table or confusion matrix, formulating the possible
outcomes of a binary test and their derivations.

defined as the harmonic mean between precision and recall of a test. Thus, it
serves as a single value describing the test’s classification quality:

F —» precision - recall 1)
1™ %" precision + recall '

As the optimal threshold in the ROC curve analysis, we take the threshold
T; for which the best Fj-score is obtained. Apart from the optimal threshold
7; and it’s associated values for sensitivity and specificity of the test, we can
calculate another measure for the quality or reliability of the ROC curve test,
namely the area-under-the-curve value (AUC). It serves as a summary statistic
and can be interpreted as the probability that the classifier will rank a randomly

selected positive example higher than a randomly selected negative example
[54].

4.2.3 Multi-dimensional classification using SVM

We provide the SVM classifier with a sub-set of data to learn the relationship
between several volume features of each subject (e.g. volumes of SN left, SN
right and of the midbrain) and the subject’s class (i.e. healthy vs. Parkinson).
In the learning stage, the SVM classifier tries to find a plane which optimally
separates the individuals in the multi-dimensional feature space. Non-linear
kernel functions and the optimal fitting of a linear plane in higher-dimensional
space allow the SVM classifier to find hyper-planes which allow for non-linear
separation of the original feature space into classes. In combination with soft
margins, SVMs allow for relatively robust and adaptive performance in difficult
classification problems. In the test stage, the features of an unknown subject
are presented to the SVM, which can then classify the subject into known
classes based on the learned feature space separation. We refer the reader to
Christianini and Shaw-Taylor [45] for more details on SVM theory, algorithm
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parameters and SVM applications.

Several model parameters influence the classification performance of SVMs.
The complexity parameter determines the granularity of the hyper-plane, i.e.
the hyper-plane smoothness. Another parameter is the kernel choice. In this
work, we use Radial Basis Functions (RBF) as the non-linear kernel, with
variance I'. To find the optimal hyper-parameters, a grid search is performed.
The SVM complexity and variance parameters C and I' are varied in logarithmic
steps, between 1072 : 10.” and 1078 : 10° respectively. Since all feature
dimensions vary in different ranges, all features are mapped onto the unit
d-ball (Hsu and Lin, 2002). The classification experiments are performed in
a cross-validation scheme, in order to avoid bias of the classification. We use
leave-one-out cross-validation for all experiments. As performance measures
for the binary classification, we use sensitivity (SEN), specificity (SPEC) and
f-Measure (fM), or Fl-score, which is the harmonic mean between precision
(PREC) and sensitivity (SEN) (see Fig. 4.1).

4.2.4 Methods for Inter-observer Comparison

In section 3.4.3, we described the manual segmentation by a medical expert.
In this section, we want to elaborate on several methods which allow us to
give a first estimate for inter-observer variability and reproducibility of the
3D method. It is important to note that in order to be able to perform an
inter-observer study, we need at least one more segmentation of our dataset,
compared to the segmentation provided by the medical expert, which is why
we created a second segmentation of our entire dataset.

As mentioned before, the first observer (O1) was a neurologist2 with two
years of clinical practice, including further training in TCUS imaging of the
midbrain/SN using the 2D method, as well as experience with 3D-TCUS
imaging for PD diagnosis. The second observer (O2) was a post-graduate
student with non-medical background?®, but prior experience in 3D ultrasound
imaging. The second observer was educated and trained for the task in terms
of midbrain anatomy as well as typical appearance of midbrain and SN in
transcranial ultrasound. Due to differing backgrounds, we denote O1 as an
expert observer and O2 as a novice observer for this study. It is important to
note that both observers were blinded to the subject’s identity and class (healthy
versus PD), by encoding subjects with a numeric ID and several months of
absence from the dataset between the time of acquisition and the time of
segmentation. Furthermore, raters were only exposed to 3D reconstructions,
which typically have a different appearance than the 2D images observed
during the non-blinded acquisition.

In order to evaluate the inter-rater observability and give a first impression
on the objectivity of the 3D method, we calculate four measures, the first two
reflect the overlap of manually segmented volume regions (midbrain, SN right,
SN left). The latter two measures reflect correlation of volume values measured

2Dr. Annika Plate, Neurologische Klinik und Poliklinik, Klinikum der LMU Grosshadern,
Munich, Germany
3Seyed-Ahmad Ahmadi, thesis author
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by observers O1 and O2.

Volume segmentation overlaps:

Volume segmentation overlaps are calculated in terms of volume percentage
overlap [82] and Dice coefficient [184]. We denote the segmentation of observer
O1 and O2 for a single region i (midbrain, SN left or SN right) as S; o; and
S; 02- Then, the coefficients for region i are calculated as:

S;o1NS;
Vol % overlap; = 2101202 (4.2)
Sio1
- 2|S;01 NS00
Dice; = ————F— (4.3)
" S0t +1Si02]

Correlation coefficients for volume measurements:

Apart from volume overlaps, we report measures for inter-observer corre-
lation in form of Pearson’s correlation coefficient and intra-class-correlation
coefficient (ICC) according to Shrout and Fleiss [145].

Pearson’s correlation coefficient, or Pearson’s r, is a measure for linear
inter-dependence of two random variables X and Y. Under the assumption
of a normal distribution for both variables and for large sample sizes, r is
unbiased and efficient. However, it is defined for any bivariate probability
distribution, as long as the covariance of the joint population can be calculated
and the variances of the individual populations are non-zero. Hence, Pearson’s
r can be applied for examination of correlation across both observers in our
study. It can take the values [—1,...,1], with +1 indicating perfect positive
correlation (i.e.X = Y) and —1 indicating perfect negative linear correlation
(i.e.X = —Y). With X; denoting the i-th measurement of X and X denoting the
sample mean of X, Pearson’s r is defined as [131]:

S vie. 2 STt/ s N @
= (X=X L (Y- 7)

In our case, X would represent ratings of observer O1 (e.g. volumetric mid-
brain or SN segmentations) and Y would represent the ratings of 02, assuming
a normal distribution for volumetric measurements of both raters. Both X and
Y are mean-normalized in the calculation of Pearson’s r. Results are given in

section 4.3.4.

The intra-class-correlation coefficient (ICC) is a measure which is often
used for inter-observer reliability measurements in clinical settings and was
also used for a four-rater inter-reliability study of SN area measurements in
2D TCUS for Parkinson’s Disease diagnosis [99].

In general, the ICC correlation coefficient gives an estimate for the measure
of agreement between observers (also called raters, judges, experts, instruments,
sensors, or in our case, physicians) who give ratings for targets (also called
values, scores or measurements, i.e. in our case, area and volumetric measures
for midbrain and SN hyper-echogenicities). The measurements are assumed
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to be parametric, i.e. continuous under a normal distribution. Compared to
Pearson’s r, the ICC coefficient takes the scale of measurements into account.
Also, it can summarize and express the inter-rater correlation and reliability
across more than two raters in one value.

Shrout and Fleiss explain six different versions of the ICC correlation
coefficient [145], denoted as ICC(m, k), where m stands for the ICC model
assumption, with m = [1,2,3], and k denotes the number of ratings per
observer, where k can take the values [single, mean).

Here, we describe the explanations for different model assumptions m as
described by Shrout and Fleiss [145]:

e Model m = 1: In this model, it is assumed that raters are randomly
chosen and form a subset of the entire set of possible raters. Furthermore,
measurements are obtained by different raters from this subset. In
our setting, this model would be applicable if each study subject is
scanned and segmented by any individual rater randomly selected from
a larger set of available expert raters. For example, this applies if different
physicians at different clinics segment 3D-TCUS volumes acquired at
their respective clinic and their ratings are merged at our site for analysis.

e Model m = 2: In this model, it is assumed that each rater gives a
measurement for all targets in the study set. In our setting, this would
mean that every physician gives a segmentation for every study subject.

e Model m = 3: In this model, no assumptions about the methods or raters
are made.

Furthermore, the explanation for the parameter k = [single, mean] can be given
as:

e single (k = 1): The "single-rating” assumption is applicable if each rater
gives only one measurement each for the measured target. In our case,
this would be applicable if the expert physician segmented the 3D-TCUS
volume only once and the obtained volumetric values were used directly
for ICC calculation.

e mean (k > 1): The “mean-rating” assumption is applicable if each rater
gives several measurements for each measured target, or if a group of
raters forms a consensus opinion about the target to be measured. In our
case, this would be applicable if the expert physician segmented each
3D-TCUS volume several times and e.g. the average volumetric values
were used for ICC calculation. As another scenario, the “mean-rating”
assumption would be applicable if e.g. several physicians from one
hospital each segmented a respective volume and the average volume
was correlated against the average volume values obtained from several
raters of another hospital.

Given our dataset and segmentation setting, we model the observers O1 and
02 as random effects, where each observer segments every single 3D-TCUS
volume from our dataset. Furthermore, we correlate one single rating per
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target, i.e. one segmentation per observer for each 3D-TCUS volume. Hence,
we could set m =2 and k = 1 and use ICC(2, 1) for calculation of correlation.
According to Shrout and Fleiss [145], the ranges of reliability can be assessed
as: 0.00-0.10, virtually none; 0.11-0.40, slight; 0.41-0.60, fair; 0.61-0.80, moderate;
0.81-1.00, substantial.

In terms of implementation, we use the programming language and statis-
tical data analysis tool R [126]. The ICC methods are implemented in the R
library package “psych: Procedures for Psychological, Psychometric, and Personality
Research”, implemented by William Revelle [130].
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4.3 Results of SVM-guided PD classification and
multi-observer study

In the following paragraphs, we report our results on the multi-observer study
concerning volumetric measurements of midbrain and SN, single-dimensional
diagnostic classification using ROC analysis, multi-dimensional diagnostic
classification using non-linear SVM classification and a first impression of the
inter-observer variability of the 3D method, given our two-person observer
study.

4.3.1 Midbrain and SN echogenicity volume measures

Tables 4.1 and 4.2 give an overview of patient details such as subject class (HC
= healthy control, PD = Parkinson patient), sex (F = female, M = male) and age.
Quantitative values measured by observers one and two are given in form of
value pairs O1/02 for volumes of midbrain, SN left and SN right as well as
the largest 2D slice area of SN echogenicities. For PD patients, we additionally
list information about the Hoehn & Yahr stage, the diagnosed dominant side,
the duration of the disease and the diagnosed Parkinson type (AR = akinetic
rigid, TD = tremor dominant, M = mix-type).

Healthy Controls ‘ Mean Std.Dev. Min Max
Sex 6 female / 5 male - -

Age 55.6 9 43 73

Vol. Midbrain [mm3] 492.8 / 444,5 723 /5436 3965 /3564 606.1 /531.1
Vol. SN Left [mm3] 62.2 /579 42.6 / 29.7 0/31 122.8 / 102.6
Vol. SN Right [mm3] 72 / 66.6 51.2 / 283 11.0 / 21.8 176.6 / 106.2
Max. Area 2D [mm?2] 256 /225 126 / 7.6 73/ 111 41.7 / 37.7

Table 4.1: Details for subjects from the Healthy Control (HC) group. Volume
and area values are given for observer one and two (reported as value pairs
01/02).

4.3.2 Single-dimensional Classification with ROC Analysis

Using the receiver-operating characteristic (ROC) analysis for single-dimensional
feature classification, we calculated the threshold or cut-off value which yielded
the highest f-measure of all points with a classification result above the diagonal
in ROC space (cf. table 4.3). Here, we report the classification results for each
of the five single-dimensional features segmented by observers one and two.
The area-under-the-curve (AUC) value furthermore provides a measure for the
overall quality of the ROC curve, in particular if classification results in terms
of sensitivity, specificity and f-measure are identical for several classifications
(e.g. for observer two).

The best classification result was obtained for the features “Larger side
3D SN volume (absolute)” for both observers O1/02, reaching a sensitivity
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Parkinson Patients ‘ Mean Std.Dev. Min Max
Sex 4 female / 7 male - -

PD Dominant Side 4 right / 7 left - -

PD Type 4AR/3TD /4M - -

PD Hoehné&Yahr 2.1 0.8 1 35

PD Duration [years] 74 3.8 3 16

Age [years] 65.8 7.9 45 73

Vol. Midbrain [mm3] 572.6 / 487.5 95.0 /794 379.6 /3172 736.7 / 597.1
Vol. SN Left [mm3] 108.5 / 117.5 56.2 / 64.7 241 /350 213.1 /2315
Vol. SN Right [mm3] 103.4 / 91.8 389 /221 33.6 / 63.6 161.8 / 124.0
Max. Area 2D [mm2] 352 /321 9.0/122 20.3/19.24 49.8 / 55.9

Table 4.2: Details for subjects from the Parkinson Disease (PD) patient group.
Volume and area values are reported as value pairs for observer one and
two (01/02) (Abbreviations for PD Type: AR = akinetic rigid, TD = tremor
dominant, M = mix-type).

of 90.9/100.0%, specificity of 63.6/54.6%, f-measure of 0.8/0.81 and AUC of
0.78/0.84, for the volume cutoffs or thresholds 89.4/76.4mm3. The feature
”Sum of 3D SN volumes (absolute)” yielded similar classification results, while
relative volume values as well as the feature “Largest 2D area” performed no-
tably worse in terms of classification accuracy. Figure 4.2 shows the ROC curve
for observer O1 on the best-performing single-dimensional feature “Larger
side 3D SN volume (absolute)”.

Feature Sensitivity ~ Specificity f-Measure AUC Threshold

Larger side

3D SN volume
(absolute) 90.9/100.0% 63.6/54.6% 0.80/0.81 0.78/0.84 89.4/76.4 mm3
Larger side
3D SN volume
(relative) 63.6/100.0% 72.7/54.6%  0.67/0.81  0.69/0.78 0.44/0.31 Vol%
Sum of

3D SN volumes
(absolute) 100.0/100.0% 54.6/54.6% 0.81/0.81 0.78/0.81 138.7/152.5 mm3
Sum of

3D SN volumes
(relative) 72.7/100.0%  63.6/54.6%  0.70/0.81  0.69/0.75 0.63/0.50 Vol%
Largest
2D area 81.8/72.7% 54.6/54.6% 0.72/0.67 0.69/0.74 30.4/23.5 mm2

Table 4.3: Classification results with a single-dimensional feature and a single
threshold chosen from a ROC analysis of segmentations from observers one
and two (results reported as value pairs O1/02).
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Figure 4.2: ROC curve plot for observer O1 on the best-performing single-
dimensional feature “Larger side 3D SN volume (absolute)” (AUC = 0.78).
The threshold with the best F;-score is marked with a red dot, at T = 89.4mm?.

4.3.3 SVM Classification on Multi-Dimensional Features

Performing a SVM classification using multi-dimensional features, the best
results for both observers O1/02 were achieved by using the three vol-
umes ”"Volume SN Left, Volume SN Right and Volume Midbrain (absolute)”,
which yielded 90.9/72.7% sensitivity and 72.7/81.8% specificity at f-measures
0.83/0.76. If only the two features “Volume SN Left and Volume SN Right
(absolute)” are used, the sensitivity decreases significantly to 63.6/72.7%, while
the specificity remains equal at 72.7/72.7%. Incorporating the midbrain volume
by using it as the normalizing factor in the feature set ”Volume SN Left and
Volume SN Right (relative)”, both sensitivity and specificity are reduced to
72.7/72.7% and 63.6/63.6%, respectively. In relation to the 2D method, we
also performed an SVM classification using the single-dimensional feature
“Largest 2D area”, which yielded the same classification performance as in
the ROC analysis for observer O1 (sensitivity 81.8%, specificity 54.6%). For
observer O2, a significantly higher sensitivity but lower specificity of 90.9% and
45.5% respectively is achieved. A summary of classification results with SVM
on single- and multi-dimensional features is given in Table 4.4. Two further
observations shall be noted here. First, including the midbrain volume as a
separate dimension in the feature set ”"Volume SN Left, Volume SN Right and
Volume Midbrain (absolute)” yielded the best result, while incorporating it as
a "normalizing factor” by dividing the SN volumes with the midbrain volume
in the feature set “Volume SN Left and Volume SN Right (relative)” yielded
notably worse results. Second, the second rater O2 consistently showed higher
sensitivity and lower specificity than rater O1. We will comment on both these
observations and give possible explanations in the discussion section.
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Feature Sensitivity Specificity f-Measure

Single-dimensional Features
Largest 2D area 81.8%/90.9%  54.6%/45.5% 0.72/0.74

Multi-dimensional Features

VolumeSNLeft + VolumeSNRight

(absolute) 63.6%/72.7%  72.7%/72.7%  0.67/0.73
VolumeSNLeft + VolumeSNRight
(relative) 72.7%/72.7%  63.6%/63.6%  0.70/0.70
VolumeSNLeft + VolumeSNRight
+ VolumeMidbrain (absolute) 90.9%/72.7%  72.7%/81.8% 0.83/0.76

Table 4.4: SVM classification results on single- and multi-dimensional features
extracted from the expert 3D US volume segmentations of observers one and
two (reported as value pairs O1/02).

4.3.4 Inter-observer Comparison

For inter-observer correlation, we report volume segmentation overlaps (Dice
and volume percentage overlap) as well as correlation of volumetric measures
across both observers (Pearson and ICC correlation coefficients). The volume
overlaps for segmentation of midbrain are fairly consistent (Dice 0.85), while SN
overlaps are considerably smaller (Dice ~ 0.55), which can be partly accounted
to the small and patchy spatial distribution of SN echogenicities. Hence, it is
important to note that despite seemingly low overlap of SN segmentation, the
Pearson correlation was moderate to substantial at 0.77-0.82, for all three 3D
values. Intra-class correlation ICC(2,1) was fair (0.60) for the midbrain region
volume measures and moderate for SN right (0.69) and SN left (0.78). All
Pearson and ICC correlation coefficients of volumetric measures in 3D were
significant at p < 0.001. Correlation for the maximum 2D area across both
observers was substantially lower, i.e. Pearson correlation of 0.54 and ICC(2,1)
of 0.50, both significant at p < 0.01. A summary of multi-observer study results
is given in table 4.5.
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Coefficient ‘ Midbrain SN Right SN Left Max Area 2D
Dice volume overlap 0.85 0.57 0.54 -
Volume percentage overlap 79.8% 58.7% 56.9% -
Volume Correlation (Pearson) 0.82%** 0.80*** 0.77%** 0.54**
ICC2 (single, random raters) 0.60%** 0.69%** 0.78%** 0.50**

Notes: * significant at p < .05; ** p < .01; **p < 0.001

Table 4.5: Results of inter-observer analysis between observer one and two,
reported as volume overlap values (Dice and volume percentage) and feature
correlation (Pearson and ICC).
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4.4 Discussion and Future Work

In this chapter, we studied whether using volumes of the midbrain and signal
alterations of the SN might achieve similar or possibly better discrimination
between healthy and diseased subjects as compared to using 2D areas in
the traditional method (see chapter 1.3). We presented results from two
observers in order to provide an initial estimate of inter-observer variability
and reproducibility of the method.

Our approach showed a low rate of drop-outs (1/23) due to no or partial
visualization of intracranial structures whereas normally drop-outs range
between 10-20% [167]. One of the reasons could be that our technique includes a
bilateral reconstruction which helps balancing different acoustic bone windows
in one subject. A limit of our study is a relatively small number of subjects
studied, which we consider adequate for a pilot study however.

It should be noted that although we used two observers for segmentation of
3D B-mode volumes, we used only one examiner during 3D-TCUS scanning of
subjects. Although this prohibits the assessment of objectivity and repeatability
during the stage of 3D acquisition, we argue that scanning in 3D implicitly
increases objectivity and repeatability, since the selection of an optimal cut-
plane becomes irrelevant. Moreover, several previous studies have shown
that assessment of anatomy using 3D freehand ultrasound scans compared
to 2D leads to results which are reproducible, increase objectivity, diagnostic
relevance and repeatability of results (also longitudinally), e.g. in 3D-US of the
carotid artery [6], of fetal liver volume [36] or prostate volume [155].

For the expert observer, the results of our pilot study may indicate a slight
advantage of the 3-dimensional method as compared to conventional area
measurements for differentiating patients and healthy control subjects. In
relation to previous blinded studies in 2D, the sensitivity turned out to be
comparable or even slightly better in our study, while the specificity is slightly
lower [58, 124]. It has to be mentioned that the 2-dimensional measurement
was applied after reconstruction of the data and might therefore not be directly
comparable to the so far used 2-dimensional real-time technique.

As mentioned in the results section, it is interesting to note that including
the midbrain volume as a normalizing factor seems to improve the classifica-
tion results in the multi-dimensional classification case, however only if it is
included as a separate feature dimension, i.e. in the feature set ”"Volume SN
Left, Volume SN Right and Volume Midbrain (absolute)”. Compared to the
self-defined normalization by division in the feature set “Volume SN Left and
Volume SN Right (relative)”, both sensitivity and specificity increase notably.
These results seem to indicate that it is preferable to let the classifier (e.g.
SVMs) select optimally separating hyperplanes between classes, rather than
manually defining intuitive (yet somewhat arbitrary) inter-feature operations
such as dividing SN volumes by the midbrain volume in order to obtain relative
volumes.

The second, novice observer achieved comparable classification results
for both single-dimensional features (cf. ROC analysis, table 4.3) and multi-
dimensional features (cf. SVM classification, 4.4). In single-dimensional classi-
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fication, the largest AUC value was obtained for the feature “Larger side 3D
SN volume (absolute)”, which was also one of the best classification features
for observer 1. It is notable that despite different experience levels with the
TCUS technique, both observers had better classification results when 3D volu-
metric features were used for classification, compared to the largest 2D area.
Multi-dimensional classification using SVMs and 3D volumetric features only
yielded noticeably better results for observer O1, and the best feature set for
both observers was a combination of absolute volume measures of midbrain,
SN left and SN right.

Again, as mentioned in the results section, it is noteworthy that the speci-
ficity of the novice observer O2 was consistently lower and sensitivity con-
sistently higher than for O1, i.e. the expert. Both aspects indicate an over-
segmentation of SN hyper-echogenicities in the case of O2. There are several
possible explanations for this. First, the expert observer O1 had more experi-
ence with the 2D transcranial ultrasound method and the medical background,
probably allowing for more careful and specific selection of hyper-echogenic
speckle patches in the SN region. In contrast, O2 had more experience with
reconstructed 3D freehand ultrasound volumes and their appearance in general.
Also, O2 had more experience and practice with the segmentation tool, ITK-
Snap ??, probably allowing for finer segmentation within the same timeframe
as O1. It has been shown that the user-friendliness of manual segmentation
tools can produce noticeable effects on segmentation outcome and potentially
introduce systematic errors or biasses on the segmented regions

Despite the mentioned differences, when inter-observer correlation, one
can note that while volume overlap coefficient e.g. in terms of Dice coeffi-
cient was lower for SN regions than for the midbrain, volume measurements
correlated comparably for all three regions across the two observers. Vol-
umetric measurements correlated better than the maximum 2D area of SN
echogenicities.

At this point, we would like to point out a study by van de Loo et al. [99],
who performed a more extensive intra- and inter-rater observability study
on the 2D TCUS method for Parkinson diagnosis. They compared 2D area
measurements of four independent and fully blinded raters on 32 subjects (22
PD, 10 healthy controls). They achieved substantial intra-rater correlation with
ICC(3,k) values of up to 0.93 and 0.97 for both hemispheres and substantial
inter-rater reliability with ICC(2,k) of 0.84 and 0.89 across raters. It is important
to note that these excellent result probably result from the fact that all four
judges were highly experienced expert raters concerning the 2D TCUS methods.
One should also note that other groups have had difficulties reproducing such
excellent rating results with the 2D method and argue that it is difficult to
reproduce them, without the substantial experience of the reference research
groups [162]. At this point, we again would like to note that in this pilot study,
we had considerably higher correlation across raters given 3D volumetric
measures, rather than 2D measures. Although these are very early results and
have to be confirmed by other groups researching the TCUS method in 3D in
future, they are complementary with the above mentioned observations from
groups with varying experience levels.

63



CHAPTER 4: TowARDS COMPUTER AIDED DIAGNOSIS OF PARKINSON’S DISEASE
Using 3D TCUS

Several independent studies on more than 100 subjects have shown that
90% of PD patients show an increased SN echogenicity (i.e. sensitivity of
90%) [20]. At the same time, these studies showed that only around 10% of
non-PD subjects present an enlarged SN echogenic area, which corresponds to
a specificity on the order of 90%. Mostly, the reduced specificity in our study
was due to four of the healthy subjects (36.4%) showing an unusually large SN
echogenicity, also in 2D, i.e. before 3D reconstruction. This might be due to the
THI imaging modality chosen, which reportedly over-estimates SN echogenicity
(personal communications) but has also shown more consistency in the past
[125]. Since we applied this modality in all subjects, however, we expected this
error to be systematic and compensable by non-linear classification of SVMs.
Another possibility could have been a much better pre-auricular acoustic bone
window with clearer echo-responses, possibly due to the younger average age
of the healthy control group. Our future studies will investigate this notion
by introducing a more rigorous age matching scheme. Another possibility is
that these larger SN echogenicity are already a marker for imminent PD onset,
which is a possible explanation according to [24], who demonstrated on more
than 1800 subjects that enlarged SN echogenicity in healthy controls correlates
with a relative risk of about 17 and therefore seems to serve as a marker for
early detection of PD.

Given the presented results, 3D-TCUS has a high potential for PD diagnosis
due to the higher amount of information contained in the 3D volume as
compared to a 2D image. Please note that while no real-time 2D echography
was used for comparison, our feature “Largest 2D Area” provides an analogous
comparison to the 2D method. Thus a comparison with the “gold standard”
method of the so far used 2D method seems reasonable.

We would like to clearly point out that our study was designed as a first
feasibility study of 3D TC-US for Parkinson diagnosis, with a first quanti-
tative evaluation. The results we present, in particular the concrete values
e.g. for thresholds of SN volumes, have to be interpreted with care. The
reference groups for the 2D method suggest a much larger population size
for determining a reasonable cut-off value of 2D SN echogenicity area. We
are planning such a bigger cohort examination in a future study (see chapter
8.2.2), which may also allow differentiating between the different subtypes of
PD concerning their specific volumetric and spatial alterations. The values
and classification results presented in this chapter, however, can serve as a
first basis for discussion with other research groups who plan to perform 3D
TC-US.
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4.5 Conclusion

Hyper-echogenic signals from the midbrain of patients with Parkinson’s Dis-
ease can be recorded and measured with a 3D Freehand US technique as
presented in the previous chapters. The first results as presented in this chapter
are promising. Compared to previously used 2D data acquisition and eval-
uation, the usage of 3D acquisition and data analysis may allow for a more
objective and less user-dependent diagnosis of Parkinson’s disease and other
pathologic brain alterations.

However, although it was necessary to first create a manual segmentation
by human experts in order to lay the groundwork for this thesis and a gold-
standard for our dataset, average durations for manual segmentation of 20
minutes per dataset clearly show that the 3D method imposes an overhead
on the physician in terms of data processing. Despite advantages of the 3D
method, this could potentially hinder an adoption of the technique into clinical
practice and diagnostic routine. Also, there is still a non-negligible deviation
left between human rater opinions, in terms of segmentation overlap and
volumetric measures.

In the following chapters, we will thus present our research on various
methods for automatic and computer-assisted segmentation methods for mid-
brain (chapter 5) and SN hyper-echogenicities (chapter 6), which significantly
reduce data processing and user interaction time for the physician, while
potentially further increasing the objectivity of the volumetric labeling.
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Midbrain Segmentation in
3D Transcranial Ultrasound
Data

In the introduction , we have learned that 2D-TCUS is a cheap, quick and
completely non-invasive method for diagnosis of Parkinson’s Disease [14,
168, 22], even before onset of motor symptoms [24]. This makes the TCUS
method a potential technique for PD screening and early-detection of future
patients. However, we have also learned that the technique suffers from certain
shortcomings, most of all the difficulty of the sonographic acquisition, which
leads to a high intra- and inter-rater variability. This largely depends on the
experience of the sonographer [162].

In the last chapter, we have motivated the acquisition of TCUS in 3D, ar-
guing that 3D-TCUS makes this method easier and more objective, e.g. by
rendering the difficult selection of an optimal cut-plane obsolete. Our experi-
ments in a two-person inter-observer variability study give a first indication that
indeed, 3D volumetric features (both stand-alone, i.e. as single-dimensional
features, as well as in multi-dimensional combination of features) lead to
improved classification of healthy controls versus PD patients, compared to
classic 2D area features.

However, our experiments have also clearly demonstrated the additional
data processing overhead in 3D. Given that manual segmentations in 3D take
an average of 20 minutes per subject, the applicability of the 3D method in
clinical routine becomes questionable. Also, segmentations in 3D still leave a
non-negligible margin of inter-observer variability.

In this and the following chapter, we are introducing techniques with which
we intend to make the 3D method more clinically practical by introducing
computer-aided, (semi-)automatic segmentation and voxel classification meth-
ods, first through (semi-)automatic segmentation of the midbrain and then
through automatic segmentation of substantia nigra (SN) hyper-echogenicities
(see chapter 6). This reduces the data processing time to clinically acceptable
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durations around one minute. Most importantly, however, it allows for a
more systematic processing of data, which could establish a more objective
segmentation outcome and more comparable results across different clinical
groups analyzing the 3D data. Ultimately, the aim is to create methods which
allow for systematic, objective and diagnostically accurate computer-aided data
processing in 3D across different clinical centers.

5.1 Objective and Overall Approach

5.1.1 Motivation for Midbrain Segmentation in 3D-TCUS

The crucial part of any computer aided 3D-TCUS diagnosis system is an
accurate segmentation of the whole midbrain. In fact, it is advisable to segment
the midbrain first and the SN afterwards, because SN hyper-echogenicities
appear to be almost identical to speckle and intensity patterns outside the
midbrain area (cf. US images in figure 5.1). This was also proven by related
work on computer aided PD diagnosis, where either a manual [87, 37] or an
automatic [52] midbrain segmentation is used to confine the search space for SN
hyper-echogenicities. As a consequence, any method which provides a robust
and reliable midbrain segmentation from transcranial US greatly facilitates the
subsequent steps of SN segmentation and classification. Please note that the
only related approach proving an automated midbrain segmentation is the one
of [52]. This method is, however, restricted to 2D and based on a complex and
computationally intensive finite-element model. We are not aware of further
attempts at computer-assisted segmentation of transcranial B-Mode US. We
argue that this is likely because of the difficulties in defining appropriate prior
knowledge, data term and optimization methods (see section 5.4).

5.1.2 Overall Approach

The automatic segmentation of the midbrain in 2D or 3D-TCUS is a relatively
difficult task. Due to the scanning at low frequencies (2-4 MHz), transcranial
US is unfortunately poor in resolution and characterized by high levels of noise
and large speckle patterns (see Fig. 5.1). Also, the US acquisition through
the temporal bone window, a layer of bone thin enough to be penetrated by
low-frequency US (typically 2-4MHz), introduces additional phase aberrations
and interferences [75] and higher absorption than in regular tissue, causing
low contrast.

Due to these difficulties, we first applied several robust segmentation
methods developed at the CAMP group on our 22-subject data. The methods
included an approach based on a hybrid deformable model using non-uniform
rational B-splines (NURBS) [50] as well as a variational approach using polar
active contours [10, 11, 12]. Unfortunately, both methods failed in properly
segmenting the midbrain area, despite their designs towards robustness in face
of low-contrast boundaries, and low tendency towards leakage. Failure occured
partly due to significant leakage through gaps in the midbrain boundary and
partly due to anatomically incorrect shapes of final segmentation results.
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Figure 5.1: From left to right: Midbrain and basal ganglia such as substantia
nigra, along with typical 2D TC-US images (middle), and a slice through one
of our 3D volumes.

Consequently, we developed a new approach, for which we had to combine
several components which allow for explicit 3D surface segmentation in 3D-
TCUS. The design goals were high anatomical accuracy of the final result
as well as high robustness, despite missing boundaries, low overall contrast
and high variability across subjects due to different bone windows. The final
approach combines an explicit Active Surface Model (ASM) based on the
" Active Polyhedron” method [151] with a region-based cost-function adapted
to US through localized statistics [95]. Most importantly, we incorporated a
statistical shape model for anatomical shape prior and surface regularization
based on spherical harmonics [138]. Lastly, we developed and implemented a
gradient-descent optimization method.

The overall method based on a US-adapted Active Surface Model (ASM)
was published at MICCAI 2011 [2]. In the following section, we will explain
the necessary theoretical background on statistical shape models (SSM) and
active shape model segmentation (ASM). Subsequently, we will explain our
proposed segmentation method in detail, describe the performed experiments
and report the results on our 22-subject dataset.
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5.2 Statistical Shape Modeling Background

Object recognition and image segmentation can be particularly difficult in
ultrasound data, due to attenuation, speckle and artifacts like shadowing. This
can lead to low-contrast regions and gaps in anatomical boundaries, which
cause edge cues and region-based information to be often insufficient for
reliable and accurate segmentation [110].

In the mid-nineties, several works were published on statistical modeling of
shape and how to incorporate a learned shape model into previously proposed
segmentation techniques such as snakes and active contours [85]. The incorpo-
ration lead to a dramatic increase in segmentation performance and robustness,
even under very difficult conditions such as high noise and low-contrast partial
boundaries, as demonstrated for example on echocardiography images in the
seminal work by Taylor et al. [41]. Since its first appearances in segmentation
literature, the application of learned statistical models of shape has had a
profound impact in the community and found many applications. In 2011, for
example, around one fifth of all proceedings papers at the MICCALI conference
featured the search terms "active shape” or ”active appearance”.

In the midbrain segmentation approach in our work, statistical shape
models (SSM) play an important role for high robustness and segmentation
quality as well. In the following, we give a brief overview over the theoretical
background and some selected approaches in literature.

5.2.1 Shape model construction

Statistical shape modeling (SSM) describes the process of learning the shape of
a desired target anatomy and its natural shape variations in a training stage. In
a later application stage, e.g. for segmentation of the anatomy in a previously
unseen image or image volume, the model can be applied to find and segment
the target anatomy even under difficult circumstances such as high noise or
partial occlusion.

The first step of SSM design is to select a model representation. The choice is
whether to use an explicit model representation (also called finite-dimensional
SSM [68]) or an implicit shape representation (also called infinite-dimensional
SSM [68]). Before proceeding, we would like to point out that we utilize an
explicit shape and SSM model representation, since our overall segmentation
method is based on an explicit active-contours approach with shape prior. The
alternative would be to use an implicit or infinite-dimensional representation
using level-sets and statistical deformation models (SDM). In this thesis, we
will only explain the explicit SSM modeling workflow. For more information
on existing techniques for implicit, level-set based SSM modeling, we refer the
reader to the recent literature review by Cramers et al. [43].

The basic principle of explicit SSM model creation is to sample M D-
dimensional training shapes with the same number K of vertices, where each
vertex vx = (X, Yk, 2k) " corresponds to the same location or shape feature on all
training shapes. These salient shape points are often referred to as “landmarks”
[41, 68], however despite the term, these landmarks do not necessarily have
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Figure 5.2: Workflow steps for SSM model building in this thesis, based on
Spherical Harmonics (SPHARM) surface parameterization [138].

to coincide with anatomical ”"landmarks” defined by physicians, e.g. for
landmark-based registration. If the M training shapes are spatially registered,
each of the K landmarks has corresponding sample points on the M training
surfaces, which form a point cloud. In SSM literature, this point cloud is
referred to as a “Point Distribution Model” (PDM) [41]. By concatenating the D
dimensions of shape vertices into one long vector (the so-called “shape vector”
[41, 40]), we obtain M samples in a (K - D)-dimensional space. A SSM model
is then obtained by applying a linear or non-linear dimensionality reduction
technique [48] to this sample distribution, which is able to approximate the
(K - D)-dimensional manifold of legal shapes with a linear or non-linear model.
This model can then be used generatively, i.e. arbitrary in-between shapes can
be generated by the model.

Figure 5.2 shows a more detailed workflow of steps performed for SSM
model building in this thesis, using "SPHARM-MAT”, a MATLAB toolbox for
SSM creation based on a Spherical Harmonics (SPHARM) surface parameteri-
zation [138]. While it would be exhaustive to explain each step in full detail
(see the excellent book on SSM theory and application by Davies et al. [48] for
a more thorough coverage of all following aspects), the following section will
briefly explain the most important concepts for the five main steps for SSM
generation using the "SPHARM-MAT” toolbox. Alternative approaches used
in literature will be briefly touched in chapter 5.2.1.6.

5.2.1.1 Explicit Shape Representation of Training Set

The first step of SSM generation is to assemble a set of M training shapes. For
explicit SSM modeling, the training shapes have to be established in form of
explicit meshes, in most cases triangular. There are several ways to accomplish
this. The first way is by manual placement of K vertices on the training images,
at salient shape features such as corners or dents. In practice however, when
dealing with medical images, this approach is not feasible. This is true in
particular for 3D surfaces of human anatomy, which are often sampled with
several hundred vertices, partly placed in surface regions of smoothly shaped
anatomy without salient features, making a consistent and corresponding
manual landmark placement across M training shapes impossible.
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Instead, SSM modeling of human anatomies typically begins with M man-
ual segmentations which are provided as binary voxel volumes, e.g. of a single
organ such as the liver, or as in our case of the midbrain (see workflow, figure
5.2, top row). Before SSM creation, the voxel volumes of training segmentations
have to be transformed to explicit meshes. One straightforward way would be
to assemble an outer surface mesh by sub-dividing each voxel outer surface
into two triangles, however this creates very fine-grained meshes.

In our work, we utilize a meshing tool called “iso2mesh” [53], which is
a free and open-source MATLAB-based toolbox for mesh generation and
processing. Its features include a method called vol2surf, for converting
a binary (or multi-valued) image segmentation volume to one (or several)
triangular surface meshes. Compared to pure voxel-surfaces, which could be
obtained using e.g. a simple approach such as marching-cubes segmentation,
the surface created by vol2surf is sub-sampled and smoothed, which can later
increase the speed and robustness of further SSM creation.

The conversion is based on a restricted version of the original Delaunay tri-
angulation [49, 25]. The voxel volume is first represented as an implicit function,
where the zero-level-set denotes the object’s outer surface. Boundary points are
sampled from this zero-level-set and triangulated three-dimensionally. The size
of the sample set is iteratively increased, as in a Delaunay refinement process,
until user-specified size and shape criteria of triangular surface elements are
satisfied. The criteria are 1) an angular bound, i.e. a lower bound in degrees
for the angles of mesh facets, 2) a radius bound, i.e. an upper bound on the
radii of surface Delaunay balls and 3) a distance bound, i.e. an upper bound
for the distance between the circumcenter of a mesh facet and the center of
a surface Delaunay ball of this facet. The implementation is provided by a
wrapper function to “cgalsurf”, which itself is a sub-feature of the "Compu-
tational Geometry Algorithms Library” (CGAL) [1], a powerful C++ library for
efficient and reliable geometric computation. We constrained the resolution
of the surface mesh generated by vol2surf by setting the maximum radius of
the Delaunay sphere to 2mm for the midbrain surface.

One final step is to pre-register the triangulated surfaces, e.g. using Iterative-
Closest-Points registration (ICP) [26] or Soft-Assign Procrustes Matching (SPM)
[127]. Although the process of SSM model creation incorporates an iterative
update of surface registrations for establishing correspondence (see chapter
5.2.1.4), we found it advisable to perform a pre-registration, partly using ICP
alone, partly even using a manual pre-alignment plus ICP, in particular if body
axes were too largely mis-aligned across 3DUS volumes to be recovered by ICP.
As a reference surface for ICP, we selected the shape with median volume and
performed (M — 1) pair-wise registrations.

5.2.1.2 Surface Parameterization

Surface parameterization is a bijective (i.e. one-to-one) mapping between the
object space, where vertices are expressed in form of cartesian coordinates
or = (X, Yk, zx) T, and a parameter space which often has preferable attributes
over a cartesian representation.
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For shapes belonging to the class of closed 2D-manifolds of genus zero, i.e.
closed-shape surfaces without holes, the base domain is the unit sphere. The
parameterization on the unit sphere is represented by spherical coordinates
(6,¢), with @ € [0, ] taken as the polar (colatitudinal) coordinate and ¢ €
[0,277) as the azimuthal (longitudinal) coordinate [141]. Representing shapes
with spherical topology using polar parameterization has preferrable properties,
as we will see later.

Following the notation of Davies et al. [48], we denote the parameterization
as a continuous, one-to-one mapping X; from the spherical parameter space X
to the shape S; as:

X s s, x ey 8,(x), G.1)

where x € X is a vector-valued parameter vector (e.g. (6,¢)), and S;(-) is the
vector-valued shape function associated with shape S;. Using this parameteri-
zation, we can now express vertex coordinates v = (x, Y, Z)T as three distinct
functions v(6, ¢) = (x(6,¢),v(6,¢),z(6,¢))".

In the case of the "SPHARM-MAT” toolbox, the parameter space of polar
coordinates is further expanded into another parameterization based on Spher-
ical Harmonics (SPHARM), which are an extension of Fourier techniques to 3D
[139]. Like most other parameterization methods used in SSM literature [68],
Spherical Harmonics (SPHARM) [29] parameterization is limited to shapes of
spherical topology.

Using SPHARM [29], the already parameterized surface vertices v(6, ¢) can
be further parameterized using an expansion of the polar coordinate space to

Fourier spherical harmonic basis functions.The expansion can be denoted as
[139]:

1) 1
v(6,¢9) = 12 Zlc?%’"(w), (52)
=0m=—

where Y]" (0, ¢) are the spherical harmonic basis functions of degree I and
order m:
2141 (1 —m)!
m —
Y0, 0) =\ 4 (I+m)!

P"(cos8)e™?, (5.3)

and P"(cos 0) are the associated Legendre polynomials defined by the differ-
ential equation:

B (_1)m N dl+m
P = 5 07 o

(x2 = 1)L (5.4)

Similar to a representation using Fourier basis function, a 3D surface can be
approximated with increasing accuracy if the degree of spherical harmonics is
increased, i.e. with increasing degrees [ up to a user-specified maximum degree
Lynax, which we set to 15 in our work. The value 15 is the maximum suggested
value in the toolbox. We choose it because first, the usage of less spherical basis
functions does not introduce a noticeable computational advantage during
segmentation, and second, we already introduced a smoothing of training
shapes due to the usage of the vol2surf surface extraction method (see above).
By using spherical basis functions up to the degree 15, we thus avoid further
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smoothing which would occur due to capping of higher-frequency spherical
harmonics. When working with direct voxel surfaces of the binary training
segmentations, however, it is suggested to use a smaller degree of spherical
harmonics, in order to avoid encoding e.g. high-energy 90-degree voxel edges
in the spherical harmonics of higher order.

The spherical parameterization is obtained by solving for the weights
¢!, such that each training shape can be expressed in form of the spherical
harmonic basis vectors Y}". As an initial parameterization, the weights c}" can
be obtained using standard least squares estimation [139].

In the "SPHARM-MAT” toolbox, the initial least-squares mapping into the
parameter space is further refined and smoothed by the method ”"Control of
Area and Length Distortion” (CALD) [142], which iteratively alternates between
a local minimization of triangular area distortion in parameter space with
simultaneous control of the worst length distortion and a global equalization
of area distortions for all mesh vertices over the whole sphere [139].

5.2.1.3 Resampling in Parameter Space

It is important to note that after voxel segmentations have been meshed using
"iso2mesh” (see section 5.2.1.1), each training mesh has a different number of
vertices per training shape. In order to create a point-distribution model
(PDM), however, each training shape must be sampled with the same number
of vertices. In "SPHARM-MAT”, this is achieved by projecting a regular
tetrahedron which already closely approximates a unit sphere into parameter
space. Thus, the surface’s parameter space is re-sampled bi-linearly at a near-
uniform distribution of vertices, which can be projected back into cartesian
space. In our work, we use a regular tetrahedron with 642 vertices created by a
level-4 icosahedron subdivision, i.e. each training shape is then represented by
642 vertices as well.

It should be noted that there are methods which sample all training shapes
with the same number of vertices in one pass, some of them even establish
correspondence at the same time, as we will briefly explain in chapter 5.2.1.6.
However, those are often restricted to image modalities with clearly defined
anatomy and anatomic target regions which stand out clearly from the back-
ground. Both conditions are unfortunately not given in 3DUS, which is why
we resort to this resampling strategy described by Shen et al. [139].

5.2.1.4 Establishing Correspondence

Once the surface is sampled with the same number of vertices for all train-
ing shapes, it is necessary to associate regions on all shapes such that each
model vertex represents the same shape feature in all training shapes. This is
often referred to as the ”correspondence problem” and regarded as the most
challenging and complex step in SSM model building [68, 48]. Only once
correspondence has been established, a proper point-distribution-model (PDM)
can be formed, which is the prerequisite for calculating a SSM.

As Heimann et al. [68] suggest, establishing correspondence is basically
a registration problem. In their review, they summarize different approaches
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in literature, including mesh-to-mesh registration, mesh-to-volume registra-
tion, volume-to-volume registration, registration of paramaterizations as well
as population-based (i.e. group-wise) registration. Here, we focus on the
"SPHARM-MAT” registration method, which is a registration of parameteriza-
tions.

A straightforward way of establishing correspondence would be to move
vertices on the shape surfaces directly, and optimize their location such that
a quality measure for correspondence across shapes is maximized. Different
point-based and feature-based quality measures (or combinations thereof)
can be applied, such as a root-mean-square-distance (RMSD) or comparing
curvatures between corresponding vertices on two shapes. However, as Davies
et al. point out in [48], moving points directly on the shape surface is equal
to generating a diffeomorphism of the shape surface onto itself, which has
different properties for each shape. Furthermore, sliding points can move them
off-surface, which would require subsequent re-projection.

Instead, it is much more elegant and flexible to establish correspondence by
modifying the parameterizations for each training shape. The concept behind
this idea is explained in detail by Davies et al. in [48], and we will summarize
the most important points in the following.

Re-parameterization: From eq. 5.1, we recall that each training shape S; is
represented by a parametric shape function S;(x). It is defined by the initial
bijective mapping &;, which describes the projection from parameter space X
to the shape S; as:

XM s x 8y (). (5.5)

In other words, “the mapping &; thus associates a parameter value x to each
point on the i" shape, with the coordinates of that point on the shape being
the value of that shape function, S;(-)” [48]. Formally, correspondence between
two shapes is then defined at points of the same parameter value x. Thus, for
two corresponding shapes, the following holds true for any parameter value x:

Si(x) ~ Sj(x), (5.6)

where ~ denotes correspondence.

Having established this notion of correspondence in parametric space, we
can consider that for two unaligned shapes in parameter space, with one shape
serving as a reference, the other shape can be brought into correspondence
through re-parameterisation. We denote ®; as a re-parameterisation function for
the i shape. Then, the re-parameterisation can be formulated as:

x 0y X' = y(x), (.7)

where @; is a diffeomorphism of the parameter space. The same mapping
also affects the shape function S;(+), so that:

Si(+) 2 §4(-), S'4(X) = 8 (B4(x)) = Si(x). (5.8)
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It is important to note that since only the parameterisation function is
changed, the original shape remains unchanged in object space. This concept
is visualized in Fig. 5.3, where re-parameterisation changes the position of
sample points on the hand outline, while the shape of the hand remains the
same throughout different re-parameterisations. By fixing the parameterisation
of a reference shape and changing parameterisation for a second shape, we can
bring the object surfaces into correspondence.

Given the above explanations, it becomes clearer why it is more elegant
to establish correspondence through re-parameterization instead of moving
sample points on the shape surfaces in object space. The latter would require a
diffeomorphic mapping for each individual shape onto itself, which changes
with each adjustment of correspondence. Instead, we perform a diffeomorphic
mapping from each shape into parameter space X only once, namely when
the shape parameterization is initialized (see chapter 5.2.1.2). During the
matching stage, when the surface is mapped to a reference, correspondence is
established through an update of the parameterization, which itself is calculated
by a diffeomorphic mapping of the parameter space onto itself. This mapping
is equal for all shapes across the training set and also does not change for
each correspondence update, since the underlying topological primitive and
its parameter space (e.g. the unit sphere in cases of shapes with spherical
topology) do not change throughout the optimization.

What remains is having a means of generating diffeomorphic mappings ®;
in the spherical domain. In Davies et al. [48], different methods for spherical
re-parameterisation are mentioned, e.g. piecewise-linear, recursive, localized
and Kernel-based representations of re-parameterisations. However, in our
case, since we are using a further parameterization using spherical harmonics
and the SPHARM formulation, we can adapt the parameterization by rotating
the complex-valued weights of the Fourier basis functions, i.e. rotating the
expansion parameters. By using this rotational property of harmonic theory,
it is not necessary to recalculate the SPHARM coefficients after rotating the
parameterization [139]. Given a parametric SPHARM surface

o) !
=) Z Y] (6,9), (5.9)
1=0m=

we can realize the required diffeomorphism ®(x) as a transformation which
rotates the parameter net on the surface by the Euler angles («, B,v). The new
coefficients ¢}*(a, B, ) can be calculated as [139]:

7, B,y) = ZD (a,B,7)c], (5.10)

n=-—I

where

D!, =e "l (B)e~iem (5.11)
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Figure 5.3: The concept of establishing correspondence through re-
parameterization. The reference and moving shapes S, and S; are represented
by their respective parametric shape functions. The moving shape function
S;(x) can be changed through re-parametrisation using a diffeomorphic map-
ping ®;(x) in parameter space. In object space, this leads to a re-sampling of
the shape surface at new locations, whereas the shape itself remains unchanged.
Thus, instead of moving points on the shape surface directly, correspondence
to the reference shape can be established through re-parametrisation (images
adapted from Davies et al. in [48]).
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Objective function for model assessment: The objective function for com-
paring two SPHARM surfaces is calculated as the root-mean-square distance
(RMSD) between the surface nodes or vertices. Due to the SPHARM repre-
sentation, however, it is not necessary to transform the surface into object
or Cartesian space. Instead, the RMSD can be calculated directly using the
SPHARM expansion parameters of shapes S; and §j, i.e. their coefficients of
the 3D spherical Fourier basis functions:

1 Lmax l 2
RMSD(S;, Sj) = E;‘) Zl Cﬁfc}ﬁH. (5.13)
=0 m=—

Spatial registration with ICP: Apart from re-parameterization, the "SPHARM-
MAT” routine for establishing correspondence also performs an adapted
form of the Iterative Closest Points (ICP) algorithm for adapting the spa-
tial alignment (i.e. translation and rotation) with the reference. Together
with re-parameterization, the overall registration of two shapes represented as
SPHARM surfaces was coined “SHREC” by Shen et al. [141]. The additional
ICP step is necessary to reduce linear mis-registrations as much as possible.
In return, the final generated SSM discards these linear variations and only
models the non-linear deformations of the target anatomy, which is the overall
goal of SSM creation.

For translation and rotation of a SPHARM surface, it is not necessary to
transform the shape back from parameter space into Cartesian space. Again,
due to the SPHARM representation, these linear transformations can be per-
formed in parameter space directly.

Given a translation matrix T and a rotation matrix R, the complex-valued
weights of the spherical Fourier basis function ¢ can be re-calculated as [140]:

(T,R) =)+ T x 27, (5.14)

'(T,R) =R x¢", I, m > 0. (5.15)

Optimization: In the above paragraphs, we explained all necessary com-
ponents for establishing pair-wise correspondence between an entire set of
training shapes, given methods for registration in parameter space (re-parame-
terisation) and object space (ICP), as well as an objective function (RMSD). The
only component left is an automatic optimization method for finding optimal
correspondence according to the RMSD (eqn. 5.13).
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In "SPHARM-MAT”, a sampling-based optimization strategy is pursued
[139]: The reference parameterization remains fixed, while the parameteriza-
tion of the moving shape is rotated to optimize surface correspondence by
minimizing equation 5.13. The rotation space is sampled nearly uniformly
using icosahedral subdivisions, creating rotation angles § and . If #n denotes
the number of icosahedral samples, the expansion coefficients c}"(a, B,y) are
rotated through (0, B, y) and then by n equal steps in « using equation 5.10.
The RMSD is evaluated at each position in order to find optimal rotation
parameters which minimize the RMSD. This procedure is iterated in a multi-
level approach [141], where the best candidate rotations from one iteration are
sub-sampled at finer angular resolution. Then, the optimization iterates until a
minimal RMSD has been found.

5.2.1.5 Dimensionality Reduction

After performing the above described steps, a point-distribution model (PDM)
is created, i.e. all training shapes have been sampled with the same number
of vertices, where all vertices have been properly registered and are now
corresponding.

At this stage, the M training shapes represent a distribution of shapes,
where each shape is one sample in a (K - D)-dimensional space. The last step
of SSM building is to utilize a linear or non-linear dimensionality reduction
technique to model and approximate this distribution.

The most common form of modeling the manifold of shapes is through
linear approximation using Principal Component Analysis (PCA) [140, 68, 48,
43]. In this thesis, we also applied PCA for modeling the shape distribution.

The underlying assumption of PCA is that the distribution is Gaussian-
distributed, i.e. elliptic in the high-dimensional shape vector space. While this
is convenient in a mathematical way due to its linearity and also fast in terms
of implementation and runtime, it can be well imagined that shapes are in fact
not sampled from a Gaussian distribution. Instead, the distribution could be
from a more complex, non-planar manifold in the space of all possible shapes.
Therefore, non-linear distribution models have also been experimented with.
A few will be mentioned in the following chapter 5.2.1.6.

The outcome of dimensionality reduction is a mean shape, along with M
"shape modes”, which reflect the principal axes of deformation present in the
training set. Furthermore, for each mode, shape variances can be calculated
from the PCA eigenvalues as \/A;. Therefore, the output of can be denoted as:

Su=8u+ ) S, (5.16)

where S, represents a family of shapes which is parameterized by the mean
shape 8,4, and a linear combination of shape modes S;, where each mode is
weighted by mode-weights «;. In chapter 5.3.1, we will describe how we use
this parameterized family of shapes for midbrain segmentation in 3D-TCUS.
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5.2.1.6 Alternative Approaches

The above sections described necessary steps for creating a SSM model ac-
cording to the methods implemented in the comprehensive "SPHARM-MAT”
toolbox. Naturally, there are alternative approaches and solutions for almost
every step, with excellent overviews given in the review paper of Heimann et
al. [68] as well as the book on SSM modeling by Davies et al. [48].

Alternative data representation: Instead of representing shapes as finite ex-
plicit models, e.g. triangular surfaces with vertices and faces, it is also possible
to represent as infinite or continuous models. The underlying approach is
to model shapes as zero-level-sets and to model shape variation e.g. as de-
formations of zero-level-sets to a reference zero-level-set. This approach is
substantially different from explicit shape representation [68] and we refer the
reader to the comprehensive review of Cremers et al. [43] for an introduction
into level-set-based shape modeling.

Alternative surface parameterization: The choice of parameterization is main-
ly determined by the topology of the surface to be modeled.

Closed, genus-zero surfaces in 3D are the topological equivalent of the
unit sphere and lend themselves to spherical paramaterization, albeit not
necessarily with further parameterization using spherical harmonics. Gotsman
et al. give an introduction into spherical surface parameterization methods
[64]. Floater and Hormann [55] review several further methods for surface
parameterization methods of spherical topology. A broader overview over
mesh parameterization methods on the unit disk as well as the formation of
more complex 3D base domains than the sphere is given by Scheffer, Praun
and Rose in [137].

It is important to note that the above described SSM building method using
spherical harmonics and the implementation in the "SPHARM-MAT” toolbox
are restricted to closed surface of spherical topology. Open surfaces are the
topological equivalent of a unit disk, and according parameterizations, and
re-parameterization methods are required [55, 48].

Alternative methods for establishing correspondence: As pointed out in the
review on explicit SSM creation methods by Heimann et al. [68], establishing
correspondence is basically a registration problem. Accordingly, there are
plenty alternative methods to solving the correspondence problem.

One approach is mesh-to-mesh registration, e.g. using one reference mesh
(e.g. an average or atlas anatomy) and using linear and deformable mesh
registration methods to transfer a moving mesh onto the reference. Subse-
quently, the reference vertices have to be mapped onto the moving surface,
e.g. by piecewise-planar projection. Similarly, mesh-to-volume registration uses
one reference mesh (e.g. from an atlas), which is then deformed into an un-
known volume using e.g. gradient-snapping techniques, mostly to the binary
segmented original volumes [68]. The prerequisite for this technique are robust
and highly flexible deformable matching algorithm. Another alternative is
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volume-to-volume registration, where e.g. an atlas-volume with pre-labeled land-
marks is mapped onto an unknown volume using intensity-based deformable
registration. Susbequently, the landmarks are transferred. As obvious from
these examples, mesh-to-mesh, mesh-to-volume and volume-to-volume registration
have the advantage that the correct number of landmarks is transferred and
correspondence is established in the same pass. However, all three approaches
depend strongly on the deformable registration algorithms, and in the case
of intensity-based registrations (mesh-to-volume or volume-to-volume), on a
target anatomy which has high contrast and clear distinguishment from the
background. Also, it is not guaranteed that registered landmarks provide
optimal correspondence. This, however, is the most important pre-requisite for
the creation of an accurate shape model [68, 48].

A fundamentally different approach is to perform a group-wise or popu-
lation-based optimization [48]. In this approach, all parameterizations are
optimized at once, the cost function is often based on information-theoretic
principles such as entropy [34, 33], minimum-description-length (MDL) [48, 47]
or approximations of MDL [154]. The MDL principle is particularly attractive
and achieves excellent correspondence and consequently SSMs of high accuracy
[68, 47, 48]. It is based on the notion that the entire model is transferred as
a “message” over a “channel”. The objective function is based on minimum-
description-length, which is a measure of the compactness of the model and
thus the efficiency of the “channel transmission”. The intuitive idea behind this
approach is based on Occam’s razor, which can summarized as the notion that
”a simpler explanation is better than a more complex one” or more accurately,
that among a selection of models, the ones making the “fewest assumptiones
are usually preferable”.

Alternative methods for dimensionality reduction: As mentioned, model-
ing the SSM with PCA assumes a Gaussian distribution of shapes, which can
be expressed linearly by the combination of a mean shape with a weighted
sum of orthogonal shape basis vectors. It is intuitive, however, that shape
variations can be of significantly higher complexity than allowing for linear
modeling using PCA. Also, the variation of PCA modes affect the shape in a
global manner, changing all shape vertices at once. Other approaches are to
use models covering more local variation, such as Independent Component
Analysis [88, 68]. Also, several groups have investigated non-linear dimension-
ality reduction techniques and multi-variate distribution approximations, such
as Gaussian mixture models, sparse PCA, maximum-autocorrelation factor,
polynomial regression and Kernel PCA; for an overview, we refer the reader to
[68].

Alternative for non-spherical topologies: The restriction to shapes of spher-
ical topology is often prohibitive, e.g. for tubular structures, open surfaces and
other non-closed anatomies. It is thus often desirable to have a more flexible
framework.

Davies et al. briefly touch other topologies such as open surfaces (topo-
logically equivalent to the unit disk) or 3D surface with holes (topologically
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equivalent to a torus) and how to parameterize these objects in their book [48].
However, these parameterizations (and re-parameterizations) are also complex,
in particular for the toroidal case and again not flexible if new topologies occur.

As mentioned, the approaches of mesh-to-mesh, mesh-to-volume and volume-
to-volume registration can be theoretically of arbitrary topology. They are thus
a good choice for quick and easy SSM creation experiments on arbitrarily-
shaped objects. However, the template shape needs to be labeled carefully and
deformable registration must be equally accurate for the resulting SSM model
to be of sufficient quality.

In contrast to that, implicit shape representation using zero-level-sets can
be inherently of arbitrary topology. This approach has a rigorous mathematical
foundation, however it has to be noted that the signed distance maps repre-
senting level-set surfaces do not form a linear space, which can lead to invalid
shapes if the variance in the training set is too high [68]. Again, we refer the
reader to [43] for a proper introduction in such techniques.

An attractive hybrid approach is a particle-system based approach by Cates
et al. [34], which is able to distribute discrete particles on a shape surface of
arbitrary topology represented by a zero-level-set. This approach is elegant
since it combines the flexibility of level-sets with the speed and tractability
of discrete point-distribution-models. Furthermore, the objective function is
entropy-based and thus along the lines of MDL, which achieves the most accu-
rate SSM models up to now [68, 47, 48]. A starting point for experimentation
with this technique is the Shapeworks toolbox implemented by Cates et al. and
provided as open-source at [32].

5.2.2 Active Shape Model Segmentation

In the last section, we gave the theoretical background of building a statistical
shape model (SSM). Our described workflow is one particular example of
SSM generation, which is restricted to shapes with spherical topology and a
parameterization using spherical harmonics on the mapping of shapes to their
topological primitive, namely the unit sphere.

In this section, we want to give a short example and a basic overview of
methods on how to apply SSMs and statistical appearance models (SAMs) for
segmentation, turning them into Active Shape Models (ASM) [68] or Active
Appearance Models (AAM) [61].

Due to the increased popularity of ASMs and AAMs over the past two
decades, related literature on their application to medical image segmentation
is vast and cannot be fully covered in this section. For a more complete
overview on SSM-based segmentation, both on US and non-US data, we refer
the interested reader to the comprehensive review by Heimann et al. [68].
This review alone lists 52 publications on segmentation methods using active
shape models and active appearance models, as well as 22 other publications
on non-segmentation applications of SSMs, including shape analysis, shape
extrapolation and other applications like modeling breathing deformation or
generating variable scenes for surgical simulation. The review by Gao et al.
[61] provides further related literature, but solely dedicated to AAM model
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building and their application for segmentation.

One of the earliest and most commonly applied approaches for ASM
segmentation is to place an initial shape Sinit, represented by the average shape
Sy and a vector of shape deformation weights «, inside a 2D or 3D image using
a transformation T:

Sinit =T (SP’ + - D() , (5.17)

where ® = (¢; - - - ¢pr) is the matrix of PCA eigenvectors, i.e. the orthogonal
basis of shape deformation vectors. We denote the vertex locations of the initial
shape Sipit with the vector y. Please note that the initial shape is firstly placed
such that it exhibitis high overlap with the actual target object in the image.

Then, each control point (e.g. each vertex) along the shape boundary is
evaluated according to an objective function. The objective function uses the
image intensity (or patch intensity, patch texture or other features) at the
control point location and measures the fit of the control point to its current
location. Furthermore, it calculates fits at several other “test locations” in close
vicinity of the control point, e.g. along the surface normal vector. Then the
location with optimal fit is chosen as the new location for the control point,
creating a set of displacement vectors dy, for all shape vertices. Since this
creates shape vertices at new, “arbitrary” locations, a shape is created which
does not belong to the learned SSM shape manifold. Hence, as a next step, the
shape has to be re-projected to SSM space, and the closest legal shape has to
be found.

For reprojection, the SSM shape S¥ has to be iteratively adapted to these
new vertex locations y + dyp, where k denotes the iteration number. This is
first performed by rigidly matching S* to the new vertex locations, e.g. using
a Procrustes analysis [127] or ICP [26], yielding a new transformation T+,
Next, the new deformation weights a**! are determined using least-squares
fitting in parameter space of the SSM model [68].

This approach was originally proposed by Cootes et al. [41] and since then
has become one standard approach for ASM segmentation. Since today, several
extensions and refinement to this basic search algorithm have been proposed.
These are summarized in [68]. A first approach is to employ a coarse-to-fine
multi-level approach, increasing speed and robustness of the search. Other
improvements include constraining the shape adaptation per iteration, e.g.
by weighting tangential vertex motion lower than normal motion. Significant
improvements can be achieved by excluding outlier displacements per vertex,
since PCA SSM models suffer from global shape deformation for each shape
mode update. Hence, single vertex outliers can have profound impact on the
overall shape.

In our work, in contrast to this search algorithm, we employ a localized
region-based objective function for calculation of vertex displacements. Instead
of calculating individual vertex displacements and mapping them back to
the manifold of legal shapes as defined by the SSM through least-squares-
fitting, we use a gradient-descent optimization and iteratively adapt the shape
mode weights vector a;. This has two advantages. First, we reduce the
dimensionality of the search space to be optimized from 3 degrees-of-freedom
per vertex (3N, in our case on the order of 2000) to only the number of shape
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deformation modes (in our case on the order of 10-20). Second, we ensure
that the midbrain surface stays within the space of legal shapes throughout
the entire optimization, in contrast to regularly used optimization methods,
where all vertices are first optimized independently and only subsequently
back-projected into the shape manifold through least-squares mapping. Staying
within the manifold of legal shapes throughout the entire optimization seems
to lead to improved convergence speed and a better overall fit to the image
data, as we discovered in early feasibility experiments for our method. The
next section will describe the region-based cost function, optimization strategy
and other components in more detail.
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5.3 Materials and Methods

In the following, we will describe a method for reliable segmentation of the
midbrain in the area around the SN. The proposed approach is based on three
components: Firstly, the generation of a statistical shape model. Secondly, the
combination of this shape model with an active surface framework. Thirdly,
the active polyhedron framework of [151] to implement the discrete surface
evolution, including a custom gradient-descent based optimization method.

5.3.1 Midbrain SSM Creation

For SSM creation, we utilize the comprehensive SPHARM-MAT toolbox of
[138]. The toolbox was slightly modified to take a set of training meshes
as input and generate the SSM model in one function. The only modified
parameter was the SPHARM degree for expansion and it was set to 15 for
all meshes, otherwise default parameters as downloaded with the toolbox
were used. A 5-fold cross-validation was performed, i.e. the 22 meshes were
split into five groups and five SSM models were generated from four groups
(training set) to perform segmentation and evaluation on the fifth group (test
set), leaving 16 training shapes per fold and thus 16 eigenvalues/eigenvectors
per generated SSM. As mentioned, the output of the SPHARM toolbox trained
on M + 1 training shapes is a SSM with M modes of variation S;,i =1... M:

Su =8u+ ) S, (5.18)

where S, denotes the mean shape and a1,...,a) € R are the shape defor-
mation weights. The shape model S, can be considered as a parametrized
family of shapes, where a specific configuration is completely determined by
the shape vector & = (&, ..., ap)’.

The midbrain SSM is visualized in figure 5.4. The middle column depicts the
mean shape Sy, i.e. the average midbrain which was learned from the training
set, while the left and right columns depict shape deviations &; in distance of
one and two standard deviations from the mean. In this respect, the first row
illustrates deformations along the most significant mode of variation S;, while
the second and third row depict deviations along S, and S, respectively.

5.3.2 Active Surface Formulation and Evolution

In order to evolve the shape model towards the desired configuration, we
iteratively minimize an active surface energy of the form

E©S) = intSfi ax+ /extS fedx, (5.19)

where S denotes the surface, intS the region inside S, and extS the region
outside S. As our shape model provides enough regularity itself we employ
no additional regularizer, such as the surface area.
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Figure 5.4: One of the five midbrain SSMs learned from the five cross-validation
training sets. The middle column depicts the average midbrain, while left/right
columns depict statistical modes of variation Sy 5 31 (from top to bottom).

As the cost function, we use a region-based energy term defined by Chan-

Vese [35]:
fi= (1=G(x))%,  where gi(x) = lus 52, -
fo=(I—-C.(x))?, where c;(x) = W (520
extS
where ¢;(x) and ¢, (x) denote the average intensities inside and outside of the
object boundary, computed globally over the image.

Due to the highly inhomogeneous nature of US images, however, fore-
ground and background regions cannot be described by global statistics. For
example, speckle patterns inside and outside the midbrain may occur in similar
intensities and relative amounts across the whole image. Also, echo responses
at anatomical boundaries often appear only locally, when tissue densities on
both sides of the boundary are different from each other (see chapter 2.1.2 for
more details on relevant US imaging physics).

Thus, we use a localized version of the Chan-Vese model proposed by [96]

d
{ﬁ — (- ()2, where c(x) = sl

521
fo=(I—ce(x))?, where c.(x) = Luzgdx, (5.21)

x) dx

fextS Be

where B.(x) denotes a ball of radius € centered at x. In oder to derive the
evolution equation for the shape model, i.e. the gradient descent for the shape
vector «, we plug the shape model (5.18) into (5.19):

E(Sy) = fidx+ fe dx, with Sy = Sy + 2 «;S;, (5.22)

intSy extSy
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and compute the partial derivatives with respect to the shape mode weights
(44 jt
] oE 9S8 :

SE(S) = S = [ (i fON-Sjds, 523

au; T = a5y — JsUi T fIN Sy s 629
where N denotes the surface normal, and S i denotes the vertex-wise cartesian
shifts or deformations for the j-th shape eigenmode (i.e. the vertex “normals” of
the j-th shape mode). Put together, these partial derivatives yield the gradient
of E with respect to the shape vector «, which we denote by V4E. In order to
implement a gradient descent for &, we have to discretize the expression in
(5.23).

5.3.3 Active Polyhedron Framework

We decided to use an explicit surface representation based on a triangular mesh
as it is given by the active polyhedron method described by Slabaugh and Unal
in [151]. Regular active surface models calculate the speed of vertex motion
per iteration based on a cost-function which is derived from a local, regional or
global statistic or descriptor. In [151], an active polyhedron is presented, which
integrates the forces over the polyhedral faces and thus provides a lowpass
filtering or smoothing over the surface as shape regularization. The regulariza-
tion is provided by a cost-term which models forces between vertices similar to
electro-static repulsion. Furthermore, the explicit framework is flexible enough
to allow for complex mesh changes during the iterative optimization procedure,
e.g. through edge splits, collapses, and face splits. This makes even topological
changes of the shape possible, e.g. by introducing holes or splitting the overall
shape into two shapes etc., leading to a quasi-implicit, level-set-like behaviour,
while retaining the advantages of explicit formulation, such as improved speed
or robustness.

However, as our created statistical shape model provides enough regularity
we do not use the regularization described in [151] and evolve the model
directly according to VE. This restricts the topological flexibility of the Active
Polyhedron method, since the basic condition of spherical shape topology
cannot be violated anymore. However, this restriction comes at the benefit of
anatomical regularization and globally smooth surfaces without the need for
domain-unrelated regularization models such as electro-static repulsion.

For the evaluation of the cost function, we need to determine which voxels
are inside or outside a given mesh. This is trivial from an algorithmic perspec-
tive, however, it is the computational bottleneck of the optimization process as
this task is performed for each iteration. We addressed this issue by integrating
a simple but efficient GPU accelerated voxelization algorithm introduced by
Crane et al. [42] into our framework. Once all voxels inside and outside the
shape are determined, we can compute the local mean values c; and c,, which
eventually allows us to approximate the expression in (5.23) as follows:

N

o= FIN - Sids = Y = ol N - S]] (5:24)

k=1

where k denotes the vertex number and [-], denotes the evaluation at vertex k.
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5.4 Experiments and Results

We performed the automated segmentation for all 22 subjects, given five folds
of SSM models. The only user interaction necessary was the rigid placement of
the mean shape S, into the midbrain region. For all 22 experiments we kept the
same parameter settings: the gradient descent step size was T = 0.05, the radius
for the localization sphere Be(x) in (5.21) was set to 15 voxels (= 6.75mm), and
the maximum iteration number was set to 100. Most experiments converged
within this maximum iteration number, and typically required between 30-90
iterations until convergence. Convergence was reached when the RMS error
between two consecutive shape vectors a; and «;, 1 dropped below 3% of the
difference between the initialization shape vector wg (typically all zeros) and
the first iteration «.

In order to demonstrate that the localization of the data term (cf. (5.21))
is necessary, we performed another series of experiments with a standard
Chan-Vese model [35]. Further, we investigated whether preprocessing the
image data with a few anisotropic diffusion steps yields better results, but we
could not observe a significant improvement. In all quantitative evaluations,
only slices with manual ground truth were considered, since those were the
only slices in which the SN was clearly visible and manually segmentable by
the medical expert, i.e. we restrict our evaluation to those slices with medical
relevance to the diagnostic problem.

Regarding the midbrain segmentation, we calculated the Dice coefficient of
overlap between ground truth segmentations and the segmentations obtained
by our method. We can observe in Fig. 5.5 that using the localized data term
improves the segmentation results significantly. Despite the poor image quality,
the median of the Dice overlap of midbrain voxels across 22 subjects is 0.83,
which means that in 50% of all cases the Dice coefficient is at least 0.83. In
contrast to this, when the un-localized data term is used, we only achieve a
median Dice of only 0.55, again supporting the assumption that global fore-
and background statistics are not valid in the modality of ultrasound.

In order to evaluate the quality of the segmentation with respect to the
diagnostic problem, we calculated the True Positive Rate (TPR) for SN seg-
mentations, i.e. how many SN voxels were retained within the mesh after
segmentation. We found that a median of 89% of SN voxels is retained by
the midbrain ROI. We also post-processed all obtained segmentations with a
dilation by one voxel (= 0.45mm), because we observed that the expert segmen-
tation was systematically similar in shape to our segmentation, but segmented
slightly further outwards, i.e. more into the hyper-echogenic regions surround-
ing the midbrain. In contrast, our segmentation converges slightly before these
hyper-echogenic regions are reached. As we perform a ROI segmentation, a
dilation of one voxel does not contradict the overall purpose. However, one
should note that we only use dilation as one possible selection for a ROI,
while our proposed method does not rely on dilation. This post-processing
raises the median to 95%, i.e. half of our segmentations are able to retain
more than 95% of voxels with diagnostic relevance, and five volumes achieve a
perfect preservation of SN voxels after segmentation. Moreover, a dilation also
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Figure 5.5: Dice coefficients for overlap of our automatic segmentation with the
midbrain (left) and True Positive Rate (TPR) with the substantia nigra (right).
Subject indices are ordered by TPR SN Dilated, the percentage of voxels with
diagnostic value retained.

improves the automatic midbrain segmentation, yielding a median Dice value
of 0.86, which again shows that our segmentation is very similar in shape to
the expert opinion.

In addition to the quantitative evaluation presented in Fig. 5.5, we want
to compare one of the poorly segmented cases (case 11) to two other cases
with excellent (case 21) and medium (case 13) segmentation results (cf. Fig.
5.5), which serve as good examples for the performance of the algorithm
on the remaining data sets. The upper, middle and bottom row in Fig. 5.6
show cases 21, 13, and 11, respectively. The last column of the figure shows
mesh surface distance maps between the ground truth segmentation and
the final automatic segmentation with localized data term, showing that the
automatically segmented shape corresponds well with the ground truth. The
reason for the relatively poor performance in case 11 can be explained by the
comparatively bad image quality and the rather unusual shape of the midbrain,
making also the manual segmentation very difficult - even for a medical expert.
The same holds true for cases 16 and 22.
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Figure 5.6: Exemplary Segmentation Results: Rows: data from three subjects.
Columns: sample slice through volume with midbrain visible (left), segmen-
tation result without data term localization (middle left), segmentation result
with localization (middle right), mesh surface distance map between result and
ground truth (colorbar in mm).
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5.5 Discussion and Future Work

We have presented a robust and largely automated method for segmentation
of the midbrain in 3D TC-US, which is, to the best of our knowledge, the
first approach for volumetric segmentation of the midbrain from TC-US. The
performed experiments clearly demonstrate that the segmentation performance
is consistently high across 19 out of 22 subjects, although the quality of US
volumes differs highly due to different thicknesses of the temporal bone
windows, which proves the robustness of our method. As the image quality
also depends on the used US settings and hardware, the localized region-based
data term provides the advantage that is does not depend on these factors,
in contrast to an Active Appearance Model for instance. Thus, the presented
method can be readily applied to any form of 3D B-mode volume generation,
such as wobbler probes or 2D matrix arrays.

In terms of usability, the proposed semi-automatic segmentation method
reduces the overall segmentation time from approximately 20 minutes per
patient for manual segmentation to around 1.5 minutes. As an accurate, robust,
and user-friendly midbrain segmentation from 3D-TCUS is of high importance
for a subsequent segmentation and classification of the SN, we believe that the
proposed midbrain segmentation method is an important contribution to our
overall proposed pipeline of computer-aided methods for PD diagnosis using
TCUS. Most importantly, it lays the perfect groundwork for the segmentation
of SN hyper-echogenicities, to which the following chapter will be dedicated.
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Detection of Substantia
Nigra Echogenicities in 3D
Transcranial Ultrasound

6.1 Objective and Overall Approach

The past chapters have shown the value of transcranial ultrasound (TCUS)
for diagnosis of neurological movement disorders and, in particular, for early
detection of Parkinson’s disease (PD). We have motivated the extension of the
technique from 2D to 3D ultrasound, in order to improve upon often criticized
shortcomings of the technique, such as objectivity and the high dependence
on the sonographer’s experience. We have shown first promising results
towards computer-aided diagnosis using 3D-TCUS and manual segmentation
of midbrain and substantia nigra (SN) hyper-echogenicities (SNE). Due to
the impracticability of manual 3D segmentation, we have proposed a (semi-
)automatic, computer-aided 3D midbrain segmentation technique in the last
chapter.

In this chapter, we propose a method for fully automatic probabilistic detec-
tion and segmentation of SNEs in the midbrain. Since a manual segmentation
of SNEs within the midbrain is similarly disruptive for the clinical workflow
as manual midbrain segmentation, an automatic SNE segmentation marks
another component of our proposed chain for computer-assisted PD diagnosis
methods based on 3D-TCUS. As will be seen in the analysis of related work in
chapter 6.2.2, a prior detection of the midbrain as a region-of-interest (ROI) is
highly beneficial for the task of SNE detection and we are thus going to make
use of the work from the previous chapter in the following.

The overall method for SNE detection is to perform a probabilistic classifica-
tion of all voxels within the midbrain ROI using two random forest classifiers,
one trained to detect hyper-echogenicities, the other inferring the probability
of belonging to the SN based on its location within the midbrain. Only in
combination, the two classifiers yield results close to human performance.
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6.2 Related Work

Concerning related and previous work in literature, we will begin by giving a
short overview of general lesion detection methods in 3DUS, in order to give a
broad overview of work in the community so far. Subsequently, we will cite
previous work on SNE detection in TCUS as a special form of lesions. Since
there are no existing methods for quantitative SNE analysis in 3D-TCUS so far,
we will report on works by other groups on 2D-TCUS.

6.2.1 Lesion Detection Methods in 3DUS

There is a large body of related work for general detection of lesions in 3DUS.
Applications include detection of cysts, lesions, tumors and other cancerous
tissue types in various abdominal and pelvic organs, including breast, prostate,
kidney, gallbladder, liver, and other anatomies [110]. Segmentation methods
for tumor tissue are often designed towards large, contiguous, cyst-like tissue
regions (with smooth or jaggy boundaries, but usually contiguous).

In contrast to that, SN hyper-echogenicities (SNE) in TCUS are often small
and patch-like, since single speckle patches can already constitute a SNE. Due
to this, most explicit active contour or active surface detection methods would
fail, since previously defined contour topologies (e.g. as in snakes) would be
too restricted to adapt to fine-scale and often disconnected speckle patches.
Two approaches that are more applicable to our case are implicit active contours
based on level-sets or methods for voxel-wise classification.

A plethora of methods enlisted in the reviews of Noble in 2006 [110] and
2010 [109] are based on these two general approaches, however apparently,
no method has so far been applied to detect single speckle patches. On
the contrary, speckle is often seen purely as noisy features which have to be
removed prior to segmentation of larger anatomical structures. Therefore, many
methods actually rely on speckle-reduction techniques such as speckle-reducing
anisotropic diffusion (SRAD) [180] and other speckle filtering techniques [91,
92, 148, 153].

Furthermore, two difficulties we see with level-based approaches are that
they would need some form of initialization within the midbrain at the loca-
tion of the SN. A simple initialization from the midbrain outer surface and
a convergence towards inner speckle patches would probably result in an
over-segmentation and the inclusion of many false-positive patches within the
midbrain, which anatomically cannot belong to the SN and thus should be
discarded. The incorporation of such a spatial prior, however, is not straight-
forward in intensity-based level-set segmentation methods. The other problem
is that the output of level-set segmentation is a binary map. However, given
the difficult task of SNE detection, it would be preferable to obtain a fuzzy
output indicating a voxel-wise confidence for the segmentation, leaving a final
decision to the human observer.

Voxel-wise classification approaches often require no initialization, but
classify lesions based on a combination of voxel-wise features, including
intensity, intensity derivatives, local image phase or local texture [109]. The
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methods stem mainly from the domain of machine learning and include
methods such as linear and quadratic discriminant function, support vector
machines, fuzzy inference system and Bayesian neural networks [109].

Similar to only some of these methods, our approach does yield a prob-
abilistic map as output for SNE detection. A binary decision map can then
be achieved by thresholding, however, the confidence level for each voxel is
highly beneficial for SNE detection, especially since SNE segmentation can be
challenging even for a human observer [161, 163, 162].

6.2.2 SN detection in 2D TCUS

There is little related work in literature so far concerning the automatic analysis
of SNE in 2D, and no work at all on 3D-TCUS. However, similar to our work,
all approaches we are aware of perform a midbrain ROI segmentation first and
a SNE detection within the midbrain subsequently. Kier et al. [87] and Chen et
al. [37] respectively perform SN pixel detection using morphological operators
or image-feature-based SVM classification, both within a manually segmented
midbrain in 2D. Engels et al. [52] use a hierarchical finite-element model
and active contours to simultaneously segment the midbrain and SNEs in 2D.
Sakalauskas et al. [132] analyze texture features within manually segmented
midbrains in 2D for distinguishing PD from healthy controls. As mentioned,
apart from our early contribution on midbrain segmentation in 3D-TCUS
[2], there is no other previous work to our knowledge on (semi-) automatic
midbrain or SNE analysis in 3DUS.

The main contributions of this chapter are therefore to 1) propose a novel
and volumetric SNE detection method based on random-forests, 2) formulate a
detection paradigm mimicking human experts by using probabilistic modeling
of visual and spatial SNE features and 3) demonstrate the reliability of our
SNE detection approach on our acquired 3D-TCUS dataset from 22 subjects
(see chapter 3.4 for description of the dataset).
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Figure 6.1: Goal of our approach: On the top left, the anatomy of the midbrain
is detailed, showing the Substantia Nigra regions located at the front of both
hemispheres. The other images show examples of typical SNE speckle patterns
(in yellow) in 3D TCUS transversal slices.

6.3 Materials and Methods

As illustrated by Fig.6.1, an experienced observer can detect PD-related hyper-
echogenicities in the left and right SN using 3D TC-US. Unfortunately, TCUS
cannot visualize the SN regions themselves, but only the high-contrast SNE
speckles located randomly within the area of SN. Thus, relying on prior
knowledge of the midbrain anatomy and the known rough location of the
SN within the midbrain, an experimented observer has to decide whether
an echogenicity belongs to the SN or not based on location and intensity of
speckle patches. This makes the detection of Parkinson-related SNEs quite
challenging. In this chapter, as mentioned, we aim at providing a reliable
detection of PD-related SNEs in 3D by analogously integrating two types of
information: (i) visual context and (ii) spatial location within the midbrain.
Since we use Random Forests (RF) as classifiers for voxels within the
midbrain ROI, we begin by giving a short introduction into RF classification.

6.3.1 Random Forests Introduction

In the last few years, Random Forests have been shown to be state-of-the-art
ensemble learners, which can be applied in many different tasks, including
classification, regression, density estimation, manifold learning and semi-
supervised learning [44]. The power of ensemble learning methods lies within
two factors, namely (1) the combination of several weak learners into one
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strong learner and (2) the injection of randomness during the model building
stage, which significantly improves robustness and generalization of the overall
model.

Specific advantages of random forests are: (1) being intuitive (“white box”),
(2) fast and (3) highly scalable to large datasets. Profound coverage of this
machine learning approach for classification and its recent generalization
to above-mentioned tasks can be found in the technical report of Criminisi,
Shotton and Konukoglu in [44]. While we refer the reader to that document for
an in-depth coverage of the topic, we will reproduce a subset of the explanations
from this report in the following. Alongside, we will provide a toy example,
for better illustration of RF principles and preparation of the SNE detection
approach explained in chapter 6.3.2. Basically, a Random Forest is an ensemble
of decorrelated decision trees, which will be explained in the following.

Decision Trees: In [44], Criminisi et al. describe decision trees as ”a set of
questions organized in a hierarchical manner”. The structure of a decision tree
is an acyclic graph, with nodes and uni-directional edges, all in direction from
the root node to the terminal nodes.

In a probabilistic way, the goal of a decision tree is to learn the posterior
distribution that relates input observations to an output class. To this end,
a decision tree uses a “divide and conquer” strategy. It first subdivides the
observations into consistent subgroups, i.e. it creates a partition over the
observation space, and second, it models the posterior locally in each part of
the space. Finally, a piece-wise approximation of the posterior is obtained.

The subgroups are formed hierarchically by internal node or split node.
Each node represents one question, or decision function. Depending on the
answer to this question, the original data is pushed one level further down,
where the next question is answered. In a classification tree, the outcome of
the question is one option from a discrete set of classes ¢ € C, with C = {cx}.
This procedure of sequential questioning continues until the end of the tree is
reached. The final nodes of a tree, analoguously to its nature-derived eponym,
are called leafs. Each leaf stores a result in form of a class or a distribution
of outcomes according to the training cases which arrived in that leaf during
the learning process. In the testing stage, a previously unseen case, if passed
down to a particular leaf, is classified based on the stored training cases stored
in that leaf.

Formally, we denote an input data point as a multi-dimensional vector
v = (x1,...,%;) € R% Each internal node is represented by a weak decision
function with n-ary outcome. Assuming a binary outcome (as also assumed
by Criminisi et al. [44] and by our approach in the following chapter), we can
denote the following notation for the decision function at each node level :

h(v,0;) = [¢(v) - > 7] € {truefalse}, (6.1)

where 6; denotes the decision parameters at node j.

As an example, we assume this decision function to be a single axis-aligned
split in 2D, i.e. ¢(v) = (x; xo )T and ¢ = (1 0 ¢3) or ¢ = (0 1 y3) for
a horizontal or vertical split, respectively. This notation can be graphically
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represented by a single-level decision tree (also often called a decision stump
[159]). This thresholding decision, which is indicated by the bracket operator
[-], separates the input space S into two output spaces ST and SK.

Given an unknown data point, i.e. at the testing stage, the classification of
the point using a decision stump is easy, since its class is determined by the
binary decision defined in equation 6.1. For a decision tree with several levels,
the class posterior is calculated instead:

plelv) = Y_p(clip(ilv). (6:2)
]

It remains to be defined how the decision tree is trained. At the training
stage, a set of data points with known outcome or class, the so-called training
set is presented to the tree. A set of decision functions 0; is generated, either
following a rule, or by random draws from a range of possible parameters. Each
decision function 6; is tested according to an objective function, which quantifies
the quality with which the data is separated using this single decision. The
best decision function maximizing the objective function for this training set
is then selected and stored for the tree for future classification of unknown
samples. As denoted by Criminisi et al. [44], most related literature employs
the concepts of entropy and information gain as an objective function which
chooses the optimal decision parameter from the available set. In our approach,
we follow the same principle and we will give the definitions for entropy and
information gain in chapter 6.3.3 ( equations 6.8 and 6.7).

Having learned a decision model with “optimal” parameterization (at least
“optimal” within the set of randomly drawn decision functions), an unknown
data point can now be classified following equation 6.1. However, it is not
hard to imagine that a single decision stump will often fail to yield correct
classification, in particular if the data is not separable by an axis-aligned split.
One approach to improve the learner is to allow a more “complex” decision
functions, such as linear data separation using arbitrary lines in 2D or nonlinear
data separation using conic sections [44]. Another approach, naturally, is to
use more complex learners, e.g. by extending decision stumps to full decision
trees with multiple levels. However, even then, a single classifier might not
be sufficient for classification. Therefore, the concept of random forests is
introduced.

Random Forests: A Random Forest is an ensemble of decorrelated decision
trees. As mentioned, this concept is also called “ensemble learning” [27] and
has been previously applied with large success, e.g. in boosting approaches
[159]. The difference in RF ensembles is that a user-specified amount of
randomness is introduced into the training stage for the weak learners.

The two most popular ways to introduce randomness are the following
[44]:

1. Randomized node optimization: As mentioned, the parameters for the deci-
sion function can be sampled randomly from a pre-defined distribution,
e.g. uniformly from a pre-defined range of threshold parameters. This
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allows the training of trees on the entire available training data. Also,
this approach achieves maximum-margin separation of the data, similar
to Support-Vector-Machine models [45].

2. Randomized training set sampling: Instead of using the entire training set
for training of each weak classifier, it is also possible to select a random
subset of training samples. One possible approach is bagging, which
yields greater training efficiency [44].

Using several weak classifiers trained with random node optimization or
randomized sampling of the training set (or a combination thereof), the RF
ensemble classifier can be used to jointly classify an unknown sample. Each
of the T trees yields an output according to each tree’s posterior distribution
pt(c|v). The overall output can be calculated e.g. by averaging all individual
tree posteriors:

1 T
plelv) = = 3 pilelv), (63)
r=
or by multiplying the tree outputs and normalizing with a factor Z:
1.T
plelv) = 7 [T pilelv), (64)
t=1

In summary, the most important parameters influencing a Random Forest
classifier are the number of trees in the forest and the tree depth [44]. The
tree depth is important for generalization, i.e. to make the tradeoff between
under- and over-fitting. At the same time, the number of trees influences the
smoothness of the posterior, and permits to increase the generalization further.

In figure 6.2, we give an illustration of a RF example based on decision
stumps in order to visualize the most basic concepts of Random Forest ensem-
ble classification. In figure 6.2, panel(A), we visualize a single decision-stump
and one set of randomized decision parameters 04. In this example, the deci-
sion functions are line splits of the 2D plane. Furthermore, training samples
are selected randomly from the whole available training set with a selection
rate p = 0.5, i.e. only half of the training samples are selected randomly for
each tree. In panels 6.2B and 6.2C, we visualize two additional, random binary
stumps and their respective decision thresholds 6z and 6¢. In panel 6.2D, we
visualize an unknown sample in the 2D plane and how the individual decision
tree (or stump) outputs are combined to form an ensemble opinion about
the unknown samples’ class c. In this toy example, the final random forest
classification result is a fuzzy output, voting for class ¢, with a confidence of
0.67.

Our approach to SNE detection, as will be seen in the following section
6.3.2, is to model two properties of substantia-nigra hyper-echogenicities (SNE)
as independent events, namely their intensity and location within the midbrain.
Both properties are modeled with independent random decision forests, which
follow exactly the properties and explanations above. The only differences are
more complex decision functions, higher tree depth, and varying degrees of
randomness, which will be explained in detail in the following.
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Figure 6.2: A) Visualization of single-tree learning with (random sub-selection
of training set (selection rate p = 0.5) and general-oriented line splits as the
decision function, B,C) multiple-tree learning with injected randomness and D)
ensemble classification of an unknown sample using the RF classifier. As the
weak learner, we selected simple decision stumps for explanatory purposes.

6.3.2 Problem Formulation

Let us consider an intensity function denoted by I : Q — R, where Q C R3 is
the image domain representing the 3D ultrasound data. We further assume
that we are given a segmentation of the midbrain M C (), either from a
manual expert segmentation or alternatively from the output of a ROI detection
algorithm (see [2] and chapter 5.3).

In this paper, we propose to formulate the detection problem as a classifica-
tion task in which each voxel x € M needs to be associated to a label ¢ € {0,1},
where 0 denotes the background and 1 the Substantia Nigra Echogenicities
(SNE) class. In fact, c is the realization of 2 random variables (£, S) where £
represents the observation of an echogenicity and S of the Substantia Nigra
(SN),i.e. c=11if and only if £ =1 and S = 1. Therefore, we aim at learning
P(&,S|x,I), which represents the joint probability of observing an echogenicity
€ belonging to the SN S given the location x and the intensity function I. It is
important to note that:

1. it is not the SN itself which causes hyper-echogenicities but only potential
acoustic micro-scatterers residing within it (see chapter 2.1.3) and

2. echogenicities can happen in the whole skull in TCUS due to tissue
boundaries and micro-scatterers present in the entire brain tissue (see
chapter 2.1.2).

Hence, we can assume the independence of the random variables £ and S,
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and decompose this joint probability as follows:
P(E,S|x,I) = P(E|x,I)P(S|x) (6.5)

The first term P(£|x,I) is a data term, encoding the probability of observing an
echogenicity given some visual information at location x, and the second term
P(S|x) is an anatomical prior not depending on I, i.e. the ultrasound data.

As learning these probability distributions is challenging due to the dimen-
sionality of the problem, we propose to use two discriminative models based
on random forests. Following a ”divide” and “conquer” strategy, random
forests [30] provide efficient piecewise approximations of any distribution in
high-dimensional spaces by: (1) partitioning the space using simple decisions,
and (2) estimating the posterior in each “cell” of this space. As shown in
[114, 44], random forests have been successfully applied to the task of multiple
organ localization in CT and MR scans and further to organ segmentation in
CT [107, 73]. Geremia et al. in [63] demonstrated state-of-the-art results for the
segmentation of multiple-sclerosis lesions based on multi-channel MRI data.

In addition to a forest using visual context, we propose to learn a novel
spatial prior based on two hemisphere-specific coordinate systems, which is thus
perfectly adapted to asymmetric changes that can occur in 3D-TCUS concerning
the scale and orientations of the midbrain structure. In the following, we
describe how to use random forests for learning: (1) the data term P(&|x, I)
and (2), the spatial prior P(S|x).

6.3.3 Learning the Data Term

In TCUS, echogenicities are characterized by higher intensities and higher
contrast. In this section, we describe how the data term P(€|x,1I) is learned .
We propose to describe the visual context of a voxel at location x by extracting
a set of simple features that encode the mean intensities in cuboidal regions
of different sizes in the neighborhood of x similarly as described in detail in
[63]. The regions are spanned by boxes of random location and random size
in a large neighborhood of the target voxel. These regions can either be used
as a local feature, where an array of cuboidal average intensities serves as a
stand-alone feature vector, or as a context-rich feature, i.e. by sampling random
box-pairs and using the differences of cuboidal average intensities as the
feature vectors. As in [63], we use a combination of both for our experiments,
namely 500 local features using random-sized cuboidal regions (edge length
[0.5 — 5]mm) randomly placed in a comparatively large neighborhood around
the voxel (range [—1...1] cm) and additionally, 500 cube-pairs and their mean
intensity difference as context features (same dimension ranges as above for
the cubes).

Let us denote by X the space spanned by these simple features, and X
the feature representation associated to a voxel at location x. We consider a
training set (X, Sn)nNzl, where each feature vector X, is associated to a label
&y which is equal to 1 if there is an echogenicity at location x,, and 0 if not.
Consisting of an ensemble of independent trees, a random forest permits to
efficiently partition this high-dimensional space X'. Each tree can be seen as
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a directed acyclic graph where each node consists in a decision function fy
defined as:
for(X)=(X-v>1) (6.6)

T € R being a threshold and v being a vector of dimensionality dim(X') with
only one non-zero entry, i.e. selecting a single axis or dimension from the many
feature dimensions. According to the result of this decision function, incoming
data are pushed towards the left or right child of the current node. Note that
the role of v is to select a feature dimension where to perform the decision,
yielding thus axis-aligned splits in X'. Please note that for each tree in the forest,
only a percentage of the feature dimensions is used, in our experiments, we
randomly select 10% or 100 dimensions for each tree, and perform axis-aligned
splits at each node in the tree as described.

Let us denote by A the set of feature points from X reaching the current
node, and Aj, A, the subsets respectively sent to the left and right child nodes.
As described in chapter 6.3.1, the choice of v and T is optimized at each node
following an objective function. In our setting, the optimization approach
pursues a greedy strategy. A set I' of functions are randomly drawn and the
best candidate (v*, 7*) is selected by maximizing information gain:

(v*, ") = argmax(H(A) — w;H(A)) — w,H(A,)) (6.7)
(v,T)er
where w; = |A|/|A] and w, = |A;|/|A|. H corresponds to the classical

Shannon’s entropy:

H=—- )} P =elxI)log(P(&=elxI)). (6.8)
ec{0,1}

The posterior distribution can then be estimated from the set of points in the

current node as:
{Xp €A, & =e}

[{Xyn € A}|

By optimizing this energy function, the tree aims at minimizing the uncertainty
on the random variable £, encouraging thereby the creation of leaves containing
either mostly echogenicities, or mostly background. Nodes are grown until a
maximal tree depth has been reached, or when the number of feature points
falls below a given threshold. Finally, in each leaf, the posterior distribution
P(&|x,I) is computed on the set of features points reaching this leaf using
Eq.6.9 and stored.

Now, to predict the probability of observing an echogenicity at a location x
for an unseen ultrasound volume of the midbrain, one just needs to first extract
its associated feature vector X, to push it downward the tree until it reaches
a leaf, and to use the stored posterior distribution. Considering a random
forest consisting of T trees, ensemble model is to compute forest predictions
by simply computing the average of all tree posteriors:

P(E =e|xI) = |

(6.9)

T
P@MDz%ZH@MU (6.10)
t
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Midbrain in TC-US Transversal plane Left hemisphere / Right hemisphere ~ Hemisphere center/Coordinate system

Figure 6.3: Midbrain anatomy: in the transversal plane, the midbrain has a
characteristic butterfly shape. The Substantia Nigra are thin structures located
at the front of both hemispheres. A hemisphere-specific coordinate system is
computed in order to express and learn the spatial location of voxels within
the midbrain, given their property of being a SN hyper-echogenicity or not.
Due to the patient-specific encoding of spatial location, we can account for
inter-patient asymmetric changes of scales and orientation.

6.3.4 Learning the Anatomic Spatial Prior

As shown on Fig.6.3, the midbrain has a characteristic butterfly shape in the
transversal plane, which does not vary much along the longitudinal axis. The
Substantia Nigra are thin structures located at the front of both hemispheres
and do not vary much along the longitudinal axis either. Hence, we propose
to express the location of each voxel using patient-specific coordinate systems
that represent the left and right midbrain hemispheres in the transversal plane.
By doing so, we can easily account for asymmetric changes of scales and
orientation of the midbrain anatomy, which can occur in TCUS imaging.

Let us denote by {x,, }M_; = M, the finite set of cartesian volume-coordinates
for M voxels belonging to the midbrain. First, the coordinate centers of the left
and right hemispheres are computed by performing a K-means clustering [27]
on M. Then, each voxel is associated to its nearest cluster center to create the 2
hemisphere subsets H'** and H"". Finally, principal component analysis on the
set of voxel-coordinates is applied to each of these subsets in order to compute
a hemisphere-specific transversal coordinate system, and the location of each
point is expressed in the normalized coordinate systems of the hemisphere it
belongs to. The in-plane location of each voxel x;;, can then be encoded by a
vector X'y, = [X},, Yiu, hm], where x), and y,, are the in-plane components in
the hemisphere coordinate system, and h,, is a categorical variable encoding
the left/right side.

To summarize, each voxel x;, is associated to a couple (x'm, Sm) for the
training phase, where S, is equal to 1 if x;; belongs to the Substantia Nigra
and 0 if not. As in the previous section on visual prior calculation, we use
a random forest to learn the spatial prior P(S|x) using a training set of 3D
TCUS from different patients. During the training, each tree aims at separating
the SN from the rest of the midbrain, and creates clusters in its leaves that are
consistent in terms of spatial location x'y,.
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6.3.5 SNE detection

Once the data term and the prior have been learned from a set of labeled
midbrains, a new unseen patient data can be processed as follows:

1. the midbrain is segmented,

2. the hemisphere coordinate systems are determined using K-means fol-
lowed by a PCA,

3. the probability P(E|x,I) and the prior P(S|x) are computed for each
voxel, and

4. the joint probability P(€, S|x,I) can be predicted using equation 6.5.

Hence, we obtain for each voxel a probability of belonging to an SNE, and
we can use a threshold 7 € [0, 1] to create a binary segmentation of the ferrite
deposits: ¢ = 1if P(€,S|x,I) > T, and ¢ = 0 otherwise.

The above methods were implemented in a custom toolbox, based on
MATLAB and mex-functions (C++) for accelerated processing.
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6.4 Experiments and Results

In this section, we evaluate our SNE detection approach on the bi-lateral 3D-
TCUS dataset of 22 subjects described in chapter 3.4. We remind the reader that
the 3D volumes were labeled by a blinded expert into the regions “midbrain”,
”SNE left” and "SNE right”. For our validation, we will consider this manual
labeling as gold standard.

We conduct comparative experiments to evaluate our SNE detection ap-
proach based on 2 discriminative models (VisForest-PriorForest) against the
simple forest without spatial prior (VisForest), and a forest with a spatial
prior constructed using a Gaussian model for each hemisphere (VisForest-
GaussianPrior). We perform a leave-one-patient-out cross-validation, i.e. we
train all models on 21 labeled midbrains and test on the remaining one. As
the outputs from our system are probabilities between 0 and 1, we perform a
ROC analysis, i.e. we vary the threshold’s value to compute a binary segmen-
tation, compute the corresponding confusion matrices for each run and derive
different quality measures: f-measure, specificity and sensitivity.

The number of trees is set to 10 for all experiments, and best results were
obtained for a depth = 15 for the VisForest, and for a depth = 10 for the
PriorForest. Overall results are presented in Tab. 6.1. On the left, the best
f-measure are reported by using threshold values of 0.5, 0.1 and 0.2 respectively
for the VisForest, VisForest-GaussianPrior and VisForest-PriorForest models.
By including our hemisphere-specific spatial prior, the f-measure is increased
from 0.456 (VisForest) to 0.518 (VisForest-PriorForest).

Moreover, learning this prior distribution using a random forest provides
slightly better results than with Gaussian prior achieving 0.508. On the right,
the best compromise between sensitivity and specificity are computed from
the ROC analysis for all approaches. As illustrated by Fig. 6.4, the proposed
prior permits to achieve improved specificity by better rejecting echogenicities
that do not belong to the estimated SN. By varying the segmentation threshold,
we also compute the area under curve which is AUC = 0.903 for our approach,
compared to a VisForest alone AUC = 0.879 or with a simple Gaussian prior
AUC = 0.891.

With a sensitivity and specificity of around 83%, our SNE detection method
is relatively close to the human inter-rater observability reported for experts
segmenting in 2D (ICC 0.85) [99]. For this reason, despite the challenging
nature of the data, these results are highly promising. Figure 6.5 shows a 3D
visualization of one exemplary SNE detection result by our approach, also
illustrating the promising performance.
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Figure 6.4: The effect of our spatial prior: From left to right, (i) the manual
segmentation overlayed on the US data, (ii) the predicted posterior using the
data term forest and (iii) the output after combining with the forest-based
spatial prior. All outputs are probabilistic and can be thresholded to provide a
binary segmentation.

Figure 6.5: Results of Random Forest based detection of SNEs in 3D. Left:
expert annotation. Right: our approach.

F-measure Specificity Sensitivity
Mean Std Median Mean Std Median Mean Std Median
VisForest 0456 0.115 0.463 0.775  0.060 0.779 0.845 0.081 0.859

VisForest-GaussianPrior | 0.508 0.155 0.547 0.819  0.045 0.812 0.829 0.113 0.844
VisForest-PriorForest 0.519 0.148 0.574 0.835 0.043 0.832 0.828  0.099 0.829

Table 6.1: Overall SNE Detection results on 22 patients: The proposed prior
permits to achieve better detection by improving the specificity, i.e. by better
rejecting echogenicities that do not belong to the estimated SN. Moreover, using
a forest-based prior provides slightly better results.
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6.5 Discussion and Conclusion

In this chapter, as well as in our associated publication in [113], we presented
the first approach for the automatic detection of Substantia Nigra Echogenic-
ities in 3D TCUS. Since the interpretation of such data is very difficult and
yields high inter and intra-observer variability (see chapter 4.3.4), our aim is
to provide an objective and reliable segmentation of such Parkinson-related
speckle patches.

Inspired by the way medical experts recognize SNE, we proposed a proba-
bilistic formulation combining two discriminative models:

1. a “visual” random forest specialized on the detection of echogenicities
and

2. a ”spatial” random forest modeling a location prior within the midbrain.

For the spatial prior, voxel locations are parametrized within hemisphere-
specific coordinate systems in order to account for asymmetric changes of
orientation and scale in the midbrain anatomy. Through first experiments
conducted on our clinical dataset with 22 subjects, we demonstrate the potential
benefits of our approach in terms of segmentation accuracy, compared to expert
labeling. From the segmentation output of our system, we can now quantify
automatically the amount of hyper-echogenicities in each hemisphere. This
marks another component in our overall chain of methods for computer-
assisted PD detection using 3D-TCUS.

As a closing remark, we would like to point out that in this work, we
made use of B-mode ultrasound data for SNE classification. However, it would
be highly interesting to perform SNE analysis in the information-richer raw
radio-frequency (RF) ultrasound modality (see chapter 2.3).

As summarized by Noble in [109], many lesion detection problems were
solved using probabilistic approaches which were applied to the task of tissue
classification in RF ultrasound. Although the number of such works is still
limited, it is likely that it will be increasing in near future. This is due
to the fact that in recent years, several ultrasound machines with research
SDKs have become commercially available. RF ultrasound contains higher
amounts of information about the back-scattered tissue echoes, since high-
frequency components have not been filtered out yet, data re-scaling and 8-bit
compression have not yet been applied and overall, the echo statistics have not
yet been falsified by proprietary image enhancements often implemented in
clinical ultrasound machines (see chapter 2.3 for details on the B-mode image
processing chain).

At the end of this thesis, in chapter 8, we will describe our ongoing and
future work concerning the recording of a new dataset, which will feature such
RF data, and which we hope to analyze towards RF-based SNE detection.
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Joint Segmentation-
Registration-Reconstruction
of Multi-View Transcranial

3DUS Data

7.1 Problem Statement and Objective

As described in chapter 3.1, we acquire 3DUS volumes of the midbrain in
a bi-lateral faschion, i.e. by recording US data from the left and right bone
windows, and combining them into a single volume during reconstruction.
Another way of looking at this circumstance is that we are in fact dealing with
an enhanced type of 3DUS acquisition, namely an extension from single-view
3DUS (SV-3DUS) to multi-view 3D US (MV-3DUS).

In related literature, MV-3DUS is defined as the combination of information
from several SV-3DUS volumes into one reconstruction, which often bears
several advantages. By combining several SV-3DUS volumes, the US-typical
limited field of view can be extended, noise and speckle can be reduced
and missing information from artifacts such as shadows can be reasonably
compensated for. However, MV-3DUS introduces several challenges, as it is not
rightaway obvious how to optimally combine US data from individual views.

In this thesis so far, and in our backward compounding reconstruction
methods (see chapter 3.3), we have ignored these challenges. Therefore, the
objective in this chapter is to utilize the image data from both bone windows
and the fact that they have a large overlap of information, in order to create
an improved reconstruction of the midbrain area. As we will explain later,
we will use a sequence of inter-dependent segmentation-, registration- and
reconstruction-steps to accomplish this.
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7.2 Related Work in Multi-View 3DUS Reconstruc-
tion

One way the community has approached MV-3DUS in the past is through
direct deformable registration of 3DUS using various distance measures [165],
voxel-wise features computed from intensities [56], or variational approaches
[183]. Another major approach is through joint registration-reconstruction.
For example, [115] calculate a spatio-temporally smooth deformation field
of different 3D+t echocardiographic views onto a common fusion space. In
[178], several views of femur scans in fetal 3DUS are registered rigidly using
image intensities and NCC as a distance measure. Furthermore, in [93, 122],
a block matching approach is applied in order to improve the quality of
several compounded images. To achieve this, Kruecker et al. [93] evaluated
several similarity measures, concluding that sum of squared differences (SSD)
is more suitable for low noise levels, whereas Poon and Rohling [122] focus
on NCC for registration. Yu et al. [179] registered several view volumes of 3D
echocardiography using segmented ventricles with the assumptions of rigid
registration and no deformation.

It is common to all those approaches that the registration is purely intensity-
based, which is prone to fail in presence of strongly varying speckle, and
if SV-3DUS volumes differ significantly to each other, e.g. due to imaging
artifacts such as shadows.

In this chapter, we are dealing with another fundamental problem of
MV-3DUS. Depending on the type of 3D imaging system, e.g. 3D Freehand
US or 2D matrix array, as well as depending on physical properties of the
penetrated tissue, e.g. speed of sound, a combination of linear and non-linear
spatial deformations can occur independently for each SV-3DUS. These varying
distortions have to be properly compensated for, before a reconstruction with
advanced methods as mentioned above can be performed.

The problem is formalized as the combination of several independent 3DUS
volumes with individual spatial deformations into a single consistent recon-
struction. This is achieved by simultaneously estimating and compensating
the individual deformations through an innovative and inter-dependent se-
quence of segmentation-, deformable registration- and reconstruction-steps.
Furthermore, we incorporate an anatomical prior into the reconstruction using
the midbrain statistical shape model (SSM) (see chapter 5.3.1), which in turn
guides the deformable registration.

We remind the reader that TCUS is generally of quite challenging nature
due to the low SNR as a result of the US transmission through the skull bone
with low frequency. This results in low SNR, large speckle patterns and a
strong degradation of image quality with penetration depth, making intensity-
based registration difficult. More importantly, scanning through the skull bone
introduces non-linear shifts due to the irregular bone shape, different speed
of sound in bone as well as non-linear diffraction at the bone-tissue interface,
which we try to compensate using our method.
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7.3 Joint Segmentation-Registration-Reconstruction
Approach

7.3.1 Arrangement of JSR2 pipeline in a feedback loop

Our method for joint segmentation registration and reconstruction (JSR2)
combines several single-view volumes of the same anatomic target object into
an improved reconstruction using multi-view information.

We denote each SV-3DUS volume view as Vi, where the subscript n =

[1...N] denotes the view index and N the number of views. The superscript
i denotes the current reconstruction step iteration. Each volume can be con-
sidered to be residing within its own space ), C R, where RR® is the real
cartesian space in which our target anatomy is located. This means that for
each V., there is a subspace (), created by the overall imaging system and
thus affected by a groundtruth distortion or displacement field U%/"¢, which is
unknown and varying w.r.t. R3. Factors for distortion can be linear, such as
calibration errors, or non-linear, e.g. differences in speed of sound of scanned
tissue.
In the first iteration, each input SV-3DUS volume V} is represented by regular
3D sampling grid XY € R®, which represents locations where the imaging
system measures intensities 1(XJ). JSR2 tries to approximately recover the
per-volume displacement fields U}/** (X)) by sequentially segmenting the
anatomical target object in each SV-3DUS and subsequently registering seg-
mentations onto a fused segmentation, yielding deformed volumes V;:*1. This
iterative process is depicted in figure 7.1. When re-arranging the individual
steps, the same process can be depicted as an iterative, closed feedback loop
(see figure 7.2), which better illustrates that the JSR2 process is in fact optimiz-
ing a global energy, even though it is not yet unified in a single cost function.
In the following, we denote the segmentation, registration and reconstruction
operations and their results respectively as:

S(Vi) =Sh, Reg(Si,Shiu) =l Rec(V{,Vi... Vi) = Vi ()
where S, denotes a segmentation result such as labelmaps or segmented sur-

faces, S;'oint denotes a fused segmentation and u}, denotes a dense deformation

field distorting the sampling grid, i.e. to X,;"! = u}, (X;) = X!, + AF,. JSR2
reconstructs or approximates the distortion field U"¢, by merging individ-

ual image information into a joint volume and accumulating the required
deformations for this matching, such that eventually:

UM ol ou?oul (xg) (7.2)

The iterative optimization tries to find an optimal deformation field u/,, such
that the energy or distance between segmentations S}, and a joint segmentation
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Segmentation Segmentation
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i,deformed
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Vioint

Vioint deformed
Figure 7.1: Iterative decomposition of JSR2 steps: Individual reconstructions
from each view yield volumes in which the target anatomy is segmented. The
segmented surfaces are used for feature-based, deformable registration. The
deformation fields are applied to the original voxel positions where pixels from
all 2D images are sampled and a new reconstructions for each view can be
generated. Since these reconstructions have different voxel intensities than in
the previous iteration, a new set of segmentations can be generated and the
process can iterate.

Energy function: min( dist(S;,S;;) ) |

R

Segmentation Registration
g N g

Recon- >

struction

Figure 7.2: Visualization of JSR2 steps in a closed feedback loop: Compared to
the iterative visualization, this visualization highlights that due to the closed
loop, all steps affect each other and in effect optimize a global (although not
joint) energy function.

is minimized, which happens in the registration step

argmin (i (dist( L ;bim‘))) (7.3)

ul, i=1

The effect of the procedure on the voxel sampling grids in the reconstruction
step is illustrated in Fig. 7.3. Please note that under ideal circumstances,
i.e. if segmentation and registration steps yield a perfectly congruent joint
reconstruction, or if strongly simplified assumptions are made, e.g. only rigid
displacements [179, 178], the iterative process will converge after a single
iteration. However, if either segmentation or registration are too strongly
regularized, or if the underlying displacements U"" are large, this process
will iteratively drive individual volumes to a common reconstruction. In the
following, we will give specifics for the algorithms S(-), Reg(-) and Rec(-)
used in this paper.
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Figure 7.3: Illustration of JSR2 principle. Bottom row: The red shape represents
the joint fusion of segmented shapes in individual SV-3DUS (green and blue).
They are iteratively merged through deformable registration of segmentations,
which yields new sample points X;;"! and a new reconstruction per iteration
(top row).

7.3.2 Description of individual components
7.3.2.1 Segmentation method

For segmentation of the midbrain, we use our method proposed in chapter 5,
which is based on a discrete active-surface model with shape prior regulariza-
tion and a gradient-descent optimization of a region-based cost function with
localized statistics. The 6-DOF rigid positioning of the average shape S, in the
volume is performed manually, at the beginning of the JSR2 procedure.

7.3.2.2 DeformableRegistration method

Registration can be performed by any deformable registration algorithm which
is able to recover the deformation between the segmentations S/, and the joint
segmentation Sj- oint- 1N this work, we decided to use a freely available method
for dense deformable registration! based on a discrete Markov-Random Field
objective function. We apply it to register voxelization of the meshes S/, which
we denote as labelmaps Li,. We use a multi-level registration approach, i.e.
using a pyramid with three levels of control points and a control point distance
of 1.4 cm on the coarsest grid, which partly allows for compensating small rigid
components in the deformation field. The dimensionality of the optimization
is reduced by using a set of control points and an additional discretization of
the search space. At each control point, the registration cost between volume
patches from the source and target volumes are calculated using any arbitrary
unary distance function. Control point deformations are interpolated with a
B-spline regularization in order to generate smooth and dense deformation
vector fields F,,. A smoothness term in the cost function additionally penalizes

Iwww.mrf-registration.net
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large deformations of the grid through the MRF neighborhood relation of the
control points. This allows the deformation from the segmentation boundaries
to diffuse smoothly into neighboring regions. We use sum-of-absolute distance
(SAD) on the labelmaps L, ~ S/, as the cost function to reduce the distances

D, (Sl Sty
based on efficient linear programming using the primal-dual principles [?].
After registration, the voxel sampling grids for each view are updated (i.e.,
deformed) using the deformation fields. The concatenation of deformation
fields u!, in each iteration i are considered to eventually yield an approximation
of the true deformation for each of the n = [1...N] US view separately,

according to equation 7.2.

). The registration method features a fast optimization approach

7.3.2.3 Reconstruction Approach

The original volumes in our dataset were reconstructed using a backward
compounding technique [122]. We are working directly on reconstructed 3D
B-mode volumes, assuming negligible reconstruction errors in the SV-3DUS
volumes. We use the voxel grid in physical dimensions as our initial sample
grid XY for each SV-3DUS. Once SV-3DUS volumes are aligned to the consen-
sus volume through deformable registration, we perform “reconstruction” by
averaging all SV-3DUS volumes, i.e. V;OW =1/N YN | Vi. This reconstruction
is very simplistic, but serves for demonstrational purposes of our technique.
Please note that since JSR2 is modular, more advanced reconstruction tecch-
niques can be applied here, for example in 3D Freehand US, ideally directly on
the collected 2D pixel intensities in 3D space.

7.3.3 Simulation of 3D TCUS from MRI

In order to validate our method, we perform experiments on simulated mid-
brain 3DUS volumes from four different directions. In chapter 2.5, we de-
scribed different approaches for US simulation, namely ray-based, wave-based
or convolution-based. Due to sufficient realism and superior speed properties,
we will make use of a convolution-based approach in the following.

As the name suggests, this type of simulation is based on the convolution
of an artifical scatterer map with a sinc-shaped point spread function (PSF).
The PSD simulates the system response of the US system in a simplified
manner [8]. We simulate assuming 3MHz center frequency, a sinc-shaped
PSF of 1 mm width in axial direction and Gaussian-shaped beam profiles in
lateral and azimuthal directions (standard deviation 0.7 mm). As the artifical
scatterer map, we take a cropped region of a midbrain in a T1-MRI volume
and take image gradient components in x- and y-direction to simulate echo-
producing tissue boundaries and different view directions. We affect gradient
maps with uniform noise of 0.01% magnitude to simulate scatter variance
in tissue, and distort the x- and y-map twice each with a random linear
deformation (translation between [—3...3]mm, rotation between [—3...3]°) and
an additional non-linear random deformation on a 4x4x4 grid (max. 2mm
or 7% of the midbrain size). The simple simulation is very fast (0.9s for a
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135x119x91 volume) and yields consistent speckle in all three spatial directions.
The resulting midbrain volume is sufficiently realistic for the region-based
segmentation algorithm to pick up midbrain boundaries.
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Figure 7.4: Results from simulated MV-3DUS. Left: midbrain crop from T1-
MRI (top) and image gradient in x-direction as basis for scatterer map (bot-
tom). Middle: four linearly and non-linearly distorted scatterer maps and
convolution-based 3DUS simulation results (only single slices shown). Right:
regular average compounding (top) and JSR2 reconstruction (bottom).

7.4 Experiments and Results

Validation using artificial data. Results from the simulated midbrain vol-
umes from MRI can be seen in Fig. 7.4. The reconstruction with regular
averaging, which is comparable to normal backward compounding can be
seen in the top right. Although the midbrain shape can be seen, boundaries
are blurred and image contrast is reduced. In contrast, the JSR2 reconstruc-
tion on the bottom right has sharper midbrain boundaries, better contrast,
better preservation of symmetry and of features such as the ring of hyper-
echogenic aquaeducts surrounding the midbrain. For quantitative evaluation,
we performed five random trials of this experiment and compare results to a
simulation on the gradient map without deformation. Compared to a regular
reconstruction by averaging, JSR2 showed a better NCC value (0.52 vs. 0.48,
i.e. 8% improvement) and improved the estimated SNR (3.47 vs. 3.3 or 5%
improvement). Furthermore, since we know the groundtruth deformation of
our four SV-3DUS volumes in each iteration and each trial, we calculate the
percentual deformation compensation on the segmented mesh boundary for all
views in the final iteration of all trials. On average, the magnitude is reduced
by 14.2%, demonstrating that the JSR2 method was able to partly recover the
deformation maps.

Validation using clinical data We also compared the JSR2 reconstruction to
a regular average reconstruction using in-vivo data on ten subjects, provided
in the database. Naturally, there exists no gold standard for the mibrain
deformation due to transcranial scanning, to which we can compare our
reconstruction result. Instead, we present two reconstruction results using
regular average compounding and JSR2 for qualitative comparison in Fig. 7.5.
In the left example pair, the white arrow highlights that hyper-echogenicities in
the Substantia Nigra (SN) region were reconstructed much more consistently,
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Figure 7.5: JSR2 results on real data. Left and middle left: bi-lateral reconstruc-
tion using regular average compounding (left) compared to JSR2 reconstruction
(middle left). The right figure half shows another example pair.

which is an important feature for diagnosis of Parkinson’s disease [168] (see
chapter 1.3). In the right pair, the midbrain boundary is much more consistent
and displacements in the average compounding are almost fully compensated.
Overall, in five out of ten cases, reconstruction was improved similarly well
as in Fig. 7.5. In two cases, the JSR2 result was slightly better than regular
backward-compounding and in three cases, the reconstruction result showed
no significant improvement. All JSR2 runs converged, the median number of
iterations until JSR2 convergence was four (min: 1, max: 13).
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7.5 Discussion and Future Work

The results section has shown that in simulated MV-3DUS with N = 4, JSR2
yielded reconstructions that are more symmetric, have sharper boundaries,
higher contrast and better preservation of feature on or close to the midbrain
boundary. Also locally, i.e. close to the midbrain, deformation fields could
be partly compensated. In in-vivo transcranial MV-3DUS with N = 2, JSR2
yielded results that can qualitatively be assessed at least as good as average
compounding or better, in some cases with significant improvement.

Naturally, JSR2 can only compensate deformations in close vicinity to
the segmented boundary and thus the deformation away from the boundary
quickly fades away. There are at least two ways to counteract: first, by using
a combined registration method incorporating shape information close to
the boundary and intensity-based registration further away, and second, by
including more anatomical structures into the JSR2 process, e.g. by using
coupled SSMs and multiple organs, which would offer larger spatial support
for correct deformation of surrounding tissue.

Concerning the segmentation, we noticed that segmented boundaries were
not always matching midbrains in SV-3DUS very well. The main reason
for failure in SV-3DUS probably is that the provided SSM was trained on
expert segmentations in bi-laterally reconstructed volumes, i.e. volumes which
already contained reconstruction errors and thus do not represent midbrain
anatomy in a fully correct way. We are convinced that if the segmentation
worked more reliably on single-view 3DUS volumes, the JSR2 reconstruction
results could have been even better. Unfortunately, since the individual JSR2
components are currently not regularised with a common penalising cost, a
failed segmentation can have a large impact on the overall outcome, since
falsely segmented midbrain surfaces are registered onto each other, leading
to an overall distorted joint reconstruction. Also, if one of the SV-3DUS
segmentation fails locally, and the mis-segmentation is close to the region of
the SN, the diagnostically relevant part of the image would undergo large
deformations. Since the currently best diagnostic features are based on volume
measurements of SN hyper-echogenicity, this would have a large impact on the
diagnostic outcome of the classifier. Again, a joint cost function for the three
steps segmentation, registration and reconstruction, could lead to a better joint
reconstruction, in particular since the overall deformation of SV-3DUS volumes
could be regularised. It is probably also advisable to incorporate an additional
data term in the cost function which considers image-based registration, e.g.
using a cost-function such as normalised cross-correlation.

Another important shortcoming of our work so far is the partly qualitative
evaluation of the method on clinical data, as described in the previous section
7.4. One important problem here is, as mentioned, that no groundtruth exists
for the clinical data, as it is not known what kind of linear and non-linear
deformations are actually present and what their magnitude is. For proper
evaluation, we would require another image modality which needs to be
registered to 3DUS for comparison. In the following chapter, we will describe
our upcoming and future work, one part of which will be the acquisition of
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a multi-modal 3D-TCUS dataset which includes co-registered MRI volumes
(see chapter 8.2.2). This data can serve as a “gold standard” and allow us
to perform more substantial, quantitative evaluation of the JSR2 approach in
future.

In summary, the JSR2 approach proposed in this chapter is still facing
several challenges and thus not yet readily applicable to the reconstruction of
transcranial MV-3DUS volumes. However, based on the experienced gathered
in the above-mentioned experiments, we are now able to better assess the
challenges of this reconstruction problem and give indications to improvements,
such as a joint cost-function plus regularisation and an additional image-based
cost term. Insofar, the work proposed in this chapter is an important step
towards an advanced reconstruction of this challenging data, and a good basis
for future work.
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Discussion and Future Work

In the past chapters, we have explained our efforts in extending the 2D-TCUS
method for Parkinson’s disease (PD) diagnosis to 3D, for increased objectivity
and first volumetric analysis of SN hyper-echogenicities (SNE). We have de-
scribed our system setup and data acquisition (chapter 3) and subsequently
demonstrated first results towards computer-aided diagnosis using multiple
observers and manual segmentation (chapter 4). For improved usage of the
3D-TCUS technique in medical routine, we have proposed two unprecendented
techniques for computer-aided 3D segmentation of the midbrain (chapter 5)
and of SNEs within the midbrain ROI (chapter 6). We have also proposed a
first step towards improved 3D reconstruction of the midbrain area using a
novel joint segmentation-registration-reconstruction approach (chapter 7). In
the following, we will first discuss these results from the perspective of our
original goals and contributions. Then, we will describe our currently ongoing
work in this direction and what future steps we envision and recommend in
order to further develop this research area and possibly bring it to clinical
routine in future.

8.1 Discussion of Overall Results

The methods we proposed and the results we achieved and described in the
last chapters reflect the work of a more than three year long inter-disciplinary
collaboration between our group on the technical side, and our medical partners
at Klinikum Grosshadern, Munich. Retrospectively, there are several thoughts
and conclusion that we can draw from our achievements of the past years.

Availability of 3DUS acquisition in clinics: Our most important premise
in this work is the availability of a 3D ultrasound system at the clinical site
performing 3D-TCUS. A natural critique at our approach is that most clinics
do not actually own a 3D transcranial ultrasound system. Currently, 3D
systems based on 2D matrix transducer arrays (see section 2.4) are still too
expensive and probably offer too little a resolution for quantitative analysis
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of SNEs. Wobbler-based 3DUS systems are more widely available, but mostly
designed for abdominal and obstetric applications, and thus mostly unusable
for transcranial scans due to the large and curved transducer footprint (see
section 2.4).

3D Freehand ultrasound systems, on the other hand, have superior image
resolution, but are rarely available outside research collaborations. Commercial
system include the SonoWand system [156] (SONOWAND AS, Trondheim,
Norway), which was not originally marketed for transcranial examination
and also seems to have ceased distribution by today. Another system is the
CureFab One system (CureFab GmbH, Munich, Germany), which is based on
electro-magnetic tracking. It is designed as an add-on device on arbitrary 2D
ultrasound systems, which are mostly present at the clinic already. The low
price of such an add-on device compared to a full 3DUS system might make
this an attractive alternative.

In general, while we acknowledge the critique that systems for 3D-TCUS
acquisition are not yet widely available in clinics, the general projection in re-
search and industry is that such systems will become more and more common-
place in future, especially once 2D matrix arrays have improved in resolution
and decreased in price. As mentioned in section 2.4, we would like to remind
the reader at this point that all methods proposed in this thesis are also directly
applicable to 3DUS acquired with 2D matrix arrays.

System setup and data acquisition: We have proposed a 3D Freehand ultra-
sound acquisition system in chapter 3, with which we recorded 22 subjects, 11
healthy controls and 11 diagnosed PD patients. If the 3D Freehand ultrasound
system is well calibrated and the reference target at the subject’s forehead does
not move, the obtained 3DUS volumes are of high quality, even if reconstructed
bi-laterally, i.e. by combining image information from the left and right bone
windows into one volume. With good calibration, the two volumes from both
sides have actually surprisingly good overlap (see figure 3.5). Sometimes, this
overlap is better than one would expect given certain physical effects, such
as spatial mis-registration due to speed-of-sound differences between cranial
bone and brain tissue.

However, in some cases, the bi-lateral volumes observe noticeable mis-
registration (see figure 7.5). In our experiments, we could not always pinpoint
the exact reason for these mis-registrations, in particular since the calibration
parameters did not change in-between recording sessions. Possible reasons
are (1) unwanted and undetected movement of the forehead reference target
(e.g. due to a sweaty forehead, undesired mimic changes of the proband
which moved the target or slight bumping of the examiner against the target
during acquisition), (2) partial blocking of line-of-sight to a subset of the
tracking markers, reducing optical tracking accuracy, (3) variation of physical
ultrasound propagation across different patients (e.g. bone tissue causes larger
mis-registration in some subjects than in others. Please note that this error
would be very difficult to predict and quantify, especially without an additional
imaging modality which highlights bone such as CT).

In general, while our recording setup yielded good results almost through-
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out, it took us several iterations of refining our recording setup until stable results
were obtained. Naturally, the setup is still not optimal at the current stage.
A better, i.e. more rigid fixation of a head reference target would be desirable,
however it should be still comfortable for the patient, and more importantly,
the pre-auricular bone windows should not be obstructed by the head fixation.
Our solution, a headlamp with attached optical tracking target, which is tightly
fixated to the forehead, is a good first step and sufficient for research, but can
certainly be improved for clinical routine.

Another improvement could be an improved ultrasound calibration routine.
We use single-wall calibration (chapter 3.2), which we mainly chose due to its
satisfying accuracy while the phantom itself is very easy and cheap to construct.
Our setup did not require re-calibration for each acquisition. However, it would
be very desirable if it was possible to perform a calibration verification prior to
acquisition. This was not possible for our setup, since the single-wall phantom
would move in-between scans, and verification with such a phantom takes too
long for clinical routine. Other phantoms, such as z-phantoms allow for more
rapid and accurate calibration and pre-scan verification. In appendix B.4, we
describe the work of a Master thesis supervised during this PhD thesis, in which
a z-phantom was designed and implemented. However, the phantom was not
precision-manufactured and could not be applied in our experiments yet. The
optimal solution, highly desired by us during our work, would be a commercial
or high-quality open-source solution for 3D Freehand US calibration, with
high accuracy, reliability, repeatability and speed. Unfortunately, commercial
systems are not available, and open-source solutions are often out-dated or
restricted to certain ultrasound machines, or research SDK versions (e.g. the
StradWin system [62] does not support most types of framegrabbers, or the
most up-to-date versions of the Ulterius research SDK by Ultrasonix).

Computer-aided diagnosis: The first results from our multi-observer study
in chapter 4 and in our journal publication in “Ultrasound Med & Biol” [121]
seem highly promising and encourage us to continue our efforts in the area
of 3D-TCUS for PD diagnosis. Apart from the journal publication, our efforts
were also awarded by the German Parkinson’s Disease association [119].

However, it is important to note that our results were based on manual
midbrain and SNE segmentations. In near future, we would like to combine
our pipeline of developed methods and compare diagnostic results based on
fully computer-aided segmentation with manual segmentations. Given the high
regional overlaps and volumetric correlations consistently above 80%, when
comparing our proposed segmentation methods with human expert opinions
(see sections 5.4 and 6.4), we expect fully computer-aided diagnostic results
to be also promising, and possibly more objective than given human observer
opinions. We are currently obtaining a third human-rater segmentation for our
22-subject dataset, with which we plan to perform this analysis on a larger
scale (see chapter 8.2.1).

Midbrain segmentation: The midbrain segmentation in our method achieves
promising results, with Dice overlaps of 0.86 and 95% retained SN voxels
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within the midbrain ROIL In our 22-subject dataset, it proved to be accurate,
while being robust towards missing boundaries, large variation in overall
contrast and anatomic detail due to varying bone windows. We also tried
the midbrain segmentation on data collected with another ultrasound device
(Sonix MDP, Ultrasonix, British Columbia, Canada) with similar qualitative
success, although we have not yet performed a quantitative analysis yet.

A shortcoming is that our method depends on a statistical shape model,
which we created from segmentations on bi-lateral reconstructions. Naturally,
the model has picked up the particular appearance of the midbrain in bi-lateral
volume reconstructions. Since bi-lateral reconstructions are inherently flawed
due to linear and non-linear acquisition and reconstruction errors (see chapter
7.1), manual segmentation and consequently the SSM are flawed as well. For
example, we have observed that segmentations in uni-lateral midbrain volumes
(e.g. just from the left or right bone windows) using our method (see JSR2
segmentations, chapter 7.3) leads to noticeable mis-segmentations. In future
work, we plan to build a SSM from anatomically “correct” images, e.g. from MRI.

Another shortcoming of the midbrain segmentation method is the initial-
ization, which we performed manually in our experiments so far. An automatic
initialization would be highly preferrable. In future work, we plan to experi-
ment with Random Forest regression, similar to [114, 63], in order to predict
the transformation matrix Tinjt for initial placement of the SSM in the image
volume.

SNE segmentation: The Random Forest classification approach for proba-
bilistic SNE detection yielded very good results, given the difficulty of the
task. In this work, we used multi-level cuboidal averages as features for RF
training and testing. Naturally, this approach can be expanded with more
visual features. We have already started experiments using additional visual
features, such as histogram of oriented gradients (HOG) [46], Laplacian-of-
Gaussians (LoG) [66], local binary patterns (LBP) [114] or Gabor features [39].
Since random forests are inherently feature-selective due to a random selection
of feature dimensions during the training stage, they can deal well with such
an abundance of features. Initial experiments so far have shown that using
a larger variety of features actually improves classification so much that it
slightly exceeds the SNE detection performance reported in chapter 6 and our
MICCAI publication [113], even without a spatial prior. Using an additional
spatial prior, we expect much better performance than reported in this thesis.
Moreover, we plan to conduct experiments towards joint midbrain and SNE
detection and segmentation using a RF approach, possibly enabling us to skip
our proposed SSM-based active surface method overall.

Improved 3DUS reconstruction of the midbrain region: In chapters 2.1 and
2.2, we have explained several physical properties of ultrasound wave propa-
gation and tissue interaction which lead to linear and non-linear registration
errors between the 3DUS scans from left and right bone windows.

In chapter 7, we proposed a joint segmentation-registration-reconstruction
(JSR2) approach to remedy this problem. Our initial results using the JSR2
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algorithm look promising, and we are motivated to further expand on this
initial approach. However, our evaluation until now is very limited and we
have observed certain instability of the feedback loop given unappropriate
parameterizations of the segmentation and registration steps. Most importantly,
the individual steps are still only performed sequentially. A joint energy term
would be preferable, in particular in combination with a joint regularization
approach. Our work so far can be seen as early work towards a true JSR2
reconstruction, and our next steps in this research direction will be dedicated
to finding such a joint problem formulation.
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8.2 Upcoming and Future Steps

8.2.1 Computer-aided versus manual diagnosis pipeline

Given the sequence of proposed (semi-)automatic methods for midbrain and
SNE segmentation, as well as for computer-aided PD diagnosis, we are still
missing one important experiment. Thus, one of our immediate next steps will
be to evaluate the whole pipeline of methods against manual expert-segmentations
and compare the diagnostic outcome.

One hypothesis is that the computer-guided midbrain segmentation and
SNE detection methods do not only speed up the procedure, but also increase
objectivity. We plan to learn our models from segmentations from several
human raters, for which we are currently obtaining a third human-performed
segmentation of our 22-subject dataset. Given training by three people in-
stead of one (as used in this thesis), we expect the model to improve its
generalization behaviour, while hopefully performing some sort of consensus
segmentation/detection of the midbrain region.

For evaluation, we plan to compare the automated segmentation perfor-
mances of our methods against a consensus opinion formed from the three
manual segmentations of our human observers. In order to find the “true” seg-
mentation underlying the three manual opinions, we plan to use an algorithm
for ”Simultaneous truth and performance level estimation (STAPLE)”, proposed by
Warfield, Zou and Wells in [172].

Eventually, the final test of our computer-aided segmentations will be
whether they produce similar diagnostic accuracy as when human segmentations
are used. Possibly, due to improved objectivity and consensus behaviour, the
diagnostic accuracy might even improve. Naturally, we plan to validate this
hypothesis thoroughly, which is why we are currently extending our dataset,
from the 22-subject databse to a larger dataset of around 60 people, including
multi-modal image information.

It is important to note that even with computer-aided ”diagnosis” methods,
the actual diagnosis of PD cannot be made with 3D-TCUS alone. As seen
in the diagram of Brooks (see figure 1.1), TCUS is only a small building
block of the complex task of PD diagnosis, which will always rely partly on
other medical imaging methods, but particularly on detailed neurological
examination. However, especially the prospect of early PD diagnosis and the
usage of TCUS as a screening method remains appealing and we thus hope to
have laid some early groundwork for a possible routine usage of TCUS with
our methods in future.

8.2.2 Upcoming Multi-Modal US-MRI Recordings

The dataset used in this thesis comprises 22 subjects, 11 healthy controls and
11 diagnosed PD patients. While we were able to demonstrate many of our
objectives on this dataset such as computer-aided diagnosis and automated
segmentation, it has several flaws. We see four main shortcomings of our
dataset, which are enlisted in the following. We also make suggestions on
improving them as follows:
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e Matched demographics: The two groups were not age-matched (average

age). As reported in tables 4.1 and 4.2, the average age of healhty controls
was 55.6 years, while the average age of PD patients was more than ten
years older at 65.8 years. This might have partly influenced our results
so far, but more importantly, we cannot use demographic data in our
SVM-based classifier for computer-aided diagnosis. In order to make
this analysis, we need to acquire data on a dataset with comparable
demographics.

Increased cohort size: The cohort size is not large enough for solid data
analysis and testing of certain hypotheses we have. For example, it would
be interesting to investigate whether the spatial distribution of SNEs
within the midbrain correlates to PD sub-types such as tremor-dominant,
hypokinetic-rigid or aequivalent-type (see chapter 1.1).

Recording of RF data: We have performed all our analyses using 3D
B-mode ultrasound data. As we mentioned in chapter 6.2.1 concerning
related work on lesion detection in 3DUS, it would be highly interesting
to perform SNE analysis using raw radio-frequency (RF) ultrasound data.
This notion is also backed up by Noble [109], who reports on superior
performance of tissue characterization methods if RF data is used.

Multi-modal data with MRI: As mentioned, the dataset we used is uni-
modal, i.e. it only contains 3D B-mode ultrasound data. Especially during
our work towards improved reconstruction using the JSR2 algorithm
(chapter 7), we realized that it is difficult to estimate the linear and non-
linear errors of our data acquisition and reconstruction. On the other
hand, if we propose an advanced reconstruction method such as JSR2,
we need another modality like MRI for validation.

Objective: According to these four main shortcomings, we have started
recording a new dataset, with the following features, which aim to remedy the
above-mentioned shortcomings :

1.

2.

Matched demographics between the healthy control and PD groups,

Larger cohort size, i.e. approximately 60 people, with 30 healthy con-
trols and 30 PD patients, ten each from the groups tremor-dominant,
hypokinetic-rigid and aequivalent type,

Recording of 3D RF data and 3D B-mode data,

Acquisition of optically co-registered multi-modal MRI data with several
sequences (T1, T2 etc.).

Methodology: We have already started the acquisition of this dataset. We will
briefly explain the technical methodology in the following. Since our recordings
are at an early stage and we plan to write more detailed publications on this
dataset in future, we keep explanations brief at this point.
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RF and B-mode data are recorded in 3D. We use almost the identical
acquisition setup as we did so far (see chapter 3.1). On each side of the
bone windows, we first acquire B-mode data, then RF data, before we switch
to the next side. For RF data acquisition, we use a Sonix MDP ultrasound
machine (Ultrasonix, British Columbia, Canada) with Ulterius SDK [51] and a
custom-written recording software. The 3D B-mode and RF data is optically
co-registered through the forehead reference target we proposed and used
already in chapter 3.1.

Each subject also undergoes a multi-modal MRI acquisition session immedi-
ately prior to, or after 3DUS acquisition. Since the cranial gradient-coil is very
tightly fitting to the skull during MRI scans, we cannot attach markers rigidly
enough for co-registration of MRI to US. Instead, we use a surface-registration
method. For this, we sample the ”skull” or rather skin surface of the subject
using an optically-tracked pointer device, which we carefully slide along the
subject’s skin and face, with preference to bony regions to avoid indentation of
the skin. All skin surface points are recorded within the coordinate system of
the forehead reference target - the same coordinate system in which we record
our ultrasound image frames. From the MRI volume, we obtain the skin and
face surface through a simple segmentation method based on thresholding and
morphological operations.

Both skin surface regions can be registered using any point-cloud registra-
tion methods. We use the Iterative Closest Points (ICP) method [26], after a
rough manual alignment of body axes between the US and MRI scans.

First Results: At the current stage, we have already acquired data of around
20 subjects. We also already reconstructed a few of them, and we present some
first and preliminary results from one of those subjects.

Figure 8.1 shows the two point clouds, i.e. a subset of the cranial skin surface
sampled in US space (panel A), the whole-cranium skin surface segmented
from MRI (panel B) and their co-registration after ICP.

The result of the co-registration is that we can transform the 3DUS volume
into MRI space, where further analyses can be performed, or where algorithms
like JSR2 can be validated. Figure 8.2 shows one exemplary overlay. We have
not performed a quantitative study yet, where we assess registration quality
e.g. in terms of target registration error (TRE). However, qualitatively, the
overlay looks plausible.

For example, in the top left image of figure 8.2, it can be seen well that the
ultrasound echoes from the opposite cranial walls are well co-registered with
the bone regions in MRI. Also, the midbrain is partly well-registered (see for
example the middle panel in figure 8.2, where US echoes correlate well with
the MRI midbrain).

Slight mis-registrations exist, however. This may be due to insufficient
surface registration, which could be remedied by using more robust methods
than ICP. On the other hand, these mis-registration could be an indicator for the
non-linear physical errors due to ultrasound scanning through the skull bone.
It is these mis-registration that motivate advanced reconstruction algorithms
like our JSR2 approach. In any case, our preliminary results motivate us to
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further pursue our 3DUS B-mode and RF data recordings for this novel, larger
and improved dataset.

8.2.3 Multi-center study

A more long-range goal of our study is to motivate other research groups in
the TCUS community to also acquire 3D-TCUS data. While individual groups
have performed research to certain aspects of TCUS (see chapter 1.2.1), the
larger multi-center studies [24, 99, 22] were able to be more conclusive. In
particular, multi-center studies are useful for assessment of the objectivity of
the method, as well as inter-rater observabilities [99, 24, 162].

While the availability of 3D-TCUS is still limited at the moment, one long-
range goal of our efforts is to attract other researchers for collaborations, or
motivate them to upgrade to 3DUS as well, allowing us to conduct better
analyses of the 3DUS method across institutes.

8.2.4 Extension to other neurological movement disorders

As we have briefly discussed in section 1.2.2, TCUS is not only useful for
differential and early diagnosis of Parkinson’s disease (PD), but also for di-
agnosis and discrimination of other neurological neurological movement and
neuropsychiatric disorders. Next to varying forms of PD, these include for
example corticobasal degeneration, dementia, depression or dystonia.

In this thesis, we have only applied our 3D-TCUS methods for PD diagnosis.
In future, we would also like to extend our analyses to other neurological move-
ment disorders. The benefit is that our setup and data acquisition approach
would need no modifications, due to the flexibility of 3D Freehand ultrasound.
However, we would need to acquire further study data with patient cohorts
diagnosed with respective diseases. Furthermore, we would need to develop
custom segmentation methods. The midbrain segmentation method can be
extended for multi-region detection, by adapting cost-function and optimiza-
tion routines. The Random Forest approach, however, is inherently capable
of multi-region detection and segmentation and could be readily applied to
multi-class data. Using such adapted segmentation methods, we could exploit
the potential of TCUS further, and contribute to current studies by making use
of 3D acquisition and data anlysis.
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Figure 8.1: First result from our new multi-modal dataset acquisitions. We
obtain 3DUS data (B-mode and RF), as well as different modes of MRI scans.
We co-register both datasets optically, by sampling the skin surface in US
space (A), as well as roughly segmenting the skin surface in MRI space (bright
outlines) (B). The registration of both point clouds is performed e.g. using ICP
[26] (panel C, blue point cloud = MRI, green = US skin surface prior to ICP,
magenta = US matched to MRI using ICP).

130



8.2 UrcoMING AND FUTURE STEPS

Figure 8.2: First result from our multi-modal acquisition (one subject shown),
with coronal, axial and sagittal views (left, middle, right column). The top row
shows an overlay of 3D B-mode US and MRI, with bi-lateral reconstruction.
The middle and bottom row show uni-lateral reconstructions from left and
right bone window, respectively. Cranial walls seem well-matched between US
and MRI (top left), as well as the midbrain (middle, middle).
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Conclusion

In the past decades, transcranial ultrasound (TCUS) has been established as
a non-invasive, quick and cheap method for differential and early diagnosis
of Parkinson’s disease (PD). Apart from PD, TCUS can also be used for diag-
nosis or discrimination of other neurological movement and neuropsychiatric
disorders, such as dystonia, dementia or depression. However, despite the
potential of the technique, there has also been criticism, mainly concerning
the subjectivity of the method and the necessity for sonographers with high
experience, in order to maintain high diagnostic reliability.

In this thesis, for the first time, we have proposed and demonstrated the
extension of the method from 2DUS to 3DUS, with the goals of increased
objectivity, easier image acquisition and possibly advanced diagnostic value,
due to the analysis of hyper- and hypo-echogenicities in 3D. We have shown
quantitative results from an unprecedented 3D-TCUS study on a study cohort
with 11 healthy controls and 11 PD patients, demonstrating sensitivities and
specificities for PD diagnosis which are comparable to the state-of-the-art.

Furthermore, we have taken first steps in making the complex data analysis
in 3D more clinically applicable, by introducing a first pipeline of methods for
computer-aided PD diagnosis based on 3D-TCUS. To this end, we have introduced
several novel techniques for 3D segmentation of midbrain and substantia nigra
(SN) hyper-echogenicities, which are adapted to physical properties of US
imaging. These methods incorporate several anatomic priors, such as voxel
intensities, surface shapes and spatial distribution of speckle patches, in order
to increase their robustness in light of the challenging properties of 3D-TCUS
images. We have also proposed a first step towards advanced reconstruction
of the midbrain area, by making use of the bi-lateral, multi-view acquisition
setup which we have introduced in TCUS for the first time.

We hope that with our contributions, we have laid some groundwork in
the area of 3D-TCUS, allowing other research groups to follow up and further
investigate this interesting and motivating research area. Most importantly,
however, we believe that we have contributed significantly towards computer-
aided diagnosis of Parkinson’s disease, possibly improving the chance for early
diagnosis and onset of therapy for affected patients in future.
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ROBOCAST and ACTIVE

This thesis was funded by two European projects under the “Seventh Frame-
work Programme” (FP7) called ROBOCAST (FP7-ICT-2007-215190) and AC-
TIVE (FP7-ICT-2009-6-270460). Both projects deal with robot-assisted neuro-
surgery. While ROBOCAST was aimed at minimally-invasive keyhole neuro-
surgery, ACTIVE is more focused on ensuring active constraints for the surgical
robots during open-craniotomy epilepsy surgery.

In ROBOCAST, our contributions were two-fold:

1. As work package leader, we supervised and managed the fourth work-
package, "WP4 - Planning, navigation and advanced visualization”, deal-
ing with the design and development of a pre-operative planning soft-
ware, intra-operative plan-update due to tissue shifts, as well as error
measurement and propagation for on-line estimation and adaptive visu-
alization of planning path as well as tracking and navigation accuracy.
Overall, the work package aimed at testing and validating the proposed
integrated surgical navigation solution for the entire project.

2. In our main project task, our aim was to design, develop and integrate a
3D (Freehand) Ultrasound system for image guided, minimally-invasive
neurosurgery. We developed and integrated a similar system setup and
calibration method as described in chapter 3.1, however without the need
for bi-lateral acquisition.

In ACTIVE, our aim was to compute brain shift and brain deformation using
3D ultrasound images, such that the pre-operative plan based on MRI could
be updated and robotic behaviour could be customized using intra-operative
data. We proposed a two-stage approach, based on (1) a rigid registration of
pre-operative MRI to 3DUS using segmentation and feature-based registration
of equivalent anatomic structures in both modalities and (2) sequential brain
shift calculations through deformable 3DUS-3DUS registrations intermittently
during surgery, whenever the surgical workflow allows. The approach is
summarized in figure A.1. In the following sections of Appendix A, we will
briefly cite three paper contributions by the thesis author.
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Figure A.1: Overall US-MRI registration approach and registration workflow
in ACTIVE.

A.1 Advanced Planning and Intra-operative Valida-
tion for Robot-Assisted Keyhole Neurosurgery
In ROBOCAST

NO-GO areas

Manual

= Automatic

Trajectory uncertainty vis.

Blood vessels

Figure A.2: Screenshot excerpts from our pre-operative planning modules.
The left part image shows the definition of a target (tumor), geometric con-
straints for the trajectory in form of no-go areas and critical structures such
as blood vessels combined into a crude risk atlas. The right image shows
two automatically proposed trajectories with minimal risk (i.e. maximal dis-
tance to non-allowed regions). The incorporation of functional regions, fibres
and statistical multi-patient anatomy into the risk atlas is currently under
development.

Seyed-Ahmad Ahmadi, Tassilo Klein, Nassir Navab, Ran Roth, Reuben R
Shamir, Leo Joskowicz, Elena DeMomi, Giancarlo Ferrigno, Luca Antiga,
Roberto Israel Foroni [3]. ROBOCAST is a multi-national project comprising
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A.1 ADVANCED PLANNING AND INTRA-OPERATIVE VALIDATION FOR
RoBOT-AssISTED KEYHOLE NEUROSURGERY IN ROBOCAST
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Figure A.3: Transcranial ultrasound scans of the basal ganglia in 2D on patient
1 (left) and in 3D on patient 2 (right). The cross-section of the DBS electrode
in relation to the PCA (arteria cerebri posterior) can be clearly seen in patient
1. The right image shows a 3D reconstruction of the brain stem anatomy of
patient 2 (white) and the reconstructed PCA vessel (red).

several institutes which aim at outlining and implementing a prototype system
for advanced, robot-assisted keyhole neurosurgery.

This paper reports mainly on software and sensor aspects of the system in
the pre- and intra-operative stage. We describe a comprehensive workflow of
planning steps provided to the surgeon in a wizard-like manner. As a novelty,
we present a method for automatic trajectory planning based on a statistical
and patient-specific risk atlas. Intra-operative monitoring of system uncertainty
is proposed. Furthermore, the usage of 2D and 3D Freehand Ultrasound for
intra-operative validation is motivated and theoretically outlined.

After the first of three years project runtime, we present current work
in progress and preliminary results on several patient studies concerning
automatic path planning, trajectory localization errors as well as ultrasound
imaging on one, six and three patients, respectively. The results underline the
usefulness and significance of proposed methods, both within the scope of the
ROBOCAST project as well as for conventional keyhole neurosurgery.

137



CHAPTER A: ROBOCAST anp ACTIVE

A.2 User friendly graphical user interface for work-
flow management during navigated robotic-assisted
keyhole neurosurgery

Seyed-Ahmad Ahmadi Ahmadi, Francesco Pisana, Elena DeMomi, Nassir
Navab, Giancarlo Ferrigno [5]. Minimally-invasive neurosurgery requires
careful pre-operative planning of trajectories prior to the execution of the
surgery. This work was developed within the EU project ROBOCAST, which
aims at developing an integrated solution for advanced planning and intra-
operative navigation of robot-assisted neurosurgical procedures. A combina-
tion of three robots offering a large working volume with high local precision
and accuracy, together with an innovative flexible probe allows for research
towards novel surgical procedures such as Multi-Target Treatment procedures.
In the recent years, the research community dealing with intra-operative navi-
gation systems has identified the need for analysis of surgical workflow and
context-sensitive user interfaces in the OR. In this work, we present our work-
in-progress on a user-friendly user interface, which intra-operatively guides the
surgeon through the execution of the pre-operative plan in form of a sequential
workflow wizard. Each step of the workflow spawns a window with clear
visual and verbal instructions while a state-machine in the background controls
whether the correct sequence of actions is performed and which workflow
transitions are allowed. Therefore, the surgeon is optimally guided through
the workflow, allowing him to focus on the medical procedure at hand. The
integration of further components from our overall system into the Touchscreen
user interface guarantees that user input is correctly propagated within the
system and that the current workflow step and surgical activity drive the
internal behavior of the system, making our system partly context-aware.
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A.3 Rigid US-MRI Registration Through Segmen-
tation of Equivalent Anatomic Structures
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Figure A.4: Illustration of the rigid registration approach for T1-MRI (top
left) and 3D-TCUS (top right), using signed distance transforms (SDT) of the
segmented surfaces. The bottom row shows an example registration result.

Seyed-Ahmad Ahmadi, Tassilo Klein, Annika Plate, Kai Boetzel, Nassir
Navab [4]. Multi-modal registration between 3D ultrasound (US) and mag-
netic resonance imaging (MRI) is motivated by aims such as image fusion
for improved diagnostics or intra-operative evaluation of brain shift. In this
work, we present a rigid region-based registration approach between MRI and
3D-US based on the segmentation of equivalent anatomic structures in both
modalities. Our feasibility study is performed using segmentations of the
midbrain in both MRI and 3D transcranial ultrasound. Segmentation of MRI
is based on deformable atlas registration while for 3D US segmentation, we
recently proposed an accurate and robust method based on statistical shape
modeling and a discrete and localized active surface segmentation framework.
The multi-modal registration is performed through intensity-based rigid regis-
tration of signed distance transforms of both segmentations. Qualitative results
and a demonstration of the basic feasibility of the region-based registration
are demonstrated on a pair of MRI and challenging 3D transcranial US data
volumes from the same subject.
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Other Contributions

B.1 Automatic Segmentation of the Carotid Artery
in freehand Ultrasound

Figure B.1: Left: Common carotid artery cross-section; Middle: Ideal lumen
cross-section with line segment overlaid; Right: Line segment of ideal lumen

. 1 92 . .
cross-section with E;%kernel overlaid: proposed kernel (top, in green), mul-
tiple attempts to fit the gaussian kernel (bottom; noise removed for better
visualization)

Paulo Waelkens, Seyed-Ahmad Ahmadi, Nassir Navab [166]. We propose
a Hessian matrix based multiscale tubular structure detection (TSD) algorithm
adapted to 3D B-mode vascular US images. The algorithm is designed to high-
light blood vessel centerline points and yield an estimate of the cross-section
radius at each centerline point. It can be combined with a simple centerline ex-
traction scheme, yielding precise, fast and fully automatic lumen segmentation
initializations.

TSD algorithms designed with CTA and MRA datasets in mind, e.g. the Frangi
Filter [57], are not capable of reliably distinguishing centerline points from
other points in vascular US datasets, since some assumptions underlying these
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algorithms are not reasonable for US datasets. The algorithm we propose, does
not have these shortcomings and performs significantly better on vascular US
datasets.

We propose a statistic to evaluate how well a TSD algorithm is able to distin-
guish centerline points from other points. Based on this statistic, we compare
the Frangi Filter to various versions of our new algorithm, on 11 3D US carotid
datasets.
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B.2 Ultrasound Bone Detection Using Patient-Specific
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Figure B.2: Overview of the proposed workflow, (a) shows the labeling of
the correspondence points in both modalities, (b) the pre-alignment towards
point-based registration and (c) the combined registration and bone detection
approach in ultrasound.

Julian Beitzel, Seyed-Ahmad Ahmadi, Athanasios Karamalis, Wolfgang Wein
and Nassir Navab [18]. Registration of pre-operative CT datasets to intra-
operative 3D freehand ultrasound has been of high interest for computer
assisted orthopedic surgery. Feature-based registration relies on an accurate
detection of the bone surface in the B-mode ultrasound images. In this work
we present a fully automatic bone detection approach for US. The pre-operative
CT is utilized to create a patient-specific bone model for our joint detection-
registration framework. The model provides a geometric constraint for accurate
and robust detection. Simultaneously to the detection, our method yields a
close estimate of the rigid transformation from US to CT, which can be used as
an initialization for further refinement through sophisticated intensity-/feature-
based registration methods. We evaluated our approach on datasets of the
human femur acquired in a cadaver study and demonstrate a mean bone
detection error of below 0.4mm.
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B.3 Multi-modal Image Registration for pre-operative
planning and intra-operative guidance using Adap-
tive Distance Measures

Known Transformations Known Known

Joint Support Pixel
Histogram vector = Registration
Regression Error
D Learn
SVR
Parameters

Figure B.3: Schematic of the training phase in our machine learning-based
regression algorithm. Having a pair of manually registered images, Q known
rigid transformation matrices are individually applied on the source image.
Then the calculated joint histogram feature vector and PRE labels are given to
the support vector regressor in order to learn the relationship between them.

unknown pair and unknown
transformation matrix

Joint Learned SVR Estimated
Histogram Parameters PRE

PRE estimated — f learned SVR (‘]Oint HiStOQram known)

Figure B.4: TThis figure demonstrates the test procedure which assures us to
have a convex regression function. First a set of transformations are applied
on a pair of images. This image pair can be different from the pair which was
used in the training phase. Calculated joint histograms are then given to the
learned SVR structure in order to estimate the correspondent PRE value.

Banafsheh Jalali, Master thesis [76]. Modern medicine often employs vari-
ous imaging modalities such as CT, MRI, PET or ultrasound for improved di-
agnosis, pre-operative planning, intra-operative navigation and post-operative
monitoring. In order to track anatomic changes in one modality over time or in
order to fuse complementary information from different modalities, automatic
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methods for data fusion or registration are required. A particular problem
lies in the image fusion across different modalities, since their underlying
data often stands in a non-linear relationship to each other. Research of the
past decade has proposed a large number of solutions for multi-modal image
registration. Often, pairs of modalities to be registered are chosen according
to the target organ and type of the surgical operation. In this thesis, 3D rigid
registration of CT to MRI and 2D registration of ultrasound to MRI have been
covered.

While mutual information (MI) has become the established method for per-
forming CT to MRI registration, current proposed methods are not successful
to fully cover all the aspects of ultrasound to MRI registration problem. Some
of the proposed solutions to this problem are limited to a specific target organ,
some others do not have the required accuracy to be utilized for specific organs,
while others suffer from being highly computational expensive.

In this thesis we are aiming at learning an adaptive metric for performing
rigid registration between any two pairs of imaging modalities. The goal is to
learn the relationship between two modalities to be registered from a pair of
those modalities captured before the surgery and use this as prior information,
e.g. during intra-operative registration. Our method is based on previous work
for performing 2D rigid registration utilizing a machine learning algorithm. In
order to calculate the exact motion of the tissue during surgery, 3D information
is required. Therefore, we have investigated the possibility of extending the
idea into 3D scenarios. Then the method is evaluated for the more difficult
rigid registration problem of ultrasound to MRI in 2D.
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B.4 A user-friendly, clinical-usable freehand ultra-
sound probe calibration for clinical practicabil-

ity
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Figure B.5: The US calibration experiment setup.

Mei Chuan Chen, Master thesis [38]. Ultrasound (US) is a relatively inex-
pensive, safe, and non-invasive imaging technology. It has been used for
clinical applications in fields such as intra-operative imaging by obtaining a 3D
anatomy model, or multi-modality registration (US with CT or MR data). It is
hence necessary to perform a reliable US probe calibration to get the accurate
positions of the US images. Furthermore, rapidness and efficiency are the
necessary factors to be considered when performing a clinically applicable
calibration.

In this project, a simple Z-phantom made up of 11 Z-shaped structures
that are distributed across five layers is used to perform the probe calibration.
An automatic and robust feature segmentation method has been developed to
facilitate the US calibration procedure. This method does not require additional
support from the phantom construction and can be applied on the US images
with more artifacts.

An application providing an user-interface has been developed to perform
the US calibration. It only takes one mouse-clicking for one frame to capture
the frames needed for a calibration. The calibration results show that only a
few frames are needed to get a good calibration. Therefore, it only takes less
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CALIBRATION FOR CLINICAL PRACTICABILITY

than one minute to perform a calibration if the pixel scales have been calibrated.
Thanks to the automatic segmentation and freehand scanning, it enables a
rapid procedure of the calibration and is clinically applicable. According to
the study of the accuracy and precision of the calibration, a precise calibration
has been guaranteed and an accurate calibration can be achieved if more valid
frames are used.
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B.5 Tissue-mimicking multi-modal brain phantom

Figure B.6: Three views on the final brain phantom, note the arterial /vein tubes
for in- and output of the vessel system and one additional for the balloon, the
black foamed plastic strips at the side suppress the buoyancy of the phantom
if water comes below the PVA-fundament. The infrared-markers at the outside
of the shell are for the 3D-ultrasound registration.

Brain, Phantom Z7r;. Bran,Phantom
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Figure B.7: The B-Mode Ultrasound images show parts of the internal struc-
ture, the left image shows a slice through the cerebellum, the right displays the
pons in the middle, furthermore the interbrain, midbrain and the balloon.

Julian Beitzel, Interdisciplinary Project Tech Report [17]. A computer-assisted
analysis for acquired medical images is highly desirable in order to deal with
the increased complexity of 3D imaging, in particular in case of 3D transcranial
ultrasound examinations. However, in order to create reliable computer-aided
diagnostic tools, qualitative and quantitative testing and validating are of
high priority due to the serious consequences that can occur from a mislead
diagnosis. Three common ways to accomplish that are:

1. Creation of artificial reference data, i.e. creating artificial (e.g. digital)
data to serve the purpose of early experiments and feasibility studies but
generally lacks the complex features of realistic data.

2. Creation of a phantom that mimics the desired target anatomy, e.g. in
spatial dimensions, physical properties, appearance etc., for quantitative
analysis and realistic imaging.
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Figure B.8: The Doppler Ultrasound shows the flow of water through the tube
system, the color indicates the intensity and the direction.

Figure B.9: These Doppler Ultrasound images show the signal at the connec-
tion points, where the tubes are connected.

Figure B.10: The 3D Ultrasound images shows the axial, coronal and sagittal
slice through the phantom. Especially the axial slice shows the shift of the
internal structures, e.g. the cerebellum, due to the buoyancy of cryogel during
the creation process.

Figure B.11: These T1-weighted images of the Magnetic Resonance Imaging
show the axial slice on the left, and the back- and front-view in the mid-
dle/right. Similar to the 3D-US, the MRI shows the shift of the internal
structures in the production process. Note that the bright spots around the
phantom are the reflecting gadolinium markers.
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Figure B.12: The T2-weighted MRI images clearly shows the tubes inside
the phantom, furthermore the pons in the middle of the left image, below
the interbrain and the midbrain at the bottom. The right image shows the
cerebellum and the balloon beneath.

3. Ex-vivo studies using human or animal tissue, e.g. a liver or brain for
achieving maximally realistic tissue properties but with limited lifetime
of the sample (e.g. due to decay).

This report focuses on the creation of a multi-modal and -functional, brain
mimicking phantom which can be used for many applications, including linear
and deformable multi-modal registration, segmentation, visualization, and
navigated surgery simulations, e.g. for simulation of intra-operative brain shift
in simulated neurosurgery. The phantom mimicks six distinct anatomic areas
of the human brain: (1) cerebrum, (2) interbrain, (3) midbrain, (4) cerebellum,
(5) pons and (6) afterbrain. Furthermore, the phantom features a vessel tree
which roughly corresponds in structure to actual human brain vasculature. It
also features a means of artifical deformation for simulation of brain shift. The
selected material is Polyvinyl Alcohol cryogel (PVAc), which has been shown
to offer realistic tissue-mimicking properties with favorable properties in terms
of material processing.
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