
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik mit Schwerpunkt

Wissenschaftliches Rechnen

Highly Scalable Eigensolvers for Peta�op

Applications

Thomas Auckenthaler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Hans-Joachim Bungartz

2. Univ.-Prof. Dr. Bruno Lang (Bergische Universität Wuppertal)

Die Dissertation wurde am 01.10.2012 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Informatik am 28.12.2012 angenommen.

Acknowledgments

At this place I want to thank all those people who contributed to this thesis.

First of all, I want to thank my supervisor Prof. Hans-Joachim Bungartz. He gave

me a lot of support and motivation and always found an empty slot in his overfull

time schedule. Thanks also to Prof. Thomas Huckle who accompanied me during

the ELPA project and was like a second supervisor to me. Special thanks go to

Prof. Bruno Lang. Due to his respective scienti�c background he was source of many

interesting ideas and approaches. Thank you for the pleasant collaboration and many

fruitful discussions.

Moreover, I want to thank all members of the ELPA consortium. Especially Dr.

Hermann Lederer, Dr. Rainer Johanni, Dr. Paul Willems, Dr. Volker Blum and

Mario Thüne. I enjoyed the collaboration and I am proud to be part of this team.

I want to thank Prof. Michael Bader for convincing me for this step of my life and

for helpful comments while writing this thesis. Thanks also to my students Roland

Wittmann and Stefan Schulze Frielinghaus. Last, but not least, I want to thank all

members of the Chair of Scienti�c Computing in Computer Science in Munich for a

really enjoyable atmosphere.

iii

Abstract

High-performance computing (HPC) is an area of research which is subject to big

changes. Fundamental properties of computer architectures such as cache, �oating-

point, or memory performance, e.g., are progressing at di�erent pace. All this and

other trends make it a challenging task for algorithm and software designers to exploit

the available power of leading-edge supercomputers in real world applications.

One such important problem, which has been identi�ed as a so-called "Grand Chal-

lenge", is the solution of symmetric eigenproblems. In current state-of-the-art im-

plementations there is a lack of both parallel and sequential e�ciency on modern

computer architectures. From an improvement of parallel eigensolvers many scienti�c

disciplines, such as structural mechanics, �uid mechanics, or quantum chemistry, could

bene�t.

This thesis presents the development of the parallel eigensolver library ELPA and

highlights the challenges of a hardware-aware algorithm design. We have implemented

and evaluated existing and developed new algorithms for all stages within a parallel

symmetric eigensolver. New algorithms have been designed towards cache e�ciency

and avoidance or reduction of communication. All implementations have consequently

been optimized. Competitiveness and usability of ELPA are demonstrated in two

di�erent scienti�c applications: a software package for ab-initio molecular simulations

(FHI-aims) and an application for the inspection of large networks. E�ciency and

scalability of the developed eigensolver are unprecedented and result in an up to 10-

fold improvement compared to current state-of-the-art libraries.

v

Contents

1 Introduction 1

1.1 High Performance Computing . 1

1.2 Eigensolvers: Fields of application . 5

1.2.1 Ab-initio molecular simulations 5

1.2.2 Inspection of large networks . 6

1.3 Overview of this thesis . 7

2 Symmetric eigensolvers 9

2.1 The eigenvalue problem . 9

2.2 Direct and iterative eigensolvers . 11

2.3 Tridiagonal based (direct) eigensolvers 11

2.3.1 Tridiagonalization . 12

2.3.2 Tridiagonal eigensolvers . 13

2.3.3 Back transformation of eigenvectors 14

2.3.4 Algorithmic kernels: orthogonal similarity transformations . . . 14

2.4 1-sided and 2-sided factorizations . 20

2.5 Tridiagonalization approaches . 22

2.5.1 1-step Tridiagonalization . 22

2.5.2 2-step Tridiagonalization . 24

2.5.3 Successive band reduction . 27

2.6 Eigensolvers in the context of HPC . 29

3 The parallel 2-step tridiagonalization 33

3.1 Model of parallel computation . 34

3.2 Reduction to banded form using QR-decompositions 35

3.3 QR-decomposition: algorithmic variants 41

3.3.1 Classic Householder QR-decomposition 43

3.3.2 Blocked QR-decomposition . 45

3.4 Tridiagonalization of banded matrices 60

3.4.1 Existing parallelization . 60

3.4.2 Fine grained data dependency analysis 63

vii

Contents

3.5 Tridiagonal-to-banded back transformation 66

3.5.1 High performance kernels . 67

3.5.2 1D parallelization . 69

3.5.3 2D parallelization . 70

3.6 Banded-to-full back transformation . 74

3.7 Runtime analysis . 75

3.7.1 Comparison with 1-step tridiagonalization 76

3.7.2 Strong scaling and e�ciency . 77

3.7.3 Weak scaling . 79

3.8 Overview of existing implementations 80

4 Implementation and results 81

4.1 The ELPA library . 81

4.2 Test settings . 83

4.2.1 Hardware overview . 83

4.2.2 Test matrices . 84

4.3 Reduction to banded form . 85

4.4 Tridiagonalization of banded matrices 89

4.5 Reduction of banded matrices to smaller bandwidth 92

4.6 Tridiagonal-to-banded back transformation 95

4.6.1 High performance kernels . 95

4.6.2 Parallel performance . 99

4.7 Banded-to-full back transformation . 105

4.8 Overall results . 106

5 Conclusion 113

Bibliography 115

viii

1 Introduction

Nowadays, developing software for supercomputers is a complex task. On the one

hand we need a profound understanding of current technologies and developments

in the �eld of High Performance Computing (HPC). On the other hand we need

knowledge of available algorithms and their behavior to solve speci�c problems in

scienti�c computing. It is the task of a computer scientist to match those requirements

or even develop new algorithms to get optimal outcomes.

1.1 High Performance Computing

The history of High Performance Computing goes back to the 1970s which was mainly

marked by the name Seymour Cray building the �rst supercomputers. Since 1993

the fastest supercomputers in the world are tracked in the so called Top500 list [1].

As a benchmark for this list serves the LINPACK benchmark which solves a huge

dense linear system of equations. Since the starting of the Top500 list we observe an

exponential growth in computing power, leading to a tenfold increase in LINPACK

performance every 3-4 years (see Figure 1.1). The architectures, however, on which

this performance was achieved, were subject of some minor and major changes. The

1970s and mid 1980s were dominated by so called vector processors (SIMD, single

instruction multiple data) where a single instruction is applied on a vector of data.

From the late 1980s on we can observe a trend towards massive parallel systems

which were connected over a high speed network. Finally (starting from the current

millennium), due to economic reasons, specialized processors for supercomputing were

progressively displaced by clusters of commodity hardware, mainly based on Power-

and x86-architectures.

Nowadays we are in the middle of a further changeover in processor technology which

is caused by a phenomenon called "the power wall". Moore's Law [2] predicts that the

number of transistors on a single chip will double every 18 to 24 months. Until the

mid 2000s this resulted in an increased processor clock speed which in turn speeded

up most applications without any changes on the software level. The exponential

increase in power, required to further increase processor cycle times, however, limits

1

1 Introduction

Figure 1.1: Performance development in the Top500 list.

any substantial growth in processor clock speed. Todays performance gains come

mostly from parallelism on the chip level. This can result in a widening of the �oating

point units (instruction level parallelism, ILP) or an increase of the core count on

a single chip (thread level parallelism, TLP). Examples for an increased ILP can be

found all over the place. Intel introduced the AVX instruction set which supports

four double precision �oating point operations within one instruction instead of two

(SSE). The Power7 and PowerPC A2 (BlueGene/Q) of IBM will have twice as many

FPUs compared to its predecessors (Power6 and PowerPC 450 respectively). The trend

towards multicore can be observed since a couple of years. Today the core counts range

from 2 to 64 on a single chip. The most common programming paradigm on these

chips is the shared memory model with two or more levels of cache. The probably most

challenging task in designing current and upcoming multicore chips is to provide cache

coherence between the individual cores and their caches. This is done with so called

cache coherence protocols (e.g., MESI). Thereby each cache has to listen for memory

accesses of all other caches on the same cache level (bus snooping). If another cache

reads or writes data which exists already in the own cache, the right action has to

be initiated (invalidate, write back, etc.). It is obvious that this mechanism will stop

scaling at some point. One consequence of this limited scaling is the introduction of

shared caches which can be found in most multicore chips with a substantial number of

cores. An alternative to the shared memory model is the distributed memory model on

2

1.1 High Performance Computing

Annual

change [%]

Typical value

in 2004

Typical value

in 2020

FP-performance [G�ops] 59 2 3300

Memory bandwidth [GB/s] 25 8 216

Memory latency [ns] (5.5) 70 28

MPI bandwidth [GB/s] 26 0.5 20

MPI latency [ns] (28) 3000 300

No. of processors 20 4000 74000

Table 1.1: Single chip and parallel hardware trends [6].

a single chip. In [3] and [4] prototypes have been presented where the cores on a chip

are organized in a two-dimensional mesh. Each core has a local storage, the cores are

connected over a low-latency on-chip network. The corresponding programming model

would be some kind of "lightweight MPI". An early example for such an architecture

has been the Cell processor [5] where 8 so-called Synergistic Processing Elements have

been connected over a ring bus. A third example for massive parallelism on a chip are

accelerator technologies, e.g. in the form of GPUs. Right now it is hard to predict

which model will come out on top.

Beside these minor and major revolutions we can also observe some continuous trends

in the HPC landscape. The performance of HPC systems is characterized by a vast

number of di�erent properties, ranging from crucial measures such as network band-

width or �oating point performance to details such as cache replacement strategies or

network protocols. Some of these properties are measurable and are tracked since a

couple of years or decades.

Table 1.1 shows the average growth rate of important metrics of HPC systems from

1988 to 2004. We can see that the �oating point performance increased by an average

of 59% over the 16-year period. This trend is expected to continue. However, a

substantial fraction of the performance increase will come from any form of on-chip

parallelism. At the same time the memory bandwidth has increased by an average

of 25% per year. This means that the gap between �oating point performance and

memory bandwidth has grown by 30% each year (memory wall [7, 8]). The memory

latency was decreasing at the slowest pace of 5.5% per year such that more and more

data has to be loaded in advance to fully load the memory bandwidth. This will be a

big challenge for coming prefetching units. Regarding network bandwidth and network

latency the growth rates are similar to those of the memory performance. The decrease

of network latency was remarkably fast with 28%. However, this trend is expected to

slow down due to physical limitations (e.g., propagation speed of light).

3

1 Introduction

Another trend is the growing size of HPC systems. In the mentioned 16-year period

the number of processors in one system increased by an average of 20% per year. The

total level of parallelism, however, will grow much faster due to the additional on-chip

parallelism. The current number one in the Top500 list (BlueGene/Q Sequoia, June

2012) has 98304 processors. With 16 cores per chip and 256-bit wide SIMD units, the

system will be able to execute more than six million �oating point operations (double

precision fused multiply add operations) in each cycle.

These are trends which have to be taken into account when developing new algorithms

for current and upcoming supercomputers. Di�erent growth rates of di�erent param-

eters lead to a shift of performance bottlenecks in HPC applications. An application

which was �oating-point-bounded in the past, may be memory-bounded on current

architectures, and become even network-latency-bounded in the future. A software

engineer has to choose or design algorithms according to these surrounding conditions

to get optimal results.

Beside the use of appropriate algorithms, the choice of proper programming model(s)

is another important design decision when writing parallel code. As described earlier,

recent developments in the architectures of supercomputers have let to a very hetero-

geneous mix of technologies and a bunch of di�erent levels of parallelism. The only

constant in these systems seem to be the most �ne grained and coarse grained levels

of parallelism which can be found in nearly all systems in the current Top500 list.

These are the SIMD parallelism on the instruction level and the distributed memory

parallelism on the system level. In between we can �nd various types of NUMA (non

uniform memory access) architectures or accelerator technologies.

Meanwhile, there exist many parallel programming models to tackle these di�erent

architectures. Beside the well established programming models for distributed and

shared memory systems, with MPI [9] and OpenMP [10] as their most important rep-

resentatives, there exist so called PGAS (partitioned global address space) languages.

PGAS languages, such as Uni�ed Parallel C (UPC) [11], Co-array Fortran (CAF)

[12], Chapel [13] or X10 [14], have the aim to hide explicit communication from the

programmer and, thus, to simplify the development of parallel codes. Even though

these are desirable goals, PGAS languages still don't reach satisfying performance

[15, 16, 17, 18] and are, thus, no option for the use in production codes.

Another class of programming models, which became very popular in the last few

years, are data�ow approaches. The user of such models de�nes tasks to express his

parallel program. A task is a portion of computational work with a de�ned set of input

and output parameters. The input and output of all tasks represent the data depen-

dencies of an application such that each parallel program can be expressed through

a DAG (directed acyclic graph). Finally, at runtime, any form of scheduling system

4

1.2 Eigensolvers: Fields of application

has to assign tasks to the individual processing units. There exist di�erent imple-

mentations using this type of programming model. The most important one is the

StarSs family, containing implementations for shared memory systems (SMPSs [19]),

distributed memory systems (ClusterSs [20]), and other types of systems, such as the

Cell processor [21]. PLASMA [22] and DPLASMA [23] are dedicated libraries which

use the data�ow approach to express the parallelism of linear algebra routines. While

DAG approaches are well suited to distribute work (also in heterogeneous computing

environments), in the authors opinion, there are still some unresolved problems regard-

ing communication in distributed memory systems. In message passing programming

models, such as MPI, there exist highly optimized collective communication operations

which, in some sense, lead to a parallelization of communication load, e.g. by using

tree- or pipelining algorithms for a broadcast. All mentioned data�ow approaches

which address distributed memory systems lack in such a mechanism to parallelize

communication. Especially in dense linear algebra applications, where an e�cient

communication pattern is essential, this is a serious drawback.

For the mentioned reasons, we use the well established MPI to express distributed

memory parallelization. Shared memory models as well as programming models which

address GPGPU computing or any form of accelerators will not be considered here.

1.2 Eigensolvers: Fields of application

In this thesis we pick up a problem which is of great interest in many scienti�c dis-

ciplines and is currently tackled by many research groups all over the world. The

symmetric eigenproblem is one of few problems in dense linear algebra which was not

satisfactorily solved at the beginning of our research. On the basis of the symmetric

eigenproblem we will demonstrate the hardware aware design of a new library routine

for the use on massively parallel systems. Although our algorithms were implemented

as a library routine which can be used wherever a parallel symmetric eigensolver is

needed, we wanted to demonstrate the outcome on two scienti�c applications.

1.2.1 Ab-initio molecular simulations

The invention of accurate models, together with the increasing computing capabilities

of modern hardware, made the �eld of quantum chemistry an ideal candidate for

numerical simulations on HPC systems. The prediction of properties of materials at

the atomic level requires computations on the quantum mechanical level, based on

the Schrödinger equation. An analytical solution of the Schrödinger equation is only

5

1 Introduction

possible for the most restricted cases, such as the simulation of a hydrogen atom.

For more complex simulations we need appropriate approximations. This leads to so

called ab-initio methods. Today's most prevalent models for such approximations are

based on Kohn-Sham density-functional theory (DFT) [24]. Thereby, using a set of

approximations and discretizations, the time-independent Schrödinger equation,

ĤΦi(~X) = EiΦi(~X), (1.1)

is reduced to a non-linear generalized matrix eigenproblem:

ĥci = εiSci, (1.2)

where ĥ is a Hamilton matrix of size O(N) (N refers to the total number of particles

in the system). ci and S result from the discretization of the wave functions Φi,

with Φi(r) ≈
∑

j cijφj(r). Our application in mind (FHI-aims [25]) uses so-called

numeric atom-centered orbitals as basis functions φj. However, there exist several

other discretization approaches (e.g., plane waves, Gaussian-type orbitals) which all

result in a (generalized) non-linear symmetric eigenproblem. To get the eigenvectors

of the non-linear eigenproblem, a linear eigenproblem is solved in a so-called self-

consistent loop where the eigenvectors of the previous iteration are used to compute the

next Hamilton matrix. In practice, this requires ten(s) of iterations until convergence

is reached. For long ab-initio molecular simulations, in turn, tens of thousands of such

self-consistent loops have to be solved successively.

Beside the solution of (generalized) eigenproblems, there are other costly operations

within those self-consistent loops. These operations can vary between the di�erent

approaches for ab-initio molecular simulations. In FHI-aims, for example, all other

operations have a runtime behavior of O(N) with a huge constant, whereas the solu-

tion of the eigenproblem has a complexity of O(N3). From [25] can be seen that the

solution of the eigenproblem becomes dominating (i) for simulations with more atoms

(O(N) vs. O(N3) runtime behavior) and (ii) for simulations using an increasing num-

ber of parallel cores (since the solution of the eigenproblem is the worst scaling substep

of the simulation). Performance studies for other types of simulations (e.g. [26], for

simulations using plane waves as basis functions) come to similar results and iden-

tify the symmetric eigenproblem as the bottleneck of ab-initio molecular simulations.

Considering the demands for the simulation of even larger systems and increasing

timescales, there is a tremendous need for an e�cient, highly scalable eigensolver.

1.2.2 Inspection of large networks

Another important application of symmetric eigensolvers is the analysis of large net-

works. The study of complex networks has become a major �eld of interdisciplinary

6

1.3 Overview of this thesis

research [27]. Networks can be found all over the place (e.g. in the form of power

grids, social networks, etc.) and are modeled with graphs, consisting of vertices and

edges. One of the main objectives of related research is to understand the structure

of those networks. While in the past the focus was on the analysis of single small

graphs and the properties of individual vertices or edges, we, meanwhile, can observe

a shift towards larger networks where large-scale statistical properties are of interest

[28]. One approach to extract such information from a graph is the analysis of the

eigenspectrum, more precisely the eigenspectrum of the Laplacian of the graph.

The Laplacian of a (undirected, unweighted) graph is de�ned as

L(u, v) =


1 if u = v and dv 6= 0,

− 1√
dudv

if u and v are adjacent,

0 otherwise,

where dv is the degree of the vertex v (number of edges incident to the vertex). Obvi-

ously L is symmetric. For many classes of graphs (e.g. stars, cycles, complete graphs)

the eigenspectra can be computed analytically [29]. By comparing the eigenspectrum

of a graph with these eigenspectra, it is possible to classify real-world graphs or to

show similarities with certain classes of graphs. [30] and [31] show related work.

Usually, the matrices, resulting from real-world networks, are very sparse and, in

practice, not limited in size. Due to the possible appearance of large eigenvalue-

clusters, the eigenspectra of these matrices cannot be computed satisfactorily with

iterative solvers [32] and require the use of direct eigensolvers. Moreover, by reordering,

some of the matrices can be brought to banded form (e.g. using Cuthill/McKee [33])

which signi�cantly reduces the complexity of direct eigensolvers. Hence, the �eld of

network analysis would pro�t from the development of more e�cient direct eigensolvers

in general and especially from the development of banded eigensolvers which exploit

the capabilities of modern hardware.

1.3 Overview of this thesis

This thesis is organized as follows. In Ch. 2 we will present the symmetric eigen-

problem and give an overview of the available algorithms for symmetric eigensolvers

when a large fraction of the eigenspectrum is required. In particular, we will present

the algorithmic variants to bring a symmetric matrix to tridiagonal form, the most

performance relevant step of a symmetric eigensolver. In Ch. 3 we will present all

details of the parallel two-step tridiagonalization which is probably the most promising

7

1 Introduction

approach to bring a dense symmetric matrix to tridiagonal form. Beside presenting ex-

isting algorithms, we will describe all our new developments and improvements which

are crucial for an e�cient eigensolver. We will provide a runtime estimation for all

existing and newly developed algorithms, according to a de�ned performance model.

We conclude the chapter with a discussion of the scalability of the algorithms and an

overview of libraries and research tackling the same problem. In Ch. 4 we will outline

all details of our implementation which can't be described by our performance model

but are still crucial for the achieved performance. Furthermore, we will provide perfor-

mance results for all parts of our symmetric eigensolver and give a detailed discussion

thereof. Finally in Ch. 5 we conclude our thesis by giving an overview of what we

reached and by giving an outlook on upcoming challenges.

8

2 Symmetric eigensolvers

The following chapter will give a brief introduction into eigenproblems and will, then,

present the basic techniques for the developed symmetric eigensolvers. The chapter

is not intended to give a complete overview but to provide the necessary knowledge

for the algorithms presented in Ch. 3. Reference to further literature can be found in

[34], [35], or [36]

2.1 The eigenvalue problem

The standard eigenvalue problem is de�ned by the equation

Ax = λx, x 6= 0, (2.1)

where A ∈ Cn×n, x ∈ Cn and λ ∈ C. One solution (λi, xi) of Equation (2.1), consisting

of the eigenvalue λi and the eigenvector xi, is called eigenpair. Some applications

are interested in both, eigenvalues and eigenvectors, whereas in some problems the

computation of eigenvalues is su�cient.

For Hermitian or real symmetric matrices some properties can be used which reduce

the complexity of the eigenproblem. If A is Hermitian it can be shown that

• A has exactly n real eigenvalues λi (not all need to be distinct),

• each λi has an associated eigenvector xi, and

• all eigenvectors can be de�ned to be mutually orthogonal, i.e. x∗ixj = 0, i 6= j.

The eigenvectors xi are real if A is real symmetric. Due to the orthogonality of the

eigenvectors, Equation (2.1) can be written as

A = XΛX∗, (2.2)

where X is the eigenvector matrix [x1, x2, ..., xn] and Λ = diag(λ1, λ2, ..., λn).

9

2 Symmetric eigensolvers

The generalized eigenvalue problem is de�ned as

Ax = λBx, x 6= 0, (2.3)

where A and B are two n by n matrices. For the Hermitian or rather real symmetric

case A and B are Hermitian and real symmetric respectively and the matrix B has to

be positive de�nite. A generalized Hermitian eigenproblem can always be converted

to a standard Hermitian eigenproblem in the following way:

(1) Decompose B = LL∗, e.g. using Cholesky-factorization, where L is a lower

triangular matrix.

(2) Solve the standard Hermitian eigenproblem for Â = L−1A(L−1)∗.

(3) Compute the eigenvectors x of the generalized eigenproblem out of the eigenvec-

tors x̂ of Â, i.e. xi = (L−1)∗x̂i.

Hence, it is su�cient to handle the standard case.

De�nition 1 (Similarity transformation) If A,Q ∈ Cn×n and Q is nonsingular,

then we say that A and B = Q−1AQ are similar. Similar eigenproblems have the same

eigenvalues (ΛA = ΛB). Q is called similarity transformation.

A standard Hermitian eigenproblem A = XAΛAX
∗
A, in turn, can be transformed into

a similar eigenproblem T = XTΛTX
∗
T by using a unitary transformation Q with T =

QAQ∗. For the similar eigenproblem holds

ΛA = ΛT (2.4)

and

XA = Q∗XT . (2.5)

The matrix Q is called unitary similarity transformation.

The presented properties hold for real symmetric as well as for Hermitian matrices.

However, for reasons of simplicity we will limit our further explanations and analysis

of the presented algorithms to the real symmetric case.

10

2.2 Direct and iterative eigensolvers

2.2 Direct and iterative eigensolvers

A common classi�cation of eigensolvers is a distinction between direct and iterative

eigensolvers. Direct solvers have in common that the eigenproblem is �rst transformed

to a similar eigenproblem which is easier to solve. Usually, these are transformations to

tridiagonal form. A direct transformation to diagonal form is, in general, not possible,

for reasons which will become clear during the next sections. In a second step, the

transformed eigenproblem is solved. It has to be mentioned that the solution of this

transformed eigenproblem in turn is an iterative process. Nevertheless, only iterative

algorithms which operate directly on the original matrix are classi�ed as iterative

eigensolvers [34].

Iterative eigensolvers are appropriate if only a small fraction of the eigenspectrum is

desired. The matrices are usually large and sparse. Common methods are e.g. the

Lanczos method, Jacobi-Davidson methods or the Jacobi method. Iterative methods

are not discussed in this thesis. Further information, on when and how to use iterative

solvers, can be found in [36].

Direct solvers are based on similarity transformations. Due to accuracy issues, or-

thogonal similarity transformations are used. The initial eigenproblem is successively

transformed to an eigenproblem which is easier to solve. The most common proceed-

ing is to bring a matrix A to tridiagonal form. To compute the eigendecomposition

of the tridiagonal matrix, in turn, exists a variety of methods (e.g. QR iteration,

Divide-and-Conquer, MRRR). Direct solvers are the only feasible choice if the whole

or a large fraction of the eigenspectrum is desired [32].

2.3 Tridiagonal based (direct) eigensolvers

According to [36], the most common method to compute the whole eigenspectrum of a

matrix are tridiagonal based eigensolvers. As depicted in Figure 2.1, tridiagonal based

eigensolvers consist of three phases:

1. Reduce the dense symmetric matrix A to symmetric tridiagonal form.

2. Solve the tridiagonal eigensystem.

3. Transform the eigenvectors of the tridiagonal matrix back to those of the matrix

A.

11

2 Symmetric eigensolvers

Figure 2.1: Three phases of a tridiagonal based eigensolver. Phase 1: Tridiagonaliza-

tion. Phase 2: Tridiagonal eigensolver. Phase 3: Back transformation of

eigenvectors.

In Sect. 2.3.1, 2.3.2, and 2.3.3 we will brie�y describe the three individual stages

(tridiagonalization, tridiagonal eigensolver, back transformation) of the eigensolver.

Afterwards, in Sect. 2.3.4, we will give a detailed overview on orthogonal similarity

transformations, the basic building block of each tridiagonal based eigensolver.

2.3.1 Tridiagonalization

For the reduction of a symmetric matrix A to tridiagonal form T a sequence of or-

thogonal transformations Qi has to be found, with

T = Ql · . . . ·Q2 ·Q1 · A ·QT
1 ·QT

2 · . . . ·QT
l . (2.6)

The 2-sided application of the transformations preserves the symmetry of the matrix.

The sequence of orthogonal transformations may be any combination of Givens- or

Householder transformations whereas each transformation introduces zeros into the

matrix. Nevertheless, most relevant implementations rely on Householder transforma-

tions [37, 38, 39, 40].

The order and form of those Householder transformations is crucial to achieve high

performance on modern computer architectures. As we will see, there exist di�erent

strategies to achieve this tridiagonal form (1-step tridiagonalization, 2-step tridiag-

onalization, successive band reduction). These strategies will be presented in Sect.

2.5.

12

2.3 Tridiagonal based (direct) eigensolvers

2.3.2 Tridiagonal eigensolvers

The symmetric tridiagonal eigenproblem is a well studied �eld with lots of di�erent

methods for its solution. According to [41], among the most e�cient and accurate

ones we can mention

• Bisection and Inverse Iteration [42],

• QR algorithm [43],

• Divide & Conquer (D&C) [44], and

• MRRR - Multiple Relatively Robust Representations [45, 46].

All mentioned algorithms are numerically stable. However, they di�er regarding per-

formance, achievable accuracy and other properties such as parallelizability or the

possibility to compute only a part of the eigenspectrum at reduced cost.

Bisection and Inverse Iteration as well as the QR algorithm and the Divide & Conquer

approach have all a worst case complexity of O(n3) �ops. However, the �rst allows to

compute a fraction of k eigenpairs at reduced cost of O(kn2) �ops. D&C, in turn, can

be speeded up due to a technique called de�ation. The speedup of de�ation depends on

the content of the tridiagonal matrix but can be signi�cant. In [47] a modi�cation of

the D&C algorithm is introduced which can compute partial eigensystems at reduced

cost. The savings are not linear in k but lead to speedups of up to 3.

The MRRR algorithm is the only stable algorithm which allows the computation of k

eigenpairs with a worst case complexity of O(kn) �ops. Due to the reduced number

of required �ops, MRRR is usually the fastest available algorithm. However, as we

said before, the runtime depends on the content of the matrix, such that D&C may

outperform MRRR in certain scenarios. Bisection and Inverse Iteration as well as QR

are, in general, not competitive.

Regarding accuracy, D&C and the QR algorithm are, in general, preferable over

MRRR and Bisection and Inverse Iteration [48]. In [49] we can �nd research to-

wards improving the robustness of MRRR. In [50] a mixed precision variant of MRRR

is presented which reaches the same or even better accuracy results compared to QR

and D&C.

Altogether, D&C and MRRR are the by far most promising approaches for the sym-

metric tridiagonal eigenproblem. Moreover, both algorithms show a good behavior for

parallel execution [51].

13

2 Symmetric eigensolvers

Since the focus of this thesis lies on the tridiagonalization of symmetric matrices,

we gave only a brief overview of available methods and their properties. For further

information we refer to the cited literature.

2.3.3 Back transformation of eigenvectors

According to Equation (2.5), the eigenvectors XT of the tridiagonal matrix have to

be transformed back to the eigenvector XA of the original matrix. This is done by

applying all the orthogonal transformations from the tridiagonalization step in reverse

order to the eigenvector matrix:

XA = QT
1 ·QT

2 . . . ·QT
l−1 ·QT

l ·XT . (2.7)

Number, order, and form of the orthogonal transformations Qi, obviously, depend

on the tridiagonalization strategy and will be described more detailed in Sect. 2.5.

Independent from this, the back transformation of eigenvectors is much better suited

for parallel execution compared to the tridiagonalization. For the back transformation

all orthogonal transformations are known in advance which eliminates many data

dependencies.

An alternative approach would be to accumulate the Householder transformations

during the reduction to tridiagonal form:

Q = I ·QT
1 ·QT

2 . . . ·QT
l−1 ·QT

l . (2.8)

The eigenvectors can then be transformed back with one huge matrix matrix multipli-

cation (QXT). This approach saves memory for the storage of Householder vectors if

the reduction is done with more than two steps (see Sect. 2.5). However, the compu-

tational complexity increases from O(kn2) to O(n3), if k is the number of computed

eigenvectors.

2.3.4 Algorithmic kernels: orthogonal similarity transformations

Orthogonal similarity transformations are the basic instrument to bring a dense sym-

metric matrix to tridiagonal form. A wisely chosen Givens rotation can bring an

element of a matrix to zero. An appropriate Householder transformation can zero

all but one element of a given vector. The tridiagonalization of a matrix consists

of a series of such orthogonal transformations. In the following these two types of

transformations are presented.

14

2.3 Tridiagonal based (direct) eigensolvers

Givens rotations

Givens rotations [52] are plane rotations represented by the matrix

G(i, j,Θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


where G(i, j,Θ) is the identity matrix I, overwritten with gi,i = gj,j = c = cos Θ and

gi,j = −gj,i = s = sin Θ for i > j. Multiplying a vector with a Givens matrix G(i, j,Θ)

corresponds to a counterclockwise rotation at an angle of Θ in the (i, j) plane.

If we choose c and s such that c = aj,j/r, s = ai,j/r and r =
√
a2j,j + a2i,j, we can set

the element ai,j to zero by computing GTA. To get better numerical stability we �nd

also the following de�nition to compute c and s [43]:

s =
1√

1 + γ2
, c = s · γ and γ =

aj,j
ai,j

if |aj,j| ≤ |ai,j|, (2.9)

c =
1√

1 + τ 2
, s = c · τ and τ =

ai,j
aj,j

if |aj,j| > |ai,j|. (2.10)

Applied from the left side, a Givens rotation updates the rows i and j of the matrix,

leading to 6n �oating point operations (4n multiplications, 2n additions) for a dense

matrix with n columns. For the right-sided application column i and j are updated

respectively.

In the literature we also �nd a variant named Fast Givens Rotation [53, 54], which

reduces the number of �oating point operations (�ops) to 4n but su�ers from a slightly

worse numerical stability and an increased e�ort to prevent under-/over�ow [55].

Givens rotations were not used for the developed algorithms. Although, they shouldn't

be missing because they are utilized in other algorithmic approaches.

Householder transformations

Householder transformations [56, 57] are matrices of the form

H = I − τvvT , (2.11)

15

2 Symmetric eigensolvers

where τ = 2
vT v

. It can easily be shown that Householder matrices are symmetric and

orthogonal.

Householder transformations can be used to zero selected entries of a vector. Let x be

a vector of size n. If we set

v = x± ‖x‖e1, then (2.12)

Hx = (I − 2
vvT

vTv
)x = ∓‖x‖e1,

where ei is the ith unit vector. ‖x‖ always stands for the Euclidean norm. H is called

a Householder transformation of order n.

If we want to zero only selected entries of a vector, we have to introduce zeros in the

Householder vector. All entries in x, where the Householder vector v has zero entries,

will be unchanged after the application of H.

(Hx)i = xi ∀i : vi = 0.

The sign in Equation (2.12) should be set to + sign(x(1)). If we set v = x−sign(x(1))‖x‖e1
and x is close to a multiple of e1, the norm of v is small, which may lead to a large

relative error in τ [43].

A Householder transformation is de�ned for an arbitrary scaling of the Householder

vector v. In the literature, however, we �nd the following common variants [35]:

(1) v = x+ sign(x(1))‖x‖e1,

(2) v(1) = 1,

(3) ‖v‖ = 1.

In our algorithms we use the variant (2). For this type of scaling, the �rst entry of the

Householder vector doesn't have to be stored explicitly. This allows us to store the

Householder transformation in the new zero entries of a transformed matrix/vector.

Algorithm 1 shows, how to compute such a scaled Householder vector v which intro-

duces zeros in x(2:n). Naming schemes are those of [35]. It can easily be seen that

Algorithm 1 HouseGen(x)→ v, τ

1: β ←
√
xT(1:n)x(1:n) · sign(x(1))

2: τ ← x(1)+β

β

3: v ← (1,
x(2:n)
x(1)+β

)T

4: x← (−β, 0(2:n))
T

16

2.3 Tridiagonal based (direct) eigensolvers

Algorithm 1 has a complexity of 3n+O(1) �oating point operations.

Householder transformations can be applied from the left side and from the right side

to a matrix A. This corresponds to multiplying the Householder matrix H with the

matrix A (HA and AH respectively). Using the structure of the Householder matrix

leads to matrix vector operations. Algorithm 2 and Algorithm 3 show the left-sided

and right-sided application of a Householder transformation. The number of �oating

Algorithm 2 HouseLeft(A, v, τ)

1: zT ← τvTA

2: A← A− vzT

Algorithm 3 HouseRight(A, v, τ)

1: z ← τAv

2: A← A− zvT

point operations is 4nm for a Householder vector of size n and a matrix of size n×m
(HouseLeft) and m× n (HouseRight) respectively.

The 2-sided application of a Householder transformation (i.e., HAH) on a symmetric

matrix A is shown in Algorithm 4. Note that, due to the symmetry, only the lower

Algorithm 4 HouseSymm(A, v, τ)

1: z ← τAv

2: z ← z − τzT v
2
v

3: A← A− vzT − zvT

or the upper triangle of A has to be updated. Therefore 4n2 + O(n) �oating point

operations are required for the symmetric application.

Blocked Householder transformations

As can be seen from Algorithm 2 to 4, the application of a Householder transformation

on a matrix involves matrix vector operations. If we want to apply more than one

Householder transformation, there exist so called blocked representations which allow

the use of more e�cient matrix matrix operations. Thereby, a product of Householder

transformations is expressed by one or two matrices instead of a set of vectors. In the

following we will present the two most common techniques for a blocked representation

of Householder transformations, by name: WY transformations [58] and compact WY

transformations [59].

17

2 Symmetric eigensolvers

WY transformations Let Hi = I − τivivTi be a sequence of nb Householder trans-

formations of order n and let Qnb = H1 ·H2 · . . . ·Hnb be the product thereof. Then

Q can be expressed in the form

Qnb = I −WnbY
T
nb
, (2.13)

where Wnb and Ynb are matrices of size n × nb. W and Y can be constructed recur-

sively:

Wi+1 = [Wi, τi+1(vi+1 −Wi(Y
T
i vi+1))], W0 = [], (2.14)

Yi+1 = [Yi, vi+1], Y0 = []. (2.15)

The computations in Equation (2.14) and (2.15) require 4in + O(n) �oating point

operations. Thus, the construction of the �nal matrices Wnb and Ynb has a complexity

of
∑nb−1

i=0 (4in+O(n)) = 2nnb
2 +O(nnb).

The application of a WY transformation is similar to Algorithm 2 (HouseLeft), 3

(HouseRight) and 4 (HouseSymm), except that we use matrix matrix operations

instead of matrix vector operations. Algorithm 5 and 6 show the left-sided (A = QTA)

and right-sided (A = AQ) application of a blocked Householder transformation on a

general matrix A. Algorithm 7 shows the symmetric application (A = QTAQ) on a

Algorithm 5 WY Left(A,W, Y)

1: ZT ← W TA

2: A← A− Y ZT

Algorithm 6 WYRight(A,W, Y)

1: Z ← AW

2: A← A− ZY T

symmetric matrix.

Algorithm 7 WY Symm(A,W, Y)

1: Z ← AW

2: Z ← Z − 1
2
Y (ZTW)

3: A← A− Y ZT − ZY T

It can be seen that Algorithm 5 and 6 require 4mnnb �oating point operations if A is a

matrix of size n×m (WY Left) and m× n (WYRight) respectively. The complexity

of Algorithm 7 is 4n2nb + 4nnb
2 +O(nnb) if the symmetry of A is exploited.

Till here, all shown algorithms (1 - 7) originate from [35].

18

2.3 Tridiagonal based (direct) eigensolvers

Compact WY transformations Another well-known representation of blocked

Householder transformations are compact WY transformations. Thereby a product of

transformations Qnb = H1 ·H2 · . . . ·Hnb is expressed as

Qnb = I − YnbTnbY T
nb
, (2.16)

where Ynb is a matrix of size n× nb containing the individual Householder vectors

Ynb = [v1, v2, . . . , vnb], (2.17)

and Tnb is a triangular matrix of size nb which can be constructed recursively:

Ti+1 =

[
Ti z

0 τi+1

]
, z = −τi+1TiYi

Tvi+1, T0 = []. (2.18)

The recursion in Equation (2.18) involves two matrix vector operations. An analysis

of data dependencies reveals that each computation of Y T
i vi+1 can be done in advance

using one matrix matrix operation (Y TY). Note that, due to the symmetry, only the

upper or the lower triangle has to be computed.

[60] and [61] come to a similar result. They show that

T−1(i,i) =
vTi vi

2
, T−1(i,j) = vTi vj, i < j. (2.19)

Starting from Equation (2.19), Tnb can be computed with the following three steps:

1: S ← Y TY (compute only one triangle)

2: S(i,i) ← S(i,i)/2

3: T ← S−1

Thereby the inversion of S in step 3 corresponds to the �nal computations of z in

Equation (2.18) (zi = −τi+1Tixi; xi = (Y TY)(1:i,i+1)).

Summing up all the operations from Equation (2.18) leads to nn2
b + n3

b/3 + O(nnb)

�ops.

Applying a compact WY transformation to a matrix is similar to the application of

WY transformations, except of an additional matrix multiplication (Y T). Algorithm

8, 9 and 10 show the left-sided, right-sided and symmetric application respectively.

The additional matrix multiplication leads to a complexity of 4mnnb + nn2
b +O(nnb)

for Algorithm 8 and 9. For the 2-sided application on a symmetric matrix (Algorithm

10) we get costs of 4n2nb + 5nnb
2 +O(nnb).

19

2 Symmetric eigensolvers

Algorithm 8 CWY Left(A, Y, T)

1: X ← Y T

2: ZT ← XTA

3: A← A− Y ZT

Algorithm 9 CWY Right(A, Y, T)

1: X ← Y T

2: Z ← AX

3: A← A− ZY T

For all presented algorithms concerning blocked Householder representations we as-

sumed to have Householder transformations of full order. If, however, the Householder

vectors have a structure of zero entries (e.g. Householder transformations resulting

from a QR-decomposition), this structure may be exploited and the complexity of the

algorithms can be adjusted downwards.

Whether to use WY or compact WY representations cannot be answered in general.

Compact WY representations require less storage compared to the WY representa-

tion (compact WY: nnb + n2
b/2 + O(nb) words, WY: 2nnb words). Furthermore the

construction of the matrixW is more costly than the construction of T . However, com-

pact WY representations need an additional matrix multiplication (of lower order) if

applied to a matrix.

2.4 1-sided and 2-sided factorizations

Before going into the details of the individual tridiagonalization approaches, we want

to give some background information which allows a more profound understanding of

the faced problems.

A common classi�cation of linear algebra algorithms is the distinction between 1-sided

and 2-sided factorizations. The class of 1-sided factorizations contains algorithms such

as the QR-factorization, the LU-factorization or the Cholesky-factorization. They have

Algorithm 10 CWY Symm(A, Y, T)

1: X ← Y T

2: Z ← AX

3: Z ← Z − 1
2
Y (XTZ)

4: A← A− Y ZT − ZY T

20

2.4 1-sided and 2-sided factorizations

in common that the computed transformations are applied only from one side to the

matrix. The QR-factorization, for example, decomposes a matrix A ∈ Rm×n to

A = QR, (2.20)

where Q is orthogonal and R is upper triangular. Algorithm 11 shows a QR-

decomposition based on Householder transformations. The algorithm transforms the

Algorithm 11 QR-decomposition
1: for i = 1→ n− 1 do

2: vi, τi ← HouseGen(A(i:m,i))

3: HouseLeft(A(i:m,i:n), vi, τi)

4: end for

matrix A to R, the orthogonal matrix Q is de�ned by the product of Householder

transformations:

Q =
∏
i

(I − τivivTi). (2.21)

Obviously, the tridiagonalization is part of the 2-sided factorizations because the or-

thogonal transformations have to be applied from both sides to the matrix. Whether

an algorithm belongs to the class of 1-sided or 2-sided factorizations has huge impacts

on the achievable performance on modern computer architectures. 1-sided factoriza-

tions can be formulated in a cache e�cient way by doing a simple loop blocking. This

is not the case for 2-sided factorizations.

Out of Algorithm 11, for example, we can easily formulate a blocked variant of the QR-

decomposition (see Algorithm 12). The same can be done for the LU- and Cholesky-

Algorithm 12 QR-decomposition, blocked
1: for i = 1→ n− 1 : nb do

2: V ← QR(A(i:m,i:i+nb−1))

3: T ← CWYGen(V)

4: CWY Left(A(i:m,i+nb:n), V, T)

5: end for

factorization [37]. Blocking strategies for the tridiagonalization are discussed in the

next section.

21

2 Symmetric eigensolvers

2.5 Tridiagonalization approaches

2.5.1 1-step Tridiagonalization

The 1-step tridiagonalization is the method which is currently used in most (parallel)

linear algebra libraries for the tridiagonalization of symmetric matrices. The proceed-

ing is sketched in Algorithm 13. The algorithm consists of n − 2 iterations. In each

Algorithm 13 1-step Tridiagonalization
1: for i = 1→ n− 2 do

2: v, τ ← HouseGen(A(i+1:n,i))

3: HouseSymm(A(i+1:n,i+1:n), v, τ)

4: end for

iteration i a Householder vector is generated which sets all elements from i + 1 to

n of column i to zero. The Householder transformation is then applied from both

sides to the matrix. Due to the symmetric application, the symmetry of the matrix is

preserved throughout the algorithm.

Each iteration of the algorithm requires 4(n − i)2 operations for the symmetric up-

date and 3(n − i) �ops for the generation of the Householder vector. This results

in a complexity of 4/3n3 + O(n2) for the whole algorithm. All operations are done

using memory-bounded matrix vector and vector vector operations and are, thus, very

ine�cient on modern computer architectures.

Algorithm 13 can also be formulated in a blocked fashion which allows that half of the

operations can be done with more e�cient matrix matrix operations [62]. Therefore,

the operations from Algorithm 4 (HouseSymm) have to be split up. The matrix

vector multiplication in line 1 and the lower order term in line 2 are computed as for

the unblocked algorithm in every iteration. The rank-2 updates in line 3, however, are

aggregated to rank-2nb updates

Ai+nb = Ai − VnbZT
nb
− ZnbV T

nb
,

where nb is the blocking factor of the algorithm, Ai+1 is the matrix A after the ith

iteration and Vnb = [v1, v2, . . . , vnb] and Z = [z1, z2, . . . , znb]. For the computation of

zi we have to consider that A is not updated in every iteration. Assuming that Ai is

the last explicit available update of A, we can write

Ai+jvi+j = (Ai − VjZT
j − ZjV T

j)vi+j

= Aivi+j − VjZT
j vi+j − ZjV T

j vi+j

22

2.5 Tridiagonalization approaches

Algorithm 14 1-step Tridiagonalization, blocked
1: for i = 1→ n− 2 : nb do

2: V0 = [], Z0 = []

3: for j = 0→ nb − 1 do

4: k ← i+ j

5: A(k:n,k) ← A(k:n,k) − Vj (k:n,:)ZT
j (k,:) − Zj (k:n,:)V T

j (k,:)

6: v, τ ← HouseGen(A(k+1:n,k))

7: z ← A(k+1:n,k+1:n)v − Vj (k+1:n,:)Z
T
j (k+1:n,:)v − Zj (k+1:n,:)V

T
j (k+1:n,:)v

8: z ← τ(z − zT v
2
v)

9: Vj+1 ←
[
Vj,

(
01:k

v

)]
10: Zj+1 ←

[
Zj,

(
01:k

z

)]
11: end for

12: A(i+nb:n,i+nb:n) ← A(i+nb:n,i+nb:n)−Vnb (i+nb:n,:)ZT
nb (i+nb:n,:)

−Znb (i+nb:n,:)V T
nb (i+nb:n,:)

13: end for

This leads to Algorithm 14. The blocking allows that half of the 4/3n3 operations

can be done using matrix matrix operations and increases the number of �ops by

2n2nb +O(n2).

For the back transformation of eigenvectors we can make use of blocked Householder

transformations. nb Householder transformations are combined to one WY or compact

WY representation and are then applied from the left side to the eigenvector matrix

XT . The back transformation is sketched by Algorithm 15. AssumingXT is of size n×k

Algorithm 15 1-step back transformation of eigenvectors
1: for i = 1→ n− 2 : nb do

2: T ← CWYGen(V(:,n−i−nb:n−i−1))

3: CWY Left(XT , V, T)

4: end for

(k eigenvectors of size n) we need 2kn2 + n2nb +O(nn2
b , kn) �oating point operations

for the back transformation based on compact WY transformations. Beside of lower

order terms all operations can be done with cache e�cient matrix matrix operations.

23

2 Symmetric eigensolvers

Figure 2.2: Tridiagonalization through the 2-step approach.

2.5.2 2-step Tridiagonalization

The 1-step tridiagonalization contains data dependencies which prevent a fully blocked

formulation of the algorithm. The second Householder vector, for example, cannot

be computed until the �rst transformation is applied on the second column/row of

the matrix. A closer look at Algorithm 13 and 4, in turn, reveals that the second

column/row of the matrix is a�ected by both, the left-sided and right sided application

of the Householder transformation. These data dependencies can be avoided if the

matrix is �rst reduced to banded form.

The 2-step tridiagonalization was originally presented in [63]. In the �rst step the

symmetric matrix A is reduced to banded form. Afterwards the banded matrix B is

brought to tridiagonal form (see Figure 2.2). Let b be the (semi)bandwidth of the

banded matrix, i.e. B(i,j) = bi,j = 0 if |i− j| > b. For reasons of symmetry we consider

only the lower triangle of the matrix.

Reduction to banded form

The reduction to banded form is similar to the unblocked tridiagonalization in Algo-

rithm 13, except that not the n−i−1 but the n−i−b lowermost elements of a column

i are made to zero. For the application of the Householder vector we can partition A

the following way: (1) A(i+b:n,i:i+b−1) is only a�ected by the left-sided application of

24

2.5 Tridiagonalization approaches

the Householder transformation, (2) A(i+b:n,i+b:n) is updated by both, left- and right-

sided application and (3) the rest of the matrix is not a�ected by the Householder

transformation. Based on this partitioning we can formulate the blocking strategy in

Algorithm 16. Each block A(i+b:n,i:i+nb−1) can be decomposed to an orthogonal matrix

Algorithm 16 Reduction to banded form

1: for i = 1→ n− b− 1 : nb do

2: V ← QR(A(i+b:n,i:i+nb−1))

3: T ← CWYGen(V)

4: CWY Left(A(i+b:n,i+nb:i+b−1), V, T)

5: CWY Symm(A(i+b:n,i+b:n), V, T)

6: end for

Q and an upper triangular matrix R. Afterwards, the orthogonal transformations can

be applied in a blocked fashion from both sides to the rest of the matrix. The blocking

factor nb has to be smaller or equal to the bandwidth b of the resulting banded matrix.

If b equals nb, line 4 of Algorithm 16 can be omitted.

Note that Algorithm 16 is based on the QR-decomposition shown in Algorithm 11.

However, di�erent strategies for the parallel QR-decomposition require accordant al-

gorithms for the reduction to banded form. Obviously, also the back transformation

of eigenvectors of the banded matrix to those of the full matrix depends on the used

strategy for the QR-decomposition. If Algorithm 11 is used for the QR-factorization,

the back transformation is similar to Algorithm 15 (1-step back transformation of

eigenvectors), unless that the length of each Householder vector is n− i− b+1 instead

of n− i. Except of lower order terms, these operations require 2kn2 �ops.

A detailed description and analysis of algorithms for the parallel reduction to banded

from (and corresponding back transformation) will be given in Ch. 3.

Tridiagonalization of banded matrices

For the tridiagonalization of banded matrices (band reduction) exists a variety of

algorithms which exploit the banded structure of the matrix. All algorithms remove

all or part of intermediate �ll-in to preserve the banded structure of the matrix. The

removing of each �ll-in generates new �ll-in further down the matrix until the end of

the matrix is reached and no new �ll-in is generated. This proceeding is called chasing

the �ll-in and can be found in every algorithm mentioned in this section.

In [64] and [65] Schwarz proposes two algorithms based on Givens rotations. [64]

successively decreases the bandwidth of the matrix by one. For every column of the

25

2 Symmetric eigensolvers

Tv

B
(v)
10 B

(v)
11

B
(v)
21 B

(v)
22

B
(v)
d,d−1 B

(v)
dd

0

0

. . .
. . .

. . .
B(v) =

Figure 2.3: Partitioning of the block tridiagonal matrix during the band reduction [47].

matrix, starting from the �rst, the outermost element is zeroed with an appropriate

Givens rotation. Fill-in is consequently removed and chased down the matrix. This

proceeding is repeated until the matrix has tridiagonal form (bandwidth equals 1).

The algorithm presented in [65] eliminates, column after column, all row entries of a

column, starting from the outermost element. Again, all intermediate �ll-in is removed

as soon as it occurs. In [66] a blocked algorithm, based on the algorithms of Schwarz,

has been presented. [64] requires asymptotically more transformations compared to

[65] (O(n2log(b)) vs. O(n2)). The number of required �ops, however, is the same for

both algorithms (6n2b with ordinary Givens rotations and 4n2b with fast Givens rota-

tions) because the work for each transformation decreases linearly with the bandwidth

of the matrix.

[67] suggests an algorithm based on Householder transformations to introduce zeros

in the matrix. The same idea has been used in [68] for a parallel band reduction. The

algorithm in [68] builds the basis for our implementation and will be presented more

detailed in the following.

The algorithm consists of n − 2 stages whereas in each stage v the vth column of

the matrix B is brought to tridiagonal form. Let B(v) denote the matrix B at stage

v of the algorithm. Then, B(v) can be treated as a block tridiagonal matrix and be

partitioned the following way (see Figure 2.3 and [47]): Tv is of size v × v and is

already in tridiagonal form. B
(v)
10 = (bv+1,v, . . . , bv+b,v)

T contains, together with bv,v,

the �rst column of the remaining banded matrix. The diagonal blocks B
(v)
ββ and the

subdiagonal blocks B
(v)
β+1,β are both of size b × b for β ≥ 1 (except for smaller blocks

at the end of the band).

Each stage v is initiated by a length-b Householder transformation which reduces the

26

2.5 Tridiagonalization approaches

�rst remaining column to tridiagonal form:

B̃10 = Q
(v)
1 B

(v)
10 = (∗, 0, . . . , 0)T . (2.22)

This transformation must then be applied to the rest of the matrix, resulting in a

symmetric update of B
(v)
11 and a right-sided update of B

(v)
21 : B̃11 = Q

(v)
1 B

(v)
11 Q

(v)
1

T
, B̃21 =

B
(v)
21 Q

(v)
1

T
. After this transformation, the subdiagonal block B21 is �lled completely.

To preserve the banded structure of the matrix it is necessary to recover the zeros in

the �rst column of B21 with a second length-b Householder transformation Q
(v)
2 . The

application of Q
(v)
2 in turn creates �ll-in in B31. This process is repeated until the end

of the band is reached and no further �ll-in is generated. More general, the chasing of

�ll-in can be expressed with the following equations:

B̃ββ = Q
(v)
β B

(v)
ββQ

(v)
β

T
, 1 ≤ β ≤ d, (2.23)

B̃β+1,β = Q
(v)
β+1B

(v)
β+1,βQ

(v)
β

T
, 1 ≤ β < d, (2.24)

where B̃ := B(v+1). The index β of a transformation will be called sweep of the

transformation throughout this thesis. In the next stage the partitioning of the matrix

is shifted by one column/row.

Due to �ll-in, the bandwidth of the matrix grows to two times the initial bandwidth

b during the reduction to tridiagonal form. Note that the memory requirements are

accordant. For the algorithms [64] and [65] the bandwidth grows only by one. The

�oating point operation count for the Householder based algorithm is the same as for

the algorithms based on Givens rotations (6n2b) if ordinary Givens rotations are used.

In [68] the Householder based reduction has shown to outplay band reductions using

Givens rotations [65, 69].

For the back transformation of eigenvectors all transformations have to be applied in

reverse order to the eigenvector matrix. Just as the banded to full back transforma-

tion, the tridiagonal to banded back transformation requires 2kn2 �ops. A detailed

description thereof will be given in Ch. 3.

2.5.3 Successive band reduction

The 2-step band reduction has been generalized to a multi-step reduction in [70, 71].

An initial full or banded matrix is successively transformed to a matrix with smaller

bandwidth, until tridiagonal form is reached. The reduction of a banded matrix to

narrow banded form is similar to the algorithms presented in [67] and [68]. Except

that, instead of simple Householder operations, blocked Householder operations can

27

2 Symmetric eigensolvers

1

2

3

4

5

6

7

b1
b2

nb

Figure 2.4: First stage of the reduction of a banded matrix with bandwidth b1 to

bandwidth b2. The blue area represents the generated �ll-in during the

�rst stage. The area colored in dark blue is immediately removed with

QR-decompositions. The numbers stand for a possible order of execution.

be used. Instead of HouseGen a QR-decomposition can be used. The left-sided, right-

sided and symmetric application of a Householder transformation can be replaced by

their blocked variants. In other words, [67] can be seen as a special case of the band

to narrow band reduction. Figure 2.4 sketches the reduction of a banded matrix with

bandwidth b1 to a banded matrix with bandwidth b2. Algorithm 17 shows the band to

narrow band reduction as published in [71]. The blocking factor nb of the algorithm

Algorithm 17 Band to narrow band reduction

1: for j = 1→ n− b2 − 1 : nb do

2: j1 ← j; j2 ← j1 + nb − 1; i1 ← j + b2; i2 ← min(j + b1 + nb − 1, n)

3: while i1 < n do

4: V ← QR(B(i1:i2,j1:j2))

5: T ← CWYGen(V)

6: CWY Left(B(i1:i2,j2+1:i1−1), V, T)

7: CWY Symm(B(i1:i2,i1:i2), V, T)

8: CWY Right(B(i2+1:min(i2+b1,n),i1:i2), V, T)

9: j1 ← i1; j2 ← j1 + nb − 1; i1 ← i1 + b1; i2 ← min(i2 + b1, n)

10: end while

11: end for

has to be smaller or equal to b2.

The presented algorithms for reducing (1) full matrices to tridiagonal form, (2) banded

matrices to tridiagonal form, (3) full matrices to banded form and (4) banded matrices

28

2.6 Eigensolvers in the context of HPC

Figure 2.5: Di�erent reduction algorithms for symmetric matrices. The reduction to

banded form allows the blocking of operations. Starting from a banded

matrix requires more than one sweep to remove intermediate �ll-in.

to narrow banded form are very similar to each other. They can be seen as a more

general or a more specialized representation of the same algorithm whereas (1) is the

most specialized and (4) is the most general case (see Figure 2.5).

As the reduction from full to banded form, the band to band reduction allows a bet-

ter cache reuse compared to its non-blocked alternatives. All but the last reduction

step of the successive band reduction can be done using matrix matrix operations.

Although, the multi-step approach requires much more Householder transformations

(
∑

iO(n2/bi) vs. O(n)) and much more elements have to be removed due to inter-

mediate �ll-in (
∑

iO(n2) vs. O(n2)), this proceeding doesn't increase the asymptotic

costs compared to the direct tridiagonalization. This is true because each transforma-

tion becomes less costly while the bandwidth of the matrix decreases. For the back

transformation of eigenvectors, however, the transformations have to be applied to

the, in general, full eigenvector matrix. This leads to arithmetic costs of 2kn2 di
bi
for

each step i of the back transformation where di stands for the number of eliminated

subdiagonals.

2.6 Eigensolvers in the context of HPC

Table 2.1 summarizes the costs for the three presented tridiagonalization approaches.

We can see that the 2-step and multi-step approach have a much better cache be-

havior than the 1-step reduction. However, these algorithms have the drawback of

the additional e�ort for the back transformation of eigenvectors. Issues regarding

parallelizability will be addressed in the next section.

29

2 Symmetric eigensolvers

Tridiagonalization Back transformation

�ops words moved �ops words moved

1-step 4/3n3 O(n3) 2kn2 O(n
3

b
)

2-step 4/3n3 O(n
3

b
+ n2b) 4kn2 O(n

3

b
)

m-step 4/3n3 O(n
3

b
) 2mkn2 O(n

3

b
)

Table 2.1: Complexity and cache e�ciency of di�erent tridiagonalization approaches.

Lower order terms are omitted. "words moved" stands for the amount of

data, which has to be loaded from slow memory.

Whether the use of a 1-step, 2-step or even multi-step approach is preferable cannot be

answered in general, but should become more clearly during this thesis. Considering

the trends in hardware architectures (e.g. memory wall), it is only a matter of time till

the 2- or multi-step reduction outperform the direct tridiagonalization. We saw that

the second step of the 2-step tridiagonalization is still memory-bounded. However,

this step is much cheaper compared to the reduction to banded form. Moreover, the

working set of the problem should be small enough to �t into the cache of massively

parallel systems. In consideration of these facts, we rate the 2-step tridiagonalization

to be the most promising approach for current and upcoming architectures.

Figure 2.6 emphasizes this statement by revealing two severe bottlenecks of the ScaLA-

PACK tridiagonalization routine PDSYTRD which uses a 1-step approach. We can

see that the performance of the tridiagonalization is limited in two ways: absolute

performance and scalability. The tridiagonalization step is much slower than the back

transformation, although the latter requires 1.5 times more �ops. Additionally, we can

observe a poor strong scaling behavior such that for the examined problem size we

get no additional speedup beyond 8 compute nodes (320 cores). We want to overcome

these limitations by using the 2-step tridiagonalization approach.

In the next section we will present and analyze existing and newly developed parallel

algorithms for the 2-step tridiagonalization of symmetric matrices with the correspond-

ing back transformation of eigenvectors.

30

2.6 Eigensolvers in the context of HPC

 0

 50

 100

 150

 200

 250

 300

 350

1 2 4 8 16 32

tim
e

[s
]

#nodes

PDSYEVD, ScaLAPACK

PDORMTR
PDSTEDC
PDSYTRD

Figure 2.6: Runtime of the ScaLAPACK eigensolver PDSYEVD for symmetric matri-

ces computing all eigenvectors of a matrix of size 20000. The routines

PDSYTRD, PDSTEDC and PDORMTR represent the three stages of

the eigensolver (tridiagonalization, tridiagonal eigensolver using D&C and

back transformation). Measurements were performed on the SuperMIG

system of the Leibniz Rechenzentrum (LRZ). 1 node represents four Intel

Westmere-EX CPUs with 10 cores each.

31

3 The parallel 2-step

tridiagonalization

In this chapter we present and analyze the algorithms of the ELPA library and, in par-

ticular, all aspects of parallelization. Regarding the contribution of the author the pre-

sented algorithms can be grouped in three classes: (1) Parallel algorithms which have

been newly developed and implemented (blocked QR-decomposition, tridiagonal-to-

banded back transformation), (2) parallel algorithms which rely on existing algorithms

but have been improved regarding parallelism or cache behavior (tridiagonalization of

banded matrices), (3) parallel algorithms which rely on existing algorithms and have

been implemented by partners within the ELPA consortium (reduction to banded form

using the default QR-decomposition, banded-to-full back transformation).

We will provide a detailed description of parallelization schemes for all parts of the

tridiagonalization and back transformation. Furthermore, we will analyze the algo-

rithms according to our model of parallel computation and motivate our design de-

cisions. The model will be introduced in Sect. 3.1. In Sect. 3.2 through 3.6 we

will present the parallel algorithms for the individual stages of the tridiagonalization

and back transformation. In Sect. 3.2 we describe the reduction of dense symmetric

matrices to banded form. The QR-decomposition is a crucial substep of the reduction

to banded form for which we have developed fundamentally di�erent parallelization

schemes. Since this part is self-contained and very extensive, it has been transfered

in its own section (Sect. 3.3). Afterwards in Sect. 3.4 we present the reduction of

symmetric banded matrices to tridiagonal form using Householder transformations.

In Sect. 3.5 and 3.6 we describe the back transformation of eigenvectors, correspond-

ing to the two reduction steps. In Sect. 3.7 we analyze the algorithms towards weak

and strong scaling behavior and, �nally, in Sect. 3.8 we give an overview of existing

implementations in other libraries.

33

3 The parallel 2-step tridiagonalization

3.1 Model of parallel computation

The model is not intended to precisely predict the runtime of an algorithm but to high-

light the di�erences between di�erent algorithmic variants. Under these requirements

the runtime of the presented algorithms will be analyzed with a simple but e�ective

model of parallel computation. The runtime estimation of network communication is

based on a model which has been de�ned in [72] to model collective communication.

It uses the alpha-beta or latency-bandwidth approach to model the cost of sending a

message. I.e., under the assumption that no network con�ict occurs, the sending of a

message of n words is estimated with α+nβ, where α represents the message startup

time and β stands for the transmission time per word. In the following we will replace

α with tmsg and β with tword. Furthermore, we make the following assumptions for

network communication and parallel execution in general:

• A total of p processes is involved in the parallel execution of an algorithm. The

processes are indexed from 0 to p − 1 and are organized in a two-dimensional

Cartesian grid with pr rows and pc columns.

• A process can directly send a message to any other process through a two-

dimensional bidirectional torus network where automatic routing is provided. A

two-dimensional torus or mesh as network topology is the minimum requirement

for an e�cient execution of our algorithms.

• If a link in the network is occupied by two or more messages, a network con�ict

occurs and the network bandwidth is shared among the messages. This results

in costs of tmsg + k ·n · tword if k is the number of messages which have to be sent

over the same link.

• Communication and computation cannot be overlapped. This means that at the

sender side each communication is blocking. The e�ect of overlapping commu-

nication and computation is very di�erent on various architectures and is thus

di�cult to model.

• Communication cannot be overlapped with communication. This means that

only one message can be sent and received at a time. This assumption simpli�es

the runtime modelling drastically without provoking signi�cant inaccuracies.

• Collective operations are assumed to take place in a one-dimensional sub-

communicator (process row or process column) and are modeled with point-

to-point communication. Using the most common algorithms [72] we get the

runtime estimations in Table 3.1.

34

3.2 Reduction to banded form using QR-decompositions

Operation Runtime estimation

Broadcast(n) dlog(p)e(tmsg + n · tword)
Reduce(n) dlog(p)e(tmsg + n · tword)
Allreduce(n) 2dlog(p)e(tmsg + n · tword)

Table 3.1: Runtime estimation of the used collective operations for p processes and a

message size of n words. We assume to have a one-dimensional bidirectional

network topology. The computational e�ort for the reduction operations

and lower order terms are omitted.

The cache hierarchy is modeled with the external memory model [73], making the

following assumptions:

• The memory hierarchy consists of two levels. Fast and slow memory. The fast

memory is capable to hold M words, the size of the slow memory is in�nite.

• The fast memory is organized in M blocks with the size of one word each. It

takes tmem time to move a block from slow to fast memory.

• The execution of an arithmetic operation takes t�op time and can only be done

on data residing in fast memory.

• At the beginning of an algorithm all data resides in slow memory.

Altogether, our model consists of the four metrics t�op (�oating point performance),

tmem (memory bandwidth), tword (network bandwidth), and tmsg (message startup

time). All quantities are counted on the critical path of the parallel algorithm.

Outgoing from the described model we, �rst, estimate the runtime of the algorithmic

kernels from Sect. 2.3.4. The results are shown in Table 3.2. Later on we will use

these results for the analysis of the parallel algorithms.

3.2 Reduction to banded form using

QR-decompositions

The sequential reduction to banded form is sketched in Algorithm 16 (Sect. 2.5.2).

The algorithm consists of
⌈
n−b−1
nb

⌉
iterations, whereby in each iteration we compute

the QR-decomposition of an nb wide panel of the matrix and apply the resulting

orthogonal transformations in a symmetric way to the rest of the matrix. For the sake

35

3 The parallel 2-step tridiagonalization

Operation Runtime estimation

HouseGen() 3n · t�op + 2n · tmem

HouseLeft/Right() 4nm · t�op + 2nm · tmem

HouseSymm() 4n2 · t�op + n2 · tmem

WYGen() 2nb2 · t�op + nb2 · tmem

WY Left/Right() 4nmb · t�op + 4nm · tmem

WY Symm() (4n2b+ 4nb2) · t�op + 2n2 · tmem

CWYGen() (nb2 + b3

3
) · t�op + 2nb · tmem

CWY Left/Right() (4nmb+ nb2) · t�op + 4nm · tmem

CWY Symm() (4n2b+ 5nb2 + b3) · t�op + 2n2 · tmem

Table 3.2: Runtime of the algorithmic kernels according to the described model. The

Householder transformations are of order n. The matrices, the Householder

transformations are applied on, are of size n×m,m×n and n×n for the left-
sided, right-sided and symmetric application respectively. b is the blocking

factor of the blocked Householder transformations. Furthermore, we assume

that n,m, b2 < M < n2, nm. For the access to memory tmem we omitted

lower order terms if the operation is not memory-bounded. As memory-

bounded we de�ne operations where the ratio of �oating point operations

to the number of memory accesses
x�op
xmem

/∈ Ω(b).

36

3.2 Reduction to banded form using QR-decompositions

of simplicity we assume that the blocking factor nb of the algorithm is equal to the

bandwidth b of the banded matrix.

For a parallel execution of the reduction to banded form on a distributed memory

system we have to consider some more issues. Such issues are, e.g., decisions on how

to choose the parallel data layout, when and how to use collective communication and

last but not least a bunch of intern blocking possibilities. To get a little bit of order

into this jungle of options, we �rst partition our parallel reduction to banded form

into a part for the QR-decomposition, a part for the symmetric update, and a part for

the generation of the compact WY representation. Similarly we partition the runtime

estimation:

tfullbnd = tqr + tsymm + ttgen. (3.1)

For the parallel QR-decomposition, as it occurs during the reduction to banded form,

we have implemented di�erent algorithms:

(i) a standard Householder QR-decomposition as it is de�ned in [74] and

(ii) a newly developed blocked Householder QR-decomposition [75].

We will present those algorithms for the parallel QR-decomposition in Sect. 3.3.1 and

3.3.2. In the following we will discuss all aspects of the symmetric update and the

parallel data layout. For the symmetric update we have to use Householder transfor-

mations as they are generated in the QR-decomposition , i.e. for the decomposition

of a matrix of size n× b we get b Householder vectors with descending size from n to

n− b+ 1.

For the parallel data distribution of the input matrix A we use a 2D block-cyclic data

layout. This means that a matrix A is partitioned into blocks of size blkr × blkc. For
our algorithms we assume to have square blocks, i.e. blk = blkr = blkc. The blocks of

the matrix, in turn, are distributed in a cyclic fashion over the 2D Cartesian grid of

processes. In Figure 3.1 we see an example of a 2D block-cyclic distribution. Please

note that for a symmetric matrix only one triangle is stored explicitly. We introduce

the notation A(pr, pc) to express that the matrix A is distributed in a 2D block-cyclic

way across a process grid of pr rows and pc columns. Other matrices are distributed

only in one dimension and are replicated in the other dimension. These matrices are

usually tall and skinny, i.e. n� m for a matrix of size n×m, and are distributed in a

block-cyclic fashion along the longer dimension of the matrix. A(pr, ∗), thus, denotes
that the matrix A is distributed in a 1D block-cyclic fashion across one column of

processes and is replicated on all other columns of processes. A(∗, pc), in turn, means

that a matrix A is distributed across one row of processes and is replicated on all other

37

3 The parallel 2-step tridiagonalization

0, 0

0

0, 1 0, 2 0, 0 0, 1

1, 0 1, 1 1, 2 1, 0 1, 1

0, 0 0, 0

0, 0 0, 0

1 2 3 4

0

1

2

3

4

0, 1 0, 1

0, 1 0, 1

0, 2

0, 2

1, 0 1, 01, 1 1, 11, 2

Figure 3.1: 2D block-cyclic distribution of a matrix with 5× 5 blocks over a 2× 3 grid

of processes.

row communicators. Finally, A(∗, ∗) means that the matrix A is replicated on all pr×pc
processes. A(pr) and A(pc) stand for a 1D block-cyclic distribution within one column

and row communicator respectively with no replication in the second dimension. A[i,j]

and A[i] stand for the local matrices on process pi,j and pi within the 2D and 1D block-

cyclic distribution respectively. Furthermore, we introduce nlocalr =
⌈

nl
pr·blk

⌉
· blk and

nlocalc =
⌈

nl
pc·blk

⌉
·blk as the local matrix size in the row and in the column dimension.

Using this notation we will formulate parallel algorithms for the computation of

CWYGen (Algorithm 18) and CWY Symm (Algorithm 19) as de�ned in Equation

(2.18) and Algorithm 10 (Sect. 2.3.4). Afterwards we will derivate the runtime esti-

mation for the symmetric update tsymm and for the generation of the matrix T ttgen.

We consider the l-th iteration of Algorithm 16 and assume to get the matrix Y (pr, ∗)
as input from a parallel QR-decomposition as it will be described in Sect. 3.3.1 and

3.3.2. Y is a matrix of size nl× b with nl = n− l · b−1, containing all the Householder

vectors from the current QR-decomposition. The upper triangle of Y is �lled with

zero entries.

The computation of the matrix T is done redundantly on all pc columns of processes.

Algorithm 18 shows the parallel computation of T within one such process column

with pr processes. The τ values of the Householder transformations are stored in the

diagonal entries of T . Due to the symmetry of Z only one triangle has to be computed.

Accordingly, the allreduce operation is applied only on one triangle of Z. Using Table

3.1 and 3.2 we get the following runtime estimation for Algorithm 18:

tcwygen ≈
(
b2nlocal +

b3

3

)
t�op + 2bnlocalrtmem + dlog(pr)e(b2tword + 2tmsg). (3.2)

38

3.2 Reduction to banded form using QR-decompositions

Algorithm 18 Parallel CWYGen(Y (pr, ∗), T (∗, ∗))→ T

1: Z(∗, ∗)i ← Y T
[i]Y[i]

2: Z ← Allreduce(Zi)

3: for k = 2→ b do

4: τ ← T(k,k)
5: T(1:k−1,k) ← −τT(1:k−1,1:k−1)Z(1:k−1,k)
6: end for

Summing up all timings for the generation of T within Algorithm 16 leads to ttgen:

ttgen /

(
n2b

2pr
+
nb2

3
+ nb · blk

)
t�op

+

(
n2

pr
+ 2n · blk

)
tmem

+ dlog(pr)e
(
nbtword +

2n

b
tmsg

)
. (3.3)

The parallel symmetric application of a compact WY transformation is shown in

Algorithm 19. Please note that much of the algorithms complexity is hidden within the

Algorithm 19 Parallel CWY Symm(A(pr, pc), Y (pr, ∗), T (∗, ∗))
1: Y ′(∗, pc)[j] ← Transpose(Y[i])

2: Z(pr, ∗)[i] j ← A[i,j]Y
′
[j]

3: Z ′(∗, pc)T[j] i ← Y T
[i]A[i,j]

4: Z ′[j] j ← Reduce(Z ′[j] i)

5: if (i == j) then

6: Z[i] j ← Z[i] j + Z ′[i] j
7: end if

8: Z[i] ← Allreduce(Z[i] j)

9: Z[i] ← Z[i]T

10: X(∗, ∗)i ← Y T
[i]Z[i]

11: Xi ← T TXi

12: X ← Allreduce(Xi)

13: Z[i] ← Z[i] − 0.5Y[i]X

14: Z ′[j] ← Transpose(Z[i])

15: A[i,j] ← A[i,j] − Y[i]Z ′T[j] − Z[i]Y
′T
[j]

individual statements, which will be explained in the following. One important fact,

for example, is that only one triangle of the symmetric matrix A is stored explicitly.

39

3 The parallel 2-step tridiagonalization

Obviously, the other triangle of A is implicitly available due to the symmetry of A.

For a block-cyclic distributed matrix, however, the local matrix blocks are, in general,

not symmetric, i.e. A[i,j] 6= AT[i,j]. Thus, the matrix matrix multiplication AY can be

decomposed into A[i,j]Y[j] + (Y T
[i]A[i,j])

T if only one triangle of A[i,j] is available. These

two matrix matrix products are computed in line (2) and (3) of Algorithm 19.

To execute line (2) and (3), in turn, a process pi,j needs Y[i] and Y[j]. Y[i] is input

of the algorithm. Y[j] is made available through the Transpose operation in line (1).

Transpose() is a complex communication routine which requires one broadcast oper-

ation within each column communicator if the grid of processes is a perfect square.

For a non-square process grid the total number of broadcasts increases to lcm (= least

common multiple of pr and pc) whereas always pc of the broadcasts can be done in

parallel (runtime estimation: dlog(pr)e (nlocalcbtword + lcm
pc
tmsg)).

The partial results of line (2) and (3) have to be summed up in line (4) through (8).

In a �rst step the results U ′[j] i are summed up to one single result U ′[j] j which is then

added to U[i] j on the root process of each reduction. Thereby, the communication

pattern of the operation in line (4) is the same as for the transpose operation with

the di�erence that the broadcasts are replaced by reductions (runtime estimation:

dlog(pr)e (nlocalcbtword + lcm
pc
tmsg)). Finally, in line (8) an allreduce is called on each

column communicator to make U[i] available on each process (runtime estimation:

2 dlog(pc)e (nlocalrbtword + tmsg)).

The operations in line (9) through (15) correspond more or less to the operations of

the sequential algorithm. The matrix matrix multiplication U[i]T in line (9) as well as

T TZi in line (11) and U[i] − 0.5Y[i]Z in line (13) are entirely local. The partial results

of Y T
[i]U[i] in line (10) have to be reduced to the �nal matrix Z in line (12) (runtime

estimation: 2 dlog(pr)e (b2tword + tmsg)). To �nally compute the symmetric update of

A[i,j] the matrix U[i] has to be transposed such that U[i] and U[j] are available on process

pi,j (runtime estimation: dlog(pr)e (nlocalcbtword + lcm
pc
tmsg)).

The runtime estimation tcwysymm of Algorithm 19 is shown in Equation (3.4):

tcwysymm ≈ (4bnlocalrnlocalc + 5b2nlocalr + b3)t�op

+ 2nlocalrnlocalctmem

+ (2 dlog(pc)enlocalrb+ dlog(pr)e (3nlocalcb+ 2b2))tword

+

(
2 dlog(pc)e+ dlog(pr)e

(
3
lcm

pc
+ 2

))
tmsg. (3.4)

The accumulated runtime of tcwysymm over the whole reduction to banded form is shown

40

3.3 QR-decomposition: algorithmic variants

in Equation (3.5):

tsymm /

(
4n3

3p
+

5n2b

2pr
+

2n2 · blk
pc

+
2n2 · blk

pr
+ nb2 + 5nb · blk + 4n · blk2

)
t�op

+

(
2n3

3pb
+
n2 · blk
pcb

+
n2 · blk
prb

+
2n · blk2

b

)
tmem

+

(
dlog(pc)e

n2

pr
+ dlog(pr)e

(
3n2

pc
+ 2nb

))
tword

+
n

b

(
2 dlog(pc)e+ dlog(pr)e

(
3
lcm

pc
+ 2

))
tmsg. (3.5)

In Sect. 3.7 we will simplify the derived runtime estimations for the analysis of the

asymptotic behavior during weak and strong scaling.

3.3 QR-decomposition: algorithmic variants

The QR-decomposition is a crucial substep within the reduction to banded form. Es-

pecially if high scalability is desired, the QR-decomposition will become the bottleneck

of the whole reduction to banded form. This is the case since the QR-decomposition

requires an asymptotically higher number of synchronization points, compared to the

rest of the algorithm. In this section we give an overview of the faced problem and

describe the two algorithmic variants which have been implemented for the ELPA

library. The second of this approaches has been developed during this thesis to tackle

the scalability problems of the QR-decomposition.

An algorithm for the QR-decomposition of a matrix has already been presented in

Sect. 2.4. The task is to decompose a matrix A ∈ Rn×m into a product of matrices

Q ∈ Rn×m and R ∈ Rm×m, where Q is orthogonal and R is upper triangular. The

QR-decomposition is de�ned for any rectangular matrix A ∈ Rn×m with n ≥ m. In

the context of the reduction to banded form we are interested in the decomposition

of so called tall and skinny matrices, i.e. n � m, which represent small panels

of the original symmetric matrix. Of course, mathematically, there is no di�erence

between the QR-decomposition of tall and skinny matrices and general rectangular

matrices. From the algorithmic point of view, however, it makes sense to distinguish

between these two cases. The decomposition of general rectangular matrices, usually,

is composed of QR-factorizations of tall and skinny panels of a matrix (Ai → QiRi)

followed by an update of the trailing matrix (A← QT
i A) until A has upper triangular

form. In Algorithm 12 (Sect. 2.4) we saw an example for such a proceeding if the

QR-decomposition is based on Householder transformations.

41

3 The parallel 2-step tridiagonalization

We are only interested in the factorization of tall and skinny matrices. In the literature

we can �nd several methods to achieve this task. The most common proceeding is

a QR-decomposition based on Householder transformations as it has been shown in

Algorithm 11 (Sect. 2.4). QR-decompositions based on Householder transformations

are numerically stable and are used in most (parallel) linear algebra libraries [37,

38, 39, 40]. The same principle of introducing zeros into A can be achieved with

Givens rotations. Such algorithms have comparable numerical properties [43]. Another

class of algorithms for the QR-decompositions are methods based on Gram-Schmidt

orthogonalization [76]. However, those methods don't have advantages compared to

the classic parallel Householder QR-decomposition (neither regarding parallelization

nor regarding numerical stability) [77] and will thus be ignored in the following. In

[77] the TSQR (Tall Skinny QR) algorithm has been presented. TSQR is organized

as a reduction operation with the local QR-decomposition as reduction operation. In

a �rst step, each process computes a QR-decomposition on its local data. Afterwards,

the resulting triangular matrices are successively reduced, e.g. using a binary tree,

to one single triangular matrix. It can be shown that TSQR is optimal regarding

communication. However the method has signi�cant computational overheads during

the algorithm itself, as well as for the symmetric update of the trailing matrix if

TSQR is used within the reduction to banded form. Finally, there exists an algorithm

based on the Cholesky factorization [76]. CholeskyQR computes R with the Cholesky

decomposition of ATA since ATA = RTQTQR = RTR. Q can then be computed

with Q = AR−1. CholeskyQR is suited very well for parallel computation since it

requires only one synchronization point. Moreover the computations are mostly based

on BLAS 3 operations. However, CholeskyQR is not numerically stable if A is ill

conditioned [78].

In the following sections we will present two di�erent parallel algorithms for the QR-

decomposition of tall and skinny matrices which are all based on Householder transfor-

mations. The classic Householder QR-decomposition (Sect. 3.3.1) is the by far most

prevalent algorithm and can be found in most linear algebra libraries. In Sect. 3.3.2

we will give a detailed derivation of our newly developed blocked QR-decomposition.

The blocked QR-decomposition is an algorithm which generates and applies more

Householder transformations at once and should, thus, be better suited for parallel

execution. Under certain circumstances the algorithm runs into numerical problems.

However, these problems can be recognized and avoided very cheaply.

42

3.3 QR-decomposition: algorithmic variants

3.3.1 Classic Householder QR-decomposition

Algorithm 20 shows the parallel version of the classic Householder QR-decomposition.

The sequential version has been presented in Algorithm 11. The algorithm requires

Algorithm 20 Parallel Householder QR-decomposition(A(pr, pc))→ Y (pr, ∗), τ(∗, ∗)
1: for k = 1→ m− 1 do

2: if (A(:,k) in A[i,j]) then

3: Y (pr)(k:n,k) [i], τk(∗)← parallelHouseGen(A(k:n,k) [i])

4: end if

5: Y (pr, ∗)(k:n,k) [i], τk(∗, ∗)← Broadcast(Y(k:n,k) [i], τk)

6: parallelHouseLeft(A[i,j], Y(k:n,k) [i], τk)

7: end for

a parallel version of HouseGen and HouseLeft which are shown in Algorithm 21

and 22. For each column of the matrix parallelHouseGen is called by the process

column, owning this matrix column. Afterwards, the resulting Householder vector is

broadcasted to all other column communicators. Finally, parallelHouseLeft is called

to update the remaining columns of the matrix.

The parallelization of HouseGen and HouseLeft is straightforward. Each matrix op-

eration is parallelized according to the parallel data layout. Thereby, the computation

of the dot product in line (1) of Algorithm 21 and the matrix vector product in line

(1) of Algorithm 22 require a reduction operation to combine the partial results to the

�nal result.

The runtime estimations of Algorithm 21 and 22 follow directly from Table 3.1 and

3.2:

tpHouseGen ≈ 3nlocalrt�op + 2nlocalrtmem + 2dlog(pr)e(2tword + tmsg), (3.6)

tpHouseLeft ≈ 4nlocalrmlocalct�op + 2nlocalrmlocalctmem

+ 2dlog(pr)e(mlocalctword + tmsg), (3.7)

where n×m is the size of the matrix A.

For the runtime estimation of the whole QR-decomposition we, �rstly, make the as-

sumption that A is tall and skinny and, thus,

nlocalr =

⌈
n− k
pr · blk

⌉
· blk (3.8)

43

3 The parallel 2-step tridiagonalization

Algorithm 21 parallelHouseGen(x(pr))→ v(pr), τ(∗)
1: d(∗)i ← xT[i] · x[i]
2: a(∗)i ← 0

3: if (x(1) in x[i]) then

4: ai ← x(1)
5: end if

6: d, a← Allreduce(di, ai)

7: β ←
√
d · sign(a)

8: τ ← a+β
β

9: v[i] ← 1
a+β

x[i]
10: x[i] ← 0

11: if (x(1) in x[i]) then

12: v(1) ← 1

13: x(1) ← −β
14: end if

Algorithm 22 parallelHouseLeft(A(pr, pc), v(pr, ∗), τ(∗, ∗))
1: z(∗, pc)Ti ← τvT[i]A[i,j]

2: z[j] ← Allreduce(z[j] i)

3: A[i,j] ← A[i,j] − v[i]zT[j]

44

3.3 QR-decomposition: algorithmic variants

is approximated to be constant for all k. Secondly, we make the approximation that

mlocalc =

⌈
m− k
pc · blk

⌉
· blk = blk (3.9)

for all iterations of the algorithm. Considering also the costs of the broadcasts, this

leads to Equation (3.10) for the runtime of the parallel Householder QR-decomposition

of a tall and skinny matrix:

tparallelQR / 4nlocalrb · blk · t�op + 2nlocalrb · blk · tmem

+ bdlog(pr)e((2blk + nlocalr)tword + 5tmsg). (3.10)

tqr shows the accumulated runtime of Algorithm 20 over the entire reduction to banded

form:

tqr /

(
2n2 · blk

pr
+ 2n · blk2

)
t�op +

(
n2 · blk
pr

+ n · blk2
)
tmem

+

(
n2

2pr
+ 2n · blk

)
dlog(pr)etword + 5ndlog(pr)etmsg. (3.11)

Please note that the number of required messages for the classic Householder QR-

decomposition dominates the whole reduction to banded form (O(n) vs. O(n/b)).

The time for memory access tmem may become important if high scalability is desired.

The terms for t�op and tword are not critical.

3.3.2 Blocked QR-decomposition

The aim of the blocked QR-decomposition was to make the reduction to banded form

less dependent on network latency and memory bandwidth requirements and, thus, to

improve the scalability of our algorithms. The basic idea is to generate and apply more

than one Householder transformation with a single communication operation. In a �rst

step we will derive an algorithm which computes two Householder transformations at

once. Afterwards we will generalize this concept to arbitrary blocking. We will analyze

both algorithms regarding numerical stability.

It turned out that the derived algorithms share many commonalities with CholeskyQR.

However, our approach is extended by a concept of adaptive blocking to guarantee

numerical stability. Furthermore we generate Householder transformations instead of

an orthogonal matrix Q such that the QR-decomposition is easily integrable in the

existing reduction to banded form. In the following we sketch the original derivation

of the algorithms which can also be found in [75] and [79].

45

3 The parallel 2-step tridiagonalization

At �rst we introduce the notation to describe the following algorithms. Contrary to the

preceding algorithms, we resign to express the parallelization explicitly. This should

improve the readability of the algorithms. The concept of parallelization is the same

as for the classic Householder QR-decomposition, except that more than one matrix

column is handled at once. Furthermore, we de�ne the matrix A ∈ Rn×m as A0. Ak
stands for the content of the matrix after applying k Householder transformations.

Y ∈ Rn×k contains all generated Householder vectors.

Rank-2 Householder QR-decomposition

Starting from the classic Householder QR-decomposition, we derive an algorithm

which transforms two columns of the matrix A at once. The outcome, however, should

be the same as after applying two iterations of Algorithm 20.

The �rst Householder vector can be computed as usual with a call of HouseGen:

β1 =
√
AT0 (1:n,1) · A0 (1:n,1) · sign(A0 (1,1))

τ1 =
A0 (1,1) + β1

β1

Y(:,1) =

(
1,

A0 (2:n,1)

A0 (1,1) + β1

)T
R(:,1) =

(
−β1, 0(2:n)

)T
For the second Householder vector Y(:,2) we try to �nd a formulation which uses only

data from A0 instead of A1.

At �rst we look at the left-sided application of the �rst Householder transformation

on the remaining columns of A0. Using Algorithm 2 (HouseLeft) each column j of

A0 will be updated in the following way:

z1 (j) = τ1 · Y T
(:,1) · A0 (:,j)

A1 (:,j) = A0 (:,j) − z1 (j) · Y(:,1)

Moreover, z1 (j) can be expressed without the knowledge of Y(:,1) using solely the orig-

46

3.3 QR-decomposition: algorithmic variants

inal matrix A0 , τ1 and β1:

z1 (j) = τ1 · (1,
A0 (2:n,1)

A0 (1,1) + β1
)T · A0 (1:n,j)

= τ1 · (A0 (1,j) +
AT0 (2:n,1) · A0 (2:n,j)

A0 (1,1) + β1
)

= τ1 ·
A0 (1,j) · β1 + AT0 (1:n,1) · A0 (1:n,j)

A0 (1,1) + β1

Additionally, we are able to replace τ1 by its computational formula and get

z1 (j) =
A0 (1,1) + β1

β1
·
A0 (1,j) · β1 + AT0 (1:n,1) · A0 (1:n,j)

A0 (1,1) + β1

=
A0 (1,j) · β1 + AT0 (1:n,1) · A0 (1:n,j)

β1

= A0 (1,j) +
AT0 (1:n,1) · A0 (1:n,j)

β1
. (3.12)

To calculate the second Householder vector we have to update the second column

of A0 using the HouseLeft algorithm. Instead of using the �rst Householder vector

directly, it is possible to replace it by the contents of A0:

A1 (1,2) = A0 (1,2) − z1 (2) (3.13a)

A1 (2:n,2) = A0 (2:n,2) − z1 (2) ·
A0 (2:n,1)

A0 (1,1) + β1
(3.13b)

This result can now be used to generate β2 by applying HouseGen on A1 (2:n,2):

β2 =
√
AT1 (2:n,2) · A1 (2:n,2) · sign(A1 (2,2))

Instead of computing β2 out of the column A1 (:,2), it is possible to generate the dot

product AT1 (2:n,2) ·A1 (2:n,2) out of the contents of A0. Therefor, we use some properties

of the Householder transformation.

Without loss of generality we de�ne the �rst and the second column of A0 as

a1 = A0 (1:n,1) = α1,1u1 (3.14a)

a2 = A0 (1:n,2) = α1,2u1 + α2,2u2, (3.14b)

47

3 The parallel 2-step tridiagonalization

where u1 and u2 are normalized and mutually orthogonal, i.e. uT1 u2 = 0. Let H1 be

the Householder matrix which zeros all but the �rst element of a1. Obviously,

H1a1 = A1 (1:n,1) = ±α1,1e1.

Moreover, it can easily be shown that

(H1a2)(1) = A1 (1,2) = ±α1,2.

Since a Householder transformation doesn't change the length of a vector, we further

know that

AT1 (2:n,2) · A1 (2:n,2) = AT0 (1:n,2) · A0 (1:n,2) − A2
1 (1,2) = α2

2,2. (3.15)

The coe�cients α2
1,1, α

2
1,2 and α2

2,2 in turn can be computed using the dot products

aT1 a1, a
T
1 a2 and a

T
2 a2:

α2
1,1 = aT1 a1

α2
1,2 =

(aT1 a2)
2

α2
1,1

α2
2,2 = aT2 a2 − α2

1,2

Combined with all previous equations, this results o�er the possibility to generate β1
and β2 on the �y without updating the whole matrix. Only the three dot products

AT0 (1:n,1) · A0 (1:n,1), A
T
0 (1:n,1) · A0 (1:n,2) and A

T
0 (1:n,2) · A0 (1:n,2) as well as A0 (1,1), A0 (1,2),

and A0 (2,2) are needed to calculate the scalars β and τ .

After computing these scalars, the Householder vectors Y and the transformed matrix

R can be computed in the following way using HouseGen as well as Equation (3.13a)

and (3.13b):

Y(:,1) =

(
1,

A0 (2:n,1)

A0 (1,1) + β1

)T
R(:,1) =

(
−β1, 0(2:n)

)T
Y(:,2) =

(
0, 1,

A1 (3:n,2)

A1 (2,2) + β2

)T
R(:,2) =

(
A1 (1,2),−β2, 0(3:n)

)T
We can now formulate a rank-2 version of the HouseGen-algorithm which computes

two Householder vectors at once (see Algorithm 23).

48

3.3 QR-decomposition: algorithmic variants

Algorithm 23 HouseGen, rank-2 version
1: a11 ← A(1,1), a12 ← A(1,2), a22 ← A(2,2), a21 ← A(2,1)

2: d11 ← AT(1:n,1)A(1:n,1), d12 ← AT(1:n,1)A(1:n,2), d22 ← AT(1:n,2)A(1:n,2)

3: β1 ←
√
d11 · sign(a11)

4: ρ← a12+
d12
β1

a11+β1

5: d22 ← d22 − d212
d11

6: a22 ← a22 − ρa21
7: β2 ←

√
d22 · sign(a22)

8: τ1 ← T(1,1) ← a11+β1
β1

9: τ2 ← T(2,2) ← a22+β2
β2

10: R← 0(1:n,1:2)

11: R(1,1) ← −β1
12: R(1,2) ← d12

β1
13: R(2,2) ← −β2
14: y1 =

(
1,

A(2:n,1)

a11+β1

)T
15: y2 =

(
0, 1,

A(3:n,2)−ρA(3:n,1)

a22+β2

)T
16: Y = [y1, y2]

17: T(1,2) ← a21
β1
− a12− d12d11

a11

β2

49

3 The parallel 2-step tridiagonalization

After the generation, the two Householder transformations have to be applied to the

rest of the matrix. This can be done with blocked Householder transformations. If we

use compact WY transformations, T has the following form:

T =

[
τ1 τ1τ2y

T
1 y2

0 τ2

]

Thereby, yT1 y2 can be calculated out of the already computed dot products. In the

following we will derive a formula to compute τ1τ2y
T
1 y2 out of the previous results. At

�rst we de�ne

s1 = sign(A0 (1,1)) and

s2 = sign(A1 (2,2)).

The Householder vectors y1 and y2 are computed as de�ned in Algorithm 23 and can

be written as

y1 =
1

s1 + u1 (1)

· (u1 + s1e1), y2 (1) = 0, and

y2 (2:n) =
1

s2 + u2 (2) − u2 (1)u1 (2)

s1+u1 (1)

·
(
u2 (2:n) −

u2 (1)

s1 + u1 (1)

u1 (2:n) + s2e2 (2:n)

)
.

Finally, out of y1 and y2 we can derive formulas for τ1 and τ2

τ1 =
2

yT1 y1
= 1 + s1u1 (1)

τ2 =
2

yT2 y2
= 1 + s2u2 (2) − s2

u2 (1)u1 (2)

s1 + u1 (1)

,

as well as for the dot product yT1 y2

yT1 y2 =
1

s1 + u1 (1)

· 1

s2 + u2 (2) − u2 (1)u1 (2)

s1+u1 (1)

·
(
−u1 (1)u2 (1) −

u2 (1)(1− u21 (1))

s1 + u1 (1)

+ s2u1 (2)

)
=

1

τ1τ2
(s1u1 (2) − s2u2 (1)). (3.16)

u1 (2) and u2 (1), in turn, can be computed out of the scalars α1,1, α1,2, and α2,2 as well

50

3.3 QR-decomposition: algorithmic variants

as a1 (1), a1 (2), and a2 (1):

u1 (1) =
a1 (1)

α1,1

u1 (2) =
a1 (2)

α1,1

u2 (1) =
a2 (1) − α1,2u1 (1)

α2,2

The computation of the matrix T can be done within Algorithm 23 since all required

values are already available.

Out of Algorithm 23 and the blocked left-sided application we can now formulate the

rank-2 QR-decomposition (see Algorithm 24). For uneven matrix widths m we have

Algorithm 24 QR-decomposition, rank-2 version

1: for block_col = 1→ m/2 do

2: col← 2 ∗ block_col − 1

3: T, Y,R← HouseGen2(A(:,col:col+1))

4: A(:,col+2:m) ← CWYHouseLeft(T, Y,A(:,col+2:m))

5: A(:,col:col+1) ← R

6: end for

to perform one iteration with the classic Householder QR-decomposition. Please note

that after line (3) of Algorithm 24 the Householder transformations (T and Y) have

to be broadcasted to the remaining columns of processes.

Accuracy analysis Under certain conditions the presented algorithm runs into nu-

merical problems. In the following we will analyze the relative error of the rank-2

QR-decomposition and derive a criterion for the stability of the algorithm. Again, we

assume to have two vectors a1 and a2 as de�ned in Equation (3.14a) and (3.14b).

According to Algorithm 1 and 23 the Householder vectors are de�ned as

y1 =
a1 + ‖a1‖e1
a1 (1) + ‖a1‖

,

y2 =
â2 (2:n) + ‖â2 (2:n)‖e1
â2 (2) + ‖â2 (2:n)‖

, with

â2 (2:n) =a2 (2:n) − ρa1 (2:n), (3.17)

ρ =
a2 (1) +

aT1 a2
‖a1‖

a1 (1) + ‖a1‖
.

51

3 The parallel 2-step tridiagonalization

The blocked and non-blocked variants of HouseGen only di�er in how to compute

‖â2 (2:n)‖ which is α2,2 in exact numerics. For the non-blocked variant we �rst do the

componentwise subtraction in Equation (3.17) and build the norm afterwards. This

leads to a relative error of O(nε). For the rank-2 variant we �rst build the dot products

aT1 a1, a
T
1 a2 and a

T
2 a2. After this we compute

‖â2 (2:n)‖2 =(aT2 a2)(1 + nε1)−
(aT1 a2 + ‖a1‖‖a2‖nε2)2

aT1 a1(1 + nε3)

=α2
2,2 +O((α2

1,2 + α2
2,2)nε),

and, thus, we get a relative error of O
((

1 +
α2
1,2

α2
2,2

)
nε
)
.

To guarantee similar accuracy compared to the non-blocked QR-decomposition, we

have to limit the term
α2
1,2

α2
2,2
. This leads to the following criterion:

(aT1 a2)
2

aT1 a1 · aT2 a2
≤ εfallback

1 + εfallback
(3.18)

which corresponds to

α2
1,2

α2
2,2

≤ εfallback.

If Equation (3.18) doesn't hold, we switch back to the classic non-blocked approach.

We set εfallback to 1 to avoid any substantial accuracy losses.

Runtime estimation For the runtime estimation of the parallel rank-2 QR-

decomposition we ignore any issues regarding accuracy and assume that the fallback

to the unblocked algorithm doesn't occur. Results on how often such fallbacks appear

and how they a�ect performance can be found in Ch. 4.

Compared to the classic Householder QR-decomposition, the rank-2 variant halves

the number of messages to be sent and improves the cache e�ciency such that half as

many words have to be read from slow memory. Due to the additional computation of

some dot products, the blocked QR-decomposition requires a higher number of �ops

for the generation of Householder vectors (see tpHouseGen_2).

tpHouseGen_2 ≈ 10nlocalrt�op + 4nlocalrtmem + 2dlog(pr)e(7tword + tmsg) (3.19)

52

3.3 QR-decomposition: algorithmic variants

tpHouseLeft_2 shows the estimated runtime for the left-sided application of two transfor-

mations using the compact WY technique:

tpHouseLeft_2 ≈ 8nlocalrmlocalct�op + 2nlocalrmlocalctmem

+ 2dlog(pr)e(2mlocalctword + tmsg) (3.20)

The increased lower order terms within tpHouseGen_2 are ignored for the runtime es-

timation of the QR-decomposition of a tall and skinny matrix (tparallelQR_2) and the

runtime estimation of all QR-decompositions during the reduction to banded form

(tqr_2). Considering the costs of broadcasting Householder transformations to the re-

maining process columns and using the approximations from Equation (3.8) and (3.9)

we get

tparallelQR_2 / 4nlocalrb · blk · t�op + nlocalrb · blk · tmem

+ bdlog(pr)e
(

(2 · blk + nlocalr)tword +
5

2
tmsg

)
, (3.21)

and

tqr_2 /

(
2n2

pr
· blk + 2n · blk2

)
t�op +

1

2

(
n2

pr
· blk + n · blk2

)
tmem

+

(
n2

2pr
+ 2n · blk

)
dlog(pr)etword +

5

2
ndlog(pr)etmsg. (3.22)

The rank-2 QR-decomposition tackles those issues which limit the scalability of the

classic Householder QR-decomposition (latency and memory access). At next we will

extend the algorithm to arbitrary blocking to reduce those terms even further.

Rank-k Householder QR-decomposition

Again, w.l.o.g., we assume to start with a matrix A0 ∈ Rn×m where the �rst k columns

have the following form:

A0 (:,1:k) = (a1, a2, · · · , ak) = (u1, u2, · · · , uk)


α1,1 α1,2 · · · α1,k

α2,2 · · · α2,k

· · ·
αk,k

 (3.23)

ui and uj are normalized and mutually orthogonal for i 6= j. Out of these vectors we

want to compute the set of Householder vectors y1, . . . , yk and the appropriate scalars

τ1, . . . , τk and β1, . . . , βk as well as the content of R.

53

3 The parallel 2-step tridiagonalization

We start with the de�nition of the Householder vectors yi

yi (1:i−1) = 0(1:i−1), yi (i) = 1,

yi (i+1:n) =
Ai−1 (i+1:n,i)

Ai−1 (i,i) + βi
, (3.24)

and the scalars τi and βi from Algorithm 1

βi =‖Ai−1 (i:n,i)‖ · sign(Ai−1 (i,i))

τi =
Ai−1 (i,i) + βi

βi
.

Furthermore, we de�ne H1, H2, · · · , Hk to be the Householder matrices corresponding

to y1, y2, · · · , yk.
A possible decomposition into Q and R is shown in Equation (3.23) since

(u1, u2, · · · , uk) is orthogonal and the matrix containing αi,j is upper triangular. If

the Householder transformations are de�ned as it has been done in Algorithm 1, then

R has the following form:

R =


−s1α1,1 −s1α1,2 · · · −s1α1,k

−s2α2,2 · · · −s2α2,k

· · ·
−skαk,k

 , (3.25)

where si is the sign of Ai−1 (i,i).

For the �rst row of R we can easily show that

R1,j = (H1 · A0)1,j = −s1α1,j.

After the application of the �rst Householder transformation A1 = H1A0 has the

following form:

A1 (:,1:k) = H1(a1, a2, · · · , ak) = (û1, û2, · · · , ûk)


α1,1 α1,2 · · · α1,k

α2,2 · · · α2,k

· · ·
αk,k

 ,

where ûi = H1ui. Furthermore, we can show that û1 = −s1e1 and ûi (1) = 0 for

i > 1.

If we now look at the matrix A1 (2:n,2:k), we come upon the same pattern as for A0.

But now the QR-decomposition is of size (n − 1) × (k − 1) instead of n × k. As for

R(1,:) we can now determine R(2,:). By induction Equation (3.25) is true.

54

3.3 QR-decomposition: algorithmic variants

To compute the coe�cients αi,j of the matrix R we need all combinations of dot

products D = ATA where D(i,j) = aTi aj. In addition we need all signs si to get the

�nal content of R. In Algorithm 25 we show how to compute all the αi,j out of D.

Please note that this algorithm corresponds to a Cholesky-decomposition of ATA.

Algorithm 25 Computation of αi,j (Cholesky decomposition)

1: for i = 1→ k do

2: αi,i ←
√
D(i,i)

3: for j = i+ 1→ k do

4: αi,j ← D(i,j)

αi,i
5: for l = i+ 1→ j do

6: D(l,j) ← D(l,j) − αi,jαi,l
7: end for

8: end for

9: end for

After computing the coe�cients αi,j we need an update strategy to compute Ai out

of Ai−1 without any further synchronization requirements. Therefor, Equation (3.12)

can be generalized to

zi (j) = Ai−1 (i,j) +
ATi−1 (i:n,i) · Ai−1 (i:n,j)

βi
,

and, thus, using Equation (3.24),

Ai (i+1:n,j) =Ai−1 (i+1:n,j) − zi (j) ·
Ai−1 (i+1:n,i)

Ai−1 (i,i) + βi

=Ai−1 (i+1:n,j) − ρi,jAi−1 (i+1:n,i), with (3.26)

ρi,j =
Ai−1 (i,j) +

AT
i−1 (i:n,i)

·Ai−1 (i:n,j)

βi

Ai−1 (i,i) + βi
. (3.27)

Since

ATi−1 (i:n,i)Ai−1 (i:n,j) = (αi,i ˆ̂ui)
T︸ ︷︷ ︸ · (ˆ̂ui ˆ̂ui+1 · · · ˆ̂uj) · (αi,j αi+1,j · · · αj,j)T︸ ︷︷ ︸ = αi,iαi,j,

AT
i−1 (i:n,i)

Ai−1 (i:n,j)

Equation (3.27) can be simpli�ed to

ρi,j =
Ai−1 (i,j) +

αi,iαi,j
βi

Ai−1 (i,i) + βi
, (3.28)

55

3 The parallel 2-step tridiagonalization

Algorithm 26 HouseGen, rank-k version

1: D ← ATA

2: Compute αi,j (Algorithm 25)

3: for i = 1→ k do

4: βi ← αi,i · sign(Ai−1 (i,i))

5: R(i,i) ← −βi
6: τi ← T(i,i) ← Ai−1 (i,i)+βi

βi
7: for j = i+ 1→ k do

8: ρi,j ←
Ai−1 (i,j)+

αi,iαi,j
βi

Ai−1 (i,i)+βi

9: Ai (i+1:n,j) ← Ai−1 (i+1:n,j) − ρi,jAi−1 (i+1:n,i)

10: R(i,j) ← − sign(Ai−1 (i,i)) · αi,j
11: end for

12: yi ← (0(1:i−1), 1,
Ai−1 (i+1:n,i)

Ai−1 (i,i)+βi
)T

13: end for

where ˆ̂u corresponds to u after applying i Householder transformations. Out of Equa-

tion (3.26) and Algorithm 25 we can now formulate the rank-k variant of HouseGen

(see Algorithm 26). The update of the matrix A in line (9) can easily be done in a

blocked fashion such that cache e�ciency is guaranteed.

Once a Householder vector is generated, there are several blocking possibilities for

distributing the vectors and applying the transformations. For a detailed discussion

of the di�erent blocking possibilities and their e�ects we refer to [80]. In the following

runtime estimation as well as for the performance measurements in Ch. 4 we use

full blocking. This means that the broadcasting of Householder vectors as well as the

generation of the compact WY representation T and their left-sided application on the

remaining panels of the tall and skinny matrix occurs once if the number of k (maximal

blocking factor) Householder transformations is reached. Thus, the proceeding of the

rank-k QR-decomposition is the same as for Algorithm 24, except that the rank-2

routines are replaced by their rank-k variants and the number of loop iterations is

adjusted accordingly. The rank-k QR-decomposition is shown in Algorithm 27.

Accuracy analysis As for the rank-2 QR-decomposition, the rank-k variant can run

into numerical problems. In the following we will generalize the criterion for the

stability of the algorithm to arbitrary blocking.

Let e(x) be an upper bound for the numerical error when computing x. For the

56

3.3 QR-decomposition: algorithmic variants

Algorithm 27 QR-decomposition, rank-k version

1: for block_col = 1→ m/k do

2: col← k ∗ block_col − 1

3: T, Y,R← HouseGenk(A(:,col:col+k−1))

4: T ← CWYGen(Y, T)

5: A(:,col+k:m) ← CWYHouseLeft(T, Y,A(:,col+k:m))

6: A(:,col:col+k−1) ← R

7: end for

computation of dot products we can estimate the error with

e(D(i,i)) =
n∑
l=1

(a2i (l)ε) ≤ (aTi ai)nε = (α2
1,i + α2

2,i + · · ·+ α2
i,i)nε, and (3.29)

e(D(j,i)) =
n∑
l=1

(ai (l)aj (l)ε) ≤ ‖ai‖‖aj‖nε

=
√

(α2
1,j + α2

2,j + · · ·+ α2
j,j)(α

2
1,i + α2

2,i + · · ·+ α2
i,i)nε, (3.30)

for the diagonal and non-diagonal elements of D respectively.

Out of Algorithm 25 and Equation (3.29) and (3.30) we can now derive error bounds

for αi,i and αj,i with j < i:

e(α2
i,i) =e(D(i,i)) +

i−1∑
j=1

e(α2
j,i) (3.31)

e(αj,i) =
e(D(j,i)) +

∑j−1
l=1 (e(αl,i)e(αl,j))

|αj,j|
. (3.32)

For the �rst column of R we can estimate the error with e(α2
1,1) = O(α2

i,inε) leading

to a relative error of
e(α2

1,1)

α2
1,1

= O(nε)� 1.

Considering that the relative error of all preceding diagonal elements αj,j is bounded

by O(nε), we can simplify Equation (3.32) to

e(αj,i) =O
(√

(α2
1,i + α2

2,i + · · ·+ α2
i,i)nε

)
+

j−1∑
l=1

e(αl,i). (3.33)

This result, in turn, allows us to simplify Equation (3.31):

e(α2
i,i) =O((α2

1,i + α2
2,i + · · ·+ α2

i,i)nε) (3.34)

57

3 The parallel 2-step tridiagonalization

As for the rank-2 QR-decomposition we limit the relative error by claiming

α2
1,i + α2

2,i + · · ·+ α2
i−1,i

α2
i,i

≤ εfallback. (3.35)

Finally, we can set a criterion for the numerical stability of generating and applying the

i-th Householder transformation: the i-th Householder vector is regarded as "stable"

if Householder transformation i− 1 is stable and Equation (3.35) is ful�lled.

Please note that we assumed the maximal blocking factor k to be a constant.

Runtime estimation As already mentioned, the rank-k QR-decomposition leads to

a further reduction of synchronization requirements. Again, for the runtime estimation

we assume that no fallbacks to lower blocking occur. The maximum blocking factor k

is assumed to be the blocksize blk of the block-cyclic distribution.

As for the classic and rank-2 QR-decomposition we break down the estimated exe-

cution time into parts for the generation and left-sided application of Householder

transformations (tpHouseGen_k and tpHouseLeft_k).

tpHouseGen_k /

(
2nlocalr · blk2 +

blk3

3

)
t�op + 2nlocalr · blk · tmem

+ 2dlog(pr)e(blk2 · tword + tmsg) (3.36)

tpHouseLeft_k /5nlocalr · blk2 · t�op + 4nlocalr · blk · tmem

+ 2dlog(pr)e(blk2 · tword + tmsg) (3.37)

Out of Equation 3.36 and 3.37 and the required broadcast to distribute the House-

holder vectors to the other process columns we get runtime estimations for the whole

rank-k QR-decomposition (tparallelQR_k) and for all QR-decompositions during the re-

duction to banded form (tqr_k):

tparallelQR_k /

(
7nlocalrb · blk +

b · blk2
3

)
t�op + 6nlocalrbtmem

+ dlog(pr)e
(
nlocalrbtword +

5b

blk
tmsg

)
(3.38)

tqr_k /

(
7n2

2pr
· blk +

n · blk2
3

)
t�op +

3n2

pr
tmem

+ dlog(pr)e
((

n2

2pr
+ 2n · blk

)
tword +

5n

blk
tmsg

)
(3.39)

58

3.3 QR-decomposition: algorithmic variants

The rank-k QR-decomposition requires a higher number of �ops on the critical path

since the generation of a set of Householder transformations and its application to the

rest of the tall and skinny matrix do not overlap. However, this term should never

dominate the runtime of the whole reduction to banded form. The biggest advantage

is the reduced number of required messages which should signi�cantly improve the

scalability of the algorithm.

Worst case handling For the blocked QR-decomposition we have to consider also

the worst case scenario where we fall back to the unblocked case in each column of the

matrix. In this case we get a similar behavior as for the classic QR-decomposition but

we do additional work for the computation of Cholesky(ATA). This causes additional

costs of n
2·blk2
2pr

t�op+blk2 ·ndlog(pr)etword for the whole reduction to banded form. These

costs can be reduced to n2·blk
2pr

t�op + blk ·ndlog(pr)etword with the following approach.

If a fallback to lower blocking occurs, the computed αi,j are not accurate enough to

compute Householder vectors thereout. However, the αi,j can still be used to decide,

whether a blocked decomposition is numerically stable or not. Out of this idea we

formulate Algorithm 28. Initially, we compute once the Cholesky-decomposition of

Algorithm 28 HouseGen, rank-k, framework

1: D ← Cholesky(ATA)

2: i← 0, l← 1, k0 ← 0

3: while i < k do

4: b← CheckNumericalStability(Di+1:k,i+1:k)

5: kl ← kl−1 + b, l← l + 1, i← i+ b

6: end while

7: i← 0

8: for i < l − 1 do

9: HouseGenk(Aki+1:n,ki+1:ki+1
)

10: i← i+ 1

11: end for

ATA. Afterwards, we use the result D to successively determine the allowed blockings

for decomposing A. CheckNumericalStability returns the maximal blocking factor

for the given matrix according to the de�ned fallback criterion. Finally, we use the

maximal blockings kl to call the original rank-k Householder vector generation (Al-

gorithm 26). Within these calls, the computation of the coe�cients αi,j has to be

performed only on a submatrix of A.

59

3 The parallel 2-step tridiagonalization

Using this approach, the blocked QR-decomposition attains the same worst case run-

time behavior as the classic unblocked QR-decomposition.

We can summarize that the blocked QR-decomposition is a very promising approach

to resolve the bottlenecks of the classic parallel Householder QR-decomposition of tall

and skinny matrices (high synchronization and memory bandwidth requirements).

Contrary to TSQR, the algorithm doesn't lead to computational overhead for the

application of the Householder transformations if used within the reduction to banded

form. The blocked QR-decomposition reduces the number of messages by the de�ned

maximal blocking factor k if the corresponding submatrix is well conditioned. As we

will see in Ch. 4, this is the case most of the time. If an accuracy loss is imminent,

the algorithm switches back to lower blocking or even to the unblocked case and

guarantees, thus, numerical stability.

3.4 Tridiagonalization of banded matrices

After reducing a symmetric matrix to banded form, we have to bring the banded

matrix to tridiagonal form. Although, this step is less compute intensive compared

to the reduction to banded form (4
3
n3 vs. 6n2b), it is not less important due to the

limited parallelizability of this part of the tridiagonalization. In this section we describe

the parallel tridiagonalization based on Householder transformations, as published in

[68], and provide a detailed runtime estimation. Furthermore, we will present our

enhancements regarding the parallelization of the problem.

3.4.1 Existing parallelization

The parallelization approach in [68] is a pipelining approach which exploits that certain

operations from di�erent stages of the algorithm can be computed concurrently. As

has been said in Sect. 2.5, during the tridiagonalization process the banded matrix

grows to block tridiagonal form with a blocksize of b if b is the bandwidth of the initial

banded matrix. In each stage v of the algorithm, the block tridiagonal matrix can be

partitioned as depicted in Figure 2.3. Two blocks Bi,i and Bi+1,i can be combined to

a block pair Pi with

P
(v)
i ←

[
B

(v)
i,i

B
(v)
i+1,i

]
. (3.40)

The block pairs, in turn, are distributed in a one-dimensional blocked or block-cyclic

fashion across the processes. The detailed distribution has e�ects on the load balance

60

3.4 Tridiagonalization of banded matrices

b

2b

Q
(v)
i

1st column

Q
(v)
i+1

1st column

Pi−1 Pi Pi+1

P
(v)
i

P
(v+1)
i

Figure 3.2: Communication pattern of the band reduction. The newly generated

Householder transformation Q
(v)
i+1 is sent to the right neighboring block

pair (if existing), the transformed �rst column of P
(v)
i is sent to the left

neighboring block pair. Accordingly Qi is received from the left and the

�rst column of Pi+1 from the right neighboring block pair.

of the problem and the amount of required communication. The details of the data

distribution will be discussed later in this section.

For the �rst block pair P
(v)
0 we have to determine a Householder transformation Q

(v)
1

with

Q
(v)
1 B

(v)
10 = (∗, 0, . . . , 0)T . (3.41)

For all other block pairs P
(v)
i , i > 0 we have to apply Q

(v)
i and determine a new

transformation Q
(v)
i+1 which eliminates all but the �rst element of the �rst column of

B
(v)
i+1,i:

transform P
(v)
i →

[
Q

(v)
i B

(v)
i,i Q

(v)
i

T

Q
(v)
i+1B

(v)
i+1,iQ

(v)
i

T

]
, i > 0. (3.42)

In the next stage of the algorithm each block pair P
(v+1)
i is shifted by one column to

the right and by one row to the bottom.

It is easy to see that transformations from di�erent stages can be executed concur-

rently. More concrete, the transformation of P
(v+1)
i can start if Q

(v+1)
i and the �rst

column of the transformed block pair P
(v)
i+1 are available. If Pi and Pi−1 or Pi and

Pi+1 are not located on the same process, explicit communication is required. The

communication between di�erent block pairs is illustrated in Figure 3.2. Algorithm

29 shows the corresponding parallel algorithm as published in [68]. The algorithm

consists of two di�erent programs for block pair P0 and the remaining block pairs and

assumes that block pair Pi is handled by process pi in each case. Algorithm 29 can be

generalized such that the block pairs are distributed in any block-cyclic form across

the processes. We refer to [68] for this variant. In particular the control �ow has to

be altered such that a deadlock free execution is guaranteed. Furthermore it allows to

bundle communication if the distribution consists of more than one cycle.

61

3 The parallel 2-step tridiagonalization

Algorithm 29 Parallel band reduction [68]

1: P0 :

2: for v = 1→ n− 1 do

3: transform P
(v)
0 → Q

(v)
1

4: send Q
(v)
1 to P1

5: receive 1st column of P1

6: end for

7:

8: Pβ (β ≥ 1) :

9: for v = 1→ n− 1 do

10: if Pβ is not empty then

11: receive Q
(v)
β from Pβ−1

12: transform P
(v)
β → Q

(v+1)
β

13: send 1st column of Pβ to Pβ−1
14: shift Pβ by one column/row

15: if Pβ+1 is not empty then

16: send Q
(v)
β+1 to Pβ+1

17: receive 1st column of Pβ+1

18: end if

19: end if

20: end for

62

3.4 Tridiagonalization of banded matrices

For the runtime estimation we assume to have a one-dimensional block-cyclic distri-

bution of block pairs where l is the blocksize of the distribution and c = d n
b·l·pe is

the number of cycles. As we said before, the data distribution has e�ects on load

balancing and communication requirements. It can be seen that block pairs in the

upper part of the band require more work than block pairs further down the matrix.

More precise, P1, the block pair with the highest workload, requires twice as much

work than the average workload per block pair (12nb2 vs. 6nb2). Thus, with a pure

block data layout (c = 1), the load imbalance of the parallel algorithm would be 2

("highest workload / average workload"). A block-cyclic distribution reduces the load

imbalance to 1 + 1/c.

On the other hand, the communication requirements are minimal if c = 1. If neigh-

boring block pairs are located on di�erent processes, we need to send/receive one

Householder vector and one column of the band in each stage of the algorithm. Thus,

the communication requirements grow linear with the number of cycles c.

The third aspect which is in�uenced by the data distribution is "idle waiting". From

Figure 3.2 and Algorithm 29 we can see that neighboring block pairs cannot be trans-

formed at the same time. If l = 1, a process will idle for, at least, half of the time while

waiting for Householder transformations from the left and matrix columns from the

right neighboring process. Hence, the parallelizability of the algorithm is limited to

p = n
2b
. Any further increase of the number of processes doesn't lead to any speedup.

For the expected runtime of the algorithm we distinguish between the two cases

p ≤ n
2b
, l ≥ 2

tbndtrd ≈ n

⌈
n

bp

⌉
(1 + 1/c)(6b2t�op + 5/2b2tmem) + (c+ 1)nbtword + 2ntmsg, (3.43)

and p > n
2b
, l = 2

tbndtrd ≈ 24nb2t�op + 10nb2tmem + 2nbtword + 2ntmsg. (3.44)

A blocksize l of 1 is counterproductive and increases the communication requirements

of the algorithm (according to our model).

3.4.2 Fine grained data dependency analysis

The parallelization of the algorithm in [68] can be described with the dependency

graph in Figure 3.3 (left). Thereby, a node Q
(v)
i of the graph stands for the operation

"transform P
(v)
i ". The arrows in the graph represent the data dependencies. Each

node of the graph, beside the �rst, requires a Householder transformation from the

63

3 The parallel 2-step tridiagonalization

Q
(1)
1 Q

(1)
2

. . .

. . .

. . .

.
.
.

Q
(2)
1

Q
(3)
1

Q
(2)
2

Q
(1)
3

GEN
(1)
1 GEN

(1)
2 GEN

(1)
3

GEN
(2)
1 GEN

(2)
2

HR
(1)
3HR

(1)
2

HR
(2)
2

HL
(1)
2 HL

(1)
3

HL
(2)
2

SY
(1)
2 SY

(1)
3

SY
(2)
2

. . .

Figure 3.3: Simpli�ed (left) and more detailed (right) variant of the dependency graph

for the band reduction based on Householder transformations [81]. One

bubble in the graph on the left represents the operations from Equation

(3.42). In the graph on the right the operations are divided into four

subtasks: Generation of a Householder vector (GEN), left-sided (HL),

right-sided (HR) and symmetric (SY) application of a Householder vector.

left neighboring block pair (horizontal arrows) and each node, beside the last, requires

a matrix column from the right neighboring block pair (diagonal arrows).

With the aim to increase the parallelizability of the problem we can further divide the

operation "transform P
(v)
i " into four subtasks: (1) apply Q

(v)
i from both sides to Bi,i,

(2) apply Q
(v)
i from the right side to Bi+1,i, (3) generate Q

(v)
i+1 and (4) apply Q

(v)
i+1 from

the left side to Bi+1,i. In Figure 3.3 (right) we can see a more detailed variant of the

dependency graph. The four subtasks are abbreviated with SY
(v)
i , HR

(v)
i , GEN

(v)
i

and HL
(v)
i .

Out of the dependency graph in Figure 3.3 (right) we can formulate Algorithm 30.

The basic idea is to bring forward the sending of data as far as possible. Q
(v)
β+1 can

be generated and sent as soon as B
(v)
β+1,βQ

(v)
β

T
has been computed. The �rst column

of Pβ can be sent to Pβ−1 as soon as Q
(v)
β B

(v)
β,βQ

(v)
β

T
has been computed. Algorithm

30 allows to use up to p = n
b
processes without provoking idle time. According to our

64

3.4 Tridiagonalization of banded matrices

Algorithm 30 Parallel band reduction (improved variant)

1: P0 :

2: for v = 1→ n− 1 do

3: wait for last column of P
(v)
1

4: generate Q
(v)
1

5: send Q
(v)
1 to P1

6: end for

7:

8: Pβ (β ≥ 1) :

9: for v = 1→ n− 1 do

10: if Pβ is not empty then

11: wait for Q
(v)
β from Pβ−1

12: wait for last column of Pβ
13: if Pβ+1 is not empty then

14: compute B
(v)
β+1,βQ

(v)
β

T

15: generate Q
(v)
β+1

16: send Q
(v)
β+1 to Pβ+1

17: end if

18: compute Q
(v)
β B

(v)
β,βQ

(v)
β

T

19: send 1st column of Pβ to Pβ−1
20: if Pβ+1 is not empty then

21: compute Q
(v)
β+1B

(v)
β+1,β

22: end if

23: shift Pβ by one column/row

24: end if

25: end for

65

3 The parallel 2-step tridiagonalization

model the time on the critical path can be estimated with

tbndtrd ≈ 12nb2t�op + 6nb2tmem + 3nbtword + 3ntmsg, p ≥ n

b
. (3.45)

Thereby, the communication to memory is reduced to O(nb) words if the working set

of 3b2

2
words �ts into the cache.

It has to be mentioned that the operations SY
(v)
i , HR

(v)
i and HL

(v)
i can further be

sub-divided into subtasks (see Algorithm 2, 3 and 4 in Sect. 2.3.4). The right-sided

application of a Householder transformation, for example, can be split up into a matrix

vector product and a matrix update. In doing so, we can prepone the sending of data

even further. However, this has no signi�cant e�ects on the estimated runtime.

3.5 Tridiagonal-to-banded back transformation

After computing the eigenpairs of the tridiagonal matrix using one of the mentioned

algorithms (see Sect. 2.3.2), the eigenvectors of the tridiagonal matrix have to be

transformed back to the eigenvectors of the original matrix. In a �rst step we transform

the eigenvectors of the tridiagonal matrix back to those of the banded matrix.

During the tridiagonal-to-banded back transformation many relatively short House-

holder transformations have to be applied to the eigenvector matrix. As we introduced

in Sect. 2.5, the Householder transformations Qv
i from the band reduction are num-

bered with two indices: The index v stands for the stage of the algorithm. i stands for

the sweep of the algorithm. All Householder transformations have b nonzero elements

(except of the transformation from the last sweep in each stage). Each stage i (with

1 ≤ i ≤ n − 2) of the algorithm consists of
⌈
n−i
b

⌉
sweeps. Thus, the total number of

Householder transformations is n2

2b
+O(n). All transformations and their order of ap-

plication are sketched in Figure 3.4. For the band reduction we have the requirements

that (1) Q
(v)
i+1 is applied after Q

(v)
i and that (2) Q

(v+1)
i is applied after Q

(v)
i+1 (see Figure

3.4, left). For the back transformation of eigenvectors the order of application is the

reverse order of the reduction step. However, the requirement (1) drops out because

all transformations are known in advance. This leads to the dependencies sketched in

Figure 3.4, right.

As mentioned in Sect. 2.3.3, the Householder transformations have to be applied from

the left side to the eigenvector matrix XT . The eigenvector matrix is a matrix of size

n × k if k eigenvectors are transformed back. It is obvious that each eigenvector can

be transformed independently from each other.

66

3.5 Tridiagonal-to-banded back transformation

...
...

...

Q1
1

Q1
2

Q1
3

Q1
k

Q2
1

Q1
4

Qn−3
1

Qn−2
1

Q2
k

Q2
4

Q2
3

Q2
2

...
...

...

Q1
1

Q1
2

Q1
3

Q1
k

Q2
1

Q1
4

Qn−3
1

Qn−2
1

Q2
k

Q2
4

Q2
3

Q2
2

Figure 3.4: Householder vectors from the reduction from banded to tridiagonal form

[68]. The arrows indicate the order of execution during reduction (left)

and back transformation of eigenvectors (right).

The Householder transformations can be applied in a cache e�cient way to the matrix.

We have developed di�erent strategies for this task. One is based on WY transfor-

mation, the other is based on a explicit loop blocking in combination with compact

WY transformations with a small blocking factor. The developed techniques will be

presented in Sect. 3.5.1.

For the ELPA library we have developed and implemented two di�erent parallelization

schemes. According to the underlying parallel data distribution the algorithms are

called 1D and 2D parallelization. Thereby, only the latter is the contribution of the

author. The parallelization approaches will be presented in Sect. 3.5.2 and 3.5.3.

3.5.1 High performance kernels

The general construction and application of WY transformations is described in Sect.

2.3.4. For the tridiagonal-to-banded back transformation we have the special case

that (1) the Householder vectors are relatively short (b nonzero elements) and (2)

Householder vectors which have to be applied one after another are vertically shifted

by one element. For example, Q
(v+1)
1 has nonzero elements from index v+2 to v+b+1

and Q
(v)
1 , which has to be applied next, has nonzeros from v + 1 to v + b. Due to this

shift, W and Y are of size (b + nb − 1)× nb instead of b× nb. The nonzero structure

in the matrices W and Y is sketched in Figure 3.5.

The shift of Householder vectors in combination with a small vector length b leads to

signi�cant overhead for the application of WY transformation. If zero entries are not

exploited, we need 4k(b + nb − 1)nb arithmetic operations instead of 4kbnb to apply

67

3 The parallel 2-step tridiagonalization

b

nb

b + nb − 1

Y W

Figure 3.5: Nonzero structure of the matrices W and Y during the tridiagonal-to-

banded back transformation.

nb Householder transformations on k eigenvectors. This is an overhead of b+nb−1
b

.

According to our model, the runtime for the generation and application of a WY

transformation can be estimated with (4knb + 2n2
b)(b + nb − 1) · t�op + (4k + n2

b)(b +

nb − 1) · tmem.

To overcome this overhead we have developed an alternative approach which is based

on simple loop blocking. In the following we will call this proceeding non-WY ap-

proach. Instead of WY transformations we use simple unblocked Householder trans-

formations (later on we will substitute the unblocked Householder transformations

with compact WY representations with a small blocking factor). However, these

Householder transformations are not applied to all eigenvectors at a time. The loop

over the eigenvectors is blocked such that kb eigenvectors are transformed simultane-

ously and the working set of bkb words �ts into the cache. In this way all House-

holder transformations of one sweep are applied to the kb eigenvectors. Afterwards,

the next set of kb eigenvectors is transformed. The detailed proceeding is shown

in Algorithm 31. Figure 3.6 illustrates the loop blocking. The time to apply

Algorithm 31 Tridiagonal-to-banded back transformation (sequential version, non-

WY)

1: for sweep = 1→
⌈
n−1
b

⌉
do

2: for i = 1→ k step kb do

3: for j = n− 2− (sweep− 1) · b→ 1 step − 1 do

4: HouseLeft(X(1:n,i:i+kb−1), Q
(j)
sweep)

5: end for

6: end for

7: end for

nb Householder transformations with the non-WY approach can be estimated with

4kbnb · t�op +
(⌈

k
kb

⌉
bnb + (b+ nb − 1)k

)
· tmem.

68

3.5 Tridiagonal-to-banded back transformation

local matrixHouseholder vectors

1

2

Figure 3.6: Loop blocking during the tridiagonal-to-banded back transformation. The

loop over the eigenvectors is blocked (red dashed line) such that the work-

ing set (dark blue area) �ts into the cache and can be reused for the next

Householder transformation. When all Householder transformations of one

sweep have been applied to the block of eigenvectors, we continue with the

next block.

Some microarchitectures, for example PowerPC450, have a write-through cache as

L1-cache. This means that each write to the cache causes also a write to the next

cache level or the main memory. In other words, a write-through cache accelerates

read operations if the data is already in the cache. Write operations, however, are

still limited by the memory bandwidth or the bandwidth of the next cache level. The

non-WY approach, based on unblocked Householder transformations, lacks in perfor-

mance on such systems. The performance bottleneck is the rank-1 update within the

HouseLeft operation (Algorithm 2, Sect. 2.3.4). To overcome this problem we have

developed kernels which apply two or even four Householder transformations to a set

of eigenvectors using the compact WY technique. The improved cache behavior of this

proceeding cannot be described by our model and is therefor ignored for the runtime

estimation of the algorithms. The detailed implementation and the corresponding

results will be presented in Ch. 4.

3.5.2 1D parallelization

The 1D parallelization uses the fact that each eigenvector can be transformed inde-

pendently. The k eigenvectors are distributed uniformly to the p processes, leading

to a 1D block layout. The eigenvectors are then transformed according to the order

in Figure 3.4, right. This proceeding requires no synchronization for the application

69

3 The parallel 2-step tridiagonalization

of the Householder transformations. However, the Householder vectors have to be

distributed to all processes. Since every process needs the whole set of Householder

vectors this is a very costly operation.

The distribution can be done with one huge broadcast operation if enough bu�er space

is available. In our implementation the distribution is split up such that one broadcast

is performed for each sweep. For the model, however, we assume to have one single

huge broadcast.

If we use the non-WY approach for the application of Householder transformations,

we get the following runtime estimation:

ttrdback_1d ≈ 2

⌈
k

p

⌉
n2t�op +

(⌈
k

pkb

⌉
+

⌈
k

p

⌉
1

b

)
n2

2
tmem

+ dlog(p)e (n2tword + tmsg). (3.46)

The estimated runtime for the WY approach is always higher (especially if the number

of eigenvectors per process gets small). For the blocksize kb of the loop blocking holds

kb ≤ M
b
.

From Equation (3.46) we can identify three terms which limit the scalability and the

performance of the algorithm:

• dlog(p)en2tword - the broadcast of Householder vectors doesn't scale at all and

will become a bottleneck if the number of processes p increases.

• 2
⌈
k
p

⌉
n2t�op - the maximum level of parallelism is limited by the number of

eigenvectors k.

•
⌈

k
pkb

⌉
n2

2
tmem - the performance of the kernels will decrease if the number of local

eigenvectors gets small. For this scenario the loading of Householder vectors

dominates the runtime of the kernels.

3.5.3 2D parallelization

According to the data distribution, the second parallelization scheme is called 2D

parallelization. The eigenvector matrix of size n × k is distributed in a 2D blocked

manner across a 2D processor grid with pr rows and pc columns.

The 2D approach [47, 81] uses a second level of parallelism which becomes clear after

a closer look at the Householder transformations and their e�ect on the eigenvector

matrix. A Householder transformation updates only those rows of the eigenvector

70

3.5 Tridiagonal-to-banded back transformation

matrix where the corresponding Householder vector has nonzero entries. This fact

allows us to transform a single eigenvector in parallel. In the following we will describe

the detailed algorithm.

The k eigenvectors are distributed uniformly across pc process columns, similar to

the 1D approach. The individual eigenvectors, in turn, are distributed in a blocked

manner across the pr processes of a process column. Except for the distribution of

Householder vectors, the individual process columns are independent from each other.

For the parallelization within one process column the dependencies in Figure 3.4 (right)

have to be preserved. This leads to a pipelining algorithm. The process on the bottom

of a process column starts the pipeline and applies the Householder transformations

from the �rst sweep to its local part of the eigenvectors. In the next step the upper

neighboring process can apply transformations from sweep one to its local part of the

eigenvector matrix while the process on the bottom can start with the transformations

from sweep two. Finally, after pr − 1 steps the pipeline is full and all processes are

involved in computations.

During this pipelining algorithm it is necessary to exchange data between vertically

neighboring processes. Lets assume Q
(v)
i is the last Householder transformation which

is applied by process pj of each process column and Q
(v−1)
i is the �rst transformation,

applied by process pj−1. It is obvious that Q
(v)
i and Q

(v−1)
i operate on b−1 shared rows

of the eigenvector matrix. In a distributed memory environment we have to de�ne a

halo region of b− 1 rows which is duplicated and exists on both vertically neighboring

processes. After process pj has applied Q
(v)
i , it sends the content of the halo region

to process pj−1 and process pj−1 can continue with the application of Q
(v−1)
i . Once

process pj−1 has applied the transformation Q
(v−b)
i (this is the last transformation of

the current step which updates the halo region), it can send the content of the halo

region to process pj. The halo region and the data exchange are sketched in Figure

3.7.

To avoid idle waiting we have to split up the application of the Householder transfor-

mations of the current step. We de�ne m as the local matrix height (according to the

2D block layout) which corresponds to the number of Householder transformations,

we have to apply in the current step. Furthermore we de�ne m ≥ 2b. In phase (1) we

apply the �rst b − 1 transformations (which update the lower halo region), in phase

(2) we apply transformation b through m − b + 1 and in phase (3) we apply the last

b − 1 transformations (which update the upper halo region). Algorithm 32 sketches

the basic cycle of computation and communication during the tridiagonal-to-banded

back transformation. The total runtime for the synchronization of halo regions can be

estimated with 2n
⌈
k
pc

⌉
tword + 2n

b
tmsg. Please note that we need a non-blocking receive

71

3 The parallel 2-step tridiagonalization

p0,0 p0,1 p0,2

p1,0

p2,0

p0,pc

ppr,0 ppr,pc

b− 1

pi−1,j

pi,j

pi+1,j

Figure 3.7: 2D data distribution and synchronization between vertically neighboring

processes.

to attain this runtime estimation. In Ch. 4 we will see some interesting results where

the non-blocking receive somehow doesn't work.

Beside the synchronization between vertically neighboring processes we need commu-

nication for the distribution of Householder vectors. For the initial distribution of

Householder vectors we assume that each Householder vector resides on the process

row where it will be used during the algorithm. An example of the Householder vector

distribution is depicted in Figure 3.8. As for the 1D parallelization, the Householder

n− 1

b
row 1

row 2

row 3

row 4

Figure 3.8: Example of the distribution of Householder vectors with static (left) and

dynamic (right) data distribution (n = 17, b = 4). The Householder

vectors painted in one color are distributed across one row of the 4 × 4

process grid.

vectors have to be broadcasted within each process row. Such that each process owns

72

3.5 Tridiagonal-to-banded back transformation

Algorithm 32 Tridiagonal-to-banded back transformation (2D variant, simpli�ed)

1: for step = 1→ n−1
b

do

2: if (not lowermost process) then

3: wait for lower halo

4: compute phase (1)

5: send down lower halo

6: else

7: compute phase (1)

8: end if

9: compute phase (2)

10: if (not topmost busy process) then

11: wait for upper halo

12: compute phase (3)

13: send up upper halo

14: else

15: compute phase (3)

16: end if

17: end for

all the transformations which have to be applied to the local part of the eigenvector

matrix. However, for the 2D parallelization the communication requirements drop

from O(n2) to O(n2/pr) words.

From Figure 3.8 (left) we can see that the Householder vectors are not distributed

uniformly across the process grid. The processes in the lowermost process row own

twice as many vectors as the average process. This a�ects load imbalances by a factor

of 2 for the distribution and application of Householder transformations.

To overcome these load imbalances we redistribute the eigenvector matrix after each

sweep of Householder transformations. When all transformations of one sweep have

been applied we remove the b topmost rows from the eigenvector matrix and redis-

tribute the matrix according to their new height in the usual 2D blocked manner. The

redistribution of the matrix doesn't generate additional communication. All required

data is already available due to the halo synchronization. However, the height of the

lower halo has to be set to b instead of b−1. The height of the upper halo is computed

after every sweep and may be smaller than b. The Householder vector distribution

is adapted to the dynamic data distribution (see Figure 3.8, right). Please note that

after the whole algorithm the complete eigenvector matrix would reside on the top-

most processes. To avoid such memory imbalances we distribute the removed rows

uniformly to the whole grid of processes. This results in additional communication

73

3 The parallel 2-step tridiagonalization

costs of kn/pc words for the topmost processes. For the whole algorithm we get the

following runtime estimation:

ttrdback ≈
⌈
k

pc

⌉
2n2

pr
t�op +

(⌈
k

pckb

⌉
+

⌈
k

pc

⌉
1

b

)
n2

2pr
tmem

+

(
3n

⌈
k

pc

⌉
+ dlog(pc)e

n2

2pr

)
tword +

(
3n

b
+ dlog(pc)e

)
tmsg. (3.47)

3.6 Banded-to-full back transformation

The tridiagonal-to-banded back transformations computes the eigenvectors of the

banded matrix out of the eigenvectors of the tridiagonal matrix. In a �nal step we

transform the eigenvectors of the banded matrix to those of the original matrix.

The parallel implementation of the banded-to-full back transformation is straightfor-

ward. All Householder transformations from the reduction to banded form have to be

applied from the left side to the eigenvector matrix. This is done through compact

WY transformations consisting of b Householder transformations each. Thus, the back

transformation consists of n−1
b

steps. Thereby in step l the n− l · b− 1 topmost rows

of Y (pr, ∗)l are �lled with zeros. The matrices T (∗, ∗)l have already been generated

during the reduction and are still available for the back transformation. Contrary

to the tridiagonal-to-banded back transformation, the eigenvector matrix X(pr, pc) is

distributed in a block-cyclic way to guarantee load balancing.

At the beginning of each step the matrices Y and T have to be broadcasted such that

each process pi,j has access to Y[i] and T . This is done with one broadcast in each row

of processes. Afterwards, the transformations can be applied using Algorithm 33.

Algorithm 33 Parallel CWY Left(X(pr, pc), Y (pr, ∗), T (∗, ∗))
1: U(∗, pc)[j] i ← Y T

[i]X[i,j]

2: U[j] ← Allreduce(U[j] i)

3: U[j] ← TU[j]

4: X[i,j] ← X[i,j] − Y[i]U[j]

The runtime of Algorithm 33 can be estimated with

tcwyleft ≈(4bnlocalrnlocalc + b2nlocalc)t�op + 4nlocalrnlocalctmem

+ 2 dlog(pr)e (nlocalcbtword + tmsg). (3.48)

74

3.7 Runtime analysis

Summing up over all n−1
b

iterations and adding the costs for distributing all House-

holder transformations leads to the total estimated runtime of the banded-to-full back

transformation:

tbndback /

⌈
k

pc

⌉(
2n2

pr
+ bn+ 4n · blk

)
t�op +

⌈
k

pc

⌉
n2

prb
tmem

+

(
dlog(pr)en

⌈
k

pc

⌉
+ dlog(pc)e

(
n2

2pr
+ nb

))
tword

+
n

b
dlog(pr)e tmsg. (3.49)

3.7 Runtime analysis

In this section we will put all the pieces from the previous sections together. At �rst we

are going to compare the parallel 2-step tridiagonalization with a runtime estimation

of the 1-step approach which can be found in [82]. Afterwards we will analyze our

algorithms towards weak and strong scaling.

The presented runtime estimations for the individual stages are very detailed but not

suited for a simple comparison. In the following we will try to simplify the formulas

as far as possible. At �rst we assume pr = pc =
√
p. To get rid of some terms

which result from load imbalances due to the block-cyclic data distribution, we claim
n
b
� √

p. Furthermore we suppose that t�op � tmem � tword � tmsg such that,

e.g. c1t�op + c2tmem, will be simpli�ed to c2tmem. In doing so we get the following

runtime estimation for the tridiagonalization and back transformation using the 2-

step approach:

ttrd_2step ≈
4n3

3p
t�op +

(
2n3

3pb
+ 6nb2

)
tmem

+ dlog(
√
p)e 9n2

2
√
p
tword

+

(
dlog(

√
p)e
(

5n

blk
+

9n

b

)
+ 3n

)
tmsg, (3.50)

tback_2step ≈
4kn2

p
t�op +

2kn2

pb
tmem

+

(
dlog(

√
p)e n

2

√
p

+
kn√
p

(dlog(
√
p)e+ 3)

)
tword

+
n

b
(dlog(

√
p)e+ 3) tmsg. (3.51)

75

3 The parallel 2-step tridiagonalization

For the reduction to banded form we assume to use the blocked QR-decomposition.

Furthermore we assume p ≥ n
b
, since this simpli�es the runtime estimation of the band

reduction.

3.7.1 Comparison with 1-step tridiagonalization

The runtime estimation, presented in [82], describes the execution time of the ScaLA-

PACK (version 1.5) routines PDSYTRD (tridiagonalization) and PDORMTR (back

transformation) which are based on the 1-step approach. It uses a di�erent perfor-

mance model. The execution time of computations is modeled using the performance

of BLAS routines. In doing so, γ1, γ2 and γ3 stand for the time per �op within BLAS1,

BLAS2 and BLAS3 routines, δ1, δ2 and δ3 stand for the software overhead to call the

corresponding BLAS routines. The performance modeling of communication is the

same as in our model.

To transform the runtime estimation of the 1-step tridiagonalization into our perfor-

mance model, we use the following conversion:

γ1 =t�op + 2tmem,

γ2 =t�op + tmem,

γ3 =t�op.

The software overhead δ1, δ2 and δ3 cannot be described with our model and is thus

ignored.

Using the same simpli�cations, we get the following runtime estimation for the 1-step

tridiagonalization and back transformation. This time b stands for the intern blocking

factor of the algorithms.

ttrd_1step ≈
4n3

3p
t�op +

2n3

3p
tmem

+
n2

√
p

(
5 dlog(

√
p)e+

5

2

)
tword

+ (18n dlog(
√
p)e+ n) tmsg, (3.52)

tback_1step ≈
2kn2

p
t�op +

n2b√
p
tmem

+

(
2kn√
p
dlog(

√
p)e+

n2

√
p

)
tword. (3.53)

76

3.7 Runtime analysis

The runtime comparison between the 1-step and 2-step approach con�rms some well

understood facts regarding the number of required �ops and their memory e�ciency

and shows some interesting di�erences in the communication requirements which may

explain, to some extent, the di�erent scaling behavior.

As introduced in Ch. 2, the runtime estimations con�rm the better cache e�ciency of

our 2-step implementation during the reduction to tridiagonal form. The number of

required �ops remains the same (according to the de�ned assumptions). The 6nb2tmem

term, resulting from the reduction from banded to tridiagonal form, may become a

bottleneck if strong scaling is desired. However, for this con�guration the working set

should be small enough to �t into the �rst- or second-level cache. Regarding network

bandwidth requirements, both implementations are comparable. A big di�erence can

be observed when looking at the number of required messages. Several blocking possi-

bilities allow the 2-step implementation to aggregate data into larger messages. This

should especially pay o� if the number of processes is high, compared to the problem

size.

As expected, the 2-step back transformation requires twice the amount of �ops com-

pared to the 1-step approach. Obviously, it is advantageous for the 2-step approach

if only a fraction of the eigenvectors is required. Both algorithms are cache e�cient

with a memory reuse rate of b. The communication requirements are comparable and

won't be a problem for both, the 1-step and the 2-step approach.

Altogether, the 2-step tridiagonalization in combination with the blocked QR-

decomposition is able to eliminate the bottlenecks of the 1-step approach (memory

bandwidth and network latency) and is, hence, well prepared for coming hardware

developments. Measurements in Ch. 4 will con�rm this statement.

3.7.2 Strong scaling and e�ciency

Strong scaling describes how the runtime for a �xed problem size evolves for di�erent

numbers of processes. This type of scaling is especially important for the use in

quantum chemistry (see Sect. 1.2.1) where relatively small eigenproblems have to be

solved thousands of times.

When looking at the runtime estimation of our algorithms we notice that there are

terms which scale linear in p, some terms scale with
√
p (pc and pr respectively),

and some terms don't scale at all. The factor
⌈
log(
√
p)
⌉
, which appears in some

communication terms, is approximated with the constant log. Moreover, we have to

consider that between the constants t�op, tmem, tword, and tmsg can be several orders of

magnitude. To get a feeling for the ratios between t�op, tmem, tword, and tmsg, in Table

77

3 The parallel 2-step tridiagonalization

t�op tmem tword tmsg Ratio (t�op : tmem : tword : tmsg)

BlueGene/P 75ps 0.6ns 12.5ns 3µs 1 : 8 : 160 : 38400

SuperMUC 46ps 1.25ns 64ns 3µs 1 : 27 : 350 : 16500

Table 3.3: Timings for t�op, tmem, tword, and tmsg based on the speci�cation of two

current HPC systems.

t�op tmem tword tmsg

x1
4
3
n3 2

3
n3

b
- -

x2 5n2b 9
2
n2 9

2
· log · n2 -

x3 15nb2 6nb2 (7
2
· log + 3)nb 29 · log · n

b
+ 3n

Table 3.4: Breakdown of the highest order terms according to their scaling behavior.

x1 comprises all terms which scale linear in p. x2 and x3 contain terms

which scale with
√
p and 1 respectively. The terms printed in bold are

crucial for scalability and e�ciency issues.

3.3 we have estimated those timings for a BlueGene/P system and the SuperMUC

system (see Sect. 4.2.1) based on the theoretical peak of those systems. As already

mentioned in Sect. 1.1, these ratios are expected to change on future systems according

to some long time trends.

From the stated point of view we can split up the runtime into

x1
1

p
+ x2

1√
p

+ x3.

The following scaling and e�ciency considerations will be done solely for the reduction

to tridiagonal form. The behavior of the back transformation is always better. In Table

3.4 we have listed the highest order terms in x1, x2, and x3 for t�op, tmem, tword, and

tmsg respectively. For reasons of simplicity we assumed b = 4 · blk.

To evaluate the scaling of the tridiagonalization we have to compare the ratios between
x1
p
, x2√

p
, and x3 for di�erent numbers of processes. To get a statement on the e�ciency

of the algorithm, in turn, we have to compare the terms containing t�op, tmem, tword,

and tmsg. As we will see, both properties (scaling and e�ciency) are linked together.

Using the freely selectable intermediate bandwidth b we can regulate the memory

e�ciency of the algorithm. b should be large enough to compensate for the gap

between t�op and tmem. Furthermore, a larger b reduces the total number of messages.

On the other hand, a larger b increases the e�ort for the reduction from banded to

tridiagonal form which is responsible for the 6nb2tmem term. As we will see in the next

78

3.7 Runtime analysis

chapter, a b between 32 and 64 is a good choice for current systems. For a given n and

b we, then, can compute the number of processes p where (i) 4n3

3p
t�op = 9·log

2
n2
√
p
tword,

(ii) 4n3

3p
t�op = 6nb2tmem, and (iii) 4n3

3p
t�op = (29 · log · n

b
+ 3n)tmsg. (i) is the crossover

where network communication becomes dominating, (ii) and (iii) are crossover points

where non-scaling terms begin to get important.

Accordingly we get

(i) p1 ≈
n2

11 · log2 ·
t2�op
t2word

, (3.54)

(ii) p2 ≈
2n2

9b2
· t�op
tmem

, and (3.55)

(iii) p3 ≈
4n2

87·log
b

+ 9
· t�op
tmsg

. (3.56)

Please note that in the model as well as in Table 3.3 are too many sources of inaccuracy

for a precise computation of the de�ned crossover points. However, this section should

help to understand how scalability and e�ciency are correlated with the problem

size, the intern blocking possibilities, as well as the properties of a supercomputing

system.

3.7.3 Weak scaling

The weak scaling describes the runtime behavior for a varying number of processes

if the problem size per process is constant. Contrary to the strong scaling this is

not a unique de�nition. I.e., it is not de�ned whether "problem size" refers to the

computational work or the required memory. In the following we will analyze the two

cases where n3

p
and n2

p
are constant. Therefor we eliminate p from the formulas and

analyze which of the remaining terms dominates the total runtime.

Constant memory If we assume n2

p
to be constant we easily see that all remaining

terms are linear in n. To be precise, some terms for communication still contain⌈
log(
√
p)
⌉
which was assumed to be constant. Without this simpli�cation the time

for communication is of order n · log(n) and, thus, the weak scaling behavior is not

perfect but still good.

79

3 The parallel 2-step tridiagonalization

Constant work For the stricter de�nition of weak scaling we assume n3

p
to be con-

stant. We can see that for this type of scaling the time spent for the real computational

work (4n
3

3
t�op) is constant. Other terms for communication or computational overhead

have a runtime behavior of
√
n, n or even n · log(n). Hence, using this de�nition,

weak scaling is not attained. It has to be said that this is also the case for all other

2D-parallelized algorithms in dense linear algebra. Only 3D-parallelizations (which

currently exist for the matrix multiplication [83] and the LU-decomposition [84]) can

show such a scaling behavior.

3.8 Overview of existing implementations

As already mentioned, the parallel symmetric eigenproblem is a very active �eld of

research, tackled by research groups all over the world. In this section we will give an

overview of existing libraries and new developments.

The de-facto standard for parallel dense linear algebra is ScaLAPACK, containing

also routines for the symmetric eigenproblem. The ScaLAPACK tridiagonalization

routines are based on the 1-step approach and will be used for runtime comparisons

throughout the next chapter.

The already mentioned libraries PLASMA and DPLASMA are intended to replace LA-

PACK and ScaLAPACK over the next couple of years or decades. A tridiagonalization

routine in PLASMA was published in [85]. The corresponding back transformation

of eigenvectors is not yet available. The development of a symmetric eigensolver for

DPLASMA is work in progress. Both libraries will use the 2-step tridiagonalization

with the TSQR algorithm as QR-decomposition.

PLAPACK and its successor Elemental [86] are the most notable parallel dense linear

algebra libraries beside ScaLAPACK. The biggest di�erence to ScaLAPACK is the 2D

cyclic data distribution, whereas the latter uses a 2D block-cyclic distribution. Both

libraries provide a symmetric eigensolver based on the 1-step tridiagonalization. Per-

formance results of the symmetric eigensolver in Elemental on a BlueGene/P system

can be found in [86].

Lately a group in Japan presented results on their eigensolver library Eigen-K [87]

which was developed for the K-computer [88]. Eigen-K contains an optimized imple-

mentation of the 1-step tridiagonalization (eigen_s). A second approach (eigen_sx)

reduces the dense symmetric matrix to pentadiagonal form and uses afterwards a D&C

algorithm for symmetric banded matrices to solve the pentadiagonal eigenproblem.

80

4 Implementation and results

In the previous chapter we presented all those algorithmic details whose e�ects can be

re�ected by our performance model. In this chapter we will provide extensive perfor-

mance results. Furthermore, we will provide all details regarding the implementation

which are important for the achieved performance. Such things are, e.g., register

e�ciency of kernel routines or issues regarding data layouts.

We will begin this chapter with a short description of the functionality of the ELPA

library (Sect. 4.1). Afterwards, in Sect. 4.2 we describe the test settings by giving an

overview of the hardware and the matrices, we use for our measurements. The main

part of this chapter comprises Sect. 4.3 to 4.7, containing the mentioned results for

each stage of the algorithm together with some hints on the implementation, if neces-

sary. Beside the individual stages of the symmetric eigensolver (reduction to banded

form in Sect. 4.3, reduction from banded to tridiagonal form in Sect. 4.4, tridiagonal-

to-banded back transformation in Sect. 4.6, and banded-to-full back transformation

in Sect. 4.7) this chapter contains also the reduction of banded matrices to narrow

banded form. This functionality has been implemented to e�ciently tridiagonalize

banded matrices with a substantial number of o�-diagonals and will be described in

Sect. 4.5. Finally in Sect. 4.8 we provide performance results for the whole eigensolver

and we try to valuate the performance of ELPA in relation to its competitors.

4.1 The ELPA library

The ELPA library arose from the identically named BMBF project ELPA and is

a joint work of Rechenzentrum Garching, Bergische Universität Wuppertal, Fritz-

Haber-Institut, Max-Plack-Institut für Mathematik in den Naturwissenschaften, IBM

Deutschland GmbH and Technische Universität München. The library is publicly

available through a slightly modi�ed LGPL [89].

ELPA provides both, a symmetric eigensolver based on the 1-step approach

(solve_evp_real) and an eigensolver based on the presented 2-step tridiagonalization

(solve_evp_real_2stage). The eigensolver, based on the direct tridiagonalization is

81

4 Implementation and results

Name Description

tridiag_real Reduces a symmetric matrix to tridiagonal form

using the 1-step approach.

trans_ev_real Back transformation of eigenvectors, correspond-

ing to tridiag_real.

solve_tridi Tridiagonal eigensolver based on the D&C

method. The solver has been published in [47]

and has the ability to compute a fraction of the

eigenspectrum at reduced costs.

bandred_real Reduces a symmetric matrix to banded form.

tridiag_band_real Reduces a banded matrix to tridiagonal form.

trans_ev_tridi_to_band_real Back transformation of eigenvectors, correspond-

ing to tridiag_band_real.

trans_ev_band_to_full_real Back transformation of eigenvectors, correspond-

ing to bandred_real.

band_band_real Reduces a banded matrix to narrow banded

form.

Table 4.1: Listing of subroutines within ELPA.

an optimized variant of the symmetric eigensolver PDSYEVD in ScaLAPACK. A de-

scription can be found in [90]. The structure of the solvers is modular, with routines

for each individual stage. These are listed in Table 4.1. All listed routines, beside the

band to narrow band reduction, are also available for complex arithmetics.

To valuate the performance of our 2-step eigensolver we will use both, ScaLAPACK

to compare against the de-facto standard for symmetric eigensolvers on distributed

memory systems and the 1-step solver of ELPA to compare against an alternative

algorithmic approach with an implementation of comparable quality.

The reduction of banded matrices to narrow banded form (band_band_real) is not

part of the symmetric eigensolvers. This routine can be used to perform a 2-step

reduction of banded matrices to tridiagonal form. This proceeding is bene�cial if we

have eigenproblems where we start with large banded matrices (see Sect. 4.5).

82

4.2 Test settings

4.2 Test settings

4.2.1 Hardware overview

The following systems are primarily used for our performance measurements. To be

able to interpret the performance results, we will brie�y describe the architectures.

BlueGene/P For our measurements we use the BlueGene/P at the Rechenzentrum

Garching (RZG) for runs up to 16384 cores. All runs with more cores are done on the

BlueGene/P at the Forschungszentrum Jülich (JUGENE) consisting of up to 73728

compute nodes and 294912 cores. Each node is based on one PowerPC 450 with

four cores running at 850MHz. Each node has a theoretical peak performance of

13.6GFlops and a memory bandwidth of 13.6GB/s. The nodes are connected over a

three-dimensional torus network with a bidirectional bandwidth of 425MB/s per link.

The additional tree-network for collective communication is only available for global

communicators and will, thus, not be used for our algorithms.

Power6 The Power6 system at the RZG consists of 205 compute nodes with 16

Power6 chips each. Each Power6 chip is a dual-core processor and runs at 4.7GHz.

This leads to a theoretical peak performance of 18.8GFlops per core. The Power6

cores have a relatively low memory bandwidth of 4GB/s but a big (4MB) and powerful

(70GB/s) L2-cache. The nodes are connected over a 8-link DDR-In�niband intercon-

nect. Within each node we can �nd a complex hierarchical network, also based on

DDR-In�niband.

Nehalem cluster The Nehalem cluster, provided by the Fritz Haber Institute, is

based on dual-socket Nehalem nodes. The nodes are connected over QDR-In�niband.

Each node consists of two Xeon 5570 processors, running at 2.93GHz. The four cores

of the Xeon 5570 share 8MB of L2-cache and a memory bandwidth of 32GB/s. Each

core is capable to execute two SSE instructions per clock which leads to a theoretical

peak of 11.7GFlops.

SuperMUC / SuperMIG The SuperMUC is the new high-end system at the Leibniz-

Rechenzentrum and currently the fourth fastest supercomputing system in the world.

The system consists of dual-socket Sandy Bridge nodes, connected over FDR10 In-

�niband. The topology of the communication network is a fat tree with one link per

node on the bottommost level of the tree. In this way, 512 nodes are connected to a so

83

4 Implementation and results

Figure 4.1: α-helical polyalanine molecule [47] (left) and platinum-5x40 surface slab

[91] (right).

called island. On the next and last tree level, 18 of such islands are connected among

themselves with an average of four nodes per FDR10 In�niband link. Each node is

equipped with 32GB of main memory and two eight-core Xeon E5-2680. Each core is

capable to execute eight double precision �oating point operations (two AVX instruc-

tions) per clock. For the measurements the cores clocked with 2.3GHz, although the

Xeon E5-2680 is speci�ed for 2.7GHz. The turbo mode of the CPUs was disabled.

The SuperMIG is the migration system of the SuperMUC, consisting of 205 Westmere-

EX nodes with four Xeon E7-4870 each. The nodes are connected over a star topology

with one QDR In�niband link per node.

4.2.2 Test matrices

Beside random matrices of various size, we use matrices from real scienti�c problems

for our performance measurements. The matrices Poly27069 and Pt67990 refer to

two problems from quantum chemistry and will be used for evaluations throughout

this chapter. Poly27069 is a matrix of size 27069 where the 3410 lowest eigenvectors

have to be computed and describes a α-helical polyalanine molecule with 1000 atoms

(Figure 4.1, left). The matrix Pt67990, describing a platinum-5x40 surface slab (Figure

4.1, right), is a matrix of size 67990 whose 43409 lowest eigenvectors are needed.

These matrices represent typically sized problems which are currently computed with

FHIaims. Due to the di�erent fraction of required eigenvectors (12.6% for Poly27069

and 63.8% for Pt67990), these problems are well suited for a comparison with the

1-step tridiagonalization.

For the evaluation of the reduction of banded matrices to narrow banded form (Sect.

4.5) we use huge matrices from the �eld of network analysis. Table 4.2 shows size

and bandwidth of these matrices. The matrices represent the road network of several

federal states and have been brought to banded form by a proper reordering. Due to

their huge size of more than one million, these matrices are very di�cult to tackle.

84

4.3 Reduction to banded form

name matrix size bandwidth

rap 79872 576

rp1088 1088092 2946

rt1379 1379917 4157

rc1965 1965206 5427

Table 4.2: Listing of the used banded matrices.

 10

 100

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Poly27069

Direct tridiagonalization
Red. to banded form

 100

 1000

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Pt67990

Direct tridiagonalization
Red. to banded form

Figure 4.2: Strong scaling of the reduction to banded form for Poly27069 and Pt67990

(intermediate bandwidth b = 64). Blue lines: Nehalem cluster, red lines:

BlueGene/P.

4.3 Reduction to banded form

In Figure 4.2 we compare the strong scaling behavior of the reduction to banded form

with the direct tridiagonalization within the ELPA library. As expected the reduction

to banded form shows both, better absolute performance and better scaling. As QR-

decomposition the classic unblocked approach is used.

In Table 4.3 we examine the importance of the QR-decomposition during the reduction

to banded form of Poly27069. We can see that the QR-decomposition gets increasingly

relevant with higher numbers of processes. While this part of the algorithm requires

about 20% of the time on 512 cores of the BlueGene/P and on 256 cores of the Power6

system, this ratio grows to 35% on 4096 BlueGene/P cores and to 49% on 2048 cores

of the Power6. The results clearly show that the QR-decomposition is the limiting

factor of the reduction to banded form if high scalability is required. The bottleneck

QR-decomposition is more pronounced on the Power6. This may be explained with

the higher single-core performance of the Power6 which implies that network latency

issues become even more relevant.

85

4 Implementation and results

BlueGene/P [#cores] Power6 [#cores]

512 1024 2048 4096 256 512 1024 2048

Full to band 53.6s 33.0s 22.5s 17.0s 18.0s 12.9s 8.0s 6.1s

thereof QR 10.8s 9.1s 6.3s 5.9s 3.5s 3.2s 3.1s 3.0s

20.1% 27.6% 28.0% 34.7% 19.4% 24.8% 38.8% 49.2%

Table 4.3: Absolute and relative e�ort of the QR-decompositions during the reduction

to banded form (intermediate bandwidth b = 32) of Poly27069.

 1

 10

 100

 64 128 256 512 1k 2k 4k 8k

tim
e

[s
]

#cores

Power6: PDGEQRF
ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)
BlueGene/P: PDGEQRF

ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)

Figure 4.3: Accumulated runtime of the QR-decompositions during the reduction to

banded form of Poly27069.

In Figure 4.3 we compare di�erent implementations of the QR-decomposition. The

plot shows the accumulated runtime of all QR-decompositions during the reduction

to banded form of Poly27069. Due to the tininess of the problems in relation to

the number of processes, the scaling is expectably poor. However, the blocked QR-

decomposition leads to noticeable speedups, whereas the unblocked algorithms don't

scale at all.

In Figure 4.4 we split up the accumulated runtime into timings for each iteration of

the algorithm. The reduction to banded form of Poly27069 consists of n
b
− 1 = 845

iterations, whereas in each iteration i a matrix of size (n − ib − b) × 32 has to be

decomposed. The gap between the individual variants seems to be rather constant

over the iterations of the algorithm. This means, in other words, that the speedup

of the blocked QR-decomposition is higher for smaller matrices. Again, the blocked

QR-decomposition seems to be more pro�table on the Power6, compared to the Blue-

Gene/P.

Up to now we have solely looked at the performance of the blocked QR-decomposition

by disabling any fallbacks and ignoring the accuracy of the results. In the next plots

86

4.3 Reduction to banded form

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800

tim
e

[m
s]

iteration

PDGEQRF
ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800

tim
e

[m
s]

iteration

PDGEQRF
ELPA (classic)
ELPA (rank−2)

ELPA (rank−16)

Figure 4.4: Timings of the occurring QR-decompositions during the reduction to

banded form of Poly27069. In iteration i a QR-decomposition of a ma-

trix of size (n − ib − b) × 32 is performed. Left: BlueGene/P with 8192

cores, right: Power6 with 2048 cores.

(Figure 4.5 and 4.6) we will analyze accuracy issues and blocking statistics.

For the measurements in Figure 4.5 we construct ill conditioned matrices of the fol-

lowing form. We construct a matrix A by multiplying Q′ and R′. Q′ is an arbitrary

orthogonal matrix. R′ is upper triangular and has entries of 1 on the diagonal and en-

tries of odiag/diag above the diagonal. We compare runtime and accuracy of the results

for di�erent values of odiag/diag. We use the orthogonality (I−QTQ) and the residual

error (A−QR) of the result as measures for the accuracy. In Figure 4.5 we compare the

blocked QR-decomposition with no fallback (left), the blocked QR-decomposition with

εfallback = 1 (middle), and the ScaLAPACK QR-decomposition PDGEQRF (right). As

expected, the ScaLAPACK QR-factorization produces accurate results for all exam-

ined matrices. On the other hand the blocked QR-decomposition with no fallback is

very fast. However, if odiag/diag is larger than 1, the algorithm gets numerically un-

stable. With the conservative choice of εfallback = 1 we pro�t from both, the e�ciency

of the blocked execution if the matrix is well conditioned and the numerical stability

of the classic Householder QR-decomposition if the matrix is ill conditioned.

In the next plot we investigate how often such fallbacks to lower blockings occur for real

matrices. In Figure 4.6 we can see blocking statistics during the reduction to banded

form of Poly27069 (right) and a random matrix of size 27069 (left). The maximal

blocking is set to 16. For both matrices the algorithm can perform full blocking most

of the time. These are very promising results. However, more testing with a broader

set of matrices has still to be done.

87

4 Implementation and results

 0

 2

 4

 6

 8

 10

 12

 14

 1e−08 0.0001 1 10000 1e+08
 1e−20

 1e−19

 1e−18

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

tim
e

[m
s]

er
ro

r

odiag/diag

time
residual

orthogonality

 0

 2

 4

 6

 8

 10

 12

 14

 1e−08 0.0001 1 10000 1e+08
 1e−20

 1e−19

 1e−18

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

tim
e

[m
s]

er
ro

r

odiag/diag

time
residual

orthogonality

 0

 2

 4

 6

 8

 10

 12

 14

 1e−08 0.0001 1 10000 1e+08
 1e−20

 1e−19

 1e−18

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

tim
e

[m
s]

er
ro

r

odiag/diag

time
residual

orthogonality

Figure 4.5: Runtime and accuracy while computing the QR-decomposition of A =

QR, where R has the following structure: values of odiag/diag above the

diagonal and values of 1 on the diagonal. Left: blocked QR-decomposition

with no fallback, middle: blocked QR-decomposition with εfallback = 1,

right: ScaLAPACK QR-decomposition.

 500

 1000

 1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#c
al

ls

blocking factor

random matrix of size 27069

 500

 1000

 1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#c
al

ls

blocking factor

Poly27069

Figure 4.6: Blocking statistics of the blocked QR-decomposition during the reduction

to banded form. The maximal blocking factor was set to 16. εfallback was

set to 1. Left: random matrix of size 27069, right: Poly27069.

88

4.4 Tridiagonalization of banded matrices

Bi,i

Bi+1,i

i i+ 1 i+ 5. . .

b

2b

Figure 4.7: Memory layout during the reduction from banded to tridiagonal form.

4.4 Tridiagonalization of banded matrices

Regarding the reduction from banded to tridiagonal form, there are three important

things which have not yet been de�ned:

(i) Memory layout

(ii) Parallel data distribution

(iii) Storage of Householder vectors

Regarding the memory layout we have to consider that the partitioning into block

pairs is shifted by one column and one row in each iteration of the algorithm. To

avoid unnecessary copying of memory we use the memory layout as depicted in Figure

4.7. The blocks of the banded matrix are stored in a two-dimensional array with

column major storage and a leading dimension of 2b. Thereby the diagonal entries

of the matrix are stored at index 1 in each column. At the end of the array has to

be reserved some extra space to shift the matrix without the need to copy the whole

matrix in each iteration of the algorithm.

The second issue arises from the fact that the band reduction is a 1D parallelization,

whereas all other stages of the eigensolver require a two-dimensional parallel data

layout with the corresponding 2D Cartesian grid of processes. Thus, we have to map

a 1D communicator onto the 2D communicator. Figure 4.8 shows the mapping, we use

in our implementation. The mapping ful�lls two important things. On the one hand,

processes which are neighboring in the 1D communicator are also neighboring in the

2D communicator and should, thus, also be physically neighboring. This is important

since the algorithm may become network latency bounded on certain systems. The

other thing concerns the distribution and storage of the Householder vectors.

The Householder vectors, arising from the band reduction, cannot reside on the pro-

cesses where they are generated. We can assume that usually we will have much

more available processes than we can use during the band reduction (p = n
b
). If the

89

4 Implementation and results

0

0/0

1 pc-1

pc2pc-22pc-1

p -pc p -1

0/1 0/pc-1

1/pc-11/11/0

pr-1/0 pr-1/1 pr-1/pc-1

Figure 4.8: Mapping from the 1D communicator to the 2D communicator during the

reduction from banded to tridiagonal form. Each rectangle corresponds to

a process. The number on the top of each rectangle corresponds to the

rank within the 1D communicator, the numbers on the bottom correspond

to the Cartesian coordinates within the 2D communicator.

Householder vectors (O(n2) of data) are not uniformly distributed to the whole grid

of processes, we may get a severe memory bottleneck. Additionally, the Householder

vectors are, in general, not generated where they will be needed for the back transfor-

mation. According to that, we use the following distribution: Let the process pk in the

1D communicator correspond to process pi/pj in the 2D communicator and let process

pk generate all transformations Q
(v)
β of sweep β. Then, the transformations of sweep

β are distributed within the jth column of processes according to the dynamic data

layout of the back transformation (see Figure 3.8, Sect. 3.5.3). We can see that the

process mapping in Figure 4.8 avoids memory bottlenecks while storing and network

bandwidth bottlenecks while distributing the Householder vectors.

Performance measurements

In Figure 4.9 we can see the achieved sequential performance for the reduction from

banded to tridiagonal form on the BlueGene/P and the Power6 system. On both

systems the performance rises with an increasing bandwidth until saturation is reached.

On the Power6 the algorithm de�nitely pro�ts from the cache. The memory bandwidth

of the Power6 (4GB/s) allows a theoretical peak of 1GFlops for memory bounded

operations, whereas the band reduction reaches up to 4GFlops. For much larger

matrix bandwidths we can expect the performance to drop to a lower level. The

sequential performance on the BlueGene/P is about one order of magnitude worse.

Figure 4.10 and 4.11 show runtime behavior and speedup for di�erent combinations

90

4.4 Tridiagonalization of banded matrices

 100

 150

 200

 250

 300

 350

 400

 16 32 48 64 80 96 112 128
 100

 150

 200

 250

 300

 350

 400

P
er

fo
rm

an
ce

 [M
F

lo
p/

s]

Bandwidth

BlueGene/P, 1 core

matrix size 1024
2048

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 16 32 48 64 80 96 112 128
 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

P
er

fo
rm

an
ce

 [M
F

lo
p/

s]

Bandwidth

Power6, 1 core

matrix size 1024
2048

Figure 4.9: Sequential performance of the reduction from banded to tridiagonal form

for di�erent bandwidths on BlueGene/P and Power6.

 0

 5

 10

 15

 20

 25

 30

 5000 10000 15000 20000 25000 30000

R
un

tim
e

[s
]

Matrix size

BlueGene/P, 512 cores

bandwidth 16
32
64

128

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5000 10000 15000 20000 25000 30000

S
pe

ed
up

Matrix size

BlueGene/P, 512 cores

bandwidth 16
32
64

128

Figure 4.10: Runtime and speedup for di�erent combinations of matrix size and band-

width on 512 cores of the BlueGene/P.

of matrix size and bandwidth. We use 512 cores of the BlueGene/P (Figure 4.10) and

64 cores of the Power6 system (Figure 4.11). As expected, due to the higher number

of �ops (O(n2b)) and the limited parallelism of p = n
b
processes, a larger matrix band-

width b leads to a higher runtime. However, on the other side, a smaller bandwidth

leads to worse sequential performance. For example, we can see that matrices with a

bandwidth of 16 and 32 can be reduced in about the same amount of time, although

the latter requires two times as many �ops.

When looking at the speedup graph we can observe a linearly increasing speedup up

to a matrix size of n = pb. Up to this point less and less processes have to idle until

at n = pb all processes can be used for the band reduction. For the shown results

we �xed the blocksize of the block distribution (see Sect. 3.4) to l = 1. Accordingly,

91

4 Implementation and results

 0

 2

 4

 6

 8

 10

 12

 5000 10000 15000 20000 25000 30000

R
un

tim
e

[s
]

Matrix size

Power6, 64 cores

bandwidth 16
32
64

128

 10

 20

 30

 40

 50

 5000 10000 15000 20000 25000 30000

S
pe

ed
up

Matrix size

Power6, 64 cores

bandwidth 16
32
64

128

Figure 4.11: Runtime and speedup for di�erent combinations of matrix size and band-

width on 64 cores of the Power6 system.

the number of cycles c is
⌈
n
pb

⌉
. Between each salient point in the speedup graph c is

increased by one which leads to a further reduction of load imbalance and, thus, also

to an increased speedup.

In Figure 4.12 we see strong (left) and weak (right) scaling results on the BlueGene/P.

Furthermore we compare between an implementation based on the original algorithm

and an implementation where communication is preponed as far as possible.

For the strong scaling we use a matrix size of 30000 and a bandwidth of 30. As

predicted, the new variant scales up to twice as many process compared to the variant

without early communication. For the weak scaling results we use a bandwidth of 64.

The matrix size is set to n = pb. Both algorithms show an almost perfect weak scaling

behavior. However, the improved variant is nearly twice as fast.

Due to the limited strong scaling, the achievable performance of this stage is limited

by the sequential performance (beside of network latency issues). Hence, on systems

with a poor single-core performance, such as the BlueGene/P, the band reduction may

become the bottleneck for certain problems.

4.5 Reduction of banded matrices to smaller

bandwidth

The tridiagonalization of banded matrices is optimized for small bandwidths since for

the 2-step tridiagonalization we can use arbitrary intermediate bandwidths and small

92

4.5 Reduction of banded matrices to smaller bandwidth

 5

 10

 20

 256 512 1024 2048 4096

R
un

tim
e

[s
]

cores

BlueGene/P, strong scaling

original variant
early communication

 0

 5

 10

 15

 20

 16 64 128 192 256 320 384 448 512

R
un

tim
e

[s
]

#cores

BlueGene/P, weak scaling

original variant
early communication

Figure 4.12: Strong and weak scaling of the reduction from banded to tridiagonal form

on the BlueGene/P. The strong scaling results were performed on a matrix

of size 30000 with a bandwidth of 30. For the weak scaling results we

used a bandwidth b of 64. The matrix was of size #cores× b.

values in the range of 32 to 64 have led to the best results. For these bandwidths

the algorithm can pro�t from cache e�ects and the parallelizability is quite high.

Altogether, this is a satisfying solution for the tridiagonalization of dense symmetric

matrices.

However, there exist problems (such as for the examination of large networks, see

Sect. 1.2.2), where the initial matrix can be transformed into a banded matrix. The

bandwidths of those matrices can be substantial but are still small enough to pro�t

from the reduced computational complexity of 6n2b. For this type of problem the

direct tridiagonalization is very ine�cient, because memory bounded.

To tackle these problems we extended the functionality of ELPA by a reduction of

banded matrices to narrow banded form which allows a multi-step band reduction.

Please note that this proceeding is applicable if only eigenvalues are needed. The

computation of eigenvectors is still very costly (O(n3)) and, thus, a multi-step back

transformation is not provided by ELPA.

The concept of the band to narrow band reduction was introduced in Sect. 2.5.3.

Algorithm 17 shows the corresponding proceeding. For the respective parallel imple-

mentation we modi�ed the parallel band reduction such that Householder operations

are replaced by their blocked variants and the resulting Householder vectors are not

stored for the back transformation.

93

4 Implementation and results

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16 32 64 128

tim
e

[s
]

intermediate bandwidth

n = 79872, b = 576

total
1st step

2nd step

 100

 1000

 16 32 64 128 256

tim
e

[s
]

#cores

n = 79872, b = 576

1step: total
2step: total

1st step
2nd step

Figure 4.13: Runtimes for the tridiagonalization of banded matrices on the Power6

system. (left) Runtimes depending on the intermediate bandwidth of

the 2-step approach. All runs were done using 64 processor cores. An

intermediate bandwidth of 1 corresponds to the 1-step approach. (right)

Performance comparison of the 1-step and 2-step tridiagonalization. For

the 2-step implementation an intermediate bandwidth of 64 was used.

Performance measurements

In Figure 4.13 (left) we can see how the size of the intermediate bandwidth a�ects the

runtime for tridiagonalizing a matrix of size 79872 with a bandwidth of 576. The �rst

step (reduction to narrow banded form) speeds up very quickly if the intermediate

bandwidth is increased. The second step was already investigated in the previous sec-

tion and shows again the best performance for the bandwidths 16 and 32. Altogether

we get optimal results for an intermediate bandwidth in the range of 32 to 64.

In Figure 4.13 (right) we see strong scaling results for the same matrix and an interme-

diate bandwidth set to 64. The direct tridiagonalization as well as the �rst step of the

2-step band reduction stop scaling at 128 cores, due to the limited parallelizability of

the problem. Meanwhile, the second step (reduction from intermediate bandwidth to

tridiagonal form) shows nearly perfect scaling. Altogether, the 2-step band reduction

is more than four times as fast, compared to the direct tridiagonalization. Although,

the 1-step reduction may still pro�t from the large L2-cache of the Power6.

In Table 4.4 we show runtime results for the larger problems rp1088, rt1379, and

rc1965. Thereby rp1088 is computed with 128 processes, rt1379 and rc1965 are com-

puted with 256 processes. One run is performed with one thread per process. A

second run is performed with four threads per process (still one thread per core) using

94

4.6 Tridiagonal-to-banded back transformation

1-step 2-step

1 Thread 4 Threads 1 Thread 4 Threads

rp1088, 128 processes 1st step 9.7h 4.8h∗

2nd step 1.6h 1.6h

total 174.2h∗ 132.3h∗ 11.3h 6.4h∗

rt1379, 256 processes 1st step 16.7h 6.1h∗

2nd step 0.7h 0.7h

total 301.8h∗ 289.5h∗ 17.4h 6.8h∗

rc1965, 256 processes 1st step 37.8h∗ 14.8h

2nd step 2.5h 2.5h

total 831.6h∗ 983.5h∗ 40.3h∗ 17.3h

Table 4.4: Runtime for the tridiagonalization of the matrices rp1088, rt1379 and rc1965

on the Power6 system. Values denoted with a * are projections based on the

�rst two hours of runtime. All other values come from exact measurements.

multithreaded BLAS. Due to the immense computing time, the runtime of the direct

tridiagonalization could only be projected. We can observe tremendous performance

gaps between the 1-step and the 2-step band reduction. The 2-step reduction is 15

to 20 times faster than the direct tridiagonalization. Moreover, the latter doesn't

pro�t from the use of multithreaded BLAS operations, whereas the 2-step approach

speeds up by a factor of 1.75 to 2.55 if four threads per process are used. Altogether,

the reduction from banded to narrow banded form allows the e�cient tridiagonaliza-

tion of matrices which, otherwise, would require an enormous amount of time and

computing resources. To our knowledge, our method is the �rst distributed memory

implementation of a band to narrow band reduction.

4.6 Tridiagonal-to-banded back transformation

4.6.1 High performance kernels

The basic idea of the non-WY approach for the tridiagonal-to-banded back transfor-

mation was already presented in Sect. 3.5.1. Here we want to depict the detailed

implementation and present and interpret the performance results.

The problem is to apply m Householder transformations to k eigenvectors of size n.

The Householder vectors have b nonzero elements (except of the �rst b−2 vectors which

have less nonzero elements) and are shifted such that the ith Householder vector has

95

4 Implementation and results

 4

 5

 6

 7

 8

 9

 8 16 32 48 64 80 96 112 128
 4

 5

 6

 7

 8

 9
tim

e
[s

]

stripe width

blocksize 2, compcat−WY

bandwidth 32
bandwidth 64

 4

 5

 6

 7

 8

 9

 8 16 32 48 64 80 96 112 128
 4

 5

 6

 7

 8

 9

tim
e

[s
]

stripe width

blocksize 4, compact−WY

bandwidth 32
bandwidth 64

Figure 4.14: Runtime of the tridiagonal-to-banded back transformation depending on

the width kb of the loop blocking and the blocking factor of the compact

WY transformations for two di�erent intermediate bandwidths 32 and 64.

BlueGene/P with 512 cores. Eigenvector matrix of size 10000× 10000.

nonzero elements from i− 1 to i+ b− 2. The order of application of the Householder

transformations is shown in Figure 3.4 (Sect. 3.5), right.

The �rst technique to achieve high performance is a simple loop blocking over the

number of eigenvectors. The loop blocking has been described in Sect. 3.5.1 and can

be implemented as shown in Algorithm 31. The blocking size kb (stripe width) for the

loop over the eigenvectors has to be chosen large enough to increase the cache reuse

for the access to Householder vectors and small enough such that the working set of

bkb words �ts into the L1-cache. The Householder transformations are, �nally, applied

using compact WY transformations with a blocksize of 2 or 4 (the corresponding

kernels will be presented later in this section). In Figure 4.14 we see the runtime of

the tridiagonal-to-banded back transformations for blocking sizes kb from 8 to 128. In

the �gure on the left we use a blocking factor of 2 for the compact WY representation.

In the �gure on the right we apply 4 Householder transformations at a time. As

expected, up to a certain point, a larger stripe width leads to better performance.

Once the stripe width is too large, the performance drops to a lower level. With a

bandwidth b of 64 this happens earlier (kb > 48) as for a bandwidth of 32 (kb > 96).

This correlates well to the L1-cache size of the PowerPC450 (32KB). We can also

observe that the performance drop between "working set �ts into the cache" and

"working set doesn't �t into the cache" is more pronounced for the 2-fold compact

WY transformations than for the 4-fold compact WY transformations. Using compact

WY transformations with a blocking factor of 2 or 4 guarantees a cache reuse of 2

and 4 respectively. This means that the variant with 4 Householder transformations is

96

4.6 Tridiagonal-to-banded back transformation

4 eigenvectors 8 eigenvectors 12 eigenvectors

2-fold compact WY 14 26 38

4-fold compact WY 24 44 64

Table 4.5: Register requirements for the di�erent kernels.

less dependent on the memory- or higher level cache-bandwidth. The peaks at stripe

width 64 and 128 for the measurements with a bandwidth of 64 are reproducible and

may be caused by cache con�icts.

The loop blocking guarantees a high cache reuse for the whole algorithm. However,

on some architectures the bandwidth to the L1-cache is not su�cient to fully load

the �oating point units. The PowerPC450 in the BlueGene/P, for example, has a L1-

cache bandwidth of 8 Bytes per cycle with 4 cycles of latency. The �oating point unit,

however, is capable to execute two FMA (fused multiply add) operations in double

precision per cycle which requires 32 Bytes of data.

To reduce the bandwidth requirements to the L1-cache we have to keep as many

operands as possible in the registers. This technique is called register blocking and

is used in our kernel routines. We have implemented several kernels which apply 2

or 4 Householder transformations to 4, 8 or 12 eigenvectors. The number of eigen-

vectors, which can be transformed with one kernel call, is limited by the number of

�oating point registers. Table 4.5 shows the minimal number of required registers for

the di�erent kernels. For the 4-8 kernel (apply 4 Householder transformations to 8

eigenvectors), for example, this number consists of 4×8 registers to hold the matrix Z

(see Algorithm 8, Sect. 2.3.4) and 4 and 8 registers to stream through the Householder

vectors and eigenvectors respectively. The kernels di�er slightly from the de�nition

of CWY Left in Algorithm 8. The tridiagonal matrix T is not multiplied with the

matrix Y (this would destroy a part of the zero structure) but with the matrix Z.

Table 4.6 shows the number of �ops, loads, and stores for each di�erent kernel. The

costs for the generation of T occur once for every set of Householder vectors and are

ignored in Table 4.6.

There exist three variants of the described kernels: a standard implementation in For-

tran, an implementation based on the Double Hummer instruction set of the PowerPC

450 and an implementation based on SSE/AVX intrinsics1. In Table 4.7, 4.8, and 4.9

we measure the kernel performance on the Power6 and the BlueGene/P as well as on

a Intel Westmere and Intel Sandy Bridge system.

1Thanks to Alexander Heinecke for implementing the SSE/AVX intrinsic kernels and for providing

the results

97

4 Implementation and results

2-fold compact WY 4-fold compact WY

�ops loads stores �ops loads stores

4 eigenvectors 131 50 17 133 36 9

8 eigenvectors 131 42 17 133 27 9

12 eigenvectors 131 39 17 133 24 9

Table 4.6: Average number of �ops, loads and stores to apply a length-32 Householder

transformation to one eigenvector using the di�erent kernels. We have

counted the number of �oating point operations, loads and stores for each

kernel and divided these numbers by the number of eigenvectors and the

number of Householder transformations.

4 eigenvectors 8 eigenvectors 12 eigenvectors

2-fold compact WY [MFlops] 4511 5012 4680

4-fold compact WY [MFlops] 5105 - 4509

Table 4.7: Per core kernel performance of the tridiagonal-to-banded back transforma-

tion on the Power6 using 4 cores. Eigenvector matrix of size 4096 × 4096,

length-32 Householder vectors.

4 eigenvectors 8 eigenvectors 10 eigenvectors

2-fold compact WY [MFlops] 958 1137 1162

4-fold compact WY [MFlops] 1131 1190 1030

Table 4.8: Per core kernel performance of the tridiagonal-to-banded back transfor-

mation on the BlueGene/P using 512 cores. Eigenvector matrix of size

4096× 4096, length-32 Householder vectors.

Westmere Sandy Bridge

Fortran SSE Intr. Fortran AVX Intr.

2-fold compact WY [MFlops] 5966 6911 10113 12961

4-fold compact WY [MFlops] - 7201 - 14798

6-fold compact WY [MFlops] - 7167 - 14313

Table 4.9: Per core kernel performance of the tridiagonal-to-banded back transforma-

tion on a Intel Westmere system using 12 cores and a Intel Sandy Bridge

system using 4 cores. Eigenvector matrix of size 4096 × 3192, length-64

Householder vectors.

98

4.6 Tridiagonal-to-banded back transformation

The 4-fold compact WY kernels show the best performance on all systems if the suit-

able number of eigenvectors is chosen. The appropriate number of eigenvectors, in

turn, correlates with the number of available �oating point registers. The Power6,

for example, o�ers 32 double precision �oating point registers per core. According to

Table 4.5, the best performance is achieved with 8 eigenvectors for the 2-fold com-

pact WY transformations and with 4 eigenvectors for 4-fold compact WY. On the

BlueGene/P (32 dual double precision �oating point registers), the register require-

ments are higher than in Table 4.5 because some additional registers are needed for

the prefetching of operands. Here, the best performance is achieved with 10 eigen-

vectors for the 2-fold compact WY transformations and with 8 eigenvectors for the

4-fold compact WY transformations. On the Intel systems we use the kernels which

operate on 12 eigenvectors and compare between the Fortran implementation and the

implementation based on intrinsics. The intrinsic kernels show signi�cantly better

performance, most notably if the 256-bit wide AVX instructions can be used (Intel

Sandy Bridge).

Regarding absolute performance, we reach 35% of the peak performance on the Blue-

Gene/P. The properties of the cache hierarchy (write back strategy, low bandwidth)

don't allow a better performance. On the Intel systems we reach about 65% of the

peak performance.

4.6.2 Parallel performance

In the following we present the parallel performance of the di�erent variants of the

tridiagonal-to-banded back transformation (1D/2D, WY/non-WY) and show some

interesting results we got with Intel MPI.

In Figure 4.15 we compare the performance of the WY and non-WY approach for

di�erent sized Householder vectors. Especially for short vectors, the non-WY approach

clearly outperforms the WY technique. This behavior was to be expected because the

overhead of the WY approach gets increasingly dominant for short Householder vectors

(see Sect. 3.5.1). As we will see later, the optimal intermediate bandwidth b of the

whole algorithm is in the range of 32 to 64 on the used architectures. In this range

the non-WY approach shows clearly better performance than the WY approach and

will be used within the ELPA library. For all following results, where the kernel type

is not explicitly de�ned, we use the non-WY approach.

In Figure 4.16 we compare strong scaling results of the tridiagonal-to-banded back

transformation of eigenvectors for the matrices Poly27069 and Pt67990. We can see

that the non-WY approach almost always outperforms the WY variant. Moreover, the

99

4 Implementation and results

 10

 15

 20

 25

 30

 16 32 48 64 80 96 112

tim
e

[s
]

b

Poly27069

WY, blocksize 16
non−WY, blocksize 2

 400

 500

 600

 700

 800

 900

 16 32 48 64 80 96 112

tim
e

[s
]

b

Pt67990

WY, blocksize 16
non−WY, blocksize 2

Figure 4.15: Runtime of the tridiagonal-to-banded back transformation with varying

intermediate bandwidth b. The WY- and non-WY approach are com-

pared to each other. The problem Poly27069 was computed on a Blue-

Gene/P using 512 cores, Pt67990 was computed on 1024 cores.

 1

 10

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Poly27069

WY, 1D
non−WY, 1D

WY, 2D
non−WY, 2D

 10

 100

 1000

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Pt67990

WY, 1D
non−WY, 1D

WY, 2D
non−WY, 2D

Figure 4.16: Strong scaling of the tridiagonal-to-banded back transformation of eigen-

vectors for Poly27069 and Pt67990 (intermediate bandwidth b = 64) [47].

Blue lines: Nehalem cluster, red lines: BlueGene/P. The WY, 1D times

for Poly27069 on BlueGene/P are above the plotting area.

100

4.6 Tridiagonal-to-banded back transformation

 0

 5

 10

 15

 20

512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Poly27069, 1D, non−WY

other
communication

computation

 0

 5

 10

 15

 20

512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Poly27069, 2D, non−WY

other
communication

computation

Figure 4.17: Strong scaling of communication and computation during the tridiagonal-

to-banded back transformation. Poly27069, BlueGene/P.

gap between WY and non-WY is more pronounced for the 1D parallelization. This

is the case because the local matrices are much thinner (and taller) if we use a 1D

data distribution and the generation of the matrix W begins to dominate the total

runtime. This behavior is also described by our model (see Sect. 3.5.1).

Furthermore, the 2D parallelization scales much better than the 1D approach. For

Poly27069 the 1D parallelization stops scaling at 1024 cores on the BlueGene/P and

is far from ideal on the Nehalem cluster. As expected, the scaling is much better for the

bigger problem size Pt67990 but still not satisfying on the BlueGene/P. The 2D par-

allelization scales up to the total number of available cores (65536 on the BlueGene/P

and 2048 on the Nehalem cluster) for both problems.

In Figure 4.17, 4.18, 4.19 and 4.20 we pro�le the strong scaling results from Figure 4.16

and distinguish between time for computation, communication and other operations.

Computation time contains the pure kernel times, communication time contains all

calls to MPI operations including idle waiting and "other" contains all the rest includ-

ing, e.g. a change of the parallel data layout at the beginning and at the end of the

tridiagonal-to-banded back transformation. The time is measured on the lowermost

processes of the 2D Cartesian grid of processes which are the �rst processes to start

and the last processes to �nish the back transformation.

From Figure 4.17 trough 4.20 we can make several observations. The achievable per-

formance of the 1D parallelization is not only limited by the communication (which

doesn't scale at all) but also by the kernel time. For Poly27069 we can see a stagnation

of runtime on both systems (BlueGene/P and Nehalem cluster) if we use more than

1024 cores. According to the higher number of eigenvectors (3410 vs. 43409), for the

101

4 Implementation and results

 0

 2

 4

 6

 8

 10

 12

 14

64 128 256 512 1k 2k

tim
e

[s
]

#cores

Poly27069, 1D, non−WY

other
communication

computation

 0

 2

 4

 6

 8

 10

 12

 14

64 128 256 512 1k 2k

tim
e

[s
]

#cores

Poly27069, 2D, non−WY

other
communication

computation

Figure 4.18: Strong scaling of communication and computation during the tridiagonal-

to-banded back transformation. Poly27069, Nehalem cluster.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Pt67990, 1D, non−WY

other
communication

computation

 0

 50

 100

 150

 200

 250

 300

 350

 400

1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Pt67990, 2D, non−WY

other
communication

computation

Figure 4.19: Strong scaling of communication and computation during the tridiagonal-

to-banded back transformation. Pt67990, BlueGene/P.

102

4.6 Tridiagonal-to-banded back transformation

 0

 200

 400

 600

 800

 1000

64 128 256 512 1k 2k

tim
e

[s
]

#cores

Pt67990, 1D, non−WY

other
communication

computation

 0

 200

 400

 600

 800

 1000

64 128 256 512 1k 2k

tim
e

[s
]

#cores

Pt67990, 2D, non−WY

other
communication

computation

Figure 4.20: Strong scaling of communication and computation during the tridiagonal-

to-banded back transformation. Pt67990, Nehalem cluster.

128 cores 256 cores 512 cores 1024 cores 2048 cores

2D - �rst results 796s 352s 217s 88s 48s

2D - �nal results 514s 253s 133s 66s 35s

1D results 457s 245s 142s 78s 50s

Table 4.10: Execution time of the banded-to-tridiagonal back transformation for the

Pt67990 problem on the Nehalem cluster.

Pt67990 problem the scaling stops at 16384 cores. In this range the application is

communication and memory bounded. The ratio between communication and com-

putation di�ers from architecture to architecture but is independent from the problem

size.

For the 2D parallelization we can observe a scaling, as predicted by our model.

Thereby, the computation scales better than the communication such that the overall

e�ciency drops and the communication begins to dominate the total runtime. How-

ever, this behavior is typical for all dense linear algebra applications. Surprising are

the communication times of the 2D parallelization in Figure 4.20. Although the com-

munication volume is much smaller than for the 1D parallelization, we spend much

more time in MPI operations. These measurements are still not fully understood and

may stick together with an unexpected behavior of Intel MPI which will be described

in the following.

In our �rst runs on the Nehalem cluster we got much worse results than those in

Figure 4.16. These results are shown in Table 4.10. It turned out that the non-

blocking communication of Intel MPI doesn't behave as expected. Depending on the

103

4 Implementation and results

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
er

fo
rm

an
ce

 [G
F

lo
p/

s]

eigenvectors

Pt67990, Nehalem−Cluster, 128 cores

EAGER LIMIT=256kB
EAGER LIMIT=10MB

Figure 4.21: Performance of the tridiagonal to banded back transformation for varying

numbers of eigenvectors and using di�erent thresholds to switch between

eager and rendezvous protocol (Intel MPI). Pt67990, length-64 House-

holder vectors.

message size, MPI switches between the so-called "eager" and "rendezvous" protocol

when sending data from one process to another. The eager-protocol, which is used

for small messages, writes data directly into a reserved bu�er of the receiving process.

The rendezvous protocol, in turn, requires some kind of handshaking between sender

and receiver to guarantee that enough bu�er space is available when sending larger

messages.

In Figure 4.21 we can see the performance of the 2D parallelization on 128 cores of

the Nehalem cluster. The back transformation is performed for di�erent numbers

of eigenvectors and with two di�erent thresholds for switching between eager and

rendezvous protocol. Note that the size of the halo regions and, thus, the size of

the exchanged messages is proportional to the number of eigenvectors (kb/pc). With

the default con�guration of Intel MPI (EAGER_LIMIT = 256kB) we can observe

a severe performance drop when increasing the number of eigenvector from 4000 to

5000. A closer look (b = 64, pc = 8) reveals that in this region MPI switches from the

eager to the rendezvous protocol. After increasing the threshold EAGER_LIMIT, the

performance drop disappears.

Although the two protocols can di�er in communication performance, this is de�ni-

tively not the reason for the observed behavior. The absolute time, required to ex-

change the halo regions, is orders of magnitude smaller than the observed performance

loss. Instead, measurements with di�erent kernels have shown that the time loss cor-

relates with the kernel time. The non-blocking communication of Intel MPI seems not

104

4.7 Banded-to-full back transformation

 1

 10

 100

 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

tim
e

[s
]

#cores

Pt67990
Poly27069

 0

 2

 4

 6

 8

 10

 12

 14

 16 32 48 64 96 128

tim
e

[s
]

intermediate bandwidth

Intel−cluster: 64 cores
Intel−cluster: 256 cores
BlueGene/P: 512 cores

BlueGene/P: 2048 cores

Figure 4.22: Left: strong scaling of the banded-to-full back transformation on the

BlueGene/P (red lines) and the Nehalem cluster (blue lines) using an

intermediate bandwidth of 64. Right: runtime behavior of the banded-

to-full back transformation of Poly27069 using di�erent intermediate

bandwidths.

to work as expected which in turn causes idle waiting in our algorithms. Although this

is an issue of the MPI implementation, the current ELPA implementation avoids the

use of the rendezvous protocol by subdividing the halo regions into di�erent stripes.

4.7 Banded-to-full back transformation

The parallel implementation of the banded-to-full back transformation is entirely based

on BLAS3 calls and collective communication operations. Accordingly, the perfor-

mance results are characterized by the performance of these methods. In Figure 4.22

(left) we analyze the strong scaling behavior for Poly27069 and Pt67990 on the Blue-

Gene/P and the Nehalem cluster. The scaling for the problem Pt67990 is nearly

perfect on both systems. We reach 76% and 55% of the theoretical peak on 128 Ne-

halem cores and 1024 BlueGene/P cores respectively. This values drop to 62% and 24%

when going to 2048 Nehalem cores and 65576 cores on the BlueGene/P. For the much

smaller problem Poly27069 the stage begins to become network-bandwidth bounded.

The performance per core drops from 8.0GFlops (68% of peak) to 2.9GFlops when

going from 64 to 2048 Nehalem cores. On the BlueGene/P the performance drops

from 1061MFlops (31% of peak) to 144MFlops when going from 512 to 65536 cores.

Nevertheless, the scaling is still better than, e.g., the reduction to banded form and

won't become a bottleneck for the whole eigensolver.

105

4 Implementation and results

In Figure 4.22 (right) we examine how the performance of the banded-to-full back

transformation depends on the intermediate bandwidth b. We can see that the perfor-

mance increases for higher intermediate bandwidths. Especially the step from b = 16

to b = 32 reduces the runtime signi�cantly. For bandwidths greater than 32 we can

observe a saturation in the performance graphs.

Altogether, the banded-to-full back transformation is an e�cient, well scaling stage,

provided that e�cient BLAS and MPI implementations are available.

4.8 Overall results

In the previous sections we analyzed the performance and the scaling of the individual

stages during the tridiagonalization and back transformation. The results con�rm the

performance characteristics, predicted by our model. In this section we investigate

the overall performance. This includes timings for the reduction to banded form, the

reduction from banded to tridiagonal form, the tridiagonal-to-banded back transfor-

mation, and the banded-to-full back transformation. Moreover, we will present the

performance of existing and planned tridiagonal eigensolvers within ELPA to get a

complete picture of the dense symmetric eigensolver.

While looking at the runtime of the whole tridiagonalization and back transformation,

we want to resolve a series of questions:

(i) How does the intermediate bandwidth in�uence the runtime of the algorithm?

(ii) How behave absolute performance and scaling of the individual stages relative

to each other?

(iii) How does the two-step tridiagonalization perform, compared to the one-step

tridiagonalization in general and to the competing libraries in particular?

As already mentioned, ELPA contains an improved D&C tridiagonal eigensolver which

can compute a fraction of the eigenvectors at reduced cost. Table 4.11 shows the run-

time of the dense symmetric eigensolver (tridiagonalization + tridiagonal eigensolver

+ back transformation) and, thereof, the time required for the tridiagonal eigensolver.

Our 2-step solver in ELPA is compared to the ScaLAPACK routine PDSYEVD while

computing Poly27069 on the Nehalem cluster. For a more detailed performance anal-

ysis of this tridiagonal solver we refer to [47]. Table 4.11 shows that the D&C im-

plementation in ELPA scales up to a large number of cores. Although it requires a

substantial fraction of the total runtime, usually, it is not the bottleneck of the dense

symmetric eigensolver.

106

4.8 Overall results

cores 64 128 256 512 1k 2k

ELPA, 2-step 92.5s 52.2s 31.3s 19.9s 13.5s 10.4s

thereof D&C 14.6s 8.0s 4.7s 2.5s 2.0s 1.2s

PDSYEVD 239.1s 140.7s 87.7s 74.9s 70.5s 96.6s

thereof D&C 41.1s 28.9s 19.2s 21.8s 25.6s 43.8s

Table 4.11: Total runtime and runtime of the tridiagonal solvers while computing

Poly27069 on the Nehalem cluster.

 1

 10

 16 32 64 128 256 512

tim
e

[s
]

#cores

Poly27069, Tridiagonal solver

D&C
MRRR

Figure 4.23: Runtime of di�erent tridiagonal eingensolvers while computing Poly27069

on the Power6 system.

Moreover, as alternative to the D&C solver, it is planned to integrate a parallel imple-

mentation of the MRRR algorithm into ELPA. Figure 4.23 shows preliminary results

on the Power6 system. The implementation is based on the sequential MRRR algo-

rithm of Paul Willems [49]. For the parallelization, the set of desired eigenvectors is

split into p equally sized portions. Afterwards, each process calls the sequential MRRR

algorithm to compute its part of the eigenspectrum. From Figure 4.23 we can see that

this simple parallelization scheme leads to decent speedups up to 512 Power6 cores for

Poly27069. The absolute performance is excellent and about one order of magnitude

faster than the D&C solver. The achievable accuracy has still to be analyzed.

After giving a short overview on the performance of the tridiagonal solvers, the fol-

lowing results will solely consider the tridiagonalization and back transformation.

In Figure 4.24 and 4.25 we examine how the overall performance and the performance

of the individual stages depend on the intermediate bandwidth. The measurements

are done on the BlueGene/P and the Nehalem cluster. As we saw in the previous

107

4 Implementation and results

 0

 20

 40

 60

 80

 100

 120

 140

 16 32 48 64 96 128

tim
e

[s
]

intermediate bandwidth

BlueGene/P, 512 cores

total
full−>band
band−>trd

back tr. trd−>band
back tr. band−>full

 0

 10

 20

 30

 40

 50

 60

 70

 16 32 48 64 96 128

tim
e

[s
]

intermediate bandwidth

BlueGene/P, 2048 cores

total
full−>band
band−>trd

back tr. trd−>band
back tr. band−>full

Figure 4.24: Runtime behavior of the 2-step tridiagonalization for Poly27069 on the

BlueGene/P using di�erent intermediate bandwidths.

 0

 20

 40

 60

 80

 100

 120

 16 32 48 64 96 128

tim
e

[s
]

intermediate bandwidth

Nehalem−cluster, 64 cores

total
full−>band
band−>trd

back tr. trd−>band
back tr. band−>full

 0

 5

 10

 15

 20

 25

 30

 35

 40

 16 32 48 64 96 128

tim
e

[s
]

intermediate bandwidth

Nehalem−cluster, 256 cores

total
full−>band
band−>trd

back tr. trd−>band
back tr. band−>full

Figure 4.25: Runtime behavior of the 2-step tridiagonalization for Poly27069 on the

Nehalem cluster using di�erent intermediate bandwidths.

108

4.8 Overall results

sections, each stage has its own characteristics. The reduction to banded form as well

as both back transformations pro�t from a higher intermediate bandwidth. However,

for bandwidths higher than 48 the performance gain is negligible. On the other side,

the reduction from banded to tridiagonal form signi�cantly slows down with higher

bandwidths due to the limited parallelizability and the higher �op count. Altogether,

we get an optimal runtime for intermediate bandwidths in the range of 32 to 64.

On systems with a low single core performance, such as the BlueGene/P, smaller

bandwidths are preferable by tendency since the relative e�ort of the band reduction

increases. The ELPA library uses per default an intermediate bandwidth of 32.

In Figure 4.26 we compare, on the one hand, the weak scaling of the 1-step and the 2-

step approach within ELPA. On the other hand we analyze the weak scaling behavior

of the individual stages to determine the bottlenecks of the algorithm. Therefor we

perform weak scaling tests on the SuperMIG with four di�erent problem sizes ranging

from a tiny problem size with 1000 elements per process up to problems with 4 million

elements per process. We compute the whole eigenspectrum which is the worst case

for the 2-step eigensolver. Since both approaches use the same tridiagonal eigensolver,

this step is not included in the total runtime. From the plots we can extract a series

of insights:

• For all investigated scenarios the 2-step approach is faster than the 1-step solver.

The speedup compared to the 1-step approach is higher if (a) more processes are

involved and (b) the problem size per process is smaller. This emphasizes the

superior weak and strong scaling behavior of the 2-step tridiagonalization.

• The reduction of banded matrices to tridiagonal form shows a nearly perfect weak

scaling behavior. Due to the limited strong scaling, this step gets increasingly

important if the problem size per process decreases. For larger problems the

e�ort for this stage is negligible.

• Both back transformations show a very good weak and strong scaling behavior.

However, these stages require the highest amount of �ops if all eigenvectors have

to be computed (2n3 �ops each) and, thus, begin to dominate the total runtime

for large problem sizes per process.

• The reduction to banded form dominates the total runtime for most of the stud-

ied cases. However, in prior plots (Figure 4.2) we have seen that, compared to the

direct tridiagonalization, there is a signi�cant improvement regarding e�ciency

(compute bounded instead of memory bounded) and scalability (reduction of

synchronization points).

Finally in Figure 4.27 and 4.28 we compare the 2-step tridiagonalization with its com-

petitors ScaLAPACK and Elemental. Figure 4.26 shows strong scaling results for the

109

4 Implementation and results

 0.001

 0.01

 0.1

 1

 40 80 160 320 640 1280

tim
e

[s
]

cores

(a)

1−step: total
2−step: total

full−>band
band−>trd

back trd−>band
back tr. band−>full

 0.01

 0.1

 1

 10

 40 80 160 320 640 1280

tim
e

[s
]

cores

(b)

1−step: total
2−step: total

full−>band
band−>trd

back trd−>band
back tr. band−>full

 0.1

 1

 10

 100

 40 80 160 320 640 1280

tim
e

[s
]

cores

(c)

1−step: total
2−step: total

full−>band
band−>trd

back trd−>band
back tr. band−>full

 1

 10

 100

 1000

 40 80 160 320 640 1280

tim
e

[s
]

cores

(d)

1−step: total
2−step: total

full−>band
band−>trd

back trd−>band
back tr. band−>full

Figure 4.26: Weak scaling results on SuperMIG with four di�erent problem sizes: (a)

1k matrix elements per process, (b) 16k matrix elements per process,

(c) 256k matrix elements per process and, (d) 4M matrix elements per

process. The intermediate bandwidth was set to 32.

110

4.8 Overall results

 10

 100

 16 32 64 128 256 512 1k 2k 4k 8k

tim
e

[s
]

#cores

Poly27069

ScaLAPACK
ELPA1
ELPA2

 100

 1000

 256 512 1k 2k 4k 8k

tim
e

[s
]

#cores

Pt67990

ScaLAPACK
ELPA1
ELPA2

Figure 4.27: Comparison between the strong scaling behavior of ScaLAPACK and the

ELPA solvers based on the 1-step and 2-step tridiagonalization on the Su-

perMUC. For ScaLAPACK the new tridiagonalization routine pdsyntrd

is used.

well-known problems Poly27069 and Pt67990 on the SuperMUC. The ELPA eigen-

solver, based on the 2-step tridiagonalization, is compared against the 1-step ELPA

solver as well as the ScaLAPACK eigensolver. The runtimes include the time for the

tridiagonalization and back transformation. The 2-step tridiagonalization performs

best for both problems and all used core counts. We can observe both, a higher e�-

ciency (for small core counts) and a better scalability (for higher core counts). Due to

the small fraction of requires eigenvectors, Poly27069 is advantageous for the 2-step

solver. ScaLAPACK is used with the new tridiagonalization routine pdsyntrd which

is signi�cantly faster than pdsytrd (see [47]) and comes close to the performance of

the 1-step tridiagonalization in ELPA. Compared to ScaLAPACK, the 2-step tridiag-

onalization leads to speedups in the range of 1.8 to 4.3 over all measurements.

In Figure 4.28 we compare our tridiagonalization and back transformation with the

respective implementations in ScaLAPACK and Elemental on the BlueGene/P. For

three kinds of reasons the results represent a worst case scenario for our 2-step solver:

(i) We compute all eigenvectors. This requires 16
3
n3 �ops for the 2-step approach,

whereas the 1-step approach needs only 10
3
n3 �ops. (ii) The measurements for ScaLA-

PACK and Elemental are out of [86] and represent the best performance using a large

set of parameter con�gurations. ELPA is used with the default settings. (iii) The

BlueGene/P is a system which is not advantageous for the 2-step tridiagonalization

(poor single-core performance and a relatively small ratio between tmem and t�op).

Nevertheless, we outperform the competing libraries ScaLAPACK and Elemental by

up to a factor of 2.

111

4 Implementation and results

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80

P
er

fo
rm

an
ce

 [T
F

lo
p/

s]

Matrix size (in thousands)

ELPA
Elemental

ScaLAPACK

 1

 2

 3

 10 20 30 40 50 60 70 80

S
pe

ed
up

Matrix size (in thousands)

ELPA
Elemental

ScaLAPACK

Figure 4.28: Performance comparison of our 2-step solver (tridiagonalization and back

transformation) with the respective implementations in ScaLAPACK and

Elemental on 8192 cores of the BlueGene/P. The results of ScaLAPACK

and Elemental are out of [86]. Left: absolute performance for di�erent

matrix sizes (on the basis of 10
3
n3 �ops for each problem). Right: Speedup

over ScaLAPACK while computing all eigenvectors (continuous lines) and

while computing only eigenvalues (dashed lines).

To sum up, we can say that our implementation of the 2-step tridiagonalization is a

promising approach. Our measurements on a wide range of di�erent supercomputing

architectures result in unprecedented performance for all examined problems. The

2-step approach is especially advantageous if huge core counts come to use or only a

small fraction of the eigenvectors have to be transformed back. Last but not least,

our new implementation is well-prepared for current trends in the development of

hardware.

112

5 Conclusion

In this thesis we presented the development of a new library routine for the paral-

lel symmetric eigenproblem. The development was mainly driven by the tremendous

need of an e�cient eigensolver in the �eld of quantum chemistry. The requirements

for this type of applications are to solve small to medium-sized (in terms of High Per-

formance Computing) eigenproblems. However, tens or or even hundred of thousands

of such eigenproblems have to be solved consecutively. Typical dimensions for the

corresponding matrices range from a few thousand up to one hundred thousand or

more. In terms of e�ciency and scalability, theses are the most challenging problems.

Existing libraries fail to solve these problems e�ciently and in an reasonable amount

of time.

The new eigensolver ELPA is based on the 2-step tridiagonalization, a cache-e�cient

approach to tridiagonalize symmetric matrices which was already developed in the

mid 90s. Starting from this work we optimized existing and developed new paral-

lelization schemes for all stages of the eigensolver. The library is a joint work of the

ELPA consortium with Bergische Universität Wuppertal, Rechenzentrum Garching

and Technische Universität München as main contributors on the development side

and two groups within Fritz-Haber-Institut and Max-Planck-Institut as users.

The contribution of the author has been presented in this thesis and comprises impor-

tant parts of the solver which are crucial for the scalability of the algorithm. Among

them are a new parallelization scheme for the tridiagonal-to-banded back transforma-

tion with the ability to apply also short Householder transformations in an e�cient

way, and a new QR-decomposition for the reduction to banded form which asymptoti-

cally reduces the synchronization requirements and is, thus, an important step towards

weak scaling of the algorithm.

The outcome has been tested on a wide range of di�erent supercomputing architec-

tures, leading to unprecedented performance. Compared to the state-of-the-art library

ScaLAPACK, ELPA leads to speedups of up to 10, depending on the problem size and

the used system. For typical scenarios, the speedups are in the range of 2 to 4, with

the expectation that this ratios will grow on future systems. Applied to the �eld of

quantum chemistry, ELPA allows on the one hand to solve existing problems more

113

5 Conclusion

e�ciently. On the other hand, our new eigensolver makes it possible to simulate

larger systems or longer timescales which wouldn't have been possible in a reasonable

timeframe with existing eigensolvers.

Nevertheless, the ELPA library is not a �nished project. As we already mentioned,

our implementation of the 2-step tridiagonalization is well prepared for the observed

long-term hardware trends. However, these changes require a steadily adaptation

of intern blocking parameters. Currently, ELPA uses default settings which show

good performance on a wide range of matrices and architectures. In the long term,

an autotuning mechanism would be desirable which automatically choses the best

parameter settings for a given problem and supercomputing system. Preliminary

work can be found in [92]. Another issue arises from the scaling behavior. What if we

want to solve much larger eigenproblems in a comparable amount of time? Although

ELPA yields signi�cant improvements regarding weak and strong scaling, the current

algorithms won't allow to solve larger eigenproblems in the same time with comparable

e�ciency. This requires completely new algorithms (if existing) and is currently an

active research �eld in parallel dense linear algebra [93, 94, 95]. So, one thing we know

for sure. It will remain challenging.

114

Bibliography

[1] Hans Meuer, Erich Strohmaier, Jack Dongarra, and Host Simon. Top500 list,

November 2011, 2011. http://www.top500.org, accessed 01-05-2012.

[2] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics, 38(8), April 1965.

[3] J. Howard. A 48-core IA-32 processor with on-die message-passing and DVFS in

45nm CMOS. In Solid State Circuits Conference (A-SSCC), 2010 IEEE Asian,

pages 1 � 4, 2010.

[4] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,

A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An

80-tile 1.28TFLOPS network-on-chip in 65nm CMOS. In Solid-State Circuits

Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International,

pages 98 � 589, 2007.

[5] Thomas Chen, Ram Raghavan, Jason Dale, and Eiji Iwata. Cell broadband

engine architecture and its �rst implementation, 2005. http://www.ibm.com/

developerworks/power/library/pa-cellperf/, accessed 01-30-2012.

[6] Susan L. Graham, Marc Snir, and Cynthia A. Patterson. Getting Up to Speed:

The Future of Supercomputing. The National Academies Press, 2004.

[7] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the

obvious. SIGARCH Comput. Archit. News, 23(1):20�24, March 1995.

[8] Sally A. McKee. Re�ections on the memory wall. In Proceedings of the 1st

conference on Computing frontiers, CF '04, New York, NY, USA, 2004. ACM.

[9] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.

MPI-The Complete Reference, Volume 1: The MPI Core. MIT Press, Cambridge,

MA, USA, 2nd. (revised) edition, 1998.

[10] OpenMP Architecture Review Board. OpenMP application program interface.

Speci�cation, 2008.

115

Bibliography

[11] UPC Consortium. UPC Language Speci�cations, v1.2. Tech Report LBNL-59208,

Lawrence Berkeley National Lab, 2005.

[12] Robert W. Numrich and John Reid. Co-array Fortran for parallel programming.

SIGPLAN Fortran Forum, 17(2):1�31, August 1998.

[13] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the

Chapel language. Int. J. High Perform. Comput. Appl., 21(3):291�312, August

2007.

[14] Philippe Charles, Christian Grotho�, Vijay Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an

object-oriented approach to non-uniform cluster computing. SIGPLAN Not.,

40(10):519�538, October 2005.

[15] Damián A. Mallón, Guillermo L. Taboada, Carlos Teijeiro, Juan Touriño,

Basilio B. Fraguela, Andrés Gómez, Ramón Doallo, and J. Carlos Mouriño. Per-

formance evaluation of MPI, UPC and OpenMP on multicore architectures. In

Proceedings of the 16th European PVM/MPI Users' Group Meeting on Recent

Advances in Parallel Virtual Machine and Message Passing Interface, pages 174�

184, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] Guillermo L. Taboada, Carlos Teijeiro, Juan Tourino, Basilio B. Fraguela, Ramón

Doallo, José Carlos Mourino, Damián A. Mallon, and Andrés Gomez. Perfor-

mance evaluation of Uni�ed Parallel C collective communications. In Proceedings

of the 2009 11th IEEE International Conference on High Performance Comput-

ing and Communications, HPCC '09, pages 69�78, Washington, DC, USA, 2009.

IEEE Computer Society.

[17] Hongzhang Shan, Filip Blagojevi¢, Seung-Jai Min, Paul Hargrove, Haoqiang Jin,

Karl Fuerlinger, Alice Koniges, and Nicholas J. Wright. A programming model

performance study using the NAS parallel benchmarks. Sci. Program., 18(3-

4):153�167, August 2010.

[18] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet,

Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel Chavarría-Miranda.

An evaluation of global address space languages: Co-array Fortran and Uni�ed

Parallel C. In Proceedings of the tenth ACM SIGPLAN symposium on Principles

and practice of parallel programming, PPoPP '05, pages 36�47, New York, NY,

USA, 2005. ACM.

[19] Barcelona Supercomputing Center. SMP Superscalar (SMPSs) user's manual.

Speci�cation, 2011.

116

Bibliography

[20] Enric Tejedor, Montse Farreras, David Grove, Rosa M. Badia, Gheorghe Almasi,

and Jesus Labarta. ClusterSs: a task-based programming model for clusters. In

Proceedings of the 20th international symposium on High performance distributed

computing, HPDC '11, pages 267�268, New York, NY, USA, 2011. ACM.

[21] Barcelona Supercomputing Center. Cell Superscalar (CellSs) user's manual. Spec-

i�cation, 2007.

[22] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,

P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:

The PLASMA and MAGMA projects. In Journal of Physics: Conference Series,

volume 180, page 012037. IOP Publishing, 2009.

[23] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, H. Haidar, T. Herault,

J. Kurzak, J. Langou, P. Lemariner, H. Ltaief, P. Luszczek, A. YarKhan, and

J. Dongarra. Distributed dense numerical linear algebra algorithms on massively

parallel architectures: DPLASMA. Technical report, Innovative Computing Lab-

oratory, University of Tennessee, 2010.

[24] W. Kohn and L. J. Sham. Self-consistent equations including exchange and cor-

relation e�ects. Phys. Rev., 140:A1133�A1138, Nov 1965.

[25] Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren,

Karsten Reuter, and Matthias Sche�er. Ab initio molecular simulations with nu-

meric atom-centered orbitals. Computer Physics Communications, 180(11):2175

� 2196, 2009.

[26] P. R. C. Kent. Computational challenges of large-scale, long-time, �rst-principles

molecular dynamics. Journal of Physics: Conference Series, 125(1):012058, 2008.

[27] Ernesto Estrada. Structural patterns in complex networks through spectral analy-

sis. In Proceedings of the 2010 joint IAPR international conference on Structural,

syntactic, and statistical pattern recognition, SPR'10, pages 45�59, Berlin, Hei-

delberg, 2010. Springer-Verlag.

[28] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM

Review, 45(2):167�256, 2003.

[29] Fan R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in

Mathematics, No. 92). American Mathematical Society, February 1997.

[30] I.J. Farkas, I. Derenyi, A.L. Barabasi, and T. Vicsek. Spectra of �real-world�

graphs: Beyond the semicircle law. Physical Review E, 64(2):026704, 2001.

117

Bibliography

[31] Anirban Banerjee and Jürgen Jost. Spectral plot properties: Towards a qualitative

classi�cation of networks. In In European Conference on Complex Systems, 2007.

[32] Martin Galgon, Lukas Krämer, and Bruno Lang. Schlussbericht zu ELPA, Ber-

gische Universität Wuppertal, 2012.

[33] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.

In Proceedings of the 1969 24th national conference, ACM '69, pages 157�172,

New York, NY, USA, 1969. ACM.

[34] Bruno Lang. Direct solvers for symmetric eigenvalue problems in modern methods

and algorithms of quantum chemistry. In J. Grotendorst (Editor), Proceedings,

NIC Series Volume, pages 231�259, 2000.

[35] B. Lang. E�ziente Orthogonaltransformationen bei der Eigen- und Singulärwert-

berechnung. Wuppertal, 1997.

[36] James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst. Templates

for the solution of algebraic eigenvalue problems: a practical guide. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[37] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra,

J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LA-

PACK Users' guide (third ed.). Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1999.

[38] L. S. Blackford, J. Choi, A. Cleary, E. D'Azeuedo, J. Demmel, I. Dhillon, S. Ham-

marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-

PACK user's guide. Society for Industrial and Applied Mathematics, Philadel-

phia, PA, USA, 1997.

[39] Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James

Overfelt, and Yuan jye J. Wu. PLAPACK: Parallel Linear Algebra Package, 1997.

[40] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.

FLAME: Formal Linear Algebra Methods Environment. ACM Transactions on

Mathematical Software, 27(4):422�455, December 2001.

[41] M. Petschow and P. Bientinesi. MR3-SMP: A symmetric tridiagonal eigen-

solver for multi-core architectures. Parallel Computing, 37(12):795 � 805, 2011.

6th International Workshop on Parallel Matrix Algorithms and Applications

(PMAA'10).

[42] J. H. Wilkinson. The calculation of the eigenvectors of codiagonal matrices. The

Computer Journal, 1(2):90�96, 1958.

118

Bibliography

[43] G.H. Golub and C.F.V. Loan. Matrix computations. Johns Hopkins series in the

mathematical sciences. Johns Hopkins University Press, 1989.

[44] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal

eigenproblem. Numer. Math., 36:177�195, 1981.

[45] I. S. Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigen-

value/Eigenvector Problem. PhD thesis, Univ. of California at Berkeley, 1997.

[46] I. S. Dhillon and Beresford N. Parlett. Multiple representations to compute or-

thogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra and Appl,

387:1�28, 2004.

[47] T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer,

B. Lang, H. Lederer, and P. R. Willems. Parallel solution of partial symmetric

eigenvalue problems from electronic structure calculations. Parallel Comput.,

37:783�794, December 2011.

[48] James W. Demmel, Osni A. Marques, Beresford N. Parlett, and Christof Vömel.

Performance and accuracy of LAPACK's symmetric tridiagonal eigensolvers.

SIAM J. Sci. Comput., 30(3):1508�1526, March 2008.

[49] P. R. Willems. On MRRR-type Algorithms for the Tridiagonal Symmetric Eigen-

problem and the Bidiagonal SVD. PhD thesis, Bergische Univ. Wuppertal, 2010.

[50] Matthias Petschow, Enrique S. Quintana-Orti, and Paolo Bientinesi. Improved

orthogonality for dense Hermitian eigensolvers based on the MRRR algorithm.

In AICES technical report, 2012.

[51] Paolo Bientinesi, Inderjit S. Dhillon, and Robert A. van de Geijn. A parallel

eigensolver for dense symmetric matrices based on multiple relatively robust rep-

resentations. SIAM J. Sci. Comput., 27(1):43�66, July 2005.

[52] Wallace Givens. Computation of plane unitary rotations transforming a general

matrix to triangular form. Journal of the Society for Industrial and Applied

Mathematics, 6(1):pp. 26�50, 1958.

[53] W. Morven Gentleman. Least squares computations by Givens transformations

without square roots. IMA Journal of Applied Mathematics, 12(3):329�336, 1973.

[54] Sven Hammarling. A note on modi�cations to the Givens plane rotation. IMA

Journal of Applied Mathematics, 13(2):215�218, 1974.

[55] Wolfgang Rath. Fast Givens rotations for orthogonal similarity transformations.

Numerische Mathematik, 40:47�56, 1982. 10.1007/BF01459074.

119

Bibliography

[56] Alston S. Householder and Friedrich L. Bauer. On certain methods for expanding

the characteristic polynomial. Numerische Mathematik, 1:29�37, 1959.

[57] J. H. Wilkinson. Householder's method for the solution of the algebraic eigen-

problem. The Computer Journal, 3:23�27, 1960.

[58] Christian Bischof and Charles van Loan. The WY representation for products of

Householder matrices. SIAM J. Sci. Stat. Comput., 8:2�13, January 1987.

[59] Robert Schreiber and Charles van Loan. A storage-e�cient WY representation for

products of Householder transformations. SIAM J. Sci. Stat. Comput., 10:53�57,

January 1989.

[60] Chiara Puglisi. Modi�cation of the Householder method based on the compact

WY representation. SIAM J. Sci. Stat. Comput., 13:723�726, May 1992.

[61] Thierry Jo�rain, Tze Meng Low, Enrique S. Quintana-Ortí, Robert van de Geijn,

and Field G. Van Zee. Accumulating Householder transformations, revisited.

ACM Trans. Math. Softw., 32:169�179, June 2006.

[62] Sven J. Hammarling, Danny C. Sorensen, and Jack J. Dongarra. Block reduction

of matrices to condensed forms for eigenvalue computations. J. Comput. Appl.

Math, 27:215�227, 1987.

[63] Christian Bischof, Bruno Lang, and Xiaobai Sun. Parallel tridiagonaliza-

tion through two-step band reduction. In Proceedings of the Scalable High-

Performance Computing Conference, pages 23�27. IEEE Computer Society Press,

1994.

[64] H. Schwarz. Algorithm 183: Reduction of a symmetric bandmatrix to triple

diagonal form. Communications of the ACM, 6:315�316, 1963.

[65] H. Schwarz. Tridiagonalization of a symetric band matrix. Numerische Mathe-

matik, 12:231�241, 1968.

[66] Sivasankaran Rajamanickam and Timothy A. Davis. Blocked band reduction for

symmetric and unsymmetric matrices, 2010.

[67] Murata Kenro and Horikoshi Kiyomi. A new method for the tridiagonalization of

the symmetric band matrix. Information processing in Japan, 15:108�112, 1975.

[68] Bruno Lang. A parallel algorithm for reducing symmetric banded matrices to

tridiagonal form. SIAM J. Sci. Comput., 14:1320�1338, November 1993.

[69] Linda Kaufman. Banded eigenvalue solvers on vector machines. ACM Trans.

Math. Softw., 10:73�85, January 1984.

120

Bibliography

[70] Christian H. Bischof, Bruno Lang, and Xiaobai Sun. The SBR toolbox - software

for successive band reduction, 1996.

[71] Christian H. Bischof, Bruno Lang, and Xiaobai Sun. A framework for symmetric

band reduction, 1999.

[72] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Geijn. Collective

communication: Theory, practice, and experience, FLAME Working Note #22,

2006.

[73] Alok Aggarwal and S. Vitter, Je�rey. The input/output complexity of sorting

and related problems. Commun. ACM, 31(9):1116�1127, September 1988.

[74] Jaeyoung Choi, Jack J. Dongarra, L. Susan Ostrouchov, Antoine P. Petitet,

David W. Walker, and R. Clint Whaley. The design and implementation of the

ScaLAPACK LU, QR and Cholesky factorization routines, 1996.

[75] Thomas Auckenthaler, Thomas Huckle, and Roland Wittmann. A blocked QR-

decomposition for the parallel symmetric eigenvalue problem, 2012. in prepara-

tion.

[76] W. Gander. Algorithms for the QR decomposition. Seminar für Angewandte

Mathematik: Research report. 1980.

[77] James Demmel, Laura Grigori, Mark Frederick Hoemmen, and Julien Langou.

Communication-optimal parallel and sequential QR and LU factorizations, 2008.

[78] Andreas Stathopoulos and Kesheng Wu. A block orthogonalization procedure

with constant synchronization requirements. SIAM J. Sci. Comput, 23, 2002.

[79] Roland Wittmann. Blocking strategies for the parallel QR-decomposition. Re-

search project, Institut für Informatik, Technische Universität München, 2011.

[80] Roland Wittmann. Analysis, implementation and evaluation of parallel algo-

rithms for the QR-decomposition. Masters thesis, Institut für Informatik, Tech-

nische Universität München, 2012.

[81] T. Auckenthaler, H. J. Bungartz, T. Huckle, L. Krämer, B. Lang, and P. Willems.

Developing algorithms and software for the parallel solution of the symmetric

eigenvalue problem. J. Comput. Science, 2(3):272�278, 2011.

[82] Kendall Swenson Stanley. Execution time of symmetric eigensolvers. Technical

Report UCB/CSD-99-1039, EECS Department, University of California, Berke-

ley, 1997.

121

Bibliography

[83] R.C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-

dimensional approach to parallel matrix multiplication. IBM Journal of Research

and Development, 39:39�5, 1995.

[84] Dror Irony and Sivan Toledo. Communication-e�cient parallel dense LU using

a 3-dimensional approach. In in: Proceedings of the 10th SIAM Conference on

Parallel Processing for Scienti�c Computing, 2001.

[85] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to con-

densed forms for symmetric eigenvalue problems using aggregated �ne-grained

and memory-aware kernels. In Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, SC '11, pages

8:1�8:11, New York, NY, USA, 2011. ACM.

[86] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Je� R. Hammond, and

Nichols A. Romero. Elemental: A new framework for distributed memory dense

matrix computations. ACM Transactions on Mathematical Software, 2012. To

appear.

[87] T. Imamura, S. Yamada, and M. Machida. Development of a high performance

eigensolver on the petascale next generation supercomputer system. In Proceed-

ings of Joint International Conference on Supercomputing in Nuclear Applications

and Monte Carlo 2010, 2010.

[88] Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, and

Tadashi Watanabe. The K computer: Japanese next-generation supercomputer

development project. In ISLPED, pages 371�372, 2011.

[89] ELPA documentation. http://elpa-lib.fhi-berlin.mpg.de, accessed 09-14-

2012.

[90] R. Johanni, V. Blum, V. Havu, H. Lederer, and M. Sche�er, 2011. in preparation.

[91] Paula Havu, Volker Blum, Ville Havu, Patrick Rinke, and Matthias Sche�er.

Large-scale surface reconstruction energetics of Pt(100) and Au(100) by all-

electron density functional theory. Phys. Rev. B, 82:161418, Oct 2010.

[92] Stefan Schulze Frielinghaus. Parameter optimization for the parallel symmet-

ric eigenvalue problem. Studienarbeit/IDP, Institut für Informatik, Technische

Universität München, December 2010.

[93] Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5D

matrix multiplication and LU factorization algorithms. Technical Report

UCB/EECS-2011-72, EECS Department, University of California, Berkeley, Jun

2011.

122

Bibliography

[94] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Sequential com-

munication bounds for fast linear algebra. Technical Report UCB/EECS-2012-36,

EECS Department, University of California, Berkeley, Mar 2012.

[95] Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded

Schwartz. Strong scaling of matrix multiplication algorithms and memory-

independent communication lower bounds. Technical Report UCB/EECS-2012-

31, EECS Department, University of California, Berkeley, Mar 2012.

123

