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A Jérémy





He insisted on being called Dr. Amelio.
That is always a bad sign.

Steve Jobs

Choisir la vie, c’est toujours choisir l’avenir.
Sans cet élan qui nous porte en avant nous ne serions rien

de plus qu’une moisissure à la surface de la terre.

Personne n’est plus arrogant envers les femmes, plus
agressif ou méprisant, qu’un homme inquiet pour sa virilité.

Simone de Beauvoir





Contents

Summary ix

1 Challenges of Modern Particle Physics 1
1.1 The Hierarchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The need for the Higgs . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Is nature fine-tuned? . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Flavour Puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Other Open Questions: Dark Matter, Neutrino Masses, Cosmology . . . 9
1.4 Physics Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 The Problem with Flavour 21
2.1 Flavour and the Standard Model . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Flavour in New Physics Models . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Flavour symmetries in the SM . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Minimal Flavour Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Two Higgs Doublet Models 31
3.1 Extending the Higgs Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 EWSB in the presence of a second Higgs . . . . . . . . . . . . . . 31
3.1.2 Phenomenology of the 2HDM . . . . . . . . . . . . . . . . . . . . . 32

3.2 FCNCs in Two Higgs Doublet Models . . . . . . . . . . . . . . . . . . . . 35
3.2.1 The usual way out: Discrete Symmetries . . . . . . . . . . . . . . 36

3.3 Benefits of having a second Higgs . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 The MSSM as a 2HDM . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 The inert doublet model . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Baryogenesis in 2HDMs . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Neutrino masses in 2HDMs . . . . . . . . . . . . . . . . . . . . . . 40
3.3.5 Further ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 A General 2HDM with Yukawa Alignment . . . . . . . . . . . . . . . . . 44
3.4.1 Radiative corrections to the alignment Yukawa couplings . . . . 44
3.4.2 Flavour violating neutral Higgs couplings . . . . . . . . . . . . . . 45
3.4.3 Experimental Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.4 Leptonic B decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Z2, U(1)PQ or alignment? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



CONTENTS

4 Warped Extra-Dimensional Models 55
4.1 The Randall-Sundrum spacetime . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Solving the Hierarchy Problem . . . . . . . . . . . . . . . . . . . . 57
4.2 The Randall-Sundrum Model as an EFT . . . . . . . . . . . . . . . . . . . 58
4.3 Split Fermion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Solving the Flavour Puzzle . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Higher Dimensional Operators in Split Fermion Models . . . . . 64

4.4 FCNCs via KK gluon exchange . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 The RS-GIM mechanism . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 The Higgs in the bulk? . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 FCNCs via Higgs exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Constraints from EWPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7 Flavour symmetries and alignment in RS . . . . . . . . . . . . . . . . . . 70

4.7.1 Previous models with suppressed FCNCs . . . . . . . . . . . . . . 70
4.7.2 A new way to alignment . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Other aspects of the RS model . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8.1 AdS/CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8.2 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8.3 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8.4 Collider phenomenology . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendices 95

A Renormalized Yukawas in a 2HDM 97
A.1 Vertex renormalization (one loop) . . . . . . . . . . . . . . . . . . . . . . . 97

A.1.1 Up-type Yukawa couplings . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.2 Down-type Yukawa couplings . . . . . . . . . . . . . . . . . . . . . 99
A.1.3 Lepton Yukawa couplings . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 Wave function renormalization . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2.1 Higgs wave function renormalization . . . . . . . . . . . . . . . . . 99
A.2.2 Fermion wave function renormalization . . . . . . . . . . . . . . . 100

A.3 The complete β-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.4 Yukawa couplings at the EW scale in a 2HDM with alignment . . . . . 104

A.4.1 d-quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.4.2 u-quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.4.3 Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.5 Feynman rules for FV Higgs couplings . . . . . . . . . . . . . . . . . . . . 106

B Scalar potential of the spurion fields 109
B.1 Bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2 UV brane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



Summary

There are numerous reasons to think that the Standard Model of physics is not the
ultimate theory of nature on very small scales. However, attempts to construct theories
that go beyond the Standard Model generically lead to high rates of flavour changing
neutral processes that are in conflict with experiment:

Quarks are the fundamental constituents of protons and neutrons. Together with
electrons they form the visible matter of the universe1. They come in three generations
or "flavours". In interactions, quarks of different generations can mix, i.e. a quark of
one flavour can transform into a quark of another flavour. In the Standard Model,
at first order in perturbation theory, such processes occur only via the exchange of
a charged particle. Flavour changing neutral processes can only arise in processes
involving loops of charged particles. This is due to the fact that all couplings of two
quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the
quarks. There is thus no mixing of quarks of different flavour at first order. Since
the loop processes are suppressed by a loop factor, the Standard Model predicts very
low rates for neutral processes that change the flavour of quarks. So far, this is in
agreement with experiment.

In extensions of the Standard Model, new couplings to the quarks are usually intro-
duced. In general there is no reason why the new coupling matrices should be diagonal
in the mass basis of the quarks. These models therefore predict high rates for processes
that mix quarks of different flavour.

Extensions of the Standard Model must therefore have a non-trivial flavour structure.
A possibility to avoid flavour violation is to assume that the new couplings are aligned
with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment
could be due to a flavour symmetry. In this thesis, two extensions of the Standard
Model with alignment are studied.

The first is a simple extension of the Standard Model where a second Higgs doublet is
added. In such models, there are two Yukawa matrices for each fermion type. Going to
the mass basis, one of them is diagonalized and together with the vacuum expectation

1Most of the matter in the universe is invisible Dark Matter, however.
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value of the Higgs forms the mass matrix of the quarks. The other Yukawa matrix
however is not diagonal. It couples two quarks and one of the mass eigenstates of the
two Higgs doublets. Flavour violating processes can thus occur via the exchange of a
neutral scalar. If the two Yukawa matrices were aligned for some reason this would
not happen. However, the alignment can only be imposed at one energy scale and
will be spoiled when evolving the couplings down to a lower scale. It is shown that
in spite of this effect, alignment of the Yukawa couplings provides sufficient protection
from flavour changing neutral currents to be in agreement with present experimental
bounds.
Another, more ambitious, extension of the Standard Model are warped extra dimen-
sions. In these models spacetime consists of a slice of five-dimensional Anti-de Sitter
space (the "bulk") sandwiched in between two flat four-dimensional boundaries (the
"branes"). The Higgs is assumed to live on one of the branes while all other particles
are allowed to spread into the bulk. Particles that propagate in the bulk have a "KK
tower" of heavier particles associated with them in the effective four-dimensional the-
ory. In the bulk fermions have a vector-like mass term in addition to their Yukawa
couplings to the Higgs. Via different localizations of the quarks’ wave functions in the
bulk, the huge differences in their masses can be explained. However, since the wave
function profiles of the quarks are non-universal for the different flavours, so are the
couplings to the KK excitations of gauge bosons. Rotating to the mass basis therefore
introduces off-diagonal elements in these couplings and thus flavour changing neutral
processes. Since the wave function profiles are a function of the eigenvalues of the
vector-like masses, aligning these with the Yukawa couplings will suppress flavour vi-
olation. In this thesis a model that makes use of such an alignment mechanism is
presented and is shown to be in agreement with experimental constraints.

Based on publications [1, 2].



Chapter 1

Challenges of Modern Particle Physics

What is fascinating about the Standard Model (SM) of particle physics is how inter-
actions emerge as a consequence of symmetries imposed on the Lagrangian. Via the
Noether theorem, these symmetries are furthermore equivalent to a conserved four-
current.
In this sense, the SM is a SU(3) × SU(2) × U(1) local gauge theory. It describes the
electromagnetic, weak and strong interactions of quarks and leptons. Up to this day,
it has seen tremendous successes: it predicted not only the existence of the W and
Z bosons, of the gluon, and the top and charm quarks but also their masses to high
precision. The confinement of quarks was correctly predicted. Up to today, all tests
on flavour observables are in agreement with the SM prediction. This last point is a
problem for most attempts to extend the SM, as we shall see in the following.
Despite these undeniable successes most physicists believe today that the SM is not the
ultimate theory of the fundamental constituents of nature. I will outline some problems
and open ends in sections 1.1, 1.2 and 1.3. Numerous attempts to extend the SM in
order to address these issues exist and I will give a brief overview of them in section
1.4. Two of these extensions, the Two Higgs Doublet Model and the Randall-Sundrum
Model will be investigated in this thesis.

1.1 The Hierarchy Problem

With the (probable) discovery of the Higgs boson [3, 4], the last particle of the SM
was found. To understand the need for a Higgs boson we have to go a bit deeper
into how forces emerge from the presence of symmetries in the SM. We will consider
the weak force here, but the same principles hold for the strong and electromagnetic
forces as well. The only difference is that their gauge bosons, i.e. the force carriers
of strong and electromagnetic interactions are known to be massless. No breaking of

1



CHAPTER 1. CHALLENGES OF MODERN PARTICLE PHYSICS

these symmetries is therefore necessary as we shall see in the following.

1.1.1 The need for the Higgs

Local gauge invariance and electroweak interactions

The gauge group of the weak force is SU(2). All fermions are doublets under this
SU(2) and transform as [5, 6, 7, 8]:

ψ =
⎛
⎝
ψ1(x)
ψ2(x)

⎞
⎠
→ exp(ıαi(x)σ

i

2
)ψ (1.1)

where σ are the Pauli matrices. As the Pauli matrices do not commute this is a
non-Abelian symmetry. It is also a local symmetry as α depends on the position in
space-time x.

The equation of motion of fermions is the Dirac equation, which is for massless fermions:

ı /∂ψ(x) = 0 (1.2)

From this we get the Lagrangian:
L = ıψ̄ /∂ψ (1.3)

This is invariant under a global SU(2) but not under the local SU(2) transformation
we are considering in eq. (1.1). We can make it invariant however by replacing the
derivative ∂µ by the covariant derivative Dµ defined as:

Dµ = ∂µ − ıgAaµ
σa

2
(1.4)

where we introduced a vector field Aµ that must transform as

Aµ(x) → Aµ(x) −
1

g
∂µα(x) (1.5)

for the Lagrangian to be invariant under the local SU(2) symmetry.

This is where things get interesting: In the Lagrangian, replacing ∂µ by Dµ, we get a
term

L ⊃ gψ̄γµAaµ
σa

2
ψ (1.6)

i.e. the fermions are interacting with the new vector field. All this from demanding
local gauge invariance only! If we are to take this serious, we need to write all terms
containing the fields ψ and Aµ that are Lorentz-invariant and invariant under the local

2



1.1. THE HIERARCHY PROBLEM

Figure 1.1: The scalar potential of the Higgs field

SU(2) symmetry. There is only one other term and we get:

L = ıψ̄γµ∂µψ + gψ̄γµAaµ
σa

2
ψ − 1

4
F a
µνF

a,µν (1.7)

where F a
µν = ∂µAaν − ∂νAaµ + gεabcAbµAcν . Note that a mass term for the vector field

1
2mAµA

µ is not allowed by the gauge symmetry. Including also the electromagnetic
force (with symmetry group U(1)), the covariant derivative reads [5]:

Dµ = ∂µ − ıgAaµ
σa

2
− ı1

2
g′Bµ (1.8)

where Aµ is the gauge boson of the SU(2) symmetry and Bµ is the gauge boson of the
U(1). Bµ also has a kinetic term, of course:

L ⊃ −1

4
BµνBµν (1.9)

with Bµν = ∂µBν − ∂νBµ.

We would like this gauge theory to describe the electromagnetic and weak forces we
observe in nature. Photons are massless and hence the electromagnetic force is a long
range force. The weak force, on the other hand, is known to be a short range force and
its force carriers must therefore be massive. This has been confirmed by experiment.
So we have a problem: We know the gauge bosons of the weak force must be massive
but we cannot write a mass term for them!

Higgs to the rescue

Consider an SU(2) doublet of complex scalar fields [5, 6, 7, 8]:

φ =
⎛
⎝
φ1

φ2

⎞
⎠
=
⎛
⎝
ϕ1 + ıϕ2

ϕ3 + ıϕ4

⎞
⎠

(1.10)

3



CHAPTER 1. CHALLENGES OF MODERN PARTICLE PHYSICS

The Lagrangian
L = (Dµφ)†(Dµφ) − V (φ†φ) (1.11)

with the potential

V (φ†φ) = −µ2φ†φ + 1

2
λ(φ†φ)2 (1.12)

is invariant under the gauge symmetry and the space-time symmetry. By doing an
SU(2) gauge transformation we can get rid off the upper component and write:

φ =
⎛
⎝

0

ϕr + ıϕi
⎞
⎠

(1.13)

The potential is shown in fig. 1.1 as a function of ϕr, ϕi for µ2 > 0 and λ > 0. As can
be seen it has a minimum at a radius v away from the origin:

⟨ϕ⟩ = v = µ√
λ

(1.14)

This is the so-called vacuum expectation value (vev). The important thing to note here
is that the potential is manifestly invariant under SU(2) rotations. For a particle sitting
in the minimum of the potential however, the symmetry is hidden or spontaneously
broken as one says. We do one further rotation to set ϕi = 0 and consider fluctuations
of the scalar field around the vev:

φ = 1√
2

⎛
⎝

0

v + h(x)
⎞
⎠

(1.15)

Plugging this into the covariant derivative term (Dµφ)†(Dµφ) of the scalar Lagrangian
we get a term [5]:

L ⊃ 1

2
(gv

2
)

2

AµA
µ (1.16)

This is a mass term for Aµ! Our problem is solved. The field h is the physical Higgs
field.

Fermion masses

We cannot write a direct mass term for fermions either, and they thus also need to
acquire masses via the Higgs mechanism. To understand this we need to know that
right- and left-handed fermions have different gauge quantum numbers: the left-handed
fermions are doublets under SU(2) while the right-handed ones are singlets. In total

4



1.1. THE HIERARCHY PROBLEM

we have:

qL =
⎛
⎝
uL

dL

⎞
⎠
, uR, dR, lL =

⎛
⎝
νL

eL

⎞
⎠
, eR (1.17)

there might also be right-handed neutrinos but this shall not interest us here. It is
then easy to see, that for ψ any of these fields a mass term such as

mψ̄ψ =m(ψ̄LψR + ψ̄RψL) (1.18)

would violate gauge invariance. We can however writeYukawa-couplings of the fermions
to the Higgs [6]:

LYukawa = (Yu)ij q̄LiuRjφ̃ + (Yd)ij q̄LidRjφ + (Ye)ij l̄LieRjφ + h.c. (1.19)

where φ̃ = iτ2φ∗. Inserting the vacuum expectation value of the Higgs field,

⟨φ⟩ =
⎛
⎝

0

v

⎞
⎠

(1.20)

we get mass terms for the fermion fields:

LYukawa = (Yu)ijv
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
(Mu)ij

ūLiuRj + (Yd)ijv
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
(Md)ij

d̄LidRj + (Ye)ijv
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
(Me)ij

ēLieRj + h.c. (1.21)

Unitarity of the WLWL scattering amplitude

Furthermore, the Higgs field is also needed to restore unitarity of the WLWL scattering
amplitude. Since this will not play a role in the following, we mention it here only for
completeness.

1.1.2 Is nature fine-tuned?

The Higgs mechanism is for sure an impressive way to solve many problems of the SM
at once, however it introduces a new and quite fundamental problem. This problem
can be traced back to the fact that by introducing the Higgs, we introduce a scalar
field into the theory. The bare mass of a scalar field receives radiative corrections that
are ultraviolet divergent and thus need to be regularized by introducing a cut-off scale
Λ, i.e. in the case of the Higgs [7]:

m2
φ = µ2 + λ

8π2
Λ2 − 3

8π2
(Yu)2

33Λ2 + ...
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆µ2

(1.22)

5
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h

h

h

t

t

h h

Figure 1.2: Radiative corrections to the Higgs mass. The main contribution is due to the
top quark in the loop.

These corrections are due to Higgs and fermion loops as shown in fig. 1.2.

The SM can be seen as an effective theory of some more complete theory. Λ is then
interpreted as the largest energy scale at which the theory is still valid. This could
be the Planck scale since we know for sure that at this scale - where gravity becomes
strong - quantum field theory (QFT) will break down.

From theory we can infer an approximate mass for the Higgs: from the masses of
the gauge bosons we know the value of the vacuum expectation value v = 246 GeV.
As λ cannot get too large if the theory is to stay perturbative, we must have m2

φ ∼
(100 GeV)2. Indeed, this is in agreement with the new boson observed by ATLAS and
CMS [3, 4]: Both experiments find mφ ≈ 126 GeV. The bare mass parameter µ cannot
possibly be know, so it is conceivable that it is very large and has opposite sign to ∆µ2.
Then it could cancel the large radiative corrections, up to the physical Higgs mass m2

φ.

However, look at the numbers: Λ2 = M2
Planck ∼ (1019 GeV)2 ∼ 1038 GeV2 and m2

φ ∼
(100 GeV)2 ∼ 104 GeV2. This means that the cancellation would need to be as precise
as 1 ∶ 1034. Most people think that this is not a good solution to the problem. How
can the bare mass know to such high precision the value of the radiative corrections?
This is what is called the hierarchy problem.

Another solution is of course to choose a smaller cut-off Λ. But then we need a new
theory already at this scale. And this scale should not be much higher than the elec-
troweak scale (i.e. the scale of the Higgs vacuum expectation value). So experiments,
especially those at the LHC will tell soon. Ideas about what this new theory could be
include supersymmetry and new strongly coupled dynamics.

Another way to phrase the hierarchy problem is to ask: Why is the scale of electroweak
symmetry breaking (EWSB) so much lower than the Planck scale? Or: Why is gravity
so much weaker that the other forces?

6



1.2. THE FLAVOUR PUZZLE

1.2 The Flavour Puzzle

In nature, fermions come in three generations or flavours, i.e. for each particle there
are two other particles that have exactly the same quantum numbers but a different
mass. Therefore, the Yukawa couplings in eq. (1.19) are 3× 3 matrices. A priori, these
matrices are not diagonal and to go to the so-called mass basis we must therefore make
unitary transformations on the fermion fields [6, 8]:

uR = VuRuR (1.23)

uL = VuLuL (1.24)

and analogously for the down quarks and charged leptons. The mass matrices

Mu = v ⋅ VuLYuV †
uR =

⎛
⎜⎜⎜
⎝

mu

mc

mt

⎞
⎟⎟⎟
⎠

(1.25)

etc. are then diagonal. However, look at the couplings of the fermions to the charged
weak gauge bosons W ±:

L ⊃ − g√
2
(ūLγµdL + ν̄LγµeL)W +

µ + h.c. (1.26)

since VuL and VdL are not identical, the coupling of up and down quarks to the W is
no longer diagonal but proportional to a matrix

VCKM = V †
uLVdL ≡

⎛
⎜⎜⎜
⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟
⎠

(1.27)

called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Being a unitary matrix, we can
parameterize the CKM matrix as a product of rotation matrices:

VCKM =
⎛
⎜⎜⎜
⎝

c12c13 s12c13 s13e−ıδKM

−s12c23 − c12s23s13e ıδKM c12c23 − s12s23s13e ıδKM s23c13

s12s23 − c12c23s13e ıδKM −c12s23 − s12c23s13e ıδKM c23c13

⎞
⎟⎟⎟
⎠

(1.28)

where cij = cos θij and sij = sin θij. We will learn later about the significance of the
phase δKM. In other words, quarks of different generations can mix. It is very important
to note that this does not happen in the case of the exchange of a neutral Z boson or

7
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a photon:

L ⊃ −e ∑
i=u,d,c,s,t,b,

e,µ,τ

ψ̄iγ
µQiψiAµ −

e

sin 2θW
∑

i=u,d,c,s,t,b
e,µ,τ,νe,νµ,ντ

ψ̄iγ
µ(vi − aiγ5)ψiZµ (1.29)

where ψu = uL + uR etc. this is due to the unitarity of the matrices used to diagonalize
the Yukawas:

V †
uLVuL = 1, etc. (1.30)

In the SM, at tree level there are no flavour changing neutral currents (FCNCs). This
will become very important later.

The experimental values for the CKM matrix and the eigenvalues of the quark mass
matrix are [9]:

up charm top

2.3+0.7
−0.5 MeV 1.275+0.025

−0.025 GeV 173.5 ± 0.6 ± 0.8 GeV

down strange bottom

4.8+0.7
−0.3 MeV 95+5

−5 MeV 4.18+0.03
−0.03 GeV

VCKM =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0.97425 ± 0.00022 0.2252 ± 0.0009 (3.89 ± 0.44) ⋅ 10−3

0.230 ± 0.011 1.023 ± 0.036 (40.6 ± 1.3) ⋅ 10−3

(8.4 ± 0.6) ⋅ 10−3 (38.7 ± 2.1) ⋅ 10−3 0.88 ± 0.07

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

These can be measured by assuming that NP effects can be neglected in all cases where
the process can occur at tree level in the SM. Several questions come to mind:

• Why are there three generations? Why not only one? Or more than three? (Are
there only three?)

• Why are the mixing angles so small?

• Why is there such a strong hierarchy within the quark masses?

These open questions are usually referred to as the flavour puzzle.
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1.3 Other Open Questions: Dark Matter, Neutrino

Masses, Cosmology

There are other open questions in modern particle physics which we will mention here
briefly for the sake of completeness.

Dark Matter

The universe seems to be permeated by a yet unknown form of matter called Dark
Matter. This can be deduced from the rotation of stars in galaxies, from simulations
of galaxy formation and from galaxy cluster dynamics (via gravitational lensing).

Although these findings could also be explained by modifying Newtonian dynamics
(so-called MOND theories [10, 11, 12]) most physicists nowadays suppose that Dark
Matter is composed of yet unknown particles. These particles do not interact via the
electromagnetic or strong forces but could interact via the weak force. Some Beyond
the Standard Model (BSM) theories have a Dark Matter candidate, which makes them
more compelling in the opinion of some people.

Neutrino Masses

The experimental result that neutrinos have non-zero but tiny masses came as quite a
surprise.
Given that neutrinos do not have any conserved charge, we can write a Majorana mass
term for them [13, 14]:

L ⊃ −mψTC−1ψ (1.31)

where C is the charge conjugation operator. In addition, we can also write a Dirac
mass term as for the other fermions:

L ⊃ −mψ̄ψ = −m (ψ̄LψR + ψ̄RψL) (1.32)

We note the following: A Dirac term as in eq. (1.32) can only exist if there are also
right-handed neutrinos νR in addition to the particle content of the SM. A Majorana
mass term as in (1.31) is not possible for the left-handed neutrino νL because it has
weak isospin projection I3 = 1/2 and the Majorana mass term is thus not invariant
under isospin transformations. Such a term is possible for right-handed neutrinos
being singlets under all transformations, however.
The presence of heavy right-handed neutrinos could explain the smallness of the masses

9
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of the left-handed neutrino. This is the famous see-saw mechanism. Basically, a mass
term for the left-handed neutrinos is generated by integrating out the heavy right-
handed neutrinos: The full Lagrangian with Majorana and Dirac mass terms reads:

L ⊃ (mD)ij ν̄LiνRj +
1

2
Mij ν̄

c
RiνRj + h.c. (1.33)

Using ν̄LmDνR = ν̄cRmT
Dν

c
L we can write this in matrix form:

L ⊃ 1

2
(ν̄L ν̄cR)

⎛
⎜⎜⎜
⎝

0 mD

mT
D M

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

νcL

νR

⎞
⎟⎟⎟
⎠
+ h.c. (1.34)

Diagonalizing this, one finds the mass eigenvalues M and −mD
1
Mm

T
D (these "eigenval-

ues" are matrices of course since neutrinos also come in three generations). We see
that the masses of the light, left-handed neutrinos are indeed suppressed by the heavy
mass scale of the right-handed neutrinos. However, up to this day nothing of this is
confirmed experimentally.

Cosmology

In cosmology there are also some fundamental questions which could not yet be an-
swered. One of them is why there is more matter than anti-matter in the universe.
Such an asymmetry, also called baryon asymmetry, can be generated only if the three
Sakharov criteria are fulfilled [15]:

1. Baryon number violation. (This is obvious).

2. C and CP violation. (This is necessary because one can prove that, if C and
CP are conserved, the rate of any process that produces an excess of baryons is
equal to the rate of the complementary process that produces an equal excess of
anti-baryons. Thus no net baryon asymmetry can be produced without C and
CP violation.)

3. Departure from thermal equilibrium. (The equilibrium average of the baryon
number is zero.)

There are mainly two ideas around how the baryon asymmetry could have been pro-
duced [16, 17, 18, 19]:

• Baryogenesis: A baryon asymmetry is generated directly by processes fulfilling
the Sakharov conditions.

10
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– GUT baryogenesis : Since quarks and leptons are in the same representation,
there is always baryon number violation in grand unified theories (GUTs).
Moreover, there are many possible complex phases to generate the necessary
CP violation (explicit CP breaking). A departure from thermal equilibrium
is also guaranteed as the time scales of the decays of heavy scalars or gauge
bosons are slow compared to the expansion of the universe. The problem
of GUT baryogenesis is that it is not accessible to experiments and thus
cannot be verified.

– Electroweak Baryogenesis : The SM Lagrangian has an accidental symme-
try that implies the conservation of baryon number. It is thus not possible
to violate baryon number at any order of perturbation theory. There are
non-perturbative processes called sphalerons however that violate the sum
of baryon and lepton number, B+L but conserve B−L. The probability for
these processes to occur today is exponentially suppressed, but in the early
universe these processes could happen at high rates. The out-of-equilibrium
condition is fulfilled if there is a strong first order electroweak phase tran-
sition in the early universe. The problem is that in the SM there is not
enough CP violation to make EW baryogenesis work. In the Minimal Su-
persymmetric Model (MSSM) there are additional sources of CP violation,
so this was long time thought to be a good way to generate the observed
baryon asymmetry, especially because this is a scenario that is falsifiable at
colliders [20]. And since it is falsifiable it was falsified. The requirement of
a strong first order phase transition translates into a bound on the Higgs
mass of mH ≲ 120 GeV. Given the latest development on the Higgs frontier,
cf. sec. 1.1, this looks rather bad.

• Leptogenesis: We have mentioned the possibility that the smallness of the
masses of left-handed neutrinos is a hint to the existence of heavy right-handed
neutrinos in the last paragraph. Now, the decay of heavy right-handed neutrinos
could also generate a lepton asymmetry that via sphaleron processes could be
converted into a baryon asymmetry. CP violation is generated in these decays
by the interference of tree level and one-loop diagrams. The decay is out of
equilibrium if its width is small compared to the expansion rate of the universe.
The disadvantage of this model is the same as for GUT baryogenesis: It is not
testable at colliders in the not-too-distant future.

Another yet unsolved problem in cosmology is why the cosmological constant is so
much smaller than the vacuum energy predicted by QFT: Assuming a cut-off at the
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Planck-scale, the vacuum energy should be of the order of

ρQFT
Λ ∼ (1018 GeV)4 ∼ 2 ⋅ 10110 erg

cm3
(1.35)

while the observed cosmological constant (that can be interpreted as the vacuum en-
ergy) is:

∣ρobs.
Λ ∣ ≤ (10−12 GeV)4 ∼ 2 ⋅ 10−10 erg

cm3
(1.36)

This can be concluded from the measurement of the redshift of distant supernovae Ia
and from measurements of the density fluctuations of the cosmic microwave background
(CMB). Of course, the vacuum energy needs to be renormalized but if we are to solve
the cosmological constant problem by renormalization only, the fine-tuning is a lot worse
than for the Higgs mass even.
Other open questions in cosmology include the question what drives inflation and, of
course, at the end of the day general relativity needs to be reconciled with quantum
field theory.

1.4 Physics Beyond the Standard Model

In order to resolve one or several of the problems exposed in section 1 several "Beyond
the Standard Model" theories have been proposed and we will briefly sketch the main
ideas of the more famous ones of them here. Two BSM theories, the Two Higgs Doublet
Model (2HDM) and warped extra-dimensions will be treated in more detail in chapters
3 and 4, respectively, and will therefore not be mentioned here.

1.4.1 Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry that relates fermions and bosons.
The supersymmetry generator Q transforms a fermion into a boson and vice versa [7]:

Q ∣boson⟩ = ∣fermion⟩ Q ∣fermion⟩ = ∣boson⟩ (1.37)

The irreducible representations of the supersymmetry are called supermultiplets. They
contain fermions and bosons, called superpartners. Since the supersymmetry generator
Q commutes with the generators of the gauge group, fermions and bosons in the same
supermultiplet have the same electric charge, weak isospin and color degree of freedom.
The simplest way to assign the particles of the SM to supermultiplets is as follows: All
the SM fermions must be in so called chiral supermultiplets consisting of a single Weyl
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fermion and a complex scalar. The superpartners of the fermions are called sfermions :
squarks and sleptons, see table 1.1.
The gauge bosons are in gauge supermultiplets, paired with spin 1/2 fermions called
gauginos : gluinos, winos, binos, see table 1.2. It is not possible to pair the gauge
bosons with the quarks and leptons of the SM because the fermionic superpartners of
the gauge bosons must have the same gauge transformation properties for left- and
right-handed states, which is not the case for the fermions of the SM.
The Higgs boson resides in a chiral supermultiplet, see table 1.1. Actually there are two
Higgs supermutliplets φu and φd. This is necessary since the condition for the gauge
anomaly of the electroweak symmetry to vanish contains Tr(Y 3) = 0 where Y is the
weak hypercharge. In the SM this is miraculously satisfied. However, if we introduce
additional fermions, as is done in supersymmetry, since the trace runs over all fermions,
the condition is no longer necessarily satisfied. A second Higgs is thus needed in order
to cancel the contribution to Tr(Y 3) coming from the superpartner of the first Higgs
(called Higgsino). Another reason to introduce the second Higgs is that only a Y = 1/2
Higgs can have Yukawa couplings to up-type quarks and only a Y = −1/2 Higgs can
have Yukawa couplings to down-type quarks and charged leptons: In the SM we have:

LYukawa = q̄LYuuRφ̃ + q̄LYddRφ + l̄LYeeRφ + h.c. (1.38)

where φ̃ = iτ2φ∗, see eq. (1.19). Supersymmetric Lagrangians however need to be
analytic and thus cannot contain a complex conjugate field φ∗. Thus we need two
Higgses: one that couples to the up-type quarks and one that couples to the down-
type quarks and charged leptons:

LYukawa = q̄LYuuRφu − q̄LYddRφd − l̄LYeeRφd (1.39)

The model described thus far is called the minimal supersymmetric model (MSSM).
There are other supersymmetric models, containing additional scalars or several copies
of the supersymmetry generator Q. Some of them are motivated by phenomenology,
while others are merely interesting from a theoretical point of view. Here, we will deal
with the MSSM only.
One of the main arguments in favor of supersymmetry is that it solves the hierarchy
problem: Going back to eq. (1.22) we see that contributions coming from scalars (in
this case the Higgs) have opposite sign than contributions due to fermions (in this case
the top quark). Now in supersymmetry we have a boson for every fermion and their
couplings are related in a way such that the radiative corrections to the Higgs mass
exactly cancel.
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supermultiplet bosons (spin 0) fermions (spin 1/2)

q (ũL d̃L) (uL dL)

ū ũ∗R u†
R

d̄ d̃∗R d†
R

l (ν̃ ẽL) (ν eL)

ē ẽ∗R e†R

φu (φ+u φ0
u) (φ̃u φ̃0

u)

φd (φ0
d φ

−
d) (φ̃0

u φ̃
−
u)

Table 1.1: Chiral supermultiplets in the MSSM. Note that left- and right-handed fermions
have each their own superpartner (The subscripts "L" and "R" for the bosons are just part of
the name, they do not indicate the chirality of the particle - they are scalars, after all!)

fermions (spin 1/2) bosons (spin 1)

g̃ g

W̃ ± W̃ 0 W ± W 0

B̃0 B0

Table 1.2: Gauge supermultiplets in the MSSM. After electroweak symmetry breaking the
gauge eigenstates W 0 and B0 mix to give the mass eigenstates Z0 and γ. Correspondingly,
their superpartners mix to give the mass eigenstates Z̃0 and γ̃, the zino and the photino.
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Life ain’t that good, of course. Nobody has ever observed any of the superpartners of
the SM particles. If supersymmetry were unbroken, they should have exactly the same
masses as the SM particles. Since they are yet undiscovered, they must be heavier and
supersymmetry must be broken.

Soft SUSY breaking scenarios ensure that the relations in between the fermion and
boson couplings hold also in broken SUSY. There are no thus no quadratically divergent
contributions to the Higgs mass such as:

∆µ2 = 1

8π2
(λs − ∣λf ∣2)Λ2 (1.40)

where λs and λf represent the scalar and fermion couplings, respectively. The problem
is that soft SUSY breaking introduces a lot of undetermined new parameters, the soft
masses. The MSSM with soft SUSY breaking still has some amount of fine-tuning
[21, 22]: For the Higgs mass at one-loop level you get:

m2
h =m2

Z +
3GFm4

t√
2π2

[log
m2
t̃

m2
t

+X2
t (1 − X

2
t

12
)] (1.41)

where X2
t = ∣At∣2/m2

t̃
and At is the scalar3-coupling of the stop. Already LEP set the

lower bound of the Higgs mass at 114.4 GeV [23]. To satisfy this bound we need a stop
mass mt̃ ≥ 1 TeV. All scalar masses at the high energy scale should be of the same
order for magnitude. Look at the mass of the Z however. In the MSSM it can be
calculated to be:

m2
Z ≈ −2m2

φu
(MZ) − 2µ2 (1.42)

where mφu is the soft mass of φu. Since we have m2
φu

∼ µ2 ∼ 1 TeV, we need a fine-
tuning of about 1 % to get the correct Z mass of mZ = 91 GeV. This is called the little
hierarchy problem.

Another problem with supersymmetry is that it can lead to proton decay: The super-
symmetric Lagrangian is constructed from the superpotential which a priori contains
terms that violate baryon or lepton number:

W∆L=1 = 1

2
λijklilj ēk + λ′ijkliqj d̄k + µ′iliφu (1.43)

W∆B=1 = 1

2
λ′′ijkūid̄j d̄k (1.44)

Due to processes as the one shown in fig. 1.3 the lifetime of the proton would be
extremely short if these couplings were present and unsupressed. To get rid off these
unpleasant terms a new symmetry called matter parity that forbids them is imposed
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s̃∗R

u

u

d

u

u∗

e+
λ′′∗112 λ′112

Figure 1.3: Proton decay in the MSSM without R-parity: p→ π0e+.

on the Lagrangian. It is defined as:

PM = (−1)3(B−L) (1.45)

Only terms with matter parity +1 are allowed in the Lagrangian. Matter parity can
be recast as R-parity :

PR = (−1)3(B−L)+2s (1.46)

Matter parity and R-parity conservation are precisely equivalent and we notice the
following fact: The SM particles have all R-parity +1 while the new, yet undiscovered
superpartners (sparticles) have R-parity -1. Therefore every interaction vertex must
contain an even number of sparticles and the lightest supersymmetric particle (LSP)
is stable! It is therefore a good Dark Matter candidate, provided that it is electrically
neutral and colorless.
A third motivation for supersymmetry is that the running gauge couplings of the weak,
electromagnetic and strong forces meet in one point only if supersymmetry is assumed.
This is interesting in the view of grand unified theories (GUTs) that unify all three
forces.

1.4.2 Extra Dimensions

At the turn of the millennium two main ideas of how to solve the hierarchy problem
using extra dimensions of space-time were put forward: warped extra dimensions, also
known as the Randall-Sundrum (RS) model [24] and large extra dimensions also known
as the Arkani-Hamed Dimopoulos Dvali (ADD) model [25, 26, 27]. Since the former
will be treated in detail in chapter 4 we will briefly sketch only the latter here.

Kaluza-Klein states

To start with however let us consider a 5D scalar field φ that lives in a space-time
where the 5th dimension is compactified on a circle of radius R, i.e. the points y = −πR
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and y = πR are identified (y is the coordinate along the fifth dimension). Due to these
periodic boundary conditions we can Fourier-expand the field φ with respect to the
coordinate y [28]:

φ(x, y) =
∞

∑
n=−∞

φn(x)ei
ny
R (1.47)

Plugging this into the Lagrangian of a massless scalar field in five dimensions, L =
1
2∂Aφ∂

Aφ (A runs over all five dimensions) we get:

L = 1

2
∑
n

[∂µφn∂µφn −m2
nφ

2
n] (1.48)

where mn = n/R and µ runs only over the four non-compact dimensions. We see that
our scalar field has a Kaluza-Klein (KK) tower of heavier particles with masses mn.
Fermion, vector and tensor fields have similar KK towers of heavier particles. Since
none of these KK states has ever been discovered, all of them must be heavier than
the discovery reach of past colliders. The massless n = 0 field is called the zero-mode.
The zero-modes correspond to the particles of the SM.

Large extra dimensions

In ADD it is assumed that space time has n compact extra dimensions. Gauß’ law
then tells us that the Planck scale M4D

Pl measured in the effective 4D theory is related
to the fundamental Planck scale MPl by [29, 28, 30]:

(M4D
Pl )2 = VnM2+n

Pl (1.49)

where Vn is the volume of the extra dimensions. In other words, depending on the
size of the volume of the extra dimension, the fundamental Planck scale might be a
lot smaller than what was previously thought. The enormousness of the Planck scale
would be only a phantasm of our 4D viewpoint! The hierarchy problem would be
solved! A radical revision of quantum physics in order to include gravity would be
needed already just above the electroweak scale!

As an example, consider the extra dimensions to be compactified on an n-Torus of
radius R (for an example of a 2-torus see fig. 1.4). The volume of a torus is Vn = (2πR)n.
Putting in the value for the 4D Planck scale and requesting the fundamental Planck
scale to be MPl ∼ 1 TeV, we can calculate R as a function of the number of extra
dimensions. If there were only one extra-dimension it would need to be almost as
big as the solar system, which is of course ruled out. For two extra-dimensions we
get R ∼ 200 µm, at the brink of what is still allowed by experiments searching for
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Figure 1.4: A two-dimensional Torus

deviations from Newton’s law of gravity.

We have seen in the previous paragraph that particles that propagate in compact extra-
dimensions of space-time have a KK tower of heavier particles associated with them.
Since no KK states of SM particles have been observed so far, this means that their
masses must be ≳ 100 GeV. The mass of the lightest KK particle is ∼ 1/R and therefore
we must have 1/R ≥ 100 GeV. To get a fundamental Planck scale of 1 TeV, we would
then need n ≥ 10. This would exclude superstring theory, since it needs n = 6 or n = 7.
There is a way out however: particles that do not propagate in the extra-dimensions
do not have a KK tower associated with them. One therefore usually assumes that the
SM particles are confined to the four dimensional boundary, the brane and that only
the graviton propagates into the extra dimensions.

We have seen, eq. (1.49), that ADD can bring down the fundamental Planck scale
to the weak scale. However, this is more of a reformulation than a solution to the
hierarchy problem. The reason is that instead of having to explain why the weak scale
is so much smaller than the Planck scale we now need to explain why the volume of the
extra dimensions Vn is so much bigger than 1/Mn

Pl. Supersymmetry could help solve
this problem as we shall see in the next paragraph.

The radion

According to General Relativity, the size and shape of the extra-dimensions is dynam-
ical as is all of spacetime. Consider the metric of a five-dimensional spacetime [30]:

ds2 = GAB(X)dXAdXB

= GAB(X(X ′)) ∂X
A

∂X ′A′ dX
′A′ ∂X

B

∂X ′B′ dX
′B′

(1.50)

= GA′B′(X ′)dX ′A′dX ′B′
(1.51)
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where X = (x, y) and obviously:

GA′B′(X ′) = GAB(X(X ′)) ∂X
A

∂X ′A′
∂XB

∂X ′B′ (1.52)

Expanding the metric around flat spacetime,

GAB(X) = ηAB + hAB(X) (1.53)

we get in almost axial gauge1:

hµ5(x, y) = h(0)µ5 (x) (1.54)

h55(x, y) = h(0)55 (x) (1.55)

hµν(x, y) = h(0)µν (x) +
∞

∑
n=1

(h(n)µν (x)e inyR + c.c.) (1.56)

Since the Einstein action written in terms of the 5D Ricci scalar contains only terms
with derivatives, the h(0)AB are massless 4D fields without any potential at all. The KK
states h(n)µν have masses mn = n/R as we have seen above. The fields h(0)µ5 can be gauged
away but the massless field h

(0)
55 remains. What is the role of this field? Since it is

independent of the extra dimensional coordinate y and doesn’t have a potential, it can
have any vev:

⟨h(0)55 ⟩ = ξ (1.57)

Assuming ⟨h(0)µν ⟩ = 0 and ⟨h(0)µ5 ⟩ = 0 and that the extra dimension is compactified on a
circle with radius R, we get for the vev of the line element:

⟨ds2⟩ = ηµνdxµdxν − (1 + ξ)dydy (1.58)

= ηµνdxµdxν − (1 + ξ)R2dφ2 (1.59)

In other words, the vev of the radius of the extra dimension is R′ =
√

1 + ξR. Fluctua-
tions of the scalar field h(0)55 thus correspond to fluctuations of the radius of the extra
dimension. It is therefore called the radion.

Now back to the problem that we need to explain why Vn is so big in ADD. In the case
of an extra-dimension compactified on a circle a big Vn means a large vev for the radius,
⟨R′⟩. Fermion loops induce an effective potential for the radion. Supersymmetry will
then cause this potential to be flat at large values of R′, thus making ⟨R′⟩ big.

1Almost axial gauge is the gauge where the fifth component of a field is independent from the
coordinate along the extra-dimensions, in this case y.
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Universal Extra Dimensions

In Universal Extra Dimensions (UED) [31] all fields are allowed to propagate in the
extra-dimensions. These extra-dimensions (often there is only one) have radii of ∼
10−18 m and are compactified on an orbifold in order to reproduce the SM at low
energy. These models do not address the hierarchy problem, but they can provide a
DM candidate as we shall see in the following.

KK parity The lightest KK particle (called LKP) cannot decay to its zero mode or
to other SM particles. This is due to the so-called Kaluza-Klein parity, a conserved
multiplicative quantum number: The number n of the Kaluza-Klein level of a particle
is a measure of its (quantized) momentum in the extra dimension. Since in UED no
location along the extra-dimension is exceptional, i.e. there is translational invariance,
extra-dimensional momentum conservation and thus KK-number conservation holds,
according to Noether’s theorem. The orbifolding however breaks the translational
invariance. It can be shown however that the KK-parity, defined as (−1)n, is still
conserved [32, 33]. This is enough to have the LKP stable. If it is neutral it can then
be Dark Matter.
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Chapter 2

The Problem with Flavour

2.1 Flavour and the Standard Model

We already said in sec. 1.2, that in the SM there are no flavour changing neutral
currents at tree level. Let’s pause here for a moment and reflect on why this is the
case. Among the particles of the SM there are four neutral bosons, that could mediate
FCNCs at tree level: the gluon, the photon, the Higgs and the Z0 boson [34, 35, 36, 37].
The gluon and the photon correspond to exact gauge symmetries and their couplings
to the fermions arise from the kinetic terms. Their couplings are thus universal, i.e.
proportional to the identity matrix. However you rotate a universal matrix, it will
always stay universal and thus diagonal. Gluons and photons therefore cannot mediate
FCNCs.
Now, consider the Higgs’ couplings: The Higgs couples to the fermions via Yukawa
couplings, see eq. (1.19). Inserting

φ =
⎛
⎜⎜⎜⎜
⎝

0

v + h

⎞
⎟⎟⎟⎟
⎠

(2.1)

where h are the fluctuations of the Higgs field around its vacuum expectation value,
we get:

LYukawa = ūL vYu°
Mu

uR + ūLYuuRh + d̄L vYd°
Md

dR + d̄LYddRh (2.2)

Obviously, the Higgs’ couplings Yu, Yd are diagonal in the same basis as the mass
matrices Mu = vYu,Md = vYd. One says that the Yukawa couplings and the mass
matrices are aligned.
Finally, we already saw in section 1.2 that the Z0 couplings are also diagonal in the
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b, s

(b) box diagram

Figure 2.1: Examples of FCNCs in the SM at one-loop level.

mass basis. This is due to the unitarity of the transformation matrices VuL, VdL.
FCNCs can occur via W ± loops, however, as is shown in fig. 2.1. Since these are loop
processes, their rate is highly suppressed, a fact that is confirmed by experiment and
poses considerable problems when one tries to extend the SM.

The GIM mechanism

In the past, it was not understood why the decay KL → µ+µ− was not observed. At
that time, the charm quark had not yet been discovered and the decay was thought to
occur via:

s

µ

u

d
W ±

νµ

W ±
µ

However, the existence of a fourth quark was predicted by Lee Glashow, Jean Illiopoulos
and Luciano Maiani [38]. It would contribute a second Feynman diagram:

s

µ

c

d
W ±

νµ

W ±
µ

The amplitude is then proportional to the sum of these diagrams while the diagrams
depend on a combination of matrix elements of the CKM matrix and the mass of the
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quark in the loop:

A(KL → µ+µ−) ∝ f(mu)VusV ∗
ud + f(mc)VcsV ∗

cd (2.3)

On the other hand, the CKM matrix is unitary and we must therefore have (for two
generations of quarks):

VusV
∗
ud + VcsV ∗

cd = 0 (2.4)

That means that the parts independent of mu,c in 2.3 will cancel. Explicit calculation
shows that the leading term in f(mu,c) is ∝ m2

u,c/m2
W . This explains why the decay

KL → µ+µ− is not observed: Even the leading contribution to its amplitude is still
suppressed by m2

c/m2
W so its rate is very small. This allowed to set an upper bound on

the charm quark’s mass.

CP violation

Let us turn to one other important aspect of flavour physics in the SM before we will
consider new physics models in the light of flavour. How many parameters are there
in the SM quark flavour sector? There are two Yukawa matrices in the Lagrangian, so
this would make up for 2 × 9 = 18 real parameters and 2 × 9 = 18 imaginary ones. This
is without taking possible field redefinintions that absorb some of these parameters,
however. The transformations

qL → VqqL uR → VuuR dR → VddR (2.5)

leave the Lagrangian invariant, apart from a rotation of the Yukawas:

Yu → VqYuV
†
u Yd → VqYdV

†
d (2.6)

Each of the rotation matrices Vq, Vu, Vd contain three real parameters and six imaginary
ones. We can use these rotations to remove unphysical parameters. Out of the 18 real
parameters we can remove 3 × 3 = 9 and out of the 18 imaginary parameters we can
remove 17. We cannot remove the full 18 imaginary parameters since the Lagrangian
has a U(1)B−L symmetry. This leaves us with 9 real parameters, the 6 quark masses and
the three angles of the CKM matrix. The left-over imaginary parameter corresponds
to the phase δKM in the CKM matrix. A complex Yukawa coupling is related to CP
violation, as can be seen as follows: The hermiticity of the Lagrangian implies that it
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CHAPTER 2. THE PROBLEM WITH FLAVOUR

has Yukawa couplings of the form:

ψ̄LY ψRφ + ψ̄RY ∗ψLφ
† (2.7)

If we perform a CP transformation we get:

ψ̄LY ψRφ + ψ̄RY ∗ψLφ
† CPÐÐ→ ψ̄RY ψLφ

† + ψ̄LY ∗ψRφ (2.8)

We thus have CP conservation if Y = Y ∗. The phase of the CKM matrix is the only
source of CP violation in the SM.

2.2 Flavour in New Physics Models

Flavour in new physics models can be studied in a model-independent manner using an
effective field theory (EFT) approach. In EFT one integrates out fields that are heavier
than the energy scale one is interested in. This leaves us with terms in the Lagrangian
that have negative mass dimension, i.e. that are suppressed by a mass scale M , the
scale where new physics kicks in. Of course, such a theory is non-renormalizable. This
is not a problem however, since we do not claim that it is valid at all energy scales. At
the scale M the new physics needs to be taken into account and the complete theory
should then be renormalizable. Summing up, we have [36]:

Leff. = LSM +∑
i

C
(d)
i

Md−4
O(d)i (2.9)

where O(d) are operators made up of SM fields and the coefficients C(d)i , called Wilson
coefficients are of course unknown. For a given NP model they can be calculated by
integrating out the new particles at the NP scaleM and evolving these couplings down
to the scale where the experiments are performed, i.e. for example the mass scale of
the meson that is studied: 4.6 GeV for bottom mesons, 2.8 GeV for charmed mesons
and 2 GeV for kaons. In addition, the hadronic matrix element of the meson has also
to be calculated in order to compare to experiment.

A complete set of ∆F = 2 operators (i.e. processes that change flavour by two units)
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2.2. FLAVOUR IN NEW PHYSICS MODELS

Operator Bounds on M in TeV (C(d)i = 1) Bounds on C(d)i (M = 1 TeV)

Re Im Re Im

(s̄LγµdL)2 9.8 ⋅ 102 1.6 ⋅ 104 9.0 ⋅ 10−7 3.4 ⋅ 10−9

(s̄RdL)(s̄LdR) 1.8 ⋅ 104 3.2 ⋅ 105 6.9 ⋅ 10−9 2.6 ⋅ 10−11

(c̄LγµuL)2 1.2 ⋅ 103 2.9 ⋅ 103 5.6 ⋅ 10−7 1.0 ⋅ 10−7

(c̄RuL)(c̄LuR) 6.2 ⋅ 103 1.5 ⋅ 104 5.7 ⋅ 10−8 1.1 ⋅ 10−8

(b̄LγµdL)2 5.1 ⋅ 102 9.3 ⋅ 102 3.3 ⋅ 10−6 1.0 ⋅ 10−6

(b̄RdL)(b̄LdR) 1.9 ⋅ 103 3.6 ⋅ 103 5.6 ⋅ 10−7 1.7 ⋅ 10−7

(b̄LγµsL)2 1.1 ⋅ 102 7.6 ⋅ 10−5

(b̄RsL)(b̄LsR) 3.7 ⋅ 102 1.3 ⋅ 10−5

(t̄LγµuL)2 12 7.1 ⋅ 10−3

Table 2.1: Bounds on dimension six ∆F = 2 operators (numbers from [39, 40, 41])

is given by five operators of mass dimension six (i.e. suppressed by M−2)1:

Oqiqj1 = q̄αjLγµqαiLq̄βjLγµq
β
iL (2.10)

Oqiqj2 = q̄αjRqαiLq̄βjRq
β
iL (2.11)

Oqiqj3 = q̄αjRqβiLq̄
β
jRq

α
iL (2.12)

Oqiqj4 = q̄αjRqαiLq̄βjLq
β
iR (2.13)

Oqiqj5 = q̄αjRqβiLq̄
β
jLq

α
iR (2.14)

where i, j are flavour and α,β are colour indices. Experimental bounds on the NP scale
or alternatively on the Wilson coefficient are given in table 2.1. As you can see, we
either need a rather high new physics scale M or the Wilson coefficients must be very
small. This is usually referred to as the new physics flavour problem. A high NP scale
would leave us with corrections to the Higgs’ mass that are still quite considerable and
thus with substantial fine-tuning, i.e. a little hierarchy problem. Most theorists thus
prefer the latter solution (not to speak of the experimentalists who also prefer NP at
the electroweak scale in order to make it accessible to the LHC). Such small Wilson
coefficients hint at a nontrivial flavour structure of NP. Before we will attack this topic
however, let’s pause and consider flavour in the SM in the light of symmetries.

1There are no dimension five operators relevant for flavour physics
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CHAPTER 2. THE PROBLEM WITH FLAVOUR

2.3 Flavour symmetries in the SM

In the absence of the Yukawa couplings the SM is invariant under the flavour symmetry
[36]:

GSM = U(3)qL ×U(3)uR ×U(3)dR (2.15)

Under this symmetry the quark fields transform as:

qL(3,1,1) uR(1,3,1) dR(1,1,3) (2.16)

To study flavour in the SM and beyond one promotes the Yukawa couplings to so-called
spurion fields2 that transform under the flavour symmetry as bi-fundamentals:

Yu(3, 3̄,1) Yd(3,1, 3̄) (2.17)

The Lagrangian is then formally invariant under the flavour symmetry. The spurion
fields acquire background values that break the flavour symmetry.

Consider the objects

AuR,dR = Y †
u,dYu,d −

1

3
Tr(Y †

u,dYu,d)1 (2.18)

and
AuL,dL = Yu,dY

†
u,d −

1

3
Tr(Yu,dY †

u,d)1 (2.19)

which transform as:
AuR,dR → VuR,dRAuR,dRV

†
uR,dR (2.20)

AuL,dL → VuL,dLAuL,dLV
†
uL,dL (2.21)

i.e. they are adjoints of U(3)uR,dR and U(3)qL, respectively. We can even further
enhance the flavour group: Only the W ± couplings g link the up and down quarks.
Thus, in the absence of W ± couplings the flavour symmetry is:

GSM without W± = U(3)uL ×U(3)dL ×U(3)uR ×U(3)dR (2.22)

Flavour conversion is then forbidden, since, as we have already seen in 1.2, only the
charged currents link in between the different flavours. By promoting the coupling
g to a spurion, the SM Lagrangian is formally invariant under GSM without W± and the
transformation properties of the fields and spurions are:

uL(3,1,1,1) dL(1,3,1,1) uR(1,1,3,1) dR(1,1,1,3) (2.23)

2These are just auxiliary fields however: they have no kinetic terms and are dimensionless.
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g(3, 3̄,1,1) Yu(3,1, 3̄,1) Yd(1,3,1, 3̄) (2.24)

GSM without W± is fully broken via the background values of the Yukawas and g. In the
weak interaction basis the background value of g is proportional to the identity matrix:

⟨g⟩int. ∝ 1 (2.25)

while in the mass basis its background value is the CKM matrix:

⟨g⟩mass = VCKM (2.26)

Flavour conversion occurs because we cannot simultaneously diagonalize AuL ,AdL and
g. The misalignement between AuL and AdL is characterized by the CKM matrix.
Parameterizing the CKM matrix as (so-called Wolfenstein parametrization [42]):

VCKM =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 − λ2

2 λ Aλ3(ρ − ıη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − ıη) −Aλ2 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

+O(λ4) (2.27)

with λ = 0.22535 ± 0.00065, A = 0.811+0.022
−0.012, ρ = 0.131+0.026

−0.013 and η = 0.345+0.013
0.014 [9], we

can write the spurions as [43]:

AuR,dR = diag.(0,0, y2
t,b) −

y2
t,b

3
1 +O(

m2
c,s

m2
t,b

) (2.28)

AuL,dL = diag.(0,0, y2
t,b) −

y2
t,b

3
1 +O(

m2
c,s

m2
t,b

) +O(λ2) (2.29)

We see that the four spurions are approximately aligned or in other words that there
is an approximate residual U(2)uR ×U(2)dR flavour symmetry (the left-handed flavour
symmetry is broken by the background value of g). This means that flavour-changing
RH currents which involve light quarks are very small. Furthermore, we see that to
leading order, flavour conversion is due only to the large top Yukawa coupling.

2.4 Minimal Flavour Violation

We have seen in 2.2 that new physics at the TeV scale must have a non-trivial flavour
structure in order to be in agreement with experimental constraints on FCNCs. It
wouldn’t make sense to impose the flavour group GSM on a NP model however, since
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CHAPTER 2. THE PROBLEM WITH FLAVOUR

it is already broken in the SM. But we can do the following: treating the Yukawa
couplings as spurions, just as in 2.3, we request that these are the only sources of
flavour violation and require that all terms in the Lagrangian are (formally) invariant
under GSM. This principle, called Minimal Flavour Violation (MFV) [43, 44, 45],
guarantees that low-energy flavour violating processes differ only very little from SM
predictions. This is because the approximate U(2) flavour symmetry of the SM is
conserved when enlarging the SM to include NP at the TeV scale. To study the effects
of NP in a model-independent way, we can use an EFT and find that for processes
involving external down-type quarks3, the basic bilinear FCNC structures are:

q̄LYuY
†
u qL d̄RY

†
d YuY

†
u qL d̄RY

†
d YuY

†
uYddR (2.30)

We can always rotate the background value of the spurion fields to a basis where Yd is
diagonal:

Y diag.
d =

⎛
⎜⎜⎜⎜⎜⎜
⎝

yd

ys

yb

⎞
⎟⎟⎟⎟⎟⎟
⎠

Yu = V †
CKMY

diag.
u = V †

CKM

⎛
⎜⎜⎜⎜⎜⎜
⎝

yu

yc

yt

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.31)

All but the top Yukawa coupling yt are very small (since the other quarks are light)
and we thus get:

(YuY †
u )ij ∼ AFC ≡ y2

t ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

V ∗
tiVtj for i ≠ j

0 for i = j
(2.32)

The only relevant bilinear FCNC structures are then:

q̄LAFCqL d̄RY
diag.
d AFCqL (2.33)

From these, a bunch of FCNC dimension-six operators can be constructed (see [43]
for a complete list). Comparing to experimental results, bounds on the scale of NP
in MFV models can be inferred. We get a NP scale of M ∼ a few TeV, a significant
improvement to what we found in table 2.1.
You may ask whether there are any concrete NP models that exhibit MFV and indeed
there are: Supersymmetry with gauge-mediated SUSY breaking is an example [46]. In
order to achieve gauge-mediated SUSY breaking some new chiral supermultiplets, the
messengers, are introduced. They couple to the source of SUSY breaking, but also to

3We focus on external down-type quarks since experimental bounds on processes with external
up-type quarks are less stringent.
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the fields of the MSSM via the ordinary gauge bosons of the SM. Soft SUSY breaking
terms are thus induced by loops in a way that the flavour sector respects MFV. We
will get to know another model incorporating MFV in section 3.4.
One last word on MFV in supersymmetry: In the limit where the ratio of the expec-
tation values of the two Higgs fields of the MSSM, usually denoted tanβ, is large, the
bottom Yukawa coupling can become comparable to the top Yukawa and there is a
second non-negligible flavour-violating structure in addition to 2.32
A variation of MFV is General Minimal Flavour Violation (GMFV) [36, 47] where
flavour diagonal CP violating phases are added to generic MFV models. The experi-
mental constraints on the NP scale are then substantially higher than in the case where
only the SM Yukawas are responsible for the breaking of flavour and CP. This is mainly
due to bounds coming from electric dipole moments.
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Chapter 3

Two Higgs Doublet Models

3.1 Extending the Higgs Sector

Even after the (probable) discovery of the Higgs at the LHC it is still conceivable that
the Higgs sector differs from its simplest form that is realized in the SM. The easiest
possibility to extend it is to simply add a second Higgs doublet, i.e. a second scalar
SU(2) doublet with hypercharge Y = 1/2. This is what is called a Two Higgs Doublet
Model (2HDM).

3.1.1 EWSB in the presence of a second Higgs

The most general potential we can write for two identical scalars φ1 and φ2 is [48]:

V2HDM = m2
11φ

†
1φ1 +m2

22φ
†
2φ2 − (m2

12φ
†
1φ2 + h.c.)

+λ1

2
(φ†

1φ1)2 + λ2

2
(φ†

2φ2)2 + λ3(φ†
1φ1)(φ†

2φ2) + λ4(φ†
1φ2)(φ†

2φ1) (3.1)

+{λ5

2
(φ†

1φ2)2 + [λ6(φ†
1φ1) + λ7(φ†

2φ2)]φ†
1φ2 + h.c.}

where m2
12, λ5, λ6 and λ7 can be complex (that would mean that the potential is explic-

itly CP violating). This potential must be bounded from below, that is there must be
no directions in field space where V2HDM → ∞. The 2HDM potential is bounded from
below if and only if [49, 50]

λ1 > 0 λ3 > −
√
λ1λ2 (3.2)

λ2 > 0 λ3 + λ4 − ∣λ5∣ > −
√
λ1λ2 (3.3)
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For λ6 and λ7 only necessary conditions can be derived [49, 51, 52]:

2 ∣λ6 + λ7∣ <
λ1 + λ2

2
+ λ3 + λ4 + λ5 (3.4)

All these conditions only ensure that the vacuum is bounded from below at tree level.
One must also take into account radiative corrections, i.e. the dependence of the λ’s
on the renormalization scale µ. Ensuring that the potential is bounded from below
will then put lower bounds on the values of the λ’s. On the other hand perturbativity
must not break down either and thus there will be upper bounds on λ as well.

3.1.2 Phenomenology of the 2HDM

As long as we only have one Higgs boson we can always perform an SU(2) rotation on
its vacuum expectation value such that it reads:

⟨φ⟩ =
⎛
⎝

0

v

⎞
⎠

(3.5)

Then, the electric charge operator Q always annihilates the vacuum:

Q ⟨φ⟩ = 0 (3.6)

In other words, U(1)em. is unbroken and the photon remains massless as it should be.
In a 2HDM on the other hand, we can make use of the SU(2) × U(1) symmetry to
reduce the most general vev to the form [53]

⟨φ1⟩ =
1√
2

⎛
⎝

0

v1

⎞
⎠

⟨φ2⟩ =
1√
2

⎛
⎝
u

v2eiξ

⎞
⎠

(3.7)

Then, only for u = 0 the photon will remain massless [48]. It is certainly a drawback of
the 2HDM that the photon is not automatically massless. Let us however assume that
we are in a part of the parameter space where u = 0 and thus the photon is massless
and carry on. We can furthermore shift the phase ξ to the Yukawa couplings and the
potential. We can then rotate the the Higgs fields to a basis where only one of them,
say Φ1 acquires a vev (sometimes called Higgs basis):

⎛
⎝

Φ1

−Φ2

⎞
⎠
=
⎛
⎝

cosβ sinβ

sinβ − cosβ

⎞
⎠
⎛
⎝
φ1

φ2

⎞
⎠

(3.8)

where tanβ = v2/v1, i.e. tanβ is the ratio of the vev’s in the original basis. To find the
mass eigenstates of the Higgs doublets, we start by writing the two complex doublets
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in terms of eight real fields [54]:

Φ1 =
⎛
⎝
ϕ1 + iϕ2

ϕ3 + iϕ4

⎞
⎠

Φ2 =
⎛
⎝
ϕ5 + iϕ6

ϕ7 + iϕ8

⎞
⎠

(3.9)

For

Φ1 =
⎛
⎝

0

v

⎞
⎠

Φ2 =
⎛
⎝

0

0

⎞
⎠

(3.10)

to be the minimum of the potential, we must require

∂V

∂ϕi
∣
{
ϕk = 0 for k ≠ 3

ϕk = v for k = 3

= 0 (3.11)

This yields the minimum conditions1:

m2
11 = −λ1v

2 m2
12 = λ6v

2 (3.12)

We now calculate the mass (squared) matrix

M2
ij =

1

2

∂V

∂ϕi∂ϕj
∣
{
ϕk = 0 for k ≠ 3

ϕk = v for k = 3

(3.13)

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 2λ1v2 0 0 0 2λ6v2 0

0 0 0 0 0 0 0 0

0 0 0 0 m2
22 + λ3v2 0 0 0

0 0 0 0 0 m2
22 + λ3v2 0 0

0 0 2λ6v2 0 0 0 m2
22 + ηv2 0

0 0 0 0 0 0 0 m2
22 + η′v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.14)

1I assume here that λ6 and m12 are real, i.e. that there are no new sources of direct CP violation
in the Higgs sector
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where we defined

η = λ3 + λ4 + λ5 (3.15)

η′ = λ3 + λ4 − λ5 (3.16)

The eigenvalues of the matrix describing the ϕ1 − ϕ5 (or ϕ2 − ϕ6) mixing give us the
masses of the charged Higgses H± and the charged Goldstone bosons G± (these are
massless of course):

M2
ϕ1ϕ5

=M2
ϕ2ϕ6

=
⎛
⎝

0 0

0 m2
22 + λ3v2

⎞
⎠

(3.17)

m2
G± = 0 m2

H± =m2
22 + λ3v

2 (3.18)

The ϕ4 − ϕ8 mixing yields the masses of the CP odd neutral Higgs A and the neutral
Goldstone boson G:

M2
ϕ4ϕ8

=
⎛
⎝

0 0

0 m2
22 + η′v2

⎞
⎠

(3.19)

m2
G = 0 m2

A =m2
22 + η′v2 (3.20)

Finally, we have the ϕ3 − ϕ7 mixing yielding the CP even mass eigenstates h and H:

M2
ϕ3ϕ7

=
⎛
⎜⎜
⎝

2λ1v2 2λ6v2

2λ6v2 m2
22 + ηv2

⎞
⎟⎟
⎠

(3.21)

Here things get more interesting since this matrix is not yet diagonal. As the matrix is
symmetric it is diagonalized by an orthogonal matrix which we choose to parameterize
as:

O =
⎛
⎜⎜
⎝

cosα sinα

− sinα cosα

⎞
⎟⎟
⎠

(3.22)

The mass eigenstates h and H are then given in terms of ϕ3 and ϕ7 as:

⎛
⎝
H

h

⎞
⎠
=
⎛
⎝

cosα sinα

− sinα cosα

⎞
⎠
⎛
⎝
ϕ3

ϕ7

⎞
⎠

(3.23)
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From

OTM2
ϕ3ϕ7

O =
⎛
⎝
m2
H 0

0 m2
h

⎞
⎠

(3.24)

we get:

m2
H = 1

2
(m2

22 + ηv2 + 2λ1v
2 +

√
(m2

22 + ηv2 − 2λ1v2)2 + 16λ2
6v

4) (3.25)

m2
h = 1

2
(m2

22 + ηv2 + 2λ1v
2 −

√
(m2

22 + ηv2 − 2λ1v2)2 + 16λ2
6v

4) (3.26)

cos(2α) = − m2
22 + ηv2 − 2λ1v2

√
(m2

22 + ηv2 − 2λ1v2)2 + 16λ2
6v

4
(3.27)

sin(2α) = − 4λ6v2

√
(m2

22 + ηv2 − 2λ1v2)2 + 16λ2
6v

4
(3.28)

In conclusion, in a 2HDM one can expect to find a heavy and a light CP even neutral
boson, H and h, a CP odd neutral boson, A, and a two charged bosons, H±. The
Goldstone bosons G± and G are eaten by the W ± and Z gauge bosons, respectively.

3.2 FCNCs in Two Higgs Doublet Models

A priori, both Higgs doublets can couple to all quarks and the Yukawa Lagrangian
thus reads for the quark sector2:

L ⊃ (Y (1)u )ij q̄′Liu′Rjφ̃1 + (Y (1)d )ij q̄′Lid′Rjφ1 + (Y (2)u )ij q̄′Liu′Rjφ̃2 + (Y (2)d )ij q̄′Lid′Rjφ2 (3.29)

There is no reason to expect that both Yukawa couplings Y (1)u , Y
(2)
u or Y (1)d , Y

(2)
d are

diagonal in the same basis. In general they are not and this will induce FCNCs at tree
level via the interchange of a neutral Higgs. Such processes include Bs − B̄s-mixing
and the rare decay B̄s → µ+µ−, see figure 3.1. Since there are stringent experimental
bounds on these processes, this eliminates the possibility of throwing a second Higgs
into the theory without taking any further precautions.
One possibility of avoiding too high rates for FCNC processes is of course to make one
of the two Higgses very heavy such that it can be integrated out at the weak scale,
leaving us with an effective theory that resembles closely to the SM. This is called the
decoupling limit [55]. From equations (3.18), (3.20), (3.26) and (3.28), we see that for

2The quark fields are primed here because we will later rotate them in order to diagonalize the
mass matrices and the rotated fields will have no primes then.
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h,H,A

s

b

b

s

(a) Bs − B̄s mixing

h,H,A

s

b

µ+

µ−

(b) B̄s → µ+µ−

Figure 3.1: Feynman diagrams for tree level flavour changing processes in a general 2HDM

m2
22 ≫ m2

11 ∼ v2 we get m2
H± ∼ m2

A ∼ m2
H = m2

22 + O(v2) and m2
h ∼ v2. However, this

is not a basis-independent characterization of the decoupling limit, because to deduce
(3.18), (3.20), (3.26) and (3.28), we went to a certain basis, see eq.s (3.8) and (3.10).
A basis-independent characterization is given by the following: Form the matrix m2

ij,
containing the quadratic terms of the potential, eq. (??). Label its eigenvalues m2

a

and m2
b where by convention ∣m2

a∣ ≤ ∣m2
b ∣. The decoupling limit is then given as m2

a < 0,
m2
b > 0 such that ∣m2

b ∣ ≫ ∣m2
a∣ ∼ v2.

As is shown in [55], in the decoupling limit FCNCs generated by tree level Higgs
exchanges are suppressed by a factor of order O(v2/Λ2

2HDM) where Λ2HDM is the mass
scale of the heavier Higgses H,H±,A, i.e. the scale at which the model truly becomes a
2HDM. Furthermore, the couplings of the light Higgs h to fermions and gauge bosons
and its self-couplings also deviate by terms of O(v2/Λ2

2HDM) only from their SM values.

3.2.1 The usual way out: Discrete Symmetries

The catch with the decoupling limit is that at low energies it mimics the SM and
therefore no new physics is to be expected at the LHC if a 2HDM in the decoupling limit
is really what nature has concocted for us. Physicists have thus come up with 2HDMs
that do not induce FCNCs at tree level while having an interesting phenomenology at
the electroweak scale.
Looking back at eq. (3.29) we see that FCNCs wouldn’t occur (well, at least at tree
level, that is) if each of the two Higgs doublets could couple to only one of the quark
fields. Then, there would be only one Yukawa matrix per quark species which could
be diagonalized to go to the mass basis. More generally, according to the Paschos-
Glashow-Weinberg theorem [56, 57], the necessary and sufficient conditions for the
absence of FCNCs at tree level is that all fermions of a given charge and helicity
transform according to the same irreducible representation of SU(2), correspond to
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3.2. FCNCS IN TWO HIGGS DOUBLET MODELS

the same eigenvalue of T3 and that a basis exists in which they receive their mass from
a single source.
This condition can be ensured by introducing a discrete symmetry Z2. One distin-
guishes several types of 2HDMs:

• In type I the second Higgs doublet transforms as φ2 → −φ2, while all the other
fields are even under this symmetry. φ2 can therefore not couple to the quark
fields [58, 59].

• In type II models the φ1 and down-type quark fields transform as φ1 → −φ1,
dR → −dR and the other fields are even under the discrete symmetry3. This
means that φ1 can only couple to down type quarks, while φ2 only couples to
up-type quarks4 [59, 60].

• Another possibility is to have one Higgs couple only to fermions and one Higgs
couple only to the quarks. This can be realized by the symmetry transformations
φ1 → φ1, φ2 → −φ2, qL → qL, lL → lL, uR → −uR, dR → −dR and eR → eR. This is
known by the names of leptophilic 2HDM, lepton specific 2HDM, type X 2HDM
and leptonic Higgs in the literature [61, 62, 63, 64, 65, 66, 67, 68, 69].

• Furthermore, there is also the possibility to have the Higgs couplings "switched",
such that, unlike in the MSSM, the leptons couple to the same Higgs as the up-
type quarks. (Symmetry transformations: φ1 → φ1, φ2 → −φ2, qL → qL, lL → lL,
uR → −uR, dR → dR and eR → −eR) [62, 66, 67, 68, 69].

Note that in all cases the terms proportional to m2
12, λ6 and λ7 in the potential (??)

are absent. These 2HDMs do not have a decoupling limit. This is because with
m2

12 = λ6 = λ7 = 0 the minimum conditions of the potential are [55]:

m2
11 = −

1

2
v2 [λ1c2

β + (λ3 + λ4 + λ5)s2
β] (3.30)

m2
22 = −

1

2
v2 [λ2s2

β + (λ3 + λ4 + λ5)c2
β] (3.31)

where cβ = cosβ and sβ = sinβ. But then m2
11 ∼m2

22 ∼ O(v2) and there is no decoupling
limit.
The discrete symmetry can be softly broken by having a non-zero m2

12-term in the
potential (??). This would only introduce finite Higgs mediated FCNCs at one loop
level [55].

3Apart from eR, which is also odd.
4And charged leptons since we also have eR → −eR, but we are not considering leptons here.
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Note that all these models can also be obtained by imposing a Peccei-Quinn symmetry
U(1)PQ instead of the discrete symmetry. For example for type II 2HDMs: dR and φ1

must have opposite charge under U(1)PQ, while all the other fields are neutral.

3.3 Benefits of having a second Higgs

Since we got into so much trouble by introducing a second Higgs you may ask: Why
introduce a second Higgs, if all we get is problems? Indeed, apart from the nobody-
else-has-done-it-thus-far argument there are some interesting effects that may occur
when you introduce a second or even more Higgs bosons.

3.3.1 The MSSM as a 2HDM

First it has to be noted that the MSSM is a 2HDM. As we have seen in 1.4.1, the
superpotential must be analytic in the superfields and thus we cannot have a term
q̄LiYuuRjφ̃ as in the SM Lagrangian. We thus need two Higgses: one for the up- and
one for the down- and charged lepton sectors. The Yukawa Lagrangian then reads:

LYukawa = q̄LYuuRφu − q̄LYddRφd − l̄LYeeRφd (3.32)

The second argument is that with only one Higgs, the electroweak symmetry would have
a gauge anomaly in the MSSM. The superfields have the following quantum numbers
under the gauge group:

Q(3,2,1/6) ū(3̄,1,−2/3) d̄(3̄,1,1/3) Hu(1,2,1/2) Hd(1,2,−1/2) (3.33)

Hu can thus not have a Yukawa coupling to the down-type quarks and Hd cannot have
a Yukawa coupling to the up-type quarks. We see that the MSSM is a type II 2HDM.

3.3.2 The inert doublet model

Electroweak precision tests (EWPT) at LEP showed that the Higgs must be light
(mφ < 186 GeV at 95 % C.L.). On the other hand in order for contributions from
higher dimensional operators not to exceed experimental EWPT limits, the cut-off of
the SM must be high, Λ ≥ 5 TeV. These two facts lead to the so-called LEP paradox
[70]: if the radiative corrections to the Higgs mass, coming notably from the top loop,
are cut-off only at Λ ∼ 5 TeV, δmφ largely exceeds the value of mφ preferred by the
EWPT. We thus have a naturalness problem.
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Introducing a second, "inert" Higgs could allow for a heavy Higgs (the one that is
responsible for EW symmetry breaking and fermion masses), thus improving the nat-
uralness of the effective theory below Λ [71, 72]. In the inert doublet model there is a
second Higgs that - like in type I 2HDMs - possesses the parity:

φ2 → −φ2 (3.34)

while all other fields are even under this transformation. Unlike in the conventional
type I 2HDM this parity is not spontaneously broken by doublet vevs: only φ1 acquires
a vev. The particle spectrum of this model is the following: there is a neutral Higgs
boson of 400 - 600 GeV that gives masses to the W and Z bosons and the fermions.
Additionally, there are "inert" particles that do not couple to the fermions: a charged
scalar, a CP odd and a CP even neutral scalar. These particles do have electroweak
and quartic interactions, of course, so the name "inert" might be a bit misleading.
Now how does this help us with avoiding constraints on the Higgs mass coming from
EWPT? The Higgs mass influences EWPT via logarithmic contributions to the pa-
rameters T and S:

T ≈ 3

8πc2
ln
mφ

mZ

(3.35)

S ≈ 1

6π
ln
mφ

mZ

(3.36)

The inert doublet produces a compensating ∆T and higher massesmφ become possible.
This allows the theory to be "natural" up to Λ ∼ 1.5 TeV.
With the recent discovery of a light Higgs, these considerations have however become
obsolete. But there is another interesting aspect of the inert doublet model: The
lightest one of the inert scalars is necessarily stable and thus a Dark Matter candidate5

[73, 74, 75].

3.3.3 Baryogenesis in 2HDMs

A further benefit of 2HDMs is that they might reopen the window to electroweak
baryogenesis. In the SM there are two reasons why electroweak baryogenesis doesn’t
work: 1) there is not enough CP violation and 2) for Higgs masses above 20 GeV, the
Higgs vev is small compared to the critical temperature at the time of the electroweak
phase transition: vc/Tc < 1. During the electroweak phase transition, bubbles of the
broken phase (i.e. non-zero Higgs vev) appear which expand until they fill all of space.

5This implies of course that the lightest inert scalar must be neutral.
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Inside the bubbles, the baryon number violating sphalerons must come to a halt or the
created baryon excess will be equilibrated to zero. This condition is fulfilled only if
vc/Tc ≳ 1.
In [76] it is shown that a 2HDM with a discrete symmetry φ2 → −φ2 that is softly
broken by a term m2

12φ
†
1φ2 (i.e. a type I 2HDM) can have vc/Tc ≳ 1 for a Higgs mass

of up to 300 GeV. This is due to the new scalars’ contribution to the cubic thermal
potential φ3T . Note that this is not possible in SUSY however, as m2

12 is always tuned
in such a way as to minimize the impact of the extra scalars no matter how heavy they
are. Also, new sources of CP violation can be present in 2HDMs.
Another possibility is to consider baryogenesis in the inert doublet model [77, 78]. It
turns out that in these kinds of models it is possible to have baryogenesis and a viable
DM (i.e. a neutral "inert" scalar) candidate at the same time! An SU(2) singlet added
to the SM could not do this job: although it can help with the phase transition it
cannot at the same time account for DM.
2HDMs without a discrete symmetry where considered in [79]. Here, Minimal Flavour
Violation (see sec. 2.4) is used in order to suppress the FCNCs. The Yukawa couplings
of the second Higgs are thus a function of the Yukawa couplings of the first Higgs:

Y
(2)
u,d = ηu,dY (1)u,d + η′u,dY

(1)
u,d Y

(1)†
u,d Y

(1)
u,d + . . . (3.37)

The scalar potential is the same as in eq. (3.1). There are several sources of CP
violation in this model: The phases of the Yukawa couplings of the second Higgs boson
φ2 cannot be removed by field redefinitions since these were already used up in order
to push the phases of the Yukawa coupling of the first Higgs into the CKM matrix.
Moreover, as already noted in 3.1.1, the couplings m2

12, λ5, λ6 and λ7 can be complex.
Two phases can be removed however: going to a basis where φ2 doesn’t get a vev (this
is always possible in this kind of models), m2

12 and λ6 are linearly related thus removing
one of their phases. In addition we can perform a phase transition on φ2, removing
another phase. In this model, it is found that there is enough baryogenesis in a small
subset of parameter space only.

3.3.4 Neutrino masses in 2HDMs

2HDMs are also interesting for the study of neutrino masses. Recall from sec. 1.3 that
the smallness of neutrino masses is an unsolved puzzle in the SM. The proposed solution
of having the small masses of the left-handed neutrinos induced by heavy right-handed
neutrinos via the seesaw mechanism has the downside that the new physics involved
in the neutrino mass generation will not be measurable in the near future, for example
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νLi νLj

φ2 φ2

φ1 φ1

νRk

Figure 3.2: Radiative generation of neutrino masse in the model by [73]

at the LHC.

An alternative idea is to produce the masses of the left-handed neutrinos radiatively
[73]. This is possible if we add to the SM a second Higgs doublet φ2 = (ϕ+, ϕ0) and
three right-handed neutrinos νRi. The new particles are supposed to be all odd under
a Z2 while all other particles are even under this same Z2. The new particles have the
Yukawa coupling

L ⊃ (Y (2)e )ij(ν̄Liϕ0 − ēLiϕ+)νRj + h.c. (3.38)

Majorana mass term
1

2
Mij ν̄

C
RiνRj + h.c. (3.39)

and the scalar quartic term
1

2
λ5(φ†

1φ2)2 + h.c. (3.40)

Note that, since φ2 does not have a vev, (3.38) does not generate a Dirac mass term
for the neutrinos. Masses for the right-handed neutrinos are then induced at one loop
level, via the Feynman diagram in fig. 3.2.

Moreover, since the Z2 symmetry is exact, the lightest one of the new particles will
be stable and is therefore a DM candidate. This can be either one of the additional
physical scalar fields or the lightest right-handed neutrino. Due to the loop, the seesaw
scale is reduced by a factor of roughly λ5/16π2. For λ5 ∼ 10−4 the new particles could
then be light enough to be observed at the LHC.

Another idea [80] is to have the second Higgs boson generate a Dirac mass term for the
neutrinos. If the second Higgs boson has a tiny vev v2, the smallness of the neutrino
masses would be explained without invoking any physics above the TeV scale. In the
model of [80] a global U(1) symmetry is imposed under which the φ2 and νR carry
charge +1 and all the other fields are uncharged. φ2 thus only couples to νR and
there is no Majorana mass term. The U(1) symmetry is broken explicitly by the term
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m2
12φ

†
1φ2. This leaves φ2 with the vev

v2 =
m2

12v1

M2
A

(3.41)

We can thus achieve v2 ∼ eV for MA ∼ 100 GeV and m2
12 ∼ (O(100 keV))2. The small-

ness of m2
12 could be explained by some high-scale physics, for example a spontaneous

breaking of the U(1) in a hidden sector that is then communicated to the Higgs sector
via loops or heavy messenger particles. Radiative corrections will not drive up m2

12

since they are proportional to m2
12 itself and only logarithmically dependent on the

cut-off.
Apart from the smallness of their masses, neutrinos are distinct from the other SM
fermions in one other aspect: the hierarchy in between their masses is much smaller
than the hierarchy in between the masses of the quarks and charged leptons6:

mu ≈ 2.5 MeV mc ≈ 1.3 GeV mt ≈ 180 GeV ∼ 1 ∶ 500 ∶ 70000

md ≈ 5 MeV ms ≈ 100 MeV mb ≈ 5 GeV ∼ 1 ∶ 20 ∶ 1000

me ≈ 0.5 MeV mµ ≈ 105 MeV mτ ≈ 1.8 GeV ∼ 1 ∶ 200 ∶ 3500

∆m2
sol. ≈ 7.6 ⋅ 10−5 eV2 ∆m2

atm. ≈ 2.4 ⋅ 10−3 eV2

This observation could in fact be explained by a 2HDM [81]: Add to the SM a second
Higgs boson and at least one right-handed neutrino. The Lagrangian involving the
right-handed neutrinos then reads:

L ⊃ −(Y (1)ν )ij l̄LiνRjφ̃1 − (Y (2)ν )ij l̄LiνRjφ̃2 +
1

2
Mij ν̄

C
RiνRj + h.c. (3.42)

Assuming that the mass scale of the right-handed neutrinos as well as the mass scale
of the extra Higgs mass eigenstates H,H± and A is much larger than the electroweak
scale (decoupling limit, see sec. 3.2), this model is described at low energies by an
effective theory with the following operator for the left-handed neutrinos:

Leff. ⊃ −1

2
(Y (a)ν M−1Y

(b)T
ν )ij(l̄Liφ̃a)(φ̃T

b l
C
Lj) + h.c. (3.43)

One can always go to a basis where only one of the Higgses, say φ1, gets a vev. If only
one right-handed neutrino is added, Y (a)ν are 3-vectors and the resulting mass matrix
is then at tree level:

(M tree
νL

)ij =
Y
(1)
ν Y

(1)T
ν

M
v2 (3.44)

6In the case of neutrinos only the mass differences squared are known.
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whereM is just the mass of the heavy neutrino. As in the standard seesaw mechanism,
the masses of the left-handed neutrinos are suppressed by the huge mass of the right-
handed neutrino, thus explaining their smallness. This is a matrix of rank 1 and thus
has only one non-vanishing eigenvalue. However, there are radiative corrections and a
second mass eigenvalue will be generated radiatively. Thus, in this model, one right-
handed neutrino is enough to generate two different mass eigenvalues for the left-handed
neutrinos. Now to the mild hierarchies in the neutrino masses. The problem is that
one expects the neutrino Yukawa couplings to be hierarchical, since the other fermions
also must have hierarchical Yukawas in order to explain their hierarchical masses7. In
the common seesaw model with one Higgs and (at least) two right-handed neutrinos,
the mass hierarchy for the left-handed neutrinos is given by:

mν3

mν2

∼ ∣Y2∣2
∣Y1∣2

M1

M2

(3.45)

This means that if ∣Y2∣ ≫ ∣Y1∣, as is expected, we must have a huge hierarchy in between
the masses M1 and M2 of the right-handed neutrinos in order to compensate for the
hierarchy of the Yukawas and render a mild hierarchy for the left-handed neutrinos.
This is not impossible but weird, since the hierarchy of the right-handed neutrino
masses must almost exactly cancel the hierarchy of the Yukawas. In a 2HDM with
one or more right-handed neutrinos this problem does not occur since the second mass
eigenvalue is generated radiatively and is thus suppressed only by a loop factor which
is partly compensated for by a large logarithm (notably the logarithm of the mass scale
of the right handed neutrinos divided by the mass scale of the new scalars). Note that
for this model to work, there must be a misalignment in between the Yukawa couplings
of the two Higgses to the neutrinos. This will lead to lepton flavour violation. These
processes are suppressed however by going to the decoupling limit of the additional
scalars and are thus consistent with experimental bounds.

3.3.5 Further ideas

Another idea is to have private Higgs fields that couple to only one fermion type and
generation (i.e. up, down, charm, strange, top bottom) each [82]. This could help
explain the huge hierarchies within fermion masses. FCNCs do occur in this model,
but experimental bounds can be met by making the new fields sufficiently heavy.
Moreover, 2HDMs can always be seen as effective theories of some more complete high
energy theory.

7See however sec. 4.7.2 for a model with anarchic couplings for all the fermions.
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3.4 A General 2HDM with Yukawa Alignment

We are now turning to 2HDMs without any discrete symmetry, so-called type III
2HDMs [83]. In a general model with two Y = 1/2 Higgs doublets, both Higgses can
couple to all fermions and the Yukawa part of the Lagrangian reads:

LYukawa = (Y (1)u )ij q̄′Liu′Rjφ̃1 + (Y (1)d )ij q̄′Lid′Rjφ1 + (Y (1)e )ij l̄′Lie′Rjφ1

+(Y (2)u )ij q̄′Liu′Rjφ̃2 + (Y (2)d )ij q̄′Lid′Rjφ2 + (Y (2)e )ij l̄′Lie′Rjφ2 + h.c.
(3.46)

The neutral components of the two Higgs doublets acquire vacuum expectation val-
ues (vevs) during electroweak symmetry breaking (EWSB) which in general can be
complex. While one phase can be rotated away, the phase difference is physical. Nev-
ertheless we can choose to work in a basis where both vevs are real, shifting the phase
to the potential and the Yukawas:

⟨φa⟩ =
1√
2

⎛
⎜⎜
⎝

0

va

⎞
⎟⎟
⎠
. (3.47)

As we have seen in sec. 3.2, without any further protection such a model would lead
to unacceptably high FCNCs. In order to minimize these, without imposing ad hoc
discrete symmetries we postulate that at a high energy cut-off scale, Λ, the Yukawa
couplings of the same fermion type are aligned [84, 1]. We parameterize this condition
as:

Y
(1)
u (Λ) = cosψuYu, Y

(2)
u (Λ) = sinψuYu, (3.48)

Y
(1)
d (Λ) = cosψdYd, Y

(2)
d (Λ) = sinψdYd, (3.49)

Y
(1)
e (Λ) = cosψeYe, Y

(2)
e (Λ) = sinψeYe; (3.50)

Note that type I 2HDMs are contained in this parameterization as the special case
ψu = ψd = ψe = 0, type II as ψu = 0, ψd = ψe = π

2 , leptophilic as ψu = ψd = π
2 , ψe = 0 and

"switched" as ψu = ψe = π
2 , ψd = 0.

3.4.1 Radiative corrections to the alignment Yukawa couplings

In a 2HDM with Yukawa alignment there are a priori no FCNCs at tree level. However,
the alignment can only be imposed at one energy scale. When considering particle
physics processes at another energy scale, we need to evolve all couplings using the
renormalization group equations (RGE) in order to calculate the actual couplings at
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the energy scale we are interested in. The RGEs for a general 2HDM have been derived
in [85]. We reproduce them in our notation in appendix A.3. The radiative corrections
introduce a misalignment of the Yukawa couplings at low energy. To see whether this
leads to unacceptably large FCNCs, we solved the RGEs numerically and analytically
using the so-called "leading log approximation" which estimates the down-type quark
couplings at the electroweak scale as:

Y
(k)
d (mZ) ≈ Y (k)d (Λ) + 1

16π2
β
Y
(k)
d

(Λ) log (mZ

Λ
) , (3.51)

and similarly for the Yukawa matrices of the up-type quarks and leptons. Inserting the
β-function (A.7), the coupling at the EW scale takes the form:

Y
(k)
d (mZ) ≈ k(k)d Yd + ε(k)d YuY

†
uYd + δ

(k)
d YdY

†
d Yd, (3.52)

where the coefficients k(k)d , ε(k)d and δ(k)d can be found in appendix A.4, as well as the
corresponding formulae for up-type quarks and leptons.

3.4.2 Flavour violating neutral Higgs couplings

To derive the low energy Lagrangian it is convenient to rotate the Higgs fields to the
Higgs basis, cf. eq. (3.8). In this basis the Lagrangian can be written in the following
form (quark sector):

LYukawa =
√

2

v
{q̄′L (MuΦ̃1 + ΓuΦ̃2)u′R + q̄′L (MdΦ1 + ΓdΦ2)d′R + h.c.} , (3.53)

where v2 = v2
1 + v2

2 = (246 GeV)2 and the couplings Mu,d and Γu,d are evaluated at the
scale mZ . Their expression in terms of the original couplings in the basis {φ1, φ2} is:

Md,u(mZ) =
v√
2
(cosβ Y

(1)
d,u (mZ) + sinβ Y

(2)
d,u (mZ)) , (3.54)

Γd,u(mZ) =
v√
2
(− sinβ Y

(1)
d,u (mZ) + cosβ Y

(2)
d,u (mZ)) . (3.55)

In order to rewrite the Lagrangian eq. (3.53) in terms of the mass eigenstates, we first
express the Higgs doublets Φ1, Φ2 in terms of the physical Higgs fields h,H,A,H± and
the Goldstone bosons G0,G±:

Φ1 =
⎛
⎜⎜
⎝

G+

1√
2
(v + cos(α − β)H − sin(α − β)h + iG0)

⎞
⎟⎟
⎠
, (3.56)
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Φ2 =
⎛
⎜⎜
⎝

H+

1√
2
(sin(α − β)H + cos(α − β)h + iA)

⎞
⎟⎟
⎠
, (3.57)

for a CP conserving Higgs potential and where α is the mixing angle of the mass
eigenstates [53]. Note that in a general 2HDM the ratio of the expectation values tanβ

has no well defined meaning. The basis of the Higgs fields can be freely chosen and we
could just have started in the basis Φ1,Φ2 instead of φ1, φ2 (thus setting β = 0). The
only relevant mixing angle is therefore α − β. This is in contrast to 2HDM type I and
II where there is a clear distinction of the two Higgs doublets by the way they couple
to the fermions. The ratio of the two vevs then gets a real, physical meaning.

Finally, we perform unitary transformations of the quark fields in flavour space

u′L = V L
u (mZ) uL, u′R = V R

u (mZ) uR, (3.58)

d′L = V L
d (mZ) dL, d′R = V R

d (mZ) dR, (3.59)

in order to diagonalize the quark mass matrices: Mdiag.
u = V L

u MuV
R†
u ,Mdiag.

d = V L
d MdV

R†
d .

In this new basis, where the Higgs and quark mass matrices are all diagonal, Γu(mZ)
and Γd(mZ) are not diagonal and thus give rise to the following flavour violating neutral
Higgs couplings:

L ⊃ ūL∆u [cos(α − β)h + sin(α − β)H − iA]uR
+ d̄L∆d [cos(α − β)h + sin(α − β)H + iA]dR,

(3.60)

where:

∆u = 1

v
V L†
u (mZ)Γu(mZ)V R

u (mZ), (3.61)

∆d = 1

v
V L†
d (mZ)Γd(mZ)V R

d (mZ). (3.62)

It is possible to calculate approximate expressions for ∆u, ∆d noting that:

∆u = 1

v
(V L†

u ΓuM
−1
u V L

u )(V L†
u MuV

R
u ), (3.63)

and analogously for ∆d. Substituting eqs. (3.52), (3.54) and (3.55) and keeping the
lower order terms in εu, δu we find that the off-diagonal couplings read:

∆off−diag.
u = EuQu, (3.64)

∆off−diag.
d = EdQd, (3.65)
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(a) Analytical approximation of Ed (b) Numerical result for 2.5Ed

Figure 3.3: Contour plots of Ed for Λ = 1019 GeV. The left figure corresponds to the analytic
formula, eq. (3.69). Solid/dashed/dotted lines correspond to the absolute values of 1/0.3/0.1,
blue lines correspond to negative values, green lines to positive ones. The right figure shows
2.5∆d,23/Qd,23 where ∆d,23 has been obtained by numerically solving the RGEs. The rescaling
was done in order to make the comparison to the analytical result easier.

where, assuming real ψu, ψd:

Qu ≡
1

v3
(VCKM (Mdiag.

d )2
V †
CKMM

diag.
u )

off−diag.

, (3.66)

Eu ≡
1

8π2

sin(2(ψu − ψd))
cos2(β − ψu) cos2(β − ψd)

log (mZ

Λ
) , (3.67)

Qd ≡
1

v3
(V †

CKM (Mdiag.
u )2

VCKMM
diag.
d )

off−diag.
, (3.68)

Ed ≡ −Eu. (3.69)

Thus, the off-diagonal elements of the flavour violating Higgs couplings ∆u,d can be
factorized in two parts: Qu,d are determined by the experimental values of the entries of
the CKM matrix and the quark masses, whereas Eu,d depend on the unknown details of
the 2HDM and the scale Λ at which the alignment condition is imposed. It is apparent
from (3.67) and (3.69) that Eu,d depend just on two parameters: β − ψu and β − ψd.
Moreover, for ψu = ψd and ψu = ψd ± π/2 the flavour violating Higgs couplings vanish,
since Eu = Ed = 0. This choice includes as special cases all the 2HDMs with discrete
symmetries we looked at in 3.2.1.

In fig. 3.3 contours of Ed are plotted. The parameter range −π2 < β−ψd,u < π
2 is sufficient

as Ed is invariant under the shift β − ψd,u → β − ψd,u + π. As cut-off Λ = 1019 GeV

has been chosen as it is the scenario where maximal FCNCs can be expected and
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largest deviations of the leading log approximation. For this cut-off the grey shaded
rectangles are not accessible as some Yukawa couplings become non-perturbative below
Λ = 1019 GeV. As will be shown in section 3.4.3 Ed can easily be O(1) while still
satisfying the bounds on exotic contributions to the FCNCs.

To evaluate the accuracy of the analytical formulae we have calculated the flavour
violating Higgs coupling ∆d23 solving numerically the full one-loop RGEs in the ap-
pendix.8 We show in fig. 3.3(b) ∆d23/Qd23 and we find a very good agreement with
the value Ed calculated analytically in eqs. (3.67) and (3.69) up to an overall factor of
2.5 (due to the large, flavour independent, effects in the running of the strong coupling
constant and the top Yukawa coupling, which are not contemplated by the leading log
approximation). We find, nevertheless, a new feature: There are regions with flipped
sign at the top right and bottom left of the figure which are shown shaded. In these
regions, differences in the running of Y (1)d compared to Y (2)d , not present in the leading
log approximation, lead to a change of the sign of Md, cf. eq. (3.54). Diagonalizing the
quark masses, eqs. (3.59), this sign is transferred to ∆d.

Before deriving upper bounds on the flavour off-diagonal couplings we will present
our approximate formulae in two parameterizations widely used in the literature: the
Wolfenstein parameterization of the CKM matrix and the Cheng & Sher parameteri-
zation of flavour violating couplings in a general 2HDM.

In the Wolfenstein parameterization

Using the Wolfenstein parameterization of the CKM matrix, eq. (2.27) and the ap-
proximate expressions

Mdiag.
u ∼ v√

2
diag(λ6, λ3,1), Mdiag.

d ∼ v√
2

diag(λ6, λ4, λ2), (3.70)

we get the following estimates:

[Qu]12 ∼ λ12, [Qu]13 ∼ λ8, [Qu]23 ∼ λ6, (3.71)

[Qd]12 ∼ λ9, [Qd]13 ∼ λ5, [Qd]23 ∼ λ4, (3.72)

and smaller values for the (21), (31), (32) entries.

8We have used β − ψe = 0 but the result is independent unless cos(β − ψe) → 0.
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In the Cheng & Sher parameterization

The non-diagonal couplings of 2HDM are often parameterized as [86]:

(∆u)ij = λuij
√
mu imu j

v
, (∆d)ij = λdij

√
md imd j

v
. (3.73)

Bounds on the coefficients λu,dij have been derived from experimental results e.g. in
[83]. These bounds depend on the masses of the Higgs bosons and on whether the
parameters λu,dij are assumed to be universal or to posses some kind of hierarchy. We
do not assume universality. Instead the Yukawa alignment condition leads to:

∣λu12∣ ∼ 6 × 10−7 Eu, ∣λu13∣ ∼ 10−4 Eu, ∣λu23∣ ∼ 7 × 10−5 Eu, (3.74)

∣λd12∣ ∼ 5 × 10−4 Ed, ∣λd13∣ ∼ 6 × 10−2 Ed, ∣λd23∣ ∼ 0.1 Ed. (3.75)

3.4.3 Experimental Bounds

In general, there are numerous experimental bounds on the parameters of 2HDMs.
Constraints derived for the type I or type II apply also in our scenario as it is more
general. In [84] bounds on the aligned 2HDM have been studied explicitly. As the
alignment condition is broken by radiative corrections, in addition tree-level FCNCs
are present. This leads to further constraints on the parameters of this type of 2HDMs,
as FCNCs are known from experiment to be highly suppressed.

Meson-antimeson mixing

Stringent experimental bounds on FCNCs come from meson-antimeson mixing. In the
SM this mixing can occur only at loop level while in a general 2HDM there is also a
tree level mediation, see fig. 3.1(a).

A consequence of meson-antimeson mixing - whether at tree level or in a loop process
- is that the flavour eigenstates are not mass eigenstates. This means that there are
tiny mass differences in between mesons and antimesons that have been determined
experimentally for B0

d ,B
0
s ,D

0 and K0 mesons. Here, we treat only the B0
s − B̄0

s system
as it gives the strongest constraints (see e.g. eqs. (3.74) and (3.75)). The effective
Hamiltonian of the ∆B = 2 transition B0

s ↔ B̄0
s is at scale ∼mZ :

H∆B=2
eff. = ∑

i,a

Ca
i (mZ)Qa

i (mZ), (3.76)
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where in a 2HDM with flavour violation at tree level the relevant operators are:

QSLL
1 = (b̄RsL)(b̄RsL), QSRR

1 = (b̄LsR)(b̄LsR), QLR
2 = (b̄RsL)(b̄LsR). (3.77)

The corresponding Wilson coefficients can be read off the effective Hamiltonian to be:

CSLL
1 = −(∆∗

d23)2

2
(
s2
α−β

m2
H

+
c2
α−β

m2
h

− 1

m2
A

) CSRR
1 = −(∆d32)2

2
(
s2
α−β

m2
H

+
c2
α−β

m2
h

− 1

m2
A

) (3.78)

CLR
2 = −∆∗

d23∆d32 (
s2
α−β

m2
H

+
c2
α−β

m2
h

+ 1

m2
A

) (3.79)

and the meson-antimeson mass difference can be calculated as:

∆mBs = ∣∆mSM
Bs +

2

3
mBsF

2
Bs

[PLR
2 CLR

2 (mZ) + P SLL
1 (CSLL

1 (mZ) +CSRR
1 (mZ))]∣ (3.80)

where the coefficients P a
i include both the renormalization group evolution from the

high scalemZ down to low energy ∼mBs and the hadronization of the quarks to mesons.
They can be calculated using the formulae in [87] and lattice QCD results from [88].
For the B0

s − B̄0
s -system we get PLR

2 = 3.0 and P SLL
1 = −1.9. As [∆d]ij ≫ [∆d]ji for j > i

the term involving CSRR
1 is always neglible, whereas CLR

2 dominates only for degenerate
Higgs masses or in the decoupling limit (cα−β → 0, mH ≈mA). Therefore:

∆mBs ≃ ∣∆mSM
Bs +

1

3
mBsF

2
BsP

SLL
1 ∆∗2

d23 (
s2
α−β

m2
H

+
c2
α−β

m2
h

− 1

m2
A

)∣ , (3.81)

∆mBs ≃ ∣∆mSM
Bs +

2

3
mBsF

2
BsP

LR
2 ∆∗

d23∆d32 (
s2
α−β

m2
H

+
c2
α−β

m2
h

+ 1

m2
A

)∣
degenerate
masses or
decoupling

limit
(3.82)

The SM prediction for the mass difference ∆mSM
Bs

= (135±20)⋅10−13 GeV [89] agrees quite
well with the experimental value ∆mexp.

Bs
= (116.4 ± 0.5) ⋅ 10−13 GeV [90]. Nevertheless

there is room for new physics as long as the new contribution to the mass difference is
smaller than the theoretical uncertainty, i.e. 20 ⋅ 10−13 GeV. Using eq. (3.65) this leads
to the approximate bound (we take FBs = 238.8 ± 9.5 MeV [88], mBs = 5.37 GeV [90]
and values for the quark masses at mZ from [91]):

∣
s2
α−β

m2
H

+
c2
α−β

m2
h

− 1

m2
A

∣ ∣Ed∣2 ≲
1

(80 Gev)2
. (3.83)

Thus, even for light Higgs masses, O(100 GeV), the present experimental constraints
from meson-antimeson mixing allow Ed to be of O(1). In the case of degenerate masses
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or the decoupling limit the bound is even weaker:

∣
s2
α−β

m2
H

+
c2
α−β

m2
h

+ 1

m2
A

∣ ∣Ed∣2 ≲
1

(20 Gev)2
. (3.84)

3.4.4 Leptonic B decays

The decay B̄s → l+l− (l = e, µ, τ), based on the flavour transition b→ s, is another exam-
ple of a process that can be mediated at tree level in a general 2HDM (see fig. 3.1(b))
but neither in the SM nor in an aligned 2HDM. As the branching ratio depends on the
lepton Yukawa coupling one expects the decay B̄s → τ+τ− to be favoured. However,
the produced τ ’s decay immediately to jets and leptons whose observed invariant mass
will not reconstruct back to the mass of the B meson, so that these decays cannot
be tagged in detectors [92]. In contrast, tagging B̄s → µ+µ− is rather easy leading to
an unparalleled bound on the branching ratio. Integrating out the Higgs boson, the
matrix element for the h exchange is, assuming real ∆e22 (see Feynman rule (A.32)):

Mh
B̄s→µ+µ− =

1

4
cα−β(∆d23 −∆∗

d32) ⟨B̄s∣ s̄γ5b ∣0⟩ 1

m2
h

(−mµ

v
sα−β + cα−β∆e22) µ̄µ, (3.85)

since ⟨B̄s∣ s̄b ∣0⟩ is zero, as B̄s is parity-odd, whereas s̄b is parity-even (see e.g. [93]). The
matrix element for H exchange is of the same form as eq. (3.85), with the replacements
cα−β → sα−β, sα−β → −cα−β, mh →mH . Lastly, the invariant amplitude for the exchange
of a pseudo-scalar A can be inferred from eq. (A.33) to be:

MA
B̄s→µ+µ− =

1

4
(∆d23 +∆∗

d32) ⟨B̄s∣ s̄γ5b ∣0⟩ 1

m2
A

∆e22 µ̄γ
5µ. (3.86)

The decay rate can now be straightforwardly calculated from the decay amplitudes.
Using

⟨B̄s∣ s̄γ5b ∣0⟩ ≈ ifBmBs , (3.87)

and neglecting again terms proportional to [∆d]ji,j>i we obtain:

ΓB̄s→µ+µ− =
f 2
Bs
m3
Bs

64π
∣∆d23∣2 ×

⎧⎪⎪⎨⎪⎪⎩

∆2
e22

m4
A

+ ∣sα−β
m2
H

(mµ

v
cα−β +∆e22sα−β) +

cα−β
m2
h

(−mµ

v
sα−β +∆e22cα−β)∣

2⎫⎪⎪⎬⎪⎪⎭
. (3.88)
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Requiring that the tree level alone does not exceed the present experimental bound
BR(B̄s → µ+µ−) < 6.4 ⋅ 10−9 [90] we find for ∆e22 ≫ mµ

v :

¿
ÁÁÁÀ 1

m4
A

+ ∣
s2
α−β

m2
H

+
c2
α−β

m2
h

∣
2

∆e22∣Ed∣ ≲
1

(1000 Gev)2
. (3.89)

Hence for Higgs masses of O(100 GeV) and Ed of O(1) there is only a conflict for
tan(ψe − β) ∼ ∆e22

v
mµ

≳ 25. The opposite case, ∆e22 ≪ mµ
v , results in a bound on Ed

and the Higgs masses only. However, for generic Higgs masses the bound coming from
Bs − B̄s mixing is stronger.

To conclude, let us remark that the flavour violating (FV) couplings calculated here
yield the absolute lower bound on the size of exotic contributions to FCNCs in any
2HDM, barring cancellations and the existence of symmetries.

3.5 Z2, U(1)PQ or alignment?

Note that our alignment model in sec. 3.4 can be seen as a limiting case of the MFV
construction in eq. (3.37) where the MFV expansion is truncated after the first term:

Y
(2)
u,d = ηu,dY (1)u,d (3.90)

In the framework of general MFV [47], where the breaking of the flavour group is
decoupled from the breaking of CP, the coefficients ηu,d can be complex. In [94] 2HDMs
with MFV/alignment and 2HDMs protected by discrete or Peccei-Quinn symmetries
were studied. Consider first the case of a 2HDM protected from FCNCs by U(1)PQ:
The Peccei-Quinn symmetry must be broken explicitly because otherwise it would be
broken by the vev of φ1 and the theory would contain a massless Goldstone boson. But
then the FCNC protection is not stable under radiative corrections. FCNCs can then
get quite large. This happens for example in the MSSM with generic soft breaking
terms [95, 96]. The FCNC coupling given in [94] is:

LFCNC = εd
cosβ

(∆̃d)ij d̄iLdjR
sin(α − β)H + cos(α − β)h + iA√

2
(3.91)

where εd is a loop suppression of O(10−2) and ∆̃d is the off-diagonal part of a generic
flavour-breaking matrix with O(1) entries. This effective coupling is well above exper-
imental bounds.

A discrete symmetry can remain unbroken and e.g. for a type II 2HDM the couplings
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Y
(2)
d and Y (1)u remain exactly zero. However, there are higher-dimensional operators of

the type [94]:

Ldim. 6 = c1

Λ2
q̄LY

dim. 6
u1 uRφ2∣φ1∣2 +

c2

Λ2
q̄LY

dim. 6
u2 uRφ2∣φ2∣2

+ c3

Λ2
q̄LY

dim. 6
d1 dRφ1∣φ1∣2 +

c4

Λ2
q̄LY

dim. 6
d2 dRφ1∣φ2∣2

(3.92)

with ci ∼ O(1). For Λ ∼ O(1 TeV) are above experimental bounds, too. A 2HDM with
a discrete symmetry is thus only protected from too large FCNCs if the neutral Higgs
masses are well above LHC energies.
The situation is different for MFV/alignment models because the MFV structure of
the Yukawa couplings, eq. (3.37), is renormalization group invariant, see eq. (3.52). As
we have seen in 3.4 alignment/MFV models thus provide sufficient protection against
FCNCs, also when radiative corrections are taken into account.
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Chapter 4

Warped Extra-Dimensional Models

4.1 The Randall-Sundrum spacetime

Let us consider a model with only one extra-dimension that is compactified by the
following equivalence relations for the fifth dimension y:

y ∼ y + 2π y ∼ −y (4.1)

The first equivalence relation is that of a circle, S1. The second, Z2, identifies opposite
points on the circle, see figure 4.1. The resulting orbifold is called S1/Z2 [28]. Now
assume that there is a cosmological constant Λ in the fifth dimension, i.e. it is curved.
The extra-dimension is also called the bulk and its 4D boundaries are called branes. We
want the branes to remain static and flat. The induced metric at every point along the
fifth dimension must therefore be the flat Minkowski metric ηµν and the components of
the 5D metric can only depend on y. We write the following ansatz for the 5D metric:

ds2 = e−A(y)dxµdxνηµν − dy2 (4.2)

The factor e−A(y) is called the warp factor since it determines the amount of curvature
along the extra dimension. We need to solve the Einstein equations in order to find
A(y). To do so, we make a coordinate transformation to go to a coordinate system
where there is a pre-factor in front of all the coordinates. This can be achieved by a
coordinate transformation z = z(y) where

e−A(z)/2dz = dy (4.3)

The metric is then:
ds2 = e−A(z)(ηµνdxµdxν − dz2) (4.4)
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0 Π

y

-y

Figure 4.1: S1/Z2

This metric is called conformally flat since a conformal transformation connects it to
the flat metric:

gMN = e−A(z)ηMN (4.5)

where M,N = 0 . . .4. Plugging this into the Einstein equation, we find:

e−A(z) = 1

(kz + 1)2
(4.6)

where k2 = −Λ/12M3
∗ , Λ is the cosmological constant in the extra-dimension and M∗ is

the 5D-Planck scale. We must furthermore take into account that we are on a S1/Z2

orbifold and that thus z ∼ −z. The result is then:

ds2 = 1

(k∣z∣ + 1)2
(ηµνdxµdxν − dz2) (4.7)

Going back to our initial 5th coordinate y we must solve:

e−A(z)/2dz = dz

k∣z∣ + 1
= dy ⇒ e−2k∣y∣ = 1

(k∣z∣ + 1)2
(4.8)

Our final result, the Randall-Sundrum (RS) metric reads [24, 30, 97, 98]:

ds2 = e−2k∣y∣dxµdxνηµν − dy2 (4.9)

The RS space-time consists thus of a slice of 5-dimensional Anti-de Sitter space (the
bulk, usually abbreviated as AdS5) wedged in between two flat 4D boundaries, called
the Planck or UV brane and the TeV or IR brane, see fig. 4.2. An Anti-de Sitter
space is a maximally symmetric spacetime of negative curvature just as the surface of
a sphere is a maximally symmetric space of positive curvature. k is a measure of the
curvature of the fifth dimension.
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AdS5 bulk
TeV brane

Planck brane

y = 0

y = ΠR

Figure 4.2: The Randall-Sundrum spacetime. In blue, the warp factor along the extra-
dimension.

It has to be noted that in order to have a 4D low energy effective theory with (al-
most) vanishing 4D cosmological constant, the energy density on the branes needs to
be fine-tuned against the bulk cosmological constant. This is a manifestation of the
cosmological constant problem, see section 1.3 [98, 99].

4.1.1 Solving the Hierarchy Problem

Let us consider the Higgs to be localized on the TeV brane. The induced metric on the
TeV brane, i.e. at y = πR, is:

gind.
µν = e−2πkRηµν (4.10)

where R is the radius of the extra-dimension. The Higgs action on the TeV brane is:

SHiggs = ∫ d4x
√
−gind. {gµνind.∂µφ

†∂νφ −
λ

2
(∣φ∣2 − v2

0)
2} (4.11)

where gind. is the determinant of the metric. Plugging in (4.10), we get:

SHiggs = ∫ d4x e−4πkR {e2πkRηµν∂µφ
†∂νφ −

λ

2
(∣φ∣2 − v2

0)
2}

= ∫ d4x e−2πkRηµν∂µφ
†∂νφ − e−4πkRλ

2
(∣φ∣2 − v2

0)
2

(4.12)
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Obviously, the kinetic term of the Higgs field, ηµν∂µφ†∂νφ, is not canonically normal-
ized. We therefore need to make a transformation

e−πkRφ→ φ (4.13)

The vacuum expectation value v0 then gets "warped" down on the TeV brane:

v = e−πkRv0 (4.14)

Thus, if v0 is of the order of the Planck scale, we need kR ∼ O(10) to get the physical
Higgs vev v = 246 GeV. The electroweak hierarchy problem is thus solved. v is radia-
tively stable, since cut-off scales get warped down near the TeV brane as well [30, 98].
What happens to gravity? As it turns out, the 4D graviton hµν(x) is embedded into
the 5D metric as:

ds2 = e−2k∣y∣ [ηµν + hµν(x)]dxµdxν − dy2 (4.15)

and the 5D Ricci tensor R(5)µν contains the 4D Ricci tensor R(4)µν calculated from hµν(x).
The Einstein-Hilbert action therefore contains the following term:

S = −M3
∗ ∫ d5x

√−gR(5) ⊃ −M3
∗ ∫ d5x e−4k∣y∣e2k∣y∣R(4) (4.16)

We can therefore read off the 4D effective Planck scale:

M2
Planck =M3

∗ ∫
y=πR

y=0
e−2k∣y∣dy = M

3
∗

2k
(1 − e−2πkR) (4.17)

We see that if we take all the fundamental scales, v0,M∗, k of the order of the Planck
scale, the scale of gravity will remain of the order of the Planck scale while the scale of
the Higgs vev gets exponentially suppressed. We can thus introduce the large hierarchy
in between the Planck and the weak scale with a moderate kR ∼ O(10)!
It can be shown that the graviton’s wave function is peaked around the Planck brane.
That means that gravity is so weak compared to the other fundamental forces be-
cause we live at a point in the five-dimensional space-time that is far away from the
localization of gravity (i.e. on the TeV brane) [98].

4.2 The Randall-Sundrum Model as an EFT

The mass dimensions of the fields in five dimensions are different from their mass
dimensions in four dimensions since in 5D all terms in the Lagrangian must have mass
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dimension 5 in order for the 5D action

S = ∫ L d5x (4.18)

to be dimensionless. Looking at the kinetic terms in the 5D Lagrangian:

Lkin.,fermions = ψ̄ /∂ψ (4.19)

Lkin.,scalars = (∂µφ)†(∂µφ) (4.20)

Lkin.,vectors ⊃ (∂µAν)(∂µAν) + . . . (4.21)

we see that the fermions must have mass dimension 2 and the scalars and vectors
must have mass dimension 3/2. Now look at the term describing the interaction of the
fermions and the gauge bosons, however:

L ⊃ gψ̄γµAaµ
σa

2
ψ (4.22)

For this term to be dimensionless we need the gauge coupling g to have [m]−1/2. The
5D gauge coupling has negative mass dimension! As already mentioned in sec. 2.2
this means that the theory is non-renormalizable. This is no reason to dismiss it
however, since it can be regarded as an EFT of a UV-complete theory that has yet to
be determined.

On the other hand, this means that there is no good reason not to include all possible
higher dimensional operators1, such as:

1

M2
ψ̄iψjψ̄kψl (4.23)

1

M
ννφφ (4.24)

Operator (4.23) yields FCNCs and proton decay, while operator (4.24) gives masses to
the left-handed neutrinos. If these operators are unsuppressed, rates for proton decay
and FCNCs are much to high and the neutrinos get too high masses. Therefore one
usually assumes that the mass scale M that suppresses these operators is high enough
for the EFT to be in agreement with experiments. But in the RS model, all masses

1Higher dimensional here refers to the mass dimension of the operator and has nothing to do with
the fact that we are in a 5D spacetime!
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get "warped down" on the TeV brane by e−kπR and so does M:

1

M2
ψ̄iψjψ̄kψl →

1

(Me−kπR)2
ψ̄iψjψ̄kψl (4.25)

1

M
ννφφ → 1

Me−kπR
ννφφ (4.26)

This looks quite catastrophic but fortunately there is a way out, as we shall see in sec.
4.3.

4.3 Split Fermion Models

In order for the solution to the hierarchy problem to work (see sec. 4.1.1) only the
Higgs field needs to be confined to the TeV brane. All the other particles - quarks, lep-
tons and gauge fields - can propagate in the bulk [100, 101, 102, 103, 104, 105, 106, 107].

Let us focus on the fermions [108, 109]: In order to write the bulk Lagrangian we must
find the gamma matrices in the RS geometry:

[ΓM ,ΓN] = 2gMN (4.27)

We can take ΓM = eMA γA where eMA is the vielbein defined by: gMN = eMA eNBηAB. The
important thing to note here is that with this set of gamma matrices, γ5 is part of the
Dirac algebra. Therefore, unlike in four dimensions, Lorentz invariant terms cannot
depend only on γ5. We thus cannot write the fermions as left- and right-handed Weyl
spinors but must write them as four-component Dirac spinors containing both left- and
right-handed components. The bulk Lagrangian for fermions is then:

Lbulk, fermions =
√−g [iΨ̄iΓ

MDMΨi + kCijΨ̄iΨj] (4.28)

where DM is the covariant derivative in the RS space-time and i, j are generation
indices. We see that in the bulk the fermions have a vector-like mass term kΨ̄CΨ,
called the bulk mass. We can write the Dirac spinors in terms of left- and right-handed
components:

Ψ =
⎛
⎜⎜
⎝

ψ+

ψ−

⎞
⎟⎟
⎠

Ψ+ =
⎛
⎜⎜
⎝

ψ+

0

⎞
⎟⎟
⎠

Ψ− =
⎛
⎜⎜
⎝

0

ψ−

⎞
⎟⎟
⎠

(4.29)

and solve the equations of motion corresponding to (4.28) by making a separation of
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Y+ Y- Y+ Y-

left-handed fermions right-handed fermions

Y
H0L

Y
H0L

Y
H1L

Y
H1L

Y
H2L

Y
H2L

Figure 4.3: Embedding the SM Weyl spinors into 5D Dirac spinors.

variables ansatz:
Ψ±,i(xµ, y) =

∞

∑
n=0

Ψ
(n)
±,i (xµ)f̃

(n)
±,i (y) (4.30)

where the Kaluza-Klein modes Ψ
(n)
± solve the Dirac equation γµ∂µΨ

(n)
± = −mnΨ

(n)
± and

f̃
(n)
± (y) are the wave function profiles along the fifth dimension. First, consider the
fermion zero-modes, mn = 0: The general solution to the e.o.m. is given by:

f̃
(0)
±,i (y) = d

(0)
± e(2∓ci)ky (4.31)

where d(0)± are arbitrary constants and ci are the eigenvalues of the matrix C. The
variation of the action must vanish also at the boundaries of the fifth dimension. It
can be shown [108] that this is the case if we have Dirichlet boundary conditions for
the fields Ψ±:

Ψ
(0)
− ∣

y=0,πR
= 0 or Ψ

(0)
+ ∣

y=0,πR
= 0 (4.32)

Therefore, we can only have a left- or a right-handed zero-mode, but not both at the
same time. Either Ψ

(0)
+ or Ψ

(0)
− is killed by the boundary conditions and 4D chirality

is recovered from the vector-like bulk! If we choose the left-handed field Ψ+ and plug
it into the first term in (4.28) we get:

L ⊃ e2(1/2−ci)ky Ψ̄
(0)
+,i γ

µ∂µΨ
(0)
+,i + . . . (4.33)

Hence with respect to the flat metric the zero-mode profile is:

f̃
(0)
+ (y) ∝ e(1/2−c)ky (4.34)

If instead we had chosen Ψ− to be non-vanishing, we would have got a right-handed
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c<1�2c>1�2

TeV brane
Planck brane

y = 0

y = ΠR

Figure 4.4: Fermion wave function profiles in the bulk.

zero-mode and we would need to replace c → −c in eq. (4.34). We show in fig. 4.3
how the SM fermions can be embedded in the RS framework. For every Weyl spinor
ψ of the SM we must introduce a 5D Dirac spinor Ψ. Only its right- or its left-handed
component has a zero-mode, however.
Solving the e.o.m. also for the KK excitations, one finds that they are Dirac states
with masses:

mn ≃ (n + ∣c ± 1/2∣
2

− 1

4
)πke−πkR (4.35)

We can do the same analysis also for vector, graviton and scalar fields2 and get the
following profiles for the zero-modes3:

field zero-mode profile

scalars e(1±
√

4+a)ky

fermions e(1/2±c)ky

vectors 1

graviton e−ky

4.3.1 Solving the Flavour Puzzle

As f̃ (0)+ (y) ∝ e(1/2−c)ky, the left-handed fermions’ wave function is localized towards the
UV brane for c > 1/2 and towards the IR brane for c < 1/24, see fig. 4.4. The fermions

2At this stage the latter is only of academic interest since the only scalar in nature - the Higgs -
does NOT propagate into the bulk.

3a is defined via: m2
φ ≡ ak2 and L ⊃ √−gm2

φ∣φ∣2.
4For right-handed fermions replace c→ −c
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have Yukawa couplings to the Higgs that is confined to the IR brane5 [108, 109]:

L ⊃ √−g δ(y − πR) [q̄Li(Ỹ 5D
u )ijuRjφ̃ + q̄Li(Ỹ 5D

d )ijdRjφ] (4.36)

where Ỹ 5D
u,d is the dimensionful ([Ỹ 5D

u,d ] = −1) 5D Yukawa coupling. We can trans-
form Ỹ 5D

u,d to a dimensionless coupling by factoring out k: Y 5D
u,d = kỸ 5D

u,d . The effective
Lagrangian on the IR brane is then:

Leff.4D ⊃ q̄(0)Li (Y 4D
u )iju(0)Rj φ̃ + q̄

(0)
Li (Y 4D

d )ijd(0)Rj φ (4.37)

The effective 4D Yukawa matrices Y 4D
u,d are given as:

Y 4D
u,d = F †

q Y
5D
u,d Fu,d (4.38)

The matrices Fq,u,d project out the zero-modes of the quarks on the IR brane:

Fq = diag. [f(cQ1), f(cQ2), f(cQ3)] (4.39)

Fu = diag. [f(cu1), f(cu2), f(cu3)] (4.40)

Fd = diag. [f(cd1), f(cd2), f(cd3)] (4.41)

where

f(c) =
√

1 − 2c

1 − ekπR(2c−1)
(4.42)

In order to solve the flavour puzzle, see sec. 1.2, all we need to do is to make sure
that for light particles f(c) take small values and for heavy particles f(c) take high
values. Thanks to the exponential function in (4.42), small hierarchies in the bulk mass
eigenvalues c are sufficient to have huge hierarchies in f(c) and thus in the fermion
masses. We can also understand this from fig. 4.4: Since the Higgs lives on the TeV
brane, its wave functions’ overlap with the wave function of particles localized towards
the Planck brane is small. Since it is the Higgs that gives masses to these particles,
they are light. Light particles such as up, down an strange quarks must therefore be
localized towards the Planck brane. On the other hand heavy particles such as the top
are localized towards the TeV brane and thus have a large overlap with the Higgs.

In summary, the hierarchies in the fermion masses can be generated with anarchic
Yukawa couplings in the RS model. There is no need to assume that the Yukawa
matrices have a large hierarchy [110, 111]. This is nice, since it seems much more
natural. Such models are called split fermion models, since different fermions have

5For definiteness, we restrict ourselves to the quarks here.
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different eigenvalues c of the bulk mass matrix.

4.3.2 Higher Dimensional Operators in Split Fermion Models

We said in 4.2 that putting the fermions in the bulk would solve the problem with
the unsuppressed higher dimensional operators. And indeed it does. This is due to
the fact that the constraints are mainly due to experiments involving light fermions.
Their overlap with the higher dimensional operators on the TeV brane is small and the
resulting processes are thus suppressed.

Consider the four-fermion operator in eq. (4.23). In split fermion models, the effective
4D suppression is given for light fermions (i.e. 1/2 ≲ c ≲ 1) [106]:

1

M2
4,eff.

∼ k

M3
5

e(4−ci−cj−ck−cl)kπR (4.43)

where the 5D suppression scale M5 is of the order of the Planck scale. As far as proton
decay is concerned, we would need ci ≳ 1 for all c’s to have sufficient suppression.
Unfourtunately ci ≳ 1 would lead to too small fermion masses. So we still need a
discrete symmetry but there is some suppression and thus no need to prevent operators
of mass dimension higher than four. As far as FCNCs are concerned the suppression
in (4.43) is sufficient in order to be in agreement with experiment for values of c that
lead to the correct fermion masses [101, 112, 113].

4.4 FCNCs via KK gluon exchange

There is another source of FCNCs in RS models with fermion in the bulk, however:
the exchange of KK excitations of gauge bosons [110, 114]. This can be understood
as follows: Since qL, uR and dR are independent fields we can rotate them to a basis
where all the bulk mass matrices C are diagonal at the same time:

L ⊃ q̄LCqqL + ūRCuuR + d̄RCddR (4.44)

where

Cq = diag. (cq1 , cq2 , cq3) Cu = diag. (cu1 , cu2 , cu3) Cd = diag. (cd1 , cd2 , cd3) (4.45)
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Figure 4.5: FCNCs induced by KK gluon exchange.

The matrices Fq,u,d that project out the zero modes are then also diagonal. For defi-
niteness let us consider the gluons. They couple to the quarks via:

L ⊃ g∗s(q̄LqL + ūRuR + d̄RdR)G (4.46)

The effective coupling to the quark zero modes is then:

gs∗F
†
xFx (4.47)

for x = q, u, d. This matrix is diagonal but not universal, i.e. it is not proportional
to the identity matrix. This is due to the fact that in order to explain the hierarchic
quark masses, we need non-degenerate eigenvalues ci for the bulk mass matrices Ci.
As a consequence, f(ci) are then also non-degenerate.
On the other hand, consider the effective 4D Yukawa coupling (cf. (4.38)):

Y 4D
u,d = F †

q Y
5D
u,d Fu,d (4.48)

In general, this will not be diagonal. To go to the mass basis one must thus make
bi-unitary transformations on the quark fields:

uL → VuLuL uR → VuRuR (4.49)

dL → VdLdL dR → VdRdR (4.50)

The Yukawa matrices are then diagonal in this basis:

(Y 4D
u,d )diag. = V(u,d)LF †

q Y
5D
u,d Fu,dV

†
(u,d)R

(4.51)

However, when the coupling to the KK gluon, eq. (4.47), is rotated to this new basis,
it is not diagonal anymore since rotating a diagonal but non-universal matrix yields a
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non-diagonal matrix:

gx,(R,L) ≃ gs∗Vx(R,L)F †
xFxV

†
x(R,L)

≠ diag.(...) (4.52)

The exchange of KK gluons can thus induce FCNCs at tree level, see fig. 4.5. Such
processes lead to a lower bound on the KK mass of ∼ 103 TeV. The exchange of the
KK excitations of other gauge bosons also generates FCNCs. Their rates are smaller
however, due to the smaller gauge coupling.

4.4.1 The RS-GIM mechanism

The situation is alleviated by the RS-GIM mechanism, however [106, 109, 115]: Near
the TeV brane, where the KK gluons are localized, the wave function of light quarks
is suppressed and thus their overlap with the KK gluons is small. Near the Planck
brane on the other hand, the wave function of the KK gluons is constant. Since for
the fermions there is an orthonormality condition:

∫
πR

0
dy e−3kyf

(n)
± f

(n)
± = δmn (4.53)

this means that the coupling of fermions to KK gluons is universal near the Planck
brane.

In conclusion, there is everywhere an additional suppression of the flavour-violating
couplings of light fermions to the KK gluons. Since experimental bounds are mostly
due to processes involving light quarks, this improves the situation quite a bit.

However, residual contributions to εK [116, 117, 118, 119, 120, 121] and neutron electric
dipole moment [109, 115, 122] still lead to significant constraints on the model. The
resulting lower bound on the KK scale, which emerges from the effective 4D description
of the theory, is then of the order of O(20 TeV) [118, 119, 120].

4.4.2 The Higgs in the bulk?

Allowing the Higgs to propagate into the bulk helps to further suppress contributions to
εK [123, 124]. This is because then the light fermions can be moved even further towards
the Planck brane and the overall Yukawa scale can be increased while maintaining
perturbativity. The Higgs vev’s profile must be chosen to peak near the TeV brane in
order to save the solution to the hierarchy problem, see sec. 4.1.1 [125].
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q
(0)
L d

(n)
R d

(n)
L q

(n)
R q

(n)
L d

(0)
R

φ
φ

φ

Figure 4.6: Shift in masses and Yukawa couplings due to higher dimensional operators.

4.5 FCNCs via Higgs exchange

In split fermion models, the couplings of the Higgs to the fermions are also misaligned
with the fermion mass matrix and thus lead to FCNCs at tree level [126]: In the down
sector, consider the following dimension 6 operators:

λij
φ2

M2
φq̄LidRj kdij

φ2

M2
d̄Ri /∂dRj kqij

φ2

M2
q̄Li /∂qLj (4.54)

When the electroweak symmetry is broken, these terms yield corrections to the fermion
kinetic and mass terms:

v ([Y 4D
d ]ij + λij

v2

2M2
) q̄LidRj (4.55)

(δij
2
+ kdij

v2

2M2
) d̄Ri /∂dRj (δij

2
+ kqij

v2

2M2
) q̄Li /∂qLj (4.56)

On the other hand, the couplings to the physical Higgs scalar h are:

([Y 4D
d ]ij + 3λij

v2

2M2
) h√

2
q̄LidRj (4.57)

(2kdij
v√

2M2
) h√

2
d̄Ri /∂dRj (2kqij

v√
2M2

) h√
2
q̄Li /∂qLj (4.58)

These couplings are not diagonal in the same basis as (4.55) and (4.56). We show the
Feynman diagrams corresponding to the corrections to the masses, Yukawa couplings
and kinetic terms in fig. 4.6 and 4.7. The factor of 3 in front of λij in eq. (4.57) and
the factor of 2 in front of kij in eq. (4.58) are due to the fact that there are three (two)
ways to set one of the Higgses to its vev in diagram 4.6 (4.7).

The main contribution to FCNCs is due to diagram 4.6. Including thus only the
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Figure 4.7: Correction to the kinetic term. An analogous diagram exists for RH quarks.

corrections (4.55) and (4.57), the effective 4D mass matrix is:

M4D eff. = FQY 5D
d Fdv − FQY 5D

d Y 5D†
d Y 5D

d Fd
v2

M2
v (4.59)

and the effective 4D Yukawa coupling is:

Y 4D eff. = FQY 5D
d Fd − 3FQY

5D
d Y 5D†

d Y 5D
d Fd

v2

M2
(4.60)

The FCNCs are then proportional to the off-diagonal elements of the difference

∆d =M4D eff. − Y 4D eff.v = 2FQY
5D
d Y 5D†

d Y 5D
d Fd

v2

M2
v (4.61)

The calculation for the up-sector is completely analogous.

4.6 Constraints from EWPT

There are severe experimental constraints on New Physics models coming from the mea-
surements at LEP. These are usually referred to as electroweak precision tests (EWPT).
To analyze a BSM theory in the light of these constraints one usually deploys an EFT
[127]. Of special importance are operators that do not contain any fermion fields (some-
times referred to as oblique operators). At dimension 6 there are two such operators6:

OS = φ†τaφF
a
µνB

µν (4.62)

OT = ∣φ†Dµφ∣2 (4.63)

6There is none at dimension 5.
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where F a
µν and Bµν are the field strengths’ of the SU(2) and U(1) gauge bosons,

respectively. The effective Lagrangian is then:

Leff. = LSM + aSOS + aTOS (4.64)

The operator OT in eq. (4.63) is especially dangerous since it breaks the custodial
symmetry of the SM [128]: In the g′ → 0 limit, the Higgs sector of the SM possesses
an accidental global SU(2)L × SU(2)R symmetry. This symmetry is broken SU(2)L ×
SU(2)R → SU(2)L+R by the Higgs vev7. The three broken generators of SU(2)L ×
SU(2)R give rise to the three Goldstone bosons eaten by the W ± and Z bosons. Still
in the limit of g′ → 0, SU(2)L+R remains unbroken, W ± and Z form a triplet of an
unbroken symmetry and their masses are equal:

M2
W = 1

4
gv2 (4.65)

M2
Z = 1

4
(g + g′)v2 (4.66)

Radiative corrections to the ρ-parameter, defined as:

ρ ≡ M2
W

M2
Z cos θW

= 1 (4.67)

where cos θW ≡ g2

g2+g′2 must therefore be proportional to g′. The SM is thus protected
from large radiative corrections to ρ. Not so in NP models, as we have seen in eq.
4.63. Since experimental results are in good agreement with the SM prediction, this
can cause severe problems.

Bounds on the Wilson coefficients aS and aT in eq. (4.64) can be deduced from exper-
imental values. On the other hand the Wilson coefficients can be calculated for any
NP model and compared to these bounds. To do so, it is common to introduce the
Peskin-Takeuchi parameters [129]:

S = 4scv2

α
aS T = − v

2

2α
aT (4.68)

where s = sin θW , c = cos θW and α is the fine-structure constant.

In RS models, there are contributions to T coming from integrating out KK towers of
particles, see fig. 4.8. The Peskin-Takeuchi parameter T thus violates experimental

7The diagonal subgroup SU(2)L+R corresponds to simultaneous SU(2)L and SU(2)R transfor-
mations with L = R. (L,R being the transformation matrices of SU(2)L and SU(2)R, respectively.)
Sometimes it is SU(2)L+R that is referred to as the custodial symmetry.
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W a(0) X i(n) W a(0)
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Figure 4.8: Contribtuions to T in RS. Xi(n) are the KK excitations of any field that couples
to W ±.

bounds in RS models [130, 131, 132, 133]. There is a way out, however: Models with a
SU(3)c×SU(2)L×SU(2)R×U(1)X gauge symmetry in the bulk are in agreement with
experiment for KK mass scales as low as 3 - 5 TeV [134, 135]. In order to recover the
usual SU(3)c × SU(2)L × U(1)Y symmetry, SU(2)R is broken to U(1)R with orbifold
boundary conditions on the Planck brane. U(1)R×U(1)X is then broken spontaneously
to U(1)Y on the Planck brane, where Y = T3R + X is the usual hyper charge. The
custodial symmetry in the bulk usually also includes a discrete LR symmetry in order
to protect the Zb̄LbL-coupling.

4.7 Flavour symmetries and alignment in RS

4.7.1 Previous models with suppressed FCNCs

Several models that exploit flavour symmetries in order to suppress the contribution
to εK and thus allow for a lower mass scale of the KK gluons have been proposed.

In [136] the flavour symmetry U(3)qL × U(3)uR × U(3)dR is imposed in the bulk. This
symmetry implies that the bulk masses for fermions with given quantum numbers are
precisely equal. The beautiful solution to the flavour puzzle, sec. 4.3.1, is thus lost.
On the IR, the flavour symmetry is broken by the Yukawa couplings. However, the
diagonal subgroup of the three U(3)’s is conserved. The flavour mixing necessary to
reproduce the CKM matrix is then introduced via kinetic mixing terms on the UV
brane. Flavour violating higher-dimensional operators are then forbidden everywhere
but on the UV brane where they are suppressed by a high (not warped-down) cut-off
scale. The difference in the masses of quarks of the different generations is also gener-
ated on the UV brane. This is certainly the biggest drawback of this model since the
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flavour puzzle then cannot be elucidated at the electroweak scale or at the LHC.

Another approach consists in aligning the 5D down Yukawa couplings with the bulk
masses [137, 138, 139, 140]. FCNCs in the down sector are then suppressed and the
constraints coming from εK can be satisfied for a lower KK scale. The advantage of
these models is that one does not need to give up on addressing the flavour puzzle at
the electroweak scale.

In [137], a "horizontal" U(1) symmetry is used to align the bulk masses and 5D Yukawas
in the down sector: To do so, we must embed each generation of quarks in four 5D
multiplets of the bulk gauge group SU(3)c × SU(2)L × SU(2)R ×U(1)X :

Qi
u (3,2,2)2/3 Qi

d (3,2,2)−1/3 (4.69)

U i (3,1,1)2/3 Di (3,1,1)−1/3 (4.70)

Now impose a U(1)d symmetry on the down-type quark fields with charges (d1, d2, d3)
where di ≠ dj for i ≠ j (i.e. the charges are different for every generation but the same
for Qd and D in each generation). This symmetry forces the bulk masses CQd , Cd and
the 5D Yukawas of the down sector Y 5D

d to be diagonal in the same basis, i.e. aligned8.
Moreover, it forbids off-diagonal kinetic terms on the IR brane involving Qd and D.
This symmetry is valid in the bulk and on the IR brane but must be broken on the UV
brane in order to allow for mixed boundary conditions of the fields Qu and Qd. This
ensures that the two bulk fields Qu, Qd host only one zero mode QL.

One sees that it would not be possible to impose the U(1) symmetry if there were only
one left-handed bulk field: To allow for Yukawa couplings in the up sector we would
need to assign U(1) charges to U as well. Then, CQL , Cd, Cu, Yd and Yu would be all
aligned and there would be no CKM matrix.

A second horizontal symmetry U(1)Q is introduced in order to avoid flavour violation
due to the mixed boundary conditions on the UV brane. This symmetry is valid in the
bulk and on the UV brane but broken on the IR, in order to allow for a non-diagonal
up-type Yukawa coupling.

The only source of flavour violation in the down sector are then off-diagonal kinetic
terms on the IR brane:

L ⊃ Re−6πkRiδ (Q̄uK̃Q /∂Qu + ŪK̃u /∂U) δ(y − πR) (4.71)

8There cannot be off-diagonal elements in CQd
, Cd and Y 5D

d because this would mix two fields
with different U(1) charges.
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where K̃Q,u are non-diagonal matrices with entries of O(1) and δ is a loop-suppressed
dimensionless coefficient. KQ leads to kinetic mixing of the left-handed down quarks
and thus to flavour violation in the down sector.

In this model, the leading flavour constraints come from flavour violation in the up-
sector, notably D0 − D̄0-mixing. These constraints are satisfied for KK scales down to
3 TeV.

In [138], for each generation of quarks there are four quark multiplets under the bulk
gauge group SU(3)c × SU(2)L × SU(2)R ×U(1)X :

Qi(3,2,2)2/3 Qi
u(3,1,1)2/3 Qi

d(3,1,3)2/3 Q̃i
d(3,3,1)2/3 (4.72)

Only the T3R = −1/2 component of Q, Qu and the T3R = −1 component of Qd have zero
modes in order to reproduce the SM quark fields qL, uR and dR. A U(3) symmetry
under which the fields Qd and Q̃d transform as triplets and all the other fields are
singlets is assumed9. In the basis where the bulk masses are diagonal and the Yukawa
couplings are not, the couplings of the quark zero modes to the KK gluons,

ū
(0)
L g

(n)
uL u

(0)
L

/G(n) + d̄(0)L g
(n)
dL
d
(0)
L

/G(n) + ū(0)R g
(n)
uR u

(0)
R

/G(n) + d̄(0)R g
(n)
dR
d
(0)
R

/G(n) (4.73)

where G(n)µ = T aG(n)aµ , are diagonal but not flavour universal, except for gdR which is
flavour universal due to the U(3) flavour symmetry. Thus no flavour violating RH
currents are generated in the down sector. Loop-suppressed brane kinetic terms rein-
troduce some FCNCs in the RH down sector, however. In this model, a KK scale of
3 − 4 TeV can be achieved.

An RS model with 5D MFV was proposed in [139, 140]. With 5D MFV the bulk masses
have the general form:

CQ = αQ1 + βQYdY †
d + γQYuY †

u (4.74)

Cu = αu1 + γuY †
uYu (4.75)

Cd = αd1 + βdY †
d Yd (4.76)

where Yu,d are anarchic 5D Yukawa matrices. In the limit where γQ → 0 in eq. (4.74),
CQ, Cd and Yd are diagonal in the same basis. Flavour violation is then completely
absent in the down sector. If the alignment is not complete, i.e. if γQ is small but

9In [138] this symmetry is stated to be global. However, as remarked in [140], this symmetry should
be gauged since the bulk physics includes quantum gravity effects that generically violate any global
symmetries.
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non-zero, the alignment is quite a bit less than naively expected. This is due to the
fact that the suppression of FCNCs is due to the alignment of the traceless parts of
CQ and Yd. The misalignment is then proportional to the ratio of the traceless parts of
YuY

†
u and YdY †

d . On the other hand, the size of the respective traceless contributions is
determined by the size of the non-degeneracy of the eigenvalues of Cu and Cd. Due to
the hierarchy in the masses and CKM mixing angles, the degeneracy is much stronger
in Cd than in Cu. Thus, in order to be in agreement with experimental bounds on εK for
KK scales ∼ 3 TeV, we need a rather high degree of alignment, γQ ∼ O(10−2) [140]. Such
a high degree of alignment can best be explained by a symmetry. In [140] in order to
achieve full alignment a subgroup of the MFV flavour group SU(3)Q×SU(3)u×SU(3)d
is imposed in the bulk. The authors of [140] present two different models:

• Model A: bulk flavour symmetry SU(3)Q × SU(3)d

• Model B: the flavour symmetry is only the diagonal subgroup SU(3)Q+d

This symmetry is then broken on the UV brane and the symmetry breaking effect is
transmitted through the bulk by bulk scalar fields that transform under the flavour
symmetry as bi-fundamentals Yd(3Q, 3̄d) (Model A) or adjoints Ad(8Q+d) (Model B)
("shining").
In model A, the bulk mass parameters are of the form:

CQ = αQ1 + βQYdY †
d (4.77)

Cd = αd1 + βdY †
d Yd (4.78)

md
ij =

v√
2
fQiYdijfdj (4.79)

For Model B one gets:

CQ = αQ1 + βQAd (4.80)

Cd = αd1 + βdAd (4.81)

md
ij =

v√
2
fQi (αY + βYAd)ij fdj (4.82)

In both cases, obviously, the bulk masses and Yukawas are aligned in the down sector.
On the IR brane there are however higher dimension operators that feed Yu into Yd
such that the effective 4D down sector Yukawa coupling is misaligned with CQ and Cd:

Y eff.
d ∼ Yd (1 + N

2
KK

4π2
YuY

†
u) (4.83)
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where NKK is the number of weakly coupled KK modes. The suppression factor for
the misalignment is then given by:

ε = N
2
KK ∣Yu∣2
4π2

(4.84)

where ∣Yu∣ is the average value of the entries of Yu. In order to suppress the tree-level
CP violation in the D-system and to obtain a sufficiently large top mass, the Yukawas
must be at the verge of perturbativity. Thus, such loop effects can get quite large.
Possible solutions to this drawback are the introduction of a second Higgs doublet in
order to have separate Higgses for the up and down sector or to raise the average values
of the entries of Yd. The latter would imply some amount of tuning in order to get the
correct vev ⟨Yd⟩ on the IR brane. In this model, just as in the two previous models,
the up-sector is anarchic.

4.7.2 A new way to alignment

We now present a new, more efficient alignment model in RS [2]. In this model, we
assume the usual custodial symmetry in the bulk in order to lower the bound from
electroweak precision tests to the range of 3-5 TeV [134, 135]. The bulk gauge group is
thus SU(2)L × SU(2)R ×U(1)X , and it is broken to SU(2)L ×U(1)Y on the UV brane.

The first key idea is to separate the LH quark doublets into two sets of up and down
doublets. There are several ways to choose the representations of the fields, and we
choose the following:

Qi
u(2,2)+ 2

3
Qi
d(2,2)− 1

3
U i(1,1)+ 2

3
Di(1,1)− 1

3
H(2,2)0 , (4.85)

where i is a generation index. The bulk flavour group is SU(3)Qu × SU(3)Qd
× SU(3)u×

SU(3)d . The fermion fields have bulk masses

L ⊃ QuCQuQu +QdCQdQd +UCuU +DCdD , (4.86)

and Yukawa couplings to the Higgs10

L ⊃ Q i

u (Y 5D
u )

ij
U jH +Q i

d (Y 5D
d )

ij
DjH . (4.87)

10In extra dimensional theories it is useful to transform dimensionful couplings into dimensionless
form by factoring out the appropriate power of some natural scale (the AdS curvature scale k in
our case). Here and below we will carelessly use the same notation for both versions of the various
couplings.
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Note that due to the choice of representations in eq. (4.85), Qu cannot have a Yukawa
coupling to D and Qd cannot couple to U . The Higgs can either be localized on the
IR brane or allowed to spread in the bulk. The latter choice enables to suppress the
flavour constraints to some extent (see e.g. [124, 125]), but for simplicity we choose
the former and rely on our flavour alignment mechanism to lower the bound. Another
set of important couplings of the fermions is to the gluon field,

L ⊃ gs∗ (QuQu +QdQd +UU +DD)G, (4.88)

where gs∗ is the 5D coupling of the gluon field G.

On the UV brane both LH quark fields have the same quantum numbers, and thus
can mix. Consequently, the LH part of the bulk flavour group SU(3)Qu × SU(3)Qd

is
enhanced to SU(6)Q . This mixing can be used to get rid of the excess of LH states,
via coupling them to a set of UV brane localized states Q̃,

(Qu,Qd)
i
Mij Q̃

j , (4.89)

whereM is a 6×3 mass matrix, naturally of order k, composed of the two 3×3 matrices
Mu and Md:

(Qu,Qd)
⎛
⎜⎜
⎝

Mu

Md

⎞
⎟⎟
⎠
Q̃ = (QuMu +QdMd)Q̃ . (4.90)

As a result, three linear combinations of the six states (Qu,Qd) obtain masses of order
k, and three other combinations remain massless. The former therefore decouple from
the effective 4D theory, while the latter correspond to the physical SM LH states.

To see how this works explicitly, we diagonalize the UV mass matrix M by

VMV †
R , (4.91)

where V and VR are 6 × 6 and 3 × 3 unitary matrices, respectively. Without loss of
generality, the lines of V can be ordered such that the first three eigenvalues are zero
and the last three are non-zero. We can thus parameterize:

⎛
⎜⎜
⎝

QL

QH

⎞
⎟⎟
⎠
≡ V ⋅

⎛
⎜⎜
⎝

Qu

Qd

⎞
⎟⎟
⎠
≡
⎛
⎜⎜
⎝

Au Ad

Bu Bd

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

Qu

Qd

⎞
⎟⎟
⎠
, (4.92)

with QL and QH representing the massless and massive states, respectively. Note that
the zero eigenvalue states are defined only up to a unitary transformation U from left.
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In other words, the following rotation should not have any physical significance:

V →
⎛
⎜⎜
⎝

U 0

0 1

⎞
⎟⎟
⎠
× V =

⎛
⎜⎜
⎝

UAu UAd

Bu Bd

⎞
⎟⎟
⎠
. (4.93)

The relation in eq. (4.92) can be inverted to express the original states as

Qu,d = A†
u,dQL +B†

u,dQH . (4.94)

As mentioned before, the massive states QH are too heavy to be of any physical rele-
vance, and therefore can be omitted in the discussion below.

Going back to the bulk by plugging eq. (4.94) into eq. (4.86), we find that the effective
bulk mass term for the physical LH quark states is

QL (AuCQuA†
u +AdCQdA

†
d)QL ≡ QLCQQL . (4.95)

The bulk mass CQ can then be diagonalized by a unitary transformation QL → UCQL .
This makes it evident that any rotation of the form of Eq. (4.93) would be absorbed
by UC , such that it is unphysical.

The Yukawa couplings in Eq. (4.87) are now written as

QLUCAuY
5D
u U +QLUCAdY

5D
d D . (4.96)

After performing KK decomposition for the quark fields, we can write the effective 4D
Yukawa couplings for the zero-mode quarks as

Y 4D
u = F †

QUCAuY
5D
u Fu ,

Y 4D
d = F †

QUCAdY
5D
d Fd .

(4.97)

The matrices FQ,u,d project the zero-modes of the quarks on the IR brane. Their
eigenvalues, which we denote by fQi,ui,di , are functions only of the corresponding bulk
mass eigenvalues (denoted by cQi,ui,di), cf eq. (4.42). In order to go to the mass basis,
the Yukawa matrices need to be diagonalized:

(Y 4D
u )mass = VuLF †

QUCAuY
5D
u FuV

†
uR ,

(Y 4D
d )mass = VdLF †

QUCAdY
5D
d FdV

†
dR .

(4.98)
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The CKM matrix is then given by

V CKM = VuLV †
dL . (4.99)

Finally, we are interested in studying the main FCNC sources in the RS framework,
i.e. the KK modes of the gluon. In order to calculate the size of the flavour violating
couplings, we rewrite eq. (4.88) after KK decomposition in terms of the zero-mode
quarks in the mass basis and the first KK gluon G1. Since the KK states are very close
to being IR-localized, the overlap of the zero-mode quark wave functions and the KK
gluon is given by the F matrices to a reasonable approximation. Consequently, the
couplings of the quark zero modes to the first KK gluon are

g
(1)
uL = gs∗VuLF †

QUC(AdA
†
d +AuA†

u)U †
CFQV

†
uL , (4.100)

g
(1)
dL = gs∗VdLF †

QUC(AdA
†
d +AuA†

u)U †
CFQV

†
dL , (4.101)

g
(1)
uR = gs∗VuRF †

uFuV
†
uR , (4.102)

g
(1)
dR = gs∗VdRF †

dFdV
†
dR , (4.103)

for left-handed up- and down-type quarks and right-handed up- and down-type quarks,
respectively. Note that we omit here and below the universal part of the KK gluon
couplings, which is irrelevant for our discussion on FCNCs. The Lagrangian in eq.
(4.88) then reads:

L ⊃ (ūL g(1)uL uL + d̄L g
(1)
dL dL + ūR g

(1)
uR uR + d̄R g

(1)
dR dR)G (4.104)

Another source of flavour violation in RS is the Higgs, stemming from the misalignment
between its Yukawa couplings and the SM fermion masses, see sec. 4.5. The leading
FCNC spurion in our model is of the form

4v2

M2
KK

F †
QUCAd,u (Y 5D

d,u )
3
Fd,u , (4.105)

where MKK is the KK scale and v = 174 GeV.

Flavour Alignment

The next step in achieving alignment is to enforce the flavour symmetry of the model.
It is actually not important in this context how this is performed, but one can do so
for instance by gauging these symmetries. In appendix B we write the most general
renormalizable scalar potential consistent with the flavour symmetry for the spurion
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fields Y 5D
u,d and CQu,Qd,u,d on the UV brane as well as in the bulk. As is shown there, at

the minimum of the potential the following pairs of objects are aligned, such that they
can be taken as simultaneously diagonal11:

CQu ↔MuM
†
u CQd ↔MdM

†
d Cu↔ (Y 5D

u )†Y 5D
u Cd↔ (Y 5D

d )†Y 5D
d . (4.106)

Note that our model relies solely on the flavour symmetry to achieve an alignment of
Yukawa couplings and bulk masses, while previous alignment models [136, 137, 138,
139, 140] need MFV as a second ingredient.
In order for the model described above to exhibit suppression of FCNCs compared
to the typical anarchic scenario, one more ingredient is required, however: we assume
that the typical size of the eigenvalues of the down UV mass matrix, Md , is suppressed
by a factor of ε compared to the eigenvalues of the up UV mass matrix, Mu . The
universal parameter ε is technically natural, so in principle it could be taken to be
arbitrarily small. We now analyze the effect of the above assumptions, demonstrating
the resulting suppression of FCNCs as a function of ε.
Starting from a basis where the up-type masses are diagonal, without loss of generality,
the UV masses are written as:

Mu =

⎛
⎜⎜⎜⎜⎜⎜
⎝

mu1 0 0

0 mu2 0

0 0 mu3

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Md = ε

⎛
⎜⎜⎜⎜⎜⎜
⎝

md1 0 0

0 md2 0

0 0 md3

⎞
⎟⎟⎟⎟⎟⎟
⎠

× VX , (4.107)

where the various eigenvalues mi are of order k and VX is some unitary matrix. A
simple calculation shows that diagonalizing the UV mass matrix, the matrices Au,d
defined in Eq. (4.92) can be written in the form:

Ad ∼

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 ε2 ε2

0 1 ε2

0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Au ∼

⎛
⎜⎜⎜⎜⎜⎜
⎝

ε ε ε

ε ε ε

ε ε ε

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (4.108)

after expanding in ε and omitting for simplicity spurious O(1) factors (which will be
reinstated at a later stage). This is of course not a unique representation, following
Eq. (4.93), but it is a convenient one.
Next we analyze the resulting structure of CQ = (AuCQuA†

u +AdCQdA
†
d), recalling that

11Since the bulk masses are adjoints of the corresponding parts of the bulk flavour group, we write
also the matrices Mu,d and Y 5D

u,d in their adjoint form.
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in the chosen basis both CQu and CQd can be taken as diagonal. It is simple to see then
that for the termAuCQuA

†
u all matrix entries are of order ε2, while for the termAdCQdA

†
d

the diagonal is O(1) times the eigenvalues of CQd and the off-diagonal elements are
O(ε2). Consequently, the eigenvalues of CQ are dominated by those of CQd plus O(ε2)
corrections12 that depend on both CQu,Qd . Additionally, the diagonalizing matrix UC
is close to a unit matrix with O(ε2) corrections for all elements. To sum this up, we
have

cQi ∼ cQi
d
+O(ε2) , UC ∼

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 ε2 ε2

ε2 1 ε2

ε2 ε2 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.109)

Following the assumption of alignment, FQ,u,d and Y 5D
u,d can be taken as diagonal at

once, and the only non-diagonal matrices in this basis are Au,d and UC . Thus it is
easy to see the structure of the physical Yukawas in eq. (4.97). The eigenvalues of Y 4D

u ,
denoted by y4D

ui
, are all of order ε because of Au in Eq. (4.108):

y4D
ui ∼ fQiy5D

ui fuiε , (4.110)

where y5D
ui

stands for the eigenvalues of the 5D Yukawa Y 5D
u . This suggests that ε

cannot be taken too small, since in that case it would be hard to reproduce the top
mass. Moreover, because of the anarchic structure of Au , the diagonalizing matrices
of the up Yukawas VuL,uR in Eq. (4.98) have the same form as in the anarchic scenario,

(VuL)ij ∼ fQi/fQj (i < j) (VuR)ij ∼ fui/fuj (i < j) . (4.111)

In contrast, due to the structure of Ad in Eq. (4.108) and UC in Eq. (4.109), the
eigenvalues of Y 4D

d are not proportional to ε,

y4D
di ∼ fQiy5D

di fdi , (4.112)

while all the off-diagonal entries in this basis are suppressed by ε2. This leads to the
interesting observation that the off-diagonal elements of VdL,dR have an ε2 factor, in
addition to the typical structure, that is

(VdL)ij ∼ ε2fQi/fQj (i < j) (VdR)ij ∼ ε2fdi/fdj (i < j) . (4.113)

12These corrections are actually important due to the exponential dependence of f(c) on c, and so
they are included in our full calculation.
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The standard form of the CKM matrix in the anarchic RS scenario,

V CKM
ij ∼ fQi/fQj (i < j) , (4.114)

is reproduced thanks to the structure of VuL in Eq. (4.111)13.
We now reach to the main result of the our analysis, which is the suppression of FCNCs
mediated by the KK gluon. Starting from the couplings of the KK gluon to LH quarks,
eqs. (4.100) and (4.101), it can be seen that the inner part UC(AdA†

d+AuA
†
u)U †

C is similar
to a unit matrix with ε2 corrections for all elements (see Eqs. (4.108) and (4.109)). The
surrounding FQ matrices then make it of the form fQifQj with ε2 suppressions for the
off-diagonal elements. Now for the up sector, the matrix VuL , Eq. (4.111), washes
out all the ε2 terms and leaves the standard RS-GIM form g

(1)
uL ∼ fQifQj . However,

in the down sector the structure of VdL , Eq. (4.113), maintains the ε2 suppression for
the off-diagonal elements. For the right-handed quarks, it is simple to see that g(1)uR
in eq. (4.102) is again just the RS-GIM one, while for g(1)dR in Eq. (4.103) there is a
suppression of ε2 in the off-diagonal elements. To conclude, we find:

g
(1)
uL ∼ gs∗

⎛
⎜⎜⎜⎜⎜⎜
⎝

f 2
Q1 fQ1fQ2 fQ1fQ3

fQ1fQ2 f 2
Q2 fQ2fQ3

fQ1fQ3 fQ2fQ3 f 2
Q3

⎞
⎟⎟⎟⎟⎟⎟
⎠

g
(1)
uR ∼ gs∗

⎛
⎜⎜⎜⎜⎜⎜
⎝

f 2
u1 fu1fu2 fu1fu3

fu1fu2 f 2
u2 fu2fu3

fu1fu3 fu2fu3 f 2
u3

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.115)

g
(1)
dL ∼ gs∗

⎛
⎜⎜⎜⎜⎜⎜
⎝

f 2
Q1 fQ1fQ2ε2 fQ1fQ3ε2

fQ1fQ2ε2 f 2
Q2 fQ2fQ3ε2

fQ1fQ3ε2 fQ2fQ3ε2 f 2
Q3

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.116)

g
(1)
dR ∼ gs∗

⎛
⎜⎜⎜⎜⎜⎜
⎝

f 2
d1 fd1fd2ε2 fd1fd3ε2

fd1fd2ε2 f 2
d2 fd2fd3ε2

fd1fd3ε2 fd2fd3ε2 f 2
d3

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.117)

We see the RS-GIM mechanism in the up-type quark couplings and the additional
ε2 suppression factor in the down-type FCNC couplings, which constitutes the down
alignment of the model.
An important point is that this suppression is stable under radiative corrections, since
it is protected by the flavour symmetry. This is an advantage of our model with respect
to [140]. As we saw in sec. 4.7.1, eq. (4.83), there, loops and higher dimensional oper-

13Note that the entries on the main diagonal of VdL are not suppressed by ε.
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ators feed Y 5D
u into Y 5D

d via terms proportional to QY 5D
u (Y 5D

u )†Y 5D
d DH, thus spoiling

the alignment. Since the theory is on the verge of being perturbative, such effects can
get quite large. Note that such terms do not appear in our model since Y 5D

u and Y 5D
d

transform under different left-handed flavour groups.

Another difference between our model and the one described in [140] is that their model
relies on an MFV ansatz plus an additional symmetry to realize the alignment, whereas
in our case this follows automatically from the most general potential invariant under
the flavour symmetry, plus one “accidentally” small parameter.

Finally, in our case the FCNC suppression in the down sector at the level of the cross
section is ε4 compared to the anarchic scenario, which means that the resulting bound
on the KK scale is suppressed by ε2 . This is in contrast to the approximate alignment
in [140], described by

CQ = αQ1 + βQY 5D
d (Y 5D

d )† + γQY 5D
u (Y 5D

u )† , (4.118)

with γQ ≪ βQ . In this case the KK scale is only linearly suppressed by the small
parameter γQ/βQ .

To conclude this section, we note that the Higgs FCNC spurion in eq. (4.105) enjoys the
same type of suppression as the KK gluon couplings, that is an anarchic-like structure in
the up sector and an ε2 suppression in the down sector. However, in this case the cross
section scales as M−4

KK , so that the final bound on MKK is only linearly proportional
to ε. We discuss the implication of this issue in the next section.

FCNC Suppression in Practice

We are now interested in studying the implication of the FCNC suppression of the
model, or in other words estimate the value required for ε in order for the flavour
constraints to be in line with other sources of constraints, such as electroweak precision
tests.

In order to perform this task, we should first ask whether the simple picture presented
in the previous section is accurate enough, or if a more careful analysis which keeps
track of all the “order 1” factors is needed. As we now show, these factors indeed lead
to dangerous enhancements, compared to the naive estimate above. We focus here
on (g(1)dL )12 and (g(1)dR )12, which are responsible for sL → dL and sR → dR transitions,
respectively, since their multiplication gives the model’s contribution to εK .

First we define the matrices Ãu,d to be composed of the coefficients of the leading power
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of ε in the elements Au,d in Eq. (4.108), respectively. More precisely,

(Ãu)ij ≡ (Au)ij/ε , (Ãd)ii ≡ [1 − (Ad)ii] /ε2 , (Ãd)ij ≡ (Ad)ij/ε2 (i < j) . (4.119)

Note that the leading terms on the diagonal of Ad are all 1, so we defined (Ãd)ii to be
the coefficients of the ε2 correction to these terms. This is required in order to maintain
consistency in our ε expansion, without losing any terms which contribute at the same
order. All the elements of Ãu,d defined in eq. (4.119) are therefore O(1).

Using these definitions, the full expression for (g(1)dL )12 is

(g(1)dL )12 ≃ gs∗fQ1fQ2ε2
⎡⎢⎢⎢⎢⎣
(Ãu)11(Ãu)21 + (Ãu)12(Ãu)22 + (Ãu)13(Ãu)23

−
cQ2

d
(Ãd)12 + cQ1

u
(Ãu)11(Ãu)21 + cQ2

u
(Ãu)12(Ãu)22 + cQ3

u
(Ãu)13(Ãu)23

cQ1
d
− cQ2

d

⎤⎥⎥⎥⎥⎦
(4.120)

A very similar expression is also found for (g(1)dR )12:

(g(1)dR )12 ≃gs∗fd1fd2ε2
y5D
d1

y5D
d2

×
cQ2

d
(Ãd)12 + cQ1

u
(Ãu)11(Ãu)21 + cQ2

u
(Ãu)12(Ãu)22 + cQ3

u
(Ãu)13(Ãu)23

cQ1
d
− cQ2

d

(4.121)

The first three terms in the squared brackets of eq. (4.120) are all O(1). However,
the last term, which also appears in Eq. (4.121), contains a factor of (cQ1

d
− cQ2

d
) in its

denominator. This factor is potentially very small, since the bulk masses needed to
reproduce the masses of the d and s quarks are both typically close to 0.6: because
of the exponential dependence of the wave function’s overlap with the IR brane on
the bulk mass, eq. (4.42), a small difference between the two bulk masses is enough to
obtain the hierarchy between the quark masses.

We can estimate the typical magnitude of (cQ1
d
− cQ2

d
) via the following procedure.

First we use the fact that up to O(ε2) corrections, cQi
d
is equal to cQi , as shown in

eq. (4.109). Next, for c larger than (and not too close to) 0.5, we can approximate
f(c) ∼

√
2c − 1 exp (kπR (1/2 − c)) (see (4.42)). Plugging this into Eq. (4.112) yields

y4D
di ∼ y5D

di fdi
√

2cQi − 1 exp [kπR(1

2
− cQi)] . (4.122)
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We now need to invert this relation to isolate cQi . Since the dominant dependence of
cQi on the other factors y4D

di
etc. is logarithmic and since we are only interested in the

difference (cQ1
d
− cQ2

d
), we can also omit the factor

√
2cQi − 1 from eq. (4.122). Then it

is easy to invert eq. (4.122) and obtain

cQ1
d
− cQ2

d
∼ − 1

kπR
[log(

y4D
d1

y5D
d1 fd1

) − log(
y4D
d2

y5D
d2 fd2

)] ≃ 1

kπR
log (fd1

fd2

ms

md

) , (4.123)

where in the last equality we replaced the ratio of 4D Yukawas by the ratio of physical
quark masses and neglected a factor of log(y5D

d1 /y5D
d2 ), as the 5D Yukawas are all of the

same order.
It is now possible to estimate the actual FCNC suppression in eqs. (4.120) and (4.121)
compared to the naive estimate in the previous section. We only keep the last term
in the squared brackets in Eq. (4.120), since it is the dominant one and the relative
sign/phase between the various terms cannot be determined in general. For the re-
maining term, we pull out a factor of 0.6 from the numerator to represent the value of
the different c’s, and assume that the rest is O(1). In eq. (4.121) we ignore the ratio
of 5D Yukawas, which is generally O(1). This leads us to

(g(1)dL )12

gs∗fQ1fQ2ε2
∼ (g(1)dR )12

gs∗fd1fd2ε2
∼ 0.6

kπR

log (fd1fd2
ms
md

)
≃ 7 − 13 , (4.124)

using kπR = 35, which reproduces the hierarchy of Planck to TeV scales, and values
in the range of 1 to 1/4 for fd1/fd2 (yielding 7 to 13, respectively). We thus find
that as suspected, the FCNCs are quite significantly enhanced compared to the naive
estimation made before. It should be noted that the same type of enhancement with
the same structure as for the KK gluon and of the same magnitude also appears in the
Higgs flavour violating couplings.
Regarding transitions that involve the third generation, the enhancement is much less
significant. This is because the denominator contains (cQ1,2

d
− cQ3

d
), and typically we

have cQ3
d
< 0.5, which makes this difference larger.

In order to substantiate this troubling enhancement, we performed a numerical scan of
our model. We randomly generated a large number of points in the parameter space
that roughly reproduce the correct quark masses and CKM mixing angles. Then we
calculated the full KK gluon coupling matrices for each point. The results were obtained
by averaging over all the points (median values were also calculated and found to be
close to the mean). We learn the following:

• The transitions sL → dL and sR → dR are enhanced on average by factor of 5-9
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compared to the expected suppressions of fQ1fQ2ε
2 and fd1fd2ε

2, respectively. As
may have been expected from Eq. (4.124), both have relatively wide distributions,
such that for a certain point in the parameter space this enhancement can be
much bigger or much smaller.

• All the other down FCNCs are enhanced by a factor of 3 or less compared to
expected, with relatively narrow distributions.

• The distributions of the transitions cL → uL and cR → uR are rather wide, but
they are in general centered around the corresponding anarchic values.

• Other up FCNCs are similar to the anarchic scenario or below.

The range given for the above enhancement factors is for varying ε in the range 0.1-0.3.
This dependence is explained by noting that changing ε also changes the typical bulk
mass eigenvalues that give the correct masses and mixing angles, thus affecting the
results.
We are now in a position to estimate the value for ε that would reduce the bound from
flavour constraints, such that it would not be the most severe bound on the theory. The
lower bound on the KK scale from EWPT is estimated to be 3-5 TeV [141, 142, 143].
Hence we choose to aim at ∼3 TeV as the flavour bound.
As already mentioned, the strongest constraint on the RS framework typically comes
from εK where the largest contribution is due to the operator

Ods4 = (s̄RdL)(s̄LdR) (4.125)

(cf. eq. (2.13)). For KK gluon exchange the Wilson coefficient of this operator is:

Cds
4 (MKK) = −

[g(1)dR ]
21

[g(1)dL ]
12

M2
KK

∼ − g2
s∗

M2
KK

ε4fQ1fQ2fd1fd2 (4.126)

The eigenvalues of the 4D and 5D Yukawas are related by (cf. eq. (4.112)):

y4D
d1 = md

v
∼ fQ1y5D

d1 fd1 (4.127)

y4D
d2 = ms

v
∼ fQ2y5D

d2 fd2 (4.128)

We can therefore write eq. (4.126) as:

Cds
4 (MKK) = − g2

s∗

M2
KK

ε4
mdms

v2∣Y 5D
d ∣2 (4.129)
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where ∣Y 5D
d ∣ is the typical 5D down Yukawa scale.We require that this contribution

to ∣εK ∣ should be at most 60% of the experimental value [144, 145] and evaluate the
resulting suppression scale and quark masses at 3 TeV. We use gs∗ = 3 for the 5D gluon
coupling after one loop matching [124], md/v = 1.342 ⋅ 10−5, ms/v = 2.718 ⋅ 10−4 (from
[146], evolved up to 3 TeV), an upper bound on Cds

4 of 2.38 ⋅ 10−11 TeV−2 [116] and
include a correction factor of 1.7 for the overlap of the KK gluon and the quarks (see
e.g. [118]). We then find for the lower bound on the mass scale of the KK gluons:

MKK ≳ 48x ε2

∣Y 5D
d ∣ TeV , (4.130)

where x is the numerical enhancement factor discussed above. Taking x = 7 as a
representative value and choosing ∣Y 5D

d ∣ = 2.4, we see that with ε = 0.15 the bound is
reduced to

MKK ≳ 3.2 TeV . (4.131)

This should be compared with MKK ≳ 20 TeV for the standard anarchic scenario
(x = ε = 1). For larger values of ∣Y 5D

d ∣ the bound from the Higgs FCNC contribu-
tion becomes the dominant one, since it depends linearly on ∣Y 5D

d ∣ (and is also more
weakly suppressed within our model, as mentioned in the previous section). Allowing
the Higgs to propagate in the bulk can significantly reduce the above bound (or alter-
natively allow for a larger ε), but it is interesting to see that even in the IR Higgs case,
the flavour constraints can be significantly ameliorated with reasonable parameters.

Some Collider Implications

The model presented above features a suppression of flavour violation in the down
sector, while maintaining the anarchic contributions to FCNCs in the up sector. Fur-
thermore, it relies on the flavour symmetries in order to achieve that. Both these
aspects lead to some potentially observable phenomena, as discussed in this section.

First, it is interesting to note that reducing the bound on the KK scale coming from
the down sector to the 3 TeV range means that up sector constraints are right around
the corner. In order to make this argument concrete, we analyze the bound from CP
violation in D0−D0 mixing: The two neutral D-meson mass eigenstates ∣D1⟩ with mass
m1 and ∣D2⟩ with mass m2 are linear combinations of the interaction eigenstates ∣D0⟩
(with quark content cū) and ∣D̄0⟩ (with quark content c̄u) [147, 148, 149, 150, 151]:

∣D1⟩ = p ∣D0⟩ + q ∣D̄0⟩ ∣D2⟩ = p ∣D0⟩ − q ∣D̄0⟩ (4.132)
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The difference in mass in between the two mass eigenstates is given as

x12 ≡
m2 −m1

Γ
(4.133)

where Γ = Γ1+Γ2

2 is the average width. The decay amplitudes to a final state f are
defined as follows:

Af = ⟨f ∣H ∣D0⟩ Āf = ⟨f ∣H ∣D̄0⟩ (4.134)

It is then convenient to define a complex dimensionless parameter λf :

λf =
q

p

Āf
Af

(4.135)

For the decays D0 → K+π−, D̄0 → K−π+, D0 → K+K− and D̄0 → K+K− we can then
write [152]:

λ−1
K+π− = rd ∣

p

q
∣ e−i(δKπ+φ12) λK−π+ = rd ∣

q

p
∣ e−i(δKπ−φ12) λK+K− = − ∣q

p
∣ eiφ12

(4.136)
where rd is a real, positive dimensionless parameter, δf is a strong (i.e. CP conserving)
and φ12 is a weak (i.e. CP violating) phase. We use the most updated results of the
heavy flavour averaging group for these parameters [153]:

x12 ∈ [0.25,0.99]% , φ12 ∈ [−8.4○,24.6○] , (4.137)

both at 95% confidence level. We take the upper bounds of these ranges and assume
maximal phases. Choosing for simplicity ∣Y 5D

u ∣ = ∣Y 5D
d ∣ = 2.4 as in the previous section,

we obtain14

MKK ≳ 2.8 TeV , (4.138)

which is very close to the bound in Eq. (4.131). We can turn this calculation around
and ask what is the required improvement in the experimental constraints in order
for the D0 −D0 measurement to be the dominant one in setting the bound. This is
presented in Fig. 4.9, where it is evident that a 40% improvement in x12 sinφ12 would
be enough for such a turn of events. If we adopt the bound in Eq. (4.131) as the actual
KK scale, then an observable signal of CP violation in D0−D0 mixing may be expected
soon.

Another interesting implication of the anarchic structure in the up sector is a potentially

14The strongest constraint in this case comes from the Higgs exchange rather than the KK gluon. It
can be reduced to ∼2.2 TeV by taking ∣Y 5D

u ∣ = 1.9, which corresponds to equal constraints from Higgs
and KK gluon exchanges.

86



4.7. FLAVOUR SYMMETRIES AND ALIGNMENT IN RS

0.0 0.2 0.4 0.6 0.8 1.0

3.0

3.5

4.0

4.5

Hx12 sinΦ12Lfuture

Hx12 sinΦ12Lcurrent

K
K

B
ou

nd
@T

eV
D

Figure 4.9: The bound from CP violation in D0 −D0 mixing (solid blue) compared to the
bound from εK (dashed red), for a future improvement of the experimental determination of
the combination of parameters x12 sinφ12 .

large contribution to direct CP violation in charm decays via a dipole operator of the
form ūσµνT a(1± γ5)cGµν

a . As shown in [154], such a contribution may account for the
recent observation of a large CP asymmetry difference in the decays D0 →K+K− and
D0 → π+π− by LHCb [155] and CDF [156]:

∆aCP ≡ aK+K− − aπ+π− = −(0.67 ± 0.16)% (4.139)

where
af ≡

Γ(D0 → f) − Γ(D̄0 → f)
Γ(D0 → f) + Γ(D̄0 → f) (4.140)

Since our model is based on imposing the flavour symmetries in order to achieve align-
ment of the relevant objects, it is reasonable to assume that these symmetries are
gauged. The consequence of that is the existence of flavour gauge bosons, which may
be observable at the LHC.

Finally, we note that the model proposed here enables to reduce the KK scale without
forcing the bulk masses of the first two generation quarks to be degenerate. Since the
dependence of the masses of the KK quarks on the bulk mass parameters is roughly
linear, one may wonder whether the LHC would be able to distinguish between the
KK quarks of the first two generations. However, studies of KK quark signals at the
LHC show that they are very difficult to detect [157, 158], and that only the third
generation partners have a chance to be observed (see e.g. [159] and refs. therein).
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4.8 Other aspects of the RS model

4.8.1 AdS/CFT

Thanks to the AdS/CFT correspondence [160] we can find a 4D model that is dual to
the 5D RS model. The AdS/CFT correspondence says that a type IIB string theory
on AdS5×S5 is dual to a four dimensional SU(N) gauge theory with 4 supersymmetry
generators, the d = 4 N = 4 super-Yang-Mills theory. It can furthermore be shown that
the super-Yang-Mills theory is a conformal field theory (CFT), i.e. it is invariant under
dilatation (scale invariance) and the special conformal transformations.
Now, a string theory on AdS5×S5 is not exactly the set-up of RS. RS however represents
the effective low energy description of a string theory when the radius R of the extra-
dimension is much larger than the length of the strings ls. Since they are related
by:

R4

l4s
= 4πg2

YMN (4.141)

where gYM is the gauge coupling of the dual super-Yang-Mills theory, this means that
gYMN ≫ 1, i.e. the dual CFT is strongly coupled [108].
Due to the the scale invariance of the conformal symmetry, there are no mass scales
in a CFT. However in the RS setup, we do not consider an infinite AdS5 but one that
is bounded by two four-dimensional branes. Adding the branes and their associated
mass scales breaks the conformal symmetry.
There is an "AdS/CFT dictionary" relating the 4D and 5D theories. Using this dic-
tionary one can show that RS with the Higgs confined to the IR brane is dual to a
4D theory with a composite Higgs. The fermions are mixtures of elementary and com-
posite states. Heavy fermions such as the top quark, that are localized towards the
IR brane, are predominantly composite while light fermions such as the electron are
almost elementary.

4.8.2 Dark Matter

It is clear that in a warped fifth dimension there is no translational invariance. The
fifth component of momentum is thus not conserved and there is a priori no KK parity
in RS models (as opposed to UED models, cf. 1.4.2). It is however possible to construct
warped extra-dimensional models with KK parity:
In [161] a model with a warp factor that is symmetric with respect to reflection about
the midpoint of the extra-dimension was considered. Such a setup can be achieved by
gluing together two slices of AdS5. The slices can either be glued in the UV or the IR
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region: For the setup IR-UV-IR we have the metric

ds2 = e−2k∣y∣dxµdxνηµν − dy2 (4.142)

where y ∈ [−πR,πR]. In the setup UV-IR-UV the metric is

ds2 = e2(k∣y∣−πR)dxµdxνηµν − dy2 (4.143)

In other words, the warp factor has a minimum at the midpoint. In both cases it is
then assumed that y → −y is an exact symmetry of the theory. For any given level
in the KK decomposition there are even modes whose profiles are symmetric under
reflexion around the midpoint of the extra dimension and odd modes whose profiles
are anti-symmetric. Odd modes then can couple only in pairs to even modes. The
lightest odd mode is thus stable and provides a DM candidate. In [161] this is the
lightest KK partner of the Z boson. Its predicted relic abundance is in the correct
range.
Another benefit of this model is that if the lightest KK states are odd, they do not
contribute at tree level to operators that are constrained by EWPT and flavour physics.
They can thus be rather light. This in turn ameliorates the little hierarchy problem:
the fact that to avoid large contributions to the Higgs mass NP states should be present
already at the weak scale (i.e. sub-TeV) but that on the other hand in order to be
consistent with EWPT and flavour observables, one must require the NP scale to be
higher that a few TeV.
This requires a splitting in between the odd and even KK modes, however. As shown
in [161], in the IR-UV-IR setting this can only be achieved by very large IR-brane
kinetic terms that on the other hand create a certain tension with perturbativity. In
the UV-IR-UV setup the splitting of odd and even KK modes is automatic. This setup
is however not stable gravitationally.
A similar ansatz was made in [162, 163]. In this model, there is a non-trivial warping
with two IR boundaries. No UV brane is put in by hand, but a dynamical UV brane
is generated in the middle of the extra dimension. In the limit where this UV brane
becomes infinitely thin, this model corresponds to the IR-UV-IR setup in [161]. The
DM candidate is the first KK mode of the radion.
In such models KK modes are produced in pairs at colliders and there is missing
transverse energy from the DM candidate.
A DM candidate also emerges when considering GUTs in warped extra dimensions
[164, 165, 166]. GUTs are feasible in RS models since due to the logarithmic running
of gauge couplings in AdS5 gauge coupling unification is possible when the gauge bosons
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are placed in the bulk [167]. In [164, 165] a gauged baryon symmetry is imposed in
the bulk15 in order to avoid proton decay due to four fermion operators without having
to move the fermions too close to the UV brane and thus suppress their effective 4D
Yukawa couplings too much. This baryon symmetry can be consistent with a GUT if
the unified gauge group is broken by boundary conditions such that the SM quarks
and leptons are obtained from different multiplets. For example for SO(10) we have
the multiplets:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

uL dL

u
′c
R

d
′c
R

ν′L e
′
L

e
′c
R

ν
′c
R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
B=1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u′L d
′
L

uc
R

dc
R

ν′L e
′
L

e
′c
R

ν
′c
R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
B=−1/3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u′L d
′
L

uc
′
R

dc
′
R

νL eL

ec
R

νc
R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
B=0

(4.144)

where only the boldface fields have zero modes. Furthermore, the Z3 symmetry

Φ→ e2πi(B−nc−n̄c
3
)Φ (4.145)

where nc (n̄c) is the number of colour (anti-colour) indices is imposed. While the SM
fields are not charged under this Z3, the gauge bosons of SO(10), lepton-like states in
the multiplets that carry baryon number and quark-like states that carry non-standard
baryon number are charged. As a consequence, the lightest Z3 charged particle cannot
decay to SM particles, i.e. is stable. As it turns out this particle has the quantum
numbers of a RH neutrino and is a viable DM candidate.

An exchange symmetry [168, 169] can also be used in order to have a suitable DM
candidate [170, 171]. The exchange symmetry is constructed as follows: a bulk field Φ is
replaced by a pair of fields Φ1 and Φ2 and the symmetry Φ1 ↔ Φ2 is imposed. The even
linear combination Φ+ ≡ (Φ1 +Φ2)/

√
2 is identified with the original field. We can then

assign the multiplicative charge -1 to the orthogonal combination Φ− ≡ (Φ1 − Φ2)/
√

2

and the charge +1 to Φ+. It can be shown that this symmetry is exact. The lightest
KK excitation with negative charge under the exchange symmetry is therefore stable.
Since we are looking for a DM candidate we will of course double a field that has the
right properties for being DM, i.e. an electric and colour charge neutral field. We need
more fields that are odd under the exchange symmetry, however: If the DM candidate

15This baryon symmetry is broken on the UV brane in order to avoid a massless gauge boson.
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were the only odd particle it could couple only via non-renormalizable interactions
to the other fields. Its annihilation rate would then be extremely small and its relic
density unacceptably large.

4.8.3 Neutrinos

At first sight, it seems that warped extra-dimensional models cannot explain the small-
ness of neutrino masses, since operators such as eq. (4.24) are suppressed by a warped
down scale only and the induced masses of left-handed neutrinos would be far above
experimental bounds. This operator can be forbidden by imposing lepton number
conservation, however.

In split fermion models, a small Dirac mass term for the left-handed neutrinos can
be induced [104]: A sterile bulk fermion is included and the boundary conditions are
chosen such that there is a right-handed zero mode with wave function F (cνR) on the
TeV brane. The effective 4D Yukawas for the left-handed neutrinos are then16:

Y 4D
ν = Y 5D

ν F (cνR) (4.146)

Upon EWSB a Dirac mass term ν̄LmννR is induced for the neutrinos, where mν =
vY 4D

ν = vY 5D
ν F (cνR). Thus if the right-handed neutrinos are localized towards the UV

brane, i.e. ∣F (cνR)∣ << 1, small neutrino masses can be generated. In this model there
is no breaking of lepton number17.

In [172] it was shown however that the neutrino masses can be purely Dirac even in
the presence of an explicit breaking of lepton number via a Majorana mass term on
the UV brane. This is achieved by having the right-handed neutrino localized on the
IR brane. Thus the right-handed neutrino is separated physically from the source of
lepton number violation and the effective low energy theory conserves lepton number.
In this model, since the physical low energy neutrinos are Dirac particles there is no
neutrinoless double beta decay or other lepton number violating processes such as
K+ → π−µ+µ−.

In [173] it is shown that the see-saw mechanism can indeed be implemented in RS:
A right-handed neutrino νR is introduced and lepton number is broken only by its
Majorana mass term on the Planck brane. As is shown in [173], this setup leads to
the correct masses for the light left-handed neutrinos without any small parameters.

16Here we suppose for simplicity that the left-handed neutrinos live on the TeV brane but it also
works for bulk left-handed neutrinos.

17A global lepton number symmetry is imposed which is however problematic given that a consistent
theory of quantum gravity cannot conserve any global symmetries.
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The discrepancy between the Majorana and Planck scales is explained by exponential
suppressions of bulk wave functions.

However, in this model, in order to have realistic masses for the charged leptons and
the neutrinos at the same time, values as small as 10−4 are needed for the entries of the
Yukawas [174]. Therefore, in [174] a model is constructed that generates small Majo-
rana masses for the left-handed neutrinos using only parameters of order unity. This
is achieved by coupling the lepton doublets to a SU(2) triplet scalar. The smallness of
the light neutrino masses is then due to the small overlap of the triplet, a bulk singlet
zero mode that is localized close to the UV brane and the Higgs, located as usual on
the IR brane.

Another peculiarity of neutrinos apart from their very small masses are their non-
hierarchical mixing angles: two of the observed neutrino mixing angles are close to
maximal. In [175] an A4 discrete symmetry is used in order to achieve the correct
neutrino mixing pattern. The hierarchy in the charged lepton masses is achieved as
usual via their localization in the bulk, while the much milder hierarchy in neutrino
masses is explained by O(1) factors in the neutrino Majorana mass matrix.

A flavour symmetry is also used in [176] in order to explain the large neutrino mixing
angles: In the spirit of minimal flavour violation the authors assume that the Yukawa
couplings are the only sources of breaking of the flavour symmetry in the lepton sector,
U(3)l ×U(3)e ×U(3)ν . The bulk masses are then given as:

Ce = ae1 + beY †
e Ye (4.147)

Cν = aν1 + cνY †
ν Yν (4.148)

Cl = al1 + blYeY †
e + clYνY †

ν (4.149)

The light neutrino masses are assumed to arise from a see-saw mechanism involving
heavy right-handed neutrinos. In order to prevent the seesaw operator to arise also from
higher-dimensional operators that are not sufficiently suppressed due to the warp factor,
lepton number symmetry is imposed. It is broken on the UV brane. Now consider the
mixing angles: in the quark sector, we saw that the entries of the CKM matrix are
given as the ratio of the zero mode wave function on the IR brane, V CKM

ij ∼ fQi/fQj ,
cf. eq. (4.114). Small mixing angles thus arise when the wave functions are non-
degenerate. In the neutrino sector we thus need nearly degenerate wave functions in
order to reproduce the large mixing angles. Indeed, the left-handed neutrino wave
functions are fairly degenerate if the U(3)l symmetry is not broken or broken only by
a small amount in the bulk. It is then primarily broken by the 5D Yukawa coupling in
the IR.
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4.8.4 Collider phenomenology

In contrast to MSSM particles or KK excitations in UED new particles in the RS model
are not produced in pairs and there is no missing transverse energy at colliders. That is
unless there is some kind of symmetry and a DM candidate as in the models presented
in 4.8.2.
The best channel to probe the RS framework at the LHC is the production of KK
gluons18 [177, 178]. It is challenging to discover the KK gluon since

1. due to the fermion profiles in the bulk its couplings to light fermions (i.e. light
quarks as in protons) are suppressed and

2. it decays mainly to third generation quarks with a large width (especially tt̄ with
95% branching ratio).

The dominant production mechanism is through uū and dd̄ annihilation. At the LHC,
the background is mainly due to tt̄ production from gluon fusion. This cross-section
is comparable to tt̄ production from KK gluons. However, while in the SM an equal
amount of left- and right-handed tt̄-pairs is produced, this is not the case for tt̄ from
KK gluons. There should be a large bias towards RH tops and thus a LR asymmetry
should be measured if KK gluons are indeed produced. This is due to the different
localization of the LH and RH third generation quarks in the bulk. The chirality
information is encoded in the decay products since the top decays before it hadronizes.
If an excess in the tt̄ cross section and an LR asymmetry are measured, the KK gluon
can thus be discovered at the LHC for masses of a few TeV.
In the SO(10) model of [164, 165] (cf. sec. 4.8.2) the lightest KK fermion is lighter
than the KK gauge bosons. Since the lightest KK fermion is the one with the smallest
bulk mass c, it will come from the multiplet that contains the top quark [178]. If light
KK quarks are produced at the LHC, they could be detected via multi-W final states
[179].
Another prediction are TeV KK gravitons. They lead to spin 2 resonances spaced
according to the roots of the first Bessel function [178].

18The production rate of the EW KK gauge bosons is suppressed by gZ/gQCD with respect to the
KK gluon production.
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Appendix A

Renormalized Yukawas in a 2HDM

A.1 Vertex renormalization (one loop)

A.1.1 Up-type Yukawa couplings

uRj

uLi

φ0
k

(Y (k)u )ij +

uRj
dLn

φ+l

dRm

φ0
k

uLi

−(Y (l)u )nj

(Y (k)∗d )nm

(Y (l)d )im

+

uRj

uLi

φ0
k

(δY (k)u )ij

+
terms from gauge

interactions (the same as
in the standard model)

We calculate the one-loop Feynman diagram:

k
p + k

p

p + k′k′

= ∑
l=1,2

(−i)3(Y (l)d )im(Y (k)∗d )nm(−Y (l)u )nj

× ∫
d4p

(2π)4

i

p2 −m2
φ

⋅
i [/p + /k +mq]
(p + k)2 −m2

q

⋅
i [/p + /k′ +mq]
(p + k′)2 −m2

q
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we can work in the limit of massless particles, so that we get:

= − ∑
l=1,2

Y
(l)
d Y

(k)†
d Y

(l)
u ∫

d4p

(2π)4

(/p + /k)(/p + /k′)
p2(p + k)2(p + k′)2

The superficial degree of divergence D (D ≡ (power of p in numerator)-(power of p
in denominator)) is zero, meaning that we have a logarithmic divergence only. To
calculate the coefficient of this divergence we can therefore set all momenta other than
the loop momentum p equal to zero. Because of the divergence we evaluate the integral
in d dimensions (dimensional regularization):

∼ − ∑
l=1,2

Y
(l)
d Y

(k)†
d Y

(l)
u ∫

ddp

(2π)d
/p/p

p2p2p2
= − ∑

l=1,2

Y
(l)
d Y

(k)†
d Y

(l)
u ∫

ddp

(2π)d
1

(p2)2

The solutions of integrals of this type are given in (A.44) in [5]:

∫
dd`

(2π)d
1

(`2 −∆)n = (−1)ni
(4π)d/2

Γ (n − d
2
)

Γ(n) ( 1

∆
)
n− d

2

(A.1)

we therefore get the result:

∼ −i
(4π)d/2 ∑l=1,2

Y
(l)
d Y

(k)†
d Y

(l)
u Γ (2 − d/2) ( 1

∆
)
(2− d

2
)

where ∆ is a combination of the momenta k, k′ we set to zero in the previous calculation.
To calculate the β function we can set ∆ =M2 where M is the renormalization scale:

∼ −i ∑
l=1,2

Y
(l)
d Y

(k)†
d Y

(l)
u

Γ (2 − d/2)
(4π)d/2 ( 1

M2
)
(2− d

2
)

The loop divergence must be cancelled by the counterterm diagram

−iδY (k)u

Therefore, we see immediately that the counterterm must be:

δY
(k)
u = − ∑

l=1,2

Y
(l)
d Y

(k)†
d Y

(l)
u

Γ (2 − d/2)
(4π)d/2 ( 1

M2
)
(2− d

2
)

(A.2)
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A.1.2 Down-type Yukawa couplings

dRj

φ0
k

dLi

(Y (k)d )ij +

dRj

φ0
k

uLn

uRm

φ+l

dLi

(Y (l)d )nj

(Y (k)∗u )nm

(−Y (l)u )im

+

dRj

φ0
k

dLi

(δY (k)d )ij

+
terms from gauge

interactions (the same as
in the standard model)

The calculation of the loop integral is completely analogous to the up-type Yukawa
coupling just discussed. The counterterm is therefore:

δY
(k)
d = − ∑

l=1,2

Y
(l)
u Y

(k)†
u Y

(l)
d

Γ (2 − d/2)
(4π)d/2 ( 1

M2
)
(2− d

2
)

(A.3)

A.1.3 Lepton Yukawa couplings

Since in this model there are no right-handed neutrinos, there are no vertex corrections
for Ye other than those coming from gauge interactions (which do not lead to off-
diagonal couplings).

A.2 Wave function renormalization

A.2.1 Higgs wave function renormalization

The one-loop correction of the Yukawa coupling Y (k)u due to the Higgs wave function
renormalization can be written as:

uRj

uLi

φ0
l

u

u

φ0
k

(Y (l)u )ij
(Y (l)∗u )nm

(Y (k)u )nm
∝ ∑

l=1,2

3(Y (l)u )ij(Y (l)∗u )nm(Y (k)u )nm

= ∑
l=1,2

3Y
(l)
u Tr(Y(l)†u Y

(k)
u )
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uRj

uLi

φ0
l

d

d

φ0
k

(Y (l)u )ij
(Y (l)d )nm

(Y (k)∗d )nm
∝ ∑

l=1,2

3(Y (l)u )ij(Y (l)d )nm(Y (k)∗d )nm

= ∑
l=1,2

3Y
(l)
u Tr(Y(l)d Y

(k)†
d )

where the factors of three are due to colour. The structure for leptons in the loop is
exactely the same, again we just need to replace u → ν, d → e and to drop the factor
of three.

The one-loop correction of the Yukawa coupling Y (k)d due to the Higgs wave function
renormalization can be written as:

dRj

φ0
k

dLi

φ0
l

d

d

(Y (l)d )ij
(Y (l)∗d )nm

(Y (k)d )nm
∝ ∑

l=1,2

3(Y (l)d )ij(Y (l)∗d )nm(Y (k)d )nm

= ∑
l=1,2

3Y
(l)
d Tr(Y(l)†d Y

(k)
d )

dRj

φ0
k

dLi

φ0
l

u

u

(Y (l)d )ij
(Y (l)u )nm

(Y (k)∗u )nm
∝ ∑

l=1,2

3(Y (l)d )ij(Y (l)u )nm(Y (k)∗u )nm

= ∑
l=1,2

3Y
(l)
d Tr(Y(l)u Y

(k)†
u )

A.2.2 Fermion wave function renormalization

The one-loop correction of the Yukawa coupling Y (k)u due to the fermion wave function
renormalization can be written as:
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uRj

uLn

φ0
l

uRm

uLi

φ0
k

(Y (l)u )nj

(Y (l)∗u )nm

(Y (k)u )im
∝ ∑

l=1,2

(Y (k)u )im(Y (l)∗u )nm(Y (l)u )nj

= ∑
l=1,2

Y
(k)
u Y

(l)†
u Y

(l)
u

uRj

dLn

φ+l

uRm

uLi

φ0
k

−(Y (l)u )nj

−(Y (l)∗u )nm

(Y (k)u )im
∝ ∑

l=1,2

(Y (k)u )im(Y (l)∗u )nm(Y (l)u )nj

= ∑
l=1,2

Y
(k)
u Y

(l)†
u Y

(l)
u

uRj

uLm φ0
k

uRn

φ0
l

uLi

(Y (k)u )mj

(Y (l)∗u )mn

(Y (l)u )in

∝ ∑
l=1,2

(Y (l)u )in(Y (l)∗u )mn(Y (k)u )mj

= ∑
l=1,2

Y
(l)
u Y

(l)†
u Y

(k)
u

uRj

uLm φ0
k

dRn

φ+l
uLi

(Y (k)u )mj

(Y (l)∗d )mn

(Y (l)d )in

∝ ∑
l=1,2

(Y (l)d )in(Y (l)∗d )mn(Y (k)u )mj

= ∑
l=1,2

Y
(l)
d Y

(l)†
d Y

(k)
u

The one-loop correction of the Yukawa coupling Y (k)d due to the fermion wave function
renormalization can be written as:
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dRj

φ0
kdLm

φ0
l

dRn

dLi

(Y (l)d )mj

(Y (l)∗d )mn

(Y (k)d )in

∝ ∑
l=1,2

(Y (k)d )in(Y (l)∗d )mn(Y (l)d )mj

= ∑
l=1,2

Y
(k)
d Y

(l)†
d Y

(l)
d

dRj

φ0
kuLm

φ+l

dRn

dLi

(Y (l)d )mj

(Y (l)∗d )mn

(Y (k)d )in

∝ ∑
l=1,2

(Y (k)d )in(Y (l)∗d )mn(Y (l)d )nj

= ∑
l=1,2

Y
(k)
d Y

(l)†
d Y

(l)
d

dRj

φ0
k

dLm
dRn

φ0
l

dLi

(Y (k)d )mj

(Y (l)∗d )mn

(Y (l)d )in

∝ ∑
l=1,2

(Y (l)d )in(Y (l)∗d )mn(Y (k)d )mj

= ∑
l=1,2

Y
(l)
d Y

(l)†
d Y

(k)
d

dRj

φ0
k

dLm
uRn

φ+l
dLi

(Y (k)d )mj

−(Y (l)∗u )mn

−(Y (l)u )in

∝ ∑
l=1,2

(Y (l)u )in(Y (l)∗u )mn(Y (k)d )mj

= ∑
l=1,2

Y
(l)
u Y

(l)†
u Y

(k)
d

For the fermion wave function renormalization there are also contributions from gauge
interactions. These are however not significant for our purposes as they are flavour
diagonal. The diagrams for the leptonic Yukawa couplings are again completely anal-
ogous to those for the quarks.
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A.3 The complete β-functions

We can now calculate the complete diagrams and find the counterterms. For a general
Yukawa Lagrangian

L = ψ̄(i /∂ −mψ)ψ +
1

2
(∂µφ)2 − 1

2
m2
φφ

2 − λ

4!
φ4 − Y ψ̄ψφ

+ ψ̄(iδZψ /∂ − δmψ)ψ +
1

2
δZφ(∂µφ)2 − 1

2
δmφφ

2 − δλ
4!
φ4 − δY ψ̄ψφ

(A.4)

these can be found using the Feynman rules:

Fermion propagator: i(/pδZψ − δmψ)

scalar propagator: i(p2δZφ − δmφ)

four-scalar interaction −iδλ

Yukawa vertex: −iδY

Then, with the help of the counterterms, the two- and three-point Greens functions
can be calculated and the β-function and the anomalous dimension γ (due to the wave
function renormalization) can be found by solving the Callan-Symanzik equation.

The Renormalization Group Equation of the Yukawa couplings reads

16π2µ
dYf
dµ

= βYf , (A.5)
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where

β
Y
(k)
u

= auY
(k)
u + ∑

l=1,2

[3Tr (Y (k)u Y
(l)†
u + Y (k)†d Y

(l)
d ) +Tr (Y (k)†e Y

(l)
e )]Y (l)u (A.6)

+ ∑
l=1,2

(−2Y
(l)
d Y

(k)†
d Y

(l)
u + Y (k)u Y

(l)†
u Y

(l)
u + 1

2
Y
(l)
d Y

(l)†
d Y

(k)
u + 1

2
Y
(l)
u Y

(l)†
u Y

(k)
u ) ,

β
Y
(k)
d

= adY
(k)
d + ∑

l=1,2

[3Tr (Y (k)†u Y
(l)
u + Y (k)d Y

(l)†
d ) +Tr (Y (k)e Y

(l)†
e )]Y (l)d (A.7)

+ ∑
l=1,2

(−2Y
(l)
u Y

(k)†
u Y

(l)
d + Y (k)d Y

(l)†
d Y

(l)
d + 1

2
Y
(l)
u Y

(l)†
u Y

(k)
d + 1

2
Y
(l)
d Y

(l)†
d Y

(k)
d ) ,

β
Y
(k)
e

= aeY
(k)
e + ∑

l=1,2

[3Tr (Y (k)†u Y
(l)
u + Y (k)d Y

(l)†
d ) +Tr (Y (k)e Y

(l)†
e )]Y (l)e (A.8)

+ ∑
l=1,2

(Y (k)e Y
(l)†
e Y

(l)
e + 1

2
Y
(l)
e Y

(l)†
e Y

(k)
e ) ,

where af (f = u, d, e) stands for contributions due to gauge interactions, which are
flavour-diagonal [85]:

au = −8g2
s −

9

4
g2 − 17

12
g′2, (A.9)

ad = −8g2
s −

9

4
g2 − 5

12
g′2, (A.10)

ae = −
9

4
g2 − 15

4
g′2, (A.11)

where gs, g and g′ are the gauge couplings constants of SU(3)C , SU(2)L and U(1)Y ,
respectively. The terms in the first sum in the β-function are due to the Higgs wave
function renormalization, the first term in the second sum is due to the vertex renormal-
ization (absent for leptons) and the last three (two) terms are due to the renormalization
of the fermion wave function.

A.4 Yukawa couplings at the EW scale in a 2HDM

with alignment

Using the leading log approximation, eq. (3.51), and plugging in the Yukawa couplings
at the high scale, eqs. (3.48) - (3.50), and the β-functions, eqs. (A.6) - (A.8) we get
the following formulae for the Yukawa couplings at the electroweak scale:

A.4.1 d-quarks

Y
(k)
d (mZ) ≈ k(k)d Yd + ε(k)d YuY

†
uYd + δ

(k)
d YdY

†
d Yd (A.12)
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ALIGNMENT

with

k
(1)
d = cosψd +

log mZ
Λ

16π2
[ad cosψd + 3 cosψ∗u cos(ψu − ψd)Tr(Y †

uYu)

+ 3 cosψdTr(YdY †
d ) + cosψe cos(ψ∗e − ψd)Tr(YeY †

e )],

(A.13)

ε
(1)
d =

log mZ
Λ

16π2
(1

2
cosψd − 2 cosψ∗u cos(ψu − ψd)) , (A.14)

δ
(1)
d =

3 log mZ
Λ

32π2
cosψd, (A.15)

k
(2)
d = sinψd +

log mZ
Λ

16π2
[ad sinψd + 3 sinψ∗u cos(ψu − ψd)Tr(Y †

uYu)

+ 3 sinψdTr(YdY †
d ) + sinψe cos(ψ∗e − ψd)Tr(YeY †

e )],

(A.16)

ε
(2)
d =

log mZ
Λ

16π2
(1

2
sinψd − 2 sinψ∗u cos(ψu − ψd)) , (A.17)

δ
(2)
d =

3 log mZ
Λ

32π2
sinψd; (A.18)

A.4.2 u-quarks

Y
(k)
u (mZ) ≈ k(k)u Yu + ε(k)u YdY

†
d Yu + δ

(k)
u YuY

†
uYu (A.19)

with

k
(1)
u = cosψu +

log mZ
Λ

16π2
[au cosψu + 3 cosψuTr(Y †

uYu) + 3 cosψ∗d cos(ψd − ψu)Tr(YdY †
d )

+ cosψ∗e cos(ψe − ψu)Tr(YeY †
e )],

(A.20)

ε
(1)
u =

log mZ
Λ

16π2
(1

2
cosψu − 2 cosψ∗d cos(ψd − ψu)) , (A.21)

δ
(1)
u =

3 log mZ
Λ

32π2
cosψu, (A.22)

k
(2)
u = sinψu +

log mZ
Λ

16π2
[au sinψu + 3 sinψuTr(Y †

uYu) + 3 sinψ∗d cos(ψd − ψu)Tr(YdY †
d )

+ sinψ∗e cos(ψe − ψu)Tr(YeY †
e )],

(A.23)

ε
(2)
u =

log mZ
Λ

16π2
(1

2
sinψu − 2 sinψ∗d cos(ψd − ψu)) , (A.24)

δ
(2)
u =

3 log mZ
Λ

32π2
sinψu; (A.25)
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A.4.3 Leptons

As there are no vertex corrections in the leptonic sector, the coupling at the electroweak
scale has a different structure:

Y
(k)
e (mZ) ≈ k(k)e Ye + δ(k)e YeY

†
e Ye (A.26)

with

k
(1)
e = cosψe +

log mZ
Λ

16π2
[ae cosψe + 3 cosψ∗u cos(ψu − ψe)Tr(Y †

uYu)

+ 3 cosψd cos(ψ∗d − ψe)Tr(YdY †
d ) + cosψeTr(YeY †

e )],

(A.27)

δ
(1)
e =

3 log mZ
Λ

32π2
cosψe, (A.28)

k
(2)
e = sinψe +

log mZ
Λ

16π2
[ae sinψe + 3 sinψ∗u cos(ψu − ψe)Tr(Y †

uYu)

+ 3 sinψd cos(ψ∗d − ψe)Tr(YdY †
d ) + sinψeTr(YeY †

e )],

(A.29)

δ
(2)
e =

3 log mZ
Λ

32π2
sinψe; (A.30)

A.5 Feynman rules for FV Higgs couplings

H

uj, dj, ej

ui, di, ei

= − i
2
[2cα−β

mf i

v
δij + sα−β ((∆f +∆†

f)ij + (∆f −∆†
f)ijγ5)] (A.31)

for f = u, d, e

h

uj, dj, ej

ui, di, ei

= − i
2
[−2sα−β

mf i

v
δij + cα−β ((∆f +∆†

f)ij + (∆f −∆†
f)ijγ5)] (A.32)

for f = u, d, e
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A

uj, dj, ej

ui, di, ei

= 1

2
[(∆f −∆†

f)ij + (∆f +∆†
f)ijγ5] (A.33)

for f = d, e and for f = u the same with negative sign

H+

dj, ej

ui, νi

= − i√
2
[(−∆†

uVCKM + VCKM∆d)ij + (∆†
uVCKM + VCKM∆d)ijγ5]

(A.34)

for quarks and VCKM∆d →∆e, ∆u → 0 for leptons

Here mf i is the corresponding fermion mass and ∆f is defined by eqs. (3.61), (3.62)
and analogously for the leptons.
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Appendix B

Scalar potential of the spurion fields

B.1 Bulk

For simplicity and without loss of generality, we work with a two-generation model
(the generalization to three generations is simple). First consider the spurions in the
bulk, i.e. CQu , CQd , Cu , Cd, Yu and Yd.1 The bulk masses are adjoints and therefore
transform as:

Cx → ΩxCxΩ
†
x , (B.1)

where x = u, d,Qu,Qd, while the Yukawa couplings are bi-fundamentals:

Yu → ΩQuYuΩ
†
u , (B.2)

Yd → ΩQdYdΩ
†
d . (B.3)

We can construct invariants under the flavour symmetry from the spurion fields, see
Table B.1. From these invariants we build the scalar potential V (using only renormal-
izable terms). For the vacuum expectation values of the spurions we make the following
ansatz:

Cx =
⎛
⎜⎜
⎝

cx,1 0

0 cx,2

⎞
⎟⎟
⎠
, (B.4)

again with x = u, d,Qu,Qd. It is possible to choose all four bulk masses to be simul-
taneously diagonal, since Qd , Qu , d and u are independent fields. The Yukawas are a

1Throughout this appendix the Yukawa matrices are the 5D ones, and we omit the 5D superscript
in order to simplify the notation.
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mass dim. 1 mass dim. 2 mass dim. 3 mass dim. 4

Tr(Cx) det(Cx) Tr(CxCxCx) Tr(CdCdY †
d Yd)

det(Yd) Tr(CdY †
d Yd) Tr(CuCuY †

uYu)
det(Yu) Tr(CuY †

uYu) Tr(CQdCQdYdY
†
d )

Tr(Y †
d Yd) Tr(CQdYdY

†
d ) Tr(CQuCQuYuY †

u )
Tr(Y †

uYu) Tr(CQuYuY †
u )

Table B.1: Invariants of the spurions in the bulk up to mass dimension 4 (x = u, d,Qu,Qd).

priori not diagonal in this basis, and we choose to parameterize them as

Yd =
⎛
⎜⎜
⎝

cos θQd sin θQd

− sin θQd cos θQd

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

yd,1 0

0 yd,2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

cos θd − sin θd

sin θd cos θd

⎞
⎟⎟
⎠
, (B.5)

Yu =
⎛
⎜⎜
⎝

cos θQu sin θQu

− sin θQu cos θQu

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

yu,1 0

0 yu,2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

cos θu − sin θu

sin θu cos θu

⎞
⎟⎟
⎠
. (B.6)

Differentiating the potential leads to the following relations (for the up-sector):

∂V

∂θQu
∝ sin(2θQu) , (B.7)

∂V

∂θu
∝ sin(2θu) , (B.8)

∂2V

∂θ2
Qu

∝ −2(cQu,1 − cQu,2)(y2
u,1 − y2

u,2) cos(2θQu) , (B.9)

∂2V

∂θ2
u

∝ −2(cu,1 − cu,2)(y2
u,1 − y2

u,2) cos(2θu) . (B.10)

We thus find the minimum of the potential at θQu = θu = 0 or at θQu = θu = π/2,
depending on the relative size of the Yukawa eigenvalues (we always have cQu,1 > cQu,2
and cu,1 > cu,2). In both cases the Yukawa matrices are diagonal, since having θQu =
θu = π/2 is equivalent to the transformation

⎛
⎜⎜
⎝

yu,1 0

0 yu,2

⎞
⎟⎟
⎠
Ð→

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

yu,1 0

0 yu,2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠
, (B.11)

which just changes the order of the eigenvalues. An analogous discussion shows that
the down sector is also aligned.
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mass dim. 1 mass dim. 2 mass dim. 3 mass dim. 4

Tr(CQ) Tr(MM †) Tr(CQCQCQ) det(CQ)
Tr(CQMM †) Tr(CQCQMM †)

Table B.2: Invariants composed of the spurions on the UV brane up to dimension 4.

B.2 UV brane

Now consider the spurions on the UV brane, i.e. Mu , Md , CQu and CQd . Since the
flavour group is enhanced on the UV brane, we write them as:

M ≡
⎛
⎜⎜
⎝

Mu

Md

⎞
⎟⎟
⎠
, CQ ≡

⎛
⎜⎜
⎝

CQu 0

0 CQd

⎞
⎟⎟
⎠
. (B.12)

M then transforms as a bi-fundamental under the enhanced flavour group

M → ΩQMΩ†
Q̃
, (B.13)

and CQ as an adjoint

CQ → ΩQCQΩ†
Q . (B.14)

Again, we find the invariants (see Table B.2), and write down the most general po-
tential. Since the Matrix M only appears via the combination MM †, and this is a
Hermitian matrix (i.e. diagonalized by a unitary matrix), we can plug in:

CQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cQ1
u

0 0 0

0 cQ2
u

0 0

0 0 cQ1
d

0

0 0 0 cQ2
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, MM † ≡ U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

mu,1 0 0 0

0 mu,2 0 0

0 0 md,1 0

0 0 0 md,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

U †, (B.15)

where U is a rotation matrix depending on the six angles θ12, θ13, θ14, θ23, θ24, θ34 .
Searching for the minimum of the potential, we get the following relations

∂V

∂θij
∣
all other θkl=0

∝ sin(2θij) ,
∂2V

∂θ2
ij

∣
all other θkl=0

∝ ± cos(2θij) . (B.16)
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Thus, at the minimum of the potential we have θij = 0 or θij = π/2. Again, θij = π/2
only implies that the eigenvalues are shuffled around (note that here we have the same
angles θij on the right and on the left of the diagonal matrix).
It should be noted that we do not assume any MFV relations such as

CQu = αQu1 + βQuYuY †
u , (B.17)

although this would be compatible with the flavour symmetry. Rather, CQu , CQd , Cu ,
Cd , Md , Mu , Yu and Yd are all independent spurions. Therefore, there is no relation
in between their eigenvalues.
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