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Summary

In the thesis, a damage assessment system for linear infrastructure objects during flooding based
on probabilistic graphical models is developed. The knowledge on the damage state of infrastructure
objects during flooding is crucial for decision makers for the disaster management and a rapid response.
Several information sources, such as remote sensing imagery, digital elevation models, water gauge
measurements and information from a GIS about the infrastructural objects can contribute to a
comprehensive damage assessment system. Omne part of the thesis deals with the fusion of these
information sources based on probabilistic graphical models.

Probabilistic graphical models can be divided into Bayesian networks, which are directed graphical
models, and Markov networks, which are undirected graphical models. The Bayesian network differs
from the Markov network in their independence properties and therefore used for different problems.
The representation and the independence properties are discussed in this work. In addition, the factor
graph is introduced, which is a graphical representation used for inference. Both Bayesian networks
and Markov networks can be transformed into factor graphs.

Furthermore, the state of the art of several damage assessment systems during flooding is discussed.
The described damage assessment system can be divided into image-based and fusion-based systems.
The image-based systems are based solely on image information. Different image analysis methods for
assessing the flood scenario are described. The image-based systems can be subdivided into systems
dealing with optical or radar imagery, systems combining both sensors and systems which focus on
the development of a flood. On the other hand, fusion-based systems are focusing on the combination
of different input data such as imagery and DEM. Further fusion-based methods integrate GIS data
and hydrological models.

In this thesis, a system is developed which fuses different input data by means of Bayesian networks.
The presented Bayesian network models the causal relations between the digital elevation model,
the water gauge measurements, the image information and the damage state of the infrastructure
object. This proposed causal Bayesian network is called pixel-based model since each pixel in the
imagery is assessed individually and the context information is neglected. Beside the pixel-based
model, a topology-based model is presented which considers additionally the context information of
neighboring pixels. These neighborhood relations are modeled via a Markov chain representing the
topology of linear infrastructural objects. The topology-based model combines the causal relation
modeled as a Bayesian network and the symmetrical neighborhood relations based on a Markov
network. Both networks are transformed into factor graphs, which is the basis for inference. The big
advantage of the developed topology-based model is the opportunity to fuse different input data and
simultaneously considering context information in one probabilistic model. Finally, a multi-temporal
model is presented, which additionally integrates the information sources at different points in time.

All three models presented in this thesis, the pixel-based, the topology-based and the multi-temporal
model are evaluated by means of two test scenarios. Since the stated problem can be considered as a
detection problem (the infrastructure object is flooded or not flooded) receiver operator characteristic
curves are used to demonstrate the performance of the different models. The evaluation shows that
the fusion of the data via a Bayesian network can significantly improve the results compared to a flood
simulation or a classification using only the imagery. In addition, the integration of the context in the
topology-based model can further improve the damage assessment system. In case of timely limited
occlusions in the image data such as clouds, the additional information from previous points in time
can additionally increase the performance of the detection of flooded infrastructure objects.

Finally, results of the developed systems are shown and existing problems are discussed. Possible
solutions of unsolved problems are discussed and further ideas expanding the developed models are
described. A general framework for non linear infrastructure objects is given and possible method-
ological approaches are pointed out.



Zusammenfassung

In dieser Arbeit wird ein System zur Schadensdetektion von linearen Infrastrukturobjekten nach Uber-
flutungen auf der Basis von probabilistischen graphischen Modellen priisentiert. Wihrend Uberflutun-
gen ist der Zustand von Infrastrukturobjekten fiir Entscheidungstriger essentiell, um fiir ein ange-
passtes Katastrophenmanagement in kurzer Zeit zu sorgen. Verschiedene Informationsquellen, wie
Fernerkundungsdaten, digitale Gelandemodelle, Wasserpegelmessungen und Daten aus einem Geoin-
formationssystem {iber die zu bewertenden Infrastrukturobjekte kénnen Informationen fiir ein System
zur Schadensdetektion liefern. Ein Teil dieser Arbeit beschéftigt sich mit der Fusion dieser Informa-
tionen, basierend auf probabilistischen graphischen Modellen.

Probabilistische graphische Modelle kénnen in gerichtete Bayessche Netze und ungerichtete Markov
Netze unterteilt werden. Bayessche Netze und Markov Netze unterscheiden sich in ihren Moglichkei-
ten, Abhéingigkeiten zwischen Zufallsvariablen zu modellieren und kommen somit bei unterschiedlichen
Problemstellungen zum Einsatz. Zusétzlich werden Faktorgraphen eingefiihrt, die zur Inferenzberech-
nung verwendet werden. Sowohl Bayessche Netze als auch Markov Netze kénnen in Faktorgraphen
transformiert werden.

AuBerdem wird ein Uberblick iiber den Stand der Forschung von Systemen zur Schadensbewertung
nach Uberflutungen gegeben. Die beschriebenen Systeme zur Schadensbewertung koénnen in bildba-
sierte Systeme und Systeme basierend auf Datenfusion unterteilt werden. Die bildbasierten Systeme
verwenden ausschliellich Information, die aus den Bildern gewonnen werden kann. Verschiedene Me-
thoden der Bildanalyse werden beschrieben, die es erméglichen das AusmaB von Uberflutungen zu
bewerten. Die bildbasierten Systeme kénnen wiederum in Systeme unterteilt werden, die auf optische
Bilddaten, Radardaten, der Kombination von beiden Daten und auf multitemporale Daten ausgelegt
sind. Die Systeme, basierend auf Datenfusion, kombinieren hauptséchlich Bildinformation und digitale
Geldndemodelle. Weitere Systeme, basierend auf Datenfusion, integrieren Daten aus Geoinformations-
systemen und hydrologische Modelle.

In dieser Arbeit wird die Fusion von verschiedenen Eingangsdaten mit Hilfe von Bayesschen Net-
zen durchgefiihrt. Das entworfene Bayessche Netz modelliert die kausalen Zusammenhénge zwischen
dem digitalen Gelindemodell, dem Wasserpegel, der Bildinformation und dem Schadenszustand der
Infrastrukturobjekte. Dieses kausale Bayessche Netz wird , pixel-basiertes Modell* genannt, da jedes
Pixel im Bild fiir sich allein bewertet wird und keine Kontextinformation verwendet wird. Neben dem
pixel-basierten Modell, wird in dieser Arbeit ein topologie-basiertes Modell vorgestellt, dass zusétzlich
Kontextinformation von benachbarten Pixeln einbezieht. Diese Nachbarschaftsbeziehungen werden mit
Hilfe von Markovketten modelliert, die die Topologie der linearen Infrastrukturobjekte wiederspiegelt.
Somit kombiniert das topologie-basierte Modell die kausalen Beziehungen, die mit einem Bayeschen
Netz modelliert sind, mit den symmetrischen Nachbarschaftsbeziehungen, die als Markovkette mo-
delliert sind. Die Transformation der Netze in Fakorgraphen bildet die Basis fiir die Berechnung
der Inferenz. Der grofle Vorteil des topologie-basierten Modells ist die Moglichkeit, in einem kon-
sistenten statistischen Modell eine Fusion verschiedener Inputdaten durchzufithren und gleichzeitig
Kontextinformation zu beriicksichtigen. Das dritte entworfene multi-temporale Modell integriert die
Informationsquellen von verschiedenen Zeitpunkten.

Alle drei in dieser Arbeit entwickelten Modelle: das pixel-basierte, das topologie-basierte und das
multi-temporale Modell werden mit Hilfe von zwei Testszenarien evaluiert. Da es sich bei der Scha-
densbewertung von Infrastrukturobjekten um ein Detektionsproblem handelt (Infrastrukturobjekte
sind {iberflutet oder nicht iiberflutet) werden zur Evaluierung Receiver Operating Characteristic Kur-
ven herangezogen, um die Leistungsfihigkeit der entwickelten Modelle zu iiberpriifen. Die Evaluierung
zeigt, dass die Datenfusion mit Hilfe von Bayesschen Netzen die Ergebnisse, im Vergleich zur Simula-
tionen oder zu Klassifikationen, die nur auf den Bilddaten beruhen, deutlich verbessern kann. Zusétz-
lich fithrt die Integration von Kontext im topologie-basierten Modell zu Verbesserungen des Systems.
Bei Verdeckungen in den Bilddaten, wie zum Beispiel durch Bewdtlkung, kénnen Informationen von
vorhergehenden Zeitpunkten die Leistungsfiahigkeit des Systems zusétzlich steigern.



Neben den Ergebnissen werden auch die existierenden Probleme erldutert. Mogliche Losungsvorschléige
fiir ungel6ste Probleme werden diskutiert und weitere Ideen zur Erweiterung der entwickelten Modelle
werden beschrieben. Auflerdem wird ein allgemeiner Rahmen zur Schadensdetektion fiir nicht lineare
Infrastrukturobjekte unter der Verwendung von mdoglichen methodischen Ansétzen vorgeschlagen.






Contents

1 Introduction

1.1 Motivation

1.2 Goals and contribution of the thesis

1.3 Organization of the thesis

2 Basics of probabilistic graphical models

2.1 Bayesian Network
2.1.1 Representation of Bayesian Networks
2.1.2 Independence properties

2.2 Markov Network
2.2.1 Representation of Markov Networks
2.2.2 Independence properties

2.3 Relation between graphical models

2.4 Inference in Bayesian networks and Markov networks

2.5 Factor graphs
2.5.1 Representation of factor graphs
2.5.2 Inference in factor graphs

2.6 Discussion

3  State of the art of damage assessment systems during flooding

3.1 Image-based systems
3.1.1 Optical sensors and typical methods
3.1.2 Radar sensors and typical methods
3.1.3 Multi-temporal approaches
3.1.4 Multi-sensorial approaches

3.2 Fusion-based systems
3.2.1 Integration of DEM
3.2.2 Integration of hydrological models
3.2.3 Integration of GIS data

3.3 Discussion

4  Probabilistic graphical models for damage assessment during
flooding

4.1 Pixel-based model
4.1.1 Representation as Bayesian Network
4.1.2 Conditional independence properties
4.1.3 Conditional probability distributions
4.1.4 Representation as factor graph
4.1.5 Inference

4.2 Topology-based model
4.2.1 Representation
4.2.2 Inference

4.3 Multi-temporal model

10
11

12

13
13
16

19
19
21

21
23

24
24
25

29

31
31
35
37
38

39
39
41
42

42

44

44
44
48
49
o1
53

o7
58
61

65



5.1
5.2

9.3
5.4
2.5
5.6

5.7

6
6.1
6.2

4.3.1 Representation
4.3.2 Inference
4.3.3 Discussion

Results and evaluation
Goals of evaluation

Test scenarios
5.2.1 Elbe river flooding
5.2.2  Chobe river flooding

Reference data
Basics of evaluation
Simulation and classification

Evaluation of the presented models
5.6.1 Pixel-based model

5.6.2 Topology-based models
5.6.3 Multi-temporal based model

Discussion of the Results

Discussion and outlook

Discussion
Outlook

Bibliography

66
67
68

70
70

70
70
75

76
78
79

84
84
85
39

90

96
96
97

100



1 Introduction 9

1 Introduction

1.1 Motivation

A natural disaster, which is some rapid, instantaneous or profound impact of the natural envi-
ronment upon the socio-economic system (Alexander, 1993), is a major problem affecting man’s
lives, security, properties, infrastructure and development. Between 1980 and 2010 natural dis-
asters are responsible for more than 2,275,000 fatalities and an overall loss of 3,000 billion US$
worldwide (MunichRe, 2011). Therefore, the understanding of the complex interrelations of
natural disasters is of crucial importance. In addition, science and technology is challenged to
develop tools reducing the effects of naturally occurring events (e.g., flood, hurricane, volcanic
eruption, earthquake ...) and minimize the destruction they cause. Furthermore, the probabil-
ity that climate change will exacerbate the situation is more than 66% (IPCC, 2007). Thus,
it is important to strengthen our capability for disaster emergency management as well as to
intensify scientific disaster mitigation research (Guo, 2009).

Disaster management can be divided into the preparedness before the disaster occurs and
the response after disasters (e.g. emergency evacuation). In spite of all efforts to improve
the preparedness and to minimize vulnerability to extreme events, these events will occur.
Therefore, emergency response will always be a crucial part dealing with natural disasters.
Harrald (2006) defines critical success factors that must be met if the operation of emergency
response should be effective. One of these critical success factors is the ability to manage the
collection, synthesis and analysis of information in a timely manner. However, the rapid and
in-situ collection of data in the affected area is often difficult or even impossible due to the
destruction of infrastructure, danger of access, remoteness of the disaster area and political
restrictions.

Remote Sensing technology, such as earth observing satellites carrying optical and radar sen-
sors, is independent of the destroyed on-site infrastructure and delivers current and area-wide
information of the affected areas (Bamler et al., 2006). On one hand the whole process from the
selection of satellites to the raw data processing have to be optimized. On the other hand the
interpretation of remote sensed imagery, extraction of geometrically precise and semantically
correct information as well as the production of maps need to be conducted as fast as possible.
The main issue is the interpretation of the implicitly given information in the imagery and
making it explicit. In addition, the uncertainties of the given image information have to be
considered. Therefore, automatic image analysis methods have to be developed, focusing on
the fast interpretation of the imagery.

However, the information obtained from remote sensing data is limited due to low spectral
and spatial resolution or occlusions such as cloud coverage in optical imagery. Additional
information, such as Digital Elevation Model (DEM) or the data from Geographic Information
Systems (GIS) might significantly enhance the information value, if they are combined with
imagery (De Gunst and Den Hartog, 1994; Baltsavias, 2004). The challenge using different kinds
of data is to find methods combing the data in an appropriate way. In case of relief actions
during natural disasters only immediately available data could be used, which are usually very
diverse concerning the format, the spatial resolution and the information content. Therefore,
methods have to be used, which are flexible to heterogeneous input data.

The damage assessment of infrastructure during natural disasters is of crucial importance to
support emergency relief actions. Especially information about the operational reliability of
transportation lifelines such as roads is important for rapid emergency response (Morain and
Kraft, 2003). Therefore, fast damage assessment systems are needed for analyzing the traffica-
bility of roads during natural disasters.
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1.2 Goals and contribution of the thesis

The goal of the thesis is the development of a damage assessment system of linear infrastruc-
ture objects during flooding using probabilistic graphical models. The focus of the damage
assessment system is the investigation of the trafficability of roads during flooding. However,
also the operational reliability of other infrastructure objects, such as railroads or power sup-
ply systems could be assessed. In Fig. 1 assessed road networks are depicted grouped into
three categories. The green lines indicate trafficable roads, the red lines indicate flooded roads
and the yellow lines indicate the category possibly flooded, which means it is not clear if the
roads are trafficable or flooded. Beside the flood state also the water depth of flooded roads is
estimated.

Figure 1. Classification of roads during flooding in three categories: red = flooded roads, green = trafficable roads,
yellow = possibly flooded road (left: IKONOS image, right: TerraSAR-X image).

The damage assessment system has to fulfill several requirements in order to guarantee a rapid
and reliable emergency response.

¢ The handling of different kinds of image data (optical and radar) with varying spectral and
spatial resolution.

¢ The integration of additional information such as DEM, data from GIS and in-situ measure-
ments.

¢ The combination of the available data using a consistent statistical framework in order to
quantify the uncertainties of the results.

¢ The handling of sequential data at different times in order to monitor the development of
flooding.

¢ The processing time should be as fast as possible to guarantee a rapid response.

¢ The transferability of the system to different scenarios.

The goal of the thesis is to develop a system fulfilling all the listed requirements. The system
consists of probabilistic graphical models, which provide a consistent statistical framework
modeling uncertainties. Probabilistic graphical models enable the fusion of different kinds of
information, which leads to an improvement of the analysis, and are flexible concerning the
input data. Theoretically well-founded probabilities as well as purely subjective estimates
can be used for the same network. This flexibility is important to integrate different kind of
information and adapt the model to various scenarios.

The specific focus of the thesis is on the development of a probabilistic graphical model, which
reflects the dependencies between the observations (e.g. imagery, DEM, in-situ measurements)
and the state of roads (e.g. flooded or trafficable). Therefore a model is needed which combines
causal physical relations, the topology of a road network and the dependencies over time. The
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challenge is the embedding of all these different types of dependencies in one probabilistic
model.

The main contribution of the thesis can be divided into two parts. Firstly, from the methodical
point of view, it is shown that probabilistic graphical models provide a good framework to
combine spatial information such as imagery and GIS data in consideration of the uncertainties
of the data. The thesis points out that causal physical relations, the topology of spatial data
and multi-temporal data can be described in one probabilistic graphical model. Secondly, it is
shown, that a rapid assessment of roads after flooding is possible using remote sensing data.
In this work, the limitations of remote sensing data and the benefit of additional information
is discussed concerning the damage assessment system.

1.3 Organization of the thesis

The thesis is structured as follows:

In chapter 2 the basics of probabilistic graphical models are described. Probabilistic graphical
models can be divided into two different types: directed and undirected graphical models. The
representations as well as the independence properties of both graphical models are discussed
separately. Afterwards the relations between directed and undirected models are described.
Beside the representation of probabilistic graphical models, the most important step is the
inference, which is discussed in Section 2.4. Inference in both types of graphical models can
be conducted after the transformation into another graphical model called factor graph. The
representation of factor graphs is discussed and finally, an algorithm called the sum-product
algorithm is shown conducting inference in factor graphs.

In chapter 3 an overview on damage assessment systems during flooding based on the analysis of
satellite imagery is given. The chapter is subdivided into methods focusing only on the analysis
of imagery (image-based), and methods that combine the image information with additional
data, such as DEM, GIS or hydrological models (fusion-based). Moreover the methods differ
concerning the sensor (optical or radar). A lot of damage assessment systems are based on
change detection techniques investigating multi-temporal imagery. Finally, the state of the art
and the shortcomings of the described methods are discussed.

In chapter 4 the probabilistic graphical models assessing roads concerning the trafficability
during flooding are presented. Firstly, a pixel-based model is presented, which combines the
observation from remote sensing data with a DEM. The model is represented by means of a
directed graph which is transformed into a factor graph. Secondly, the topology-based model
takes the statistical dependence among neighboring pixels into account, which is modeled by
means of an undirected graph. Thirdly, the time-domain is modeled in the multi-temporal
model. The inference in all models is conducted via factor graphs.

In chapter 5 the proposed models are evaluated. Two different test scenarios are used to show
the performance of the probabilistic graphical models. For both test scenarios, a reference is
generated. For the evaluation of the results, receiver operator characteristic curves are used,
since the stated problem can be formulated as a detection problem. The different proposed
models are compared with approaches based only on simulation using only the DEM data and
classification approaches using only the image data. Furthermore, the sensitivity and robustness
of the three presented models in chapter 4 is investigated and advantages and shortcomings are
discussed.

In chapter 6 the proposed probabilistic graphical models are discussed considering the stated
goals of the thesis. Furthermore, several propositions are given to include further additional
data and possible extensions of the models are discussed. Finally, open and unsolved problems
and possible further investigations and research are pointed out in the outlook.
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2 Basics of probabilistic graphical models

The calculus of probability theory is widely used in modern image analysis as well as in data
fusion problems. The probability theory has the opportunity to deal with noisy images, can
handle errors in observations and vague a priori information can be utilized. Especially in data
fusion problems, the quality of the different kinds of data can be modeled using probabilistic
approaches.

Models combining probability theory with graph theory are called probabilistic graphical mod-
els. The principal idea of probabilistic graphical models is the diagrammatic representation
of complicated probability distributions by means of graphs. The representation of complex
probability distributions using probabilistic graphical models has several useful properties:

Firstly, probabilistic graphical models provide a simple mechanism to visualize and exploit
the structure of complex multi-dimensional distributions. A complex joint probability can
be written down in a tractable way by exploiting the fact that in practice variables tend to
interact directly only with few other variables. Therefore probabilistic graphical models enable
the intuitive design and the effective construction of new models and facilitate the simple update
of existing models.

Secondly, probabilistic graphical models are a transparent representation, which allows the
evaluation of its semantics and properties. Especially, insights into the independence properties
can directly be obtained by the analysis on the graphical structure.

Thirdly, the graphical structure can be exploited to perform and simplify inference. Only by
changing the graph structure, complex computations for inference are carried out implicitly.
Once the graph structure is fixed, effective inference algorithms are available for computing
posterior probabilities of random variables given evidence on others.

Probabilistic graphical models are used to transform high-dimensional joint distributions in
manageable smaller factors of a lower-dimensional space represented by a graph. Instead of
modeling the high-dimensional joint distribution only the low-dimensional factors have to be
assigned. The dependence structure of the variables determines the dimensions of the factors
to be modeled. In many practical cases the variables tend to interact directly only with very
few others. The graph represents the independence structure of the used variables.

In general, probabilistic graphical models can be divided into two different types: directed
and undirected graphical models. Both types consist of nodes, which correspond to random
variables, and links, which represent dependence among the random variables. The random
variables can be divided into hypothesis variables and information variables. The hypothesis
variables encode the variables we are interested in. However, it is usually not possible to
observe them directly or the observation is too costly. The information variables encode the
observed information in the graphical model (Jensen and Nielsen, 2007). In the following
figures, all information variables are highlighted in blue. In the discrete case, each random
variable consists of a finite set of mutually exclusive and exhaustive states. In the following the
random variables are denoted as capital letters and the states are denoted as small letters. A
set of random variables X € {A, B...} is denoted as a capital bold letter and () represents the
empty set. The probability distribution of a random variable A with the states a', a?, ..., a" (also
denoted as Val(A) = {a',d?, ...,a"}) is expressed by P(A) = (x1, 23, ...,z,). The probability
of A being in state a’ is x;, which fulfills the basic rules:

i=1

The most established directed graphical models are causal Bayesian Networks, in which the
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causal links are represented by conditional probabilities (Jensen and Nielsen, 2007). The second
major class of probabilistic graphical models are undirected graphical models, also known as
Markov Networks or Markov Random Fields, which are widely used in image processing (Blake
et al., 2011). The Markov network theory provides a convenient and consistent way of modeling
context-dependent entities such as neighboring image pixels (Li, 2009). Both Bayesian Networks
and Markov networks are described in detail in Section 2.1 and 2.2. The relation between the
two types of graphical models is discussed in Section 2.3. In Section 2.4 the issue of performing
inference in graphical models is described. One possibility to perform inference is to convert
directed and undirected graphs into factor graphs, which are a superclass of both types (Bishop,
2006). The representation of factor graphs and algorithms to perform inference in factor graphs
are presented in Section 2.5.

2.1 Bayesian Network

Bayesian networks are probabilistic graphical models, which are mainly used to reflect causal
relationship between random variables. Although the principle of causality, which reflects the
relation between cause and effect, is not necessary, most of the developed models are based on
causal Bayesian networks. The second kind beside the causal Bayesian network is the diagnos-
tic Bayesian network. The difference between the two kinds of Bayesian network is limited to
the different way of modeling but does not influence the mathematics. In the following, only
causal Bayesian networks are considered. They provide a general methodology for data fusion
combining theoretically well-founded probabilities, as well as subjective estimates. The combi-
nation of noisy measurements of different sensors is performed by Bayesian conditioning. The
first applications of Bayesian networks are in the field of medical expert systems (Heckerman
et al., 1992). The range of many real-world applications using Bayesian networks increased
rapidly (Heckerman et al., 1995). Bayesian networks are well established as decision support
systems in many applications. Several networks are developed for risk assessments concerning
natural disasters such as hydrological issues (Molina et al., 2005; Park and Stenstrom, 2006),
earthquakes (Bayraktarli et al., 2005) or avalanches (Grét-Regamey and Straub, 2006; Straub
and Grét-Regamey, 2006).

2.1.1 Representation of Bayesian Networks

A Bayesian network is a directed acyclic graph consisting of nodes (also called vertices) and
links (also called edges). The links of a directed acyclic graph are directed which represents the
causality in Bayesian network. A graph is acyclic, if the graph has no loops. A loop exists in
a directed graph if it is possible to start at a node A and follow the direction of the links and
come back to A again. In Fig. 2 an example of a directed acyclic graph is shown.

Figure 2. Example of a directed acyclic graph consisting of nodes and directed links
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The nodes in a Bayesian network are random variables and the links connecting the nodes
represent conditional probabilities. If there is a link directing from one random variable X; to
another X, then X; is called parent of X5, and X, is called child of X;. All computations,
which are applied in a Bayesian network, are based on two fundamental rules of probability.
Firstly, the sum rule:

P(X1) =) p(X1, Xs) (2)

X2

whereas X; and X, are random variables and p(Xj, X3) is the joint probability. The distri-
bution P(X}) is the marginal distribution obtained by marginalizing over the joint probability
(marginalization). Secondly, the product rule:

(X1, Xp) = p(Xa| X1)p(X1) (3)

with the conditional probability p(X3|X;), which describes the probability of X5 given X;. The
product rule, together with the symmetry property p(Xi, X2) = p(Xs, X;) leads to the Bayes’
theorem:

p(Xa|X1)p(X1)
p(X2)
The Bayesian network is a compact representation of a joint distribution. Let p(Xi, Xo, ..., Xi)

be a joint distribution over K variables, then it can be generally calculated by iteratively
applying the product rule:

p(X1|X2) =

(4)

(X1, Xa, o, Xi) = p(Xk| X1,y ooy X 1) D( X1 [ X7, ooy Xico2) o p(Xo| X0 )p(X0). (5)

However, with increasing K the determination of the joint probability becomes rapidly in-
tractably large. Bayesian networks provide the opportunity to describe the joint distribution
in compact form exploiting the independence structure of the random variables. Considering
the graphical structure of a Bayesian network the joint distribution can be obtained by:

K
p( X1, X, .o, X H (Xk|pa(Xy)), (6)

whereas pa(Xy) are the parents of Xj. Therefore the joint distribution of the example depicted
in Fig. 2 is:

p(X1, - X7) = p(X1)p(X2)p(X3| X1, Xo)p(Xa| X3)p(X5] X3)p(Xe| X3, Xa)p( X7 X6), (7)

Assuming the random variables in Fig. 2 are all binary valued X, € {29, z.} for n = 1,2...7,
the modeling and computation of the joint distribution by applying Equation 7 requires 16
independent parameters. In contrast, the full joint distribution would require 27 — 1 = 127
independent parameters.

In the discrete case the links in Bayesian networks are conditional probabilities represented
by conditional probability tables. The conditional probability tables fulfill the basic rules of
probability theory stated in Equation 1.

If the random variables consist of continuous values, they are expressed by a probability density
function with the property
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/_O:O f(z)dx = 1. (8)

The most commonly used continuous probability density function is the Gaussian distribution

Nl o) = L exp (—;(mg“)z) )

with the mean p and the standard deviation o. The D-dimensional Gaussian distribution is
given by

N (x| 2) =

1 1 Ts—1
T (56— 'S x-w) (10)

where p is the D-dimensional mean, X is the covariance matrix of the size D x D and |X]
denoting the determinant of X.

Bayesian networks consisting of both discrete and continuous variables are called hybrid
Bayesian networks (Lerner, 2002). If a continuous random variable has discrete parents the
parameters of the probability density function have to be specified for each state combination
of the discrete parents. If the probability density function is a Gaussian, the resulting table
consists of different means and variances for each state combination (Jensen and Nielsen, 2007).
If a discrete child has continuous parents, the simplest approach is the threshold model. A sim-
ple threshold in the continuous domain is selected to define the probabilities of the states for
discrete variable. However, the change of probability is discontinuous, which leads to incon-
venience from a mathematical perspective (Koller and Friedman, 2009). Another opportunity
to circumvent hybrid Bayesian networks is the discretization of all continuous variables. How-
ever, on one hand the characteristic structure of the continuous variable is lost and a fine
discretization leads rapidly to memory problems.

It is also possible to introduce deterministic relations in a Bayesian network, which often occur
in natural cases. A deterministic relation of a random variable to its parents is denoted via an
additional cycle in a node as depicted in Fig. 3. In the example the variable C'is a deterministic
function of its parents A and B (Cobb and Shenoy, 2004). In the binary case the deterministic
relation could reflect easy operations such as "or”. In the continuous domain, P(C|A, B) is
determined by a deterministic function such as C' is equal to A + B.

Figure 3. BN with deterministic node C'

A further extension of the basic Bayesian network is the additional representation of parameters.
The previous representation of a Bayesian network consists only of random variables and the
conditional probabilities between them. However, in many cases additional parameters are
given, which for example describe the noise variance. In the graphical representation of Bayesian
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p

Figure 4. Bayesian network with additional parameters represented as small solid circles

networks, the additional given parameters are visualized by small solid circles as depicted in
Fig. 4. The graphical representation of the parameters can also be adapted to the formulas.
The Equation 11 shows the joint distribution of the graphical model represented in 4, which
explicitly reads as:

p(A, Bla, ,v) = p(Ala, B)p(B|A, 7). (11)

2.1.2 Independence properties

Beside the property of a Bayesian network to represent a joint distribution, another character-
istic of Bayesian networks is the encoding of independence assumptions. A Bayesian network
is able to make conditional independence assumptions of several random variables visually
readable from a graph. The concept of conditional independence is crucial in unifying many
seemingly unrelated random variables (Dawid, 1979). Two random variables A and B given C'
are conditional independent if

p(A, B|C) = p(A|C)p(B|C). (12)

An more intuitive interpretation is that the distribution of A given B and C' depends only on
C and further information about B is irrelevant

p(A[B,C) = p(A|C). (13)

In the following the conditional independence of A and B given C' is denoted in shorthand

ALB|C (14)

or if A and B are not conditional independent given C' it is denoted as

AJLB|C. (15)

For the analysis of the conditional independence structure the concept of d-separation is intro-
duced, which allows to read the conditional independence properties directly from the graph
(Pearl, 1986, 1988). The conditional independence structure of three example graphs is inves-
tigated to motivate the concept of d-separation. The three example graphs are depicted in Fig.
5 consisting of a diverging, serial and converging connection. In the following the conditional
dependence of A and B given C' are investigated.



2.1 Bayesian Network 17

Figure 5. Three example graphs representing the basic connections of a Bayesian network (left: diverging connection,
middle: serial connection, right: converging connection).

Considering the diverging connection (Fig. 5 left), the joint probability derived from the graph
is

p(4, B, C) = p(A|C)p(B|C)p(C). (16)

Using the product rule and inserting the joint probability of the diverging connection leads to

A, B,C)

p.BlC) = T~ paicmeic), a17)

which states the conditional independence property in the diverging connection is

AL B|C. (18)

A similar behavior is obtained considering the serial connection (Fig. 5 middle) with the joint
probability

p(4, B, C) = p(A)p(C|A)p(B|C). (19)

Again, the substitution of the joint probability with Equation 19 and applying Bayes’ theorem
leads to the expression

b, BIO) = P B ARCERBIE) _ yajcppzic) (20)

which again shows that

ALB|C (21)
in the serial connection. For both example graphs, the diverging and serial connection, it can
be shown by marginalizing over C' that in general

AULB|D (22)
where () indicates that none of the variables is observed.

Applying the same operations to the converging connection (Fig. 5 right), with the joint
probability
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p(4A, B,C) = p(A)p(B)p(C|A, B) (23)

leads to

. p(A,B,C) . p(A)p(B)p(C’A,B)
p(A, B|C) = o) (C) # p(A|C)p(B|C), (24)

and therefore

AJB|C. (25)

However, if C' is not given, the joint probability p(A, B) is obtained by marginalizing both sides
of Equation 23

p(A, B) = p(A)p(B) (26)

and therefore

ALB | 0. (27)

The independence properties, presented in the three example graphs can be summarized and
formulated in the definition of d-separation. Two variables A and B in a causal network are
d-separated, if for all possible paths from node A to node B, there is an intermediate variable
C such that either

¢ the connection is serial or diverging and C' is observed or
o the connection is converging, and neither C' nor any of C’s descendants are observed.

By means of the d-separation property it is possible to investigate in directed graphs conditional
independence between two distinct variables given observed variables. Lauritzen (1996) proofs
that the d-separation property is applicable to Bayesian networks. The soundness and com-
pleteness of d-separation is shown by Geiger and Pearl (1988). In case of Gaussian distributions
the completeness is shown by Geiger and Pearl (1993).

Figure 6. The Markov blanket (colored in blue) of a random variable A.
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The d-separation concept describes global independence properties. Beside this global inde-
pendence property also a local independence property can be defined by means of the Markov
blanket. The Markov blanket for a random variable A in a Bayesian network is the set of
random variables MB(A), consisting of the parents of A, the children of A and the variables
sharing a child with A. If the Markov blanket of A is given, then A is d-separated from the
rest of the network

AL\ famB(ayy | MB(A), (28)

where 20\ {4 mB(4)} is the set of all nodes in the graph without A and the set MB(A). In Fig. 6
the Markov blanket of a random variable A is depicted in blue.

2.2 Markov Network

The second major class of probabilistic graphical models is the Markov Network or the Markov
Random Field (MRF), which is undirected graphical model. A Markov network is - like a
Bayesian network - a graphical model, which is able to represent the joint probability of a set
of random variables and specify conditional independence properties. In contrast to Bayesian
Networks, which are used to model causal relation between random variables, the Markov
Network is mainly used to model symmetrical interactions between random variables, such as
neighboring pixels in imagery. Therefore, Markov Networks are widely used to model imagery
(Perez, 1998; Li, 2009). Several tasks, such as image denoising (Geman and Geman, 1984;
Besag, 1986), stereo reconstruction (Szeliski et al., 2008) and image segmentation (Bouman
and Shapiro, 1994), can be modeled by applying Markov Networks. An overview about Markov
Networks in the field of computer vision is given in Li (2009).

2.2.1 Representation of Markov Networks

Markov networks are undirected graphical models consisting of nodes and links. As in Bayesian
networks the nodes correspond to random variables. The links are in contrast to Bayesian
networks not directed and capture mostly symmetrical relations between random variables. An
example of a Markov network is shown in Fig. 7.

Figure 7. Example of a Markov network

The graphical structure of a Markov Network is as in Bayesian Networks a representation of
the joint probability and reflects the independence structure of the random variables. In order
to derive the factorization of the joint distribution the graphical concept of cliques is required.
A clique is defined as a subset of nodes in a graph such that there is a link between all pairs
of nodes in the subset (Bishop, 2006). A maximal clique is a clique that cannot be extended
by including one more adjacent node from the graph in the set, meaning it is not a subset of
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Figure 8. Example of a Markov Network with 14 cliques and 4 maximal cliques highlighted with blue framing

a larger clique. The example in Fig. 8 demonstrates the concepts of cliques. This example
consists of 14 cliques and 4 maximal cliques given by { X1, Xo, X3, X4}, { X2, X5},{X4, Xs} and
{X57 XG}

By means of the maximal cliques, the joint distribution of a Markov Network can be formulated
by means of potential functions 1c(X¢) over the maximal cliques

p(Xl,XQ,...,XK) = ;HwC(XC)’ (29)
C

where the quantity Z is called the partition function and ensures the normalization of the joint
distribution. The partition function Z is given by

Z =3 S [[¢eXeo). (30)

X1 X C

The joint distribution of the example depicted in Fig. 8 is therefore

1
p(X17 X27 X37 X47 X57 XG) = E¢X1X2X3X4 (X17 X27 X37 X4)1/}X2X5 (X27 X5) (31>
wX4X6 (X4> X6)7/}X5X6 (X57 Xﬁ)'

The potential functions )c(X¢) are restricted to positive functions. Only if ¢ (X¢) is positive
it is guaranteed that there exists a precise relationship between the factorization shown in
Equation 29 and the conditional independence properties discussed in the next section (Clifford,
1990). Since ¥ (X¢) are positive it is convenient to express the potential functions by means
of exponentials

Ye(Xe) = exp (=U(Xo)), (32)

where U(X¢) is called the energy function. The potential functions capture the affinities of
the random variables, which are members of the same clique Xc. In general, they do not
correspond to probabilities, which make it difficult to understand them intuitively. However, in
special cases the potential functions can be interpreted as conditional probabilities. In principle,
it can be assumed the more compatible the variables in a clique, the larger the value of the
potential functions. The framework is not restricted to discrete variables. By replacing the
sum in Equation 30 with integral also continuous random variables can be treated.
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2.2.2 Independence properties

As in Bayesian network global and local independence properties also exist in Markov networks.
Corresponding to the d-separation for Bayesian networks, a simpler global independence prop-
erty in the Markov network can be formulated. Assuming there are three set of nodes A, B
and C, then the given set C separates A and B, if there is no path between any node A € A
and B € B. The concept of this global independence property is demonstrated in Fig. 9, which
leads in the example graph to the conditional independence property

Figure 9. The global independence property state that every node in the set A is conditional independent on every node
in the set B if C is given

QO
()

AL B|C. (33)

The local independence property of a Markov Network can again be expressed by the Markov
blanket. In Markov networks the Markov blanket is simply all the neighbors of a node. In
Fig. 10 the Markov blanket of a node A is shown. This leads to the local independence
assumption, which states that a node is independent of all other nodes in the graph given all
its neighbors. Therefore in Fig. 10 the random variable A is independent of all other random
variables given the nodes highlighted in blue. If the potential functions are positive, the global
independence property and the local independence property are equivalent (Lauritzen, 1982;
Koller and Friedman, 2009).

Figure 10. The Markov blanket of A (colored in blue) in a Markov network

2.3 Relation between graphical models

Both Bayesian networks and Markov networks are graphical representations of joint distribu-
tions and each reflects different kinds of independence properties. In the following the joint
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distribution represented in a Bayesian Network, which is factorized as formulated in Equation
6 should be transformed in a factorization used for Markov Networks (see Equation 29). The
transformation is simply done by expressing the potential functions ¥¢(X¢) by the conditional
distribution of the directed graph. The scope of the potential functions consists of a random
variable X} and its parents pa(Xy). These potential functions satisfy additional normaliza-
tion property leading to a partition function of Z = 1, which holds not in general. From the
graphical perspective all the random variables appearing in the conditional distribution have
to be members of at least one clique of the undirected graph. This leads to the following rule
for converting a directed acyclic graph in an undirected graph, which is called “moralization”.
Firstly, all parents, which have a common child, are connected by an undirected link. Secondly,
all other directed links are replaced by undirected links. In Fig. 11 an example for moralization
is shown. The converted graph is called moral graph.

Figure 11. Example of the conversion of a directed graph into an undirected graph via moralization. (left: directed
graph, right: moral graph)

In general, some independence properties encoded in Bayesian networks are lost after the trans-
formation. However, using moralization the minimum number of extra links is added and the
maximum independence properties are retained. Bayesian networks and Markov networks rep-
resent generally different kinds of independence properties. If a graph is able to describe every
independence property of a given distribution, then the graph is called a perfect map. For some
distribution a prefect map can be obtained only by means of Bayesian networks and for other
distributions only Markov networks deliver perfect maps. But there are also distributions for
which both graphical models can deliver perfect maps or neither of them is able to represent
the independence properties in perfect maps. The set diagram in Fig. 12 illustrates the differ-
ent possibilities of representing independence properties by the different graphical models and
shows three examples of the different sets.

On the left side in Fig. 12 the independence properties A 1L B|() and A U B|C are encoded
by a Bayesian network. Only a Bayesian Network is able to represent these independence
properties. In contrast, the Markov network depicted on the right side in Fig. 12 represents
the independence properties A L B|(), AL D|BUC and B 1L.C|AUD, which cannot be encoded
by a Bayesian network. The independence properties A { C|() and A L C|B can be represented
by means of a Bayesian network as well as by a Markov Network. Replacing the directed links
by undirected links in the graph depicted at the bottom of Fig. 12 fulfills the same independence
properties.

Beside Bayesian networks and Markov Networks also partially directed models exists, which
consist of directed and undirected links. Partially directed acyclic graphs are called chain
graphs (Frydenberg, 1990). Similar to Bayesian networks and Markov networks a factorization
of the joint probability is given and independence properties can be derived from the graphical
structure (Lauritzen, 1996; Studeny and Bouckaert, 1998).

Special Markov networks with directed dependencies on a subset of random variables are con-
ditional random fields (Lafferty, 2001) or discriminative random fields (Kumar and Hebert,
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Figure 12. Illustration of the set of all distributions P over a given set of variables. The set D represents the distribution,
which can be modeled in a prefect map by Bayesian networks and respectively the set U for Markov networks (Bishop,
2006). In addition three example graphs for different sets are illustrated.

2006). Both models are mainly used for modeling sequential data and can be considered as an
undirected alternative to hidden Markov models (Rabiner and Juang, 1986). An overview of
conditional random fields and some of its applications can be found in Sutton and McCallum
(2007).

2.4 Inference in Bayesian networks and Markov net-
works

In the previous section Bayesian networks and Markov networks are introduced and the re-
lations of the two probabilistic graphical models are discussed. In the following sections the
computation of the posterior distributions of the latent hypothesis variables given the observed
information variables is presented. This process is called inference. In general, the algorithms
performing inference can be divided in exact inference algorithms and approximate algorithms.
Most of the approximate algorithms can be considered as optimization problems and are often
formulated as energy functionals (Yedidia et al., 2005). However, in the following, the focus is
on methods computing exact inference, since the developed model in the thesis can be solved by
exact inference. A general method computing exact inference in Bayesian or Markov networks
is the junction tree algorithm (also called clique tree algorithm) (Lauritzen and Spiegelhalter,
1988; Shafer and Shenoy, 1990). The first step of the junction tree algorithm in case of Bayesian
networks is the transformation to an undirected graphical model via moralization as described
in Section 2.3. The resulting moral graph is then transformed in a junction tree, by means of
the maximal cliques. The junction tree has a tree structure, which means that there exists one,
and only one, path between any pair of nodes. By means of the junction tree, the elimination
ordering of the random variables can be determined. A detailed description of the junction
tree algorithm is given in Jensen and Nielsen (2007). In the next section an exact inference
algorithm is presented based on factor graphs. A factor graph may be viewed as an alterna-
tive approach to junction trees. The results obtained by inference algorithms using junction
trees may be translated into equivalent results using inference algorithms in factor graphs, and
vice versa (Kschischang et al., 2001). Both Bayesian networks and Markov networks can be
transformed into factor graphs. The graphical structure of the factor graphs is used to conduct
inference.
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2.5 Factor graphs

Factor graphs originate from Tanner graphs, which are graphs describing families of codes
(Tanner, 1981). Factor graphs can be considered as a generalization of Tanner graphs (Wiberg
et al., 1995) and were firstly introduced by Frey et al. (1997). As Bayesian and Markov networks
also factor graphs are graphical representations of joint distributions. Both, Bayesian and
Markov networks can be transformed into factor graphs with a corresponding factorization
(Loeliger, 2004). In the next section the representation of factor graphs is discussed and in
Section 2.5.2 the sum-product rule, which is an algorithm to conduct inference in factor graphs,
is presented.

2.5.1 Representation of factor graphs

In contrast to Bayesian and Markov networks, factor graphs are bipartite graphs consisting of
two types of nodes: variable nodes corresponding to the random variables and factor nodes
describing the mathematical relation between the random variables. An example of a factor
graph is depicted in Fig. 13.

T4 Je
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*

Figure 13. Example of a factor graph

The variable nodes are equivalent to the variable nodes in Bayesian and Markov networks. The
factor nodes are local functions, which represent explicitly the mathematical relation between
the random variables, which in the following are simply called factors. The joint distribution
in a factor graph is simply the product of all factors

(X1, Xo, ... Xk) = [[ f:(Xs), (34)

where f; are the factors dependent on a subset of variables X;. Referring to Equation 34 the
factorization of the example graph depicted in Fig. 13 is

p(X1, Xo, ooy Xo) = fa(X1) [B(X1, Xo, X3, X4) fo (X4, X5) fp(Xa, X5, Xo). (35)

Factor graphs can be derived from Bayesian and Markov networks. In case of Bayesian networks
the directed graph is firstly converted to an undirected graph via moralization. Then the
moral graph or respectively the Markov network is transformed into a factor graph, where the
factors represent conditional probabilities or respectively the potential functions. In Fig. 14 an
example of a transformation from a Bayesian network into a factor graph is shown. The factors
correspond to the conditional probabilities.
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Figure 14. Example of the transformation from a Bayesian network to a factor graph

If a factor graph is tree-structured, which means there exists one, and only one, path between
any pair of variable nodes, then exact inference is possible. If a factor graph contains loops,
approximate inference is necessary. Approaches to solve approximate inference are variational
methods (Sakurai, 1985) or loopy belief propagation (Frey and MacKay, 1998). In the following
only tree-structured graphs are considered.

2.5.2 Inference in factor graphs

The most established algorithm to conduct inference in a tree-structured factor graph is the
sum-product algorithm. The sum-product algorithm was originally invented by Gallager for
low-density parity check codes (Gallager, 1963). The exact inference algorithm for Bayesian
networks known as belief propagation (Pearl, 1988; Lauritzen and Spiegelhalter, 1988) can
be translated into an instance of the sum-product algorithm, with an equivalent factorization
expressed in a factor graph. Kschischang et al. (2001) shows that also the forward-backward
algorithm (Rabiner, 1989), the Viterbi algorithm (Viterbi, 1967) and the Kalman filter (Kalman,
1960) are instances of the sum-product algorithm.

Firstly, the sum-product rule is presented to compute the marginal probability of one random
variable followed by the description of an efficient computation of the marginal probabilities
of a set of random variables. Furthermore the algorithm is presented for the discrete case.
However, the algorithm is also applicable for continuous variables, in which the integration
replaces performing sums. The following notation to derive the sum-product algorithm is taken
from Bishop (2006).

The marginal probability of a random variable p(X) is obtained by marginalizing over all other
random variables except X

= @ @
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X

\— J . J

Figure 15. A factor graph divided into 3 variable-subgraphs (blue boxes) referring to variable X4
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p(X) = > p(X), (36)

X\ X

where X\ X denotes all variables in X without X. The joint distribution in factor graphs is
represented as a product of all factors in the graph as formulated in Equation 34. Focusing on
a specific hypothesis variable X the factor graph can be divided into several variable-subgraphs
as depicted in Fig. 15. The number of variable-subgraphs is equal to the number of neighboring
factor nodes of X. Therefore every variable-subgraph can be associated to a factor node, which
is a neighbor of the variable. The product of all factors assigned to a variable-subgraph is
denoted as Fy(X,X), where X; are all the random variables in the variable-subgraph. The
joint distribution could therefore be formulated as

pX)= ]I F(X,X,), (37)
s€ne(X)

where ne(X) denotes the set of factor nodes that are neighbors of X. Using the joint probability
given in 37, inserting it in Equation 36 and interchanging the products and sums lead to

p(X) = H( );FS(X,XS)- (38)

In the following a message jir,_,x(X) is defined as the sum of the product of all factors in a
variable subgraph

fy—x(X) = ;Fs()@ X,), (39)

where ji7,_,x (X) propagates from the factor node f; to the random variable X. Therefore the
marginal probability p(X) is the product of all incoming messages arriving at node X.

p(X) = H( )/Lfﬁx(X)- (40)

The product of all factors Fy(X,X,) in a variable-subgraph can be further divided into the
product of the factor f; and the factors in M factor-subgraphs as depicted in Fig. 16

Figure 16. Division of a factor graph in several factor-subgraphs indicated in blue
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Figure 17. Variable-subgraphs of random variable x,,

Fo( X, Xs) = fo(X, Xuy ooy Xony oo, X)) G1( X1, Xs1) vve s G (Xoy Xsn) - oo Gar (X g, Xar). (41)

The product of all factors in a factor-subgraph is represented by G, (X, Xsn). The random
variables X, X1, ..., X,,, ..., Xjs are all the neighbors of the factor fs as depicted in Fig. 16 and
X is the set of all random variables in the factor-subgraph m. Substituting Equation 41 into
39 the message from the factor f; to X is computed

Nf_;—)X(X):Z-‘-Zfs(X;XI;-u,Xma-uaXM) H

X1 Xnr mene(fs)\X

> G X, Xsm)] (42)

Xsm

where ne(fs) denotes variable nodes that are neighbors of f;. Again a message is defined this
time from the random variable X,, to the factor f, as follows

lj'Xm_>fs (Xm) = Z Gm(vaxsm)a (43)
Xs'm
which leads to
,Udfs_»((X) :Z---Zfs(Xale---aXma-“;XM) H MXm%fs(Xm)' (44)
X1 X mene(fs)\X

The message from a factor node to a variable node is the product of the factor and all incoming
messages arriving in the factor node and marginalizing over all of the variables associated with
the incoming messages. Therefore the message from a factor node to a variable node cannot be
calculated until all incoming messages have arrived. The incoming messages, which are messages
from a variable node to a factor node, can again be calculated using the variable-subgraphs.
The term

lene(Xm)\ fs

states that G, (X, Xsn) is given by a product of terms which are the products of the variable-
subgraphs depicted in Fig. 17.

Substituting Equation 45 into 43 leads to
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lEne(Xm)\fs Xim
= H Hfy— X, (Xm>> (47>
lene(Xm)\ fs

which states that the message from a variable node to a factor node is simply the product of
all incoming messages from the factor nodes to the variable node. Again before the message
from a variable node to a factor node can be calculated, all the incoming messages have to be
computed. Therefore each of the messages can be calculated recursively by applying incoming
messages. The messages start at the leafs of the tree-structured factor graphs. If the leafs are
variable nodes the corresponding message is initialized by

o p(X) = 1 (48)

and if the leafs are factor nodes the corresponding message is simply the factor itself

pp-x(X) = f(X). (49)
After initializing the messages starting from the leaf nodes, the formulas in Equation 44 and 47
can be applied to calculate recursively all messages until the hypothesis variable X is reached.
The marginal probability is simply the product of all incoming messages. The described algo-

rithm for one hypothesis variable is also called the single-i sum product algorithm, since only
one marginal probability is computed.

In the following the single-i sum product algorithm is shown for the example depicted in Fig. 15.
As root node the variable node X, is chosen. The initial messages starting from the variable
nodes are

HXs—fp (XZ) = UX3—fp (X3) = UX5—fp (X5) = HUXe—fp (X6> =1 (5())

as stated in Equation 48 and the initial messages starting from the factor nodes are

pia-x: (K1) = fa(Xy) (51)

and

fre—xi(Xa) = fo(Xa) (52)

as stated in Equation 49. In the following the message

X115 (X1) = ppaox, (X1) = fa(Xa) (53)

is needed since all incoming messages are required in order to calculate the message from fp
to the root node Xy, which is
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lufB—>X4 X4 ZZZfB X17X27X37X4)MX2—>fB(XQ)MXgﬁfB(X?))MXl—)fB (Xl) (54>
X1 X2 X3

:ZZZfB(XlaX%X&XOfA(Xl)- (55)

X1 X2 X3

The last message, which is required to calculate the marginal probability of the root node X4,
is the message arriving from fp

:LLfDaXAL X4 ZZfD X47X57X6)/’LX5‘>JCD(X5)IMX6‘>JID (X6> (56>
X5 Xe

=2 fp(X1, X5, Xo). (57)

X5 X¢

Since now all incoming messages to the root node X, are given, the marginal probability p(X})
can be calculated.

P(Xa) = g xa (Xa) o x, (Xa) popp— x4 (Xa) (58)

=3 3> f(X1, Xo, X3, Xu) fa(X1) fo(Xy) Z > fo(Xy, X5, Xs) (59)

X1 X2 X3 X5 Xe

If several hypothesis random variables exists and therefore the computation of several marginal
probabilities is needed or even the marginal probabilities of all random variables, it is possible to
conduct the single-i sum product algorithm for each random variable individually. However, this
procedure is not very efficiently. An efficient procedure to compute the marginal probabilities of
several random variables leads to the general sum-product algorithm. Firstly, an arbitrary root
variable node is selected. Secondly, the single-i sum product algorithm is conducted assuming
the selected root variable node as the hypothesis variable. Thirdly, after receiving messages
from all neighbors the root node can propagate the messages back to all the leafs. After this
step every variable node has incoming messages from all of its neighbors and therefore the
marginal can be computed for every random variable in the whole graph.

2.6 Discussion

The presented probabilistic graphical models, Bayesian networks and Markov networks, are
able to model different probability distributions. Bayesian models are suited to model causal
relations. Therefore many physical processes can be modeled by Bayesian networks. In case
of flooding, the causal relation between DEM, flood state and imagery can be modeled by
means of a Bayesian network. Furthermore, Bayesian networks are a good tool for the fusion of
several observations and are well suited to combine different kinds of data. The combination of
DEM and imagery is useful to estimate flooded areas. On the other hand the spatial relation in
imagery reflects no causal relation and therefore Bayesian networks are not suited for modeling.
As shown in this chapter, Markov networks can model spatial relations in imagery. Therefore,
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both models are needed to cope with the requirements stated in the goals of the thesis (see
Section 1.2). The transformation of Bayesian networks and Markov networks in factor graphs
enables consistent and fast inference algorithms as the described sum-product algorithm.

Beside probabilistic graphical models several other probabilistic frameworks exists, which are
alternatives to handle data fusion. The most established models are possibility theory (Zadeh,
1978), which includes the fuzzy theory (Zadeh, 1965), and Dempster-Shafer theory (Dempster,
1967; Shafer, 1976). A deeper discussion about the different alternatives is given in Halpern
(2003). However, only the framework of probabilistic graphical models enables the explicit rep-

resentation of causal relations via Bayesian networks and symmetrical neighborhood relations
via Markov networks.
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3 State of the art of damage assessment sys-
tems during flooding

This chapter gives an overview of image analysis methods, which are used to detect the flood-
plain delineation during flood events. It is important to distinguish between two kinds of
damage assessment systems. The aim of the first kind of systems is the detection of the current
state of the flooding, which implies the estimation of the delineation of the floodplain and the
water depth (Smith, 1997). Only these systems are suitable for a fast support of the emergency
action in the affected areas. The aim of the second kind of systems is the evaluation of the
damage after the flood (Bovolo and Bruzzone, 2007; Dhakal et al., 2002). The advantage of the
second kind of systems is the possibility of using imagery after the flood event, which is easier
to obtain than imagery during the flood. However, the second kind of systems is not suitable
for the support of emergency actions.

One goal of the thesis is the development of a system to support the relief actions in the
affected area. Therefore, the state of the art focuses on the first kind of systems, which detects
the floodplains and water depths during the flood. First approaches using remote sensing data
in order to monitor flooding were already studied in the year 1969 (Milfred et al., 1969). An
overview on the developed systems and methods is given by Sanyal and Lu (2004) and Smith
(1997).

The following subsections are subdivided into image-based systems 3.1 and fusion-based sys-
tems 3.2. The image-based systems use solely the information of the imagery. The fusion-based
systems use beside imagery additional data such as DEM, water gauge measurements or in-
formation from a GIS. The focus of the following subsections is on image analysis methods
to detect the floodplain. However, in between of the whole Section 3 further approaches are
discussed which are not focused on flooding but are relevant due to the methodology.

3.1 Image-based systems

All methods described in this section are based solely on the information of the imagery. The
used image analysis methods differ depending on the used sensor and the number of images
available during and before the flood event. Methods, which include imagery after the flood
event are neglected since they are not suitable for emergency relief action. The following section
is subdivided into four parts. The first part describes image analysis methods for deriving
flood parameter from optical imagery. The second part deals with radar data. In the third
part multi-sensorial methods are presented, which combine optical and radar imagery. Finally,
in the fourth part multi-temporal approaches are shown exploiting the information of several
images acquired during and before the flood.

3.1.1 Optical sensors and typical methods

First approaches to map the flood extent with optical sensors were made after the launch
of Earth Resource Technology Sensor (ERTS-1) also called Landsatl carrying the Multispec-
tral Scanner (Hallberg et al., 1973; Morrison and Cooley, 1973; Rango and Salomonson, 1973;
Deutsch and Ruggles, 1974). At the same time the ability to monitor floods with the satel-
lites NOAA-2 is demonstrated (Wiesnet et al., 1974). However, the extraction of information
from the imagery is based on simple visual interpretation. The interpretation is hampered by
the different appearance of flooded areas due to the physical differences in water depth and
sediment load (Rango and Anderson, 1974). Chen et al. (1992) investigate the relationship be-
tween the spectral reflectance of water and the suspended sediment concentration depicted in
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Figure 18. Spectral reflectance Ry as a function of wavelength A for six suspended sediment concentrations in water
from Chen et al. (1992).

Fig. 18. In case of flooding usually the suspended sediment concentration in water is increased,
which leads to a higher reflectance. On the other hand also the soil moisture of not flooded
soil increases, which leads to a decrease of spectral reflectance converging to flooded regions
with high suspended sediment concentration. Consequently, the reflectance characteristics of
ground covers become quite complicated during floods, preventing water and land to be easily
distinguished (see Fig. 19) (Sheng et al., 1998). Further factors which cause varying reflectance
from water are the change of sun angle and choppy waters. In addition, bottom reflectance can
arise if the water is shallow (Wilson, 1997).

In the following methods are discussed extracting the floodplain from optical imagery. In gen-
eral, the methods can be divided into two different approaches. Firstly, approaches considering
only the spectral information of the image for each pixel individually and secondly, methods
considering beside the spectral information additionally the spatial information, which takes
the relationship of neighboring pixels into account.

Thresholding is one of the first methods, which are applied to optical remote sensing data.
The simplest methods use only one spectral band and apply a threshold to detect the flood
plain. Usually the near-infrared (A ~ 1um), the mid-infrared (A ~ 2um) and the far-infrared
or thermal bands (A ~ 11um) are used due to the low reflectance of water (Work, 1976; Verdin,
1996). In contrast, soil, rock, and vegetation are generally quite reflective (see Fig. 19). Barton
and Bathols (1989) state that the far-infrared bands can be used to detect the flooded areas
at night under clear condition since the radiative heat loss from the land surface cools it to
a temperature well below that of flood. However, the usage of only one band neglects the
available information of all the other bands. Several methods are proposed, which combine
different bands to enhance the extraction of flooded areas. Wang et al. (2002) propose the
summation of the near-infrared and mid-infrared bands and Sheng et al. (1998) calculate the
ratio between near-infrared and mid-infrared bands. Since the water body has a high reflectance
in the visible band, and a very low reflection in the near-infrared and infrared bands also the
Normalized Differenced Vegetation Index (NDVI) is used to detect floodplains (Barton and
Bathols, 1989). But usually the NDVI of flooded areas differs from the NDVI of permanent
water bodies and hence is closer to the NDVI of soil due to silt and debris in floodwaters (see
Fig. 18). The main difficulty of the described thresholding methods is the choice of the correct
threshold. In addition, the threshold has to be chosen for each flood scenario individually since
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Figure 19. Spectral reflectance R as a function of wavelength A for ground cover types during floods from Sheng et al.
(1998).

the appearance of river flooding varies greatly from place to place.

In contrast to the described thresholding methods the multispectral mazimum likelihood classi-
fication uses usually more than two bands and is based on multivariate probability distributions.
Frazier and Page (2000) compares simple thresholding methods with supervised multispectral
maximum likelihood classification in case of flood plain delineation. The comparison with
reference data leads to a higher overall accuracy using the multispectral maximum likelihood
classification than different thresholding methods. In Frey et al. (2009b) a supervised multi-
spectral maximum likelihood classification is used to detect flooded roads. One of the main
problems of the supervised multispectral classification is the selection of the training data. The
results of the classification are very sensitive concerning the selected training area, especially
in cases with large variability within one class, which is often given in flooded areas.

An unsupervised method used to detect flooded areas is proposed by Khan et al. (2011) using
the Self-Organizing Data Analysis Technique Algorithm (ISODATA), which uses the Euclidean
distance to the mean in the feature space in order to assign the pixels to a cluster through a
number of iterations. However, the variance of the clusters is neglected unlike the maximum
likelihood classification. In addition, the several obtained clusters, which represent the flooded
areas, have to be combined manually to one class.

Further approaches to detect flooded areas use neural networks. Zhou et al. (2000) proposes a
three-layer structured Radial Basis Function Neural Network (RBFNN), in which the output
units form a linear combination of the kernel functions computed by the hidden units (Benedik-
tsson et al., 1990; Rollet et al., 1998). Zhou et al. (2000) combines the classification results of
the RBFNN with rule based approach. The combination is done via Dempster-Shafer theory
(Dempster, 1967; Shafer, 1976).

However, all previously described methods consider only the spectral information of each pixel
individually neglecting all kinds of texture and context information. But texture and context
information is one of the crucial characteristics identifying objects or regions of interest in
imagery (Haralick et al., 1973).

Wilson (1997) uses a variance filter to describe the texture of water bodies. The variance filter
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provides a measure of local homogeneity. Locally, the water bodies and also flooded areas fulfill
this homogeneity. Wilson (1997) conducts a region growing algorithm based on the variance
filtered image and further spectral bands. But additional production rules are embedded into
the classification schema, which hampers the transferability of the approach.

A hierarchical Markov image model combined with a MRF is proposed by Kersten (2011). The
hierarchical Markov model is a directed graphical model defined on a quadtree with the set
of all nodes S and the root node R, which represents the lowest spatial resolution. The joint
distribution of the hierarchical Markov image model is given by the factorization

P(X.Y,R) =p(R) [] p(X:|X) ] p(YalXo) (60)
seS\R seS

where p(R) is the root prior, p(X,| Xs-) are the parent child transition probabilities and p(Y;|X)
are the data conditional likelihoods with the observations Y, and the hidden variables X, which
should be estimated. For inference in the quadtree a similar algorithm as the Viterbi algorithm
is applied (Viterbi, 1967; Forney Jr, 1973). The MRF is described by the following energy
function

U(X7Y) = Z Z Udata(ﬁ,j|Xi7j) + Ucontext(Xi,j|Xg,ha (ga h) € ne@?])) (61)

1<i<I1<5<J

where ¢, j describes the position of the image and ne(i,j) denotes the neighborhood of the
variables. The energy function is divided into a data term Uy, considering the spectral infor-
mation and a context term Uyt considering the neighborhood relations. The ICM algorithm
is applied to carry out inference (Kittler and Foglein, 1984; Besag, 1986). Kersten et al. (2010)
show that the hierarchical Markov model as well as the MRF clearly outperforms the maximum
likelihood classification. The combination of the hierarchal approach with the MRF delivers
the best results. However, the proposed system is not fully automatic since user interaction is
necessary.

Beside multispectral data also hyperspectral image data with more than 200 bands is used to
detect water bodies. One issue working with hyperspectral image data is the reduction of data
without losing relevant information for the classification. Especially in time-critical application
as the extraction of flood delineation the data reduction plays a decisive part. Hyperspectral
satellite missions such as the Environmental Mapping and Analysis Program (EnMAP) can
contribute to emergency relief phase during flooding if efficient classification algorithms are
available. Braun et al. (2012) suggests support vector machines for the classification of simu-
lated EnMap data and compares support vector machines with independent vector machines
and relevance vector machines.

The goal of all the described methods is the delineation of the floodplain or more general the
detection of water bodies. A second important parameter in case of flooding is the water depth.
There are only few approaches which try to extract the water depth solely on the information
of optical imagery without topographic information. Lyzenga (1978) proposes a physical model
for water depth estimation and discusses the limitations. A segmentation of water depth in
sea areas based on a hierarchical Markov model defined on a quadtree is presented by (Provost
et al., 2004). The potential to estimate water depth solely from optical imagery is limited to
shallow clear water. Therefore in case of flooding a water depth estimation is hardly possible
due to the turbidity of water.

The main disadvantage using optical remote sensing data to detect the floodplain delineation
are bad weather conditions. Often flood events are accompanied by heavy rains and large cloud
coverage. In general, over 50 percent of the Earth’s surface is typically covered by clouds at any
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time (Paltridge and Platt, 1976). These circumstances is a strong constraint utilizing optical
remotely sensed data for emergency relief actions.

3.1.2 Radar sensors and typical methods

The advantage of radar sensors compared to optical sensors is the potential to penetrate clouds.
Especially during flooding the probability of heavy rainfall and dense clouds is very high. There-
fore the independence of weather conditions and additionally, the independence of daylight are
crucial characteristics allowing monitoring floodplains at any time. In contrast to the passive
optical sensors, radar sensors are active sensors emitting a series of pulses and recording the
return signals. The backscattering is mainly dependent on the surface roughness. In general,
the smooth surface of water leads to a nearly specular reflection. However, there are two fac-
tors, which complicate the simple specular reflection model. Firstly, the water surfaces could
be affected by meteorological condition, such as strong winds or rain cells, which leads to dif-
ferent backscattering patterns with substantial spatial variations. Secondly, the occurrence of
emergent vegetation eliminates the specular reflection. In addition, further objects as paved
areas or shadowed areas lead to low back-scattering coefficients, which could easily result in
misclassification.

Several methods have been developed, which delineate the floodplain from single SAR images.
An early attempt was made by Lowry et al. (1981) that used airborne data to map floods
by visual interpretation. The simplest image processing approaches deriving the floodplain
are as in the optical data thresholding methods. Based on the histogram of the processed
SAR image a threshold is selected which divides the image into flooded and not flooded areas
(Giacomelli et al., 1995; Brivio et al., 2002; Hostache et al., 2009). However, the threshold
is often derived by visual interpretation of the histogram and manual subsequent fine tuning.
Automatic thresholding procedures can overcome these problems (Sahoo et al., 1988; Bazi
et al., 2007). Schumann et al. (2009) uses Otsu’s rule in order to find the optimal threshold
(Otsu, 1979). Martinis et al. (2009) compares three different automatic thresholding algorithms.
Firstly, the KI- algorithm (Kittler and Illingworth, 1986), secondly, an algorithm based on an
index function introduced by Miasnikov et al. (2004) and thirdly, the simple global minimum
threshold.

The use of polarimetric SAR could increase the performance to detect flooded areas (Hess
et al., 1994; Henry et al., 2006). Henry et al. (2006) observes that HH polarization provides
a more suitable discrimination of flooded areas than HV or VV. However, if multipolarized
data is available the combination of different polarizations could improve the detection. Hess
et al. (1995) proposes a decision tree classifier based on different polarizations. However, all
the described methods consider only the signal return of each pixel individually and neglect
the relations of neighboring pixel. All further described methods consider additionally context
information.

A common way considering context is the description of texture by means of the co-occurrence
matrix. Haralick et al. (1973) defines 13 texture measures derived from the co-occurrence
matrix. Arzandeh and Wang (2002) suggest using 7 out of the 13 texture measurements (the
homogeneity, the contrast, the mean, the variance, the entropy, the angular moment, and the
correlation) in order to classify wetlands. The crucial factors affecting the results are beside
the used texture measures also the window size the co-occurrence matrix is calculated. Song
et al. (2007) investigates different combinations of texture measures at a certain window size in
order to detect water areas. He concludes that 3 texture measures (the mean, the contrast and
the variance) deliver the best result. Adding additional texture measures do not improve the
results for water detection. An increase of the window size leads to a higher overall accuracy
of detection but is associated with detection errors at the water land border.

Further segmentation approaches considering context information are methods based on active
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contour models (Kass et al., 1988). Active contour models are able to combine mathematically
the image data with prior modeled object knowledge concerning the shape behavior (Butenuth
and Heipke, 2012). The model is formulated as an energy functional consisting of two main
components. Firstly, the image energy represents the image forces acting on the spline and
secondly, the internal energy modeling the object knowledge concerning the shape. A statisti-
cal active contour model especially designed for the segmentation of radar images is presented
by Horritt (1999). The method enables the detection of water boundaries and the determina-
tion of shorelines in SAR images (Mason and Davenport, 1996; Hahmann and Wessel, 2010).
Niedermeier et al. (2000) apply active contour models after edge detection and a wavelet trans-
formation to detect shorelines. In case of flooding the method is used by several authors to
detect the boundary between flooded and not flooded areas (Horritt et al., 2001; Mason et al.,
2007). A geometric active contour model, also known as level sets, to separate between water
and land is proposed by Silveira and Heleno (2009). The advantage of level sets is the ability
to automatically change the topology and the independence of parameterization.

An approach which combines the discussed methods, thresholding, texture measures and active
contour models is proposed by Schumann et al. (2009). He simply combines the binary results
of each method by means of an index which penalizes overprediction of flooding. In addition,
a possibility of inundation map based on the Relative Confidence Measure (Romanowicz et al.,
1996) is calculated. However, the resulting possibility of inundation map represents not a prob-
ability or possibility in any statistical sense, but is only the aggregation of plausible inundation
maps.

Another common way to detect flooded areas is to apply regiongrowing algorithm (Hess et al.,
2003; Schumann et al., 2011). A multiresolution regiongrowing approach is proposed by Baatz
and Schaepe (2000). This approach based on the homogeneity of adjacent image objects using
different criteria such as distance, texture, spectral similarity and form. The efficiency of this
approach detecting flooded areas on TerraSAR-X data is shown by Herrera-Cruz et al. (2010).

Further proposed methods used are neural networks (Haykin, 1999). Kussul et al. (2008) applies
self-organizing maps to detect the floodplain delineation, which is neural network including a
neighborhood function preserving the topological properties of the input space (Kohonen, 2000).

Probabilistic graphical models are used for the extraction of flooding by (Martinis et al., 2011).
He combines causal hierarchical graphs with a non causal Markov network. The hierarchical
graphical model is similar with the model applied by Kersten et al. (2010) with an equivalent
joint probability given in Equation 60. However, the graphical structure is not a quadtree
but based on an irregular graphical structure obtained by a preceding segmentation. The
energy function corresponding to the Markov network is similar to Equation 61. However,
the neighborhood relations are not based on neighboring pixels, but are based on neighboring
segmented regions, which leads to an irregular structure.

In addition, SAR has the potential to map water under forested areas (Ormsby et al., 1985).
Especially, SAR systems operating with L-band (A & 24c¢m) are suited to detect flooded areas
due to the capability to penetrate forest canopies (Hess et al., 1990; Pope et al., 1997). But
also C-band (A ~ 6¢m) and P-band (A ~ 68cm) SAR data are used to detect flooding beneath
the vegetation (Wang et al., 1995). In contrast, Ormsby et al. (1985) found that with X-band
(A &= 3c¢m) no conclusions of flooded forest can be drawn. Beside the wavelength A also the
incidence angel influences the backscattering of flooded vegetation. An investigation of the
effect of the incidence angle is done by Lang et al. (2008).

But beside the advantage of the capacity of penetrating clouds there are several disadvantages
dealing with radar data to detect floodplain areas. First of all, the side-looking geometry leads
to the effects of shadowing, layover and foreshortening. These effects cause problems of assessing
flooded areas in urban and mountainous areas. In urban regions substantial areas of ground
surface may not be visible due to shadowing and layover causes by buildings or taller vegetation
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(Mason et al., 2010). Soergel et al. (2003) found that only one-third of roads were visible in
the airborne SAR data of Karlsruhe. In mountainous areas especially the shadowing leads to
misclassification. Song et al. (2007) proposes efficient methods for water area classification in
a highly relief mountainous environment.

3.1.3 Multi-temporal approaches

The event of a flooding is a highly dynamic process. Therefore, the temporal sampling is
crucial to monitor the evolution of a flood event. Several approaches are proposed dealing with
multi-temporal images to delineate the floodplain or to describe the development of flooding.
In general, two multi-temporal approaches can be differentiated. Firstly, change detection
methods, which consider a pre-flood image and an image during the flood, to extract the
current floodplain. Secondly, approaches, which dealing with more than two images during the
flood to monitor the dynamic process.

Several change detection methods have been developed to obtain information about the changes
in between two or more images (Radke et al., 2005). A comprehensive review of change detection
methods for optical remote sensing imagery can be found in Lu et al. (2004) and Coppin et al.
(2004). The division of different change detection approaches in radar images is discussed in
Rignot and van Zyl (1993), Polidori et al. (1995) and Gamba et al. (2006).

A possibility to visualize the extent of flooding could be achieved by color composites generated
through the superposition of pre-flood image and an image during the flood (Wang et al., 1995;
Badji and Dautrebande, 1997). First color composites were generated to map the extent of
flooding by Deutsch and Ruggles (1974).

The simplest change detection approaches are image differencing and rationing. The image
differencing, which is the difference between the pre-flooded image and the image during the
flood (Nico et al., 2000), and the rationing, which is the ratio of the two images (Townsend
and Walsh, 1998), are used to detect the floodplain. Badji and Dautrebande (1997) propose a
conceptual inundation index based on the image differencing technique.

A curvelet-based change detection method to extract changes of flood conditions is proposed by
Schmitt et al. (2010). The amplitude radar images are transformed into the curvelet domain,
which represent the strength of linear structure apparent in the original image (Candeés et al.,
2005). The differentiation of the curvelet coefficients in the curvelet domain builds the basis
of the change detection algorithm. After the inverse transformation of the differenced and
weighted curvelet coefficients back into the space domain the spatial extent of the changes can
be seen.

A change detection method for optical imagery which is able to deal with several different bands
is proposed by Nielsen et al. (1998). The Multivariate Alteration Detection (MAD) method is
invariant to linear transformations which imply the insensitivity to linear atmospheric condi-
tions or sensor calibrations at two different times (Nielsen, 2007). The Multivariate Alteration
Detection method is based on canonical correlation analysis which was originally introduced
by Hotelling (1936). Unlike principal component analysis which identifies patterns of relation-
ship within one set of data, the canonical correlation analysis investigates the intercorrelation
between two sets of variables. Frey and Butenuth (2010) apply the Multivariate Alteration De-
tection method to detect changes during flooding. However, since the results of the Multivariate
Alteration Detection method can only be interpreted in a statistical manner there is a need to
assign a semantic meaning. Therefore in Butenuth et al. (2011) a supervised classification of
the resulting Multivariate Alteration Detection variates is conducted.

All the previously described change detection methods use only two images. Lacava et al.
(2010) propose a method, using several pre-flood images to get a more robust description of
the common condition without flooding. The robust AVHRR technique, originally developed
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by Tramutoli (1998), computes the mean value and standard deviation of two features for all
pre-flood images. The features are the difference and ratio of two bands in one image. These
two reference feature images are subtracted from the feature images computed from the image
during the flood and divided by the standard deviation of the reference feature image. The
resulting feature differences are the basis for the classification into flooded and non-flooded
areas. However, only the flooded area at one point in time can be extracted and no conclusions
about the development of the flood can be drawn. In the following, methods are discussed,
which investigate the evolution of the dynamic flood process.

Color composites of radar images are used to visualize the dynamic of the flooding in one
color image (Long and Trong, 2001). However, the dynamic process of the flood could only be
investigated by visual interpretation and is restricted to three distinct points in time. Pulvirenti
et al. (2011) proposes an automatic image segmentation method to monitor the flood evolution
by means of several radar images. The segmentation technique is based on morphological
profiles (Benediktsson et al., 2005). For every radar image, which is acquired during the flood,
a morphological profile is calculated. The morphological profiles are used as features for a
k-means clustering, which results into different classes. The different classes, which consider
the temporal evolution in backscattering as well as the texture, build the basis of the flood
evolution map.

In general, change detection in radar images can be separated in amplitude change detection and
interferometric coherence change detection. Usually the amplitude change detection is applied
to monitor disasters such as flood due to long time period of pre-flood imagery resulting in
disturbing incoherence (Polidori et al., 1995; Schmitt et al., 2010). In addition, the specular
reflection over open water yields poor interferometric coherence, and unreliable interferometric
phase values (Jung and Alsdorf, 2010). All previously described radar change detection methods
could be assigned to amplitude change detection, which analyzes the backscattering coefficient.
Nico et al. (2000) proposes a method combining the amplitude and interferometric coherence
change detection approaches. However, the integration of the information of coherence is limited
to detect open water areas.

Jung and Alsdorf (2010) investigate the coherence in flooded vegetation. Wdowinski et al.
(2008) and Hong et al. (2010) use interferometric radar to monitor the water levels in wetlands.
Further approaches exist to detect vegetated flooded areas using multi-temporal amplitude
information by means of a two-dimensional feature space (Hess et al., 2003) (Martinez and
Le Toan, 2007). Hess et al. (2003) use as features simply the backscattering coefficient at
different points in time. Martinez and Le Toan (2007) use the mean backscatter coefficient of
several radar images as one feature and a temporal change measurement proposed by Quegan
et al. (2000).

Beside the discussed approaches with the goal to assess the state of the current flooding, a lot of
change detection approaches deal with the damage assessment using imagery before and after
the flood e.g. (Yamagata and Akiyama, 1988; Dhakal et al., 2002; Bovolo and Bruzzone, 2007).
However, these approaches are not relevant to support relief actions during natural disasters.

3.1.4 Multi-sensorial approaches

Since it is very unlikely that images from different sensors are acquired exactly at the same
time, most approaches which use different sensors are inherently multi-temporal. In addition, a
flooding is a highly dynamic process, which can change within few hours. Therefore, in case of
flooding it is nearly impossible to acquire imagery from different sensors, which map the same
state of floodplain delineation.

A common approach is the fusion of radar images showing the current flood situation with
pre-flood optical imagery. The radar images are suited for the segmentation of the current
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floodplain delineation due to the independence on weather conditions. In contrast, the pre-
flood optical images deliver accurate information about the land use of the affected areas. The
high classification accuracy of optical imagery compared to radar imagery leads to a more
differentiated damage assessment.

In general, image fusion can be divided into three different levels: pixel level, feature level and
decision level (Pohl and Van Genderen, 1998). A review of latest research of multi-sensor data
fusion is given in Zhang (2010), who updates these three levels of sensor fusion with current
developments pointing out the importance of high-level approaches which includes feature and
decision level fusion.

A high level or decision level fusion approach is proposed by Kuehn et al. (2002) combining the
land use information derived from optical imagery with the floodplain derived from the radar
images by means of fuzzy rules (Zadeh, 1965). In contrast, Wang et al. (1995) propose a pixel
level fusion by generation of a composite image of the radar image and the blue and infrared
band. The classification of the composite image leads directly to flooded and non-flooded land
use classes, which are the basis of a damage assessment. Yonghua et al. (2007) propose a further
pixel level fusion based on principal component analysis applied to a layer stack generated from
current radar images monitoring the flooding and infrared bands from pre-flood optical images.
A supervised classification divides the resulting image into flooded areas and areas of natural
water expanses. In Frey and Butenuth (2009) a generic system on pixel level is presented, which
classifies road objects into flooded and trafficable roads using radar and optical data.

In general, the combination of radar and optical images leads to an improved interpretation
capability of remote sensing data. However, the higher the resolution of the imagery the more
complicated is the fusion due to the different sensor geometry.

3.2 Fusion-based systems

This section considers approaches which integrate additional information beside the imagery
to assess the damage or infer flood parameters, such as water extent and water depth. The
additional information can reach from DEMs, hydrological measurements as water gauges or
rainfall to GIS data. The only requirement of the additional data is the instant availability
during the flooding in order to support the emergency relief actions. The challenge is the ap-
propriate integration or fusion of the additional data with the image information to improve the
estimation of the flood parameters. The following section is divided concerning the additional
data used in the approaches. In the first Section 3.2.1 approaches are presented embedding a
DEM, in Section 3.2.2 hydrological measurements or models are integrated and in Section 3.2.3
further information from GIS such as land cover maps are fused with imagery.

3.2.1 Integration of DEM

In this section, methods to derive flood parameters are discussed using imagery in conjunction
with DEMs. As shown in Section 3.1 remote sensing images demonstrate a good performance
to derive floodplains. However, optical sensors have severe problems if the flooded areas are
occluded by vegetation, clouds and shadows, and radar sensors have to deal with classification
uncertainties and the usual effects as shadowing, layover and foreshortening. In case of flooding
also a DEM can be used to infer flood parameters. However, simulations based only on DEMs
to derive the floodplain lead to correct assignments between only 60% and 80% depending on
the resolution and the model (Bates and De Roo, 2000). Since imagery and DEMs deliver
complementary information, several methods are based on the fusion of these two information
sources.
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The simplest models consider each data source individually and combine the results by logical
threshold queries. Wang et al. (2002) fuse results of the image classification with the results
obtained from the DEM by means of the ’OR’ operator. The simple rule, that either the
classification or the simulation assigns a pixel to flood is basically introduced to overcome
the issue of flooded forested areas. In contrast, also the logical ’AND’ operator is used to
combine the results of classification and simulation (Gianinetto and Villa, 2007). His approach
only assigns a pixel to flooded if the classification based on spectral-temporal minimum noise
fraction transformation as well as the simulation confirms that the area is affected by the flood.
This approach of fusion has the advantage excluding wrongly classified pixels in areas with
high altitude. Martinis et al. (2009) divides the combination in an inclusion and exclusion step
and incorporates the neighborhood of objects. The inclusion step assigns non-flooded objects
to flooded objects, if the considered object is a neighbor of an equal or higher flooded object
belonging to the core flood. The exclusion step assigns a flooded object to non-flooded if it is
surrounded by non-flooded objects and the altitude is higher than 1 m than the nearest flooded
object linked with the flood river.

Beside logical queries also probabilistic approaches are used for the fusion. A supervised maxi-
mum likelihood classification with two features, the radar backscatter coefficient and the height
value from the DEM is proposed by Song et al. (2007). Frey et al. (2009a) propose the multipli-
cation of probabilities derived from imagery via supervised maximum likelihood classification
and fuzzy functions describing a simple flood simulation.

Further methods exist based on least accumulative cost distance matrices calculated from the
DEM (Douglas, 1994). The cost distance matrix describes the energy, which water has to spend
to get to a pixel departing from the main stream of the river. Giacomelli et al. (1995) overlay
the flooded area obtained from a SAR image with the cost distance matrix. Cost matrix pixels
with the largest values corresponding to flooded pixels detected on SAR image are selected as
threshold. All pixels with lower cost values are assumed to be flooded Brivio et al. (2002).

Active contour models as mentioned in Section 3.1.2 are also used to combine the information
from imagery and DEM information. The active contour models developed to delineate the
floodplain in radar images (Horritt, 1999) are extended from 2D to 3D. The algorithm was
modified such that the active contour was conditioned not only on the SAR image but also
on the DEM, so that the function is also penalized for large height differences (Mason et al.,
2007). The internal energy consisting of curvature and tension are adapted to the 3D space
rather than the 2D space. The modified active contour model is also investigated in urban areas
with TerraSAR-X data (Mason et al., 2010). However, the radar data and the DEM might be
acting against each other which lead to the complicating task of finding the suitable weight
coefficients.

The incorporation of the DEM enables not only the improvement detecting the floodplain
delineation but also allows estimating the flood depth. If no in-situ measurements of water
gauges exist, it is possible to derive the water level by overlaying the extracted floodplain with
the DEM and pick the height values at the borders of the flooded area. However, it is important
to mention that not all borders of the flood extent are trustworthy. For example buildings or
vegetation may mask water and cause artificial flood extent limits leading to wrong water level
estimates (Hostache et al., 2009).

If the water levels are extracted at the borders of the flood extent, the next step is the estimation
of the water depth of the entire flooded area. Several interpolation methods are discussed in the
literature. Zwenzner and Voigt (2009) generate cross sections using the centerline of the river.
Afterwards the cross sections can be modified concerning the height values at the borders of
the floodplain. The region in between two adjacent cross sections can be linearly interpolated.
Matgen et al. (2007) compare this cross-section method with a linear regression model, which
fits a linear water surface through the point heights extracted at the border of the flooded area.
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Further interpolation methods are proposed by Gianinetto and Villa (2007). They compare
the linear regression with third-order polynomial regression and composed spline interpolation
methods and conclude that the best result is achieved by using the bicubic spline interpolation.
Clearly, the level of accuracy that can be expected relies on the spatial resolution and the height
uncertainty of the DEM (Matgen et al., 2007).

The described methods show the benefit of using additional DEMs to improve the extraction
of the floodplain or to estimate the water depth. However, the availability of a DEM in
case of emergency action limits the methods. Currently, only DEMs from the Shuttle Radar
Topography Mission (SRTM) are worldwide available. But the spatial resolution of SRTM data
is 90m and the relative 90 percent height error is about 10 m (Rodriguez et al., 2006). Therefore
the usability of SRTM data for hydrological applications is limited (Bhang and Schwartz, 2008;
Karlsson and Arnberg, 2011). However, in future the TanDEM-X mission allows the generation
of highly accurate DEMs on a global scale with a relative 90 percent height error between 2 m
and 4 m depending on the slope (Krieger et al., 2005).

In addition, the simulation of floodplains using only DEMs is often not a sufficient represen-
tation. The modeling of the dynamic process of flood inundation also requires detailed infor-
mation on hydrological parameters such as backwater curves, flow impedances and roughness
coefficients (Overton, 2005).

3.2.2 Integration of hydrological models

The fusion of remote sensing data with hydrological simulations has the potential to improve
substantially the understanding of floodplain flow processes. An overview of the contribution
of remote sensing data for flood hydrology is given in Bates et al. (1997).

Remote sensing data can deliver several parameters usually used in hydrological flood simula-
tions. Remote sensing data acquired during a flood combined with a DEM offers the opportu-
nity to collect spatially distributed water gauge estimations over large areas without the need
for costly hydrological ground surveys (Schultz, 1988). The water gauge estimations are used
is input information for the calibration of hydrological flood models (Montanari et al., 2009;
Hostache et al., 2009). The calibrated flood models can be used either for the current flood
event or for future events. But also the total extracted floodplain from remote sensing data
is used for the model calibration (Khan et al., 2011). Profeti and Macintosh (1997) estimate
the soil moisture from optical data, which is an input parameter for flood simulation. Another
important parameter for flood simulation is the roughness factor, which can be estimated by
means of optical pre-flood imagery (Van der Sande et al., 2003).

On the other hand the improved flood simulations again can contribute to the detection of
flooded areas, which are not observable by remote sensing due to occlusions such as vegetation,
clouds or shadows. However, a big challenge is the integration of all the available knowledge,
consisting of remote sensing data, in-situ measurements and hydrological flood simulations in
a comprehensive system to support emergency actions.

Brakenridge et al. (1998) show that remote sensing data combined with a DEM have the
opportunity to observe flood waves. The comparison of the extracted floodplain from radar data
with a simulation based on steady discharge as input parameter reveals the flood wave, which
can be used to measure the peak discharges. Nagarajan et al. (2010) estimate the streamflow
combining area-wide spatial data derived from remotes sensing with in-situ point measurements
via Bayesian networks. The Bayesian network reflects a hydrological process incorporating the
DEM, the land cover, soil moisture, measured groundwater levels and rainfall data.
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3.2.3 Integration of GIS data

In general, extracted information from remote sensing data can be utilized in conjunction with
GIS (Blaschke, 2010). In case of flood management the extracted floodplain from imagery
integrated with other data in GIS could improve the decision making in emergency actions.
The analysis of the floodplain combined with social economic data from a GIS such as land
use, population data, cadastral data, transportation and infrastructure networks leads to an
improved performance of the relief management (van Westen and Soeters, 2000). The analysis
of the combined data can reveal high risk areas that may be subject to damage. For example,
information about the inundated areas of different land use classes, the affected population or
the damage to infrastructure objects such as roads, bridges or pipelines can be obtained. Several
approaches assess the damage by combining the flood delineation with land use maps (Profeti
and Macintosh, 1997; Dewan et al., 2005; Forte et al., 2006). But also current information
concerning the state of transportation systems is useful for optimizing the transport of materials
for disaster relief (Zhang et al., 2002). Islam and Sado (2000) evaluates the risk if major roads
are flooded during a disaster. The integration of all the different kind of thematic spatial
information is useful for decision makers in relief actions (Tholey et al., 1997).

All the described methods are based on high level fusion, which combines extracted information
from imagery with data from a GIS. However, the information of the GIS data is not used in
the process of image segmentation. But the use of knowledge of existing geodata can be used
to ease and speed-up the process of extraction (Baltsavias, 2004). The described method in the
thesis uses the road information from a road database to improve the image interpretation. Due
to the rapid progress of navigation systems for cars the availability of road data is no longer a
limiting factor. The assessment of roads without initial road information via automatic road
extraction (Wiedemann and Hinz, 1999; Hinz and Baumgartner, 2003) is critical, since only
trafficable roads could be extracted and no statement about flooded roads is possible.

3.3 Discussion

One goal of the thesis is the development of a system for the rapid assessment of infrastructure
objects during flooding. A basic property of the system must be the handling of different
sensors, since the availability of certain sensor systems cannot be guaranteed in a short time
frame. And time is the crucial parameter during natural disasters to supply rapid emergency
response. Furthermore, the system has to deal with multi-temporal imagery in order to update
the analysis. However, if the current imagery lacks quality, the information of previous imagery
with higher quality should be used to refine the damage assessment. In addition, the integration
of a DEM into the system can significantly improve the estimation of floodplains; especially
due to occlusion in the imagery (see Section 3.2.1). However, in case of disaster management
DEMs are required which are immediately and worldwide available but usually DEMs with a
resolution of 1m as used in several approaches discussed in previous sections are not available.
The fusion of the different data sources is one of the main challenges of the system. Probabilistic
approaches are able to deal with the different qualities of the sensors. Bayesian networks deliver
a probabilistic framework to combine different sensors of different qualities by means of modeling
the causal relations between the observations and the hypothesis variables.

In the previous sections many approaches are discussed to detect water bodies from imagery.
Statistical models are developed considering the uncertainties in image information. Proba-
bilistic graphical models are one statistical framework, which is used and applied to optical as
well as radar sensors. However, the discussed models are restricted to the image information
and are not developed to incorporate further information sources. Other approaches focus on
the fusion of imagery and other data as DEM or GIS data. However, in case of the detection
of flooded areas there is a lack of statistical methods considering the inherent uncertainties of
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the different data sources or further measurements. A strategy which combines the statistical
image analysis models with additional inherently uncertain data sources for flood delineation
is still not present.

All approaches described in this section can be divided into methods, which uses only spectral
information and methods using spectral and spatial information. In general, the consideration
of both spectral and spatial information leads to a better performance. Markov networks
deliver a probabilistic framework to model neighborhood relations in imagery. In addition, the
geometry of available objects from a GIS can be used to determine the structure of the Markov
network. As described in Section 2.3 both Bayesian and Markov network can be transformed
in factor graph, which are the basis for inference. Therefore all available information from
different data sources is unified in one probabilistic model, which differs from many approaches
conducting successive processing.
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4 Probabilistic graphical models for damage
assessment during flooding

The following section presents the developed probabilistic graphical models to assess the damage
state of linear infrastructure objects during flooding. The strength of the presented models is
the integration of all available data in one statistical framework. The statistical framework
of probabilistic graphical models enables to consider the varying accuracies of the data (e.g.
DEM, water gauge measurements) and quantifies the uncertainties of the results. In general, the
true state of a random variable is often uncertain, because the observations are incomplete and
noisy. Image data acquired during flooding delivers only partial information due to occlusions or
misclassification. Furthermore, each observation contains errors resulting in different accuracies.
In case of flood simulations the accuracy of the used DEM is crucial.

In the following subsections three probabilistic graphical models are presented. The models are
expanded step by step since they build upon each other. The first presented model is the pixel-
based model, which describes the connection between imagery and DEM in case of flooding as
a Bayesian network (Frey et al., 2012). The random variables and the conditional probability
distributions of the pixel-based model are described in Section 4.1. The second model is the
topology-based model, which is based on the pixel-based model. However, additional links are
introduced reflecting the topology of the road network (see Section 4.2). In contrast to the
pixel-based model, the neighborhood relations are modeled in the topology-based model. The
last presented model is the multi-temporal model which integrates the temporal development of
a flood. Images from different sensors at several points in time are integrated in one graphical
model described in Section 4.3. All models are represented as factor graphs (see Section 2.5),
which enable the application of the sum-product rule as described in Section 2.5.2.

4.1 Pixel-based model

The pixel-based model describes the connection between the different input data such as DEM,
water gauge measurements and the image data acquired during flooding. The model is designed
as a Bayesian network, which represents the causal relation between DEM, damage state and the
intensity values of the imagery. The pixel-based model is not restricted to linear infrastructure
objects, but could be applied to every pixel in the imagery. However, the spatial relations of
neighboring pixels in the imagery are neglected.

4.1.1 Representation as Bayesian Network

The pixel-based model is described by a causal Bayesian network depicted in Fig. 20. The
causal Bayesian network of the pixel-based model consists of six random variables the height
H, the water gauge GG, the water level above ground W, the damage state D, the class C' and the
intensity values of the imagery I. In addition, several parameters jif, 0w, fiG, OG; Be o e ks Wek
are introduced, which are defined in this section step by step.

The parameters uy, oy, lig, 0 representing the standard deviation and the mean of H and G.
The parameter py is the height value obtained from the DEM. The vertical accuracy of the
DEM is expressed by the standard deviation og. Some DEMs deliver accuracy information for
each pixel individually and therefore the standard deviation oy can vary from pixel to pixel.
If no accuracy information for each pixel is available, oy is defined as a global parameter for
the whole scene. The parameter ug represents the measurement of the water gauge, which can
be obtained directly from the acquired imagery during flood as described in Section 3.2.1. The
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accuracy of the water gauge measurements is represented by og. In the following paragraph
each random variable is discussed in more detail.

The random variable H is a continuous variable representing the height value of a pixel related
to a specified reference. It is defined by the parameters oy and py as a Gaussian distribution

p(H|pm, o) :-/V‘<h|MH,U?{)- (62)

The random variable water gauge G is also continuous and again defined as a Gaussian distri-
bution by the parameters ug and og

p(Glua, 06) = N(glpa, 02). (63)

The random variable water level above ground denoted by W is as well a continuous variable
and defined by the deterministic function

W=G-H. (64)

In contrast to H, G and W the random variable D is discrete and reflects the damage state of
the road consisting of two states: flooded f and not flooded f.

Val(D) ={f, f} (65)

It has to be mentioned that flooded roads are sometimes still trafficable. Therefore the traffi-
cability of roads can be obtained combining the information of D, W and the properties of the
used vehicles in emergency actions. However, this connection is not discussed in the thesis.

A further random variable is the class C' which describes all possible classes which could appear
in the acquired imagery from space during flooding at the region of the road network. Several
different classes are reasonable. The most obvious classes are the class water w and the class
road r. Furthermore, occlusions of the road network can exist. The most occurring occlusions
are vegetation v and clouds c. In case of radar imagery the class cloud can be neglected apart
from extreme cases for X-band. In addition, the class rest e is introduced, which captures all
other occlusions beside vegetation and cloud. Therefore the states of the random variable C
for optical imagery is

Val(C) = {r,w,v,c, e} (66)

and for radar imagery

Val(C) = {r,w,v,e}. (67)

However, in urban areas and high alpine scenes an additional class "radar shadow” is needed
to avoid confusion of dark shadowed pixels and dark flooded pixels. The last random variable
I is the vector of n random variables, describing the intensity values of the imagery
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Figure 20. The pixel-based model designed as a Bayesian network combining DEM, water gauge measurement and image
data.

where n is the number of bands. In case of high dimensional data such as hyperspectral data
a preceding band selection or the reduction of bands for example by means of a principle
component analysis would be reasonable. The number of states of I,, depends on the bit depth
b of the imagery, which is usually between 8 and 24.

Val(I,) ={1,2,...,2° — 1,2} (69)

Therefore the size of the state or feature space of I is n x 2°. The parameters Mg Be ks Wek are
required to model the likelihood function p(I|C) discussed in the next section in more detail.

The presented pixel-based model is a hybrid Bayesian network as described in Section 2.1.1,
since the random variables H, G and W are continuous and the random variables D, C' and I are
discrete variables. The random variable I is an information variable and therefore highlighted
in blue (see Fig. 20). In addition, the observed parameters gy and pg are highlighted in blue.
The hypothesis variables are the damage state D and the water level .

The links between the described random variables as shown in Fig. 20 reflect the causal relation
between them. The links between H, G and W are the deterministic connections. If H and
G are given, the water level W can directly calculated deterministically by Equation 64. The
water level W is responsible for whether a road is flooded or not. Furthermore, the physical
state of the earth surface such as water, vegetation have specific reflection characteristics which
cause different intensity measures I at the sensors. Due to these physical causal relations the
links start from H and G in direction to I.

Using the factorization described in Equation 6 the joint probability of the Bayesian network
depicted in Fig. 20 is
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p<H’ G7 VV’ D? 07 I|MH7 OH, 1G,0aG, /ch7k7 Ec,k» wc,k) = (7())
p(H|pw, ow)p(Glua, oc)p(WIH, G)p(DIW)p(C|D)p(X|C, e, X s Weyk)-

For ease of notation all the parameters are neglected in further equations. This leads to the
more concise expression of the joint distribution

p(H,G,W,D,C,T) = p(H)p(G)p(W|H, G)p(D|W)p(C|D)p(1|C). (71)

The goal of the probabilistic graphical model is to calculate the marginal probabilities of the
hypothesis variables D and W. Using the product rule, the marginal probabilities of D and W
can be expressed as

p(W[T) = p%” (72)
and
p(D[I) = p%’;)- (73)

The probability distributions p(W,I), p(D,I) and p(I) can be expressed by means of marginal-
ization of the joint distribution of all random variables (see Equation 70) using the sum rule.

p(W,1) :/H/Gszijp(H, G,W,D,C,1) dG dH (74)

p(D,I):/ /G/ S p(H,G,W,D,C,1) dW dG dH (75)
H w C

p(I):/ /G/ SN p(H, G, W, D,C.1) dW dG dH (76)
H w D C

The substitution of p(H,G, W, D,C,I) in Equation 74, 75 and 76 with the decomposition of
the joint probability in Equation 71 and by applying the distributive law leads to

p(W, 1) :/

[ pa) /G p(G)p(W|H,G) S p(DIW) S p(CID)p(I|C) dG dH, (77)
p(D,T) = /H p(H) /G p(G) /W p(W|H,G)p(DIW) S p(C|D)p(I|C) dW dG dH (78)
and

P = [ p(H) [ p(@) [ p(WIH.G) S p(DIW) Y p(CIDIPAC) AW dG dH.  (79)
D C

The expression in Equation 79 is the normalization constant. Inserting Equation 77 and 79 in
Equation 72 the final expression for the marginal probability of W given I is
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p(WIT) = Jup(H) Jop(G)p(WI|H,G) ¥ p p(DIW) X p(C|D)p(1|C) dG dH (50)
Jup(H) Jop(G) fy p(W|H,G) X p p(DIW) ¢ p(C|D)p(1|C) dW dG dH

Equivalently, inserting the expressions 78 and 79 in Equation 73 the final expression for the
marginal probability of D is

p(D[T) = Jup(H) [ p(G) Jw p(WIH, G)p(DIW) ¥ p(C|D)p(I|C) dW dG dH (81)
Jup(H) o p(G) [y p(WIH, G) > p p(DIW) Xc p(C|D)p(I|C) dW dG dH"

Equations 80 and 81 are straightforward formulas derived by the simple variable elimination
algorithm (Koller and Friedman, 2009; Jensen and Nielsen, 2007). However, most of the com-
putations have to be done two times in order to get both marginal distributions. Using the
sum-product algorithm multiple computations can be avoided.

In the following sections the conditional probabilities are defined, which are required to compute
the marginal distributions and the conditional independence structure of the graphical model
is discussed.

4.1.2 Conditional independence properties

In a Bayesian network as described in Section 2.1.2 the conditional independence properties
can directly derived from the graphical structure. The pixel-based model consists of serial and
converging connections. Focusing on the serial connections depicted in Fig. 20 the following
conditional independence properties can be derived. The damage state D and the water level
W are conditional independent from the intensity values I given the class C.

I1LDW|C (82)
Furthermore, if the damage state D is given, the water level W is conditionally independent of
C and 1.
WCI|D (83)
However, in the common configuration only the intensity values of the imagery I are given and
neither D nor C' is observed. Therefore, for the configuration depicted in Fig. 20 it holds
WL, (84)

which is essential, otherwise the information from the imagery would not be utilized. In general,
the height H and the water gauge GG are conditional independent random variables, if no
observations are made.

HULUG|® (85)

However, if any of the random variables D, C or I are given, the height H and the water gauge
G are not conditional independent. This leads to the common configuration depicted in Fig.
20 to

HJG|L (86)
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4.1.3 Conditional probability distributions

In this section all the conditional probabilities describing the links in the Bayesian network
and showing up in the joint distribution of Equation 70 are discussed. The prior probabilities
p(H|pw,on) and p(Glug, o¢) are already defined in Equation 62 and 63. The connection be-
tween the height H, the water gauge G and the water level W is deterministic and defined in
Equation 64. Since p(H |uy,on) and p(G|lug, o¢) are Gaussian distributions and the determin-
istic connection is linear, the resulting conditional probability is also a Gaussian distribution

pWIH,G) = N(w|pw = pe — par, oy, = 0¢ + o) (87)

with the mean uy = ug — pg and the variance 0%, = 0% + 0%. The connection between
the water level W and the damage state D is also deterministic and defined by means of the
Heaviside step function (Abramowitz and Stegun, 1972), which simply expresses the fact that
roads with positive water level are flooded and roads with negative water level are not flooded.
Therefore p(D = f|W) is defined as

1, if  w>0
p(D = fIW)=0(w)=<0.5, if w=0 (88)
0, if w<0

and

p(D = fIW) =1-6(w). (89)

The conditional probability p(C|D) is defined by a conditional probability table (see Tab. 1).
The elements of the conditional probability table are dependent on prior probabilities of the
class vegetation pr,, cloud pr. and rest pr.. The prior probability pr. can be obtained by an
estimation of the cloud coverage of the scenario using the imagery. The prior probability of
pr, can be obtained from a GIS or also from the imagery itself. The most difficult part is the
determination of the prior probability pr., which depends on the complexity of the scenario.

The most obvious entries in Tab. 1 are the probabilities p(C' = w|D = f) and p(C = r|D = f),
which is 0. Independent of the damage state, the probabilities p(C =c¢|D = f) and
p(C = ¢|D = f) that clouds occlude the flooded or not flooded roads is the prior probability pr..
The probabilities p(C' = v|D = f) and p(C = v|D = f) are the multiplication of the probability
that no clouds exists and the prior probability pr,, which reflects the fact that clouds occlude the
vegetation. In the same way the probabilities p(C' = e|D = f) and p(C = e|D = f) are mod-
eled, which are also independent of the damage state. Finally, the probability p(C = r|D = f)
describes the existence of the road, if there is no flooding and not occluded by clouds, vegeta-
tion or something else. Equivalently, the probability p(C' = w|D = f) is set in case of flooded
roads.

Table 1. Conditional Probability Table p(C|D)

D = not flooded D = flooded
road (1 —pre)(1 —pry)(1 — pre) 0
water 0 (1 —pre)(1—pry) (1 —pre)
cloud Pre pre
vegetation pry(1 — pre) pry(1 —pre)
rest pre(l —pre)(1 —pry) pre(l—pre)(1 —pry)
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Figure 21. Spectral reflectance Ry as a function of wavelength A for road types from Herold et al. (2004).

Finally, the conditional probability p(I|C') is modeled as a Gaussian mixture model (McLachlan
and Peel, 2000) since the radiometric characteristics of the classes road, vegetation and water
during flooding have a high variation. The radiometric variability of water during flooding is
already shown in Fig. 18. But also the roads show a large radiometric variability. On one hand,
different road classes as asphalt, concrete or gravel are responsible for different reflectance curves
(see Fig. 21) and, on the other hand, the age of roads leads to varying reflectance characteristics.
The older the road, the higher is the reflectance (see Fig. 22). Due to the radiometric variability
of the classes, single Gaussian probability functions are not able to describe the complexity
sufficiently. Therefore, Gaussian mixture models are used, which combine single functions to a
more complex probability function. The resulting probability function is simply a weighted sum
of the initial functions. Therefore the conditional probabilities for the classes road, vegetation
and water are

Ky
p<I|O = 7’) = Z wr,k N(i“"l‘nk? Er,k)a (90)
k=1

Ky
p(I’O = w) - Z W,k N<i|l"1’w,k7 Ew,k>7 (91>
k=1

and

K.,
pAIC =v) = 3 wor N(ilpy 4 Do), (92)

k=1

where K, , K, and K, is the number of centers, which could reflect possible subclasses, w;. k., Wy &
and w,y are the weights of the possible subclasses, w, ., w,,, and g, are the n-dimensional
means and 3, ;, 3, and 3, are the covariance matrices of the possible subclasses. The
size of the covariance matrices are n X n where n is the number of bands. In Fig. 21 possible
subclasses for the class road are depicted. The parameters . ., fy, ) By gy 2k, 2wk and X,
are obtained by means of training data for every subclass. The weights w, i, wy i and w;, , also
called mixing coefficient, have to fulfill the condition
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Figure 22. Spectral reflectance Ry as a function of wavelength A for different ages of roads from Herold and Roberts
(2005).

K
k=1
and
0<w,<l1. (94)

Instead of generating training data for each subclass, the expectation maximization algorithm
can be used to determine the weights w.x, wyr and w, and the parameters po, i, fy, ks Moy ks
Yok, Xy and X, (Butenuth et al., 2011). The number of centers K,, K, and K, can be
calculated using the minimum message length criterion (Figueiredo and Jain, 2002).

Since there is almost no variation in the radiometric characteristics of clouds, the conditional
probability distribution p(I|C' = ¢) is not modeled as a mixture, but a simple n-dimensional
Gaussian distribution.

p(I|C = ¢) = N(i|p., Zo). (95)

The conditional probability distribution p(I|C' = e) for the class rest is modeled as a uniform
distribution, since no reasonable information about the parameters can be obtained to cover
the wide spectrum of the class e. Therefore

1
n * 20’

where n is the number of bands and b is the color depth of the imagery.

p(I[C = ¢) = (96)

4.1.4 Representation as factor graph

In Fig. 20, the pixel-based model is represented as a Bayesian network. The calculation
of the marginal probabilities of the hypothesis variables D and W are given in Equation 80
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Figure 23. The pixel-based model transformed into a Markov network (left) or factor graph (right). The numbered
arrows correspond to the equations in Section 4.1.5

and 81. However, the calculation of these equations is not efficient since it requires multiple
computations of the same components. The utilization of factor graphs with the sum-product
algorithm for inference enables a more efficient way to calculate the marginal probabilities (see
Section 2.5.1 and 2.5.2). In addition, the pixel-based model is part of the topology-based model,
which is modeled as a Markov network. Since Bayesian networks and Markov networks can be
transformed into factor graphs, the sum-product algorithm applied to factor graphs enables a
consistent framework to conduct inference in all presented models.

The transformation of the Bayesian network of the pixel-based model shown in Fig. 20 into
a factor graph is depicted in Fig. 23. Firstly, the Bayesian network is transformed into a
Markov network by applying moralization described in Section 2.3. The parameters which
are depicted explicitly in the Bayesian network are neglected in all further graphical models
to maintain clarity. The second step is the generation of the factor graph from the Markov
network considering the clique potentials (see Section 2.5).

The joint distribution of the Markov network shown in Fig. 23 is

p(H. G, W, D,C,T) = e (H, G, W) p(W, D)oo (D, Clben(CT) (97)

with the partition function
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7= /H /G /W %: %: 21: brow (H, G, W)wp(W, D)pe(D, C)er(C,1) dW dG dH.  (98)

Using the sum rule and grouping the potential functions, the marginal probability of the hy-
pothesis variable W is

p(W) = ; /H /G Yuew(H, G, W)%ijD(W, D)%:ch(D,C)ZI:wCI(C, 1) dG dH  (99)

and the marginal probability of the hypothesis variables D is

p(D) = ; /H /G /W Yraw(H, G, W)wWD(W,D)ZC:wDC(D,C)zI:wCI(C, I) dW dG dH.
(100)

Since the Markov network is derived from a Bayesian network, the potential functions can be
substituted by the conditional probabilities defined in Section 4.1.3 (Frey and Butenuth, 2011).

Yuow(H, G, W) = p(H)p(G)p(W|H, G)
@/)WD(W D) = P(D|W) (101>
Ypc(D, C) = p(C|D)
Yer(C, 1) = p(I|C)

fe(G) = p(G)
fu(H) = p(H)
foew(H,G, W) = p(W|H,G) (102)
fwp(W, D) = p(D|W)
foe(D,C) = p(C|D)
Jer(C,1) = p(I|C)

Factors which describe general deterministic relations between random variables, such as fyaw
can be formulated by means of the Kronecker delta, which is discussed in more detail in the
next section.

4.1.5 Inference

After the generation of the factor graph and the determination of the corresponding factors,
inference can be conducted using the sum-product rule as described in 2.5.2. The messages
sent between the different kinds of nodes are depicted in Fig. 23, where the numbering of the
arrows corresponds to the numbering of the following equations.
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The first step of the sum-product algorithm is the selection of a root node. It is reasonable
to select one of the hypothesis variables W or D as the root node to assure that no needless
messages are computed. After the selection of the root node, the forward messages from all
leaf nodes to the root nodes are calculated. In the following the equations of the massages are
given in case that D is the selected as the root node. The message passing starts at all the leaf
nodes of the factor graph, which are a variable node I and two factor nodes f¢(G) and fr(H).
Considering Equation 49, the first messages from the factor nodes fy and fs to the variable
nodes H and G are defined as

pta—i(H) = fu(H) = N(h|pm, o), (103)

and

Ho-a(G) = fa(G) = N(glua, 02)- (104)

The message from a variable node to a factor node is the product of all incoming messages from
other factor nodes to the variable node (see equation 47). Since only one incoming message in
H and G exists, the messages from H and G to fyow are simply

bt g (H) = g (H) (105)

and

HG— faaw (G) = /’l’fG‘)G(G)' (106>

The general equation of a message passing from a factor node to a variable node is given in
Equation 44, which is the product of the factor and all incoming messages arriving in the
factor node and marginalizing over all of the variables associated with the incoming messages.
Therefore, the message from the factor node fygw to the variable node W is obtained by

tuar—w W) = [ [ Fucw (.G W)t gy ()16 e (G). (107)

The factor fyew (HGW) reflects the deterministic relation W = f(G,H) = G — H discussed
in Section 4.1.1. In general, deterministic relations between discrete random variables in factor
graphs can be formulated by means of the Kronecker delta function (Loeliger, 2004). In case of
continuous random variables the deterministic relations are formulated by means of the Dirac
delta function §(x), which is 0 for x # 0 with the condition

/+Oo 3(x)da = 1. (108)

A defining property of the Dirac delta function using the convolution is
+oo
| f@ita - a)dz = f(a). (109)

Loeliger (2004) shows that a general deterministic relation between the continuous random
variables Z = f(X,Y) is represented by the factor

Ixyz(X, Y, Z) =0(z — f(z,9)). (110)
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Therefore, the message in Equation 107 can be formulated as

tuaw-w W) = [ [ 6w = (g = )N (Bl o) N (glc, o2). (111)

which can be written as the cross-correlation of two Gaussian functions

o w W) = [ N(tlun, 03N (7 + wlpg, o3)dr, (112)

—00

which results in the Gaussian as stated in Equation 87. Therefore the message is given by

quHGW—>W(W) = N(w|:uW = MG — MH, UiQ/[/ = O-é‘ + 0-?{) (11?))

Since again only one incoming message to the variable node W exists, the next message to the
factor fyp is

/“LWHfWD<W> = :ufHGW%W(W)' (114>

The following message to the selected root node D is given by

(D) = [ fivn (W, D)y (W), (115)

whereas the factor fiyp = p(D|W) corresponds to the Heaviside step function O(w) defined in
Equation 88. Therefore the message for D = f is

ron(D = f) = [ O@N(uluy,of). (116)

The integral over the multiplication of the Heaviside function with a Gaussian can be calculated
by the cumulative distribution function of the Gaussian, which leads to

1+ erf (\;2’“%)] , (117)

1
/”LfWD%D<D:f> = 1_5

whereas

erf(z) = \/127 [ et (118)

Similar the messages for D = f can be calculated as

rnon(D =) = [ (1= O@)N (wlmw, o) (119)

1+ erf (\Z‘%)] . (120)

The massages starting from the factor leaf nodes fy and fs have now arrived at the selected
root node D. But the calculation of marginal probability of the root node D requires all

2
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incoming messages. Therefore, the messages starting from the variable leaf node I in direction
to the root node are described in the following. The first message from the variable leaf node
I to the factor fer is initialized as described in Equation 48.

s fer = 1 (121)
Therefore the message
Hiorso(C) = ; Jor(C D pns gy (122)
simplifies to
Hierse(C) = 2_p(I|C). (123)

I

The conditional probability p(I|C') are the Gaussian mixtures defined in equations 90 - 92 or
the functions defined in 95 and 96 depending on the class. Since the random variable I is given,
the message 17, . (C) reduces to an m-dimensional vector of probabilities, whereas m is the
number of different classes. The inference between the random variable I and C' is equivalent
to a multispectral maximum likelihood classification.

The last two forward messages in direction to the root node D are

HC—fpe (C) = Hfcime (C> (124>

and

,uch—>D(D) = ZfDC(D’C)H’C_XfDC(C)‘ (125)
C

Inserting the conditional probability p(C'|D) corresponding to the conditional probability table
defined in Tab. 1, the message arriving at D is

Hipo—n(D) = ;p(CID) >_p{|C). (126)

I

Now, all incoming messages at the root node D are calculated and therefore the marginal
probability of D can be calculated by multiplying all incoming messages, which is

p(D) = /LfWDHD(D):uch%D(D)' (127>

The message passing from the leaf nodes to the root node D is an example of the single-i
sum-product algorithm described in Section 2.5.2. The result for the marginal probability p(D)
is equivalent to the result obtained by applying the variable elimination algorithm shown in
Equation 81. However, the calculation of further marginal probabilities applying the general
sum-product rule is more efficient. This advantage will be apparent if the general sum-product
rule is applied to the topology-based model. The calculation of all the other marginal prob-
abilities in the pixel-based model requires all the backward messages starting from the root
node D back to the leaf nodes fy, fs and I. Since in the pixel-based model only the marginal
probabilities of D and W are of interest, only the backward messages starting from the root
node D in direction to W are necessary. The first backward massage is
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D= fwp (D) = :uch—>D(D)' (128)

The message to the second hypothesis variable W' is

quWD—WV(W) = % fWD(VV? D):LLD—>fWD (D) (129>

For D = f the message is

Hwo-w (W) = %: O (W) D fwp (D = ) (130)

and respectively for D = f

ﬂfWDHW(W> = Z(l - @(w))ﬂDﬁfWD (D = f) (131>

Therefore the message can be expressed as a function ©*(w) as follows

IU/D_ﬂfWD(D:f)’ if  w>0
Uy pow (W) = O%(w) = 0.5, if w=0 (132)

/LD%fWD(D = ?)7 if  w<0.

The marginal probability p(1¥') can now be calculated since all incoming messages are given.
In the forward message passing the message fif, . —w (W) (see Equation 113) and in the
backward message passing the message fir,, ,—w (W) is calculated, which leads to the marginal
distribution

P(W) = /LfHGW%W(W)MfWDHW(W) (133>
= 0" ()N (w03 ). (131)

Again the marginal distribution P(W) is equivalent to Equation 80 if I is given.

The pixel-based model describes the causal physical relation between the information variables
and the hypothesis variables. In general, the Bayesian network presented in Section 4.1.1 can
be applied to every pixel in an image and not only to linear infrastructure objects. However,
if the Bayesian network is used for the whole image, the states of the random variable class C'
have to be adapted to cover all possibly appearing classes. In the following the focus is on the
assessment of linear infrastructure objects such as road networks.

4.2 Topology-based model

The pixel-based model assesses each pixel individually without considering the dependence
among neighboring pixels. However, the consideration of neighborhood relations is crucial for
robust methods which are able to handle noise and uncertain data. In addition, the inclusion
of the local neighborhood leads to an improved estimation of the requested random variables.
The topology-based model uses road vector data given by a GIS to model the dependencies of
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neighboring pixels. The better the resolution of the input data (DEM and imagery), the more
important is a high accuracy of the road vector data. In the following it is assumed that road
data with high spatial accuracy is given. The accuracy of the given road vector data is not
considered in the model. But due to the large variability of the accuracy of the available road
vector data, it should be part of future work.

4.2.1 Representation

The topology of the road network is represented as a Markov network as depicted schematically
in Fig. 24. A Markov network is preferred to a Bayesian network since the dependencies between
neighboring pixels are symmetrical and not causal. Each node in the Markov network represents
a pixel in the image data. Every node has two nodes as neighbors since only the center axis
of the road is considered. Exceptions are nodes at crossings. However, in the following only
road segments between two crossings are considered, which leads to simple Markov chains.
The partitioning of the whole road network into Markov chains between crossings avoids loops,
which occur if the whole road network is represented as a Markov network. In the case the
whole road network is represented as a Markov network, alternative inference algorithms to
calculate the marginal probabilities such as the loopy belief propagation have to be applied.
However, the loops in the Markov network representing a complete road network usually consist
of a very large number of nodes and therefore, the gain of applying loopy belief propagation
is limited. In addition, the loopy belief propagation is very time consuming compared to the
sum-product algorithm. The limited gain together with the time consuming calculations leads
to a poor cost-benefit ratio. In case the road segments between crossings are represented as
Markov chains, the sum-product algorithm can be applied to calculate exact inference.

Figure 24. left: IKONOS image overlaid with road information, right: Topology of the road network represented as
Markov network.

The combination of the Markov chain with the pixel-based model leads to the proposed
topology-based model. The combination is conducted on the basis of factor graphs. In the
pixel-based model the neighborhood relations are completely neglected. However, all the vari-
able nodes in the factor graph depicted in Fig. 23 are dependent on the neighboring pixels.
For example, the probability that neighboring pixels belong to the same class C' is higher than
the membership to different classes. Therefore, the variable nodes have to be connected with
the corresponding variable nodes of the neighbors given by the Markov chains generated from
the given road network. But if all the neighborhood dependencies of the variable nodes are
considered the resulting factor graph is not tree-structured and therefore exact inference with
the sum-product algorithm is not possible. In the following several models are discussed, in
which the dependence of neighborhood is modeled via links between different random variables.
Two examples connecting the random variables via G and C' are depicted in Fig. 26 or Fig. 27.



4.2 Topology-based model 59

GZ_ (n1)

Figure 25. The factor fc,c; in the topology-based model

The different topology-based models are denoted as "topology-based model G’, "topology-based
model D’ and 'topology-based model C’ corresponding to the position of the links describing
the neighborhood relation.

In all topology based models only one additional factor which describes the dependence of the
neighboring variables G, D or C' has to be introduced compared to the pixel-based model. The
factor fa,q,; depicted in Fig. 25 describes the probability that the water gauge changes from
a pixel to its neighbor. The factor fg,q, is defined as a Gaussian distribution over g; with the
mean g;

fG,-Gj = N(Qz‘|gj, O-éG)v (135)

which states that the probability is maximal if the water gauge at the pixel j is equal as the
water gauge at the pixel . In Fig. 25 the factor fg,¢, is visualized. The standard deviation ogg
depends on the currents, the slope of the flood flow and the resolution of the image. Usually
the longitudinal slope of the flood flow is about 1mm/m (Mason et al., 2007).

In contrast, the factor fe,c, of the ’topology-based model C’ depicted in Fig. 27 depends on
the two discrete variables C; and C}. Therefore the factor can be described by means of a
discrete probability table instead of continuous distributions. The probability table is shown

Table 2. Probability Table of factor fc,c;,

T w (& v (&
1_pequal 1_pequal 1_pequal 1_pequal

Pequal m—1 m—1 m—1 m—1
17pequal 17pequal 17pequal lfpequal

m—1 Dequal m—1 m—1 m—1
l_pcqual l_pequal l_pequal l_pequal

m—1 m—1 Dequal m—1 m—1
1_pequal 1_pequal 1_pequal 1_pequal

m—1 m—1 m—1 Dequal m—1
17pequal lfpequal 17pequal 17pequal

m—1 m—1 m—1 m—1 Pequal
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Figure 26. The ’topology-based model G’ represented as factor graph. The numbered messages refer to the numbering
of the equations in Section 4.2.2

in Tab. 2, where pequa is the probability, that the class of two neighboring pixels is equal and
m is the number of classes. Similar in the "topology-based model D’ the factor fp,p, describes
the probability, that two neighboring pixels belong to the same damage state flooded or not
flooded. In contrast to the table depicted in Tab. 2, the conditional probability table of the
factor fp,p, has the size of 2 X 2 consisting only of the probabilities that the damage state
changes or not.

All the topology based models consider only the center axis of the roads and neglect the pixel
values perpendicular to the road axis. However, depending on the resolution and the width
of the road the information of the pixels perpendicular to the center axis deliver additional
information which should be exploited. Therefore all the different topology-based models can
be expanded by considering the neighboring pixels perpendicular to the center axis of the road.
As an example the factor graph of the expanded ’topology-based model C’ is shown in Fig. 28.
In the next chapter the inference of the topology-based models are discussed.
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4.2.2 Inference

Again the sum-product rule is used for inference for all the presented topology-based models.
In the following, the messages that are part of the pixel-based model are no longer described
since they are already shown in Section 4.1. Firstly, the messages of the 'topology-based model
G’ depicted in Fig. 26 are discussed. As root node the random variable GG,, is assumed. Again,
the numbering of the equations corresponds to the number aligned to the arrows in Fig. 26.
The first forward message not described in the pixel-based model is

HW;— frew (W> MfWD%W(W) - @*(wi)7 (136>

with ©*(w) defined in Equation 132. The subsequent message in direction to G; is

:ufHGW%Gi(Gi) = /Wv /H fHGW(HivGia Wi):uWinHGW(m)MHinHGW<Wi)' (137>

Applying Equation 110 and substituting the messages leads to

Binaw—c (G = [ [ 8lg: = (w0 )N (hilus oF,). (138)

which can be written as a convolution

Hiuew—a(Gi) = [ Nlgi=rlun,,0%,)" (r)dr (139)

= (N<gi’,UHi, 012%.) * @*> (gz) (140)

After the calculation of all incoming messages to the random variable G; the messages can start
to propagate from the first pixel in the road segment 7 to the neighboring road pixel j. In case
of the first pixel of the road axis the massage is

HGi—fe,c; (Gi) = Binow—Gi (Gi):ufci%Gi(Gi% (141)

whereas (i, -, (G;) is defined in Equation 104, which leads to

16— te,0,(Gi) = (N (hilpm,, o8y,) * ©)N (gil e, 06,)- (142)

The incoming message at the random variable G; of the pixel j is

[fg,0,-G / f.6,(Gi, G g, ge,0, (Gi)- (143)

Inserting the factor as defined in Equation 135 leads to

e 5(G) = [ Nailgs, o) N (il o) * O (glc o). (144

The outgoing forward message from a pixel 7, which has two neighboring pixels, differs from
the message shown in Equation 142, which describes the outgoing forward message for a pixel
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at the border of the road axis. Instead of the multiplication of two messages the additional
message from the previous pixel has to be considered:

/LGj—>ijGjJrl (GJ) = MfGiGj%Gj(Gj):UJfHGW%Gj (Gj):ufcj—%’j (GJ) (145>

The forward message passing is conducted as long as all incoming messages arrived at the root
node G,,. Since only the hypothesis variables W and D are of interest, the backward messages
starting from G, have to be calculated till the messages arrive at the hypothesis variables.

Equivalent to the forward message starting from the random variable G;, also the backward
message starting from random variable G, in direction to G,,_; is the multiplication of only
two incoming messages.

KGrn—fana, (Gn) = Kfaew—Gn (Gn):ufcn%Gn (Gn> (146>

= N (halpn,, ofy,) * 01N (guli,, 0c,) (147)

This property results from the simplification that the roads are investigated only in between two
crossings, which leads to a biasing at the borders since only the information from one direction
is considered. This biasing can be reduced if the information of several pixels of the adjacent
roads connected to the crossing are considered and embedded into the model. This information
is only used for the forward messages since we are not interested in the marginal probabilities
belonging to the adjacent roads. However, the information of adjacent roads connected to the
crossing is not considered in this work. The biasing can also be observed at the messages from
G, in direction to the hypothesis variables W,, and D,. Again, only the message from one
direction is used:

1 frow (Gn) = Hia, cn—Gn (Gn)#fcn G (Gn). (148)

Similar for the first pixel ¢ the message i, fyaw (Gi) is calculated by the summation of only
two messages.

HGi— fuaw (G2> = :ufcicj —Gi (Gi>/~LfGi%Gi <G1> (149>

In contrast, the message (i, f,qn (Gj) of a pixel in between the road axis is obtained by the
multiplication of three messages

HGj— fuaw (GJ) = MijGj+1_>Gj (Gj):ufcj —Gj (Gj)/ifcicj -G (G]) (150)

In the following the messages into the direction of the hypothesis variables W, and D, are
discussed. Similar to Equation 111 and 112 the message to fugw is

e, (W) = [ [ 8w = (9= Wit o o (Godtit, o pu () (151)

but with the difference that the message pa, —fyon (Gn) is no longer Gaussian. Again the
message can be formulated as a correlation of the two messages.

/LfHGWHWn(Wn> = /ﬂx) HGrn— facw (wn),UHanHGW (wn + T)dT' (152)
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All further messages in direction two the hypothesis variable D,, are

/’LWn"fWD<WTL) = MfHGWHWn(Wn) (153>

and

o0 (D) = [ (W, D)y, g (V) (154)

The messages in Equation 153 and 154 are equivalent for all pixels. Furthermore the marginal
probabilities of the hypothesis variables W and D is also equivalent for all pixels and can
be calculated by the multiplication of one forward and one backward message. The marginal
probability for W, is

P(Wn) - MfHGW%Wn(WTL)MfWD%Wn(Wn) (155>

and for D,, is

P(Dn) = MfWD%Dn(Dn)MfDC%Dn (Dn) (156>

The presented inference for the model depicted in Fig. 26 is similar to the inference of the
model in Fig. 27, where the connection of the neighboring pixels is modeled by links between
the random variable C. Again the sum-product algorithm is applied and as root node the
node C, is selected. The message py,,,—p(D) is already calculated in Equation 117 or 119.
Therefore we obtain the forward message

MfDC%Ci(Oi) = Z fDC(D’ O):U“Diﬁch (DZ) (157>
D;
with
:uDi—>ch<Di) - :ufWD—>Di(Di)' (158)

Again the numbering of the equations is illustrated in the Fig. 27. The following forward and
backward messages are similar to the previous model. Therefore the formulas of the individual
messages are omitted. The only important difference can be seen in the message

qucicj —Cj (CJ) = Z fC'z‘Cj (Civ Cj):ucz‘%fcicj (CZ> (159)
C;

with

:uCi%fcicj (Cl) = :uch%Ci(Ci)/v‘fCIHCi(Ci% (16())

where the sum replaces the corresponding integral in Equation 143. The summation over the
discrete factor shown in Tab. 2 reduces the processing time compared to the summation over the
discretized factor fg,q;. The effects on the results are demonstrated in Section 5. Equivalently,
the inference for the "topology-based model D’ in which the neighborhood relations are modeled
via links between the hypothesis variables D is calculated.

The model depicted in Fig. 27 is expanded considering the neighboring pixels perpendicular
to the road center axis which is denoted as ’topology-based model C+N’ in the following
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Figure 27. The ’topology-based model C’ represented as factor graph linked between the random variables C.

sections. The factor graph of the expanded model is depicted in Fig. 28. Similar to the two
models previously discussed, the sum-product algorithm can be applied to calculate inference.
The main difference compared to the previous models is apparent by looking at the message
MO~ feye, (C;), which is now the multiplication of four messages

MCincicj (CZ) = MfDC"Ci(C’i)/j/fc’l‘)ci(ci)ufgc—)ci(Ci>/‘LfEc~>Ci<Ci) (161)

or for a pixel C; in between the road axis a multiplication of five messages

:ucjﬁfc-cj_s_1 (CJ) = Hfpc—Cy (Cj>/’l’fCI‘>Cj <Cj):ufcic]- —C; (Cj)rufgcacj (Cj>/ﬁfgc—>0]- (CJ) (162>

J

where

fe.o; = féo = foe- (163)
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Figure 28. The ’'topology-based model C+N’ considering the neighbors perpendicular to the road center axis.

The messages i1 L, (C;) and p foo—Cs (C;) contain the information of the pixels perpendicular
to the road center axis. The number of pixels which are taken into account depends on the
spatial resolution of the imagery and the width of the roads which as often given as attribute
values in GIS data. However, the problem of the biasing at the borders of the road axis is still
present.

4.3 Multi-temporal model

The pixel-based as well as the topology-based models are dealing with information at one
specific point in time during a flood event. However, flooding is a highly dynamic process,
which can change within short time. One goal of the assessment system is the detection of the
flood state at the current point in time. Therefore, all useful information available up to the
current time should be exploited. This information includes imagery acquired at a previous
state of the flooding and also water gauge measurements at previous times. In particular,
if the imagery at a previous point in time has a higher spectral or spatial resolution or if the
meteorological condition at a previous point in time is more appropriate to detect the floodplain,
the detection of the flood state at the current point in time can be improved. In the following
the current point in time is denoted as T" and the data at previous point in time as T'—t, where
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Figure 29. The multi-temporal model represented as factor graph. The numbered messages refer to the numbering of
the equations in Section 4.3.2

t denotes the time period between the acquired images.

4.3.1 Representation

The multi-temporal model can be regarded as a combination of the pixel-based model at the
time T" — t and one of the presented topology-based models at the time T. Again, several
possibilities exist to link the pixel-based model with one of the topology-based models. In the
following the 'multi-temporal model G’ which consists of links between the random variables
G at different points in time is exemplarily used to explain the concept. However, the causal
dependence between the different points in time can also be modeled via links between D or C'
as in the topology based models. These models are denoted in the following as 'multi-temporal
model C” or 'multi-temporal model D’.

The factor graph of the 'multi-temporal model G’ is depicted in Fig. 29. The pixel-based
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model is used to calculate the random variables GT~!, which represents the water gauge at
the time point T — ¢. The ’topology-based model G’ is used for the current point in time
but with the additional message from G?~!. The combination of the pixel-based model and
the 'topology-based model G’ is chosen to retain the tree-structured factor graph. Therefore
the spatial dependencies at time T — ¢ are neglected. A more detailed discussion about the
disregard of spatial dependencies, which also occur in the topology-based model, is given in
Section 4.3.3.

Only the factors fag are added in the 'multi-temporal model G’ compared to the topology-
based model, which connects the different points in time. The factor describes the probability
of the change of the water gauge in time and can be formulated as a conditional probability
p(GT|GT™1). Similar to Equation 135 the factor can be approximated by a Gaussian distribution

fae =p(GT|GT™) = N(g" 9" — AG, o) (164)

where 03 describes the uncertainty of AG = G — GT~'. In contrast, in the 'multi-temporal
model C’ and the 'multi-temporal model D’, the corresponding factors to fag are the factors
fac or fap which again can be represented as conditional probability tables. The determination
of the factor fac describing the class changes between the points in time is difficult just as in the
"topology-based model C’. This issue is discussed in more detail in Section 5.6.2. In case of the
'multi-temporal model D’ the conditional probability table p(DT|D*~") describing the factor
fap is easier to determine. Two different scenarios can be distinguished. In case of an ascending
water gauge, the conditional probability table is shown in Tab. 3, where the 0 describes that it
is not possible that a road is flooded at time T'—t and at time 7" flooded. The knowledge about
ascending or decreasing water gauge can directly observed from the water gauge measurements.
If no water gauge measurement is available the information can be obtained by the comparison
of the imagery at different points in time.

Table 3. Conditional probability table p(DT|DT ") in case of ascending water gauge

flr
fi1 Pyy
? 0 Dy

Equivalently, the conditional probability table for the case of a decreasing water gauge is shown
in Tab. 4.

Table 4. Conditional probability table p(D”| DT ") in case of decreasing water gauge

fr
fp?fO
Flem !

Since the factor graph is still a tree-structured graph exact inference is possible.

4.3.2 Inference

Again, the sum-product algorithm is applied for inference. Equivalent to the topology-based
model, the random variable GT is selected as root variable. In contrast to the topology-based
model, an additional message containing information from the previous point in time arrives
at the random variable G
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aorsor (@) = [ Fac(@gra ., (G5, (165)

where the outgoing message fir GJT*“) can be calculated by

T fac (
T—t1

. T
“Gf*”afml( i) = Pyt (G

—t1
j J >MfGT7t1 -G
J

o (G 71). (166)

J

If additional data at time T" — ty with t5 > t; is available the message is adapted to

T—t1\ T—t T—t T—¢
’uG?_tl%fAGl (GJ 1) o ’LLfHGW—>G?_t1 (GJ l)ufGTftlﬁGjT_H(Gj I)MfAGQ—)G?_tl(Gj 1)' (167>

J

The forward message in direction to the root node results in

T
e CHE T

(G]T) = :ufHGW—>GjT(G;F):U’fGT%G].T(G?)/JLfGiGj%GjT(G]T)HfAGIAGjT(G?)' (168)
J

If the width of the road is considered similar as shown in Fig. 28, in addition, the two messages

have to be taken into account.

(GT) “Hfgew—GT (G?)Mfcr —GT (G;‘F)#fci@j —GT (Gf)

T
HeT = fo 6,0\ M

(169)
Pisa,—ar (Gt ar (G- ar (GF).

The propagation of the backward messages can be restricted to the random variables at the
time T, since only the hypothesis variables W7 and DT reflect the state of the flooding at the
current point in time.

If in the multi-temporal model the spatial neighborhood relations are neglected and only the
dependencies in time are considered, the model reflects a dynamic Bayesian network (Hellwich
et al., 2000). Since in the time domain only the forward messages are calculated, the dynamic
Bayesian network is similar to the Kalman filter equations. However, in case of the Kalman
filter, represented as a hidden Markov model, the emission distributions are Gaussian, which is
not the case in the presented model.

4.3.3 Discussion

In all presented models, the pixel-based, the topology-based and the multi-temporal model,
several neighborhood relations are neglected. Disregarding of some neighborhood relations leads
to the presented but also simplified models. For the topology-based model, the consideration of
all existing relations would result in a dense 3-dimensional grid structure. The Markov network
of the topology-based model is shown in Fig. 30. For ease of visualization the random variable
G is not considered in the figure.

In case of the multi-temporal model a dense 4-dimensional grid structure would reflect all
existing dependencies. In addition to the links shown in Fig. 30, further links between the
corresponding random variables at different points in times exist. Since these grid structures
are not solvable by exact inference algorithms such as the sum-product algorithm, alternative
energy minimization algorithms could be applied. However, the minimizing of the energy
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Figure 30. The Markov network of the topology-based model considering all neighborhood dependencies.

functions is not trivial and there is no guarantee to find the global minimum. In addition the
energy minimization algorithms are far more time consuming as the proposed exact solutions by
the sum-product algorithm. The evaluation of the proposed models is discussed in the following
sections.
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5 Results and evaluation

In this chapter the three presented probabilistic graphical models are analyzed and evaluated.
In Section 5.1, the objectives of the evaluation are discussed in detail. The evaluation of the
models is conducted by means of two test scenarios, which are completely different concerning
the used input data. The two test scenarios are described in Section 5.2. An important issue for
the evaluation is the availability of ground truth. The handling and generation of the ground
truth is discussed in Section 5.3. The basic concepts used for the evaluation as the Receiver
Operating Characteristic (ROC) curves are introduced in Section 5.4. The ROC curves obtained
by the simulation based on the DEM and classification using only the image data are discussed
in Section 5.5. In Section 5.6 the three presented probabilistic graphical models are evaluated.
The benefit of the fusion of imagery and DEM via the pixel-based model is shown. In addition,
the effects of different input data with varying quality and the influence of the factors on the
results is presented. Finally, the results obtained by the probabilistic graphical models are
discussed in Section 5.7.

5.1 Goals of evaluation

The main goal of the evaluation is the investigation of the developed probabilistic graphical
models concerning their benefits and their limitations. Firstly, the benefit of combining the
image information with the elevation data is shown. Secondly, the sensitivity concerning the
conditional probabilities in the pixel-based model is evaluated. In the topology-based model
the influence of the factors fa,q,,, (G, Gjt1), fo,0,,,(Cj, Ci1) and fp,p,,,(Dj, Djy1) is inves-
tigated. In addition, the influence of different DEM data with varying accuracy is evaluated,
which leads to a discussion of the required quality of the data in order to enable a rapid and
reliable emergency respond.

5.2 Test scenarios

Test scenarios which are suitable for the evaluation of the developed probabilistic graphical
models have to fulfill some basic requirements. Firstly, image data during flooding and a DEM
have to be available. Secondly, a reference is needed to compare it with the results obtained
from the models. The availability of image data during flooding and DEMs is not a limiting
factor for the evaluation. In contrast, the existence of a ground truth in cases of flooding at
a specific time is rare since the generation is difficult and tedious. Therefore, the evaluation
is restricted to two test scenarios with existing reference data. One test scenario is the Elbe
flooding in the year 2002 near Dessau (see. Section 5.2.1) and the second test scenario is a
flooding at the river Chobe in Namibia in the year 2009 (see. Section 5.2.2).

5.2.1 Elbe river flooding

The first test scenario addresses the one-hundred-year flood in August 2002 at the Elbe near
Dessau. The Elbe river flood led to over 20 fatalities and caused damages of more than 25
billion Euros. A detailed discussion of the effects of the flooding with focus on the geosciences
is given in (Niedermeyer, 2006). The evaluation is restricted to the area depicted in Fig. 31,
which shows a false-color infrared composite of an IKONOS scene. On the left side the city
Dessau can be seen which is connected with a bridge over the Mulde at the top left of the image
with Rosslau. A small part of the natural stream channel of the Elbe river can be seen in the
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Figure 31. False-color infrared composite of IKONOS showing the river flood on Elbe 2002

middle of the top. In the center of the image, a district of Dessau with the name Waldersse
can be seen, which was almost completely flooded due to a dam failure. The breach in the
dam occurred east of Waldersee, highlighted by the black circle in Fig. 31. Waldersee and the
city of Dessau are separated by the river Mulde, which also contributed to the flood disaster.
The river Mulde ranges from the bottom left and flows into the river Elbe at the top left. The
water gauges of the river Elbe and the river Mulde are depicted on the top of Fig. 33.

The available IKONOS image was taken on August 21 in 2002, two days after the maximum
water gauge of the Elbe and three days after the breach of the dam. The IKONOS image
consists of four bands: blue (A = 0.445 — 0.516 pm), green (A = 0.506 — 0.595 um), red
(A = 0.632 — 0.698 pm) and near-infrared (A = 0.757 — 0.853 wm). The resampled spatial
resolution is 1 m in the panchchromatic band and 4 m for the color bands. The radiometric
resolution is 11 bit. An additional IKONOS scene at 26th of August is available which shows
the situation one week after the maximum water gauge of the river Elbe. However, no ground
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Figure 32. Digital Elevation Model with 1 m resolution showing the same area as Fig. 31

truth at this time was available. Therefore the obtained results for the scene at 26th of August
cannot be evaluated quantitatively. For this reason the Elbe scenario is used to evaluate only
the pixel-based and topology-based model and is not used to evaluate the multi-temporal model
due to the lack of ground truth.

Besides the image data, a high resolution digital terrain model (DTM) generated from airborne
laser scanning is used. The DTM is provided by the Federal Agency for Cartography and
Geodesy Sachsen-Anhalt. The spatial resolution of the DTM depicted in Fig. 32 is 1m with
an accuracy of +/- 0.15m. The river Elbe as well at the river Mulde can be recognized by
low elevation, which corresponds to dark grayvalues. Furthermore, the bright linear structures
correspond to raised roads or the dam system. In general, it is important to use a DTM and not
a digital surface model, since we are interested in the points on the ground in order to simulate
the expansion of the flooding. In digital surface models, the highest points are mapped, such
as the treetops which lead to an erroneous flood simulation. However, in cases of bridges, the
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Figure 33. Water level measurements at the river Elbe and Mulde in Dessau and the points in time of the acquisition of
IKONOS images.

used DTM leads to erroneous results, since not the elevation of the road is mapped, but the
elevation of the points under the road. An example of a bridge can be seen at the top left in
Fig. 32. In addition, only in digital surface models the information of the building structures is
available, which can be used for an improved flood simulation. Therefore, the optimal elevation
information would be a fusion of a DTM with a digital surface model. Although the future
TanDEM-X mission allows the generation of highly accurate DEMs on a global scale, it cannot
be assumed that a DEM with 1m resolution is worldwide available. Therefore, an additional
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Figure 34. Water level measurements at the river Chobe and the points in time of the acquisition of different satellite
images.
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Figure 35. TOP: TerraSAR-X image acquired in SpotLight mode at 6th of April. Bottom: False-color infrared composite
of the RapidEye image acquired at April 8th.

DEM obtained from the SRTM mission is used for the evaluation. Furthermore, the used
road data have elevation information where the root mean square error of the absolute vertical
accuracy is 1m. The influence of the three different datasets for elevation is investigated in
Section 5.5.

The used road information is taken from the Intermap road database where the root mean
square error of the absolute horizontal accuracy is 3m. The root mean square error of the
relative horizontal accuracy which is the accuracy between two neighboring points is 1m. Al-
ternatively, the road information from ATKIS (Amtliches Topographisch-Kartographisches In-
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Figure 36. ASTER Digital elevation model for the river Chobe scenario with spatial resolution of 15m.

formationssystem) or from OpenStreetMap can be used.

In Fig. 33 water level measurements from the river Elbe and Mulde between the 14th and 26th
of August are plotted. In addition, the points in time of the available IKONOS image data are
shown. The second IKONOS image at the 26th of August is not been considered in this study
since for the most part the water has receded to the original river channels and only small
water basins remained flooded. In addition, it was not possible to generate ground truth for
the 26th of August due to missing information. However, a change detection approach between
the two IKONOS images based on the MAD algorithm described in Section 3.1.3 is applied in
Butenuth et al. (2011).

5.2.2 Chobe river flooding

The second test scenario investigates the flooding that took place at the Chobe river in March
2009, which caused 85 fatalities in the Caprivi region in Namibia alone and forced thousands
to evacuate. The river rised in the central plateau of Angola and downstream represents the
border between Namibia and Botswana. In Fig. 34 the water level measurements during the
flooding between the 25th of March and 21st of April are depicted. The water level rises till
March 31th and then remains static between 1st of April and April 17th. Furthermore the
times of the acquisition of satellite imagery is shown.

Two satellite images are available showing the flood situation. Firstly, a high resolution
TerraSAR-X (TSX) image acquired in SpotLight mode with a spatial resolution of 1 m. The
TSX image was acquired on April 6th and reflects the flood situation near the maximum water
level (see Fig. 35). Secondly, a RapidEye image was taken two days after the TSX scene at
April 8th (see Fig. 34). The RapidEye image consists of five bands (red, green, blue, red edge
and infrared) and has a spatial resolution of 6.5 m. Again a false-color infrared composite of the
RapidEye image is shown on the bottom on Fig. 35. Since the change of water level between
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Figure 37. The infrared band of the three cases with different artificial cloud coverage and the original river Chobe
scenario

the two acquisitions is only about 3 cm the change of the expansion of flooded areas is limited.

In the Caprivi region, a high resolution DEM as used for the river scenario is not available.
Therefore, the only height information available for this region is an ASTER DEM with a
spatial resolution of 15 m. However, the difference of the input data of the two test scenarios
underlines the transferability and flexibility of the developed method. The DEM of the same
area as the two acquired images is depicted in Fig. 36. Since no comprehensive road information
was available for the evaluation of the developed models, a dense road network was extracted
manually from a high resolution Quickbird scene showing a not flooded situation.

The images available for the river Chobe scenario are on the one hand free of clouds and on
the other hand there are almost no occlusions by vegetation. These circumstances lead to
the opportunity to generate the reference by means of the imagery itself. However, generally
imagery without any occlusions by clouds and vegetations are rare. Therefore, additional cases
with artificial clouds are generated in order to demonstrate the performance of the developed
models in case of occlusions. The artificial clouds have the form of ellipses and are overlaid to the
original image. They are generated randomly and consist of a Gaussian noise, which is trained
from clouds in other image data. The original case and the three cases with different artificial
cloud coverage are depicted in Fig. 37. In the following it is important to distinguish between
the scenarios and cases. The evaluation is conducted by means of two different scenarios (river
Elbe and river Chobe scenario), whereas in the river Chobe scenario four different cases are
distinguished varying in the artificial cloud coverage.

5.3 Reference data

Reference data is needed to evaluate the results obtained by the usage of the different proba-
bilistic graphical models. The goal of the evaluation is the comparison of results obtained by



5.3 Reference data 7

Figure 38. The generated reference data of the Elbe scenario with the aid of expert knowledge and the IKONOS image.
(white: flooded areas, black: not flooded areas)

the models with the real state of the flooding. Therefore, the best reference data is the data
collected directly on location at the same time the image is acquired, which is often called
ground truth. However, the generation of ground truth is very time consuming and costly. In
case of flooding it is nearly impossible to get a ground truth at the same time of the image
acquisitions due to the dynamic processes of flood events. Therefore two different strategies
are applied for the two different test scenarios to generate the reference data sets.

The Elbe scenario is a complex scenario with a lot of occlusions through vegetations and
clouds. Therefore, the generation of the reference by means of using only the imagery is not
very promising and leads to many regions impossible to assign to flooded or not flooded areas.
In addition, there are areas which are not occluded by vegetation or clouds and still difficult
to classify. An example is discussed in Section 5.7 (see Fig. 57). Therefore the reference is
generated on location with the knowledge of experts. Together with the operation commander
of the disaster control of Dessau-Rosslau, an on-site inspection has taken place covering the
whole test scenario. The expert knowledge combined with the IKONOS imagery leads to the
reference data depicted in Fig. 38. However, even by means of expert knowledge it was not
possible to reconstruct the flooded areas at the 26th of August when the second IKONOS image
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Figure 39. The generated reference data for the RapidEye image of the Chobe scenario with the aid of the image data.
(white: flooded areas, black: not flooded areas)

was acquired.

For the second river Chobe test scenario, an on-side inspection was not possible. However, the
images (see Fig. 35) are not affected by cloud coverage and only small occlusions by vegetation
exist. Therefore it is possible to derive the flooded areas directly from the imagery. The
generated reference for the RapidEye image is shown in Fig. 39. Since the evaluation of the
river Chobe scenario is restricted to the point in time when the RapidEye image was acquired,
no reference data is generated for the other points in time.

Both reference data sets for the two scenarios are of course not free of errors. However, the level
of quality of the reference data sets allows a detailed and accurate evaluation of the results.
Furthermore, for both scenarios it was not able to generate a satisfactory reference data set
considering the water level of the road network. Therefore the evaluation of the water level is
restricted to visual interpretation described in Section 5.7.

5.4 Basics of evaluation

In the following the basic concepts are described that are used for the evaluation of the results.
The initially stated task, namely assessing the roads if they are flooded or not flooded can be
regarded as a binary classification or detection problem. Therefore, the receiver operating char-
acteristic (ROC) curves are applied to demonstrate the performance of the different developed
models (Egan, 1975). The comparison of the results with the reference leads to four possible
outcomes, which defines the confusion matrix with the size of 2 times 2. In the specific case of
the assessments of roads during flooding the entries for the confusion matrix are: The result
states "flooded” and the reference states "flooded” which is called true positive (TP) or hit.
The result states "flooded” in the reference states "not flooded”, which is called false positive
(FP) or false alarm. The result states "not flooded” and the reference states ”flooded”, which
is called false negative (FN) or missed hit and the result states "not flooded” and the reference
states also "not flooded”, which is called true negative (TN) or correct rejection. Using these
four outcomes the two characteristic numbers, the true positive ratio (TPR) and the false posi-
tive ratio (FPR) can be calculated, which define the axes of the ROC curves. The TPR defines
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how many road pixels are assigned correctly to flooded road pixels among all existing flooded
road pixels in the reference

TP

On the other hand the FPR defines the number of road pixels assessed to flooded by the model
but which are in reality not flooded (FP) among all not flooded road pixels

P
FPR= ———F1-. 171
R FP+TN (171)

Beside the TPR and the FPR, the overall accuracy is defined as

TP+TN
TP+ FP+TN+ FN

overall accuracy = (172)
However, the information content of the overall accuracy is limited, if the occurrence of the
existing states is unequally distributed. The confusion matrix, the TPR, the FPR and the
overall accuracy can be computed comparing the results with the reference. However, the TPR
and FPR of one result reflect only one point in the ROC space. For the computation of the
complete ROC curve, a probability threshold is defined, which describes the probability that
a road pixel is assigned to flooded or not flooded. Usually the threshold is fixed at 0.5. By
shifting this probability threshold from 0 (assigns all road pixels to flooded, TPR = FPR = 1)
to 1 (assigns no road pixel to flooded TPR = FPR = 0) the true positive rate (TPR) and
the false positive rate (FPR) for each probability threshold can be calculated and therefore the
complete ROC curve can be computed for each detection model.

5.5 Simulation and classification

First of all, the pixel-based model is split in order to evaluate the damage assessment if only the
imagery is used or only the DEM is used. The corresponding Bayesian networks are depicted
in Fig. 40.
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Figure 40. The fragments of the pixel-based model representing the simulation (left) and the multispectral classification
(right)



80

The Bayesian network on the left with the DEM as input information can be considered as
a flood simulation. On the right the Bayesian network for a multispectral classification is
depicted.

For the river Elbe scenario three different elevation data sets with varying spatial resolution
and different accuracy in vertical direction are used to demonstrate the influence on the results.
The most accurate data set is a DEM generated from laser scan data distributed by the Federal
Agency for Cartography and Geodesy Sachsen-Anhalt with a spatial resolution of 1 m with
and a vertical accuracy of +/- 0.15 m. However, the Bayesian model assumes that the height
information corresponds to a normal distribution. Therefore it is assumed that 99 percent of
the points are within the range + /- 0.15 m, which corresponds to a standard deviation of about
0.06 m. The second elevation information is taken directly from the 3D Intermap road database
with a standard deviation of 1 m of the absolute vertical accuracy. The standard deviation of
the relative vertical accuracy which is the accuracy between two neighboring points is 0.3 m.
The third dataset is a DEM from SRTM with a spatial resolution of 90 m and a relative 90
percent height error of 10 m (Rodriguez et al., 2006), which corresponds to a standard deviation
of about 6 m. The ROC curves of the simulation using the different height information are
depicted in Fig. 41.
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Figure 41. The ROC curves of the flood simulation using different elevation data. (left: Elbe scenario, right: Chobe
scenario)

For the river Chobe scenario only the ASTER DEM is available with a spatial resolution of
15 m. The ASTER DEM is generated using several stereo pairs. The vertical accuracy of
the ASTER DEM depends on the number of used stereo pairs. Beside the elevation data an
additional file is delivered with the number of images used to estimate the height value of each
pixel. The relation between the standard deviation of a pixel and the number of used images
n for the estimation of the height value is investigated by Jacobsen (2010) which results in the
equation

= 12.43m — n - 0.35m. (173)

OHasTER

In the river Chobe scenario the number of used images n varies from 7 to 18, which leads to
standard deviations ranging from 9.98 m to 6.13 m. The ROC curve of the simulation in the

river Chobe scenario using the ASTER DEM is shown in Fig. 41. The ROC curves shows
that the results of the simulation increase the higher the accuracy of the dataset. In general,
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Figure 42. The ROC curves for a multispectral classification (red) compared with the simulation (black). (left: Elbe
scenario, right: all cases of Chobe scenario)

it can be stated the closer the ROC curve is to the upper left corner, the higher is the overall
accuracy.

The simulation is compared with a classification represented by the Bayesian network depicted
on the right of Fig. 40. The estimation of the damage state D is based on a multispectral
classification using solely the image information. In Fig. 42 the ROC curves of the classification
(red) and the ROC curves obtained from the simulation (black) are compared. In the Chobe
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Figure 43. The scatter plot of five different road subclasses in the green and infrared band
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Figure 44. The conditional probability p(I|C' = r) modeled as a Gaussian mixture model (left) and modeled as one
Gaussian function (right) shown in the 2-dimensional case using the infrared and green band.

scenario the results of the classification is shown for the original case and for the different cases
with varying artificial cloud coverage as depicted in Fig. 37. The ROC curves obtained from
the different cases and the original river Chobe case show a large difference in accuracy. Of
course, the ROC curve of the original case without cloud coverage shows the most accurate
results. The accuracy of the other cases depends on the coverage of roads by the artificial
clouds. However, in all cases the classification result is by far more accurate as the simulation
using the ASTER DEM. In contrast, in the Elbe scenario the simulation and the classification
leads to more equivalent ROC curves due to the high accuracy of the laser scan information
(see. Fig. 42).

The multispectral classification is a supervised classification approach. The parameters
3 ks Mg, Wep have to be learned by training data for each class C'. The radiometric char-
acteristics of the broad classes road, water and vegetation are usually not Gaussian distributed
if different subclasses such as asphalt road, concrete road and gravel road are combined in
one broad class road (see. Fig. 21 and 22). Therefore Gaussian mixtures are used for the
multispectral classification as defined in Equations 90 to 92. In Fig. 43 a scatter plot for five
different road subclasses (motorway, country road, two different roads in the city and gravel
road) is shown for the Elbe scenario. Exemplarily, the green and the infrared band are used for
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Figure 45. The ROC curves comparing the multispectral classification using Gaussian mixture models (red) and one
Gaussian distribution (yellow)
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the scatterplot with the original intensity values of the 16 bit image. In Fig. 44 the class road
is modeled on one hand by a Gaussian mixture model (left) and on the other hand by only
one multivariate Gaussian probability density function. Again only the two bands green and
infrared are visualized. In case of Gaussian mixture models it is more important to cover all
appearing road subclasses in the imagery. If all road subclasses are used as training data the
Gaussian mixture model delivers a more detailed description of the radiometric appearances of
the roads in the imagery than a single Gaussian probability density function. A more detail
discussion of the modeling of the roads by Gaussian mixture models is given in Butenuth et al.
(2011).

In both scenarios the benefit of modeling the radiometric characteristics by Gaussian mixture
models can be seen in the resulting ROC curves depicted in Fig. 45. The left image shows
the comparison of the ROC curves for the river Elbe scenario and on the right the different
ROC curves are plotted for the original case in the river Chobe scenario. In both cases the
use of Gaussian mixture models delivers ROC curves closer to the upper left corner, which is
equivalent with a higher overall accuracy. In contrast to the previous ROC plots the plot in
Fig. 45 shows only the detail between 1 to 0.75 for the TPR and 0 to 0.25 for the FPR. In the
following these more detailed visualization of the ROC curves are used to demonstrate smaller
differences in ROC curves.
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Figure 46. Comparison of the ROC curves obtained by the pixel-based model (blue), the classification (red) and the
simulation (black) for the four different cases of the river Chobe scenario.
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5.6 Evaluation of the presented models

5.6.1 Pixel-based model

The combination of the classification and simulation described by the Bayesian networks in Fig.
40 is the pixel-based model discussed in detail in Section 4.1. In both scenarios the combination
of elevation data and image data by means of the Bayesian network depicted in Fig. 20 leads
to more accurate results as the use of each dataset individually. In Fig. 46 the ROC curves for
the river Chobe scenario obtained by the pixel-based model (blue), the classification (red) and
the simulation (black) are compared for the three cases with artificial cloud coverage and the
original case. In all four cases the ROC curve of the pixel-based model shows a higher accuracy
than the classification and simulation. In particular, the benefit is obvious in the cases with
additional artificial cloud coverage. The estimation of the flood state under the artificial clouds
is therefore totally based on the elevation information since no image information concerning the
flood state is available and neighborhood relations are not considered in the pixel-based model.
But also in the original case without artificial cloud coverage the benefit of the data fusion can
be observed. In particular, road pixels with very high or low elevation values with uncertain
classification results can be assigned to the correct flood state by means of the combination of
the data.

The results obtained for the river Elbe scenario behave similar as in the river Chobe scenario.
The combination of classification and simulations leads again to ROC curves describing results
with higher accuracy. The ROC curves are depicted in Fig. 47. Two different elevation data
sets are used for the pixel-based model. On one hand the laser scan data (solid lines) and on
the other hand the worldwide available SRTM DEM is used (dotted lines). In both cases the
combination leads to better results.
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Figure 47. Comparison of the ROC curves obtained by the pixel-based model (blue), the classification (red) and the
simulation (black) for the river Elbe scenario. The dotted lines shows the ROC curves obtained by the simulation with
SRTM data or the pixel-based model using the SRTM data as elevation information.

In both scenarios it is shown that the fusion of the imagery and the DEM by means of the
Bayesian network leads to better results, even if the elevation information has low accuracy
as the DEM from ASTER or SRTM. Therefore it can be stated that the applicability of the
pixel-based model is ensured as soon as any image information of the affected flooded area
is available since elevation data with low accuracy as the DEM from the SRTM is worldwide
available. The applicability of the pixel-based model will even increase when a more accurate
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global DEM derived from the TanDEM-X mission is available.

5.6.2 Topology-based models

In the following the effects of modeling the neighborhood relations between pixels are evaluated.
Several different topology based models discussed in Section 4.2 are compared. Firstly, the
‘topology-based model G’ depicted in Fig. 26 which models the neighborhood relations by
means of the probability of water gauge changes between neighboring pixels. The neighborhood
relation is expressed in the factor graph via the links between the random variables G'. This
‘topology-based model G’ is the only topology-based model in which the neighborhood relation
is modeled by a factor describing a physical behavior.

Secondly, the "topology-based model C’ depicted in Fig. 27 and the "topology-based model D’ is
evaluated. In addition, the expanded models are evaluated which consider pixels perpendicular
to the road center axis. These models are denoted in the following as ’topology-based model
G+N’, topology-based model C+N’ and "topology-based model D+N’. The factor graph of the
"topology-based model C+N’ is shown in Fig. 28.

In Fig. 48 the three topology-based models are compared with the pixel-based model for all
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Figure 48. Comparison of the topology-based models differing in the links between neighboring pixels for the river Chobe
scenario
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the cases of the river Chobe scenario. In all cases with artificial cloud coverage as well as in
the original case all the topology-based models (blue) lead to better results as the pixel-based
model (green). In all topology-based models the smoothness of neighboring pixels is modeled
with different kinds of factors which lead to the reduction of noise existing in the observations.
In all the cases the 'topology-based model G’ and the topology-based model D’ show a better
performance as the 'topology-based model C’.

A similar result is obtained for the river Elbe scenario (see Fig. 49). Again, the ROC curves
of the three topology-based models (blue) are compared to the pixel-based model (green). The
‘topology-based model G’ and the 'topology-based model D’ lead to better ROC curves than
‘topology-based model C’ and the pixel-based model. A problem of the 'topology-based model
C’ is the allocation of the conditional probability table shown in Tab. 2. Only one probability
Pequal 18 Used to describe all the changes between all kinds of existing classes. The features
of the individual classes are not considered. A detailed factor fc,c,,, should consist of five
different probabilities describing the probability of no change for every specific class. An even
better description would be the determination of all the 25 probabilities describing all kinds
of different class changes. However, these probabilities can vary from scenario to scenario and
are therefore very difficult to learn. In contrast, in the topology-based model D’ only the
probabilities that the random variable D changes the state from flooded to not flooded and
vice versa have to be defined. In case of the 'topology-based model G’ the variation of the
water gauge is only one physical quantity, which is in general easier to quantify for varying
scenarios. Therefore, the 'topology-based model G’ and the topology-based model D’ are the
models with higher potential concerning the transferability to different scenarios.

— nixel-based model
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Figure 49. Comparison of the different topology-based models (blue) with the pixel-based model (green) for the river
Elbe scenario

In Fig. 50 the factors describing the neighborhood of pixels are evaluated. In the 'topology-
based model G’ the factor fg,q,,, describes the probability that the water gauges changes
between two neighboring pixels. The factor is modeled as a normal distributions as stated in
Equation 135 with the standard deviation 0Z,. The o2 can be interpreted as a smoothing
factor, which describes the smoothness of the water surface. The lower the standard deviation
0&¢ the higher the smoothness. In the extreme case, if 0 — 0 the factor fg.¢,,, results into
Dirac delta functions since

5(x) = lim ——— exp (f) (174)
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Figure 50. The ROC curves of the ’topology-based model G’ (left), "topology-based model C’ (middle) and the ’topolo-

gy-based model D’ (right) with varying parameters defining the factors fa,c;,,, fc,c;,, and fp;p; ;.

Replacing the normal distribution describing the factor fg,q;,, stated in Equation 135 by the
delta functions and applying the defining property of the delta function in Equation 109 leads
to the simplification of the messages

Hfcic;—Giv1 (Gj+1) = HGi—=fc;6,,4 <G3> (175>

The effect of 03, is shown in Fig. 51 depicting the messages ¢, fe 65 (G;) for one road axis.

The lower the parameter o2 the more similar are the neighboring distributions describing
the water gauge of a road pixel. The corresponding ROC curves are shown in Fig. 50 on the
left. If 0 — oo the Gaussian distributions describing the factor fq,q,,, become uniform
distributions which leads to the pixel-based model. The ROC curves with different smoothing
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Figure 51. The messages 1G;=ia,c (G;) shown in Equation 142 and 145 for different 0% describing the smoothness

J+1
of the water gauge between neighboring road pixels.
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properties for the 'topology-based model C’ and the ’topology-based model D’ are also shown
in the middle and on the right of Fig. 50. In the 'topology-based model C’ the factor fc,c;,,
is defined by peguar describing the probability that neighboring pixels belong to the same class
C. The lower the probability pegua the more the ROC curve of the 'topology-based model C’
converges to the pixel-based model. If pegyuq = 0.2 the 'topology-based model C’ is equal to the
pixel-based model. The effects are in all three models the same. If the smoothing is very low
the ROC curves of the topology-based models is close to the pixel-based model.

An example of the influence of the smoothing on the results assessing a road segment is shown
in Fig. 52. The result of the pixel-based model leads to some erroneous assignment to flooded
pixels due to shadow areas. The ’topology-based model G’ with 02, = 0.1 leads to better
results smoothing out the most erroneous pixel except one segment of consecutive erroneous
pixel. The 'topology-based model G’ with a o2 = 0.001 smooths out all erroneous pixels which
leads to the correct assignment of all pixels to not flooded (green). However, the smoothing
property can also deteriorate the results if only few pixels in the road center axis shows evidence
for the correct assignment.

Figure 52. Example which demonstrates the smoothing property of the 'topology-based model G’ depending on cZ.
Some pixels are assigned to flooded (red) due to shadow but are in reality not flooded. Left: pixel-based model, Middle:

’topology-based model G’ with oZg = 0.1, Right: ’topology-based model G’ with o = 0.001.

The expansion of the topology-based models incorporating the pixel information perpendicular
to the road center axis is evaluated in Fig. 53 for the river Elbe scenario. Only for the "topology-
based model D’ a significant improvement of the ROC curves can be observed. In case of the
"topology-based model G’ and 'topology-based model C’ the incorporation of neighboring pixels
perpendicular to the road axis leads to no improvements.

An important property of an automatic damage assessment system is the processing time in
order to guarantee a fast response. Therefore the processing time of the different developed
models is investigated. In Tab. 5 the processing time of the different presented models are
shown. For the investigation an Intel(R) Core(TM) i7 with a CPU of 3.40 GHz was used. The
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Figure 53. Comparison of the ROC curves of obtained from the ’topology-based model G+N’ (left), 'topology-based
model C+N’ (middle), 'topology-based model D+N’ (right) with the topology based models neglecting the neighborhood
relations perpendicular to the road center axis.

crucial factors for the processir}g time are fgjgj o fe;c; i and Ip; D1 Therefqre the three
topology-based models and their expansions including neighboring pixels perpendicular to the
road axis are investigated.

Table 5. Processing time of the different topology-based models for both scenarios (Intel(R) Core(TM) i7 CPU: 3.40
GHz)

G+ N G C+N C D+ N D
Elbe 9min 50sec | 4min 8sec | 40sec | 20sec | 40sec | 19sec
Chobe || 1min 52sec 5T7sec 10sec 4sec 10sec 4sec

The most time-consuming models are the models with the links between the random variables
G. Compared to the factors fc,c,,, and fp,p,,, which are modeled by small probability tables
the factor fg,q,,, is a 2-dimensional function stated in Equation 135. In the implementation of
the "topology-based model G’ and the "topology-based model G+N’ this function is discretized
by a 100 times 100 matrix. Small steps of discretization are necessary to deal with the varying
accuracies of the observations and therefore to avoid aliasing effects. The substitution of the 2-
dimensional function stated in Equation 135 by a delta Dirac functions as described in Equations
174 would lead to simplified approximated model which reduces the processing time enormously.
The parameterization of the messages between the random variable G; and G, is not possible
since the outgoing messages from G; to fg,q,,, cannot be described by a parameterized function
as can be seen in Equation 142. The message g, jqc,,, (Gj) is not symmetrical and the

skewness depends on ©*.

5.6.3 Multi-temporal based model

The evaluation of the multi-temporal models is restricted to the river Chobe scenario since the
lack of ground truth in the river Elbe scenario. The best results are obtained if the hidden
hypothesis variables are linked as in a hidden Markov model, which corresponds to the 'multi-
temporal model D’. In Fig. 54 the multi-temporal model is compared with the topology-based
model and the pixel-based model for all four cases for the river Chobe scenario.

In the original scenario the performance of the topology-based model and the multi-temporal
model is similar because almost no occlusions, whether by vegetation or clouds exist at the time
T. Therefore the additional information at the previous time 7" — ¢ from TSX image cannot
contribute much information for the damage assessment. However, in all other scenarios with
artificial cloud coverage the multi-temporal model outperforms the topology-based model.
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Figure 54. Comparison of the pixel-based, topology-based and mutli-temporal based model for the river Chobe scenario

5.7 Discussion of the Results

In this section results of both scenarios for the damage assessment are shown and discussed.
In addition, the error sources which lead to wrong assignments are presented. The outcome
of all presented probabilistic graphical models are probability distribution for the hypothesis
variables D and W. In case of the hypothesis variable D, the probability distribution consists
only of the two probabilities that a road pixel is flooded or not. The probability distribution
of W is a continuous distribution with only one global maximum.

A possible representation of the obtained probabilities of D could be a continuous color coding.
However, the interpretation of color coded probabilities is time consuming and not suitable
for rapid decisions. But in case of emergency actions rapid decisions are crucial. Therefore
the road pixels are assigned to three categories: flooded roads, possibly flooded roads and not
flooded roads. In the following the three different categories are color coded. Flooded roads are
red, not flooded roads are green and roads, which are not assigned to flooded or trafficable due
to a marginal probability p(D) less than a threshold p; are yellow. The threshold describes the
balance between wrong assignments and no assignments and was manually chosen. In future
work, the estimation of an optimal threshold should be considered.
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Figure 55. Result of ’topology-based model G’ for river Elbe scenario. (Green: not flooded, Yellow: possibly flooded,
Red: flooded)

In Fig. 55 the assigned road pixels to the three categories are shown for the river Elbe scenario.
The result is obtained by the 'topology-based-mode G’. A graphical assessment of the results is
shown in Fig. 56, which shows the correct assignments in green, the roads assigned to possible
flooded in yellow and the wrong assignments in red.

In the following several effects in the river Elbe scenario are discussed, which lead to wrong
assignments. The most severe problems can be observed in the urban region on the left of
the scene. The shadows lead to erroneous classification since the reflectance of shadow is more
similar to the radiometric characteristics of water than of one of the road subclasses used in
the Gaussian mixture model. Furthermore, the altitude of the northern part of the urban area
is low and was protected from the flooding by a dam (see Fig. 32). These two properties lead
to several wrong assignments which are more often in the northern part.

Another reason for wrong assignments which is very case specific is illustrated in Fig. 57. On
the right a detail of the IKONOS images is depicted showing a flooded road. However, the
reflectance properties in the IKONOS image are similar to a trafficable road. Only by means
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Figure 56. Assessment of the result shown in Fig. 55. (Green: correct assignment, Yellow: no assignment, Red: wrong
assignment)

of the expert knowledge the reflectance patterns could be assigned to a temporary dam, which
was built on top of the road. A photo of the same road as depicted in the IKONOS images is
shown in Fig. 57 on the left side.

A last error source, which leads to wrong assignments is the used DEM in the river Elbe scene.
The high resolution DEM maps always the points on the ground. Therefore, bridges are not
mapped in the DEM but the ground points under the bridges. Of course this effect leads
to an erroneous simulation part. Alternatively, the 3-dimensional road information from the
Intermap road database can be used to avoid this effect. However, the accuracy of the Intermap
data is less than the used DEM as discussed in Section 5.2.1.

For the river Chobe scenario in Fig. 58 a result is shown of the 'multi-temporal model D’ for
case cloudsl. Again the roads are assigned into the three categories flooded (green), possibly
flooded (yellow) and not flooded (red). In this case a large area is affected by artificial clouds
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Figure 58. Result of 'multi-temporal model D’ for river Chobe scenario for case cloudsl. (Green: not flooded, Yellow:
possibly flooded, Red: flooded)

which occlude flooded and trafficable roads. In Fig. 58 the positive effect of combining the
different information sources as the DEM and the TSX imagery at the time T — ¢ can be seen.
The roads on the bottom right occluded by artificial clouds are assigned to not flooded (green)
mainly due to the evidence resulting from the DEM. In contrast, the assignments of the roads
occluded by artificial clouds in the center of the imagery can be ascribed to the information
from the TSX imagery at the previous point in time 7" — t.

Beside the hypothesis variable D also the state of the hypothesis variable W is estimated. The
estimation of the water level is based on a simple maximum likelihood estimation considering
the probability distribution of W. However, a quantified evaluation of the estimation is not
possible due to the lack of reference data. Instead of the comparison with a reference only a
visual interpretation of the results is possible. In Fig. 59 on the top the estimated water level
is shown using only the DEM information. On the bottom the water level is shown using the
‘topology-based model G’. Negative values for W can be interpreted as the vertical distance



Figure 59. The estimated water level W (Top: only the ASTER DEM is used, Bottom: the 'topology-based model G’
is used for the estimation

of the road pixel to the current water gauge. The comparison of the two results by visual
inspection shows the more reasonable results in case of using the 'topology-based model G’.

In this work, models are developed to assess the roads concerning the damage state. Although
the effects of decisions based on the results are not part of the thesis, the most important effects
for wrong assignments are shortly discussed. If a road is assigned to flooded but in reality it
is trafficable the relief workers have to make a detour. On the contrary, if a road is assigned
to not flooded but it is in reality flooded the navigation would lead to a dead end. These two
events reflect two entries in the confusion matrix (false positive and false negative). Costs can
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be assigned to every entry in the confusion matrix and the minimization of the expected costs
leads to an optimal decision. Graphical approaches which are able to model such costs are
influence diagrams, which are a generalization of Bayesian networks.



96

6 Discussion and outlook

In this chapter the developed probabilistic graphical models to assess the damage of linear
infrastructure objects after flooding as well as the general capability of the developed approach
are discussed. The discussion focuses on whether the goals stated in Section 1.2 are achieved.
Furthermore, problems of the presented models are emphasized and possible future research is
pointed out, which focus on the expansion of the developed models as well as new strategies to
assess infrastructure objects after flooding.

6.1 Discussion

The main goal of the thesis was the development of a damage assessment system of linear
infrastructure objects during flooding. In this chapter, it is discussed if the requirements of a
damage assessment system stated in 1.2 are fulfilled in order to guarantee a rapid and reliable
emergency response. In the following each stated goal is repeated and comments are added.

o The handling of different kinds of image data (optical and radar) with varying spectral and
spatial resolution.

The developed models enable the utilization of every kind of image information. The general
framework of probabilistic graphical models allows the embedding of optical and radar im-
agery. Depending on the image data the Bayesian network can be adapted to enable different
approaches for the classification part. In this thesis, Gaussian mixture models are used, which
deliver good results. However, in case of radar imagery other classification approaches consider-
ing the specific properties of the radar images are better suited than Gaussian mixture models.
If the classification approach is modeled by means of probabilistic graphical models as in the
case of Martinis et al. (2011) there is no obstacle to substitute the proposed classification by a
model which is designed especially for radar imagery.

In addition, it is shown that the model is able to deal with imagery with varying spectral and
spatial resolution. The only constraint for the spatial resolution is the visibility of the infras-
tructure objects. The factors ijGjHa fcjcjﬂ and fp, p,.; have to be adapted corresponding
to the spatial resolution.

o The integration of additional information such as DEM, data from GIS and in-situ measure-
ments.

The presented model combines the image information with the DEM, GIS data and in-situ
measurements. It has been shown that every kind of DEM can improve the damage assessment.
Even DEMs from SRTM or ASTER with very coarse spatial resolution can contribute to the
improvement of the results. The integration of information about the water gauge can be
integrated by in-situ measurements or, if not available, methods can be used to derive the
water gauge directly from the used imagery as described in Section 3.2.1. From a GIS the
location of the roads is obtained. However, beside the location of the roads a lot of more
information is available in road databases, which are currently not used. A discussion about
the integration of further road information is given in the Section 6.2.

o The combination of the available data using a consistent statistical framework in order to
quantify the uncertainties of the results.

The framework of probabilistic graphical models is used to model the dependencies of the input
information and the hypothesis variables. The combination is carried out by modeling the causal
relations between the input data using Bayesian networks. Markov chains are used to model
the topology or the road network. Both models are transformed into factor graphs building the
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basis for exact inference. However, the dependencies between the random variables modeled in
Bayesian networks and Markov networks are different. In this work this issue is circumvented
by the transformation of Bayesian Networks into Markov networks via moralization which leads
to the good results as presented in this thesis. However, one probabilistic model which is able
to model the causal relation and the symmetrical relations simultaneously would be desirable.
A possible solution is given in Section 6.2.

o The handling of sequential data at different times in order to monitor the development of
flooding.

The proposed multi-temporal models enable the incorporation of imagery at previous points in
time. In Chapter 5.6.3 it has been shown that the information from previous points in time can
significantly improve the results of the assessment of the current point in time. The develop-
ment of flooded infrastructure objects can be obtained by simple change detection approaches
applying on the results of different points in time.

o The processing time should be as fast as possible to guarantee a rapid response.

The performance of the processing time is demonstrated in Tab. 5. The processing time of
the 'topology-based model C’ and the 'topology-based model D’ are in both scenarios less than
1 minute and therefore the requirements are clearly fulfilled. In case of the 'topology-based
model G’ the computation is more demanding, but still acceptable for a rapid respond. The
proposed approximation in Equation 175 is a further possibility to decrease the processing time.
However, it is important to mention that the system is a supervised approach which includes
the determination of training data. This time has to be added to the processing time.

o The transferability of the system to different scenarios.

Two different test scenarios are used to evaluate the performance of the presented models. Both
scenarios consist of different image information sources varying in spectral resolution, spatial
resolution and sensors. The used road information is obtained from different sources and the
different DEM are used and evaluated even within one scenario. The effects of the different
information sources are evaluated. Furthermore the classification is based on a supervised
approach with the disadvantage that the system is not fully automatically. However, the
supervised approach is one crucial factor to guarantee that the transferability of the system to
further scenarios is given. Therefore the requirement of the transferability to different scenarios
is fulfilled.

6.2 Outlook

The outlook is divided into two parts. In the first part the expansion of the developed model
is discussed integrating additional information. The second part focuses on further promising
methodical approaches.

The presented probabilistic graphical model combines crucial information to assess linear in-
frastructural objects after flooding. The model combines imagery, DEM, in-situ measurements
and road information. This information builds the basis for the assessment. In this work it
was focused on information, which is worldwide available within a short time frame. However,
the framework of Bayesian networks allows the adaptation of the model without destroying
the basic structure if additional information is available. In the following several examples are
listed, which could contribute to an improved assessment of infrastructure objects.

In this work the road databases are only used to obtain the information about the spatial
distribution of the road network and no attribute information is used. However, many road
databases deliver additional attribute information as the road category, the width of the road
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or information about the spatial accuracy. The road category or the surface property can be
used to select training areas, the width of the roads can be used to estimate the number of
pixels which should be integrated in the system perpendicular to the road axis and the accuracy
or the road data should be used to estimate the probability that the vector data from the GIS
matches with the road information in the imagery.

The flood simulation used in the presented model based only on the DEM. However, a flooding
depends on many other parameters as currents, surface structure and infiltration. The substi-
tution of the simple simulation depicted in Fig. 40 on the left by an enhanced flood simulation
model developed by hydrologists based on Bayesian networks could improve the complete sys-
tem. Furthermore, the state of a dam system is in many scenarios a crucial factor for the flood
simulation. The integration of the dam system and their state during the flooding could be
obtained from a GIS and easily integrated in the Bayesian network.

As mentioned in the previous section the results obtained from the model builds the basis for
decision makers. However the possible decisions and the effects of the decisions are not modeled.
Influence diagrams, which are a generalization of Bayesian networks delivers the framework to
model the decisions and their impacts by means of a graph structure. The developed model
should be expanded and generalized by means of influence diagrams to show the decision makers
the consequences of their decisions.

A challenging task in this work is the modeling of causal relations and symmetrical neigh-
borhood relations in one probabilistic model. In this thesis the task was solved by the trans-
formation of the Bayesian network and Markov network into factor graphs. Since in general
independence properties are lost by the moralization step it would be desirable to have a model,
which can simultaneously model causal and symmetrical relations. Chain graphs are graphical
models which combine directed and undirected models. However, inference in chain graphs is
still part of current research.

Furthermore, the presented model is restricted to linear infrastructure objects. However, a lot
of infrastructure objects which are important for relief actions are not linear, such as build-
ings. Therefore a general probabilistic graphical model to assess the damage of every kind
of infrastructure objects could not be based on Markov chains as in this work and therefore
the generation of tree structured factor graphs to calculate exact inference is not possible.
Therefore frameworks have to be used which are able to model linear objects as well as grid
structured objects such as buildings. Conditional random fields are a promising undirected
graphical model, which could be a suitable framework to generate general damage assessment
systems for all kinds of infrastructure objects (Kumar and Hebert, 2006). However, the infer-
ence in conditional random fields is usually solved by the minimization of an energy function
and not by exact inference as proposed in this thesis.

Finally, the thesis points out that probabilistic graphical models provide a suitable framework to
combine spatial information such as imagery and GIS data in consideration of the uncertainties
of the data. It is shown that causal physical relations, the topology of spatial data and multi-
temporal data can be described in one probabilistic graphical model. Furthermore, the thesis
demonstrates that remote sensing data combined with data from a GIS is suitable for a rapid
assessment of linear infrastructure objects after flooding.
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