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Abstract

There are many definitions of human factors, however most of them (applying
to the field of software and system engineering) are oriented on human-machine
system operation in terms of usability of systems and programs, i.e. on those
parts that are seen by (end-)user, but not by the requirements, specification
and verification engineers. The fundamental goal of human factors engineering
is to reduce errors, increase productivity and safety when the human interacts
with a system. Engineering psychology applies psychological perspective to the
problems of system design and focuses on the information-processing capacities
of the human brain too.

This report presents the results of our first seminar on “Human Factors in
Software Engineering” held in the summer term of 2012. The deliverables to
be developed by the students were a learning module prepared by each student
as final presentation and the documentation of the learning module in an essay
(content of this report). The topics were:

• Topic 1: What does “Human Factor” mean?
Student: Andreas Schmidt

• Topic 2: History of Engineering Psychology
Student: Ruocong Shan

• Topic 3: Software Engineering: HA, HCI, and HF - Differences and Sim-
ilarities
Student: Susanne Brunner

• Topic 5: Human Factors Evaluation Methods
Student: Rupert Dürre

• Topic 4: Human Error Paradigms
Student: Duc Nguyen

• Topic 6: Human factors in safety-critical systems
Student: Julian Sievers

• Topic 7: Specific features of UI for web-applications in comparison to
other kinds of software applications
Student: Tomas Ladek

• Topic 8: Usability in Software Engineering/ Development Methods
Student: Fabian Wetekamp
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1 Andreas Schmidt: What does “Human
Factor” mean?

1.1 Definition of the Term “Human Factors”

The definition of the term “Human Factor” is not as easy as it may seem at
first. In fact, there even is no universally accepted formal definition but many
different approaches sometimes with a different focus. A study conducted at
the Harry G. Armstrong Aerospace Medical Research Laboratory lists over 90
different definitions given in various literature connected to the subject [LP].

A very generic definition that focuses mainly on the biomedical and psychoso-
cial aspects of human factors could be following [ea04, p. 1]:

Definition 1 Human Factors are all physical, psychological and social charac-
teristics of humans which have an influence on the interaction with and within
a system or are being influenced by the system.

A different approach, that sees Human Factors more as it’s own field of
research also including the practical application of the gained knowledge is
given by Salvendy in his book “Handbook of Ergonomics” [(ed97, p. 4]:

Definition 2 Human factors is the use of the knowledge about human abilities
and limitations for the design of systems that are safe, efficient and comfortable
for a human use

One possible source of confusion in this context is the term “ergonomics”,
which can have a different meaning especially in european countries. Salvendy
argues, that ergonomics and human factors are in fact different terms for the
same field of study, a view that is also shared by the Human Factors and
Ergonomics Society and the International Ergonomics Association [FS].

As one can see in the definitions, the term “Human Factors” covers a wide
field of topics, in fact too many to be covered in this article. That is why
the subjects in this paper are limited to certain fields which have the biggest
influence from a software engineering point of view and are therefore of great
interest to software developers.

1.2 Human Sensory System

1.2.1 Visual System

The Human visual system is one of the most important senses and from every-
day experience it is very clear that a big portion of the information our senses
gather about the surrounding world, comes from our visual system.

1



1 Andreas Schmidt: What does “Human Factor” mean?

Biomechanics of the visual system

Electromagnetic energy in the form of light is transformed to neural signals
in the eyes. This happens through photoreceptors which are located on the
back inner-surface of the eye, the so called “retina”. Situated on the retina are
two different main types of photoreceptor cells, commonly know as “rods” and
“cones”. Rods have a higher sensitivity to light compared to cones. These lesser
sensitive cone cells can also be further divided in three different types which
have a unique sensibility for different wavelengths: “Blue”-Cones which peak
at a wavelength of 440nm, “Green”-Cones (530nm) and “Red”-Cones (560nm)
[Sch11, p. 77]. Since the receptors have different responses for a stimulus in a
given wavelength, the brain has enough information to infer the wavelength of
the signal thus allowing for the perception of “colour” rather than just plain
luminance. This process is only possible with a minimum of two different kinds
of receptors with a distinct receptability depending on the wavelength in order
to allow an unambiguous interpretation of the information. This is one reason
why colour perception does not work in bad lighting conditions where only the
cones are sensitive enough to respond.

Influence on System Development

One thing that is most important to know about the human visual system in a
human factors context is that it is by no means a device of accurate measure-
ment. This fact can easily be demonstrated by a multitude of optical illusions
of which a very impressive one is the “Adelson Koffka Ring” (cf. Figure 1.1).

Figure 1.1: Adelson Koffka Illusion. The greyvalue of the ring appears to be
changing when it is sliced in two halfs, even though it stays the
same.

However not only the perception of greyscales, also the perception of colour
can vary depending on the surrounding which is a differnt effect, known as
“colour constancy” [Gol01, cf p. 119]: A red ball will always appear red to
the spectator, irregardles of the lighting conditions, because it is red in relation
to it’s surrounding. In general the visual system is more suited to ”compare”
values rather than to absolutely measure them. Like all of our senses, vision
only gives a functional working representation of our environment, rather than
an absolute representation.

2



1.2 Human Sensory System

To deal with the special properties of the visual system in software engi-
neering, there exist some different guidelines for the use of colours, to ensure a
comfortable usage of the interface [Ben05, p. 126]

• Limited Use of colours. A maximum of 5±2 colours should not be ex-
ceeded.

• Avoidance of complementary colours (eg. blue/orange or red/green com-
binations)

• Consistency in Colour Coding and use of colour conventions which takes
advantage of the fact that in most cultures, specific attributes are assigned
to certain colours, like “hot temperature” or “danger” for red, a “safe
state” for the colour green, or “caution” for yellow etc.

• Display Text with high contrast, preferably black on white to increase
readability

1.2.2 Auditory System

Another sensory system that plays an important role in the interaction of hu-
mans with their surroundings is the auditory system.

Biomechanics of Hearing

Soundwaves are waves that travel through a medium like water or air which
can be detected and processed by humans with their auditory system. The
waves travel through the ear canal to the tympanic membrane which they set
in motion. This movement is transferred by a mechanical system of small bones
to the cochlea, a small spiral shaped chamber with tiny receptor hairs on it’s
inside walls. These hairs move according to the sound waves and produce a
nerve signal that is transferred to the brain by the auditory nerve.

A very special fact about the auditory system, that distinguishes it from the
other senses like the visual system is it’s omnidirectional property which means,
signal detection is not influenced by the orientation of the head relative to the
source of the signal. However very much like the visual system, or in general all
senses of the human body, the auditory system is everything but an accurate
device of measurement. This can easily be demonstrated by two interesting
facts about hearing:

1. The perception of loudness and the actual sound intensity are not corre-
lated, meaning that the perceived loudness of a sound at 80dbA is not
twice as loud as a sound of 40dbA

2. The perception of loudness is also influenced by it’s frequency: of two
sounds with the same sound pressure, the one with the higher frequency
will be perceived as louder.

Some sounds can be inaudible in the presence of other sounds, when their
frequency components are too similar, a process known as “masking”. On the

3



1 Andreas Schmidt: What does “Human Factor” mean?

other hand our auditory system has some kind of filtering system to distinguish
signals from noise, in other words one is able to focus ones attention on certain
parts of the auditory signal.

This mechanism of selective hearing can be seen in the so called “Cocktail-
party effect” which probably everybody has already experienced. In a noisy
surrounding like a party with a lot of sources of noise, it is fairly easy to con-
centrate on a specific conversation and filter the voice of the conversation part-
ner from the others. Studies have shown, that this ability increases, when the
“targeted” sound source and the masking sound source are spatially separated,
thus giving the auditory system additional information in the form of interaural
differences in the signals [Gol01, p. 540f]. Further factors that make it easier to
separate sound sources are spectral and temporal separation and also the in-
tensity of the sound. The louder a sound signal is compared to the co-occurring
noise, the more likely is the sound perceived as a unique source of sound[Gol01,
p. 552]. As a principle for design, Wickens suggests that a sound should be at
least 15dB above the masking noise in order to be heared [Wic04, p. 96].

Applications in Software Engineering

Why is it important to know about the auditory system, when most of the
interaction in current applications works purely visually? The answer is simple:
The design of effective alarms. Auditory alarms or signals are in general superior
in some ways over visual signals. The most important aspect is the fact that
due to the omnidirectional property of our auditory system, alarms are sensed
regardless if the user is oriented towards some userinterface like a computer
screen. That means if there is an important alarm like a fire alarm, an acoustic
signal should be the means of choice, preferably coupled with a redundant visual
signal. Wickens cites in his books the works of Patterson, in which he discusses
some criteria for good alarms [Wic04, p. 98]:

1. An Alarm should be audible amongst the background noise, thus avoiding
the effect of masking

2. It must not be above the danger level of hearing

3. The sound should not be startling or abrupt

4. It should not interfere with other auditory signals by making them harder
to understand or to interpret.

5. The alarm must be informative , meaning that a (trained) user can asso-
ciate the alarm with a meaning or a cause for the alarm.

4



1.3 Cognition

1.3 Cognition

After talking about the perception of stimuli from the world around us, we will
have a closer look on how these signals are processed.

1.3.1 Bottom-Up vs. Top-Down-Processing

So far we only focused on one way of perception, the so called Bottom-Up Pro-
cessing, in which the plain stimuli detected by the recepting organs lead to a
perception of the outer world with little or no cognitive processes involved. A
different process is the Top-Down Processing of information in which knowledge,
expectancies and desires heavily influence the perception and the interpretation
of the stimuli. The knowledge of these two different kinds of information pro-
cessing processes is important in the context of attention.

1.3.2 Attention

Attention is the focus of “mental resources at or on a particular task or object”
[Ben05, p. 107]. Missing attention can often be a source of human error and it is
influenced by a variety of factors: salience, expectancy, value and effort [Wic04,
p. 123]. Salience is a typical bottom-up factor, meaning that attention will
be drawn to a signal when it’s very distinct from it’s surrounding for example
a bright blinking warning light, or one red object in a bowl of green objects.
Expectancy and value are top-down driven, meaning that attention will be
directed at places, where information is expected and is of some value to the
user. Selective attention is also heavily influenced by the amount of effort it
takes to obtain the information. For example people will check a display less
often, if they have to turn around to see it.

These aspects should be kept in mind during the design of interfaces, espe-
cially when displaying important information like warnings, to the user.

1.3.3 Visual Perception

Perception is the process of extracting meaning from an array of information
(eg. audio or visual) [Wic04, p. 124]. The visual perception is of all mechanisms
in perception the best understood process [Ben05, p. 111].

A particulary interesting and very important topic connected to interface
design are the “Gestalt laws of perception” formulated by a group of psycholo-
gists in the beginning of the last century. [Ben05, p. 114] These laws describe
when a number of objects appear to be in one single group. Some examples (cf.
Figure 1.1):

• Law of Proximity: Objects close together appear to be in one group.

• Law of Similarity: Objects similar in shape or colour like the dark and
pale circles in b) tend to be grouped together.

• Law of Symmetry: Objects that are symmetrical to an axis are perceived
as one group. The literals in c) appear to be in three groups of two.

5



1 Andreas Schmidt: What does “Human Factor” mean?

These laws are of tremendous importance in the design of user interfaces, in
particular the positioning of display objects and input controls.

Figure 1.2: Some Gestalt laws of perception: a) Proximity, b) Similarity, c)
Symmetry

1.3.4 Memory

Coming from a technical background the analogy of the memory layout of a
modern computer and the memory organization of the human brain quickly
comes to mind. Like the computer we also have a limited working memory
we use for information processing and short term storage and a much bigger
memory for long term storage, the long term memory.

Working Memory

A widely accepted theory about how the working memory functions was first
suggested by Baddeley and Hitch in 1974. This theory splits the system in 4
components [Eys10, p. 211ff].

1. A “central executive” as controlling unit

2. A phonological loop in which the order of words is preserved, for example
by a nonverbal rehearsal with ones “inner voice”

3. The visuo-spatial sketchpad for spatial and visual information, i.e. a route
when walking

4. Episodic Buffer for complex scenes or episodes. The episodic buffer was
added by Baddeley in 2000 and is a system that can integrate and briefly
store information from various sources, like the phonological loop or the
visuo-spatial sketchpad, in the form of short episodes [Eys10, cf. p 221].
This system enables us for example to remember a story or the scene of
a movie.

Some aspects of high interest in Human factors research are the limitations
and capabilities of the working memory. First let’s have a look on the capacity.
It is commonly believed that the average amount of information that can be
stored in the working memory is 7 ± 2 chunks. A chunk is any meaningful entity:
the random letters “D L U V” represent 4 chunks, whereas the word “door”
consisting of 4 letters represents only one chunk. The grouping of symbols can

6



1.4 Human Error

also have an influence: “5 8 7 3 2 9” has double the number of chunks compared
to “58 73 29”. In general, familiarity and an association between the single units
make up a chunk [Wic04, p. 130].

Information does not stay in working memory forever, it gradually gets lost
without a continuous repetition or “maintenance rehearsal”, which is for ex-
ample the repetitive reciting of items with ones inner voice. Studies suggest
that the half-time for information in working memory is about 7 seconds for
3 chunks and 70 seconds for 1 chunk. That means information can even get
lost, when the time between the information acquisition and the effective usage
is too big [Wic04, p. 131]. This knowledge gives us some best practices in
software engineering that should be followed. It is always desirable to minimize
the load on the working memory and to use a design that makes use of the
principles of chunking. An example could be the display of phone numbers in
a database application in which the digits are grouped in pairs of two. Also, it
is good practice to provide visual echoes for performed actions and reminders
for sequential actions, since the user might get confused with the steps, while
he is performing his task.

Long Term Memory

The long term memory is used for information storage and retrieval, the process
of storing information is called learning. Forgetting is the fail of memory re-
trieval. A piece of information will be lost, when the specific memory is of weak
strength, meaning it has a very small frequency of use, when it has too little
associations to other memories, or when there are other interfering associations.

A piece of information is easier remembered when it is meaningful and con-
crete rather than abstract and relatively organized. The implications on soft-
ware design in this case are the use of standards, for example the similarity of
user interfaces in graphics programs which makes orientation in them easier, or
the use of memory aids that trigger associations and help the user to remember
steps they have to take in a program.

1.4 Human Error

A popular saying claims that the cause of most computer problems is about
40cm in front of the screen. Human error is an omnipresent problem that
is responsible for many failures in complex systems. Two famous and very
dramatic examples are the reactor incident at Three Mile Island in 1979 and
the reactor catastrophe in Tschernobyl in 1986.

In general, errors can be divided in two different classes depending if they
were a result of an intended or an unintended action. Errors because of intended
actions are the result of a lack of knowledge. If the cause is an unintended
action, it might either be confusion, for example because of badly arranged
user interface elements or a failure in prospective memory, meaning a task was
simply forgotten.

To cope better with human error, here are some rules for software design,
similar to what Reason and Norman already suggested in 1990 [Ben05, p. 389]:

7



1 Andreas Schmidt: What does “Human Factor” mean?

• Promote good conceptual models of the system, so the operators have a
better understanding of the consequences of their action

• Simplify the structure of tasks

• Exploit the Power of constraints (“Trust no user input”)

• Design for Error, plan for Error recovery

• Comply to accepted standards for example colour coding

1.5 Stress and Workload

A big source of human Errors is also a high level of stress. Stress can not only
be psychological stress caused by arousal, or the cognitive appraisal of a task,
but there are also environmental stressors like bad air quality, motions like vi-
brations, or thermal stress.
If the workload is too high, which means there are too many tasks to perform in
an inadequate amount of time it also causes stress with extensive consequences:
Poor decision making, a decrease in accuracy and high selectivity in input. Pos-
sible solutions for this problem are on the one hand a better task organization
and on the other hand the use of automatiation to ease the workload on the
user.

1.6 Conclusion

In this paper we have looked at different definitions of the term human factors
and elaborated some of it’s important aspects, like the influence of the different
sensory systems on information retrieval and the cognitive processing of these
informations. Also we talked about stress and workload and its influence of
human failure.

The “Designing for Humans” factor of software engineering is a very im-
portant part that should not be omitted since human factors can have a high
influence on the usage of software and the performance reached with it. Only
the exact knowledge about the limitations, behaviour and other characteristics
of humans allows the design of software that is safe, efficient and easy to use.

8



2 Ruocong Shan: History of Engineering
Psychology

2.1 Introduction

Engineering psychology [Se68] is the science of human behaviour and capa-
bility, applied to the design and operation of systems and technology. As an
applied field of psychology and an interdisciplinary part of ergonomics, it aims
to improve the relationships between people and machines by reading equip-
ment, interactions, or the environment in which they take place. The work of
an engineering psychologist is often described as making the relationship more
user-friendly.

Engineering psychology was created from within experimental psychology
(see also [WH91]). It started during the World War II. However, long before
the World War II, it has already taken place in matching equipment require-
ments with the capabilities of human operators by changing the design of the
equipment. The real beginning can lead back to the end of 19th century. There-
fore, the historical development of engineering psychology can be divided into
4 time sections:

• End of 19th Century

• World War I

• World War II

• Present

2.2 End of 19th Century

In a certain sense it is correct to say that people have been concerned with
engineering psychology of a sort ever since man began fashioning implements
for his own use. Nonetheless, engineering psychology has emerged as a separate
discipline only within the past few decades. It was not until the end of the
nineteenth century that the first systematic investigations were conducted on
man’s capacity to work as it is influenced by his job and his tools.

Frederick Winslow Taylor (March 20, 1856 - March 21, 1915), who was an
American mechanical engineer and regarded as the father of scientific man-
agement, made the empirical studies of the best design of shovels and of the
optimum weight of material of each shovel for handling different products, such
as send, slag, rice coal, iron ore. Taylor’s interests, however, were primarily in

9



2 Ruocong Shan: History of Engineering Psychology

rates of doing work and in the effects of incentives and worker motivation on
rates of working. His study was sought to improve industrial efficiency.

About 10 years later, Frank Gilbreth (July 7, 1868 - June 14, 1924) began
as a bricklayer, became a building contractor. He reduced all motions of the
hand into 17 basic motions, such as grasp, transport loaded, and hold. He
sought ways to make bricklaying faster and easier. Later in 1990, he set a firm
foundation for this filed with his classic study of bricklaying. This pioneering
work of Taylor and Gilbreth was the beginning of the branch of industrial
engineering now known as time and motion study.

In the years that followed, time and motion engineers developed a number of
principles of motion economy, of the arrangement of work, and of work design
that have been widely applied throughout modern industry. Insofar as they have
focused on human capacities and limitations and have used this information to
redesign the machine, the task, or the work environment, it is correct to say
that time and motion engineers are predecessors of the modern engineering
psychologist.

Still, the primary emphasis in time and motion engineering has been on man
as a worker, that is, as a source of mechanical power.

2.3 World War I

When the United States entered World War I in 1917, a group of psycholo-
gists under Robert M. Yerkes was organized as the Psychology Committee of
the National Research Council. In volunteering their services to the military
establishment, they were met at first with considerable scepticism about what
they could do of any value in the hard business of war. Gradually the psychol-
ogists were able to make some substantial contributions and eventually win the
enthusiastic endorsement of the military services.

By and large the psychologists in World War I were concerned with such
things as the selection, classification, and the training of recruits, and with
morale, military discipline, recreation, and problems of emotional stability in
soldiers and sailors. A few of them, however, encountered problems of a different
sort-those in which the design of machines and equipment had to be related to
the user.

2.4 World War II

After the armistice in 1918 this pioneering work in engineering psychology was
almost entirely abandoned. A few scattered studies appeared between the two
world wars under the auspices of the Industrial Health Board and the Industrial
Fatigue research Board of the Medical Research Council (Great Britain). At
that time the machines and problems foreshadowed by World War I reappeared
in profusion. Radar, sonar, high altitude and high speed aircraft, naval combat
information centres, and air traffic control centres placed demands upon their
human operators that were often far beyond the capabilities of human senses,
brains, and muscles. Operators sometimes had to look for targets which were all
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but invisible, understand speech against backgrounds of deafening noise, track
targets simultaneously in the three dimensions of space with both hands, and
absorb large amounts of information to reach life-and-death decisions within
seconds. As a result, bombs and bullets often missed their mark, planes crashed,
friendly ships were sunk, and whales were depth-charged.

Having entered the war before the United States, Great Britain faced these
problems first and established a pattern that, in broad outlines, was followed
later in the United States. The Medical Research Council was responsible
for sponsoring much research on the Flying Personnel Research Committee,
the Royal Naval Personnel Research Committee, and the Military Personnel
Research Committee.

Although entering the conflict later, the United States met problems equally
urgent and dealt with them in substantially the same way. The National De-
fence Research Committee through the Office of Scientific Research and De-
velopment set up numerous research contracts in universities and industries to
study these problems. All three military services incorporated civilian and mil-
itary scientist-psychologists into their research and development laboratories in
order that research findings would be put to immediate use.

Before the birth of human factors, or ergonomics, in World War II, emphasis
was placed on “designing the human to fit the machine.” That is, the emphasis
was on training. Experience in World War II, however, revealed a situation
in which systems with well-trained operators weren’t working. During the two
world wars there appeared a new class of machines: machines that made de-
mands upon the operator, not only his muscular power but his sensory, percep-
tual, judgemental and decision-making abilities. For example, the job of a sonar
operator requires nearly no muscular effort, but it makes several demands on
his attentiveness and his decision-making ability. Problems of this type could
no longer be dealt with by common sense or by the time and motion engineer’s
principles of motion economy. That is why we say, engineering psychology was
created from within experimental psychology, which started during World War
II (1940).

Since then, the engineering psychology is well developed. Motivation for the
development of human factors and engineering psychology as disciplines has
arisen from three general sources:

• Practical needs

• Technological advancements

• Linguistic developments

All the problems and tasks appeared in the two world wars, for example, are
the practical needs. Experimental psychologists were brought in to analyse the
operator-machine interface, to diagnose what was wrong, and to recommend
solutions. This represented the practical need underlying the origin of human
factors engineering.

A second motivation has come from evolutionary trends in technology. With
increased technological development in this century, systems have become in-
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creasingly complex, with more and more interrelated elements, forcing the de-
signer to consider technology and automation. This problem has led systems
designers to consider the analysis of human performance in different kinds of
tasks. At the same time, with increased technology, the physical parameters of
all systems have grown geometrically. For example, consider the increases in the
maximum velocity of vehicles, progressing from the ox-cart; in the temperature
range of energy systems, from fires to nuclear reactors; and in the physical size
of vehicles, from wagons to supertankers and wide-bodied aircraft such as the
Boeing 747. Particularly with regard to speed, this increase forces psychologists
to analyse quite closely the operator’s temporal limits of processing informa-
tion. To the ox-cart driver, a fraction of a second delay in responding to an
environmental event will be of little consequence. To the pilot of a supersonic
aircraft, however, a delay of the same magnitude may be critical in causing a
collision.

Finally, an influence for the growth of human factors has come from the
field of information theory and cybernetics that began to replace the stimulus-
response language of behavioural psychology after World War II. Term such as
feedback, channel capacity, and bandwidth began to enter the descriptive lan-
guage of human behaviour. This new language enabled some aspects of human
performance to be described in the same terms as the mechanical electronic,
or information systems with which the operator was interacting, which helped
integrate humans and machines in system design and analysis.

2.5 Present

Since its birth, the field of human factors has evolved from a discipline applied
primarily to aviation and weapons systems, to one applied to a much broader
range of products with which people interact, including such things as toys, tele-
phones, medical devices and cars. Since World War II, the growth of engineering
psychology has been very rapid. At the present time, engineering psychology
is most fully developed and exploited as a speciality. People increasingly in-
teract with computers, or with other devices like automatic teller machines or
databases, through computer interfaces. Hence, the topic of human-computer
interaction has evolved into a major focus of human factors.

2.6 Conclusion

Despite the evolution of products, the fundamental importance of designing for
the strengths and limitations of the human user remains constant, because the
fundamental characteristics of the human user have remained pretty much the
same, as have the basic goals of human factors. It refers to that we should
continually focus on the human factors, and develop different system and tech-
nology around it.
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3 Susanne Brunner: Software Engineering:
HA, HCI, and HF - Differences and
Similarities

3.1 Introduction

According to D. Te’eni [TCZ07], human factors can be found everywhere in the
software engineering process. It begins with requirements engineering and ends
with customer testing. Human factors also surround the engineering process
since it is humans who develop software. Over the years this has drawn many
researchers, and their results have been collected in three main categories: hu-
man aspects (HA) of software engineering, human-computer interaction (HCI),
and human factors (HF) in software engineering.

HA focuses mainly on the human concerns of those developing a software
product, whereas HCI and HF are nearly exclusively concerned with ergonomics
for the end user. However the distinction cannot be made this easily since there
are hardly any definitions done by an international body of recognized authority.
While the area of HA is quite clearly divided from the other two, the distinction
between HCI and HF cannot be made this easily. The lines get blurred even
more because, while some authors give a personal definition in their works,
others omit it entirely.

This paper intends to give a general overview of what the three areas are, how
they are most commonly defined, and how they might distinguish themselves
from each other.

3.2 Human Aspects of Software Engineering

Human aspects (HA) of software engineering are the most easily specifiable
category amongst the three.

J. Tomayko mentions in the introduction to his book on HA that he “attempts
to highlight the world of software engineering from the perspective of the main
actors involved [...]: the individual, the team, the customer, and the organi-
zation” [TH04]. In general, it can be summarized as the study about human
factors regarding those on the development side of the engineering process.

HA covers subsections of many areas of study, for example workspace er-
gonomics, team dynamics, code ergonomics, and ethics.

Workspace ergonomics is concerned with providing an employee-friendly fur-
niture set-up that will help prevent typical office illnesses like repetitive strain
injury or back problems. Several ISO norms give hard regulations, for example
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ISO 13406-2 which sets baselines for brightness, contrast, and light reflection
of LCD screens for office work.

Knowledge in team dynamics has become essential because any sizable soft-
ware can only be created by teams. Next to different personalities, different
nationalities and cultures may be involved in the engineering process. As such
cooperation, and knowing how to foster said cooperation, is of utmost value
(see also [TH04]). Code ergonomics consists of program comprehension, code
inspections, and refactoring amongst others. Its intention is to make code easily
readable because it is highly likely that the code will be maintained or altered
by others in the future. Additionally, it will help polish and refine the code.

During the software engineering process, there may also arise questions of
ethics. In 1999, the IEEE-CS/ACM joint task force on software engineering
ethics and professional practices saw it necessary to copyright the “Software
Engineering Code of Ethics and Professional Practice”, a recommendation that
gives guidelines for how software engineers should conduct themselves. It has
been formulated on the basis of other codes of ethics, the Code of Medical
Ethics amongst others, because software has long become an intrinsic part of
life with far-reaching consequences [TH04].

All those subtopics are part of HA of software engineering; with the exception
of workspace ergonomics they have also become part of standard works on
software engineering. In most cases, however, they have not been mentioned as
human aspects or human factors. Ian Somerville, for example, lists (cf. [Som07])
them under the header of project management (ethics and team dynamics)
and best practices programming (code ergonomics); other authors use similar
categories.

In general it can be said that HA of software engineering are seldomly studied
as a human factors discipline, because the most relevant areas have already
become part of regular software engineering studies. Works like Tomayko’s
[TH04] are the exception.

3.3 Human-Computer Interaction

In comparison to human aspects of software engineering, human-computer in-
teraction (HCI) is only concerned with human factors of the end user, not the
developers. The ACM special interest group on computer-human interaction
defines HCI as “the discipline concerned with design, evaluation, and imple-
mentation of interactive computing systems for human use and with the study
of major phenomena surrounding them” (Te’eni [TCZ07]).

Historically, the term HCI has evolved from studies of the Ergonomics Re-
search Society which was founded in 1949. It was initially named “man-machine
interaction”; for gender-equality purposes and in recognition of the particular
interest concerning computers it has been renamed to “human-computer inter-
action” [DFAB04].

This renaming though laid the groundwork for future difficulties in a clear
definition of HCI: What is a computer?

Some authors like A. Dix in the first edition of his book on HCI [DFAB04]
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completely omit stating what the ’computer’ part consists of. Judging by the
input-output-equipment mentioned, it might be inferred that Dix is only talking
about personal computers. By the third edition though he refers to a computer
as “any technology ranging from the general desktop computer to a large-scale
computer system, a process control system or an embedded system” [DFAB04].
Dahm [Dah06] has a similar definition; Te’eni on the other hand explicitly
states that he restricts himself to office software and business applications only
[TCZ07].

Independent from any definition of ’computer’ though, nearly all works on
HCI model the influences on HCI with graphics similar to figure 3.1. Figure
3.1 is based on the one by Te’eni [TCZ07], with some simplifications for easier
readability. Human factors, psychology, computer science, and engineering are
the areas from which HCI draws the most information, with design a close
second. There are also various other influences, languages and sociology and
semiotics only a small selection, but they are of lesser importance.

Figure 3.1: A selection of subjects influencing human-computer interaction

Overall, a general overview over the books by Te’eni [TCZ07], Dix [DFAB04],
and Dahm [Dah06] has shown that the main topics, like usability paradigms,
error paradigms, design paradigms, and evaluation methods, are independent
of the scope of “computer”, too. As such it stands to reason that the ACM
definition given at the beginning of the section is adequate.

3.4 Human Factors in Software Engineering

In the literature research, no books on human factors (HF) in software engineer-
ing could be obtained. Works about HF in engineering were deemed irrelevant
because they dealt with hardware engineering only. Several exemplars titled
“Human Factors in Computing Systems” were volumes of CHI conference pro-
ceedings during the early nineties, and as such thought to be more relevant for
HCI than for HF. Others were subtitled with variations of “human-computer
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interaction”, and thus could not be used for a definition of HF.

Due to the fact that HF is also called “ergonomics” in the European lan-
guage area, works on software ergonomics were considered, too. Like Herczeg’s
“Software-Ergonomie - Grundlagen der Mensch-Computer-Kommunikation” [Her94]
though, they contained the same problem of not being able to be assigned to
one category only. None of them made a distinction between HF and HCI.

Judging by the level of overlapping in literature, it was assumed that HCI
and HF are largely identical. As such, the definition of HCI should hold for
HF, too.

In light of the problems with defining “computer” for HCI though, a definition
independent of HCI, and more importantly “computer”, should be found. The
name “Human Factors in Software Engineering” suggests to use “software”
instead.

Software, too, is subject to interpretation. For the most comprehensive def-
inition possible it must be used in its most general sense, namely instructions
telling a processor what operations to perform.

Figure 3.2 shows the different levels of software between user and hardware in
a desktop computer. Since users only interface with the application layer, there
exists the common misconception that only application software is software. In
embedded systems, however, the application layer might be absent entirely, and
thus such a narrowing of the definition of ’software’ would narrow a definition
of HF in software engineering too much.

Figure 3.2: Layers of software between user and hardware in a desktop computer

As a result, HF in software engineering can be informally defined as “human
interaction with machines which execute code”. Upon closer inspection this
definition is identical to the one given for HCI in the previous section since
computing systems are nothing but “machines which execute code”. However,
it avoids the problems that arise upon defining what exactly a computer is.
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3.5 Conclusion

Human aspects of software engineering, human-computer interaction, and hu-
man factors in software engineering are very closely related. HA deals with
human factors concerning software developers, whereas HCI and HF are con-
cerned with the end user.

In literature, HA are seldomly categorized as such; they are more likely to
be incorporated in general works on software engineering under the header of
project management and best practices programming. For HCI there exist
many works; however the definition of “computer” may vary from office soft-
ware only to personal computers only, to anything and everything including
embedded systems. HF in software engineering has largely been used as a syn-
onym for HCI in literature; however no works could be found which explicitly
stated an identity between the two fields or a definition for HF in software
engineering.

Since no literature definition could be found for HF and the HCI definition
strongly depended on the definition of “computer”, an informal definition based
on “software” was postulated during the course of this work. However due to
its identity with the chosen definition for HCI and the fact that HCI remained
the same independent of the scope of “computer”, it stands to reason that HF
in software engineering and HCI are indeed identical.
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4 Rupert Dürre: Human Factors Evaluation
Methods

4.1 Introduction

Human factors look to enhance a system’s performance, satisfaction and safety.
Human factors evaluation methods are used to analyze a system regarding the
human factors. They tell whether the design of a concept is adequate. This is
done by comparing the objective performance data, which has been collected
through tests, to the performance requirements, which have been determined
before the construction of the system. Furthermore the evaluation methods
show how well the decisions, which were made during the design process, turn
out in the end. But human factors evaluation methods are not only used during
the final testing and evaluation of a system. They are applied in redesign
analysis and the technical design too. Therefore they are important in all
design phases (cf. [Nem04]).

Thomas Edison, the great inventor, is an example for missed human factors:
he invented not only the light bulb and the motion picture camera, he also
invented the phonograph. His vision was a paperless office organized by letters
recorded to cylinders and send to the recipient. But in fact the real desire of
the customers was to listen to prerecorded music. Even after the desired use of
the photograph was discovered Edison failed again: he thought, he could save
money and maximize profit through recording lesser-known musicians. That
way he probably saved some money, but lost a lot of profit, since the customers
wanted to hear the well-known artists. Overall as you can see Edison missed
to adjust his developed technology to customers’ need and desires (see also
[WLLGB04]).

When talking about the human factors in software engineering, many peo-
ple just think about interface design. However, human factors go beyond the
interface to design the task, that the system is wanted to do. Moreover, the def-
inition of the course of human-machine-interaction is part of human factors, as
well as the collection of data about the organization of people and technology.
This means, that the methods want to evaluate the interaction of people with
the system, the goals the users try to achieve and of course the relationship
between both.

4.2 Fault Tree Analysis

As a practical introduction to human factors evaluation methods, an example
we show (ex. Figure 1). The figure contains a Fault Tree Analysis (FTA).
The root of the tree is a database failure screen and the FTA aims to identify

19



R. Dürre: Human Factors Evaluation Methods

the basic events that cause the database error. Diagrams are often used to
visuals and simplify the modeling and analysis of complex software systems.
This diagram represents a technical analysis for the problem’s occurrence (cf.
[Cha96]).

Figure 4.1: Fault Tree Analysis for the evaluation of occurrence of faults

Since Human Factors target to evaluate the human-system-interaction, it is
obvious that the diagram from Figure 1 has to focus intensively on the user’s
error event and errors, that occur during this interaction. This event has to
be considered accurately. Therefore this event is splitted into more sub events
that contribute to the error occurring during the interaction between user and
system. In this human factors failure evaluation, it might be useful to change
the main event from the failure screen to a more general event that includes
more possible errors in human-system-interactions. Therefore we changed the
diagram from Figure 1 to fit the human factor analysis requirements. The result
is presented in Figure 2. It is striking that the FTA is the same technique for
engineering and human factor evaluation proposal. Thus it is a representative
example for many human factors methods that were originally used during the
engineering process or the engineering based evaluation of a system. Many
engineering methods have been converted to human factor evaluation methods
through focusing the analysis on human factors. Remarkable is that the human
factor might play into that adoption of technical methods: people are used to
work with these methods, so they take them out of their original context and
use them to analyze different topics [Cha96, Nem04].
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Figure 4.2: Fault Tree Analysis for the evaluation of occurrence of faults

As a graphical technique the FTA contains different elements. You have
seen the most important elements in the both FTA diagrams in the beginning.
Additionally they are listed in Figure 3. The usage of the elements will be
defined in the following and illustrated with the example diagram in Figure 2
(see [Cha96] for more details).

Figure 4.3: Fault Tree Analysis - Graphical elements

Generally a FTA consists out of four steps. At the beginning the main failure
event has to be defined, since it will be the failure event we focus on. It can
be an actual event that has appeared on the running system or it can be an
imaginary event on a system that will be developed. Moreover, the input for
the FTA can be the result of a risk analysis. The defined failure will be the
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root of the fault tree later on.

The second step is to add events and conditions that could have caused the
failure event. The nature of the causes is dependent on the focus of the analysis.
In human factor evaluation the analysis will concentrate on the errors occurring
during the human-system-interaction.

Afterwards we have to assign the appropriate logic gate to the defined cause
events and condition. If both cause events have to occur to induce the con-
sidered failure event, we combine the events with an AND-gate. If either one
can cause the failure event by itself we use an OR-gate to connect the events,
causes and conditions.

Those two steps are repeated for each event that arises until we have exhaust-
ing information for the complete FTA. When this point is reached we simply
put our information together and organize it in a tree: therefore the main fail-
ure event is used as the root and all defined causes and conditions will be put
into the tree as they were defined during the previous procedure.

At the end the FTA provides a diagram that represents the collective faults,
or impairments to performance, that can result in a dysfunction. Moreover
it shows how a series of events can lead up to the considered failure. In the
further process it is demanded to anticipate and reduce those potential sources
for undesirable events (more details are presented in [SSB+04]).

4.3 Human factors evaluation methods - Approaches

After presenting the FTA from the point of view of a human factor evaluation
method, more approaches to analyze human factors in (software) systems will
be given. Before that some general information about human factors evaluation
methods will be provided. Basically there are three kinds of evaluation meth-
ods. At first a theoretical analysis can be done: thoughts on a system that is
currently or will prospectively be developed are the base of the analysis. This
approach is often performed in early design and development stages to spec-
ify the design goals during the systems. Also it is used to clarify whether the
currently defined design goals meet the requirements of the system.[WLLGB04]

Another way to evaluate systems is by using simulation. Simulation can be a
computer simulation, a mock-up simulation or a combination of those two sim-
ulations. Computer-based simulation is the faster, more accurate and at times
less costly approach. Mock-up simulation means building a physical prototype
and it is preferable when a family of related systems has to be evaluated. This
approach is often used during the development of a system. Through simulation
it is easier to compare the current design of a system to the requirements that
were defined at the beginning.

The last approach is to execute actual operations on a system. Therefore
the system has to be running. This approach is pretty similar to mock-up
simulation, except the system is more finalized and the evaluator has less control
over the test conditions. The simulation as a human factors evaluation methods
will be described in the end of task analysis [Nem04].

Often it is difficult to categorize a Human Factor Evaluation Method to one
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of those approaches, because they appear interlaced. Moreover they may be
used in every design step and be influenced by each other.

4.4 Task analysis

The most important method to evaluate a system is the task analysis. The
purpose of the task analysis is to understand and represent human and system
performance in a particular task or scenario. It can be described as “the study
of what an operator [...] is required to do, in terms of actions and cognitive pro-
cesses, to achieve system goals”[Cha96, p.36]. So, a task analysis describes the
human-system-interaction to understand how to match the demands of the sys-
tem to human capabilities. Therefore it is called “activity analysis”[WLLGB04]
sometimes. Three terms often used in task analysis are goals, functions and
tasks. Those terms will be clarified now to prevent misunderstanding. A goal
is the reason or end condition for performing a task. Functions represent the
general transformations a user has to perform to archive a goal and tasks are
the specific activities a user has to do to carry out a function. So a goal does
not depend on technology, it remains constant, but technology can change the
tasks (see [WLLGB04]).

Generally the task analysis consists of four basic steps: define the purpose of
the analysis, collect the required data, summarize the collected data and finally
make further analysis with the data.

4.4.1 Defintion of the purpose of the task analysis

At first the purpose and the required data of the task analysis has to be defined.
This is critical since a task analysis can last for a longer time and be very
costly consequently. Therefore it is necessary to describe the task that should
be analyzed.

Generally tasks can be divided into physical tasks and cognitive tasks. To
visualize those two terms think of the swipe touch gesture on smartphones: the
physical task is to set the speed, distance and direction of the swipe gesture
to call a specific functionality(for more details cf. [WLLGB04]). The cognitive
task would be the decision what the values of the speed, distance and direction
should be. Hence a human factor specialist is demanded to pay strong attention
to cognitive component if his task analysis concerns a complex decision making,
problem solving or diagnosis or if a large amount of prior knowledge is needed
to perform tasks. Additionally a large and complex rule structure based on
specific situations requires increased compliance by the specialist.

Tasks can be described by several different ways. In the following four differ-
ent types of describing task information will be defined:

The first described important information collected in many task analyses are
hierarchical relationships, which describe the composition of tasks out of sub
tasks and how tasks combine to functions (for more details see [WLLGB04]).
In the smartphone example the “take a picture”-function is a combination out
different tasks like: release key lock, open camera application, frame the picture
and press trigger. Release key lock is defined through multiple sub tasks, since
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you first have to press a button and then pull a slider over the touch screen.
Through the description of the hierarchical task structure, the many occurring
sub tasks become understandable. Another advantage is that the hierarchical
relationships provide a powerful hint for designing training program, because
natural groupings of tasks are identified.

Another approach to describe tasks is information flow, which describes the
communication between people and the system. Moreover the roles that the
people play within a system are considered. In software engineering the creation
of system with multiple different users and privileges is a important subject.
Therefore information flow is very useful in this area (cf. [WLLGB04]).

Describing the task sequence can also be used to obtain information about
a task. Here the order and relationship of tasks over time is taking into con-
sideration. An example is the “take a picture”-function from [WLLGB04]: the
goal of taking a picture would not be archived if a failure in the task sequence
would have been happened and the user tries to open the camera application
before the key lock has been removed. This shows that a specific task order is
needed to archive a goal. The information included in a task sequence is the
goal of the task, the starting event of task sequence, the duration of a task,
the concurrently performed tasks and a sequential relationship, which describes
the dependencies between the tasks. The question behind a task sequence is
whether the system is efficient and if people like to work with it.

The last type of information on a task is the location and environmental
conditions, which describe the physical world in which the tasks occur. For the
human factors evaluation considering software systems this is the least impor-
tant task description technique.

All tasks are described from different perspectives through those four task
descriptions. This is necessary for a comprehensive task analysis. After the
purpose of the task analysis and the required data is identified, task data needs
to be collected, summarized and analyzed.

4.4.2 Collection of data

The second step during task analysis is the collection of data. Data about a
task in a system is collected through extensively interaction with multiple users.
The approach to collect the data depends on the information required for the
task analysis. At best a human factor specialist gathers information during
observation and questioning of users as they perform a given task.

During observations users are monitored while using an existing version of
the system. Therefore many different types of users have to be found and
afterwards those users are asked to perform some specific activities under a
variety of different scenarios. The observer follows the work, asks questions if
needed and tries to identify different methods that are used for accomplishing
a goal. Observations have many advantages, especially to interviews or focus
groups: at first they can be performed either in the field where they usually
are done or in a simulated or laboratory situation. Moreover sometimes things
that people say they do, do not match with what they do. For example they
omit crucial parts of their work. Further they might have difficulties imagining
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(new) techniques. But since the structure of users work is often revealed in
their thought, observations alone are not enough (see also [WLLGB04]).

Another data collecting method is the think-aloud verbal protocol. In this
technique the user thinks out loud while performing various tasks and pro-
vides in this way insights into his underlying goals, strategies, decisions and
other cognitive components. Verbal protocols can be categorized in three types:
prospective, concurrent and retrospective. In prospective verbal protocols the
users think aloud while imagine to execute a given hypothetical task. It might
be difficult for the user to imagine the technique to use. Concurrent verbal
protocols are obtained during the task performance and therefore they are diffi-
cult to obtain sometimes, because the user may have difficulties verbalizing their
thoughts while performing complex tasks. During retrospective verbal protocols
the user talks about how he performed a task. Basis of the user’s review might
be a video made during performing the task or his memory. Since this type of
think-aloud-protocol is easier to the user, it has been showed (cf. [WLLGB04])
that the data received in retrospective protocols is the most useable, despite
the errors occuring when reminding from long time memory.

Unstructured and structured interviews are other methods to collect data:
the user is interviewed and asked to describe the general activities they perform
using the system. It is necessary that the human factor specialist does not only
ask about how the user performs a task, but also about the user’s strategies
and preference. By that the analyst should note point where the user feel
uncomfortable, fails to achieve their goals and shows a lack of understanding.
The difference between both interviews is that the unstructured is more like a
free conservation, because there is no particular method in use for structuring
the interview. The questions asked are more general like: “How do you feel ...?”
and “What do you ..?”. More details are presented in [WLLGB04].

Structured interviews [WLLGB04] use a predefined template of questions
that the analyst will be asking. The questions and methods used to structure
the interview make it more efficient, complete and comparable to other inter-
views. In this case the human factor specialist prepares questionaires and notes
and then conducts several interviews with each user. The interview is recorded
sometimes to have a better opportunity to analyze it afterwards. Often hierar-
chical relationships work well as description of tasks when using interviews to
collect information, because interviews can easily be structured with questions
about the relationship between functions, tasks and sub tasks.

Surveys and questionnaires [WLLGB04] are the written counterpart to in-
terviews. Since there are no meetings between the analyst and the user, it
is time-saving, but also not as reliable as interviews. Often surveys are often
collected through free online-tools. Of course there are many more ways to
collect task data, but the most important ones have been picked out and ex-
plained before. After the data collection has been successful, the next step is
to summarize data, since the gathered information has to be documented and
organized.
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4.4.3 Summarization of the collected data

Basically there are three different ways to summarize the gained data. The
first option is to organize it static lists, outlines and matrices. At the beginning
the gained data is written into lists, but when the hierarchical outline gets rela-
tively complete, the data is transformed to outlines and matrices, where related
information for each sub task is specified. In a matrix every task typically has
one row and the associated columns describe the task in terms of information
input, required actions and duration for example.

Figure 4.4: Hierarchical Task Analysis - Diagram

One further way to summarize data is to organize its hierarchies. This is a
more useful way to describe tasks than lists and matrices, because tasks tend
to have very complex hierarchical organization and this complex organization
is easiest to describe and analyze when the information data is depicted graph-
ically. That is why hierarchical chart and hierarchical networks are used often.
In the following the Hierarchical Task Analysis (HTA) will be described as a
representative of the hierarchical charts. The HTA organizes tasks as action to
accomplish higher level goals. Therefore tasks are divided into sub tasks and
plans. At first all task and sub task goals are determined and plans, which de-
scribe the task sequence and conditions for a task to be executed, are defined.
A HTA helps with human factor evaluation, because from the HTA diagram it
is able to analyze why the execution of a task is failing. So maybe the sequence
of tasks described in the plans is too difficult for the user or the conditions do
not fit with human expectations. An example for a HTA diagram is given in
Figure 4. The task depicted is the createExam-Task, which is available in an
imaginary online tool to create and evaluate exams (cf. [WLLGB04]).

The last task data summarization technique is to organize it in flow chart,
timeline and maps. Those diagrams capture the chronological sequence of sub
tasks as they normally are performed. Also the decision points for taking alter-
nate pathways are depicted. A popular type of the flow chart is the operational
sequence diagram (OSD). The OSD describes the interaction between the op-
erators and the system and combines the events, information, decisions and
actions involved in products use into a single diagram that is organized along
a time line. As a sophisticated task summarize method, the OSA can be used
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Figure 4.5: Operational sequence diagram from [oT12]

to develop a picture of a system operation that provides information on many
different levels: it indicates the functional relationships among the multiple sys-
tem elements, traces the flow of information, shows the sequential distribution of
operations, identifies the input and output of subsystems and makes the result
of alternative design configurations explicit. Figure 5 shows an OSD diagram.
The background of this diagram is a mobile phone app, which helps on a trip
to search for motels near to user’s current locations. With the diagram the hu-
man factor specialist can identify discontinuities in timed relationship and look
for opportunities to cut redundancies. Generally the time analysis shows the
specialist whether the system is usable. For more details cf. [Cha96, Nem04].
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4.4.4 Analyze the collected and summarized data

After the three ways to summarize data are explained, the human factor spe-
cialist can use the data collected and summarized before for further analysis.
Besides the intuitive inspection of the gathered and organized data, that prob-
ably has been executed parenthetically in the previous steps also, there are
formal methods to analyze task data. A few of them will be presented in the
following.

The network analysis [WLLGB04] is a matrix manipulation and can be used
to examine information flows in a network. Therefore the relationships between
different identities in a graphic are transformed in a matrix. As example the
matrix in Figure 6 displays the from-to-relationships from the flow diagram in
Figure 7.

Figure 4.6: Network Analysis - Diagramm

Figure 4.7: Network Analysis - Table (from [WLLGB04])

From table it is easier to see that function 2 is the one providing the most
output and function 3 is receiving the most input. The table is most useful
when there a too many functions and the graph becomes more complex. A
practical example for such an analysis is a website, where you have statistics
on which page is visited how often and from where the visitors are directed
from. If you have a page or function on the website this diagram will help
you finding what problems occur and cause the lack of usage. The link to site
could not be visible for the user or some browsers cannot display the link or
the task sequence to get to the page/function could be too complex. Through
this analysis, new approaches to solve the problem are imaginable.
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Another approach in analyzing the collected task data is by creating scenarios
out of the data (cf. [WLLGB04]). A scenario describes a situation and a specific
set of tasks with an important role in the system. In software development
scenarios are the first step in creating and evaluating the sequence of screens.
Moreover scenarios define also tasks that users might be asked to complete in
a Think Aloud Protocol or an Interview.

During the creation of scenarios only the tasks, which serve directly to users’
goals, are retained. Scenarios can be categorized either in daily use scenario,
that describe the common set of tasks that occur daily, and in necessary use
scenarios, which describe infrequent used, but nevertheless critical sets of tasks.

Simulation and modeling [WLLGB04] can also be used as a method to analyze
task data. Simulation generally predicts a dangerous or complex system or at
least a part of it. It offers different possibilities: it can be used to either
examine, evaluate or optimize a potential solution or compare alternatives.
Some uncomplicated purpose can be evaluated with a simple “yes” or “no” to
tell whether the concept does what it is supposed to do.

The mock-ups, models and prototypes (cf. [WLLGB04]) made by designers
and engineers are used to simulate a concept. In that sense it is a design
method. But each technique is also meant to collect and analyze data on human
performance and preferences. Including the fact that increasing the efficiency
of the human performance is the goal, it is obviously that simulation is also a
human factors research and evaluation method.

The prototypes can be classified in two dimensions: the first dimension deter-
mines whether the prototype is physical or analytical. Physical means that the
prototype approximates the product to evaluate its feel, demonstrate the con-
cept and demonstrate how it functions. Analytical prototypes only represent
traits for the system. The other dimension describes whether the prototype is
comprehensive or focused. Comprehensive prototypes are a full-scale operation
version of the product, for example a beta version of software. A prototype is
focused if it implements only a few of the product attributes. Unit testing that
is made during software engineering corresponds to focused prototypes. The fo-
cus often refers whether the function (“acts like prototype”) or the composition
(“looks like prototype”) is presented in a prototype. In software engineering
the “act like prototype” and the “looks like prototype” often are developed
separate and then merge in the end. A concrete example is the creation of a
complex JavaScript-based website. In some cases a designer gives a first design,
a “looks like prototype”, which is the basis for the further implementation.
The designer and programmer both work separate on that basis: the designer
polishes his design and the programmer implements the JavaScript behavior on
the first design (“acts like prototype”). In the end they both merge their work
and develop the finished system. For more details see [Nem04].

Another term often used with prototypes is the “paper prototype” [Nem04].
This is often used in development of software systems and it gives a preview of
the user’s interface.

After presenting the analysis of user’s data you had an overview over the
steps included in the task analysis, the most important method to evaluate
system regarding human factors. The task analysis is very valuable, because
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it contains and uses many other evaluation methods. Moreover it contributes
to more evaluation techniques. For some it is a basically prerequisite. As
shown in the FTA many evaluation methods originally were technical evaluation
methods. Therefore it is necessary to really focus the evaluation on human-
system interaction and the human capabilities while interacting in the system.

4.5 Conclusion

The presented human factor evaluation methods serve to satisfy and optimize
the interaction between a user and a system. They help to understand failures
in different parts of this interaction. By that, the methods give approaches
to correct the failure and improve the interaction process. It is important to
understand that evaluation does not mean that a system is evaluated after
being finished, but it has to be steady progress from the first designing step
on. It is preferable to include a human factor specialist early, because the
earlier a change to a system is made, the less costly the change is. Moreover,
it has a more personal reason: for human factor specialists it is easier to direct
something in the right direction than to figure out bad human factor traits in a
system in the end, because the engineer has put a lot of effort into the system
and it is hard to disappoint him.

Thinking about the example of Thomas Edison in the beginning: a developer
needs to satisfy the customer to build a successful system. Moreover the system
has to be efficient usable. But in this point it is not only about the customer,
also the developer desires to build a system that will be used and he can be
proud of.

Further the human factor as a science needs evaluation methods. This fact
is comparable to the psychology: at the beginning, psychology was not a real
science. The intuitive interpretation of the human mind and behavior was not
enough to gather general, objective explanations. By defining new research
methods that had measurable results and describing the human being from
different angles psychology rose to an accepted science.

30



5 Duc Nguyen: Human Error Paradigms

5.1 Introduction

For a long time, human has been accounted for a major proportion of system
failures or disasters. In [Dhi04] there is a collection of statistic, which shows
how much the share of human errors can be. In most cases, the human is
responsible for 30% to 60% the total errors which directly or indirectly lead to
the accidents. In some cases, like in aviation and traffic disasters, 80% to 90%
of the errors were due to human. Therefore, if we can reduce the number of
human errors, we can effectively lower the number of accidents and disasters as
well.

Nowadays, a significant attention is being paid for studying the human errors
and their causation. As a result, a number of error paradigms were introduced.
They are the common patterns for the causation of human errors. Using these
paradigms, we can quickly investigate the causes of a failure or accident. More-
over, since the errors in one paradigm often have some common solutions, it
is also possible to quickly find a method to solve the existing problems or to
prevent and avoid the probable errors.

5.2 Human error paradigms

Currently, four error paradigms were introduced [RR97]:

• The cognitive error paradigm, which focuses on the physical and psycho-
logical limitations of human.

• The engineering error paradigm, which focuses on the technical aspect of
the system and interact between the human factor and the system.

• The individual error paradigm, which focuses on the unsafe acts of an
individual and the reasons behind these.

• The organizational error paradigm, which focuses on the problems lie in
the organization and management.

5.2.1 Cognitive error paradigm

The cognitive error paradigm is based on the idea of the mismatch between
what people can do and what they need to do. This mismatch is the result of
the physical and psychological limitations of human as mentioned in [RR97]:

• memory failure
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• attentional failure

• information overload

• decision-making failure

The slips of action and memory lapses are the two most notable forms of
cognitive errors.

For this error paradigm there is no direct solution since even a person with
years of experience can still make this kind of mistakes unintentionally. How-
ever, we can improve the reliability of the human factor and reduce the possi-
bility that such errors could occur. For example, we need to think about the
tasks that need to be done, the context and situation where and when these
tasks will be performed, and also about the people who will perform these spe-
cific tasks. The cognitive limitation of people has to be considered during this
design phase of the system. Moreover, a system should be design in a defensive
way, such that even when an operator forgets to make an action, or mistakenly
tries to do something harmful, the system will not be badly damaged.

Figure 5.1: Relation between the effectiveness of human performance and the
demand of work

In addition to this, it has also be proved that the likelihood of making these
errors often get higher when people are in boredom or under stress [Rea88].
When the job demand is low, people tend to loosen themselves and therefore
make attentional failure. When the job demand is too high, people often get
stressed and thus, the chance of being overloaded with information and making
wrong decision will be higher. If we can find the balance point of the work
demand as shown in Figure 5.1, we can at the same time reduce the number of
these errors.
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5.2.2 Engineering error paradigm

Different from the cognitive error paradigm, which only looks at the human
factor alone, the engineering error paradigm sees the human factor as one part
of the system. The main idea of engineering error is that the human is typically
unreliable and therefore the interaction between the human and the system
makes the system flawed. As a result, the thought of “engineering out” human
from the system via automation was used as a solution for this problem for
a long time. In fact, the incorrect use of automation was one of the main
sources for errors and failures. Nowadays, the weak “link” between the human
factor and other components of the system is also considered as one of the main
causes for engineering errors and failures. Because of this, the paradigm tries
to improve the reliability of the whole system by strengthening the connection
between the human factor and the system.

Errors related to automation

The use of automation in a system can introduce new kind of errors [Bra87].
The first problem with automation is that the automatic system itself still has
to be designed and implemented by human. As a result, the automatic system is
not completely reliable and flawless. In addition to this, the automatic system is
normally more abstract and complicated than the original system and therefore
more difficult to test and verify its correctness.

The next problem with automatic system is the change of human role in the
system. Instead of directly interact with the system, people are now supported
to supervise and monitor the automatic system, which can lead to two possible
issues:

• Humans are generally poor at monitoring tasks since they are mostly
repetitive and lacking of motivation. Beside of attentional failure, there
is a very high chance that the operators overlook some important states
of the system and result in making a wrong decision.

• As the operators are no longer interacting directly with the actual un-
derlying system components, they can be “de-skilled”. Even so, they are
expected to act and keep the whole system running when the automatic
system fails.

One possible solution for this problem is a periodical re-training for the op-
erators, so that they will not only have a better and up to date understanding
of the system but also be prepared for the case the automatic system stops
working.

The last important problem with automation is its ability to influence the
decision-making process of people. There were several experiments that prove
the possibility of people making wrong decision because of the automatic system
[BHM08, SMB99]. One of the reason is that most information of the complex
system is hided by the automation “layer”, only a subset of the actual states are
available for the operators to see. If these states are displayed inaccurately or
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incompletely, the operators can make the wrong decision. Therefore, to prevent
this, the automatic system needs to be designed carefully and tested intensively.

Improving human reliability

The other main cause of engineering errors is the weak connection between
the human factor and other components of the system. This often is caused
by a bad human-computer interaction, or a bad system design that can easily
confuse the users (or the operators) who are working with the system. Another
example is a case when an operator needs to decide and act quickly but could
not due to the fact that:

• the action which need to be done is too hard to complete in a short amount
of time.

• the system displayed too much information that confuse the operator and
the operator ends up taking too much time to make a decision.

To eliminate these errors we normally have to apply a number of methods to
improve the usability of the user interface and make the system design better.
These methods include usability tests, tasks and system analysis.

5.2.3 Individual error paradigm

The main idea of this paradigm is that accidents are caused by unsafe acts,
such as violation of safety guideline or ignorance of warnings and hazards.
Unlike errors in the cognitive paradigm, which are made without intention,
errors in this paradigm are often the result of motivational and personality
issues and they are caused on purpose. For example, because of work overload
and dissatisfaction in working environment, a programmer could intentionally
bypass some steps in his development process to quickly finish his work. This
unsafe act of the programmer could result in buggy software or a more fatal
software failure.

The individual error paradigm was traditionally used to blame a failure on to
one person. The main concept was that errors are caused by a person not trying
hard enough or not pay sufficient attention to the tasks [RR97]. With this, if a
person made a mistake, he would be replaced with someone more suitable for
the jobs or has to get through training again.

Nowadays, instead of blaming the person, the paradigm focuses more on
understanding the reasons why people make mistakes or commit unsafe acts,
and then tries to eliminate those reasons. The most applied solution is to build
a better safety-culture for the whole company or organization, which encourages
every person to follow the safety guideline and pay more attention to their work.

5.2.4 Organizational error paradigm

When investigate a failure case, the individual error paradigm is often viewed
together with the organizational error paradigm. In compare to individual error
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paradigm, the idea of the organizational error paradigm is that all the human
errors need some kind of “conditions” in work context. These includes for
example (as listed in [RR97]):

• poorly designed procedures

• unclear allocation of responsibilities

• lack of knowledge or training

• low morale

• poor equipment design

• time pressure

The organizational error paradigm believes all these conditions can be traced
back to errors in the management and organization themselves.

Nowadays, there is a tendency to move away from blaming failures on indi-
viduals and toward the management and organizational issues. The errors in
this paradigm are viewed as one of the root causes for errors in other paradigms.

5.3 Example case: Therac-25

The Therac-25 case (cf. [LT93])was one of the biggest and most disastrous of
human error and engineering failure. Therac-25 is a radiation therapy machine,
which is used in curing cancer. In 1985-1987 it had caused 6 accidents in
which patients were overdosed with radiation. A typical single therapeutic
doses consists about 200 rad (radiation measure unit) and anything above 500
rad can be considered deathly for the human body. In these accidents the
patients received actually thousand times the normal dose, and most of them
died because of cancer and pain.

Most of the error can be categorized as engineering errors. The most obvious
mistake with the system is the bad design of the system. Therac-25 was an
extension of the two previous models Therac-6 and Therac-20 but it still use
the old software with only minor adjustments. It was the first machine that
the company tried to mix two modes in one machine: one low energy mode
and one high energy mode. In high energy mode, the filter plate must be
placed correctly between the patients and the machine, so that the beam could
be correctly used. In the accidents, because of some software failures, the high
energy mode was used without the filter plate, this result in a deathly overdosed
treatment. In the old models, the software sometimes causes errors, but it did
not lead to overdosed accidents due to the hardware interlocks. In Therac-25,
the company tried to replace these hardware interlocks with software checks.
This design is lacking of defensive.

In addition to this, the Therac-25 made a very bad experience of human-
computer interact. The first problem is its user interface, which sometimes
displayed inaccurate system states. Moreover, the machine only showed error
codes instead of full warning or error messages, and the codes were not even
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documented. As the result, the operator of Therac-25 often found it normal to
continue the treatment even after the machine showed warning messages.

The next errors can be found in the individual and organizational paradigm.
The manufacturer of Therac-25 had over confident in their product. The com-
pany overlooked the reports and feedback from the accidents most of the time
and therefore the actual fix for the machine was released very late. Together
with very little of training, this caused the operators not aware of the impor-
tance of keeping the safety guideline and as a result, they violated many of
the safety guideline. In some case, the operators conducted the treatment even
when the video and audio monitoring, which were the only method to observe
the patient in separated room, were not working.

5.4 Conclusion

As we had seen, the error paradigms are one of the most effective tools not
only to investigate and understand the causes of an accident, but also to help
improving the safety and reliability of a system. An important aspect of the
paradigms that we need to have in mind is the relation and dependency between
these paradigms. For example, an error in organizational paradigm can intro-
duce another errors in cognitive and individual paradigm as already discussed.
Moreover, one error can often be classified in more than one paradigm. There-
fore, to use the human error paradigms effectively, we have to view an error
under different paradigms and then apply all the possible solutions in order to
fix and improve the existing system.
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safety-critical systems

6.1 Safety-critical systems

The intention of this chapter is to give a short overview about human factors in
critical-safety systems. It describes the terms critical-safety system, safety and
human error and goes into more detail about different safety theories. Both,
reasons for system failure, and solutions are outlined, as well as human influence
on system safety. Additionally, contributing factors to human failure are also
addressed briefly. To understand the influence of humans on safety-critical
systems, it is crucial to specify what a safety-critical system is, and then to
analyse the role of the human in these systems. Per definition, accidents in
safety-critical systems have severe impact on human life or the environment,
including serious injuries, death and environmental harm. Nowadays, safety-
critical systems increasingly depend on software functionality during operation,
in the planning and the manufacturing process.

Safety critical software systems include some kind of the following function-
alities, however this is not a complete list (for more info see [Lab12]). Critical
software systems

• implements a critical decision making process,

• controls or monitors safety critical function,

• intervenes when an unsafe condition is present or imminent,

• handles safety critical data including displays of safety critical informa-
tion.

Examples for critical safety systems can not only be found in large industrial
facilities, but also in everyday objects. Medical devices like CADe (computer
aided diagnosis) and CADx (computer aided detection), or the anti-lock braking
system are just a few extract of the large variety. In high-hazard systems, these
are systems with high potential risk but low actual risk [BSHL08], the nuclear
and chemical industry, as well as aerospace have to be mentioned.

6.2 System safety

The term “system safety” describes the one hundred per cent probability that
the whole system, not only its parts, work as intended [BSHL08]. This is the
basis for every critical-safety system which is operated and build by humans, in
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order to ensure failure free operation. Thus, safety is a state in which failure-free
operation is possible and also meets additional conditions:

• correctness,

• robustness,

• freedom from failures.

Correctness means, that the system running as intended. This includes both,
conformity with the system specification, and the fact that the system doesn’t
adopt any state other than described in the specification. So the system is
doing what it should, but nothing more.

Robustness describes the ability to react to occurring failures and prevent
a system breakdown by taking the correct actions to re-balance the system.
Obviously these goals cannot be achieved and so we have to use a weakened
expression of the mentioned conditions. This is described in DIN 40041, DIN is
the German Institute for Standardization, which says that the above conditions
only have to apply in a certain time interval.

Over the past year the role of the human in critical-safety systems has changed
a lot and the human is more and more seen as a risk factor instead of a problem
solver. This conclusion can be drawn because of the amount of “human errors”
as cause of failure. In aerospace about 70 per cent and in nuclear energy about
52 per cent of the failures can be identified as human errors (see [BSHL08]).
With the increasing complexity of today’s software systems, the rate of human
errors will become even greater over the next years if there is no trend reversal.

One possibility to handle this problem is to increase automation, which re-
places the human and therefore eliminates human errors. The outcome of this
is, that machines do the actual work and humans only monitor what they are
doing. But automation of safety-critical processes can also expand the problems
with human operators. Because of the rise of responsibility of human work, er-
rors may lead to more significant accidents in the case of failure. This paradox
is known as “irony of automation” [BSHL08].

6.3 Safety research

Although disasters do not happen daily, history proves that even in ultra-safe
systems accidents only happen occasionally. The Bhopal disaster, Three-Mile-
Island incident or the Chernobyl disaster are just a few examples. Due to
these disasters it is crucial to investigate and find explanations to prevent avoid
further accidents. Turner, Perrow and Weick provide three basic theories what
effects can lead to disasters.

6.3.1 Man-made disasters

Investigation reports of accidents often point out problems of information flow
and misinterpretation of failure supporting events although, at first glance, the
catastrophe was unpredictable, a “fundamental surprise”. Turner wrote in his
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theory of “man-made disasters” [BSHL08] about this paradox and identified
some reasons for all of the analysed disasters. Especially contributing factors
which do not immediately cause errors, but have a large spatial and temporal
distance to the trigger will be a problem for correct information interpretation.
Reason goes more into detail about this fact and considers the background of
an error as much as the error itself. He distinguishes between “active errors”
and “latent conditions” [Rea90].

Active errors occur at the human-machine interface and are generally pow-
erful enough to immediately cause unwanted consequences. Due to their easy
identification, active errors are more in the focus of public discussion and com-
monly lead to penalisation of the responsible person.

Latent conditions do not cause accidents itself, but are a great contributing
factor which reside unknown in the system until, in combination with an active
error, lead to an accident. These contributing factors often have no foreseeable
connections to the error, so safety is no primary goal of them. A latent condition
can be found on every level of an organisation, examples include structural
design or employee training and are for that reason hard to identify and prevent.
Despite, or perhaps due to their distance from the actual accident, it is crucial
to investigate, because a person who commits an active error always suffers
from already existing latent conditions.

Figure 6.1: Swiss cheese model by Reason [Rea90]
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Figure 8.3 shows how latent conditions and active errors contribute and then
cause an accident. The slices in the model represent safety barriers in a system
which prevent accidents. Without a security gap, an error committed on any
level of the company cannot break through the the barriers and therefore not
lead to a disaster. However, every system has at any time plenty of security
gaps, as illustrated in 8.3. These are unsafe acts which did not directly lead to
an error, but rest until some conditions come together. Additionally, only one
small hole in each barrier is not sufficient, they have to be arranged one after
another so that an active error can pass through all of them and thus result in
a catastrophe.

6.3.2 Normal accident theory

According to Perrow and his “Normal accident theory” [BSHL08], system fail-
ure is a normal process and has to happen in every complex system. Perrow
claims that unpredictable interdependencies result in errors and are natural
consequences for every system with “complex interactions” and “closely tied
components”.

For humans, complex interactions are not obvious and their outcome cannot
reasonably foreseen at that time. A heat exchanger for instance, which works
as a heating unit, too. A malfunction of one component also affects another,
at first glance completely different, part of the system. This problem is very
hard to take stock of for the operator. If there are too many of these complex
interactions in a system, then human errors will be more likely.

On the other hand, Perrow also identified closely tied components as possible
risk factors for system failure. An example for closely tied components is the
just-in-time production in the automobile industry. Many external suppliers
deliver small parts of the system, which are the put together to form the whole
car. Therefore, it is possible that delivery problems of one supplier can lead to
a stop of the whole production line, because the cars cannot be completed.

This example of closely tied components in a system shows that there are
benefits of this strategy (no storehouse costs) but malfunctions will have large
impacts on the system. On the contrary, system design can also be loosely
tied. Occurring events then have less impact on the system, because it is able
to absorb errors until a particular point and re-balance the system. Buffer or
duplicate systems are an example which can help to maintain system status.
The system designer has to consider all these factors and find a balance of
the pros and cons of closely or loosely tied components to ensure safety in all
components.

6.3.3 High reliability theory

Weick’s and Roberts’s high reliability theory deals with organisations where
fewer accidents then statistically predicted happen (see [BSHL08]). Their main
interest focused on the failure-free operation in high hazard organisations, more
precisely their research is based on observations on air craft carriers, the nuclear
industry and the federal aviation administration.
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Heedfulness was identified as main safety feature which depends on several
characteristics:

• fault tolerance,

• no simple interpretations,

• flexibility in organisational processes,

• respect for technical knowledge.

Additionally, it is crucial for system safety that employees try to constantly
reinterpret the system status to be able to rapidly react to malfunctions and
therefore prevent accidents. The combination of these desired paradigms results
in the high reliability of the examined area.

6.3.4 Accident prevention

There are plenty of ways to ensure system safety and prevent accidents. The
whole scope goes beyond the overview of this paper, which therefore only de-
scribes some safety principles and possible safety management strategies to a
limited extent.

One safety principle is for example, to design “fail safe” systems [BSHL08].
This involves predetermined breaking points and duplicate system components.
The first named requirement targets the ability to prevent accidents despite of
a malfunction, so it can balance the occurring defect and still work as intended.
The second requirement builds upon redundancy. Systems of safety critical
importance have to be implemented duplicate with the same or slightly different
functions (but with the same outcome), so that a one component failure does
not affect other connected components. Autopilots in aerospace are a suitable
example for duplicate systems. Only if two out of three independent autopilot
systems of an aircraft do work, the pilots are allowed to land the aircraft with
the automated system.

Another safety principle attacks after an accident has happened. The main
idea of “Defence in depth” [BSHL08] concentrates on safety features which
become important on after another. A failure of the first safety barrier will not
directly lead to an accident, but rather trigger the next barrier.

Other strategies to ensure system safety are described by Rasmussen [BSHL08]:
Feed forward control addresses detailed predictive strategies such as security
and evacuation plans which are identified by risk analysis.
Feedback is generated out of operating experience event history analysis, so the
knowledge of past is used to prevent accidents in the future.
In combination, the effective implementation of both methods contributes to
more system safety.

6.4 Human error and disasters

As already mentioned the role of the human as risk factor is very problematic
in critical-safety systems and accidents are just a matter of time. With regard
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to judicial investigations it is crucial to mention, that not every human error is
intended and therefore the perpetrator cannot be blamed for his actions. This
means, there has to be a distinction between intended actions, they are called
mistakes, and slips, which describes an unintended action. A mistake would for
example be, if a the operator mixes up two levers, due to a lack of concentration,
whereas a slip would be if he open a valve, because he does not know that it
should not be opened at that time.

For error prevention it is important to work out the reasons for human errors.
There are many different classifications about what causes human errors, one
example is from Senders and Moray [BSHL08]:

Employees Job Equipment and Tools

Age Arousal, fatigue Controls, displays
Ability Physical workload Electrical hazards
Experience Mental workload Mechanical hazards
Drugs, alcohol Work-rest cycles Thermal hazards
Gender Shifts, shift rotation Pressure hazards
Stress Pacing Toxic substance hazards
Alertness, fatigue Ergonomic hazards Explosive hazards
Motivation Procedures Other component failures
Accident proneness

Surrounding Environment

Physical Environment Social/Psychological Environment

Illumination Management practices
Noise Social norms
Vibration Morale
Temperature Training
Humidity Incentives
Airborne pollutants
Fire hazards
Radiation hazards
Falls

Table 6.1: Causal and contributing factors for accidents by Wickens [Wic04]

“Endogenous errors” are based on physiological and biological factors, in-
dividual knowledge and skill, as well as information processing and employee
motivation.

On the other side are the “exogenous errors”. They include organisational
factors and the working environment, plus team based causes.

Some of the factors from each category are mutually supportive, such as a
non-ergonomic working environment with physiological and biological factors.
The complexity of a work task (exogenous), for instance, influences the moti-
vation of an employee (endogenous) and increases error probability.

Table 6.1 gives an overview about contributing factors to human errors and
represents the large field of human factor research.
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6.5 Conclusion

This paper gives an overview on critical-safety system system and presents
several explanation attempts for human errors, their causes and prevention
methods. Safety research is a vital research field with increasing importance
due to the human desire for safety, effects for the environment and economic
losses. Furthermore, the increasing risk potential of critical safety systems re-
quires more and more attention to ensure system safety. Thus, involving human
factor methods and analysis gets more and more important nowadays, and is
fundamental to meet the requirements of complex systems and to eliminate
human errors as main cause for accidents. Additionally, human factors have
to be involved even more, to meet the requirements of complex systems and
eliminate human errors as main cause for accidents.
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7 Tomas Ladek: Specific features of UI for
web-applications in comparison to other
kinds of software applications

7.1 Introduction

Web-applications assume a very special role in the software landscape. In it’s
early years the World Wide Web was thought of as a completely new medium
and a definitive alternative to all software that until then existed mostly on
individual computers only. In other words web-applications were designed so
they could replace installed applications. One key aspect of this kind of software
however, the UI, would not change much, because the human factors that come
into play there also haven’t changed, naturally. In the following will be sum-
marized, what UI features web-applications make use of and a parallel between
installed applications will be drawn.

All facts that will be presented are the summary of findings from these three
books: Grundlagen der Mensch-Computer-Interaktion by Markus Dahm, Us-
ability – Nutzerfreundliches Web-Design by Vittoria von Gizycki and Markus
Beier and Usability praktisch umsetzen by Petra Vogt and Sven Heinsen.

7.2 Overview of web-applications

This section’s purpose is on the one hand to define what the terms “installed
applications” and “web-applications” in this paper stand for and what they are
and on the other hand to give some explanation for the development toward
the latter.

In this paper only “installed application” will be considered an alternative
to web-applications and all comparison will be made only between those two
types of software. Installed application is the term for a single program that
needs to be installed prior to usage and which runs in it’s own separate process
(i.e. not as part of a process of the operating system) but on one machine only.
Good examples are the well known Microsoft Office components like MS Word,
MS Excel, MS Outlook, Adobe products like Acrobat Reader, Photoshop or
Premiere Pro, instant messaging clients like ICQ, Skype, development tools such
as eclipse or MS Visual Studio and even web browsers themselves like Firefox,
Opera and Chrome. Games however, while technically also being installed
applications, are a special case in terms of UI and aren’t taken into consideration
in this paper.

The term “web-application” in this paper is used for applications that strictly
divide business logic and presentation in the following way: the business logic,
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meaning the program’s (complex) algorithms, runs on relatively powerful servers
generally in one place in the world, whereas the presentation (or “user interface”
- UI) is handled exclusively by relatively simple and weak client machines in a
web browser, potentially located all over the world. The UI of web-applications
is a website which is accessible by entering a URL1 in a web browser. Focusing
on the UI, the term website will in this paper be used as a synonym for web-
application. Good examples of websites this paper is about are google.com,
amazon.com, facebook.com, youtube.com, ign.com/boards, guardian.co.uk and
similar.

The separation of the software aspects described in the last paragraph led
to many advantages of web-applications over installed applications. To list a
few: no need to install or update other software besides the web browser2,
fast access to very different services like social networks, information websites,
forums, eCommerce sites etc., up-to-date information thanks to a dynamic con-
nection between the user and the site provider and the possibility of personal-
ising the viewing experience through browser settings. Being so versatile and
facilitating the whole process of contact establishing and purchasing/selling,
web-applications became also economically very valuable. All these aspects, in
particular the user’s rising need for up-to-date information, have caused the
software landscape to increasingly favor web-applications over their installed
counterparts.

7.3 Usability of websites

This section describes important UI features of websites and explains the human
factors that play a role in web design and development in order to make web-
applications usable.

7.3.1 Definition of usability

In it’s definition of “usability” ISO3 mentions three aspects under which a
product (in this case a website) can be rated: effectiveness, efficiency and sat-
isfaction. When a website performs well in every one of these aspects, it is
considered “usable” or having the property of “good usability”. Effectiveness
of websites in case of information sites simply means that all information a
users is looking for on the website is actually present. On eCommerce site ef-
fectiveness would be that a desired product can not only be chosen but also
bought, etc. Efficiency measures the amount of employed resources (mostly
time) by which a user can achieve the task he came to do on the website. Sat-
isfaction cannot be easily measured and can only be statistically approximated
as it depends on every user’s individual pleasure.

1Uniform resource locator - “address” of a website on the internet, in the simplest case
2browser plug-ins may be installed additionally to view some web pages
3International Organization for Standardization
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7.3.2 Structure of and navigation on websites

Installed applications and websites differ very strongly in the way users operate
them. Installed applications often rely on a variety of menus and on buttons
that change the program’s mode and/or confront the user with different prop-
erty windows and dialogue boxes. Websites work instead with fewer and smaller
menus, on several pages or parts of pages rather than in modes and almost com-
pletely omit the use of property windows (or new windows in general). This is
because when working with the web people associate new windows opened by
the browser mostly with pop-up adds and many also install browser plug-ins to
prevent their potential opening.

Structure

Designing a website with multiple webpages poses a challenge since all of the
pages need to compose some sort of a reasonable structure. Failing to establish
a clear site structure will lead to confusion of the user, which in turn decreases
the efficiency of the website and therefore makes it less usable. Human short-
term memory is known to be able to hold 7±2 items, so while it’s theoretically
possible to navigate on this number of pages that are linked together randomly,
a website with a page amount higher than that should help the user orient
himself by ordering and linking the pages in such fashion, that he does not have
to remember any one single page and still can navigate to any other page easily
only by understanding the underlying structure. For the sake of simplicity
or manageability websites tend to consist of rather small pages, but many in
number. The usage of installed application, however, revolves mostly around
one main work area that is modified by button presses or settings in property
windows. Therefore the emphasis on structure lies more with web-applications
and is critical for their usability. Examples of possible site structures are:

• Linear - simple sequential ordering of pages.

• Hierarchical - pages are ordered in a tree form.

• Network - hierarchical structure with links between some or all branches.
This is the most common structure form since it makes navigation simpler
and faster

Navigation

A linear structure is the most understandable and straightforward for humans
- web browsers support navigating linearly forward and backward one page at
a time with a forward and back button respectively. Most websites are making
other navigation possible through menu bars and similar elements that are
usually found at the top and left of the pages (this became a quasi-standard).
Some standard navigation elements like a “contact”, “help” or “shopping cart”
link are expected to be found on every website (the latter in case of a eCommerce
website). A site map can be found on some websites and is a full representation
of the website’s structure but it can grow too large and confusing and therefore
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is not used very often. There are two major navigation styles that are chosen
by web designers and developers:

• Horizontal bar at the top

– advantage: saves space

– disadvantage: only a very limited number of items next to each other
fits on the screen

• Vertically ordered items on the left

– advantage: very good readability

– disadvantage: consumes potentially a lot of space of the page

The reason why left-aligned items underneath one another are readable well
is that after completely reading an item the human eye can quickly jump one
position downward and begin reading the next one, with the hight and the gap
between lines as well as distance from the left border usually not altering from
item to item.

Another fairly popular navigation element (in the hierarchical/network struc-
ture) is the “breadcrumb”. It’s a display of hierarchy levels that the user
descended and optionally the level he is currently located on. The level de-
scriptions are mostly clickable links, allowing for a quick way up the hierarchy,
possibly skipping levels. The breadcrumb items are best placed horizontally
from left to right, separated by a greater than sign (“>”) which has proven to
be most understandable by symbolising the expected “motion forward” when
navigating through web pages.

The last notable UI feature of websites’ navigation is a search. It is being
offered by an increasing amount of all kinds of websites and is considered one
of the key navigation elements that can greatly influence the efficiency aspect
of a web-application. By searching, the user can quickly find exactly what he is
looking for and never have to worry about the website’s structure and finding
his way through. Very efficient search is the one implemented with the user in
mind, meaning that it tolerates type errors, suggests similar search keywords
and works with the user’s terms (as opposed to company/industry terms). It is
mostly placed somewhere on the website’s entry point4 and labeled accordingly.
Installed applications do sometimes offer search of the program’s functions as
well, though it is not that common.

7.3.3 UI elements of (web-)applications

Due to the fact that web-applications developed out of installed applications
they both have many UI elements in common, sometimes only slightly changed
in their appearance. This mainly helps users recognise specific controls on
websites like buttons they can press, checkboxes they can mark and drop-down-
menus they can open and thus making the use of websites easier and more

4also known as root or home page
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efficient. There are however differences in the usage (or usage frequency) of
some UI elements that will be described in the following.

Use of multimedia and colouring

Primarily the type of used multimedia differs from installed application to web-
applications. Web-applications tend to use more images, because humans are
able to scan and understand them faster than text. This also applies to ani-
mations and embedded video (basically moving images). Colours are also used
slightly differently - almost every website has it’s own distinct “colour code”,
i.e. not more than two to three colours that are used consistently on every
page. Compared to installed applications these colours are generally richer in
contrast. Since one goal of all websites is to catch a visitor’s attention and
make him stay longer, it is advisable to focus on the visual perception (which is
the most prominent for humans) and increase the website’s attractivity in that
way. Installed applications on the other hand utilise sounds, e.g. when warning
a user, which is uncommon on websites.

Links

Links are a fundamental feature of the web and they should be and most often
are used as frequently as possible. They minimise the effort with which a user
can navigate on a website and directly increasing it’s usability. For example
while reading hypertext5 users can quickly follow links that are attached to the
words they directly read over. The majority of menu items are simple links as
well. Links are mostly set apart from non-links by colour or other style prop-
erties so they are easy to spot. Most browsers also change the cursor when
hovering the mouse over a link to indicate a clickable area. Installed applica-
tions can sometimes also feature links (e.g. in help sections, where the use of
hypertext is reasonable) but they are far more seldom and their importance for
usability is minimal.

7.4 Conclusion

After having taken a look at the features that make UI of web-applications
different from installed applications, the question whether there are specific
ones that are exclusive to one or another kind of software can be answered.
The short answer is no - there is no feature of a website that cannot be found
in some installed application. This can be accredited to the fact that web-
applications originated from installed applications. Some UI concepts have just
proven to be good and since the users remained the same, the human factors
remained the same and so there is no need to change the proven UI concepts
either, in the contrary - rather reuse them!

However websites do get used in a different way than installed programs. One
reason is the different workflow that results from not having one main work area

5text containing links to other readable text
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with different modes and a lot of property windows, but instead a lot of pages
linked together in a unique structure and the need to navigate between them
somehow (e.g. by the multitude of links). And lastly, the visual appeal of the
two platforms is quite distinct as well (due to very differently dimensioned use
of multimedia and colours), having a large effect on the usage experience.
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8 Fabian Wetekamp: Usability in Software
Engineering/ Development Methods

8.1 Introduction

Usability in software engineering is one of the most significant aspects of human
computer interaction. It describes the process of the definition, measurement
and improvement of the quality of a software’s operability.

Over the last few years, Information Technology has taken an immense leap.
The software market developed from a prosumer to a much bigger consumer
market. The complexity of hard- and software has increased as well, technology
that was a few years ago the standard for desktop computers (e.g. multi-core
computing) is nowadays the usual configuration of a smartphone. Correlating
with this development, the importance of usability for modern software prod-
ucts increased simultaneously. The term “Usability” is applicable to basically
everything that is human-made. According to Rubin, “Usability is the ease
of use and learnability of a human-made object” [RC08]. In the context of
software engineering, usability stands for the quality of the human-computer
interaction. But why did the factor usability became so important for software
development?

For the major part of the modern civilization, software is a product for every-
day usage. Developers face the challenge of integrating usability into software
engineering and creating a satisfying user experience more then ever. So for
good software, the usability is as important as the usefulness of the program.
Besides, usability is increasingly seen as “marketable” (cf. [MR92]). The best-
selling software products are the ones that are being considered having the
highest usability. The usability of their products is for companies developing
software often the key success factor when competing in a market (e.g. Apple,
Dropbox, Google Docs). So when major software companies promote their
product, they don’t just show what the software does; they show how it’s being
done. For software developers, there are a lot of possibilities how to achieve
high usability for their software, and how to integrate the usability engineering
into the development process. The most important and validated patterns were
collected, summarized and generalized by the International Organization for
Standardization (ISO) in Geneva as the the international standard for human-
computer interaction, named ISO 9241.

8.2 ISO 9241 - Ergonomics of human-system interaction

In 2006, the standard has been renamed from “Ergonomic requirements for of-
fice work with visual display terminals” to “Ergonomics of Human-System In-

52



Seminar: Human Factors in Software Engineering

teraction”. The standard describes the requirements for usability in hardware,
software and working environment and gives the usability engineer design rec-
ommendations for his project. The following figure shows the structure of the
ISO 9241(cf. [?]):

Figure 8.1: ISO 9241-1:1997, Ergonomics of human-system interaction, Part 1:
General Introduction

The ISO 9241 states that there are three essential requirements software to be
considered usable (cf. [92498]):

Effectiveness: The degree to which an interface facilitates a user in accomplish-
ing the task for which it was intended.

Efficiency: The rate or speed at which an interface enables a user to accurately
and successfully complete a task.

Satisfaction: A common reference to the set of subjective responses a person
has when using a system.

Based on these requirements, the ISO 9241 describes the patterns for usability
engineering. There are two essential parts in the ISO 9241 for usability engi-
neering, the first one is the part 210. It provides guidance on human- system
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interaction throughout the life cycle of interactive systems. The cycle described
starts with understanding and specifying the context of use and defining the
user requirements. Afterwards, the designer should produce design solutions
to meet the user’s requirements and in the end, evaluate the design solution
against the requirements imposed before. If necessary, these steps are being
iterated until a sufficient design solution is found (cf. [92410]).

The second part is the section 110 of the ISO 9241, which presents a set of
usability heuristics that applies to the interaction of people and information
systems. The standard refers to this interaction as a dialogue and describes
seven dialogue principles:

• Suitability for the task (the dialogue should be suitable for the user’s task
and skill level)

• Self-descriptiveness (the dialogue should make it clear what the user
should do next)

• Controllability (the user should be abled to control the pace and sequence
of the interaction)

• Conformity with user expectations

• Error tolerance

• Suitability for individualization (the dialogue should be customizable to
suit the user)

• Suitability for learning (the dialogue should support learning)

In conclusion, the part 210 shows the developer how to use the design solu-
tions presented in the ISO 9241, and part 110 shows him the basic principles
how good usability is being achieved. These two sections help the developer to
become an idea how the integration of usability into development process can
be realized.

8.3 Integrating Usability into software development

Curtis and Hefley specified, that the process of integrating usability into a soft-
ware project is based on three key success factors [CH94]. First of all, the
process for the user interface, the design for instance, has to be defined. After-
wards, this process has to be integrated with the remaining developing processes
of the product. The third requirement states that during the integration of the
usability, the project management should avoid making commitments, so an
established project management discipline is necessary. It is very important to
integrate usability early in the development process, because the further the
development advances, the more costly it is to implement changes in the user
interface. Consequently, usability has to be integrated in software development,
quality assurance and project management, as Figure 2 shows.

54



Seminar: Human Factors in Software Engineering

Figure 8.2: Usability Integration

Usability engineering itself is separated in three stages, the predesign stage,
the design stage and the post design stage (see also [Nie93]). In the predesign
stage, the usability engineer has the primary responsibility to gather analyze
the user requirements and express these requirements in the product vision and
use cases. The engineer sets usability goals by accumulating and analyzing
data about the end user and the competitors. In the design stage, the engineer
choses from various methods for designing the user interface, like parallel design,
participatory design and iterative design. The final design stage is used for
collecting data in field tests with the (almost) complete software. This data
can be used for final adjustments or for future software projects.

After the integration of the usability engineering has been defined, the de-
velopment of the user interface can begin, therefore the next section describes
patterns for user interface development.

8.4 Methodologies and Processes for User Interface
Development

The following three design processes are a small excerpt of a huge variety of de-
velopment processes that are applicable for user interface (UI) development, but
they are representative and show the relation of the UI Development methods
to the ISO 9241.

The task-centered design process is structured around specific tasks the user
wants to accomplish with the system. This design process is focused mainly
on the user. The usability engineer creates representative tasks which describe
who is going to use the system and what they intend to do with it. To use the
task-centered design process, the tasks have to be chosen in the early stage of
the development to have the right impact on the development. In the advanced
development process, the task-centered structure helps to make essential design
decisions and to evaluate the design.

RAD (Rapid Application Development) is an outgrowth of prototyping meth-
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ods and conceptual work. Because software products are often deployed quickly,
faster software development has changed from a competitive advantage to a
competitive essential. This is the key success factor of RADical software de-
velopment [BH94]. The development is based on evolutionary model that fo-
cuses on delivering versions of the product throughout the development (see
also [BH94]). Each application is both initiated as a project and planned in a
evolutionary life cycle, as Figure 3 illustrates.

Figure 8.3: The Evolutionary Life Cycle

RADical software development uses continuous application engineering tech-
niques and is performed by a dedicated professional team. The fast development
is being achieved with time-boxed project management and powerful develop-
ment tools. The benefits compared to other development methods are quality
solutions in profound productivity results.

Essential modeling has a different approach to the point of view of the design
problem. Instead of modeling how problem seems to be, the model describes
what the system is intended for. As specified by Brown [Bro08], essential mod-
eling involves three independent models.

The user role model covers the characteristics of the various users of the
system. These characteristics can be for instance the degree of how technical
experienced the expected average user for the system is. The essential use case
model is a simplified and generalized form of use case. A typical use case for
an email program for example would be to check the mailbox for new emails.
The use context model is an abstract model of the architecture of a proposed
user interface. Constantine refers to the use context model as “low-fidelity”
prototype, because it doesn’t look much like a real screen layout or dialogue
box design, but it already has essential elements needed to support the essential
use cases (cf. [Con95]). These three processes represent valid development life
cycles that integrate the usability engineering well into software development.
The following section deals with the most common methods that are being used
in usability engineering itself.
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8.5 Formal Methods for Usability Engineering

The main goal of formal methods for usability engineering is to create design
specifications that are known to be unambiguous and can be possibly proved
to be correct. The methods are divided into inspection methods (without end
users) and test methods (with end users).

The heuristic evaluation is the most common inspection method. Usabil-
ity specialists evaluate the user interface step by step and judge whether each
dialogue element follows established usability principles. Afterwards, the evalu-
ators communicate with each other and compare their results (see also [NM90]).
This method can be used very early in the development process and helps to
identify problems in the user interface early and effectively. The biggest disad-
vantage of the Heuristic Evaluation is that it does not include the end user, so
the user’s needs are basically being ignored.

The cognitive walkthrough method is a task-oriented inspection method with
which the analyst explores the system functionalities. It simulates a step-by-
step user behavior for a given task and focuses on the cognitive theory by
analyzing the mental processes required of the users. This is being achieved
by providing an obvious way to undo actions and offering limited alternatives.
A cognitive walkthrough is independent from end users and a fully functioning
prototype helps designers to take on a potential user’s perspective (cf. [LW97]).

The third inspection method is the action analysis, which focusses is more
on what the practitioners do than on what they say they do. In the context of
usability engineering, actions are tasks with no problem-solving and no inter-
nal control structure, they are mainly intuitive interactions between the user
and the system (e.g. clicking on a button with a mouse). The task is being
broken into individual actions while calculating the times needed to perform
the action [CMN80]. The action sequences that a user performs to complete a
task are closely being inspected by usability engineers and evaluated in terms
of efficiency and effectiveness. This gives the inspector a deep insight into the
user’s behavior, but the method is very time-consuming and the evaluator needs
a high expertise.

Thinking aloud is the most valuable usability engineering test method. It
involves having an end user continuously thinking out loud every step he takes
while using the system. The most valuable results are achieved when the users
are directly saying what they are doing, because the working memory contents
matter and retrospective reports are much less useful (see also [BB85]). This
method reveals why the users do something and gives a direct feedback to the
evaluator and a very close approximation to the individual usage. The results
have to be perceived carefully, because the fact that the users are being forced to
concentrate and may feel observed can have a negative influence on the validity
of the test method.

Field observation is the most simple test method. It involves visiting users
in their workplaces while usability experts are documenting the interactions of
the users with system without attracting attention to avoid interfering with the
user’s work. Noise and disturbance can also lead to false results, so the observer
should be virtually invisible to ensure normal working conditions. Data logging
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and video recording are valid alternatives to the direct observation. This test
method is only applicable in the final testing and to get valid results, a relatively
high number of users is needed (cf. [Row94]).

With questionnaires [Lew95], the opinions of the users about the user inter-
face are collected and evaluated. This is the best way to measure subjective
satisfaction of the users and possible anxieties. The results of the questionnaires
are useful for studying how end users use the system and to compile statistics.
Because this is an indirect method and the responses in a questionnaire are
always subjective, this method has a relatively low validity and does help to
identify only a low number of problems relative to the other methods.

8.6 Conclusion

Usability is now recognized as an important software quality attribute, and
over the last few years, this development reached the end users. So for most
software-centric products, the key buy-decision is being made based on the
usability of the product. For usability engineering in software development, it
is important to set usability goals early in the development stage and based
on these goals, the development of the user interface has to be integrated in
the development process right from the beginning to achieve a satisfying user
experience. In the decision-making for the best fitting development method for
usability engineering, design recommendations of the ISO 9241 should be taken
in account to analyze and to evaluate the considered development methods.

For formal methods in usability engineering, the most important conclusion is
that there is no definite remedy and no all-in-one solution, because every formal
method has its advantages and disadvantages. The worst danger is the belief
that a single technique will provide sufficient results for usability engineering,
ergo a combination of convenient formal methods is reasonable.
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[BHM08] J. E. Bahner, A.-D. Hüper, and D. Manzey. Misuse of automated
decision aids: Complacency, automation bias and the impact of
training experience. International Journal of Human-Computer
Studies, 66(9):688 – 699, 2008.

[Bra87] L. Brainbridge. Ironies of automation. In Rasmussen J., Duncan
K., and Leplat J., editors, New Technology and Human Error.
John Wiley and Sons, 1987.

[Bro08] D. Brown. The how to of essential modeling, 2008.

[BSHL08] P. Badke-Schaub, G. Hofinger, and K. Lauche. Human Factors:
Psychologie Sicheren Handelns in Risikobranchen. SPRINGER
Publishing Company, 2008.

[CH94] B. Curtis and B. Hefley. A wimp no more: the maturing of user
interface engineering. interactions, 1(1):22–34, 1994.

[Cha96] A. Chapanis. Human Factors in Systems Engineering. Wiley-
Interscience Publication, 1996.

[CMN80] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level model
for user performance time with interactive systems. Commun.
ACM, 23(7):396–410, 1980.

[Con95] L.L. Constantine. Essential modeling: use cases for user interfaces.
interactions, 2(2):34–46, 1995.

59



Fabian Wetekamp: Usability in Software Engineering

[Dah06] M. Dahm. Grundlagen der Mensch-Computer-Interaktion. Pear-
son Studium, München, 2006.

[DFAB04] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human Computer
Interaction. Prentice Hall, 3rd edition, 2004.

[Dhi04] B. Dhillon. Engineering Usability: Fundamentals, Applications,
Human Factors, and Human Error. American Scientific Publish-
ers, 2004.

[ea04] P. Badke-Schaub et al. Human Factors - Psychologie sicheren
Handelns in Risikobranchen, 2. Aulage. Springer Verlag GmbH,
Berlin, Heidelberg, 2004.

[(ed97] G. Salvendy (editor). Handbook of human factors and ergonomics
(2nd edn.). John Wiley & Sons INC, New York, 1997.

[Eys10] M. W. Eysenck. Cognitive Psychology - A Students Handbook, 6th
Edition. Psychology Press, 27 Church Road, Hove, East Sussex,
2010.

[FS] Human Factors and Ergonomics Society. About
hfes - what is human factors/ergonomics? ,
https://www.hfes.org//web/abouthfes/about.html.

[Gol01] E. B. Goldstein. Blackwell handbook of Perception. Blackwell
Publishers Inc., Oxford, 2001.

[Her94] M. Herczeg. Software-Ergonomie. Addison-Wesley, 1994.

[Lab12] Critical System Labs. What is critical safety software
http://www.criticalsystemslabs.com/pgs/What.html, July 2012.

[Lew95] J. R. Lewis. Ibm computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use. Int. J. Hum.-
Comput. Interact., 7(1):57–78, 1995.

[LP] D. Licht and D. J. Polzella. Human Factors, Ergonomics, and Hu-
man Factors Engineering: An Analysis of Definitions. Crew Sys-
tem Ergonomics Information Analysis Center (CSERIAC), Harry
G. Armstrong Aerospace Medical Research Laboratory.

[LT93] N. G. Leveson and C. S. Turner. An investigation of the therac-25
accidents. Computer, 26:18–41, 1993.

[LW97] C. Lewis and C. Wharton. Cognitive Walkthroughs. In Helander,
M., Landaeur, T.K., Prabhu, P. (eds.) Handbook of Human-
Computer Interaction. Second Edition, pages 717–732. Elsevier,
Amsterdam, 1997.

[MR92] B. A. Myers and M. B. Rosson. Survey On User Interface Pro-
gramming. ACM Press, 1992.

60



Seminar: Human Factors in Software Engineering

[Nem04] C. P. Nemeth. Human Factors Methods for Design: Making Sys-
tems Human-Centered. CRC Press, 2004.

[Nie93] J. Nielsen. Usability engineering. AP Professional, 1993.

[NM90] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces.
In Proceedings of the SIGCHI conference on Human factors in
computing systems: Empowering people, CHI ’90, pages 249–256.
ACM, 1990.

[oT12] U.S. Department of Transportation. Development of human
factors guidelines for advanced traveler information systems and
commercial vehicle operations: Task analysis of atis/cvo functions
http://www.fhwa.dot.gov/publications/research/safety/95176/appendd2.cfm,
July 2012.

[RC08] J. Rubin and D. Chisnell. Handbook of usability testing : how to
plan, design, and conduct effective tests. Wiley Publ., 2008.

[Rea88] J. Reason. Stress and cognitive failure. In Fisher S. and Reason
J., editors, Handbook of Life Stress, Cognition and Health. John
Wiley and Sons, 1988.

[Rea90] J.T. Reason. Human Error. Cambridge University Press, 1990.

[Row94] D. E. Rowley. Usability testing in the field: bringing the labora-
tory to the user. In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems: celebrating interdependence,
CHI ’94, pages 252–257. ACM, 1994.

[RR97] F. Redmill and J. Rajan. Human factors in safety-critical systems.
Butterworth-Heinemann, 1997.

[Sch11] T. Schubert. Wahrnehmung und Aufmerksamkeit. Springer Ver-
lag, Berlin, Heidelberg, 2011.

[Se68] D.L. Sills and R. K. Merton (editors). International Encyclopedia
of the Social Sciences. Engineering Psychology. 1968.

[SMB99] L. J. Skitka, K. L. Mosier, and M. Burdick. Does automation
bias decision-making? International Journal of Human-Computer
Studies, 51(5):991 – 1006, 1999.

[Som07] I. Sommerville. Software Engineering. Pearson Education, 8th
edition, 2007.

[SSB+04] P. Salmon, N. Stanton, C. Baber, G. Walker, and D.Green. Hu-
man factors design and evaluation methods review. Technical re-
port, Defence Technology Centre, February 2004.

[TCZ07] D. Te’eni, J. Carey, and P. Zhang. Computer Human Interaction.
John Wiley & Sons, Hoboken, 2007.

61



Fabian Wetekamp: Usability in Software Engineering

[TH04] J. E. Tomayko and O. Hazzan. Human Aspects of Software Engi-
neering. Charles River Media, Hingham, 2004.

[WH91] C. D. Wickens and J. G. Hollands. Engineering Psychology and
Human Performance. Prentice Hall, 3 edition, Janury 1991.

[Wic04] C. D. Wickens. An Introduction to Human Factors Engineering
- Second Edition. Pearson Education Inc., Upper Saddle River,
New Jersey, 2004.

[WLLGB04] C. D. Wickens, J. D. Lee, Y. Liu, and S. Gordon-Becker. An
Introduction to Human Factors Engineering. Pearson Prentice
Hall, 2004.

62


