360 Degree Multi Sensor Fusion for Static and Dynamic Obstacles

Kai Schueler, Tobias Weiherer, Essayed Bouzouraa, and Ulrich Hofmann

Abstract—1In this paper an approach for 360 degree multi
sensor fusion for static and dynamic obstacles is presented.
The perception of static and dynamic obstacles is achieved by
combining the advantages of model based object tracking and
an occupancy map. For the model based object tracking a novel
multi reference point tracking system, called best knowledge
model, is introduced. The best knowledge model allows to track
and describe objects with respect to a best suitable reference
point. It is explained how the object tracking and the occupancy
map closely interact and benefit from each other. Experimental
results of the 360 degree multi sensor fusion system from an
automotive test vehicle are shown.

I. INTRODUCTION
A. Motivation for 360 Degree Perception

After the development of advanced driver assistance sys-
tems (ADAS) for the front area of the own vehicle like
lane departure warning, adaptive cruise control (ACC), and
collision warning, the side and the rear area came into focus,
e.g. for obstacle detection in the blind spots. The next step
is to combine the sensors of these ADAS in a multi sensor
fusion system for a 360 degree environment perception. This
is the base for future ADAS in complex scenarios like dense
traffic jam, urban environments, intersections or for active
safety systems with combined braking and evasion strategies.

Especially in the near environment of the own car it is
important to detect the objects with dynamic states and
dimensions. For example, in the scenario of a very close
cut-in of another car in the own lane, the position of the
front corner of the other car is important for the decision
whether the own vehicle has to react upon it. Furthermore,
the side of the nearest corner of the rear is relevant for the
longitudinal and lateral automatic control of the own car.

B. Related Work

Over the past decade several object tracking approaches
have been developed. In [1], [2], [3] a laser scanner is
combined with a video sensor to perceive vehicles in the
front area. In several cases the center of a bounding box is
used for tracking, e.g. [2], [4]. In [2] a laser scanner defines
a ROI for the video based object detection. In this case
the initial object detection depends on both sensors. After
the detection the laser scanner is also used for tracking.
A cuboidal object shape model is introduced in [5] with
different positions on the outer contour for the feature
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Fig. 1: Sensor Configuration

prediction. The state at the virtual rear axis is estimated.
A similar multi reference point (RP) measurement model
is used in [4] for associating laser scanner measurements
and the position of the object’s center point is estimated. In
[6] a model based vehicle detection is performed by laser
scan differencing and a particle filter is used for object state
estimation. Due to the lack of observability of the object’s
center point, a virtual anchor point within a rectangular
shape is tracked to overcome the problem of wrong velocities
resulting from a moving center point.

In [7] and [8] the simultaneous localization and map-
ping (SLAM) problem was solved at the same time as
the detection and tracking of moving objects (DATMO) by
a combination of an occupancy map and object tracking.
Dynamic objects are neither compensated nor object states
are corrected in the occupancy map.

Our approach is an extension of the concept presented
in [9]. The focus in this paper is on the 360 degree model
based object tracking. The challenge to perceive objects from
different viewing angles, for example, for the continuous
tracking of an overtaking vehicle, is solved by using a multi
RP model for tracking. Compared to [4], [5] different RPs are
not used for the feature prediction but for the state estimation
with respect to the best suitable RP. Furthermore, for the high
level fusion, objects can be described with respect to different
RPs. With this approach also the problem of velocities due to
a moving object center is overcome because only measurable
points on the object contour are measured and estimated.

C. Sensor Configuration

In order to fulfill the requirements of future ADAS, we
need 360 degree multi sensor perception. Our chosen set of
sensors is shown in Fig. 1. The sensor configuration consists
of two long range radars (LRR) in the front, one front laser
scanner, two side laser scanners, and two short range radars
(SRR) at the rear side. The two LRR are, for example, used
for ACC and the two SRR for blind spot detection in the
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Fig. 2: Interaction between Occupancy Map and Object
Module

current Audi A8. In principle, the remaining sensors are also
suitable for automotive industrialization.

D. Structure of the Paper

In section II we explain our system architecture and how
the object module and the occupancy map interact and benefit
from each other. After this, in section III the model based
object tracking is introduced. The focus in this section is on
the best knowledge multi reference point tracking system.
In section IV, experimental results of our 360 degree multi
sensor fusion system from a test vehicle are presented.

II. PERCEPTION SYSTEM ARCHITECTURE

The object tracking presented in this work is part of
a perception system composed of different experts. Each
subsystem focuses on the description of a relevant part of
the vehicle’s environment using environment sensors and ego
motion sensors. The perception modules interact with each
other in order to generate a precise and consistent image of
the environment (see Fig. 3) describing ego motion, objects,
road infrastructure, free spaces, and unexplored areas. All
consistent representations of all experts together are the
internal representation of the real world. Using the dynamic
models, a prediction of a dynamic scenario can be performed
for short periods of time.

A. Interaction between Occupancy Map and Model Based
Object Tracking

There are two main approaches to represent the vehicle’s
environment in order to realize ADAS. The first one con-
sists in the model based object representation. In this case
assumptions about the shape and the motion of the obstacles
are made using shape and dynamic object models. The sensor
measurements and the model knowledge are used to track

the object states. This is a common way deployed by several
actual driver assistance systems, e.g. ACC.

The occupancy grid map representation is a second method
to describe the vehicle’s environment. In general, sensor raw
data are mapped into a two- or three-dimensional grid based
data structure. During the mapping process the own vehicle
motion is considered, and the sensor data are accumulated.
This results in an accurate image of obstacles as well as free
spaces and unexplored areas. Nevertheless, the grid map has
a large memory consumption and a low level of abstraction
which makes the interpretation of the map content difficult.

The quality of the object tracking and the occupancy map
is enhanced by letting these two approaches interact and
benefit from each other based on the concept presented in [9].
Fig. 2 demonstrates the interaction between both modules.
The grid map is used to classify the sensor raw data accord-
ing to their dynamic state. This is an important input for the
object module which tracks only the moving objects since
unstructured static obstacles are better represented by the grid
map. Due to this, there is also the benefit that the number
of false positive objects and wrong associations is lowered.
Additionally, the state vector generated by the object tracking
is deployed to compensate the position of moving objects on
the map. This additional step in the mapping process has two
major advantages. Firstly, the free space area within the map
is extended. Secondly, moving objects can be represented
by the occupancy map at the correct position. The resulting
group of dynamic cells associated to an existing object
describes the shape of objects (see Fig. 3). With the help
of convenient correlation mechanisms, errors in the object
state, estimated by the object tracker, can be detected and
fed back to the object module. In this case the occupancy
map is used as a virtual sensor.

B. Laser Scan Point Dynamic Classification

An important step for extracting dynamic objects out of
laser measurements is to decide which laser measurements
correspond to dynamic objects. This classification is accom-
plished in the occupancy map module and provided to the
object module. In this section, the following mathematical
notation will be used:

e Xx1.4: Ego motion data until time ¢. As we build local
occupancy maps, x; describes the change of ego motion
between ¢t — 1 and ¢.

e Z1.¢: Sensor measurements (laser and radar) until ¢

e m;: Occupancy map at time ¢

e 04: Dynamic objects at time ¢

e d¥: Binary random variable, which assigns the k"
laser measurement a probability of corresponding to a
dynamic object: df € {'dyn’, stat'}

In general, the mapping problem is given by estimating

the probability [10]:

P (mt | Xl:t7zlzt) (D
whereas the goal of object tracking can be formulated as:

P (Ot ’ Xl:tazlzt) (2)



" | Reterence Point
Used for Tracking

Scan Points of
Laser Scanner

I ObjectMaster (tracked)

x ‘ 1Dz X T 2 VY

~
r g

Symbols
AUDI SDF
TimeStamp: 325.4583

Own

Vehicle:

LENGTH WIDTH ‘

=
g
o
5
[&]
[&]
5]

| 1r  47.19 40.56  40.22  -0.25  44.38  +1.57|

Occupancy Probability

Fig. 3: Consistent Environment Representation from Object Module and Occupancy Map (Video Only for Documentation)

In our case of combined object tracking and grid mapping
by a system of experts, additional information sources can
be utilized for these estimations. On the one hand, the
grid mapping algorithm should incorporate information about
dynamic objects:

P (mt | Xl:t7Zl:t) :fp (mt | Xl:tyzl:taot) :
P (Ot ’ X1:t,Z1:t) do; (3)

As already stated in the previous section, this is realized by
compensating moving objects in the grid map. The detailed
conditional probability distributions can be found in [9]. On
the other hand, dynamic object tracking and extraction can
be significantly simplified by consecutively introducing the
binary random variables d¥:

P (o | x1:4,214) =>_ak (P (04 | X1:4, 210, dy) -
P(df |X1:tazlzt))

P (0 | 1.4, 212, df =" dyn') -

P (df = dyn/ | Xl:t7z1:t) +

P (Ot | Xl:iﬁazl:tadi€ =’ Stat/) !

P (df =" stat’ ’ X1:4,21:¢) (4
The dynamic classification of a single laser measurement can
be reformulated by using the past grid map m;_1:

P (cl,iC = 'dyn’ ‘ X1:t7Z1:t)
:th_l (P (df =" dyn’ | Xl:t7Z1:t7mt71) :
P (my_1 | x1.4,2124))
:th—l (P (df :/ dynl | Xtvztvmtfl) :
P (my_1 | x14-1,21:0-1)) (5)

The full a posteriori estimation of this density function is
intractable as we do, for example, not maintain a proba-
bility distribution over several possible grid maps my;_;.
Consequently, we use the last maximum likelihood map
and simplify P(déc =" dyn’ xt,zt,mt,l) to estimate a
binary classification whether a laser measurement belongs
to a dynamic object or not. Using this simplification, the

consideration of all laser measurement classifications results
in:

P (o ’X1:t7Z1:t)
- P (Ot | Xl:t7z1:t7d% :/ dyn/a DR df :I dyn,) (6)

The different sources for estimating the dynamic classifi-
cation of a single laser measurement are described in the
following.

1) Radar measurements: By utilizing the Doppler prin-
ciple, radar sensors provide reliable data about the radial
velocity of measured objects. On the downside, radar sensors
typically only provide a single radar reflection center. In
order to use these measured objects for several neighboring
laser measurements, the uncertainties of a radar measurement
can be modeled by a two-dimensional Gaussian distribution
[9]. After synchronizing the laser and radar measurements,
the binary information about the existence of dynamic and
static radar ellipses can be stored in separated map layers. In
this way, only a small amount of extra memory is required
and radar measurements from the past can be used.

2) Dynamic object prediction: Additional information
about the correspondence of laser measurements and dy-
namic objects can be gained from tracked dynamic objects.
By using a grid map m; with associated dynamic objects,
cells corresponding to moving objects can be predicted and
used to match and classify laser measurements.

3) Occupancy Grid Map: Finally, a well-known idea for
classifying laser measurements is to find differences between
raw laser sensor data and occupancy maps built from past
measurements [7], [11]. We enhance these algorithms to
assure a robust detection. First, we model the defocusing
of the laser sensor beam’s field of view, resulting in small
measurement lines instead of single reflection points. Second,
we extend these line regions by a dilatation of a binary image
to overcome inaccuracies resulting from ego, sensor data
noise, and discretization errors [9]. After the projection of
laser data on the map, the occupancy values of the resulting
regions are compared to predefined threshold values and
classified as dynamic or static.



I1I. MODEL BASED OBJECT TRACKING

For the model based multi target object tracking the
philosophy is used that each sensor contributes to the en-
vironment perception as best as it can. In order to exploit
the capabilities of each sensor as good as possible, each
sensor has been analyzed in detail in real world scenarios
with a reference system consisting of a differential global
positioning system (DGPS) and an inertial platform before
the sensors are deployed in the object tracking. The acquired
knowledge of the sensor behaviour is used in a sensor model
in our object tracking module.

A. Object Representation - Best Knowledge Model

In our multi sensor system the sensors should represent
their ’best knowledge” of the static and dynamic environ-
ment avoiding unnecessary assumptions for length and width
and give it to the responsible expert modules for fusion. For
dynamic objects this is the object module. How should this
“best knowledge” representation look like?

1) It should be able to represent object lists, which only
consist of a relative position and speed in x and y with
uncertainty in position, speed, and moving direction,
but no dimensions of the object.

2) The representation should also be able to describe the
bounding box of vehicles with length, width, and op-
tional height. In dependence of the mounting positions
of the sensors at the rear, side and front and their ob-
servation viewing angles, the same object may appear
from different views in the different sensors. We want
that each sensor is able to represent its best knowledge
about the measured object and, therefore, it has to
choose the coordinate system, in which the values
and uncertainties of the measured sensor data are best
described. We give the sensors the ability to choose the
origins of the possible local object coordinate systems
from nine reference points (RP), see Fig. 4. The object
state at the RP is then described relatively to the own
vehicle coordinate system whereas the RP is part of
the description. If the speed is unknown, there could
be four suitable consistent representations. Two have
the only difference of 7 in the orientation. If it does not
matter for the tracking if a car is driving backwards or
if it is oncoming traffic, this ambiguity can be solved
by limiting ¥ to (7, —7]. The second ambiguity results
if it cannot be determined whether the length or the
width of an object is measured. These ambiguities have
to be solved either in the sensor specific association
in the tracking phase or by the fusion in the initial
phase. For the radar sensors one of the results of the
sensor analysis phase is which RP describes best the
measurements depending on the situation.

3) The representation can be extended by further informa-
tion about the object, e.g. special features like color,
position of rear or front lights, texture patterns, history
and statistics of data and other contour details, where it
is necessary. This additional information is represented
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Fig. 4: Multi RP Object Representation with RP 5 Selected
as Center of the Local Object Coordinate System

in the local object coordinate system. The goal is to get
a compact and precise representation with all relevant
information for tracking.

1) Reference Point Transformation: In the case of 360
degree perception objects are seen from different viewing
angles. In our approach the state of an object is estimated
with respect to the best observable RP which changes over
time as illustrated in Fig. 5. How to transform the description
of either measured sensor objects or of tracked objects with
respect to a new RP is shown in the following.

Let d be the description at the current RP and y be the
description at the new RP. P;, and P,,; are the respec-
tive error covariance matrices. All quantities are described
relatively to the own vehicle coordinate system ((X,Y) in
Fig. 4). dT equates to:

d” = (z,y,v,, vy, 4z, ay, ¥, L, W) (7)

The lever vector k' is the position change from the
current to the new RP and has to be considered in the local
object coordinate system for the RP transformation. For a
transformation from RP 5 to 2 k'” is equal to:

k7 = (L,05-w); v = (k/T,o) (8)

Looking from the own vehicle coordinate system at a rotating
target object results in different velocities and accelerations
at the different RPs. With the angular velocity vector w and
a three-dimensional lever vector r’ the resulting tangential
velocity vy is given by vy = wxr’ and the acceleration due to
the centripetal acceleration is equal to a, = wX (w x r') [12].
In our case the velocity change due to the rotation described
in the local object coordinate system can be determined to:

0 K — Uk,
Vi= 0] x k] =1] K ©)
W 0 0

The acceleration change a’,. in the local object coordinate
system equates to:

0 — W2k
ae= 0] xvy= |02, (10)
v 0



The determined position, velocity, and acceleration changes
have to be transformed from the local object coordinate
system to the own vehicle coordinate system due to the
different orientation of the coordinate systems. The rotation
matrix around the Z-Axis in the X-Y plane for a two-
dimensional vector is given by:

. (cos (1)

sin (0) _Sin(qj)> (b

cos (U)
The description at the new RP equates to:

R, -k
2 <,/
Rz' V¢
2 4/
R, °a',

6y =6d+ (12)

whereas ‘y describes a vector with the first i elements of
y. 'y =t d for i = 7,8,9. Due to the RP change, the error
covariance matrix has to be recalculated. With the jacobian
matrix J = dy/0d and D = 9y /0 (L, W) and the lever
factors error covariance matrix:

o2 0
Plever = ( OL 0_12/‘/

Pout =J- Pin : JT +D- Plever : DT

(13)

(14)

B. Object Estimation, Detection, and Association

Our object tracking module utilizes a Kalman Filter (KF).
All objects are tracked relatively to the own vehicle. In our
sensor set (see Fig. 1) the laser scanners trigger a filter cycle
because they have the shortest cycle time and the lowest
latency. This is the time period from sensor measurement
time until the data arrive in our development framework.
Furthermore, compared to the raw laser measurements with-
out dynamic information, the objects from the radar sensors
can be more easily predicted to the laser measurement time.
If a new laser scanner measurement arrives, all sensor data
from the radar sensors received since the last laser scanner
measurement are predicted to the measurement time of the
laser scanner. After this, the internal representation of the
object module is predicted to the laser scan measurement
time. For all sensors the expected features, which should
be measured by the sensor, are generated. These features are
associated with the measured or preprocessed sensor features
and the internal representation is updated, respectively. In our
current implementation all sensor data is preprocessed up
to bounding box level. The radar scanners provide directly
object lists on bounding box level.

The dynamic classified laser scan points from the oc-
cupancy map are preprocessed in a sensor model. We use
an adaptive breakpoint [13] approach to extract groups of
laser scan points which are likely to belong to the same
surface. Afterwards, corners are detected with an extended
iterative endpoint fit (IEPF) [13] algorithm. From the ex-
tracted polygonal lines total least squares regression lines
are estimated with an eigenvector line fitting [14] approach.
From these extracted lines and the dynamic information from
the occupancy map, objects are created. With respect to the
own vehicle coordinate system, pairs of concave lines are

discarded because these do not describe a valid object fitting
our shape model.

In the association of the object module, gating combined
with a global nearest neighbor approach (GNN) [15] based
on either the euclidean distance or the Mahalanobis Distance
[10] is used.

C. Kalman Filter

The object module estimates all quantities at a RP rela-
tively to the cartesian own vehicle coordinate system with
exception of the yaw rate influence of the own vehicle
because the own yaw rate is well known from the ego
motion data. First experiments have shown that if the yaw
rate influence of the own vehicle is not decoupled, track
loses occur more often. The position (x, y), velocity (va, vy ),
acceleration (ag, a, ), yaw angle ('), and steering angle ()
are estimated by a KF. The width (1¥) and the length (L) are
rule based innovated. For example, the whole length is only
visible in certain situations and should be kept as long as it
is reliable and no sensor measures something contradictory.
Thus, the state vector x equates to:

T

X = (xay7vzvvy7aa:aay7\p>/\) (15)

As shown in [16], a simplified approximation for the yaw
rate can be derived from the single-track model assuming a
negligible side slip angle. With the target vehicle variables A
being the steering angle and d, being the distance between
the wheel axles, the yaw rate can be approximated to:

_ Il
da

The unknown steering angle )\ is assumed to be constant with
A as random noise. Equation (16) ensures that a vehicle can
only have a yaw rate if it moves. The fact that d, cannot be
measured in most cases does not matter because it just results
in a linear scaling of the estimated steering angle A. Thus, d,
can be set to a value of an average car. The approximation
is used for the dynamic model of the yaw angle:

U A (16)

\I/kZ\Ifk,1+M-)\-AT
dq

whereas AT is the time difference between two filter cy-
cles. For the position, velocity, and acceleration a constant
acceleration model is used. The yaw rate influence of the
own vehicle is compensated directly after the prediction
step. Let AW, be the own vehicle yaw angle difference
between two filter cycles due to the own vehicle yaw rate
described in the own vehicle coordinate system at time step
k. The position, velocity, and acceleration vectors of all target
objects are rotated by AW¥,,,,, and AV, is added to the
yaw angles of all target objects.

a7

IV. EXPERIMENTAL RESULTS

Fig. 3 shows the resulting consistent environment repre-
sentation of our occupancy map and our object module. In
Fig. 5 the applied best knowledge” model is illustrated. The
meaning of the symbols is explained in Fig. 3.
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In Fig. 5c RP 4 is chosen because the sensor analysis has
shown that the sensor has difficulties to detect the corners of
closely overtaking cars if the reflection angles of the laser
beams are acute. In this case the measurement is interpreted
with higher uncertainty in x-position. In Fig. 5d first an
update with RP 3 from the front laser and afterwards an
update with RP 5 from the side laser is performed. In this
case the front laser scanner can only observe the obstacle’s
front right corner. From the side laser scanner’s point of view,
the object is leaving the FOV and, therefore, the rear right
corner can best be measured. In Fig. 5g - 5i the own vehicle
is standing at a T junction and a vehicle is crossing the front
laser’s FOV from left to right. First the front right side is
best observed. In the middle of the FOV, Fig. 5h, the middle
of the right side is the suitable choice. In Fig. 5i an L-shape
is measured which is described by RP 5.

A. Execution Time

For our sensor setup the complete computation time per
processing cycle of the occupancy map and the object
module is on average 5 ms on a Core 17 m640 laptop with 2.8
GHz, using only one core. This was measured on a sequence
including multiple objects with a duration of several minutes.
The occupancy map has a size of 140m x 140m and a grid
cell size of 0.2m. The object module is limited to track at
maximum 80 objects.

V. CONCLUSIONS AND FUTURE WORK
A. Conclusions

In this paper we have presented an approach for 360
degree multi sensor fusion for static and dynamic obstacles
combining the advantages of an occupancy map and model
based object tracking. The introduced best knowledge model
enables multi sensor tracking of objects, including dimen-
sions, from different viewing angles.

B. Future Work

In future work we will focus on extending the dynamic
models used in the KF. In order to easily model different
dynamic behaviours and to improve the ability to predict
dynamic scenes, the movement of the ego vehicle and the
target objects will be further decoupled. Furthermore, the
focus will be intensified on using the map feedback for
correcting the object states. Additionally, we will expand the

best knowledge model to enable the sensor to represent the
reliability of the chosen RP and alternative RPs.
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