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Abstract: The recent development and deployment of the synchronized phasor measurement
units (PMU) is allowing the wide-area monitoring and control of large-scale power systems.
Furthermore, the integration of more communication technologies into the power system is
giving an additional degree of freedom to the control design that may improve the performance
of the overall system. Small-signal stability is an important requirement for power systems
with the increasing number of distributed generation units. The oscillation modes of the power
system have to be well damped in order to avoid contingencies such as blackouts. Wide-area
controllers based on the real-time PMU measurements operating in centralized, distributed and
decentralized manner have been widely proposed to damp the low-frequency oscillation of the
large-scale interconnected power system. It has been shown that the damping performance can
be improved by using the synchronized PMU data transmitted in real-time via communication
network. However, only a few of the proposed methods take the structural constraint of the
measurement data transmission into account. In this paper, we propose a method to design a
distributed wide-area damping controller together with the communication topology in order to
improve the damping performance of the power system. As a design strategy, first a decentralized
controller that stabilizes the overall system is designed. Then, the damping performance is
improved by designing the distributed control law, i.e. allowing the local controllers to exchange
information. The problem is formulated as a mixed-integer optimization. Finally the proposed
approach is evaluated in a five machine power system via a numerical simulation.

Keywords: Power system control, wide-area power system control, distributed control,
optimization

1. INTRODUCTION

With the deregulation and integration of large amount of
distributed generation units, power systems are increas-
ingly driven to operate closer to their operating and sta-
bility limits. Under critical operation conditions in which
the possibility of low-frequency oscillations rises, the small-
signal stability of the system has to be guaranteed for
secure operation. These low-frequency oscillation modes
have to be well damped by applying advanced control
strategies in order to avoid fatal contingencies such as
blackouts.

The contemporary solution is the combined Automatic
Voltage Regulator (AVR) - Power System Stabilizers
(PSS) approach with the support of wide-area signals.
Such controllers are usually designed based on pole place-
ment and phase compensation technique in terms of in-
creasing the damping ratio or the decay rate of the system
in response to small disturbances. The development and
deployment of Wide-Area Measurement System (WAMS)

based on the synchronized phasor measurement units
(PMU) technology [Phadke and Thorp (2008), De La Ree
et al. (2010)] enables the remote measurement and trans-
mission of the synchronized system dynamic data such as
voltage, angle, frequency from and to different locations.
Wide-Area Control System (WACS) using the PMU mea-
surements for the oscillation damping have been widely
investigated. It is shown that with the remote measured
signals, the wide-area controller improves the damping
performance and the stability of the power system [Ros-
tamkolai et al. (1988), Aboul-Ela et al. (1996), Wu et al.
(2004), Snyder et al. (2000)].

Different control structures have been proposed for the
WACS design. In [ Snyder et al. (2000), Ni et al. (2002),
Wu et al. (2004)] a centralized controllers have been de-
signed as a supervisory instance to collect remote signals
from each local measurement units and send the pro-
cessed control signals back to local AVR of the genera-
tors. Two-level hierarchical control have also been widely
investigated, see e.g. [Kamwa et al. (2001), Zhang and
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Bose (2008), Dotta et al. (2009), Hashmani and Erlich
(2008)]. In such a structure, a decentralized control serves
as the first level, comprehending the local controller at
generators or FACTS (Flexible AC Transmission System)
equipments, and provides the stabilizing action for local
oscillation modes for which global information may not be
necessary. It also ensures the system stability during events
of loss of communication links or of failure that makes the
central instance unavailable. A centralized controller, as
the second control level, collects and processes the wide-
area measurement data. Its output is transmitted to the
local controllers of the generators in order to improve the
global system performance.

In any case, reliable and efficient communication networks
are required for enabling the WAMS and the WACS. In the
aforementioned works, the topology of the communication
network is fixed for the controller design. The integration
of communication technologies into the power system gives
though an additional degree of freedom in designing the
distributed controller for the large-scale systems and can
be used to improve the performance of the overall systems
under a given communication network’s constraint.

In this paper, we propose a design procedure for the
wide-area power system damping control from a new
perspective. Based on the theoretical analysis in [Gusrialdi
and Hirche (2010)], we design a distributed controller
in terms of a joint controller gain and communication
topology design approach by exploring the additional
degrees of freedom offered by the communication network.
Another design objective is to increase the robustness
of the overall system in the presence of the permanent
communication links failures. In order to achieve the goals,
first we design a decentralized controller that ensures the
stability of the overall power system. Then, we extend the
decentralized controller to a distributed one by enabling
communication, in this case the exchange of the state
information, between the local controllers. The problem
is formulated as a mixed integer optimization problem.

The remainder of the paper is organized as follows. The
model of the power system used in the paper is described
in Section 2. The design procedure for the joint controller
gain and communication topology is reviewed in Section
3. The proposed distributed damping control is discussed
in Section 4. Finally, the proposed method is evaluated via
a numerical simulation in a five machine power system in
Section 5.

2. POWER SYSTEM MODELING

Generally, a power system is an interconnected system
and its model consists of differential and algebraic equa-
tions describing the generator dynamics, controllers, net-
works and loads. In terms of the small-signal stability and
damping control for low-frequency oscillations, a linearized
model including the generator dynamics and an equiva-
lent transfer network model is considered. The equivalent
transfer network is a reduced network model in which
all load nodes are eliminated and all generator nodes are
directly connected with each other, see e.g. [Machowski
et al. (2008)]. In this paper we consider a five-machine
power system [Wu and Malik (2006)] as a case study as
shown in Fig. 1. The system considered in this paper

Fig. 1. A five machine power system for case study in this
paper

Fig. 2. Automatic voltage regulator model

consists of the generator model, excitation system with
voltage control and the network model.

2.1 Generator and exciter system model

A linearized third order generator model with an excita-
tion system as introduced in [Machowski et al. (2008)] is
used here as the model of i-th generator in the system.
The nomenclature of all the variables and parameters can
be found in Appendix A.

• Generator dynamic equations:

∆δ̇i = ∆ωi, (1)

Mi∆ω̇i = −Di∆ωi − ∆Pei, (2)

T ′
doi∆Ė′

qi = −∆E′
qi + (Xdi − X ′

di)∆Idi + ∆Efi,(3)

A second-order transfer function is used to represent the
Automatic Voltage Regulator (AVR) for the generator
exciter as shown in Fig. 2. An AVR controls the excitation
current, and consequently the generators terminal voltage.

• Excitation system and automatic voltage control

ż2i =−c1iz2i − c0iz1i + ∆vi, (4)

ż1i = z2i, (5)

∆Efi = b1iz2i + b0iz1i, (6)

where z1i and z2i are the internal states of the AVR.

The linearized state dynamic xi of the i-th synchronous
generator is then given by

xi =
[

∆δi ∆ωi ∆E′
qi z2i z1i

]T
(7)

and the control input signal is denoted by ∆vi.

2.2 Network Model

In general, the network model of a power system is rep-
resented by the algebraic nodal equations describing the
relation between the current injections and the voltages of
all generation and load nodes via the admittance matrix.
As discussed in [Machowski et al. (2008)], eliminating the
load nodes leads to an equivalent transfer network in which
the generator nodes are directly connected with each other.
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After the elimination of all the load nodes, including the
generation terminal nodes, the d-axis currents Idi and the
electrical power Pei of the i-th generator can be expressed
in terms of its variables, in this case the rotor angle δi and
the transient voltage E

′

qi according to

Idi =
N

∑

j=1

E′
qi[Bij cos(δi − δj) − Gij sin(δi − δj)], (8)

Pei = E′
qi

N
∑

j=1

[Bij sin(δi − δj) + Gij cos(δi − δj)]E
′
qj , (9)

where N is the total number of generators in the system
and i, j ∈ {1 · · ·N}, Bij and Gij are the imaginary and
the real part of a network admittance Yij .

Linearizing the equations (8) and (9), the power increment
∆Pei in (2) and the current increment ∆Idi in (3) are given
by

∆Pei =
[

∂Pei

∂δδδ
∂Pei

∂E′

q

]

[

∆δδδ
∆E′

q

]

, (10)

∆Idi =
[

∂Idi

∂δδδ
∂Idi

∂E′

q

]

[

∆δδδ
∆E′

q

]

(11)

with ∆δδδ consists of the rotor angle deviations and ∆E′
q

consists of the transient voltage deviations of all generators
in the power systems.

Combining the equation (1)-(6) and (10)-(11), the small-
signal dynamics of a generator connected to the power
system can be written as

ẋi = Aixi + Biui +
∑

j∈Ni

Aijxj , (12)

where ui = ∆vi and Ni represents the set of the generators
that are physically connected with the i-th generator. The
matrices Ai ∈ R

5×5,Bi ∈ R
5×1,Aij ∈ R

5×5 are given in
Appendix B.

Therefore, the linearized power system can be expressed
by an LTI interconnected systems given by

ẋ = Ax + Bu, (13)

where x ∈ R
5N×1 and u ∈ R

N×1 are the states and input
signals of all N generators in the power system respectively
and the matrices A ∈ R

5N×5N ,B ∈ R
5N×N of appropriate

dimensions are given by

A =









A1 A12 · · · A1N

A21 A2 · · · A2N

...
...

. . .
...

AN1 AN2 · · · AN









, B =











B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 BN











.

3. JOINT CONTROLLER AND COMMUNICATION
TOPOLOGY DESIGN

In this section we review the procedure for designing the
distributed controller together with the communication
topology proposed in [Gusrialdi and Hirche (2010)] for the
interconnected system given by (12) in order to improve
the performance of the system. As a performance metric,
the decay rate of the overall systems is considered. Here we

consider a state feedback controller for which the control
law can be written as follows.

ui = Kixi +
∑

j∈Li

Kijxj , (14)

which is known as distributed control law since the con-
troller for each subsystem does not only depend on its
own states but also on the states of the other subsys-
tems. Here Li represents a set of subsystems to which
controller i could communicate, i.e., exchange information.
If Kij = 0, ∀i and ∀j ∈ Li, then the control law is called a
decentralized control law.

3.1 Decentralized control law design

As a design strategy, first we design the decentralized
control law using the standard methods that stabilize
the interconnected systems (12), i.e., we consider the
decentralized controller synthesis for the interconnected
systems (12) with the control input given by

ũi = Kixi. (15)

Let Ai + BiKi = Āi. The closed loop expression of the
interconnected systems (12) with the decentralized control
law can be written as

ẋ = Adecx, x(t0) = x0, (16)

where x = [x1,x2, · · · ,xN ]T and

Adec =









Ā1 A12 · · · A1N

A21 Ā2 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ĀN









∈ R
5N×5N .

It is well known that the solution of (16) is given by
x(t) = eAdec(t−t0)x0 and the state norm satisfies

‖x(t)‖ ≤ e‖Adec‖(t−t0)‖x0‖, ∀t ≥ t0, (17)

and
‖x(t)‖ ≤ eRe{λmax(t−t0)}‖x0‖, ∀t ≥ t0, (18)

where Re{λmax} represents the real part of the largest
eigenvalues of Adec.

3.2 Distributed control law design

Let us assume that the decentralized control law stabilizing
the interconnected system (12), i.e., the first term of (14),
has been designed. Next we improve the performance of
the systems for a certain performance metric by designing
the distributed controller, that is the feedback gain and
the communication topology.

The objective is to improve the performance of the overall
systems, i.e., increase the convergence rate by designing
the second term of (14) given by the following controller

ūi =
∑

j∈Li

dijKijxj , (19)

where dij ∈ {0, 1} is a binary number that shows the
possibility to perform the state information exchange
between controller i and j, i.e., dij = 1 means that a
communication link is added between the local controllers
i and j and vice versa. The new closed loop expression of
(12) with the addition of controller (19) is given by

ẋ = Āx, x(t0) = x0, (20)
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Ā =









Ā1 A12 · · · A1N

A21 Ā2 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ĀN









+









0 Ā12 · · · Ā1N

Ā21 0 · · · Ā2N

...
...

. . .
...

ĀN1 ĀN2 · · · 0









,

Ā = Adec + Adist. (21)

The matrix Adec is the closed-loop system with the decen-
tralized control in (16), thus, the matrix Adec is stable. The
term Āij is defined as Āij = dijBiKij . Furthermore, we
assume that not an arbitrary number of links can be added,
i.e., the number is limited by an upper bound induced by
the communication constraint

∑

1≤i≤j≤N

γijdij ≤ c, (22)

where c > 0 is the total cost constraint on the communica-
tion network, and γij represents a cost to establish a link
between subsystem i and j. This cost is typically related
to factors such as the distance between the subsystems.

The problem can then be formulated as finding the gain
and topology of the distributed controller such that the
convergence rate of the overall interconnected system is
optimized under a given communication constraint. The
distributed controller is given by the following proposition.

Proposition 1. Considering an interconnected system in
(20), if there exists a solution of the optimization problem

minimize
Kij ,dij

Re{λmax(Ā)}

subject to Re{λmax(Ā)} < Re{λmax(Adec)},
∑

1≤i≤j≤N

γijdij ≤ c,

dij ∈ {0, 1},

(23)

then the decay rate of the interconnected system with the
distributed control law (14) is higher than with the de-
centralized control law (15) and the whole system remains
stable.

The optimization problem (23) is a mixed integer opti-
mization problem since it is solved with respect to both
the feedback gain and the communication topology of
the distributed controller. The optimization (23) can be
solved using well-known techniques such as relaxation and
decomposition techniques or cutting planes approaches
[Korte and Vygen (2000)].

Remark 2. Since the first term of (14) is designed in
advanced and not a part of the decision variables in
the optimization problem (23), the performance may not
be optimal. However, as shown in [Gusrialdi and Hirche
(2010)], the stability of the overall system is guaranteed
in the presence of permanent communication links loss. In
addition, the optimization problem might be implemented
according to a penalty method that will be investigated in
future work.

4. PROPOSED DISTRIBUTED DAMPING CONTROL
FOR POWER SYSTEMS

The conventional method for damping control is based
on the modal analysis since the oscillation modes are
characterized by the eigenvalues of the linearized power
system as formalized in (13).

Fig. 3. Proposed distributed control architecture

Let λi = αi + jβi be the i − th eigenvalue of the state
matrix A in (13),

• αi shows the damping or decay rate;
• βi shows the frequency of the oscillation;
• the relative damping ratio is given by

ξi =
−αi

√

α2
i + β2

i

. (24)

The contemporary solution is usually realized based on
pole placement and phase lead compensation. The control
goal can be formulated as to improve the decay rate of
the system oscillations by shifting the real part of the
eigenvalue αi towards the left half complex plane that also
means to minimize αi which is negative in a system with
a stabilizing controller. This method of pole shifting can
also be formulated as an optimization problem as in (23).

Remark 3. The decay rate of the overall system that is
Re{λmax} is chosen as a performance metric in this paper,
since it influences the relative damping ratio of the power
system which is the main concern of this paper as will be
shown later. Moreover, Re{λmax} also plays a dominant
role in the dynamic responses of the power system [Huang
(2006)].

On the other hand, the eigenvalue assignment is proved
to be complicated, while the optimal linear quadratic
(LQ) control provides a systematic way of designing the
feedback controller for the complex systems with high
order. Moreover, the resulting LQ controller is guaranteed
to stabilize the system with sufficient margins [Aldeen and
Crusca (2002)].

Using the proposed design procedure introduced in Sec-
tion 3, we first design a decentralized LQ controller using
the approach discussed in [Liu et al. (2009)] that stabi-
lizes the system and provides a minimum damping perfor-
mance. Then, the distributed controller together with the
optimized communication structure under a given com-
munication network constraint is designed by solving the
mixed-integer optimization problem (23) that improves
the decay rate, i.e., the damping performance of the overall
system.

The control architecture is illustrated in Fig. 3. In contrast
to the conventional supervisory centralized controller of
the whole system, e.g., [Wu et al. (2004), Snyder et al.
(2000)], the central instance in our approach is only
responsible for the optimization of the communication
topology, i.e. solving the optimization problem (23). After
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Fig. 4. (a) Interconnected system used in the simulation;
(b) the optimal communication topology

the optimization is performed, the generators with local
controllers can operate autonomously while exchanging
information with each other. Since it is possible to use
any of the variables from the generators, e.g., the generator
rotor speeds, angles, voltages or other variables [Hashmani
and Erlich (2008)], in this paper it is assumed that the
local controller of the generators could measure all of its
dynamic states and exchange them with each other via
the communication links. Since AVR control loop with
wide-area signals could provide relatively good damping
performance for the inter-area oscillations of the power
system as discussed in [Wu et al. (2004), Snyder et al.
(2000)], we consider in this paper that each generator is
equipped with a local AVR but no PSS which could further
improve the damping performance of the system. However,
this does not affect the applicability of the design principle
of the proposed approach. The inclusion of PSS will be
considered in future work.

5. EVALUATION AND SIMULATION RESULTS

The proposed distributed controller is evaluated via a
numerical simulation using MATLAB for the power system
shown in Fig. 1 by considering the linearized model in
(1)-(13). The parameters are chosen as in [Wu and Malik
(2006)] and listed in Appendix C.

The system turns out to have a fully connected physical
structure, i.e. all the five generators are physically coupled
with each other as shown in Fig. 4a. The γij and c in (22)
are equal to 1 and 9 respectively. This means that only 9
communication links are available for the overall system.
Solving the optimization problem (23) using the YALMIP
toolbox [Lofberg (2004)] gives the optimal topology as
shown in Fig. 4b, where all local controllers communicate
with each other except between the local controller of
generator 2 and 5.

The eigenvalue analysis of the inter-area oscillations of
the test system is compared in Table 1 in terms of the
damping ratio and frequencies in the case of with and
without the obtained controller. The analysis shows that
compared to the open loop, the decentralized controller
improved slightly the decay rates and the damping ratios.
Note that according to the optimization problem (23),
only the maximal real part of the eigenvalues is taken into
account to be minimized, which does not necessarily mean
that the real parts of all eigenvalues will be minimized, for
example the second eigenvalue of the distributed controller
case in Table 1 is larger than the second one of the
decentralized controller. However, it is observed that with
the proposed distributed controller, the damping ratios of
all the oscillation modes are improved compared to the

system with decentralized controller. This effect will be
investigated based on modal analysis of the system in
more detail in future work. The optimization will also
be further investigated by including all the eigenvalues
and use different performance metric such as the damping
ratio.

Table 1. Eigenvalue analysis of the test system

Case Eigenvalues
Damping
Ratio

Freq. [Hz]

Open Loop
−0.339 ± 4.818j 0.0703 0.7668
−0.405 ± 3.265j 0.1230 0.5196
−0.354 ± 2.615j 0.1344 0.4157

Decentralized Control
−0.352 ± 4.813j 0.0730 0.7666
−0.411 ± 3.260j 0.1251 0.5188
−0.355 ± 2.609j 0.1347 0.4152

Distributed Control
−0.355 ± 4.769j 0.0743 0.7590
−0.409 ± 2.860j 0.1414 0.4553
−0.363 ± 2.377j 0.1509 0.3783

Furthermore, the damping performance of the decentral-
ized controller and the proposed distributed controller in
terms of the rotor angle deviations ∆δi and rotor speed
deviations ∆ωi of each generator is also compared when a
sudden load change of the load 3 is simulated as a small
disturbance to the power system starting at t = 0.5 and
lasting for 1s as shown in Fig. 5 - 9. In consistence with
the eigenvalue analysis in Table 1, it is observed that all
the rotor angle deviations ∆δi are damped much faster
by the distributed controller compared to the one with
the decentralized controller. Moreover, the damping of the
rotor speed deviations are also increased for some of the
generators. It can also be observed that the oscillation
of the generator G3 and G4 have larger amplitude than
the other three generators due to the assumption in the
simulation that the fault occurs at the load 3 which is
physically located closer to the generator G3 and G4.

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

∆
 δ

1

0 5 10 15 20 25 30
−0.01

0

0.01

0.02

∆
 ω

1

time [s]

 

 

decentralized control distributed control

Fig. 5. Response to disturbance of the generator G1

The integrated squared control error of the rotor angle
deviations ∆δi is shown in Table 2. It is obvious that the
distributed controller achieves smaller integrated errors
than the decentralized ones except for the ∆δ4 of the
generator G4. This might be due to the fact that only
the largest eigenvalue is considered in the optimization
problem that leads to the performance degradation of a
subset of the generators. A similar effect is also observed
for the squared integrated control errors of the rotor speed
deviations ∆ωi which is not shown here due to the space
limit.
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Fig. 6. Response to disturbance of the generator G2
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Fig. 7. Response to disturbance of the generator G3
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Fig. 8. Response to disturbance of the generator G4

6. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a design procedure for the wide-
area power system damping control from the aspect of a
novel joint distributed optimal control and communication
topology design. This approach explores the additional
design degrees of freedom offered by the communication
network. The problem is formulated as a mixed integer
optimization problem in order to find the optimal commu-
nication topology for the distributed controller such that
the decay rate is optimized under a given communication
constraint. The proposed controller is evaluated in a five
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0.01

0.015

∆
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5

time [s]

 

 

decentralized control distributed control

Fig. 9. Response to disturbance of the generator G5

Table 2. Squared integrated control error of the
rotor angle deviations

Integrated error ∆δ1 ∆δ2 ∆δ3 ∆δ4 ∆δ5

Dec. Control 0.0200 0.0174 0.0173 0.0357 0.0155

Dist. Control 0.0089 0.0003 0.0002 0.0441 0.0004

machine power system via a numerical simulation and it
provides sufficient damping performance as shown in the
results. It might open up a new perspective of control
design as a combined optimization of the control and com-
munication infrastructure for wide-area control of future
power systems.

In the future, a more sophisticated objective function, i.e.
another performance metric for the optimization prob-
lem in order to improve the damping performance, will
be investigated. For example, instead of minimizing the
eigenvalue with the largest real part of the closed loop
system which may not always provide the best damping
performance regarding to the other eigenvalues, in the fu-
ture the optimization problem will be modified to include
all the (complex) eigenvalues of the system. Moreover,
the performance of the proposed technique will also be
evaluated for the case of a larger power system which has
more sparse structure with the inclusion of PSS.
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Appendix A. NOMENCLATURE

∆[•] increments of the variables
δi rotor angle of i-th machine [rad]
ωi rotor speed of i-th machine [rad/s]
E′

qi internal transient voltage in q-axis of i-
th machine [p.u.]

Mi inertia constant of i-th machine [s]
Di damping power coefficient of i-th ma-

chine [p.u.]
Xdi synchronous reactances in d-axis of i-th

machine [p.u.]

X ′
di transient reactance in d-axis of i-th

machine [p.u.]
T ′

doi open-circuit d-axis trasient time con-
stant of i-th machine [s]

Pei active power delivered at the terminals
of i-th machine [p.u.]

Efi electromotive force [p.u.]
b1i, b0i, c1i, c0i coefficients of the transfer function of

the voltage control and excitation sys-
tems

Gij , Bij transfer conductance and susceptance
between buses i and j respectively [p.u.]

Appendix B. STATE SPACE MATRICES

Ai =













0 1 0 0 0
− 1

Mi

∂Pei

∂δi
−Di

Mi
− 1

Mi

∂Pei

∂E′

qi

0 0

αi
∂Idi

∂δi
0 − 1

T ′

doi

+ αi
∂Idi

∂E′

qi
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T ′
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T ′
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0 0 0 −c1i −c0i

0 0 0 1 0


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




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,

Bi = [0 0 0 1 0]
T

,

Aij =












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Mi
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0 0 0 0 0
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







with αi =
Xdi−X′

di

T ′

doi

.

Appendix C. SYSTEM PARAMETERS

Table C.1. Generator parameters

G1 G2 G3 G4 G5

Mi 4.6 4.75 4.53 4.04 5
Di 3.14 3.77 3.45 4.08 3.5
xdi 0.1026 0.1026 1.0260 0.1026 1.0260
x′

di
0.0339 0.0339 0.3390 0.0339 0.3390

T ′

doi
5.67 5.67 5.67 5.67 5.67

b1i 6.66KA 6.66KA 6.66KA 6.66KA 6.66KA

b0i 3.33KA 3.33KA 3.33KA 3.33KA 3.33KA

c1i 33.3 33.3 33.3 33.3 33.3
c0i 3.33 3.33 3.33 3.33 3.33
KA 200 200 200 200 200

Table C.2. Generator operating points

G1 G2 G3 G4 G5

V 1.05 1.03 1.025 1.05 1.025
θ 0 0.1051 0.0943 0.0361 0.0907

Table C.3. Parameters of transmission lines
[p.u.]

node node R X B/2

1 7 0.00435 0.01067 0.01536
2 6 0.00213 0.00468 0.00404
3 6 0.02004 0.06244 0.06408
4 8 0.00524 0.01184 0.01756
5 6 0.00711 0.02331 0.02732
6 7 0.04032 0.12785 0.15858
7 8 0.01724 0.04153 0.06014
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