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Abstract— Physical cooperation with humans greatly en-
hances the capabilities of robotic systems when leaving stan-
dardized industrial settings. Our novel cognition-enabled con-
trol framework presented in this paper enables a robotic assis-
tant to enrich its own experience by acquisition of human task
knowledge during joint manipulation. Our robot incrementally
learns semantic task structures during joint task execution
using hierarchically clustered Hidden Markov Models. A se-
mantic labeling of recognized task segments is acquired from
the human partner through speech. After a small number
of repetitions, the robot uses an anticipated task progress to
generate a feed-forward set point for an admittance feedback
control scheme. This paper describes the framework and its
implementation on a mobile bi-manual platform. The evolution
of the robot’s task knowledge is presented and discussed.
Finally, the cooperation quality is measured in terms of the
robot’s task contribution.

I. INTRODUCTION

As robots are entering new domains starting to provide

close physical assistance to human workers, a strong need for

the ability to learn semantic task knowledge from human co-

workers arises. Any approach of pre-programming all possi-

ble interaction behaviors for all possible combinations of task

goals is infeasible for fairly unstructured settings of human

manual work. Instead, in our opinion, a cognition-enabled

robotic co-worker is expected to implement a learning-by-

doing strategy for physical interaction tasks. This implies that

the robot starts as a rather passive pack mule being guided

by a human partner. In order to exploit the naturally given

cognitive capabilities of the human co-worker, a cognition-

enabled robot observes the human task contribution in terms

of physical signals and learns how to recreate the comple-

mentary patterns. Furthermore, the authors are convinced

that a cognition-enabled robotic assistant should enrich its

own experience by acquisition of meaningful semantic labels

from dialogue with human co-workers as a basis for further

linguo-haptic interaction improvement. Neuroscientific find-

ings second this opinion as loop closure around sensory-

motor observation, imitation and control through explicit

communication is observed in action reproduction from

human-human settings [1].

Exemplarily, in this work, we address the problem of joint

bulky object transportation, as illustrated in Fig. 1, however,

the conceptual approach is not limited to this application.

This task is specifically challenging due to the tight physical

Fig. 1. Experimental scenario: Human and robot jointly carrying a bulky
bumper to its mounting location during car restoration.

coupling between human and machine which inseparably

serves as a channel for energy but also information exchange.

Caster-like robot partner behavior reactively compensating

the object dynamics is well-suited for human-robot joint

bulky load transport which is nicely shown in [2] and [3].

However, such a follower strategy implements merely a trol-

ley for heavier loads rather than an actual cooperation partner

and, while simple tasks can successfully be fulfilled, more

complex tasks including environmental constraints typically

require an active contribution to the task by the robot [4].

Active robotic assistance also reduces the effort applied by

the human partner [5], [6], [7]. In order to plan the next robot

action for assistance to the human, the next human action

needs to be predicted. For simple motor tasks, findings from

human motor behavior are considered for movement pre-

diction, for example the well-known minimum jerk velocity

profile for point to point movements [5], [8]. However, for

more complex tasks there are not any such analytical models

currently available. In consequence, learning from observa-

tion approaches have become a favorable method to address

these challenges. We have investigated the theoretical back-

ground on task dynamics in joint manipulation and incre-

mental learning for physical human-robot interaction [4], [9].

Remaining open questions include the implementation of an

actively contributing robotic partner in joint human-robot
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manipulation and generalization of the learning approach to

higher-dimensional observations. The idea of a robot asking

for semantic information has been extensively explored in

the Autonomous City Explorer project. A robot traveling

through the city of Munich extracted semantic information

from communication with passers-by [10]. Transferring this

concept to physical human-robot interaction in terms of joint

human-robot manual work is part of this paper’s inspiration.

II. PROBLEM STATEMENT AND CONCEPTUAL APPROACH

The envisaged task is a joint load transport from a

commonly known starting pose to a goal pose, first only

known to the robot’s human partner. The research questions

we address in this paper are: How can a full-scale mobile

robot learn from haptic interaction, enrich its experience by

asking questions and assist in an appropriate way based on

its knowledge? Secondly: How does an assistive behavior

emerge in our robot implementing our proposed approach

over time?

We confine our problem to the following conditions:

• One human moves a bulky object together with a robot

from a starting pose to a final pose along an intuitive

trajectory avoiding collisions with the environment.

• Both participants tightly grasp the same rigid object

with commonly known shape and dynamics.

• Haptic interaction through the object and speech are

possible communication channels between the human

and the robotic partner.

• Environmental constraints are such that a feasible path

to the goal exists.

The contribution of this paper is an experimental proof-of-

concept study towards an experience-driven physical robotic

assistant including knowledge acquisition, semantic labeling

and motion re-creation and control.
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Incremental
Learning

(Sec. III)
Haptic Database

Haptic
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Haptic

Prediction
(Sec. IV)

Semantic
Description
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Motion
Generation
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Fig. 2. System Architecture

As depicted in Figure II, our approach consists of four

major interacting modules. When the system is started, the

robot acts as a passive follower, implementing a second

order admittance control law in inertial coordinates and

is pulled and pushed from start to goal by the human

partner through the object. Any force and motion input is

unsupervisedly segmented, clustered and added as haptic

interaction primitive to an experience database. Additionally,

any force and motion input is compared to existing database

entries, generating recognition matches. Patterns that have

been observed multiple times are classified to be of in-

terest and worth asking the human partner for a semantic

description. This semantic knowledge is later used to ask

the human partner about the desired trajectory depending

on the current recognition quality. Whenever the recognition

is successful either directly from database matches or with

additional certainty from direct human partner feedback, a

motion pattern is generated according to the corresponding

database entry. This motion is translated into a virtual force

input, acting on the virtual admittance mentioned above.

The remainder of this paper is organized as follows: In

the next Section II an overview on the system architecture

is given. Section III gives a brief theoretical background

to the algorithm for segmentation and learning from force

and motion data, followed by prediction in Section IV.

The learned models are enriched with human semantic

knowledge, in Section V. The feedback control algorithms

for task execution are explained in VI. Implementation and

results from our experimental evaluation are presented in

Section VII.

By convention, bold characters are used for vectors and

matrices. Variables representing functions of time are not

necessarily marked as such for compactness of the mathe-

matical descriptions.

III. AN HMM APPROACH TO LEARNING FORCE AND

MOTION SIGNALS

The autonomous acquisition of haptic motion patterns

requires unsupervised segmentation, clustering, and an in-

cremental learning mechanism allowing generalization, and

behavior recreation using a regression algorithm.

A. Automated Segmentation, Learning and Clustering

Making the robot more assistive as it gathers new ob-

servations requires as a first step an online autonomous

incremental learning framework. The basic structure for

the segmentation and incremental learning process is based

on the algorithms in [11], which is summarized in this

subsection and illustrated in Fig. 3 a).

In order to extract behavior patterns from observations

autonomously, the observed force and motion signals are first

segmented into potential primitives. The stochastic approach

assumes that data belonging to the same primitive will have

the same underlying distribution.

Once a segmentation point is detected, each segmented

time series is encoded into a left-to-right HMM λ as ex-

plained in the following Section III-B. In order to group and

structure similar observations, a hierarchical tree of behavior

primitives is built as follows: the newly constructed HMM

is compared to the existing nodes in the primitive tree1 and

1Throughout this paper, ‘primitive tree’ denotes the a hierarchical tree of
behavior primitives built by the clustering. The term ‘node’ denotes a node
in the ‘primitive tree’.
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Fig. 3. Overview of the learning and prediction procedure. λ denotes
the most likely HMM given the incoming observations, λprev denotes the
HMM representing the previous primitive and λnext refers to the HMM
representing the next most likely primitive that follows the current one. λW

is the window HMM built based in λ, λprev and λnext and sc is the
currently estimated HMM state of λW given the incoming observations.

is inserted as a member of the closest node. If sufficiently

similar members are found in the node, a new child group

of this node is formed. Note that a node is also represented

by an HMM, which is trained with the generated outputs

from its members and the distance between the HMMs is

estimated using a symmetric version of the Kullback-Leibler

divergence. The tree represents the robot’s knowledge in

terms of a compact database of continuously incoming data

and each node represents a behavior primitive.

In parallel to the clustering process, the temporal re-

lation between behavior primitives is learned building a

directed primitive graph where the observed primitives are

represented by its nodes and an edge between two nodes

represents the probability to transit from one node to another.

This additionally learned structure allows trajectory predic-

tions not only within a primitive but also during primitive

transitions.

B. Encoding Force and motions into HMMs

HMMs provide a compact and probabilistic spatio-

temporal representation of the training data. Each HMM λ

is given by a set of parameters {π,a,w,µ,Σ}, where π

represents the initial state probabilities, a represents the

probability of the transitions between the states, and w, µ

and Σ are the weight, the mean and the covariance of the

mixture components of the states.

While HMM’s discretized state space provides a good

recognition performance, it also leads to limitations when

generating a continuous trajectory as required for haptic

signal predictions. In order to improve this performance, the

spatio-temporal correlation is learned during the training and

the responsibility over time of each state is calculated.

Multiple observations are used as training data. Each ob-

servation o = {so(t), to(t)} consists of the spatial data so(t)
which is the observed twist trajectory and wrench at time t,

and its associated time sequence to(t) = t.

The above mentioned standard HMM parameters are

trained using the Baum-Welch algorithm [12] for the spatial

data. Additionally, the temporal data is used to calculate

the time mean tµik, the variance of the time tΣik and the

covariance between temporal and spatial data ts
Σik for each

state i and each mixture component k.

C. Decoding from HMMs

Using the additional temporal information acquired in

the training, the responsibility over time tγik(t), which

represents the probability of being at state i at time t with

the k-th mixture component based on the time information,

is calculated as

tγik(t) =
N (t|tµik,

tΣik)
N
∑

s=1

K
∑

j=1

N (t|tµsj , tΣsj)

(1)

where a Gaussian for each state i and each mixture compo-

nent k is centered on the mean of the time tµik and with a

variance tΣik. Note that N is the number of states and K

is the number of mixture components of each state.

The spatial data is generated by the Gaussian Mixture

Regression (GMR) algorithm weighted according to the

responsibility over time. For each time step t the conditional

expectation of the spatial data ô(t) is given by

ô(t) =

N
∑

i=1

K
∑

k=1

tγik(t)

(

sµik +
ts
Σik

tΣik

(t− tµi)

)

.

IV. FORCE AND MOTION PREDICTION

Relying on the knowledge acquired in Sec. III represented

by the primitive graph and the primitive tree, a predicted set

point is generated. An overview of the prediction procedure

is shown in Fig. 3 b).

Given the incoming twist and wrench, the most likely

node λ∗ and its next most likely primitive λnext are selected

from the primitive tree and the primitive graph respec-

tively. A window HMM λW is then defined over the last

estimated λprev , the current most likely λ∗ and the next

most likely primitive λnext. Note that a window HMM over

sequentially executed left-to-right HMMs is built connecting

the last state of the first HMM to the first state of the second

one.
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Using the resulting window model, the Viterbi algorithm

can be applied to estimate the current HMM state sc. To

improve the accuracy of the prediction and estimate how

far the execution of this state is, the generalized output of

the window model can be used as a reference. Comparing

the duration of estimated the state sc in the incoming

observations and the generalized output, the current state can

be approximated as a time index of the latter.

Applying the regression explained in Section III-C and

given a desired prediction time horizon of L samples in the

future, the predicted data is calculated as follows

ô(tc + L) =
N
∑

i=1

K
∑

k=1

tγik (
to(t+ L))

(

sµik +
tsΣik
tΣik

(to(t+ L)− tµik)
)

,

with to(tc + L) =

(

L+ nsc

vf
+ tsc

)

, (2)

where tc is the current state estimation on the generalized

state sequence, tsc is the time index of sc on the generalized

state sequence, nsc is the length of sc on the incoming

observations state sequence. vf is a velocity factor given

by
|ẋl|

|ẋc|
, where ẋ is the currently estimated twist and ẋc the

currently observed one. Note that ẋl is calculated from ô(tc).

V. EXTRACTION OF TASK SEMANTICS

Continuous force and motion patterns as used in the seg-

mentation and learning algorithms as described in Section III

describe the physical development of a task. However, in or-

der to exploit the cognitive capabilities of the human partner,

an intuitive direct user interface on a more abstract level must

be provided. The extracted haptic primitives as introduced

in Section III can be parameterized to provide a viable

level of abstraction with a spatio-temporal resolution suitable

for natural language descriptions. Whenever an unlabeled

primitive is recognized, the robot acquires a description from

its human partner. This label can then be used to

• merge two or more primitives representing the same

semantic meaning,

• generate queries on the next primitive to choose in cases

of similar priors,

• reconfirm choices whenever the measured haptic input

deviates from the expected.

A. Merging multiple nodes

User input can be used to cluster two or more nodes

with the same semantic meaning into one. Therefore, the

generalized outputs of the source nodes ô are used as training

input for a new node getting the same label. The source nodes

become children of the new node.

B. Query generation

In order to avoid false predictions on the upcoming

primitive, a dialogue, based on the prior of the transition

from λ∗ to λnext: p(λ∗ → λnext), given by the primitive

graph is executed. We distinguish three different cases, as

depicted in Fig. 4:

a) p(λ∗ → λnext) = 1. The upcoming primitive is

deterministic. No query is generated.

b) 1 > p(λ∗ → λnext) > ǫ. The robot is very certain

about the upcoming primitive. A reconfirmation query

is generated, suggesting λnext as the next step.

c) p(λ∗ → λnext) ≤ ǫ. No clear candidate for the

upcoming primitive can be determined. A neutral query

is phrased, asking for the next step λnext.

time

observation prediction

λ1

no query

(a) No query

time

observation prediction

λ1

λ2

λ1?

(b) Confirmation

time

observation prediction

λ1

λ2

?

(c) Neutral query

Fig. 4. Query-generation mechanism

VI. ROBOT CONTROL ARCHITECTURE

A feedback control scheme is adopted to provide a

prediction-based assistive robot behavior as well as a homo-

geneous reactive behavior allowing for human force inputs.

A. Overall Control Scheme

As depicted in Fig. 5, holonomic maneuverability is

provided by an admittance control scheme of a mobile

robot. The robot moves the object along a resulting pose

trajectory x leading to an object wrench uobj in the robot’s

contact point, serving as input to the admittance control law.

Additionally, a human partner interacts with the object on a

different contact point with wrench ûh. The object geometry

transforms this wrench to uh acting in the robot’s contact

point. Using the prediction xpred explained in Section IV

an assistive impedance control law generates an active robot

force input ur.

+
ûh

xpred

Object

Geometry

Assistive
Control

uh

ur

u Robot
Admittance

x

x

Object

Impedance

uobj

Fig. 5. Overall control scheme consisting of an impedance type assistive
control and admittance type reactive control scheme.

B. Interaction Control

The reactive robot behavior is realized implementing an

admittance control law

u = M rẍ+Drẋ (3)

with a rendered virtual mass M r and rendered virtual

viscous friction Dr. Note, that task-related constraints can

be easily introduced by rendering a virtual stiffness Kr in

the desired spatial directions.

The assistive robot behavior based on the motion predic-

tion xpred is rendered by an impedance control scheme

ur = Kp(xpred − x) +Kd(ẋpred − ẋ) (4)
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where Kp and Kd denote the proportional and derivative

control gains respectively.

C. Manipulator-Base Coordination

The underlying control concept of the manipulator-base

coordination adopted in this paper is depicted in Fig. 6.

Similar to [13], the admittance control law is calculated in

inertial coordinates so that repositioning of the mobile base

does not affect the end-effector position. The actual end-

effector pose Rxm is used to derive a velocity command Rẋb

to the mobile base, following the base control law:

Rẋb =





φ̇

ẋ

ẏ



 = diag (Khdg Kdst Ktng)





ehdg
edst
etng





Three independent proportional control laws move the mo-

bile base minimizing heading error ehdg , distance error edst
and tangential error etng of the base pose w.r.t. the end-

effector pose Rxm, as illustrated in Fig. 7.

ehdg

edst

etng

R
xm

R
xd

x

y

φ

Fig. 7. Base pose control w.r.t. to a reference pose R
xd of the manipulator’s

end-effector.

A reference pose of the end-effector Rxd is chosen to meet

certain requirements regarding task-related manipulability.

The resulting motion command Rẋb is then executed by an

omni-directional velocity control law as proposed in [14].

VII. EXPERIMENTAL EVALUATION

In order to evaluate our approach and to get an impression

on the behavior of a robot implementing our proposed

scheme for learning, semantic labeling and control, we

conducted a full-scale experiment in our laboratory. As an

exemplary domain, we chose a classic-car restoration setting.

The manipulated object, a 1.2m long Mini’s steel bumper (b)

weighing 1.9 kg is depicted in Fig. 8. The distance between

the pre-defined grasp points of human and robot is 1.1m.

More information on the robot used can be found in [15].

A. The Experimental Robot Platform

The robot used in this experiment (see Fig. 8) stands on

a four-wheeled omni-directional mobile platform (f) which

offers roughly human-like maneuverability and smooth mo-

tion [16]. Two identical anthropomorphic 7-degrees-of-

freedom (DoF) arms (c) are front-mounted on the top of the

main chassis to provide a human-like working space [17]. In

this experiment, only the right arm is used. Mounted onto

a JR3 wrench sensor, the manipulator is equipped with a

Schunk PG70 two-finger parallel gripper (a) which allows a

tight grasp of the object. Lithium-ion polymer batteries (e)

power the system for long periods without recharging. For

computational power, the robot carries three PCs (d). The

first is a an Intel Core i7 920 running at 2.66GHz executing

the online learning and prediction algorithm on multiple CPU

cores utilizing the OpenMP library at an update rate of 20Hz.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8. The human-sized mobile robot used in the experiment.

B. Implementation

The entire manipulator control scheme is implemented

in MATLAB/Simulink and executed on the Linux Real-

Time Application Interface (RTAI) using Matlab’s Real-Time

Workshop on a second PC. The control algorithm runs at a

frequency of 1 kHz. The third PC is identical to the first and

ensures real-time control of the mobile platform and a syn-

chronized data management utilizing the KogmoRTDB real-

time database [18] available at [19] and the PREEMPT RT

Linux real-time kernel patch [20]. The MARY Text-to-Speech

System is utilized for English-language speech synthesis.

For simplicity, the implementation of the impedance con-

trol law is reduced to the x/y-plane. The parameters from

equations (4) and (3) were set to the following values:

M r = diag
(

15 kg 15 kg 0.3 kgm2
)

Dr = diag (80Ns/m 80Ns/m 7Nms/rad)

Kp = diag (0 0 0)

Kd = diag (30Ns/m 30Ns/m 0.1Nms/rad)

Note, that the zero-value for Kp leads to a drift-free

behavior of the assistance controller to compensate for drift

induced by the robot’s odometry. The 12-dimensional input

vector to the HMM training method is composed of the

following dimensions in intertial coordinates:

• the 3-dimensional position of the end-effector 0p

• the 3-dimensional angular velocity 0ω

• the 6-dimensional wrench 0u in inertial coordinates

As unified Gaussian computations on 6-D poses remain a

computationally extensive problem [21], we decided to use

angular velocities as unambiguous training input.
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The online learning algorithm is parameterized as follows:

Each segment and each node is encoded in an HMM with 15

states and 1 Gaussian per state. In order to form a node in

the primitive tree, a group of at least 2 members is needed

and only the upper nodes of each branch are considered for

the prediction. We use a window of 90 samples over the

incoming observations for the primitive recognition and a

window HMM with 30 states. The predicted data term used

as reference for the impedance control law was 0.3 s.
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y
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]

0
0
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8

car

trolley

10

10

Fig. 9. 2-dimensional position component of 12-dimensional training data
from three trials per each of three semantically different paths

C. Results

Fig. 9 depicts the 2-dimensional position component of the

actual first nine trials taken with our system in this scenario.

The human partner has chosen three semantically different

paths from the starting pose to the goal pose.

Note, that the odometry drift leads to diverging paths. In

Fig. 10 the 2-dimensional component of the 12-dimensional

generalized output of the learning algorithm after the nine

trials from Fig. 9 is shown. Additionally, the labels acquired

from the human partner after successful re-detection of

primitives are shown. Note, that the primitives are labeled,

not the furcations. The primitive labeled left of the car does

not terminate near the actual goal pose. The training data

did not yield the necessary characteristics for successful

segmentation as the human partner had difficulties to avoid

collisions between the robot and the car in narrow space.

The labeled primitive graph from Fig. 11 shows the seman-

tic map derived from the learning and labeling procedure.

This graph is used and further extended in every further trial.

An effect of successful prediction is visible in Fig. 12.

As a comparison of the entire trajectory from start to goal

is difficult, due to the significant trial-to-trial variance, we

x [m]

y
[m

]

00

2

2

4

4

6

6

8

8

10

10

before
the trolley

left of
the trolley

right of

the trolley

behind
the car

right of

the car

between car
and trolley

left of
the car

missing

model fragment

Fig. 10. 2-dimensional position component of 12-dimensional generalized
output and acquired semantic labels for the graph nodes. The red box
represents the furcation area examined in Fig. 12.

before
the trolley

left of
the trolley

right of

the trolley

right of

the car

left of
the car

between car
and trolley

behind
the car

Fig. 11. Resulting primitive graph. Note, that nodes represent motion
segments, not single locations.

decided to present data of the first furcation as marked in

Fig. 10. The green line shows the baseline implementation: A

passively following robot. Significant force is required to pull

the robot into the y-direction, perpendicular to the primary

direction of motion. The red line shows, how completely suc-

cessful prediction due to user feedback leads to significantly

reduced forces. The case of a false prediction was provoked

to generate the force trajectory shown in black. However,

after the positive slope along a distance of approx. 0.5m, the

prediction is corrected and the force returns to a comparable

absolute value as in the correctly predicted case.

For this proof-of-concept implementation, we consider

the required exerted wrench as a suitable measure for the

performance evaluation of the assistance. Fig. 13 shows

the assistance improvement due to successful prediction in

relation to the passive case (1. trial), and mispredicions

occuring due to missing user feedback.
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VIII. CONCLUSION AND FUTURE WORK

In this paper, a novel approach for a robotic system,

unsupervisedly gaining knowledge on joint manipulation

and acquiring semantic labels for its own experience was

presented. The goal of this approach is an improvement

of the robot’s joint manipulation skills, exploiting semantic

task knowledge. The architecture is implemented on a full-

scale robot and evaluated in a classic-car restoration scenario

where a human carried a car’s bumper multiple times from

a starting position to a final position on three semantically

different ways. The results from our proof-of-concept im-

plementation show great promise for the applicability of our

approach to a wider selection of more complex tasks. Even

the fundamental investigations on the combination of control

and HMM-based prediction control, psychological studies

on the acceptance and perceived cooperativity and extensive

evaluations in simpler scenarios are necessary. The segmenta-

tion algorithm in its current implementation requires manual

tuning depending on the signal dimensions involved which

leaves room for improvement. Another challenging goal is

a sophisticated flexible dialogue allowing for a more natural

speech feedback from and to the user.
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