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Abstract

Abstract

Electrochemical systems can be found in a large variety of applications. The well-known
usage as power sources in form of batteries and fuel cells is particularly relevant in the
context of electromobility and renewable energy sources. Electrolytic processes, such as
the electrodeposition of metals and alloys, have significant industrial importance. The
behavior of an electrochemical system is determined by a complex interplay of thermody-
namics, electrode kinetics and ion-transport phenomena. Thus, research and development
in the field of electrochemistry are necessarily multidisciplinary tasks involving several
scientific disciplines. The use of mathematical modeling and numerical simulation repre-
sents one promising approach, which will be instrumental in gaining further insight into
these complex systems.

In this work, a comprehensive computational method for the coupled numerical simula-
tion of electrochemical systems is proposed. The present focus is particularly on coupled
multi-ion transport in electrolytic cells. As an exemplary application, electrodeposition
of metals is considered in this study. Based on a continuum hypothesis, a macroscopic
model is established which accounts for all three ion-transport phenomena in dilute elec-
trolyte solutions, that is, convection, diffusion and migration. The latter effect describes
the movement of ions caused by an electric field.

One of the key aspects of this work is the consideration of the inherent coupling of
ionic transport and complex, often turbulent flow of electrolyte solutions. A challenging
two-way coupled problem arises in case of buoyancy-driven flow (natural convection) in
an electrochemical cell. For an appropriate modeling of electrode kinetics, nonlinear phe-
nomenological boundary conditions such as the Butler-Volmer law are used at electrode
surfaces. A general approach for the simulation of current-controlled (galvanostatic) prob-
lems completes the comprehensive model.

A stabilized finite element method is proposed as a unique discretization approach to
all governing equations. The stabilization terms are derived from the framework of the
residual-based variational multiscale method. It is successfully demonstrated that the pro-
posed stabilization techniques for the coupled ion-transport problem contribute to the ro-
bustness of electrochemical simulations when convection plays a significant role. Since
the variational multiscale method can also be considered as an approach to large eddy sim-
ulation of turbulent flows, the proposed computational framework is capable of simulating
coupled multi-ion transport in laminar, transitional and turbulent flow of electrolyte solu-
tions. Moreover, for natural convection phenomena in electrochemical cells, a partitioned
solution scheme is proposed in this work.

Various numerical examples demonstrate that the computational method is robust and
provides accurate results. Among others, realistic problem configurations with complex
three-dimensional geometries are considered. The diversity of numerical examples illus-
trates the broad spectrum of capabilities.

In summary, the developed computational approach represents an important contribution
concerning the development of a predictive tool for industrial electroplating applications
in particular and the macroscopic modeling of electrochemical systems in general.
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Zusammenfassung

Zusammenfassung

Elektrochemische Systeme finden sich in einer Vielfalt von technischen Anwendungen.
Die Verwendung als Energiequellen in Form von Batterien und Brennstoffzellen ist gera-
de im Kontext von Elektromobilitit und erneuerbaren Energien von besonderer Relevanz.
Elektrolytische Prozesse wie zum Beispiel die galvanische Abscheidung von Metallen und
Legierungen besitzen eine erhebliche industrielle Bedeutung. Das Verhalten eines elek-
trochemischen Systems wird durch eine komplexe Wechselwirkung von Thermodynamik,
Reaktionskinetik an Elektroden und Ionentransportvorgingen bestimmt. Demzufolge sind
Forschung und Entwicklung im Bereich der Elektrochemie notwendigerweise multidis-
ziplindre Aufgaben, die mehrere verschiedene wissenschaftliche Disziplinen miteinbezie-
hen. Der Einsatz von mathematischer Modellbildung und numerischer Simulation stellt
dabei einen vielversprechenden Ansatz dar, mit Hilfe dessen weitere Einblicke in diese
komplexen Systeme erlangt werden konnen.

In der vorliegenden Arbeit wird ein umfassendes Berechnungsverfahren fiir die gekop-
pelte numerische Simulation von elektrochemischen Systemen vorgestellt. Im Fokus ist
hierbei insbesondere der gekoppelte Transport von Ionen in elektrolytischen Zellen. Als
beispielhafte Anwendung wird die galvanische Abscheidung von Metallen betrachtet. Ba-
sierend auf einer Kontinuumshypothese wird ein makroskopisches Modell erstellt, wel-
ches alle drei lonentransportvorginge in verdiinnten Elektrolytlosungen beriicksichtigt,
d.h. Konvektion, Diffusion und Migration. Der letztere Effekt beschreibt dabei die Be-
wegung von lonen, die durch ein elektrisches Feld hervorgerufen wird.

Einer der Schliisselaspekte dieser Arbeit ist die Betrachtung der inhidrenten Kopplung
von lonentransport und komplexer, oftmals turbulenter Stromung von Elektrolytlosungen.
Ein anspruchsvolles, beidseitig gekoppeltes Problem muss fiir den Fall einer auftriebsge-
triebenen Stromung (sog. natiirliche Konvektion) in einer elektrochemischen Zelle betrach-
tet werden. Fiir eine geeignete Modellierung der Reaktionskinetik an Elektroden werden
nichtlineare phianomenologische Randbedingungen wie zum Beispiel das Butler-Volmer-
Gesetz verwendet. Ein allgemeiner Ansatz fiir stromkontrollierte (galvanostatische) Pro-
bleme vervollstindigt das umfassende Modell.

Als einheitliches Diskretisierungsverfahren fiir alle Bestimmungsgleichungen wird ei-
ne neuartige stabilisierte Finite-Element-Methode vorgeschlagen. Die zusétzlichen Stabi-
lisierungsterme werden auf der Grundlage eines residuenbasierten variationellen Mehr-
skalenansatzes hergeleitet. Es wird gezeigt, dass die vorgeschlagenen Stabilisierungstech-
niken fiir das gekoppelte Ionentransportproblem zur Robustheit von elektrochemischen
Simulationen beitragen, wenn Konvektion eine erhebliche Rolle spielt. Da die variatio-
nelle Mehrskalenmethode ebenfalls eine Moglichkeit zur GroBwirbelsimulation turbulen-
ter Stromungen erdfinet, ist die entwickelte Berechnungsumgebung in der Lage, den ge-
koppelten Transport mehrer Ionenarten in laminarer, transitioneller und turbulenter Stro-
mung von Elektrolytlosungen zu simulieren. Dariiberhinaus wird in dieser Arbeit ein par-
titionierter Losungsansatz zur Einbeziehung natiirlicher Konvektionsphdnomene in elek-
trochemischen Zellen vorgeschlagen.

Vielfiltige numerische Beispiele demonstrieren, dass das neuartige Berechnungsverfah-
ren robust ist und korrekte Ergebnisse liefert. Unter anderem werden dabei verschiede-
ne realistische Problemkonfigurationen mit komplexen dreidimensionalen Geometrien be-
trachtet. Die Vielseitigkeit der gezeigten numerischen Beispiele veranschaulicht das breite
Spektrum an geschaffenen Simulationsmoglichkeiten.
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Zusammenfassung

Zusammenfassend reprisentiert das entwickelte Berechnungsverfahren einen wichtigen
Beitrag zur Entwicklung eines Vorhersagewerkzeugs fiir industrielle Beschichtungsanwen-
dungen im Besonderen und fiir die makroskopische Simulation elektrochemischer Systeme
im Allgemeinen.
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1 Introduction

1.1 Overview

Electrochemistry denotes a branch of chemical science concerned with the interrelation of
electrical and chemical phenomena (Bard et al. [8]). Typically, two categories of electro-
chemical systems are distinguished. The term galvanic cells is used for electrochemical
cells where electric current is created due to ongoing electrochemical reactions. Con-
sequently, such cells are commonly used as power sources. Well-known examples are
batteries and fuel cells, which are particularly relevant as enabling key technologies in the
context of electromobility and renewable energy sources.

The so-called electrolytic cells form the second category of electrochemical systems.
There, an electric current is externally applied in order to drive desired electrochemical
reactions. Electrolytic processes, such as the electrochemical production of various chem-
icals, electrodeposition of metals and alloys, electrowinning of metals from ores and elec-
trochemical machining applications have significant industrial importance. The charging
of a (rechargeable) battery represents a further important electrolytic application. Electro-
chemical phenomena in general are also the cause for metal corrosion and are fundamental
parts of many biological systems.

Electrochemical systems are characterized by a coupling of different physical, chemical
and electrical processes. According to Newman and Thomas-Alyea [137], the behavior
of an electrochemical system is determined by a complex interplay of thermodynamics,
electrode kinetics and ionic transport phenomena. As a consequence, research and devel-
opment in the field of electrochemistry are necessarily multidisciplinary tasks involving
several scientific disciplines. Beside expert knowledge and experimental methods, the use
of mathematical modeling and computational methods represents a further promising ap-
proach which will be instrumental in gaining further insight into these complex systems, to
optimize existing electrochemical configurations and to support the development of future
systems.

1.2 Basic principles of electrochemical systems

Although the exemplary applications stated above seem to be very different at a first glance,
it is important to note that certain principles are common to all electrochemical systems.
For an introduction to the scientific field of electrochemistry, the reader is particularly re-
ferred to the outstanding book by Newman and Thomas-Alyea [137]. Further adequate
references are Bard and Faulkner [7], Bagotsky [4] and Hamann et al. [91]. Ionic transport
processes and the related mathematical modeling are addressed by Kontturi et al. [117].
The electrochemical dictionary by Bard et al. [8] can be consulted for clarification and
better understanding of electrochemical terminology. Finally, the online platform “Elec-
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trochemical science and technology information resource (ESTIR)” [59] provides access
to numerous online services and information resources related to the broad scientific field
of electrochemistry.

In general, an electrochemical cell consists of at least two electron conductors (elec-
trodes) in contact with an ionic conductor (electrolyte). An electrolyte is a chemical com-
pound consisting of ions. Upon dissolution into a solvent or upon melting, an electrolyte
dissociates into separate ions. Thus, electrolytes play a fundamental role in electrochem-
istry, since the ionic conductivity enables the passage of electric current through an elec-
trochemical cell from one electrode to the other. Examples for electrolytes are acids, bases
and salts. A chemical compound which is able to act as ionic conductor at solid state is
termed solid electrolyte.

For a majority of applications, liquid electrolyte solutions are used. So-called strong
electrolytes dissociate completely into ions when dissolved into a solvent such as water,
whereas weak electrolytes dissociate only partially. In both cases, the created ions are
typically surrounded by a so-called solvation shell. It is caused by electrostatic forces
between ions and polar solvent molecules. For aqueous electrolyte solutions, where water
is used as a solvent, the solvation shell is also referred to as hydration shell. A schematic
representation of hydration shells formed by dipole water molecules around a cation and
an anion is provided in Fig. 1.1. A detailed introduction to the important class of aqueous
electrolyte solutions is given by Wright [181], for instance.

The dissolved ions are the reason for the electric conductivity of an electrolyte solution.



1.2 Basic principles of electrochemical systems

Furthermore, these ions are the only charge carriers, since there are no free electrons in an
electrolyte solution. Often, a so-called supporting electrolyte is added to an electrolyte so-
lution for increasing its conductivity. As a consequence of the reduced electric resistance,
undesired ohmic losses are decreased. The ions of a supporting electrolyte are inert and
do not participate in electrochemical reactions at the range of potential differences relevant
for the particular application. According to Bard et al. [8], typical molar concentration
values of supporting electrolyte are within the range 0.1 — 1.0mol/m?, or even higher. In
general, one mole (SI unit: 1 mol) denotes an amount of about 6.022 - 10>*> molecules. De-
pending on the application, further additives of organic or inorganic type may be part of
an electrolyte solution for chemically influencing its properties. Besides other parameters,
the effective conductivity of an electrolyte solution depends on the bath composition, the
rate of electrolyte dissociation and the given temperature.

As stated above, two electrodes acting as electron conductors are forming the second
fundamental part of every electrochemical cell. According to Bard et al. [8, p. 202], an
alternative definition of the term electrode in the sense of a half-cell appears to be rea-
sonable: “The electrode consists of two or more electrically conducting phases switched
in series between which charge carriers (ions or electrons) can be exchanged, one of the
terminal phases being an electron conductor and the other an electrolyte.” Thus, in elec-
trochemistry, the interface between electrode and electrolyte is of primary interest.

When an electrode is in contact with an electrolyte, a so-called electric double layer
forms at its surface. This is a general physical phenomenon occurring at the interface
between two conducting media. On one side of the interface an excess positive charge
is present, which is balanced by the same amount of negative charge accumulating at the
opposite side of the interface. Different theoretical models have been developed to describe
the formation and the structure of electric double layers. A historical overview of the
development of such theories is provided by Damaskin and Petrii [43]. In Fig. 1.2, a basic
representation of the electric double layer is provided. The charged layer on the solution
side of the interface is typically divided into several substructures. The inner Helmholtz
plane (IHP) is characterized as the distance of partially or fully desolvated ions specifically
adsorbed to the metal surface. The closest approach of fully solvated ions determines the
position of the so-called outer Helmholtz plane (OHP). Adjacent to these two layers, the
so-called diffuse layer is located, which denotes a region with nonzero space charge. The
electric double layer exhibits a capacitive effect similar to a parallel-plate capacitor (see,
e.g., Newman and Thomas-Alyea [137]).

In an electrochemical system, considerable charge separation is observed solely in the
electric double layer at the electrode-electrolyte interface and the diffuse layer adjacent to
it. Typically, these layers have a combined thickness of 1 - 10 nm, as depicted in Fig. 1.3.
Outside of these regions, i.e., in the diffusion layer and the bulk solution, the electrolyte
solution is assumed to be electrically neutral. In the diffusion layer, a non-uniform compo-
sition of the electrolyte solution is observed, caused by electrochemical surface reactions
and ion-transport phenomena. It represents a kind of boundary layer, in which the ionic
concentrations vary. As shown in Fig. 1.3, typical boundary-layer thicknesses are in the or-
der of um. Finally, in the bulk region, the electrolyte solution is assumed to have uniform
composition.

At an electrode surface, electrochemical reactions take place, which typically involve
a charge transfer step, where one or more electrons are transferred. According to Bard
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Figure 1.3: Typical dimensions of an electric double layer at a metal-solution interface
according to Newman and Thomas-Alyea [137].

and Faulkner [7], an overall electrode reaction is characterized as a reduction-oxidation
(red-ox) mechanism of the form

O+ne” ==R. (1.1)

In reaction (1.1), O denotes the dissolved oxidized chemical species, R its reduced form
and n is the number of electrons transferred within the considered reaction. As shown in
Fig. 1.4, several processes and phenomena are influencing the reaction rate of (1.1). The
first important aspect is ion transport from the bulk solution towards the electrode surface.
Typically, three different ion-transport mechanisms are considered in (dilute) electrolyte
solutions (see, e.g., Newman and Thomas-Alyea [137]): convection (movement with bulk
electrolyte solution), diffusion (movement caused by concentration gradients) and migra-
tion (movement caused by the applied electric field). The second important phenomenon
is the actual electron transfer at the electrode surface. As depicted in Fig. 1.4, additional
chemical reactions or further surface reactions such as adsorption, desorption or crystal-
lization may take place before or after the electron transfer. A characteristic property of
electrochemical systems is that the net reaction rate of (1.1) is directly correlated to the
arising electric current. Thus, a measurement of the electric current passing an electro-
chemical cell provides information on the reaction rate of the ongoing electrochemical
reactions.

Even in equilibrium, a permanent exchange of charged particles takes place in both
directions across the interface between electrode and electrolyte. At equilibrium, the op-
posing partial currents associated with the ongoing forward and backward partial reactions
are balanced. The rate of exchange is associated with the so-called exchange current den-
sity ip. In the case of a nonzero net current, one of the two opposing reactions is prevalent.
As aresult, a nonzero net current density in normal direction to the interface is obtained.

The electrode where the reduction reaction is the dominating process is termed cathode.
At a cathode, electrons flow from the electrode towards the electrolyte. The opposite
electrode, where an oxidation is the prevalent reaction, is called anode. Both electrodes
are connected to an external electric circuit. Through this outer connection electrons will
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Figure 1.4: General electrode reaction (from Bard and Faulkner [7]).

travel towards or away from the electrodes, while ions are the only charge carriers inside
the electrolyte. In the case of an electrolytic cell, usually an external power source is
connected to the electrodes, while a galvanic cell is typically connected to some kind of
consumer load, e.g., an electric motor.

A well-known electrochemical application is the electrolysis of water, i.e., its decompo-
sition into hydrogen and oxygen gas using electric current. The corresponding reactions
are given as

2H,0() — Oz(g)+4H+(aq)+4e_ (1.2)
2H*(aq)+2e~ — Hy(g) (1.3)
2H,0(1) — 2H,(g) + 0,(). (1.4)

At the anode of a water electrolysis cell, the oxidation reaction (1.2) takes place, while
the reduction (1.3) occurs at the cathode. Combining these two half reactions yields the
overall reaction stated in (1.4).

A further important electrolytic process is electrodeposition of metals. The basic con-
cepts of this application, which has a high industrial relevance, are explained in the follow-
ing.

1.3 Electrodeposition of metals

In general, electrodeposition denotes an electrolytic process for depositing metal onto a
conducting surface using electric current. In literature, also the term electroplating is used
as a synonym. Electroplating represents an important and widely-used electrochemical
technique for coating electrically conductive objects with metal layers. For an introduction
to electrodeposition, the reader is referred to Paunovic and Schlesinger [141], Schlesinger
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and Paunovic [155] and Kanani [111], for instance. The ASM handbook [3] on general
surface engineering contains also chapters devoted to electroplating techniques. Of course,
the reader is also referred to the more general literature on electrochemistry specified pre-
viously.

Typical deposit thicknesses produced via electroplating methods are in the order of pum.
Such coatings usually serve functional, decorative or other purposes. Zinc plating, for
example, has a high industrial importance for the corrosion protection of metallic compo-
nents and products. On the other hand, chromium plating is a well-known example for a
decorative surface treatment. In semiconductor industries, copper interconnects of inte-
grated circuits are fabricated utilizing electrodeposition techniques. An overview of meth-
ods and applications of electrochemical microfabrication is provided by Datta and Landolt
[45]. Electroplating techniques also enable the fabrication of special alloys consisting of
different metallic compounds and the deposition of multilayered materials. For example,
within the manufacturing process of magnetic recording heads, special magnetic materials
and magnetoresistant thin films are produced via electrodeposition (see, e.g., Datta and
Landolt [45]).

Electroforming techniques even enable the fabrication of very thick metal layers (up to
mm-size or more). Via electroforming, even whole parts with complex geometries can
be realized with desired shapes and material properties. For example, electroformed com-
ponents exhibit increased hardness and lower intrinsic stresses compared to the results
obtained when using conventional metal cutting procedures. Thus, in aerospace indus-
tries such electrochemical techniques are considered as a key technology for an efficient
production process of combustion chambers for space propulsion systems. According to
Immich et al. [105], most of the present cryogenic high pressure rocket engines have regen-
eratively cooled, integral combustion chambers made from milled slotted liners of copper
alloys surrounded by an electrodeposited outer nickel jacket. Typical examples are the
Vulcain 2 rocket engine of the European Ariane 5 launcher and the main engine of the
former U.S. space shuttle.

Electrodeposition represents an electrolytic process which takes place in so-called elec-
troplating baths (sometimes also called galvanic baths). In Fig. 1.5, a basic electrolytic
system used for electroplating is depicted. The part to be plated acts as cathode of the
electrolytic cell. In the context of electrodeposition also the nomenclature “working elec-
trode” for the cathode is found, since there the desired electrochemical process takes place.
Metal cations are transported from the bulk electrolyte solution towards the cathode, where
a reduction reaction of the form

M** +ze” - M (1.5)

takes place and the metal plates out. Here, M represents the chemical symbol of the con-
sidered metal, z is the number of electrons transferred in the reaction and z+ denotes the
valence (charge number) of the corresponding metal cation. In the notation used for the
general electrode reaction (1.1), it holds O = M**,R=M and n = z.

Usually, the same metal M which is intended to be deposited at the cathode is used as
anode material. Since, in this case, the reverse reaction of (1.5) is taking place at the anode,
the ongoing oxidation of metal ions causes a dissolution process of the anode material.
Thus, the (often multiple) anodes act as source for new metal ions which are entering the
electrolyte solution.

As stated above, electrodeposition of copper is an important example for electroplating.
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Figure 1.5: Sketch of an electrolytic cell used for electroplating (adapted from Paunovic
and Schlesinger [141]).

The corresponding electrochemical reaction is expressed in a simplified form as
Cu®" +2¢” = Cu. (1.6)

Indeed, the copper dissolution and deposition reaction (1.6) is a combination of two ele-
mentary charge transfer steps reading

Cu”"+e” = Cu" (i)

Cut +e- = Cu (i)

According to, e.g., Newman and Thomas-Alyea [137], elementary step (i) is taking place
much faster than the elementary step (i1). Thus, the overall reaction rate for (1.6) is de-
termined by the partial reaction (ii). For copper electroplating usually aqueous CuSO, —
H,SO, solutions are used, where the ionic conductivity provided from the dissolved cop-
per(Il) sulfate is enhanced by additional sulfuric acid acting as supporting electrolyte.

In many industrial electroplating baths, it is aimed at keeping the electrolyte solution
well-mixed by using different bath agitation techniques such as jet systems and stirring de-
vices. Rotationally-symmetric parts to be plated are usually also rotated to achieve uniform
plating results. As a consequence, quite complex, often turbulent flow conditions arise,
directly influencing the ion-transport processes inside the electrolyte solution. Hence, a
mathematical model describing such electrochemical systems has to take into account the
inherent coupling to fluid flow. As introduced above, diffusion and migration are further
ionic transport phenomena that have to be considered besides the convection of ions.

Electrochemical deposition can be performed either voltage-controlled (potentiostatic)



1 Introduction

time time

(a) (b)

Figure 1.6: Typical current patterns for pulse plating (a) and pulse-reverse plating (b).

or current-controlled (galvanostatic). In the first case, a certain voltage difference is ap-
plied to the electrolytic cell. In the second case, the electric current corresponding to the
electrochemical rate of reaction is controlled via an external control device (galvanostat).
Traditionally, direct current (DC) is used for electroplating processes. However, in the
recent decades, plating techniques using non-constant, pulsating current became increas-
ingly important, since they offer more flexibility for the production process and lead to
improved plating results. Pulse plating (PP) is a current-controlled technique which is
characterized by the usage of a series of direct current pulses separated by periods of zero
electric current. The intensity of pulses as well as the “on” and “off” times, which are
defining the pulse frequency, are adjustable parameters. A typical current curve for a pulse
plating application is depicted in Fig. 1.6(a). An extension of PP is pulse-reverse plating
(PRP), where also periods of reverse current are included (see Fig. 1.6(b) for an exemplary
current curve).

In general, very different current patterns can be achieved (see, e.g., Puippe and Leaman
[146] for further examples). For each electroplating application, an “optimal” pulse curve
has to be determined in order to meet the specific requirements of the considered deposition
process. According to Puippe and Leaman [146] and Chandrasekar and Pushpavanam [32],
the main benefits of using PP and PRP methods compared to DC plating methods are:

e improved deposit properties concerning hardness, ductility, porosity, hydrogen con-
tent, electric conductivity, roughness and resistance against abrasion

e deposition of special alloys, not producible with other methods

e improvement of the layer thickness distribution due to periodic current reversal
(— more equal coatings)

e allowance for simpler electrolyte compositions, reduction of bath additives
e significantly raised limiting current density (compared to DC methods).

Drawbacks of PP and PRP methods are the higher costs for pulse rectifiers compared to
DC units and a decreasing market for selling bath additives. The latter affects mainly the
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chemical industry producing such chemicals. In their recent review article, Chandrasekar
and Pushpavanam [32, p. 3320] name a further drawback:

“The technology requires one to think and plan ahead with a series of pro-
cedures to follow in order to obtain the best results.”

The flexibility obtained from the increased amount of process parameters in PP and PRP
methods also raises the complexity of the considered systems. Changing the current curve
is only one possibility to influence these electroplating processes, which are also influ-
enced by further parameters such as electrolyte composition, temperature, cell geometry,
electrode characteristics and flow properties, for instance. Thus, as indicated in the quote
above, a rigorous analysis and understanding of a given plating process is required in order
to obtain the best results. Numerical simulation provides one approach which can help
to analyze existing electroplating facilities and assist in the design process for future bath
configurations. The need for an interdisciplinary and comprehensive approach, combining
both experimental and numerical analysis, becomes also evident in the following quote
from Van den Bossche et al. [169, p. 61]:

“There is no simple systematic method to establish the practical range of
pulse parameters for a given plating process. A reasonable knowledge of the
plating reaction mechanism combined with an adequate analytical or numer-
ical solution strategy will always be required to optimize the pulse plating
process on a rigorous basis.”

1.4 Objectives and outline

The main objective of this thesis is the development of a novel comprehensive compu-
tational approach enabling the coupled numerical simulation of electrochemical systems.
As shown above, electrochemical systems can be found in a large variety of applications.
In the present work, it is focused on electrolytic cells in general and electrodeposition of
metals in particular.

For a sophisticated mathematical modeling and numerical simulation of such electro-
chemical applications, several coupled physical phenomena have to be considered. These
are, among others, multi-ion transport processes inside an electrolyte solution, influenced
by an electric field and fluid flow, as well as electrochemical reactions occurring at elec-
trodes. All three ion-transport phenomena in dilute electrolyte solutions, that is, convec-
tion, diffusion and migration are accounted for in the macroscopic model presented in this
work. It is emphasized that none of these effects is neglected or excluded a priori.

One key aspect of the present work is the appropriate consideration of the inherent cou-
pling of ionic transport and incompressible flow due to convection. In addition, it is im-
portant to account for buoyancy-driven flow (natural convection) in electrochemical cells,
which leads to a two-way coupled problem formulation. Together with an appropriate
phenomenological modeling of electrode kinetics, a comprehensive model is proposed in
this thesis. In summary, a coupled multiphysics problem with inherent multiscale charac-
ter (regarding both length and time scales) is obtained, which imposes several numerical
challenges.
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A further requirement in order to be able to study real laboratory devices and industrial
facilities via numerical simulation is the ability to consider complex geometries. To ac-
count for this requirement, an appropriate finite element method (FEM) is proposed in this
study. Over the last decades, the FEM has been successfully used as a flexible, robust and
accurate discretization approach for a large variety of applications such as computational
solid mechanics, computational fluid dynamics as well as fluid-structure interaction rep-
resenting a coupled multi-field problem (see, e.g., Wall [174]). Here, the FEM is utilized
as a general approach to the spatial discretization of all governing equations of multi-ion
transport and incompressible flow.

In the present work, a novel stabilized finite element approach for the coupled multi-ion
transport problem is developed. It is derived from the variational multiscale framework
(Hughes [99]). The developed stabilization techniques account for spurious oscillations
that arise in convection-dominated cases. The variational multiscale method (VMM) uti-
lized here also allows for developing an approach to large-eddy simulation (LES) of tur-
bulent flows. Thus, the proposed method is capable of considering coupled ionic transport
in laminar, transitional and turbulent flows, an important capability required to accurately
simulate real electroplating configurations.

Transient simulation approaches are mandatory for considering time-dependent prob-
lems such as pulse and pulse-reverse plating applications. Since such electrochemical
techniques are typically current-controlled processes, additional algorithmic extensions
are necessary to include a galvanostatic control in a general manner.

In summary, an efficient, robust, and accurate computational tool is required to enable
the successful numerical simulation of coupled ion transport in realistic geometries. It
will be demonstrated that the developed comprehensive methodical approach meets these
requirements. To the author’s best knowledge, no comparable three-dimensional compu-
tational approach has been proposed so far for a comprehensive numerical simulation of
coupled multi-ion transport in dilute electrolyte solutions adequately accounting for all of
the aforementioned physical phenomena at the same time.

The computational approach was implemented within the multi-purpose parallel com-
puting platform BACI (Wall and Gee [175]). This flexible finite element software en-
vironment is continuously developed and maintained by the Institute for Computational
Mechanics at the Technische Universitit Miinchen. The object-oriented code is written in
C++ and utilizes powerful open-source libraries provided by the Trilinos project (Heroux
et al. [96]). All simulation results presented in the following were obtained using BACI.

Major parts of the work described in this thesis were carried out in the context of
the research project “Numerische Simulation von galvanischen Beschichtungsvorgingen”,
which was supported by the Space Agency of the German Aerospace Center (DLR) under
grant SORL0O743 from October 2007 through September 2010. This financial support as
well as the successful cooperation with the industrial partner EADS Astrium within this
project are gratefully acknowledged.

Parts of the numerical methods and related simulation results presented in this thesis
were published in Bauer et al. [9, 10, 11, 12, 13] and Ehrl et al. [56].

The outline of this thesis is as follows. In chapter 2, an appropriate macroscopic model
for electrochemical systems is presented. In particular, the governing equations for multi-
ion transport in dilute electrolyte solutions, electric field, charge conservation, electro-
chemical reactions at electrodes and incompressible flow are provided. Afterwards, in

10
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chapter 3, the proposed computational approach is described. The presentation of the
developed stabilized finite element method, which is derived from a residual-based varia-
tional multiscale framework, constitutes the main part of that chapter. In addition, some
important algorithmic aspects of the numerical solution procedure are explained. The pro-
posed computational method is tested for several different numerical examples in chapter
4, demonstrating that it is robust and provides accurate results. Among others, several re-
alistic problem configurations with complex three-dimensional geometries are considered
in the context of electroplating. Finally, conclusions are drawn in chapter 5, before ending
with an outlook.

Further details are provided in the Appendix. A theoretical analysis for binary elec-
trolyte solutions is provided in Appendix A. The consistent calculation of fluxes in the
context of finite element methods is outlined in Appendix B. Finally, in Appendix C, some
details concerning rotationally-symmetric periodic boundary conditions are given.

11
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2 Mathematical model

This chapter addresses the mathematical modeling of electrochemical systems from a
macroscopic point of view. In the following, appropriate modeling approaches based on the
continuum hypothesis are presented. The considerations of Newman and Thomas-Alyea
[137] form the main basis for the mathematical model described here. Further details re-
garding the mathematical description of coupled ion transport in electrochemical systems
are provided in Kontturi et al. [117] and Rubinstein [152], for instance.

In section 2.1, some continuum-mechanical basics are introduced and fundamental mod-
eling assumptions are presented. Afterwards, the governing equations for multi-ion trans-
port in dilute electrolyte solutions and the electric field are presented in section 2.2 and 2.3,
respectively. The fundamental principle of charge conservation is addressed in section 2.4.
In section 2.5, initial and boundary conditions for the coupled multi-ion transport problem
are specified. Within this section, it is especially focused on the phenomenological model-
ing of electrochemical reaction kinetics at electrode surfaces. Also the additional require-
ments for a consideration of current-controlled (galvanostatic) problems are addressed. A
simplified modeling approach for electrochemical systems involving solely the electric po-
tential field is derived in section 2.6. The flow of dilute electrolyte solutions is assumed
to be governed by the incompressible Navier-Stokes equations, which are introduced in
section 2.7. The present chapter concludes with some important remarks regarding the
mathematical problem formulation given in section 2.8.

2.1 Preliminaries

In the following, the behavior of an electrochemical system is investigated for a time in-
terval [0,Tc]. In particular, a liquid electrolyte solution is considered, which occupies a
bounded domain Q C R?. As usual, the mathematical term “domain” denotes a non-empty,
connected and open set in the d-dimensional real Euclidean space R4, where d € {1,2,3}
is the number of relevant space dimensions. The boundary of Q is denoted by 9 and
assumed sufficiently smooth. The closure of Q is defined by Q := QUAQ. For a macro-
scopic description of flow, multi-ion transport and electric field, a continuum-mechanical
approach is utilized in the following. For the engineering perspective, the continuum-
hypothesis represents a commonly accepted approximation for the description of electro-
chemical systems (see, e.g., Newman and Thomas-Alyea [137]). For a general introduc-
tion to continuum mechanics and related mathematical concepts, the reader is referred to
Gurtin [87] and Lai et al. [122], for example. More compact introductions in the context
of fluid mechanics are given in Spurk [161] and Donea and Huerta [50], for instance. The
textbook by Kontturi et al. [117] on ionic transport processes provides also a respective
introductory chapter.

Consider now a portion of electrolyte solution which initially occupies a volume V. For

13
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each time 7 € [0, T.], a particle motion mapping is defined by
e(-,0): Vo= Vi), Xr—x:=9X,0), 2.1

where V(?) denotes the current domain, i.e., the deformed volume occupied by the liquid
electrolyte solution at time 7. Since fluids usually undergo quite large deformations, the
Eulerian point of view is advantageous for the description of flows (see, e.g., Donea and
Huerta [50]). The velocity of the electrolyte solution is given as

. ox

ui= . (2.2)

The focus of this study is on dilute electrolyte solutions. For this case, ionic concen-
trations are very low compared to the concentration of the solute. Thus, the ion-solvent
interactions are the prevalent effects that have to be accounted for in the model, whereas
ion-ion interactions are of minor importance due to the excess of solvent molecules sur-
rounding the dissolved ions. For many electrodeposition applications, aqueous electrolyte
solutions are used, with water as the solute. Typically, the dilute solution assumption is a
justified model in the context of electroplating. The governing equations for the modeling
of ion transport in either moderately dilute solutions or concentrated electrolyte solutions
are discussed in Newman and Thomas-Alyea [137] and Kontturi et al. [117], for example,
and are not presented here. The dilute-solution theory represents an important subset of
these generalized, more complex mathematical modeling approaches.

Furthermore, for the problems studied here, an isothermal system is assumed. This
assumption is justified for the applications considered here, since for electroplating the
temperature of an electrolyte solution is usually kept constant by some external thermal
control. In addition, energy dissipation due to ohmic losses (Joule heating) usually does
not cause significant temperature changes for most electrodeposition problems. For these
applications, electric currents passing the electrochemical cells are typically low enough
to confirm this modeling assumption.

2.2 Multi-ion transport in dilute electrolyte solutions

In the following, a dilute electrolyte solution is considered which contains m > 2 different
ionic species. For each ionic species k = 1,...,m present in the solution, the fundamental
principle of mass conservation must hold. Mathematically this property is expressed as

d
ankckdxz— kaN2+m-ndS+kadex, (2.3)
V() ov(r) V()

where ¢y : Qx [0,T.] — R}, denotes the unknown molar concentration of ionic species k
(unit: mol/m?) and M the corresponding molar mass (g/mol). Consequently, the product
Mj.c represents a (mass) density distribution. According to (2.3), the temporal change of
the mass contained in an arbitrary volume V(¢) C Q is caused by a mass flux MkN,C{ler ‘n
across the boundary 0V(f) and a source or sink term MyRy.. The latter expression accounts
for homogeneous chemical reactions within the volume, where ionic species k is either

14
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produced or consumed. As usual, n denotes the unit outer normal at the respective bound-
ary part. The ionic flux due to diffusion (movement caused by concentration gradients)
and migration (movement caused by an electric field) is given as

NI = — Dy Vey+ 2k ForE . (2.4)
~———— N———
diffusion migration

In literature, equation (2.4) is also often referred to as Nernst-Planck equation. Here, Dy, is
the molecular diffusion coefficient of ionic species k with respect to the solute, z; is the va-
lence (charge number), u; the mobility constant, F' Faraday’s constant (96,485.34C/mol)
and E the electric field inside the electrolyte solution. As usual in dilute-solution theory,
the mobility constant yy is assumed to be related to the diffusion coefficient Dy according
to the Nernst-Einstein relation b
k

= o
The relation involves the temperature 7 (specified in Kelvin (K)) and the universal gas
constant R (8.314462JK'mol~!). However, for brevity of notation, the symbol p is
kept using in subsequent formulae and is not immediately replaced by (2.5). This also en-
sures that alternative definitions for the mobility constant can be used within the developed
model.

Uk (2.5)

Since M} is a substance-specific, constant value, conservation law (2.3) is usually con-
sidered in the shorter, but equivalent form

d
Efckdx:_ fN2+m-ndS+kadx. (2.6)
V() V() V()

Application of Reynold’s transport theorem (see, e.g., Spurk [161]) to the left-hand side of

(2.6) yields
d 6ck
afckdx—fﬁdx+ fcku-ndS. 2.7)

V() V() V(1)

The vector field u denotes the velocity of the electrolyte solution as introduced in the pre-
vious section. Assuming sufficient smoothness of the respective functions, the divergence
theorem (Gauss’ rule) is used to transform the boundary integrals in (2.6) and (2.7) to
integrals over the volume. As a result one obtains

f(%+V-Nk—Rk)dx:O. (2.8)
70,

Here, the total ionic flux is given as

Nei=cu+ NP = cu — D Ve + zuuFoE. (2.9)
—— —— ———
convection  diffusion migration

Since relation (2.8) holds for every arbitrary reference volume V(¢) C Q, a partial differen-
tial equation is obtained for each ionic species k = 1,...,m present in an electrolyte solution,
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describing the temporal and spatial variation of its molar concentration cy:

%+V-Nk—Rk:0 in Q x (0,T,). (2.10)
In literature, the term Nernst-Planck equation is also often used to denote the whole partial
differential equation (2.10). Note that the arising convective term involving the velocity u
of the electrolyte solution establishes a one-way coupling of each ion-transport equation
(2.10) to the governing equations of fluid motion, which will be described in section 2.7.
For a solenoidal velocity field u, i.e., it holds V -u = 0, equation (2.10) can be converted
from the conservative form (2.10) into the following convective form:

%+u-Vck+V-N2+m—Rk:0 in Q x (0,T,). (2.11)
For the modeling of many electrochemical systems, reactions are typically restricted to
electrode surfaces. Thus, no homogeneous chemical reactions inside the bulk solution are
taken into account, for the time being. Consequently, for all ionic species k = 1,...,m it
holds R; = 0 in (2.11). The consideration of homogeneous chemical reactions represents
a future extension of the present model. First promising results towards such an extension
are given by Wittmann [179]. As a consequence, the governing equations

0
§+u~vck+v-Ng+m:o inQx(0.T), k=1,...m (2.12)
are used throughout this work.

Note that for neutral species (z; = 0) the 1on-transport equations (2.12) reduce to con-
ventional convection-diffusion equations, since non-charged particles are not influenced
by an electric field.

2.3 Electric field

The electric field E : Q x [0,T.] — R? (unit: V/m) represents a further unknown physical
quantity required for the modeling of an electrochemical system. In general, the physi-
cal effects of electrodynamics are mathematically described by the well-known Maxwell
equations, a set of partial differential equations relating electric and magnetic fields (see,
e.g., Jackson [108]).

For electrochemical systems such as considered here, the electrostatic concept is com-
monly accepted as a sufficient modeling approach. For that case, the time-dependent cou-
pling terms in the Maxwell equations vanish. As a consequence, electric and magnetic
fields become decoupled, allowing a separate consideration of electro- and magnetostat-
ics. The governing equations for electrostatics as obtained from Maxwell’s equations read

VXE=0 mQx(0,Te), (2.13)

V-D=p. mQx(0,T,). (2.14)

Here, D denotes the so-called electric displacement field (unit: C/m?) and Pe 1s the net
electric charge density (unit: C/m?). Since there are no free electrons in electrolyte so-
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lutions such as considered here, ions represent the only charge carriers. Thus, for any
(x,1) € Q x[0,T,] the local charge density is computed from the ionic concentrations ci
according to

m
pe(x,0=F )" zecx (x,1). (2.15)
k=1
As stated in (2.13), the electric field is always irrotational. Thus, it is possible to express
E as the gradient of a scalar function, since it holds V x (V¢) = 0 for any scalar field
v(.,t): Q—Randte[0,T.]. Hence, the electric field vector is expressed in electrostatics
as the negative gradient of the electrostatic potential field @ reading

E=-VO. (2.16)

The negative sign originates from the definition that the electric field is directed from
locations associated with higher potential towards regions with lower potential. Based on
definition (2.16), equation (2.13) is always fulfilled.

The electric displacement field D and the electric field E are related via a constitutive
law, which is usually expressed in the form

D =¢E. 2.17)

The permittivity € (unit: F/m) in (2.17) is a second-rank tensor reflecting individual ma-
terial properties. In general, the material model may account for temperature dependence,
anisotropy due to variations in the composition and other properties of the medium. For
the most simple case of a homogeneous and isotropic medium, the permittivity is given as
€ = g,60l, where &9 = 8.854-10"12F/m is the permittivity of the vacuum, &, denotes the
medium-specific relative permittivity and I is the unit tensor. For example, water at 20°C
has a relative permittivity of &, = 80.20 (see, e.g., Bard et al. [8]).

As a consequence of (2.16), the number of unknowns is reduced, because in the electro-
static case only the single scalar electric potential field ® has to be determined instead of
the vector field E with its d components. Since, besides the ionic species concentrations
ck, the electric potential @ is an additional unknown in the multi-ion transport equations
(2.10) and (2.12), one further governing equation is needed to close the system of equa-
tions defined by (2.10) or (2.12), respectively. In the following three subsections, different
approaches for defining an appropriate closing equation are presented and discussed.

2.3.1 Poisson equation

As a direct consequence of the considerations above, a governing equation for the electric
potential field is obtained by inserting (2.15), (2.16) and (2.17) into (2.14). This yields the
so-called Poisson equation for the electric potential:

—V-(GVCD)—Fszck:O in Q% (0,T.). (2.18)
k=1

In general, equation (2.18) allows for the effect of charge separation, which occurs in the
vicinity of electrode surfaces, as explained in section 1.2. Consequently, for simulations
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of the electric double layer and the adjacent diffuse layer, the consideration of (2.18) is
mandatory. In literature, the coupled system of Poisson equation (2.18) and ion-transport
equations (2.12) is often termed Poisson-Nernst-Planck (PNP) equations.

According to Dickinson et al. [48], a normalized form of (2.18) given as

m
2PADT+ Y gy =0 (2.19)
k=1

provides further conclusions. Here, the dimensionless potential is given as ®* = Q)RLT and
the ionic concentrations are made dimensionless via CZ = ¢/ cref, Where cef denotes an
appropriate reference concentration value. For simplicity, a homogeneous and isotropic
medium is assumed. The characteristic constant

RTe, g
= 2.20
D= 4 / e (2.20)

is commonly referred to as Debye length (Dickinson et al. [48]). It serves as an indicator
for the distance over which a local charge separation is screened in an electrolyte solution.
Typical values for the Debye length are in the order of one nanometer. An explicit consid-
eration of the effects on the nanoscale is usually infeasible for macroscopic models, since
the requirements for a proper spatial resolution are linked with prohibitive computational
costs. Since the relevant length scales considered in this study are ranging from microm-
eters up to meters, rp vanishes on all significant length scales. An alternative approach
to close the system of ion-transport equations is described below and corresponds to the
approximation rp ~ 0.

2.3.2 Electroneutrality condition

For macroscopic models such as considered here, the system of equations is usually closed
with the so-called electroneutrality condition instead of using (2.18). This condition is an
algebraic constraint originating from the assumption that the electrolyte solution is locally
electrically neutral:

e :Fszck:O in Q x [0,Te]. 2.21)
k=1

As pointed out by Newman and Thomas-Alyea [137], the condition of electroneutrality
is not a fundamental law of nature, but represents an “accurate approximation”, which
is generally accepted for a macroscopic description of electrochemical systems. Regions
with considerable charge separation are solely the electric double layers in the vicinity of
electrode-solution interfaces. Since these regions have typical thicknesses of 1 — 10nm (cf.
section 1.2), a consideration using (2.18) is infeasible, as explained above. Consequently,
the electrode-solution interface is not explicitly considered as done in the PNP model, but
the corresponding effects of the electric double layer region are accounted for in appropri-
ate phenomenological boundary conditions, which will be introduced below in the sections
2.5.2 and 2.5.3.

A recent review on the use of the electroneutrality approximation in electrochemistry
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is provided by Dickinson et al. [48]. Therein, the authors state that notable differences
in simulation results are only observed when physical effects on spatial length scales of
nanometers and/or time scales of nanoseconds are studied. However, nanoscale effects are
not in the focus of the present modeling approach. Feldberg [63] demonstrated that solving
ion-transport problems coupled to the electroneutrality constraint is equivalent to invoking
the corresponding limit of the exact PNP model when certain charge-density-related terms
become negligibly small. A division of (2.21) by F transforms the electroneutrality con-
dition into the form

m
Z e =0, (2.22)
k=1

which is usually used as closing equation.

As a general consequence, always at least two ionic species with opposite charges are
required for modeling electrochemical systems. The special case m = 2 corresponds to the
dissociation of a single salt into its ion pair and is usually referred to as binary electrolyte.
For binary electrolyte solutions, the electroneutrality condition enables further analytical
analysis of the coupled ion transport problem, as described in Appendix A. In general, the
electroneutrality condition (2.22) facilitates analytical considerations of electrochemical
problem formulations due to its nature as a simple algebraic constraint. A further advan-
tage is that no additional material or other physical parameters are required for imposing
electroneutrality. In the following, the coupled system of electroneutrality condition (2.22)
and 1on-transport equations (2.12) is referred to as Electroneutrality-Nernst-Planck (ENP)
model.

2.3.3 Further constraints derived from electroneutrality

Although the electric potential does not appear in an explicit way in (2.22), the electroneu-
trality condition represents the governing equation for ®@. This becomes more evident when
transforming the electroneutrality condition as described in the following. First, a partial
derivative with respect to time is applied to the algebraic constraint equation (2.21). The
ion-transport equations (2.12) are then utilized to replace the time derivatives of each ionic
species concentration. Owing to electroneutrality, the convective terms cancel out. After
inserting (2.16), the partial differential equation

m

ZkaVCk
k=1

-V [( G F e |[VO| - FV - =0 (2.23)
k

=1

is obtained as a result. In the context of differential-algebraic equations (DAEs) so-called
hidden constraints are revealed from the original algebraic constraint by differentiating it
with respect to time (see, e.g., Hairer and Wanner [90]). Thus, equation (2.23) represents
the hidden constraint of the present problem formulation, which is derived from the alge-
braic electroneutrality constraint.

Alternatively, formula (2.23) can be obtained by multiplication of each transport equa-
tion with zzF' and summing them over all k. Owing to the electroneutrality condition,
temporal derivatives and convective terms cancel out and (2.23) remains as a result. This
second method to derive (2.23) is merely based on forming a linear combination of all ion-
transport equations. An inherent problem arises when a steady-state situation is reached,
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where all time derivatives become negligible small. Then, the equation system closed with
(2.23) becomes linearly dependent. In that case, singular system matrices are obtained
within numerical solution approaches. As a consequence, it is refrained from using (2.23)
as an alternative to the electroneutrality condition (2.22).

However, it is possible to eliminate one ionic concentration from the system of equations
based on the electroneutrality condition. Without loss of generality concentration ¢, is

eliminated from (2.23) using
1 m—1

Cm=—— ) %k (2.24)
o 421

and assuming z,, # 0. The resulting equation reads

1

"
-V [[ 2 F (2t — Zmfm)Ck
=1

m—1

VO|-FV- 2k(Dy — Dm)Vck} =0. (2.25)

k=1

In addition, the ion-transport equation for species m can be dropped from the system of
equations, because ¢, is now simply determined by the algebraic relation (2.24). How-
ever, the effect of ionic species m still enters the problem formulation, since the material
properties z,,, iy, and Dy, are still present in (2.25). This reformulation of (2.23) is usually
sufficient for solving the problem of linear dependency explained above. Thus, equation
(2.25) represents a further alternative to define a closing equation for the multi-ion trans-
port problem. Furthermore, the system of partial differential equations was reduced by one
due to the elimination of ¢,,. In the following, the coupled system of (2.25) and the Nernst-
Planck equations (2.12) is referred to as Charge-conservation-Nernst-Planck (CNP) model.
The reason for this nomenclature becomes more evident in the subsequent section.

It is important to note that the concentration-dependent factor in front of the gradient of
the electric potential in (2.23) and (2.25) can be interpreted as a specific ionic conductivity
of the electrolyte solution given as

m m—1
o= > 2P e = Y P Gtk — ). (2.26)
k=1 k=1

As obvious from (2.26), local variations in the molar ion concentrations cy, that is, varia-
tions in the electrolyte composition, will cause local variations in the ionic conductivity o
In general, conductivity values are specified in the unit S/m.

As a summary, only two options for the governing equation of the electric potential
field appear to be appropriate in the present context of macroscopic modeling. Thus, in the
following, only (2.22) and (2.25) are considered as possible closing equations, yielding the
ENP and CNP systems of equations. The main focus of this work is on the ENP problem
formulation, but remarks concerning the CNP model will be given at several appropriate
places.

2.4 Charge conservation

A fundamental physical principle is charge conservation. Any modeling approach for elec-
trochemical systems has to fulfill this elementary physical concept. The corresponding
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conservation law given as

%+V~i:0 in Q x (0,7Te) (2.27)
is a direct consequence of the four Maxwell equations of electrodynamics (see, e.g., Jack-
son [108]). In (2.27), p. denotes the local net charge density in the medium and i is the
local current density. For electrolyte solutions, p. is governed by the local ion concentra-
tions via relation (2.15), as stated above. The current density depends on the ionic mass
flux densities via

m
i= FszNk, (2.28)
k=1

since ions are both mass and charge carriers. The unit of the current density expressed
in SI base units is A/m?2, but in the context of electrochemistry the choice mA/cm? is
more common. Note that equation (2.28) matches the convention for the direction of (con-
ventional) current defined arbitrarily to be the direction of the flow of positive charges.
The total electric current / through a given surface A can be calculated by integrating the
normal component of i according to

I:fi-ndS. (2.29)

A

In the following, a simple proof is given that (2.27) holds for the ion-transport model
introduced in section 2.2. After multiplying each ion-transport equation (2.10) for species
k with the corresponding valence z; and the Faraday constant F, the equations are summed
up. Introducing the relationships (2.15) and (2.28) into the arising terms immediately
reveals that conservation law (2.27) is fulfilled. Thus, conservation of mass for each ionic
species automatically implies conservation of charge. This is reflecting the fact that ions
are carrying mass and charge at the same time and are the only charge carriers inside the
electrolyte solution. It is important to point out that charge conservation is not affected by
the actual choice for the governing equation for the electric potential field (cf. section 2.3).

For ion-transport models coupled to the electroneutrality condition (2.22), i.e., the ENP
system of equations in the present case, it holds pe = 0 in (2.27). In addition, convection
does not contribute to the current density in (2.28) due to electroneutrality. Consequently,
it holds

m
i=F ) gNg™ (2.30)
k=1
in this case. Insertion of the definition (2.4) of the ionic flux due to diffusion and migration
into (2.30) and subsequent rearrangement yields

— oV = i+FszDchk. 2.31)
k=1

As aresult, the gradient of the electric potential field is governed by three different effects.
First, the ionic conductivity o defined in (2.26) is concentration-dependent and may thus
exhibit local variations. Second, the passage of an electric current through the electrochem-
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ical system will cause a corresponding ohmic voltage drop. Finally, arising concentration
gradients may cause a so-called diffusion potential, which builds up in order to maintain
electroneutrality.

In case of absent space charge, the current density i is solenoidal, i.e., it holds

0=V- (Fzsz,i‘““] =V-i. (2.32)
k

When inserting the definition for Ng“n (2.4) into (2.32), it becomes obvious that (2.32)
is identical to the hidden constraint (2.23), which was derived from the electroneutrality
condition, as presented above. Thus, the derived constraints (2.23) and (2.25) actually have
a physical meaning, since they are simply enforcing charge conservation. This explains
also the terminology Charge-conservation-Nernst-Planck (CNP), which was introduced in
section 2.3.

The integral form of (2.32) reveals a further important implication when it is converted
to a boundary integral using the divergence theorem:

0 = fV-idx:fi-ndS (2.33)
Q 0Q
l—‘insul =0 T <0 Tout >0

Here, a subdivision of the boundary into three disjoint parts reading 0€2 = I'ingy U Tin U T oyt
is considered, which is based on the sign of the normal current density i-n. No electric cur-
rent is passing through the insulating boundary part denoted by I'jngyi. Since the electrolyte
solution is assumed to be electrically neutral, the amount of electric current /;, directed into
the domain Q is always in exact balance with the amount of electric current Iyt flowing
out of the considered electrochemical system. This property is mathematically expressed
in (2.34). For an electrochemical cell, the boundary parts I'j, and gyt typically coincide
with the electrode surfaces, since there the electric current is passing through.

2.5 Initial and boundary conditions for coupled ion
transport

Appropriate initial and boundary conditions are required for the coupled system of partial
differential equations describing multi-ion transport and electric potential field. Suitable
choices for such conditions are presented below, completing the formulation of the consid-
ered initial-boundary value problem.

2.5.1 Initial conditions

For the transient case, initial conditions for each ionic species k = 1,...,m of the form

ce=c)  inQx{0} (2.35)
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have to be specified, where cg denotes the initial concentration field of ionic species k. For
many applications, constant initial fields ¢?, which obey the electroneutrality condition,
are used to represent an electrolyte solution which is initially in equilibrium.

Based on the initial concentration fields prescribed in (2.35), a consistent representation
of the corresponding electric potential field ®° can be computed from (2.23). Thus, in gen-
eral, the second-order partial differential equation (2.23) has to be solved for the consistent
representation of @Y. Of course, also (2.25) can be utilized as an alternative. More often,
however, the cell voltage is initially zero and no concentration gradients are present in the
beginning. In this case, ®° is a simple constant function, which can be deduced directly
without solving (2.23) or (2.25).

2.5.2 Boundary conditions

To specify boundary conditions for each ionic species k, a partition of the boundary given
as 0Q =I'px UI'yx UTEy is considered. The three boundary regions are assumed to be
pairwise disjoint. It is important to note that the partitions do not have to be the same for
each speciesk=1,...,m.

On I'py, essential (or Dirichlet) boundary conditions reading

ck =8 onlpyx(0,Te) (2.36)

are applied. A typical example for (2.36) is an inflow boundary, where the composition
of the electrolyte solution entering the domain due to convection is known. For that case,
the prescribed values g fulfill the electroneutrality condition in order to represent an elec-
trolyte solution in equilibrium. It is emphasized that initial condition (2.35) and boundary
condition (2.36) have to be consistent for the initial time ¢ = 0.

On the Neumann boundary part I'y x, the negative normal flux caused by migration and
diffusion is prescribed:

—N¢™.p=Jy onDng % (0,Te). (2.37)

As introduced above, n denotes the unit outer normal vector on the respective boundary
part. The prescribed flux distribution for the ionic species k is denoted by /. At insulating
boundaries for example, all ionic species k = 1,...,m have zero mass flux. Thus, it holds
hy = 0 at such boundary parts. For the modeling of outflow boundaries, where the elec-
trolyte solution is leaving the considered domain €2, homogeneous Neumann conditions
are usually applied, too.

Finally, electrode surfaces are represented by the boundary part I'e ., which can be fur-
ther subdivided into any number of anodic and cathodic parts. On I'g, electrochemical
reaction models for reactive ionic species are included into the mathematical problem for-
mulation. At electrode surfaces, the normal component of the current density introduced
in (2.28) is of special interest, since it corresponds to the rate of electrochemical reaction.
The entire normal current density i, is determined by

Nrea

in= Y i, (2.38)
r=1
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where n.e,; denotes the number of considered electrochemical reactions and i/, is the reac-
tion current density caused by the reaction r = 1,...,ne,. Each respective electrochemical
reaction r can be expressed in the general form

m

Z sM* 2 nye”, (2.39)
k=1

where n, denotes the number of transferred electrons e, s, is the stoichiometric coefi-
cient of ionic species k in reaction r and Mli" is the symbol for the chemical formula of
species k with the valence z;. In general, the boundary condition for electrode surfaces
reads

;T
SNF = o=y o (2.40)

The factor s,.x/n,F in (2.40) is used to determine the respective contributions to the ionic
mass flux density of species k from the electric current density ;. If an ionic species k
does not take part in an electrochemical reaction r, the related stoichiometric coefficient
is simply zero, i.e., it holds s, = 0. The additional parameter { = —1 in (2.40) has been
introduced in order to account for a different sign convention that is typically used for i,
and i}, in electrochemical literature.

Since in the present study the focus is on electroplating, the consideration of a single
electrochemical reaction as given in (1.5) provides already a sufficient model for a large
variety of electrodeposition applications. Thus, in the following, it holds n., = 1 and the
index r is dropped. According to the convention used in (2.39), such an electrochemical
reaction can be written as

—M*+M 2 ze ™, (2.41)

where M denotes the chemical symbol for the considered metal and z; > 0 is the number of
transferred electrons. The metal cation M* in (2.41) represents the only reacting species
in the multi-ion transport model, since the solid metal M is part of the electrode surface
and thus not present in the electrolyte solution. All other ionic species are inert and have
zero mass flux at the electrode boundaries. Thus, the general boundary condition (2.40)
simplifies to

0 : inert ionic species

d+m PR

_Nk ‘R= J = in . .. .

oF reactive 10nic species.
ke

(2.42)

Without loss of generality, the reacting species is usually considered the first one (k = 1)
in the numerical examples presented below. For electroplating applications, i, is directly
proportional to the deposition rate at the cathode and the rate of dissolution at the anode,
respectively.

However, it has to be emphasized that the consideration of multiple electrode reactions
represents an important future extension of the computational framework presented in this
work. First promising results towards this aim are presented in the work by Wittmann
[179].
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2.5.3 Electrode kinetics

The normal current density i, at an associated boundary part is determined by some (often
nonlinear) kinetic model that in general depends on the solution variables:

in=f(Ms,C1,...,Cm). (2.43)

The so-called surface overpotential defined as n; = Vg — @ is the driving force for electro-
chemical reactions. Here, the potential applied on the metal side of the electrode is denoted
by Vg and the electric potential on the solution side of the electric double layer is ®. It is
assumed that each electrode surface represents an equipotential surface on the metal side
of the corresponding metal-solution interface. The surface overpotential models the strong
variation of the electric potential field within the electric double layer region as a “jump”
in the potential field at the electrode-electrolyte interface. In general, the surface overpo-
tential varies in time as well as in space, i.e., along the electrode surface, depending on the
local reaction rate. For a historic overview of the fundamental steps in the development of
models describing electrode kinetics, the reader is referred to the recent review article by
Inzelt [107].

An important example for (2.43) is the Butler-Volmer law in the form specified in New-
man and Thomas-Alyea [137]:

B

. [ c a,F —a.F

m(ns,ck):zo(—cfo) [exp(—RT ns)—exp( - n)] (2.44)
k

The additional parameters involved are the exchange current density i (cf. section 1), some
reference concentration for the reactive ionic species ¢, an exponent 8 for weighting
the concentration dependency, an anodic constant @, and a cathodic constant a.. Further
formulations of the Butler-Volmer law are given in Bard and Faulkner [7], for example.
Two limiting cases of the Butler-Volmer law are worth mentioning. On the one hand,
for the case of very small surface overpotentials, the expression (2.44) can be linearized
around the equilibrium point s = 0V using standard Taylor series expansion of the ex-
ponential function. The concentration-dependent factor can be assumed to be one, since
concentration gradients are negligible for low current densities. As a result, a linear kinetic
law reading
in = o (@ +ac)ns (2.45)

is obtained, which holds for very small values of the surface overpotential 7.

On the other hand, for sufficiently large absolute values of the surface overpotential 7,
either the anodic or the cathodic part in (2.44) is dominating. Solely consideration of the
dominant term results in the famous Tafel law for describing electrode kinetics (see, e.g.,
Newman and Thomas-Alyea [137]). For a cathodic reaction, the relationship

B

. . [ c —a.F

ln:—lo(—co’;) exp( R; 775) (2.46)
k

is obtained from (2.44). For the classical Tafel law, the concentration-dependent term in
(2.46) has to be omitted. Alternatively, the simple parameter choice 8 = 0 can be used to
obtain the identical effect.
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Figure 2.1: Characteristic profiles for different electrode kinetics laws (symmetric case
with parameters 8 = 0.0, o, = 0.5, a, = 0.5).

For further illustration, typical profiles for the different electrode kinetics laws intro-
duced above are depicted in Fig. 2.1. The asymptotic behavior of both the linear and the
Tafel law with respect to the Butler-Volmer curve are clearly visible. In general, the re-
quired parameters of the phenomenological electrode kinetics laws have to be determined
from experiments. Each problem setup necessitates an individual characterization, includ-
ing electrode material, composition of electrolyte solution, temperature and considered
electrochemical reaction. It is emphasized that the mathematical model and the compu-
tational approach developed below is not restricted to any specific electrode kinetics law.
In principal, any general function (2.43) which represents the experimentally observed
dependencies can be used.

For most cases, one cathode and one anode surface is considered. This results in a
partition given as I'ey = I UT,, with [, N[, = (). The electric potential Vg on the metal
side of the cathode is denoted by V.. and the corresponding anode potential is termed V,
respectively. When the two electrode potentials V, and V.. are prescribed, either set as
constant parameters or following a specified time-dependent curve, a voltage-controlled
operation mode of an electrolytic cell is modeled. The overall cell voltage is given by the
difference U(r) = V() — V.(t). When a certain cell voltage U is prescribed, the considered
electrolytic system is also said to be under potentiostatic control. In numerical simulations,
usually a reference value for the electric potential is defined by setting V, =0V. A typical
profile of the electric potential field for a one-dimensional problem setting is depicted in
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Figure 2.2: Typical profile of the electric potential field.

Fig. 2.2. Using the nomenclature introduced in Fig. 2.2, the cell voltage U can be further
split up into several characteristic contributions reading

v = V,-V.
= (V,—D(xg)) +(P(xg) — P(xc)) — (V. — D(xc))
= Nsat+Mea+t ADopm +Ep —1ne.c) — Ns,c- (2.47)

In (2.47), the explicit dependency on the time has been dropped for the sake of a shorter
notation. All relevant dissipative effects in an electrochemical cell are given in (2.47).
As introduced above, surface overpotentials at anode and cathode are denoted by 75, and
1s.c, respectively. As shown in Fig. 2.2, the anodic surface overpotential 75 , has a positive
value, while the cathodic surface overpotential 75 . is negative. The dissipative losses inside
the electrolyte solution are due to concentration overpotentials 7¢ 4, 7c in the vicinity of
each electrode, ohmic losses denoted by A®},,, and the open-circuit potential termed Ej.
For further explanations of the different contributions as well as the modeling of electrode
reactions in general, the reader is referred to, e.g., Newman and Thomas-Alyea [137].
Note that in Fig. 2.2 only the surface overpotentials and the ohmic drop are depicted. For
simplicity, possible concentration overpotentials are omitted.

An exemplary potential-current curve (polarization curve) is provided in Fig. 2.3. There-
in, the different contributions to the cell potential U are shown. The anodic contributions
are negligible small for the investigated electrochemical system considered in Fig. 2.3 and
are therefore not shown. The horizontal current plateau denoted by (I), which is observed
for a high applied cell voltage difference, indicates the region of the so-called limiting
current. For this case, the reaction rate at the electrode is fully controlled by ionic mass
transfer. In particular, the surface concentration of the reacting ion drops down to zero at
the cathode and the ionic flux towards the electrode is limited by diffusion. For a further
increase of the applied cell voltage U, additional electrode reactions are triggered and a
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Figure 2.3: Exemplary potential-current curve and corresponding overpotential contribu-
tions (adapted from Newman and Thomas-Alyea [137]).

further increase of the electric current beyond the limiting current is observed (see region
I in Fig. 2.3). It is emphasized that the concentration-dependent terms in (2.44) and (2.46)
are required to model the limiting current.

2.5.4 Current-controlled problems

For current-controlled problems, the total current /(¢) passing an electrolytic cell is pre-
scribed. In experiments, an external control device is used to continually adjust the ap-
plied cell voltage to the prescribed current curve. Examples for applications utilizing a
time-varying total current lio(#) are pulse-plating and pulse-reverse-plating methods with
prescribed time-dependent current curves (cf. section 1.3). For the classical galvanostatic
mode of cell operation, the total current /¢ is a simple direct current, which is kept con-
stant over time.

The continuous adjustment of the cell voltage also has to be realized numerically within
the computational approach. At each time ¢ € [0, T¢], the current I(¢) passing an electro-
chemical system has to follow the prescribed current /;(¢) , which requires a correspond-
ing adaptation of the overall cell voltage U(z) = V() — V.(?). Thus, the following equations
have to be satisfied both at the cathode and anode surface, respectively:

RC(VC) = Itot — IC = Itot — flri ds = 0, (248)
Ie

Ra (Va) = ItOt - Ia = ItOt - fl:: ds = O, (249)
La

whereas it holds I = I. = I, due to charge conservation (see section 2.4). For the case
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of only one reactive ionic species and a single electrochemical reaction process, the net

faradaic current densities iy, i/ normal to an electrode surface are given by a reaction

model, such as the Butler-Volmer law (2.44). The values of the current densities i, i,
depend on all solution variables and are typically varying along the electrode surfaces I';
and I',. Equations (2.48) and (2.49) are nonlinear and strongly coupled, since i:, iy (and,
consequently, also /) result from all governing equations for the electrochemical problem,

including nonlinear bulk and boundary equations.

2.5.5 Faraday’s law and electrode shape changes

According to Faraday’s law (see, e.g., Bard et al. [8]), the amount of substance consumed
or produced during an electrochemical reaction at an electrode is proportional to the elec-
tric charge which passed the corresponding electrode-solution interface. In case of an
electrodeposition reaction (2.41), this fundamental dependency enables the computation
of a local cathode surface growth rate & from the normal component of the local current
density via

Mine ii -n. (2.50)

Pme nE
Here, n represents the number of electrons transferred in the reaction, F is Faraday’s con-
stant, M,,, denotes the molar mass of the deposited metal and p,,, the corresponding den-
sity. The ratio of these two values is often termed molar volume Ve = Miye /Pme, since
the corresponding unit is m?3/mol. The additional parameter A € (0,1] in (2.50) is an ef-
ficiency factor, which is used to reflect the non-ideal plating behavior observed in reality,
where a minor percentage of the total current is consumed by other electrode reactions.
The local deposit thickness Ah achieved during a time interval [#g,#;] can be computed by
integrating (2.50) over the corresponding time interval. For a simple plating process on a
flat surface and a known current density distribution which remains constant over time, a

simple formula of the form

ii=A

= h—1I
Ah = AV e e

i-n (2.51)

is obtained. As shown here, a detailed knowledge of the current-density distribution is im-
portant for a sophisticated prediction of plating results in electrodeposition. This inherent
dependency becomes also evident in the following quote from Dukovic [54, p. 694]:

. - .. the challenge of deposit uniformity can be posed as a problem of current-
density distribution: How can one distribute the electrolytic current evenly
over the surface of the cathode?*

2.6 Simple potential model for electrochemical
systems

When gradients of ionic concentrations are negligible small, the problem formulation pre-
sented above can be drastically simplified. This situation is often encountered when the

electric current passing an electrolytic cell remains far below the limiting current. Then,
mass transfer due to convection and diffusion are negligible effects, and migration is the

29



2 Mathematical model

prevalent ion-transport phenomenon. Since in this case the composition of the electrolyte
solution is assumed to remain uniform, no ion-transport equations have to be solved any-
more. As a further consequence, there is also no need for solving the flow problem. The
only remaining unknown physical quantity is the electric potential field. Equation (2.23)
represents a suitable choice for deriving a governing equation for the electric potential ®.
Neglecting all concentration gradients in (2.23) yields

m
v [(Z zinykck)vqn] =0. (2.52)
k=1
=0
Since the bath composition remains uniform, the ionic conductivity o as defined in (2.26)
is a constant value. Thus, the electric potential ® is governed by the Laplace equation

reading
- V- (cVO)=0. (2.53)

Typically, a measured value is used in (2.53) for the conductivity of the electrolyte solution.
The current density is simply computed from Ohm’s law reading

i=—0oVo. (2.54)

In general, appropriate boundary conditions for the simplified potential model (2.53) are
given as

D =dp on I x (0,Te), (2.55)
oV®-n=he on Ty x (0,Te), (2.56)
oV n=i,(®) on T x (0,T). (2.57)

On the Dirichlet boundary part I'Y, a value ®p for the electric potential is prescribed,
while hg is an applied value for the negative current density in normal direction at the
Neumann boundary Fﬁ. Insulating surfaces belong to the latter type of boundaries since
the condition oV ®-n = 0 is usually used to model these. At the boundary I'?, the current
density is linked to some model for electrode kinetics (see section 2.5.3), which yields in
general a nonlinear term i, (®).

2.7 Incompressible flow

The incompressible Navier-Stokes equations provide an adequate model to describe the
flow of a dilute electrolyte solution in an electrochemical cell at a macroscopic scale (see,
e.g., Newman and Thomas-Alyea [137]). For dilute solutions, as considered here, con-
centrations of contained ionic species are very low compared to the solute. As a result,
values for density and viscosity are typically similar to those of the pure solute, but may
depend on the local bath composition. For electroplating applications, typically water is
used as a solvent, which is governing the flow behavior of the whole electrolyte solution.
For a detailed derivation of the Navier-Stokes equations in particular, and the field of fluid
mechanics in general, the reader is referred to Spurk [161] and Kundu and Cohen [118],
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for instance. Further detailed introductions to the modeling of incompressible flows are
provided by Wall [174], Gravemeier [78] and Gamnitzer [69].

2.7.1 Governing equations

The viscous flow of a Newtonian fluid is mathematically described by the Navier-Stokes
equations reading

0(ou)

o+ @ V) pu =2V £ @)+ Vpagn =pb inQx(0,T.), (2.58)
%+V-(pu)=0 in Q x (0,Te). (2.59)

Here, equation (2.58) is derived from the principle of conservation of linear momentum,
while (2.59) is deduced from mass conservation. Usually, (2.58) is referred to as momen-
tum equation and (2.59) is termed the continuity equation. The involved physical quantities
are the velocity field u : Q x [0,7.] — RY, the (dynamic) pressure pgyn : Q x [0,T.] = R
and the density field p : Q x [0,T.] — R*. Furthermore, u denotes the dynamic viscosity
of the Newtonian fluid, € (u) the symmetric strain rate tensor given by

) = %(Vu + (vu)T), (2.60)

and b the specific volume force.

As emphasized by Newman and Thomas-Alyea [137], a divergence-free velocity field
is a valid approximation for dilute electrolytes, where only small density variations occur
at the electrodes. Therefore, the so-called Boussinesq approximation (see, e.g., Kundu and
Cohen [118]) is also valid for the electrolyte solutions considered here. Consequently, the
influence of density variations is neglected in all terms of the momentum equation (2.58),
except for the volume force term on the right-hand side. Thus, in all terms on the left-
hand side of (2.58), p is replaced by the constant reference density of the bulk electrolyte
solution denoted by p>°. As a second step, the momentum equation (2.58) is divided by
p>°. Since the flow of an electrolyte solution is assumed to be incompressible, equation
(2.59) reduces to the usual incompressibility constraint V -u = 0.

As aresult of all these considerations, one obtains the following set of partial differential
equations:

O W VU2V @+ Vp=b nQx(O.T), 2.61)

Vu=0 inQx(0,T,). (2.62)

Here, the kinematic pressure p = pgyn/p™ and the kinematic viscosity v = u/p> were
introduced in (2.61). In addition, the right-hand side of (2.61) reads

b= p%?. (2.63)

31



2 Mathematical model

2.7.2 Constitutive models for the density of electrolyte solutions

It is emphasized that for the coupled multi-ion transport problem the density field p does
not appear as a solution variable since it can be directly expressed in terms of ionic con-
centrations via a constitutive law

p=f(1,....cm). (2.64)

Usually, a linear relationship of the form

p=p> [1 + Z ay (e — c,‘jO)] (2.65)

k=1

provides already a sufficient model. Here, a; denotes the so-called densification factor and
c;” the bulk concentration value of ionic species k. A common choice for the densification
coeflicients is given by a; = My /p™°, where M} denotes the molar mass of ionic species k.

When ionic species m is eliminated from the problem formulation by means of elec-
troneutrality as described in section 2.3.3, the formula for the density (2.65) changes to

m—1
o :poo[1+ Z (ak—sz—Z)(ck—c,fo)). (2.66)

k=1

It is emphasized that (2.65) and (2.66) yield identical values for the density, since the effect
of species m is still present in (2.66).

Besides the density, also the viscosity of an electrolyte solution depends in general on
the local bath composition. In this work, such a dependency is not considered. Buoyancy
forces due to density variations are usually estimated to be much more important for a
successful modeling of the flow than a concentration-dependent viscosity. Thus, the vis-
cosity is assumed to be a constant throughout this work. Nevertheless, the computational
approach presented below can be extended accordingly to account for a concentration-
dependent viscosity as well. Numerical simulations considering a concentration-dependent
viscosity of an electrolyte solution were presented by Mangiavacchi et al. [133], Barcia
et al. [6] and Pontes et al. [143], for instance.

2.7.3 Buoyancy and other types of volume forces

When local variations in the ionic concentrations occur, corresponding variations of the
density arise according to (2.64). Consequently, buoyancy forces are present, which are
causing so-called natural convection in an electrochemical cell. To account for such buoy-
ancy effects, the specific volume force term is given as b = g, where g represents the grav-
itational acceleration. For numerical simulations it is usually convenient to remove the
hydrostatic pressure contribution by including —p>° g in the volume force term b. Conse-
quently, the right-hand-side in (2.61) reads

g (2.67)
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Thus, the pressure p in (2.61) does not contain the hydrostatic pressure part. If needed, the
latter can always be computed in a postprocessing step. This approach is utilized through-
out this work. As a result, a challenging two-way coupled problem has to be considered,
since ion transport is influenced by convection and buoyancy effects depend on the local
1onic concentrations.

However, for many electrochemical configurations natural convection phenomena can
be considered as negligible small. For such situations, p = p® can be assumed. Since
(2.67) 1s zero 1n this case, the dependency of the flow solution on the local ionic concentra-
tions vanishes completely. Consequently, the consideration of a one-way coupling of ionic
transport to the flow field via convection is sufficient.

In general, besides the gravitational force, other types of forces may contribute to the
volume force term in the momentum equation. An overview of further physical effects
which can be important in the context of electrochemistry is provided by Hinds et al. [97].
Therein, also rough estimates for the relative importance of each force term are given. One
contribution in the context of electrochemical systems is the effect of the electric field on
the electrolyte solution (see, e.g., Rubinstein [152]). However, the arising force is negli-
gible small for the considered length scales of the present macroscopic model, as shown
in the textbook by Newman and Thomas-Alyea [137]. When an electrochemical system is
superposed by a strong external magnetic field, physical effects such as the Lorentz force
(see Hinds et al. [97]) have to be accounted for in the mathematical model. For the appli-
cations considered in this work no magnetic fields are imposed. Thus, magnetic effects are
not considered in the proposed model for the moment.

2.7.4 Initial and boundary conditions

Based on the partition 9Q =I'y UT with I'y NI = (), appropriate boundary conditions
for the flow problem are given as:

u=up onI'y x(0,Te), (2.68)
(—pI+2ve(u))-n=t on FK] x(0,T,). (2.69)

Here, up is the velocity prescribed at the Dirichlet boundary part I'}y, n the unit outer
normal to the boundary and # the prescribed boundary traction at the Neumann boundary
part I'§. At walls, typically a so-called no-slip condition with up = 0 is applied. In case
of free-slip conditions, the fluid may not penetrate the boundary (i.e., up-n = 0), but can
move in tangential direction along the boundary. Outflows are typically regarded as a
part of I'},, demanding a zero traction vector ¢ = 0. A general overview and discussion of
possible boundary conditions for the incompressible Navier-Stokes equations can be found
in Gresho and Sani [85].

Finally, an initial condition in the form
u=u’ inQx{0} (2.70)

is required for time-dependent flow problems, with u° being a solenoidal initial velocity
field. Often, an electrolyte solution is considered, which is initially at rest. In this case,
u® = 0 is used in (2.70).
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2.8 Further definitions and remarks

This section provides some further definitions of important electrochemical terms and con-
cepts, which will be required within the subsequent parts of this work. In addition, the cur-
rent chapter on the mathematical model is completed by giving some additional remarks.

2.8.1 Analytical results

The coupled system of multi-ion transport equations (Nernst-Planck equations) subject to
the electroneutrality constraint was also investigated theoretically in the past. In the fol-
lowing, some exemplary references regarding this ambitious task are given. The provided
collection of publications is certainly not complete, but provides at least an overview of
available theoretical results. From a mathematical point of view, questions regarding the
existence and uniqueness of solutions have to be answered.

The uniqueness of steady-state solutions for an electrochemistry model with multiple
species was proved by Choi and Lui [35] considering one spatial dimension. In a sub-
sequent publication, Choi and Lui [36] investigated the global stability of solutions for
this problem formulation. In Choi and Lui [37], it was shown that the results presented
in Choi and Lui [35, 36] hold also for the two- and three-dimensional case. The global
existence of solutions of a strongly coupled quasilinear parabolic system with applications
to electrochemistry was addressed by Choi et al. [34].

Besides these more fundamental investigations, analytical solution formulae can be de-
rived for simple problem setups in rather basic geometries. Such exact solutions are impor-
tant in the context of numerical methods, since they enable code verification and numerical
convergence studies based on error calculations.

Exact solutions for one-dimensional ion transport in a binary electrolyte subject to elec-
troneutrality were presented by Choi and Chan [33]. The analytical solution of the problem
considered in that work was the basis for a more general extension to two spatial dimen-
sions performed by Kwok and Wu [119]. Using similar methods, the logical extension to
three space dimensions was provided recently by Bauer et al. [11]. A steady-state solution
for electroplating was derived by Choi and Yu [38] considering a one-dimensional binary
system with Butler-Volmer boundary conditions. Sokirko and Bark [160] derived an exact
solution for ionic transport governed by diffusion and migration coupled to Butler-Volmer
kinetics. They considered electrolyte solutions containing two and three ionic species in
one-dimensional domains. Steady-state solutions for an electrochemistry model with non-
linear diffusion were derived by Fang and Ito [61]. A stationary analytical solution for
one-dimensional ion transport governed by diffusion and migration was presented by Bor-
tels et al. [21]. In a subsequent publication, Bortels et al. [22] used this result to identify
the parameters of a Butler-Volmer law. Molina et al. [135] presented an analytical solution
for reverse pulse voltammetry at spherical electrodes. Exact solutions for ion transport
in binary electrolyte solutions were also provided by Bauer et al. [11, 12], which were
utilized for the validation of developed computational approaches.

Recently, a theoretical investigation for a strong binary electrolyte governed by the
Poisson-Nernst-Planck (PNP) system of equations was performed by Ghosal and Chen
[77]. Qualitative properties of steady-state PNP systems were investigated by Park and
Jerome [139]. An analytical solution for a PNP system of equations coupled to Stokes
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flow in cylindrical channels was presented by Berg and Findlay [18].

The three-dimensional incompressible Navier-Stokes equations are already stating a
challenging mathematical problem themselves. It is still not known whether they pos-
sess unique smooth (continuously differentiable) solutions at high Reynolds numbers. The
interested reader is referred to Doering [49] for a recent review on the related mathematical
theory and the encountered difficulties.

2.8.2 Model parameters

The proposed mathematical model contains several parameters, which need to be deter-
mined before any numerical simulation can be performed. In general, the properties of
a considered electrolyte solution need to be characterized in a laboratory by experimen-
tal techniques. The parameters of the different electrode kinetics laws addressed in sec-
tion 2.5.3 are typically determined by fitting an appropriate law to measured polarization
curves. Consequently, a combined experimental and numerical approach is necessary for a
sophisticated investigation of a given electrochemical problem setup. For certain common
electrolyte solutions data collections are available in literature, providing the required pa-
rameter values. For example, data for typical copper electrolytes are provided by Subbaiah
and Das [162] and Price and Davenport [144], for example. Therein, values for density,
viscosity and electrical conductivity are specified for varying temperatures and different
electrolyte compositions. The effect of bath composition and temperature on copper dif-
fusion coeflicients was investigated by Moats et al. [134]. Nickel electrolytes have been
investigated by Imamura and Toguri [104], for instance. In general, the experimental de-
termination of parameters such as the required diffusion constants of ionic species is a
difficult task. Uncertainties in the model parameters may also affect the prediction capa-
bilities of numerical simulations. This is an important fact one should always be aware
of.

2.8.3 A note on the choice of units

It is important to point out that the choice of units for all involved model variables is not
completely free. A fundamental dependency is revealed when the Volt unit is expressed in
terms of SI base units, reading

kgm?

1Vv=1 .
As3

2.71)

In practice, usually appropriate units for time, spatial length, current and electric potential
are chosen. Thus, the unit for mass is fixed due to (2.71). One has to be aware of this fact
when specifying a value for the electrolyte density. In case of natural convection caused by
local density variations, a correct specification of the corresponding constitutive law such
as (2.65) is even more important in order to obtain correct simulation results.

2.8.4 Categorization of current density distributions

A very important terminology often encountered in electrochemical literature is the follow-
ing classification of current density distributions. To be more precise, the local distribution
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of normal current density at electrode surfaces is of special interest, since it is directly re-
lated to the rate of electrochemical reaction (see section 2.5). Depending on the importance
of certain interfacial phenomena, the following three categories are defined (see, e.g., Bard
et al. [8]):

Primary current density distribution

The so-called primary current density distribution is observed when the resistivity of the
bulk electrolyte solution is the dominating effect. Interfacial phenomena such as surface
overpotentials are of negligible importance as well as mass transfer by diffusion and con-
vection. Thus, the most simple mathematical model is applicable in this case, where the
Laplace equation (2.53) is solved for the electric potential field. For the primary current
density distribution, only boundary conditions of type (2.55) and (2.56) are considered.
Typically, Dirichlet conditions (2.55) are used at the electrode surfaces, where ® =V, is
set at the anode and @ = V.. 1s prescribed at the cathode. As a consequence, only geometric
effects determine the current density distribution at the electrode surfaces.

Secondary current density distribution

The secondary current density distribution corresponds to the situation that interfacial phe-
nomena lead to surface overpotentials which are of comparable order to the ohmic drop
across the bulk volume of the electrolyte solution. As a consequence, the consideration of
(nonlinear) electrode kinetics models as introduced in section 2.5 is required. Since still no
concentration-dependent effects have to be considered, the Laplace equation (2.53) is the
governing equation here as well. But in contrast to the primary current density distribution,
it holds F‘é) # (). Thus, all three types of boundary conditions (2.55)-(2.57) are considered.
In general, the use of (2.57) requires the solution of a nonlinear problem.

Tertiary current density distribution

Finally, a tertiary current density distribution is encountered when concentration overpo-
tentials become important quantities as a result of significant variations in the ionic con-
centrations. For this case, mass transport phenomena such as convection, diffusion and
migration are considerably influencing the behavior of a respective electrochemical sys-
tem. Consequently, the full multi-ion transport model introduced in the previous sections
has to be considered, including the inherent coupling to incompressible flow.

2.8.5 Dimensionless problem formulation

By introducing appropriate reference values (marked with an index (.),.¢) for the involved
quantities, all presented governing equations can be reformulated in dimensionless quan-
tities (marked with an asterisk). For an incompressible flow problem, dimensionless vari-
ables for length, time, velocity and pressure are introduced via

x L,

X = r=—, u =—

9 - 9 (272)
Lref Tref
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The specific choice tref = Lyef/Urefs Pref = P urzef yields the following dimensionless repre-
sentation of the incompressible Navier-Stokes equations (2.61), (2.62):
ou*
or*

2
+(@"-VHu" — R—eV* W)+ ViIp =b"=0 inQ" x(0,77), (2.73)
V*u*=0 inQ"x(0,T7). (2.74)
In (2.73), the dimensionless body force is defined as b™ = (Lyf/ urzef)b. Note that the differ-

ential operators V*(.) and V*- (.) in (2.73), (2.74) are referring to the new spatial coordi-
nate x*. The Reynolds number arising in (2.73) is defined as

Re = “retlret. (2.75)
4

It is an important dimensionless quantity for characterizing the flow, representing a mea-
sure for the ratio of inertial to viscous forces.

Dimensionless quantities for each ionic concentration c; and the electric potential @ are

introduced by
¢ = i, O* = ® ,
Cref et
where cf denotes an appropriate reference concentration used for all ionic species k =
1,...,m. As a reference value for the electric potential, often O = RT/F is used. This
represents a natural choice for a reference potential, because the factor F/RT (unit: 1/V)
appears in all terms containing the electric potential, i.e., in the migration term of the ion-

transport equation as well as in electrode kinetics boundary conditions.

(2.76)

Based on (2.72) and (2.76), a dimensionless form of the ion-transport equations (2.12)
in combination with (2.5) and (2.16) is obtained as

(9CZ
or*

1
Ut Ve — 5=V (Vei +aci Vi) =0 in Q" x (0.77). (2.77)
k
The corresponding dimensionless form of the electroneutrality condition (2.22) reads

m
> e =0, (2.78)
k=1

while the alternative closing equation (2.25) is reformulated as

m—1 % z m—1 1 1
SR am ) ok . —— —— |V [=0. (2.79
(;Zk(Pek Pem)ck ;Zk(Pek Pem) c"] 7

-V V*o* |-V~

In (2.77) and (2.79), the individual Peclet numbers for the ionic species k = 1,...,m are

defined as

Pe; = ‘et _ o Re. (2.80)
Dy
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Figure 2.4: Typical boundary layer profiles for velocity and ionic concentrations at an elec-
trode surface (adapted from Kontturi et al. [117]).

The dimensionless Schmidt number in (2.80) is computed as

v

Scy = i (2.81)
and relates the kinematic viscosity of the considered fluid to the diffusivity of ionic species
k. For ionic mass transport, typical Schmidt numbers are in the order of 1000 or higher
(see, e.g., Newman and Thomas-Alyea [137]). Consequently, the modeling of ionic trans-
port in electrochemical systems yields a high-Schmidt-number problem. According to
Incropera and DeWitt [106], for most applications a scaling law reading

Su Scl/3 (2.82)

C

is reasonable for the ratio of velocity boundary-layer thickness ¢, and concentration bound-
ary-layer thickness ¢, of a reactive ionic species. This scaling law is also observed for
mass transfer in turbulent channel flow (see, e.g., Calmet and Magnaudet [30]). As a
consequence of (2.82) and the high Schmidt numbers which are typically encountered
for ionic mass transport in electrolyte solutions, the boundary layer of the ionic species
concentration is usually located completely within the boundary layer of the flow. This
characteristic situation is also sketched in Fig. 2.4. Consequently, the consideration of
ion-transport phenomena is very challenging from a numerical point of view, since the
required spatial resolution for resolving concentration boundary layers in the vicinity of
electrode surfaces leads to even higher computational costs than encountered for pure flow
problems.

The Sherwood number represents a dimensionless quantification for the mass transfer
rate at a surface. For specific problem setups, often correlations of the form

Sh = f(Re,Sc) (2.83)

are specified in literature, where the mass transfer rate depends on the flow characterized
by the Reynolds number and the electrolyte solution characterized by the Schmidt number.

38



2.8 Further definitions and remarks

One example for such an empirically determined relation is the Eisenberg correlation for
rotating cylinder electrodes (see Eisenberg et al. [58] and the numerical example 4.4.3).
Owing to the analogy between mass and heat transfer (see, e.g., Incropera and DeWitt
[106]), the nomenclature used in the context of heat transfer problems is also often em-
ployed in literature devoted to electrochemistry. The Prandtl number is the analogon of the
Schmidt number and the Nusselt number the analogous definition of the Sherwood num-
ber. A comprehensive overview of dimensionless parameters in the context of heat and
mass transfer is provided by Incropera and DeWitt [106], for instance.

The fundamental structure of the dimensionless problem formulation is identical to the
governing equations formulated in dimensional quantities. Thus, for convenience, the non-
dimensional problem formulation is not considered in a separate way in the following
chapters. The developed numerical methods can also be applied to the dimensionless for-
mulation without any further modifications.
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3 Computational approach

In this chapter, the developed computational approach is described. First, an overview of
existing simulation approaches is provided in section 3.1. This literature survey demon-
strates the novelty and significance of the computational method presented in the subse-
quent sections. In section 3.2, the time discretization of the governing equations is ad-
dressed. Afterwards, in section 3.3, the weak formulation of the semi-discrete equations is
presented. This weak problem formulation represents the basis of the residual-based vari-
ational multiscale finite element formulation proposed in section 3.4. Finally, the solution
procedure for the fully-discretized problem is explained in section 3.5.

3.1 Survey of existing simulation approaches

According to Britz [25], the article by Feldberg and Auerbach [64] published in 1969
can be seen as the pioneering work regarding numerical simulation in electrochemistry.
Over the last decades, various numerical methods for the simulation of ion transport in
electrolyte solutions have been developed. Some of these computational methods will
be addressed in the following in order to provide an overview of existing simulation ap-
proaches. The focus is on the macroscopic modeling of ion transport in electrolytic systems
in general, and electroplating applications in particular. Hence, computational approaches
proposed for numerical simulation of galvanic cells, such as batteries and fuel cells, are
not addressed in the following. Also numerical methods for simulating electrochemical
phenomena at the micro- or even nanoscale are not in the scope of this work. Examples for
such methods are Monte Carlo techniques for molecular dynamics simulations or atomistic
simulation approaches.

3.1.1 General computational methods for ion transport

Traditionally, finite difference approaches are widely used in the context of electrochem-
istry (see, e.g., Britz [25], Newman and Thomas-Alyea [137]), since they are easy to imple-
ment and usually sufficient for simple geometries. However, they often lack the necessary
flexibility for considering complex realistic geometries. A fractional-step algorithm using
a finite-difference scheme for spatial discretization was developed by Kwok and Wu [119].
One-dimensional electrochemical diffusion-migration problems with reaction at electrodes
were simulated by Kwok and Wu [120] utilizing a solution procedure which decouples the
calculations of ionic concentrations and electric potential. A finite-difference method with
upwinding was developed by Georgiadou [74] for the simulation of convection-dominated
multi-ion transport. Using that method, various two-dimensional electrochemical systems
including convection, e.g., parallel-plate electrochemical reactors (Georgiadou [74, 75]),
a backward-facing step (Georgiadou [74]) and cavities in laminar shear flow (Georgiadou
et al. [76]) were studied.
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A Lattice-Boltzmann model for studying electrochemical processes influenced by all
three transport mechanisms was proposed by He and Li [93] for two-dimensional prob-
lems. Mesh-free numerical schemes were used by La Rocca and Power [121]. A multi-
dimensional upwinding method for the analysis of multi-ion electrolytes controlled by dit-
fusion, convection and migration was proposed by Bortels et al. [20]. This computational
method was used to perform steady-state studies for a two-dimensional flow channel.

Recently, a fractional-step method proposed by Buoni and Petzold [27] for solving two-
dimensional diffusion-migration problems on irregular domains with moving boundaries
was extended to three space dimensions in Buoni and Petzold [28]. The resulting method
is first-order accurate in time and second-order accurate in space using a finite volume ap-
proach for the spatial discretization. Convection was neglected there, since their focus was
on semiconductor applications with very small length scales below 1 um. Transient mass-
transfer processes in a 3D-model of an electrochemical sensor were investigated by Barak-
Shinar et al. [5] using a finite-volume approach. All of the three ion-transport mechanisms
were addressed in that study, but only the concentration field of one single reactive species
was considered. In all investigations, the species concentration at the electrode surface was
assumed to be zero. The electric potential was computed by solving a Poisson-Boltzmann
equation.

The finite element method (FEM) has also been used already for the spatial discretiza-
tion of different electrochemical problems including ionic mass transport. Henley and
Fisher [94] used a FEM to simulate current-density distributions in three-dimensional mi-
crochannels. However, their model did not account for migration, and a constant conduc-
tivity of the electrolyte solution was assumed. Ion-diffusion mechanisms in porous media
were modeled by Samson et al. [154], using the PNP system of equations. Only diffu-
sion and migration were considered in the ion-transport model. The governing equations
were discretized in space using a FEM. Applying a commercial finite element software, a
rotating cylinder Hull cell was investigated by Low et al. [127]. Steady-state current distri-
butions assuming Tafel kinetics at the working electrode for a 2D axial-symmetric model
were computed. Only the concentration of a single ionic species was considered, and no
flow field was computed, since the corresponding mass transport model was based on a
Nernstian diffusion layer expression with prescribed concentration boundary-layer thick-
ness. An adaptive multilevel finite element algorithm was proposed by Ludwig et al. [128]
and applied for solving various electrochemical experiments with controlled current in
one spatial dimension. Finite element discretizations for a Navier-Stokes-Nernst-Planck-
Poisson system were investigated theoretically by Prohl and Schmuck [145]. A stabilized
finite element approach for ionic transport was proposed in Ganjoo and Tezduyar [71] for
the simulation of electrophoresis separation in one and two space dimensions.

It is well-known that a standard Galerkin finite element method (SGFEM) applied to
convection-diffusion equations with a dominating convective term can lead to oscillations.
To account for this, stabilized finite element methods were developed for the numerical
solution of convection-diffusion-reaction equations and the incompressible Navier-Stokes
equations, e.g., the Streamline-upwind Petrov/Galerkin (SUPG) method by Brooks and
Hughes [26]. For an overview on existing methods, the reader is referred to, for instance,
Hughes et al. [102]. Stabilized methods may be considered particular methods derived
from the more general framework of the variational multiscale method (VMM) as origi-
nally introduced by Hughes [99].
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Concerning electrochemistry, particularly coupled multi-ion transport problems, very
few publications addressing stabilized finite element methods exist. In Ganjoo et al. [72],
a mixed finite element method for the numerical simulation of electrophoresis separation
phenomena was proposed. Therein, different ion-separation processes in one- and two-
dimensional configurations were studied. An SUPG approach was proposed as the sta-
bilizing technique. However, no coupling to the Navier-Stokes equations was included in
that solution approach, and no boundary conditions for modeling electrochemical reactions
at electrode surfaces were considered in the mathematical model.

The popular drift-diffusion model for describing the transport of charge carriers within
semiconductor devices exhibits also similarities to the governing equations of multi-ion
transport in dilute electrolyte solutions. A stabilized finite element method was proposed
for the spatial discretization of drift-diffusion equations by Hennigan et al. [95], Lin et al.
[125]. The large-scale parallel performance of an algebraic multigrid preconditioner for
the numerical solution of such problems was investigated by Lin et al. [126].

3.1.2 Natural convection in electrochemical cells

In recent years, natural convection phenomena in electrochemical cells have also been in-
vestigated numerically. The influence of natural convection on the current density and the
ionic concentration at the electrode was investigated, e.g., by Kawai et al. [113]. Therein,
the Laplace (electric potential field), the ion-transport (excluding migration effects), and
the fluid equations were solved individually by a finite difference scheme. A galvanostatic
boundary condition was introduced to keep the electric current flow at the electrodes con-
stant over time. The numerical results were experimentally validated by Kawai et al. [114].
In Kawai et al. [115], the Butler-Volmer law was added as a kinetic boundary-condition
model.

The importance of including density gradients for modeling rotating cylinder electrodes
was emphasized by Mandin et al. [130]. The steady state ion-transport (excluding migra-
tion effects) and fluid equations were solved using a commercial software. A finite differ-
ence scheme to simulate ionic transport (including the migration effect) under the influence
of natural convection was proposed by Volgin et al. [173]. A review on natural-convective
instabilities in electrochemical systems was provided by Volgin and Davydov [172]. In
Chung [40], the tertiary current density distribution in the case of electrodeposition from a
multi-ion electrolyte solution was studied for two-dimensional high-aspect-ratio cells in-
cluding convection, diffusion and migration. Therein, the flow, the ionic concentration and
the potential field were strongly coupled by an iterative (two-dimensional) finite volume
scheme. Natural convection phenomena were also investigated in Wallgren et al. [176] us-
ing a finite volume scheme, including an ion-transport equation for binary electrolyte solu-
tions, an equation for the electric potential and a Butler-Volmer law as a kinetic boundary
condition. Further references on theoretical, experimental and numerical considerations of
natural convection in electrochemical cells are provided by Ehrl et al. [56]. The computa-
tional approach presented in the latter publication has emerged from the previous work by
Ehrl [55].
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3.1.3 lon transport in turbulent flow

If convection was accounted for in the computational approaches referenced above at all,
mostly laminar flow regimes were addressed. Although comprehensive numerical meth-
ods considering ionic mass transport coupled to turbulent flow are still rare in literature,
a few approaches can be found. For instance, multi-ion transport and electrochemical re-
actions in turbulent parallel plate flow were studied by Nelissen et al. [136], considering
a two-dimensional problem setup. A Reynolds-averaged Navier-Stokes (RANS) method
was used for modeling the turbulent flow, including a low-Reynolds number k-w model.
Utilizing a similar RANS approach, turbulent fluid flow and electrochemical mass trans-
fer in an annular duct with an obstruction were studied numerically by Weyns et al. [177]
considering a ferri-ferrocyanide system.

In general, turbulent mass transfer in electrochemical systems is a challenging topic due
to the usually high Schmidt numbers involved. As introduced in section 2.8.5, the Schmidt
number is defined as Sc = v/ D, relating kinematic viscosity to molecular diffusivity. Typi-
cally, only a single passive scalar field governed by convection and diffusion is considered.
DNS data for passive scalar transport in turbulent channel flow with low Reynolds num-
ber at Schmidt numbers up to Sc = 49 were provided by Schwertfirm and Manhart [156].
Large-eddy simulations of high-Schmidt-number mass transfer in a turbulent channel flow
were reported in Calmet and Magnaudet [30] and Dong et al. [53], for instance. In both
studies, numerical results up to Sc = 200 were provided. A nonlinear large-eddy simula-
tion (nLES) method was proposed in Burton [29] for studying turbulent mixing of passive
scalars for Schmidt numbers in the range Sc € [1;8192].

In the special context of electrochemistry, simplified modeling approaches are often uti-
lized, such as the ones used in Lee and Talbot [123], Low et al. [127] and Mandin et al.
[131]. Therein, the ionic boundary-layer thickness is prescribed a priori based on the
Nernst diffusion-layer expression, rather than obtaining it as a result of the simulations.
However, this approach requires some a priori knowledge in the form of empirical formu-
lae for each electrochemical cell configuration. As a consequence, general applicability is
rather limited. Owing to complex geometries regarding both the parts to be plated and the
bath itself, a more universal solution approach is needed, in general.

The configuration of a rotating cylinder electrode (RCE), which is used to validate the
formulation presented in this work, received continuous attention in research as docu-
mented in a series of review papers Gabe [66], Gabe and Walsh [67] and Gabe et al. [68].
In particular, empirical mass-transfer correlations valid for limiting current and turbulent
flow conditions have been known for long time (see, e.g., Eisenberg et al. [58]). Since
configurations of this type obviously without the electrochemistry part were investigated,
e.g., by Direct Numerical Simulation (DNS) in Dong [52], and LES in Bazilevs and Akker-
man [15], valuable literature data for the turbulent flow behavior exist, at least for such a
‘pure’ flow problem. Therefore, this setup was preferred to the one proposed in Hwang
et al. [103], for example, where a DNS of turbulent flow around a single rotating circular
cylinder was performed, and no outer cylinder surface was considered. Recently, turbulent
mass transfer studies for the cases Sc=1, 10 and 100 were presented in Yoon et al. [ 184] for
that single-cylinder configuration using direct numerical simulation. Further references re-
garding experimental work and computational flow results regarding Taylor-Couette flow
between two concentric cylinders were provided in Dong [52] and Bazilevs and Akkerman
[15], for instance.
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3.1.4 Electrodeposition and pulse-plating applications

Many of the aforementioned references are concerned with the simulation of electrolytic
processes such as electroplating. In the following some further references dedicated to this
topic are provided.

Transient electrochemical techniques such as pulse plating (PP) and pulse-reverse plat-
ing (PRP) applications (see section 1.3) were also already addressed by means of numerical
simulation. A one-dimensional computational model for PP on a rotating disk electrode
was proposed by Yin and White [183]. Varadarajan et al. [171] presented a modeling ap-
proach for computing tertiary current distribution for PP of copper into high aspect ratio
trenches. However, the proposed two-dimensional model did not account for migration.
Steady-state and pulsed current multi-ion simulations for a thallium electrodeposition pro-
cess were carried out by Van den Bossche et al. [169] based on the computational approach
proposed by Bortels et al. [20]. Therein a (quasi-) one-dimensional model perpendicular
to the surface of a rotating disk electrode was considered. Lee and West [124] used a
numerical method to study the impact of pulse parameters on the current distribution. A
one-dimensional model for copper PP at a rotating disk electrode was utilized by Tsai et al.
[168] to investigate the effect of additives and the influence of the electric double layer.
Copper PP and PRP methods were addressed by Tantavichet and Pritzker [163]. Dan et al.
[44] simulated transient current responses in dilute electrochemical systems. It is impor-
tant to note that all of the computational approaches listed above use the electroneutrality
condition to close the system of ion-transport equations. Hence, the ENP system of equa-
tions focused on in this work provides also a justified approach to the modeling of PP and
PRP applications.

A second aspect in the context of electrodeposition is the simulation of electrode shape
changes. For many applications the computation of a current density distribution is al-
ready sufficient and allows a prediction of the deposit thickness distribution according to
(2.51). Numerical simulation approaches including electrode shape changes were primar-
ily developed for numerical simulations in the context of copper electrodeposition in semi-
conductor manufacturing. Methods for such moving-boundary problems in the context of
electrodeposition were proposed by Purcar et al. [148], Buoni and Petzold [27], Sethian
and Shan [157] and Hughes et al. [98] for example. Owing to the need to account for
large deformations and even self-contact of electrodeposited copper layers, level-set-based
techniques are commonly proposed in this context. Note that computational methods ca-
pable of simulating large electrode shape changes are also of importance in the context of
electrochemical machining applications (see, e.g. Purcar et al. [147]).

3.1.5 Summary and conclusions

In summary, the consideration of multi-ion transport in three-dimensional complex geome-
tries represents still a challenging task. As a result of the literature survey presented above,
only some recent publications actually consider such complex problems. Often, compu-
tational methods were specifically developed for single applications and do therefore not
include for all of the physical phenomena in the model. In contrast, a general and com-
prehensive computational approach is presented in this work, which accounts for all three
ion-transport phenomena, electrode kinetics and coupling to incompressible flow at the
same time. Especially the coupling of ion-transport to laminar and turbulent flow is one of
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the key aspects of this work. The framework of the finite element method introduced below
provides also the necessary flexibility for the consideration of complex three-dimensional
geometries. In the following sections 3.2-3.5 this novel computational approach will be
presented in detail.

3.2 Time discretization

As a general discretization procedure, Rothe’s method (also known as “horizontal method
of lines”) is utilized for the developed computational approach. Thus, discretization in time
is performed prior to discretization in space. As a result, a sequence of boundary value
problems has to be solved. In this study, the so-called generalized-alpha time-integration
scheme is utilized for discretizing the governing equations in time, as presented below.

3.2.1 Generalized-alpha time-integration scheme

The generalized-alpha method was originally proposed by Chung and Hulbert [39] as
a time-integration algorithm with improved dissipative damping for structural dynamics
simulations. It provides user-defined adjustment of high frequency damping and includes
several well-known and popular discretization schemes as special cases. In the publica-
tion by Jansen et al. [110] the original method was developed further to be applicable
for first-order systems such as those arising in fluid dynamics. In particular, Jansen et al.
[110] addressed the temporal discretization of the compressible Navier-Stokes equations.
Generalized-alpha methods for the large-eddy simulation of turbulent incompressible flows
were considered by Bazilevs et al. [16], Gamnitzer et al. [70], Gamnitzer [69] and Grave-
meier et al. [80], for instance. Recently, the generalized-alpha method was also utilized
for turbulent variable-density flow at low Mach number by Gravemeier and Wall [82, 83].
Since the present problem formulation introduced in chapter 2 represents a first-order sys-
tem with respect to time, the formulation originally proposed by Jansen et al. [110] is taken
as a basis for the following considerations.

The time period of interest [0,7.] is divided into a series of uniform time steps with
constant length Ar. For time step n + 1, the previous time is denoted by #* and the new
time level is given by #**! = " + Ar. For the generalized-alpha time-integration scheme
two further intermediate time levels are introduced by

=1 —a) '+ oy 3.1
M = (1 — ) + am (3.2)

where @ and ay, are two parameters of the method. Adaptive methods with non-uniform
time stepping combined with appropriate error estimation techniques are not considered in
the present study. However, adaptivity in time represents a possible future extension of the
current computational approach.

In the following, an initial-value problem for a general ordinary differential equation
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(ODE) of the form

d
(0 = fO0.0, (3.3)
y(0) =»°

is considered. The corresponding discretized form of (3.3) obtained from the generalized-
alpha method reads

gram — e g (3.4)
YO = (1 — am) 3" + am ", (3.5)
Y =(1 = apy” + gy, (3.6)

Y =yt A (L= y)y" + 3", 3.7)

Note that a third parameter of the method denoted by vy has been introduced in (3.7).
According to Jansen et al. [110], a stable method is only obtained when the relation

1
am > a5 > 5 (3.8)

is fulfilled. To accomplish second-order accuracy, the three parameters of the method must
additionally satisfy the condition

1
v = §+am—a/f. 3.9
Several well-known time-integration schemes can be represented with the generalized-
alpha method. These are simply obtained by different choices for the three parameters aj,

am and 7. In the following, only the methods actually used in this study are addressed.

Generalized trapezoidal rule (one-step-theta scheme)

The well-known generalized trapezoidal rule (also termed one-step-theta scheme) is ob-
tained for the choice oy = a; = 1 and y € [0; 1]. By introducing 6 := 7y, the perhaps more
familiar form of the generalized trapezoidal rule given as

Y =y AL (06 + (1 - 6) £1) (3.10)

is obtained from (3.4)-(3.7).

Unconditionally stable, fully implicit schemes such as desired here, are only obtained
for the parameter choice 6 € [0.5;1]. Most prominent examples are the first-order accurate
backward Euler scheme (6 = 1) and the second-order accurate classical trapezoidal rule
(6 = 0.5). The latter method is sometimes also termed Crank-Nicolson scheme. For the
generalized trapezoidal rule it holds yo =f (yO,O), due to (3.4) and am = o = 1. Conse-
quently, the value of 3° is not independent, but has to be computed in a consistent manner
from (3.4) based on the initial value y°.
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Poo-SCheme

According to Jansen et al. [110], a second-order accurate, one-parameter family of methods
with a specified high frequency damping is defined by the parameter setting

1 1({3—pco 1
— , S , = —+am— . 3.11
“ 1 +p0 @m 2(l+poo) 4 2 @m —at ( )

Here, the parameter 7 is determined by condition (3.9), which ensures the desired second-
order accuracy. The new parameter p, € [0; 1] can be interpreted as spectral radius for an
infinite time step (see Jansen et al. [110] for details). For the choice po, = 1, the implicit
midpoint rule is obtained, while the choice po, =0 (i.e., am =3/2, a; =1, y = 1) yields
the second-order accurate BDF2 method, which is addressed below. Based on the inves-
tigations carried out by Jansen et al. [110], poo = 0.5 represents a common choice in the
context of fluid dynamics simulations.

BDF2 (backward differentiation formula of order 2)

The BDF2 method represents a very popular A-stable method (see, e.g., Hairer et al.
[89], Hairer and Wanner [90] for further details on the stability of numerical solution
schemes for ODEs). Using the corresponding parameter choice am = 3/2, a5 = 1 and
v =1, equations (3.4)-(3.7) can be combined to

gyn+1 _2yn + %yn—l — Atf(yn+1,tn+1). (3'12)
This clearly demonstrates that BDF2 is actually a two-step method, which is less obvious
in the general generalized-alpha notation. For multistep methods such as BDF2 or other
certain variants of the generalized-alpha scheme, a start-up procedure is needed until the
required number of history values is completely available. In case of a two-step method,
a single-step method such as the generalized trapezoidal rule has to be used for the first
time step, where the initial value y° represents the only available history value. After this
starting step, values for the two required quantities y", y"~! are available in the subsequent
time steps.

3.2.2 Semi-discrete form of governing equations

The semi-discrete problem formulation is obtained by applying the generalized-alpha time-
integration scheme to the governing equations introduced in chapter 2. In this work, an
identical time discretization approach is used for both subproblems, i.e., the multi-ion
transport and the incompressible flow problem.

Multi-ion transport

According to the generalized-alpha method, the semi-discrete form of each ion-transport
equation (2.12) for species k = 1,...,m reads

éz+dm 4t VCZ+af +V- N]C{Hm (CZJFO“, (D’”O‘f) =0. (3.13)
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The third term on the left-hand side of (3.13) reads
VNG (07 = DV — Py TV ot (3.14)

In accordance to the previous subsection, the required solution variables at intermediate
time levels are defined as

erm = (1 — am)&f +am e, (3.15)
A= (1 —apc} +arcft, (3.16)
O = (1 — ap) D" + oy O, (3.17)

and the relation (3.7) reads for the present case
gt =+ (L —y)e +yepth). (3.18)

Note that both alternatives (2.22), (2.25) for closing the system of equations do not in-
clude a time derivative. In the present work, these constraints are enforced to hold at the
intermediate time level 7. An alternative to this choice will be discussed below. The
corresponding form of the electroneutrality condition (2.22) reads

PIETARE) (3.19)
k=1

while the semi-discrete form of the alternative closing equation for the electric potential
(2.25) is given as

m—1 m—1
~V- [Z e F Gtk — zmptm)c, " [V O = V- Z 2Dk — D)V, ™| = 0. (3.20)
k=1 k=1

For the latter equation, a division by F was performed in order to obtain similar order of
magnitudes for the individual terms compared to (3.13).

Incompressible flow

The time-discretized form of the incompressible Navier-Stokes equations (2.61)-(2.62)
reads

M 4 (V) — 2V g () + W pOr — b = 0, (3.21)
v . un+a/f = O (322)

The arising quantities at intermediate time levels are computed according to

2"t = (1 — am)a" + ama™ !, (3.23)
Wt = (1—apu" +asu™, (3.24)
P = (1 —ap) p" +ar p™t, (3.25)
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together with
W =u" A1 -y +yat). (3.26)

Note that the incompressibility constraint (3.22) is enforced here at the intermediate time
level 7%, This choice can be interpreted as the incompressible limit of the semi-discrete
form of the general continuity equation (2.59), which reads

pn+am +V. (pn+afun+af) -0. (3.27)

The semi-discrete formulation (3.21)-(3.22) was used by Gravemeier et al. [80] in the con-
text of large-eddy simulation of turbulent incompressible flow. Recently, Kang et al. [112]
used the present semi-discrete formulation within their numerical investigations devoted
to fluid-structure interaction and the use of generalized-alpha methods for this coupled
multifield field problem.

An alternative to (3.22) is to demand

V-u" =0, (3.28)

that is, the incompressibility is enforced at the time level "*!. This choice is typically
combined with an evaluation of the pressure gradient in (3.21) at time #*! instead of £+,
For further details on this alternative approach, the reader is referred to, e.g., Calo [31],
Gamnitzer [69] and Gamnitzer et al. [70]. Both discussed variants are available within
the current implementation of the flow solver. However, only the first approach will be
considered in the following.

It is emphasized that both presented options (3.22), (3.28) to treat the continuity equa-
tion w.r.t. time ensure that V-u"*% = 0 is fulfilled. In the case of (3.28) this follows
directly from V -u" = 0, relation (3.24) and the linearity of the divergence operator. As a
consequence, the conversion of the ion-transport equation from its convective form (3.13)
to its conservative form, and vice versa, is not affected by the employed time-discretization
scheme. An alternative enforcement of the constraints (3.19) and (3.20) at time level 7!
represents an option which certainly deserves future investigation. For the time being,
the formulation introduced above is used. Since for most of the numerical examples pre-
sented in this work, time-integration schemes with the parameter choice a; = 1 are used,
the distinction between both options is insignificant anyway.

3.3 Weak formulation of semi-discrete equations

A so-called weak formulation of the governing equations is the basis for the spatial dis-
cretization procedure performed in this study. As a first step, the semi-discrete equations
derived in the previous section are multiplied with appropriate weighting (or test) func-
tions and an integration over the computational domain € is performed. This establishes
a weighted residual formulation of each equation in an integral sense. As a second step,
by using integration by parts on terms where appropriate, the requirements regarding the
differentiability of the solution functions are decreased. As a result, the so-called weak
problem formulation is obtained.

In the following, appropriate function spaces for the weighting and the trial solution
functions are provided for the present problem formulation. As usual, L% (Q) represents
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the space of square-integrable functions defined on €. The Hilbert space L2(Q)is equipped
with an inner product given as

(-,)a: LP@QXL2Q) =R,  (fi, )~ (fi.f)o:= f fifr dx. (3.29)
Q

This inner product induces a corresponding norm, which is given by

1l 2 = V(- g for f L2 (Q). (3.30)

The subspace H! Q) C L2 (Q) denotes the usual Sobolev space of L2 (Q)-functions that
possess a weak first derivative:

HI(Q)::{f€L2(9)|%eLz(Q),i:I,...,d}. (3.31)

Further details on the underlying concepts of functional analysis in general and Sobolev
spaces in particular can be found in Adams and Fournier [1], for instance.

3.3.1 Multi-ion transport subproblem

With respect to each ionic species concentration cg, the space
Se, :={ex € H'(Q)| k= g on T} (3.32)

of admissible trial solutions satisfying the Dirichlet boundary conditions (2.36) is defined.
The corresponding spaces of weighting (or test) functions for k = 1,...,m are given by

T, = {wi € H'(Q)| we =0 on I'py}. (3.33)
With respect to the electric potential @ two spaces of functions,
Sy :={® € H'(Q)] (3.34)

and
To = {p € H' (@)}, (3.35)

are introduced for admissible trial solutions and test functions, respectively. Note that both
spaces coincide, since typically no Dirichlet boundary conditions for the electric potential
are applied. However, when only boundary conditions of type (2.36) and (2.37) are consid-
ered, the electric potential @ is only defined up to a constant. For getting a unique solution,
a point in Q has to be chosen where a reference value for the electric potential is prescribed.
In that case, formally, the quotient spaces S/ R and 7/ R have to be used instead, where
all functions that differ only by a constant are grouped together in corresponding equiv-
alence classes. Hence, two functions that differ only by a constant are interpreted as the
same function in these quotient spaces.
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Weak form of Nernst-Planck equation

Now, each semi-discrete ion-transport equation (3.13) for k = 1,...,m is considered. Mul-
tiplication with an arbitrary weighting function wy € 7, and integration over Q yields the
weighted residual formulation reading

f Wi dx + f win™ Ve dx + f WiV - N (e 7, @) dx = 0. (3.36)
Q Q Q

After application of integration by parts to the third term on the left-hand side, one obtains

(Wk, ézmm) + (wk, T VCZ“") — (VWk, Ngm (csz, Qo ))

+(we NE (@) n) =0 Vwg €T, (3.37)
Here, a more compact notation is introduced, where (-, -) := (-, - )o denotes the L? ()-
inner product as introduced in (3.29). The L%-inner product w.r.t. Q is denoted by (-, - )40.
Note that in the third term of (3.37) actually a generalization of the inner product (3.29)
for vector-valued quantities is used (see, e.g., Gamnitzer [69] for further details). For
simplicity of notation, the nomenclature (.,.) is used for such terms as well.

Based on the boundary partition Q2 = I'p  UI'y x UT'g 4 introduced in section 2.5.2, the
boundary conditions (2.37) and (2.40) are inserted and the property wy = 0 on I'p is used.
The final weak formulation of the semi-discrete Nernst-Planck equation for ionic species
k=1,...mreads

(Wk, C’-Z‘Hl’m) + (wk, u'ten. VCZW‘) — (VWk, Ngm (csz, (1)”“"))

_ (Wk’jlzwaf)rak _ (Wk’hZJraf)rN,k Vw € 7, (3.38)

In accordance to the nomenclature introduced above, the L2-inner products w.r.t. I'n 4 and
'« are denoted by (-, ')FN,k and (-, ')FE,k’ respectively. The third term on the left-hand
side of (3.38) reads

— (Vi NE™ (e 71, @) = Dy (Vi V) + 2 (Vv ) IV 1) . (3.39)

At this point it is worth mentioning that the boundary conditions (2.37), (2.40) are au-
tomatically embedded into the weak form (3.38). Assuming sufficient smoothness of the
solution functions, another integration by parts on (3.37) can be performed. This yields

(wk, L S A v R A VA (cnmf , @”“"))

k k
_ d+m [ n+as n+a'f) . .n+af _ ( d+rn( n+ajf }’l+(1’f) . n+af)
(wk,Nk (c ,D n+j, = (Wi, IV, o D n+hk e’

k )FE,k

which has to hold for all wy € 7;,. Thus, when the solutions c; and @ of the weak form
are smooth enough to fulfill the original partial differential equation, the flux boundary
conditions (2.37) and (2.40) are naturally fulfilled.

The velocity of the electrolyte solution is typically set to zero at an impermeable wall
using a no-slip boundary condition. Consequently, there is no mass flux due to convection
across such a boundary part, since it holds u-n = 0. In that case, a prescribed normal flux
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N,‘j“n-n caused by diffusion and migration is identical to the total ionic mass flux. If a
zero flux in normal direction is demanded due to either (2.37) or (2.42), the respective
boundary integral w.r.t. I'yx or I'g x simply vanishes in (3.38). Thus, actually no boundary
integral has to be computed resulting in simple “doing nothing” conditions in that case.
Such conditions are usually also used at outflow boundaries, which are again fulfilled
by the method in a natural way. As a consequence, only Dirichlet boundary conditions
and boundary parts with h; # 0 or ji # O require to be explicitly accounted for in the
computational framework. For typical electrochemical problem configurations, “doing
nothing” conditions are quite common, since major parts of the whole boundary are usually
representing the insulating walls of an electrochemical cell. In addition, inert species have
zero mass flux at electrode surfaces as well.

Weak form of electroneutrality condition

In case of the ENP system of equations, the electroneutrality condition (2.22) is the equa-
tion for the electric potential (although it does not explicitly contain ®). Thus, it is mul-
tiplied with a corresponding test function ¢ € 7. This approach is consistent with the
performed weighting of the ion-transport residuals as well as with the treatment of other
closing equations for the electric potential within a finite element formulation (see, e.g.,
Ganjoo and Tezduyar [71], Samson et al. [154]). After integration over the computational
domain the weak form of (2.22) reads:

Bg ((p,c’fﬂ,...,cﬁjl) = {@,Zmlzkczw) = izk((p,csz) =0 Vo € Top. (3.40)
k=1 k=1

Weak form of alternative closing equation

When equation (3.20) is used to close the system of equations, i.e., the CNP system of
equations is considered, an additional integration by parts is performed after multiplication
of (3.20) with a test function ¢ and integration over the domain Q. Since ¢ € Tg C H! (Q),
the integration by parts is admissible. As a result of this procedure, one obtains

m—1 m—1
k=1 =
m—1
—|¥ Zk (ZkﬂkFcZ+aqu)n+af + Dch;(H-af) ‘n
= g nta
=—N2+m(ck f @ f)‘n o
o ¢i_1mﬂmFbZHn‘mbnﬂ”_“Dthﬁ:m)'n =0 v¢<§7&- (&41)
:N9n+m(cnm+af,(bn+(’f).n

0Q

As stated above, typically no Dirichlet boundary conditions are applied for the electric
potential field ®. Consequently, the boundary integrals in (3.41) arising from the integra-
tion by parts are referring to the complete boundary 02 of the domain. These boundary
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terms were already rearranged in (3.41) to reveal the dependency on the normal ionic mass
fluxes. As a next step, the boundary partition Q2 =I'p y UI'y x UT'e & introduced in section
2.5.2 is considered. By inserting the boundary conditions (2.37), (2.40) into (3.41) the
following weak form is obtained as a result:

m—1
Be (g, it @) = (V%ZZkF(Zk,uk Zntm)C; TV QM

k=1
m—1 m
+ th’ ZZk(Dk m)VC’Haf) 90, ZkNd+m n+ag (Dn+m) n)r
=1 =1 Dk
m m
2w M) - D e ), =0 VeeTo. (42
=1 =1

Concerning the weak form (3.42) several important remarks have to be made:
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1. It is an important observation that the flux boundary conditions (2.37), (2.40) of all

ionic species k = 1,...,m enter the weak form (3.42). As explained in section 2.4,
this is a consequence of the fact that ions are mass and charge carriers at the same
time and (3.42) enforces charge conservation.

. As a further consequence, the CNP formulation appears to be applicable only in situ-

ations were an inert, i.e., non-reacting ionic species m is eliminated from the system
of ion-transport equations. Then, it holds N’ der( 7Rt @taer).p = 0 on the complete
boundary 0Q. In particular, 4, = 0 and j,, = 0 holds in this case. Otherwise, an un-
known flux contribution arises for k = m which prevents the elimination of species m
in this case. However, since at least one inert ionic species is present in all multi-ion
transport models of practical relevance, the general usability of the CNP model is de
facto not limited.

. For problem setups with I'p x # ), the a priori unknown mass fluxes at the Dirichlet

boundaries have to be specified in (3.42). For the moment, the CNP formulation is
only applied to electrochemical problem setups subjected only to boundary condi-
tions of type (2.37) and (2.40). Nevertheless, it is emphasized that the ideas outlined
in the Appendix B will be instrumental for a future extension of the CNP model,
since the normal ionic mass flux at I'p 4 can essentially be replaced by the residual
of the ion-transport equation as shown in equation (B.1).

. In comparison to the weak form of the electroneutrality condition (3.40) consider-

ably more terms have to be evaluated in (3.42). This leads to increased computa-
tional cost within an implementation. However, a careful comparison of (3.42) with
(3.38) reveals that a major part of the first two and the last two terms in (3.42) arise
also in (3.38). Within an implementation of the CNP approach, these readily eval-
uated terms can be multiplied with z; and simply reused in (3.42). Hence, only the
terms with respect to ionic species m have actually to be calculated. Note that this
advantage can only be used when the constraint condition is enforced to hold at the
intermediate time level "7, as it is done in this work.



3.3 Weak formulation of semi-discrete equations

3.3.2 Flow subproblem

A detailed derivation of the weak form of the incompressible flow problem is not presented
here. It follows the general procedure outlined at the beginning of this section. For details,
the reader can consult the textbooks by Gresho and Sani [85], Zienkiewicz and Taylor
[186] or Donea and Huerta [50], for example. The required trial solution and test function
spaces for velocity and pressure are defined as

Sui= {u e [H' @] Ju=up on r;g}, T, = {u e[H' @]"[u=0on rg}, (3.43)
Sp={p e > @), 7, :={p e L*(@)}. (3.44)

In case of a full Dirichlet problem, i.e. 9Q2 = I'p, or a full Neumann problem, i.e. 9Q =T'y,
the pressure is only defined up to a constant. Formally, the quotient spaces S,/R and
7,/R have to be considered instead, as discussed above for the electric potential field.
For practical computations, the pressure value is often simply prescribed at an appropriate
position. An alternative method to obtain a unique solution was proposed by Bochev
and Lehoucq [19], where a discrete projection is performed during the numerical solution
process (see also Gamnitzer [69] for further details).

3.3.3 Entire weak form

In summary, the weak form of the semi-discrete system of equations of the ENP model
reads as follows: for each discrete time level 7!, find c’l”l €S, e s, ol ¢
So, u™! €S, and p"t! € Sp, such that

Be(wi gt @™ um ) + T (wie cf L @) = Frwe) Ywi € Top k=1,....m, (3.45)

Be(o.cft,...cif!) =0 VeeTy, (3.46)
(v, u”*“m) + (v, (u’”af . V) u”mf) — (V ~v,p”+"‘) + (8 »),2ve (u”mf))

- (v,b"+af) + (v,t”“’f)rkl Vv ey, (3.47)
(¢.V-u™)=0  VqeT, (3.48)

In (3.45), the following additional abbreviations were introduced to obtain a more compact
notation:

Bk (Wk,CZ+1,(Dn+1,un+l) ::(Wk,c-_szm) + (Wk’un+af.vcz+af)
+ Dy (Vwi, V) 4+ 2 F (Vg ¢ IV O™01), - (3.49)
Tie(wier e, @) 2= — (i, i (€7, @41)) (3.50)

9
g

and

Felwo) = (we ™), (3.51)
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This notation additionally emphasizes that the quantities at time level #"*! are the un-
knowns which have to be determined at time step n+ 1.

Note that in the case of the CNP system of equations, (3.45) is only considered for the
ionic species k = 1,...,m — 1. In summary, the equations (3.45)-(3.46) have to be replaced
by the alternative formulation

Bie(wicp @™ u™ ) + T (w0 ) = F(we) (3.52)
Vwip €l k=1,....m—1,
Be(g.cf. il @) =0 VoeTy. (3.53)

3.4 Residual-based variational multiscale finite
element method

In this section, the spatial discretization of the weak semi-discrete problem formulation is
explained. Throughout this work, the finite element method (FEM) is used as a unique
spatial discretization approach to all governing equations. For a general introduction to the
FEM, the reader is referred to, e.g., Hughes [100], Brenner and Scott [24], Zienkiewicz
and Taylor [185]. Finite element methods for flow problems are addressed by Gresho and
Sani [85], Zienkiewicz and Taylor [186] as well as Donea and Huerta [50], for instance. In
the subsequent sections, a stabilized finite element formulation for all governing equations
is derived from the framework of the so-called Variational Multiscale Method (VMM).

For this purpose, the VMM is introduced in section 3.4.1, and applied to the weak prob-
lem formulation. Within the obtained model, so-called resolved-scale and subgrid-scale
quantities have to be approximated. The finite element approximation of resolved-scale
quantities is outlined in section 3.4.2. Afterwards, two options to account for the unknown
subgrid-scale contributions are presented. The standard Galerkin FEM is addressed in
3.4.3, and a residual-based subgrid-scale modeling approach is proposed in 3.4.4. Appro-
priate stabilization parameters required for the latter method are specified in section 3.4.5.
The special case of a binary electrolyte solution is considered in section 3.4.6. Finally,
the finite element formulation of the simplified modeling approach involving solely the
electric potential field is provided in section 3.4.7.

3.4.1 Variational multiscale method

The VMM was originally proposed by Hughes [99] as a general framework for multiscale
modeling in computational mechanics; see, e.g., Gravemeier et al. [81] for a categorization
of multiscale methods including the VMM. The VMM for Large-Eddy-Simulation (LES)
of turbulent flow was reported for the first time by Hughes et al. [101]. For an overview
article on the VMM method for laminar and turbulent flow, the reader is referred to Grave-
meier [79]. By variational projection, the VMM provides an a priori scale separation into
(large and small) resolved scales and unresolved (subgrid) scales. An equation for the
resolved scales is solved, while the effect of the more universal subgrid scales is modeled.

In this original VMM for LES, which is more elaborately described as a three-level
approach, e.g., by Collis [42], Gravemeier [79], the model effect is confined to the small
resolved scales, preserving consistency for the large resolved scales. A recent three-level
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3.4 Residual-based variational multiscale finite element method

approach in the form of an algebraic variational multiscale-multigrid method (AVM?),
using level-transfer operators from plain aggregation algebraic multigrid methods for scale
separation, was proposed for turbulent incompressible flow, e.g., by Gravemeier et al. [80]
and for turbulent variable-density flow at low Mach number by Gravemeier and Wall [82].

Alternatively, as will be done in this study, a two-level VMM can be used for LES, which
is usually referred to as a residual-based VMM; see, e.g., Calo [31], Bazilevs et al. [16] for
the residual-based VMM for turbulent incompressible flow and Gravemeier and Wall [83]
for the residual-based VMM for turbulent variable-density flow at low Mach number. The
residual-based VMM can be considered as a variationally consistent extension of stabilized
finite element methods, as presented, for instance, in Hughes et al. [102]. Stabilized finite
element methods for flow problems are addressed by, e.g., Braack et al. [23] and Hachem
et al. [88].

As stated above, resolved and unresolved scales are separated by a variational projec-
tion. The basis for this separation is a direct sum decomposition of each involved trial
solution and test function space into a (finite-dimensional) subspace of resolved scales and
an (infinite-dimensional) space of subgrid-scale parts of the solution variables:

Sp=StaS,, T,=T) &1,
Se, =St &8, T, =1l o1, fork=1,...,m
So = Sh @ So, To=TeoTo.

Consequently, this implies a decomposition of all solution and test functions into a resolved-
scale part denoted by (.)" and a subgrid-scale part marked with (©):

u=u"+a, p=pt+p, cx =+ &, O ="+, (3.54)
y =y +9, q:qh+€1, wk=w£+wk, gaz(ph+§0. (3.55)
Owing to the finite sum decomposition of test function spaces, a coupled system of resolved-

scale and subgrid-scale equations arises. For the resolved-scale equations, the test func-
tion spaces are restricted to the corresponding resolved-scale subspaces 7., 721?’ Tuh and

’];,h. The resolved-scale equations for the multi-ion transport problem are then obtained by
introducing (3.54), (3.55) into (3.45)-(3.46) and read

Bk(Wk, h,n+1 (I)hn+1 h,n+1 An+l)+${(wz’ hn+1+An+l (Dhn+1 (i)n-i—l)
+(WZ’(uh,n+af+ﬁn+af) vAn+CYf)+D (vwk,vAn+af)

+ ZipiF (VWZ, 6Z+0‘fv (CI)h””“f + <I>”+“f) + CZ ”me(i)”*“f)

=Fi(w}) VwieT!, k=1,...m, (3.56)
Be(¢",cp™ ! +epth, ot e =0 Vel e Ty (3.57)

Analogously, the resolved-scale equations of the incompressible flow problem as obtained
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from (3.47)-(3.48) are given as
(vh un+am) + (v/’l’(uh,i’l+0’f . v)ul’l,l’l‘l'(Yf) (V Vh l’ll’l+(Yf) + (S(Vh),ZVE(uh’n+af))
+ (vh’ (uh,n+(xf . v) ﬁn+a'f) + (vh (ﬁn+af . v)ul’l,ﬂ+(l'f) + (Vh, (aVH'O(f . v)ﬁnﬂyf)
(V ” An+af)+(8( ) 2V8(An+af)) _( h’bh,n+a/f)_}_(vh’th,nﬂyf)rl’ij vvh € IZ:th’ (3.58)
(¢" Vw0 + (g V) =0 vq'eT). (3.59)

In (3.56) and (3.58), potential time derivatives of subgrid-scale concentrations and subgrid-
scale velocity are neglected. This corresponds to a “quasi-static” modeling approach of
subgrid-scale quantities. Further remarks on this assumption will be given below.

In case of the CNP system of equations, only the ion-transport equations (3.56) for
k=1,...,m— 1 have to be considered. In addition, (3.57) has to be replaced by

Be(oh et mlvent! o) =0 vele Ty (3.60)

The resolved-scale equations (3.56)-(3.59) are solved for the resolved-scale quantities
cZ’"“, @+l yhntl and pm*1 which represent the discrete approximations to the un-
known solution fields. For this purpose, the unknown subgrid-scale contributions present
in the resolved-scale equation system have to be modeled in an appropriate way. Two
different approaches for subgrid-scale closures are presented and discussed in the sections
3.4.3 and 3.4.4. For the resolved-scale quantities, a finite element approximation is utilized
as described in the following section 3.4.2.

3.4.2 Finite element approximation of resolved-scale quantities

The computational domain € is discretized into ne] non-overlapping finite elements de-
noted by .. Thus, it holds

Nel
ﬁzUEQ with Q,NQr =0 VYe#f. (3.61)
=1

By using a nodal basis {ij, a=1,... ,nnod}, where Ng denotes the shape function associated

h,n+1 n+1
v € Sg

to node a, the finite-element approximation ¢,

reads

€ ka to the concentration ¢

Nnod

hl’l+l (x) — ZNh (x) }’l+1. (362)

Here, ck+1 denotes the unknown concentration value of ionic species k at node a for the

discrete time 7"*!. The latter are arranged in the nodal solution vector c”“. The same

shape functions are also used to express @1 y"7+1 and p*+1 in terms of basis functions
and nodal unknowns in the form

Mnod Nnod Nnod

(Dh”“(x)_ZNh(x)(D”“, u(x)= ZNh(x)u"”, p(x)= ZNh(x)p”“. (3.63)

a=1 a=1 a=1
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3.4 Residual-based variational multiscale finite element method

The corresponding solution vectors are denoted by o"! u™*! and p"!, respectively. As
obvious from (3.62)-(3.63), identical spatial discretizations for all unknown fields are used
within the present computational approach. In this work, the isoparametric concept is
utilized, where the same ansatz functions are used for the spatial representation and the
approximation of the unknown fields.

For the “classical” FEM, piecewise polynomial approximations of the resolved-scale
quantities are constructed (see, e.g., Hughes [100]). In the present implementation of the
computational approach, (bi-,tri-)linear and (bi-,tri-)quadratic shape functions can be used.
This classical choice of basis functions is used for most cases studied here and yields a
piecewise polynomial representation of each unknown physical field.

One alternative approach is a so-called isogeometric discretization. The spatial dis-
cretization in isogeometric approaches is also based on the isoparametric concept. The
shape functions used for representing both the geometry and the solution are rational func-
tions of weighted B-spline basis polynomials. For a given degree, these B-spline basis
polynomials are defined recursively by the values of a knot vector. The latter allows
for controlling the support of the basis polynomials as well as the level of smoothness
and interpolation properties of the arising B-splines and NURBS (non-uniform rational
B-splines). The weights required in the definition of the NURBS basis are defined by con-
trol points, which also contain coordinate information for one point per basis function to
complete the geometry definition. NURBS can be refined by knot insertion and degree
elevation without a change in geometry. A more thorough definition of these terms can
be found, e.g., in Farin [62], Piegl and Tiller [142]. A detailed description of isogeomet-
ric concepts in the context of large-eddy simulation of turbulent incompressible flow is
provided by Gamnitzer [69].

Advantages of an isogeometric discretization in the present context are that curved
boundaries can be represented exactly and the variation-diminishing property of NURBS
is beneficial for a proper resolution of turbulent boundary layers. The latter is especially
useful in the context of electrochemistry, where very thin ionic concentration boundary lay-
ers have to be considered due to the high Schmidt numbers associated with ion-transport
problems (cf. section 2.8.5).

It is noted that also other methods have been developed that are able to represent a curved
geometry exactly. For example, the NURBS-enhanced finite element method proposed by
Sevillaetal. [158, 159] combines a NURBS approach for an exact boundary representation
with the effectiveness of classical FEM used in the interior of the computational domain.

3.4.3 Standard Galerkin finite element method

Completely neglecting any contributions due to unresolved scales in (3.56)-(3.59) results
in a Bubnov-Galerkin approach, denoted as Standard Galerkin Finite Element Method
(SGFEM) in the following. This is certainly the simplest approach to account for the
unknown subgrid-scale contributions.

The SGFEM for the multi-ion transport equations coupled via electroneutrality was
elaborated on in Bauer et al. [11] and used there in combination with a stabilized finite
element flow solver. In this work, it is accounted for both options of possible closing
equations for the electric potential, i.e., the ENP and CNP system of equations. Thus,
the SGFEM formulation of (3.56)-(3.57) reads: for each discrete time level /*!, find
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c1°°

el S and "1 € S such that for all WZ € ’ZZ’, " eT!

Bk(Wk’ h,n+l,(Dh,n+l h"+1)+j (Wk’ hn+1’®h,n+l):fk(wz) k=1,....m, (3.64)
Be(¢".cp™ .. ey =0. (3.65)

Here, the resolved-scale velocity field u"*! is supposed to be given, e.g., as a result of
the flow computation. In case of the CNP system of equations, the corresponding SGFEM
formulation reads

Bk(wka h,n+1 (Dh,n+1 hn+1)+j (Wk’ h,n+1 (Dhn+1) fk(WZ) k=1,....m—1, (3.66)
Bc(wh’cllznﬂ’ k] (Dhn+1) 0. (3.67)

HC

It is well-known that the SGFEM is potentially unstable for convection-diffusion-reac-
tion problems when convection dominates. Such instabilities might be avoided by using
(very) fine spatial resolutions, as done by Bauer et al. [11], for instance. However, such
a strategy will usually become prohibitively expensive in terms of computational costs
for most examples. Since kinematic diffusion constants of ionic species are typically very
small O(10~%m?/s) compared to usual kinematic viscosity values O(10~%m?/s), extremely
fine meshes are required in regions where concentration gradients occur. As an alternative
to (very often unfeasible) mesh refinement, a strategy for modeling the subgrid scales is
proposed in the subsequent section 3.4.4.

For the incompressible flow problem, the numerical difficulties caused by local convec-
tion dominance arise, too. As a result, spurious “wiggles” might be observed in a computed
velocity field (see, e.g., Wall [174]). Besides, it is well-known that equal-order interpola-
tion of velocity and pressure fields is unstable. The reason is the violation of the so-called
Ladyzhenskaya-BabuSka-Brezzi (LBB) condition (cf. Brenner and Scott [24], Gresho and
Sani [85]), which reads in the “inf-sup” form

| (V'vh’qh)g |
inf sup ; .
0#q" €T} 0£vhc T ||v ||H1(Q)' ||C[ ||L2(Q)

>c>0, (3.68)

where ¢ € R* denotes a positive constant. When (3.68) is violated by a chosen set of
function spaces for velocity and pressure, spurious pressure oscillations (pressure modes)
are observed in the numerical solution. Thus, the SGFEM is especially problematic for the
flow subproblem, since equal-order discretizations for velocity and pressure are used here
as introduced in (3.63). As a remedy, either the function spaces for pressure and velocity
have to be chosen in such a way that the LBB condition is fulfilled, or, as performed here,
additional pressure stabilization terms have to be added to the problem formulation in order
to circumvent the LBB condition. Such stabilization techniques can be derived on the basis
of the VMM as performed in the following.

3.4.4 Residual-based subgrid-scale modeling

In residual-based variational multiscale approaches, the subgrid-scale parts of the solu-
tion fields are typically modeled using an elementwise, algebraic approximation, which is
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based on the residual of the strong form of the resolved-scale equations. For a detailed
description of residual-based multiscale approximations leading to stabilized methods, the
reader is referred to, e.g., Hughes et al. [102].

In each element €2,, the subgrid-scale parts introduced in (3.54) are modeled as
A h A h oA _ hoo& h
i=—-t Ry, P=-1Re &=—-17R;, =-1gRg, (3.69)

using respective stabilization parameters 7, which will be defined below. In case of the
ENP model, which is in the focus of this work, the corresponding discrete residuals of
fluid momentum conservation, fluid mass conservation (continuity equation), ionic mass
conservation and electroneutrality condition are given as

RM — uh n+am +( hn+ay v)uh,n+a'f — 2V S(uh,n+af) + Vp/’l,n+0’f . bh,n+af, (3.70)
RE =V .yl (3.71)
RE = eiram 4 yhmet g (g Pl QR (DY), (3.72)
= Z Zkcl e, (3.73)

k=1

Formally, consistency of the method for 7 — 0 is ensured, since residual-based subgrid-
scale modeling as given in (3.69) is used, and residuals obviously vanish in this limiting
case. The complete variational multiscale finite element formulation is obtained by intro-
ducing the subgrid-scale approximations (3.69) into the resolved-scale equations (3.56)-
(3.59). Owing to the consideration of subgrid-scale contributions on each element interior
Q,, a sum over all elements is introduced. In order to circumvent the presence of unknown
gradients of subgrid-scale quantities, integration by parts is applied to the element-specific
terms, where needed. For this procedure, the usual assumption of vanishing subgrid contri-
butions at element boundaries is used. Thus, no terms with respect to the element bound-
aries 0€), appear in the final formulation.

The complete residual-based variational multiscale formulation, which is obtained as a
result, reads in case of the ENP system of equations: find ch mtl c gh cfn" e Sfm,

S
"l e Sttt € Stand phnt! e SE, such that

Bk(wk’ han+1 (Dh n+1 h"+1)+j (WZ’ Zn+1 n+ath’(Dh,n+1 _TE,Rh,n+ozf)

E
Ne| f el
_Z( h n+ath ,VC n+af Qe+z hn+af Zkﬂka(Dh n+a/f) VWk, n+ath) o
e=1 e=1
Te] Tle| L
n+aiph h _ntasph ntap n+af h n+a;g
= D (AR VWA RY) = > (s (< Ry Vi, V(g Ry)
e=1 e=1

Te]

+ ) (Deawl T RY) = Fe(wy) Vi € T k=1,m, (3.74)
e=1
el m
BE (QDh,C]ilJH_l Cﬁfﬁl Z[goh,ZTln:athJ -0 V SOh e %h. (375)
e=1 k=1
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together with

) 1)) () )2 )

Ne] 7]

B @)+ 3Ry,
e=1 e=1
DA R D), D (Rl VAR,
e=1 e=1
— (Vh, bh,n+(1f) + (Vh, th,n+()!f)r;il v vh c /];lh’ (376)
(qh,V~uh’”+af) + 2 (th,T"MmfR{\’/l) 0, =0V q"€T). (3.77)

e=1

The first line in (3.76) constitutes the standard Galerkin part of the equation, followed
by a Streamline-Upwind Petrov-Galerkin (SUPG) term, (u"- V)Vh,TMRllz/[)Qe as proposed
by Brooks and Hughes [26], a grad-div (or bulk viscosity) term, (V'Vh,TCR}é)Qe as ad-
dressed, e.g., by De Mulder [47], and cross- and Reynolds-stress stabilization terms in the
third line, respectively. If not stated otherwise, the latter two stabilization terms are ne-
glected in the numerical examples studied in this work. The stabilization term introduced
into the continuity equation (3.77) is a Pressure-Stabilizing Petrov-Galerkin (PSPG) term,
(th,TM'R,{(,I)Qe, as proposed, e.g., by Tezduyar [166]. The PSPG term is utilized here
to circumvent the LBB condition and allows for the use of equal-order discretizations for
velocity and pressure such as considered here.

The electrochemical part (3.74)-(3.75) of the complete variational multiscale formula-
tion is further simplified according to the following five steps:

1. Based on the usual assumption of vanishing subgrid contributions at element bound-
aries, potential subgrid-scale contributions are also zero along the discretized domain
boundary dQ. As a consequence, subgrid-scale contributions to (nonlinear) elec-
trode kinetics boundary conditions are neglected. Thus, only the term Jj (WZ cZ, CDh)
based on resolved scales is considered in the following.

2. Neglecting subgrid-scale velocity contributions @ = —TMRIK/[ in (3.74) leads to a
rather “standard” stabilized formulation. The consideration of the subgrid-scale ve-
locity represents a potential extension of the computational approach. However, the
inclusion of the subgrid-scale part of the velocity has not turned out to provide rel-
evant improvement to the results in other investigations, e.g., for turbulent variable-
density flow at low Mach number as presented by Gravemeier and Wall [82]. Hence,
it is refrained from taking it into account, for the time being.

3. As usually done, subgrid-scale terms arising from transient and diffusive terms will
be neglected. As already stated above, the first assumption yields a so-called “quasi-
static” subgrid-scale approximation (see Codina et al. [41] for the original idea of
including time-dependent subgrid scales and Gamnitzer et al. [70] for comparative
evaluations of time-dependent and quasi-static subgrid-scale approximations in the
context of turbulent channel flow). The diffusive terms are anyway insignificant
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when linearly-interpolated elements are used. For higher-order discretizations using
at least quadratic ansatz functions, the effect of these terms might be investigated in
the future.

4. Applying the product rule to the migration term reveals a convective and reactive
effect of the migration operator:

V- (=2 F e V@) = Umig k- VCr + Omig k Cs

with a “migration velocity” uyg x := —zZxpiF'V P and a reaction parameter o pig i :=
— 2k FA®, both depending on ®. Thus, for a known or prescribed electric poten-
tial, each ion-transport equation (2.12) may be interpreted as a convection-diffusion-
reaction equation for cg:

0
% + V- VCk — DiyAcy + O migkCk = 0, (3.78)

with
Vii=u-+ umig,k =u-— Zk,ukFV(D. (379)

The analogous definition for the discretized form reads

vZ =u+ uﬁug = =u" -z FV ", (3.80)
with urnlg = kM F V" and O'mlg = 2k F A®". Note that 0' migk €N only be

represented when higher-order (i.e., at least quadratic) shape functions are used.

5. As an assumption, electroneutrality is already enforced for the resolved-scale con-
centration fields, such that Rg = 0, consequently. Owing to (3.69), subgrid-scale
contributions to the electric potential field are zero, i.e., ® =0 is assumed throughout
this work. The case of non-vanishing subgrid-scale contributions to electroneutrality
is certainly an interesting aspect, which deserves a more detailed analysis in a future
study.

In summary, the final stabilized finite element formulation for the coupled ion-transport
subproblem reads:

Bk(Wk, hon+1 (Dhn+l hn+1)+j (Wk’ h,n+1,(Dh,n+l)
Ne]

+Z hn+af Vw h n+ath) _Fk(WZ) kaETh k=1,...,m, (3.81)

C?

BE(goh,ci"”H,...,cg,’"H) =0 V¢'eT) (3.82)
As done in Bauer et al. [12], only the convective subgrid-scale terms are considered in the
present formulation (3.81)-(3.82). The stabilization term in (3.81) accounts for convection
due to fluid flow and migration.

For completeness, a stabilized finite element formulation is also provided for the CNP
system of equations. Since the following formulation was implemented quite recently,
the thorough numerical investigation regarding the CNP model is still an ongoing task.
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However, in the opinion of the author, the CNP forms a promising alternative to the ENP
model that is in the focus of this work. Here, it is suggested to replace (3.81)-(3.82) by

Bk (WZ’ cZ,n+1, q)h,n+1 i uh,n+1) + jk (WZ’ cZ,n+1 ’ (I)h,n+1)
el

VWL RY) = Fe(wy) YwiEe T k=1am—1,  (3.83)
e=1

Cr?

Bc (cph,c}f’"ﬂ, . ,cf;;’il,(l)h’"”) =0 Ve ’Z:;’. (3.84)
In order to be consistent with the treatment of the ENP system of equations presented
above, R}é = 0 is assumed also here. Additionally, this assumption is in accordance with
equation (2.24), which is used to compute the eliminated ionic concentration c¢,,. Thus,
potential subgrid-scale contributions to the electric potential field are neglected in (3.83)-
(3.84). Furthermore, no subgrid-scale concentrations are considered within (3.84) at the
moment. Since the CNP model was developed quite recently, and is therefore still under
development, the formulation presented above has to be understood as a first suggestion.
The proposed stabilized finite element formulation (3.83)-(3.84) is consistent with the ENP
case, but certainly deserves further investigation in the near future.

3.4.5 Stabilization parameters

The stabilization parameters as originally proposed by Taylor et al. [164] and Whiting and
Jansen [178] are used within the flow solver. Thus, the definitions

1

Ty = , (3.85)
2
\/(%) +ul-Gu'+ Cv’G : G

and |
= . 3.86
fc T trG ( )

are used. Here, G is the second-rank metric tensor, given as
oe\" og

G=(=—=| =, 3.87
(Hx) ox (3.:87)

which is defined based on the inverse Jacobian 0&/0x of the element mapping between the
reference (unit) element and the physical domain; see, e.g., Hughes [100] for elaboration.
The coordinate system of the reference element is denoted by £€. In (3.85), the time-step
length of the temporal discretization of the problem formulation is denoted by Az, and C
is a positive constant independent of the characteristic element length. For those numer-
ical examples of this study, for which linearly-interpolated finite elements are used, this
constant is chosen to be C = 36. For quadratic polynomials a value of C = 144 is used in
accordance to Gamnitzer [69]. Of course, a broad variety of other stabilization parameter
definitions is found in literature. For an overview of different stabilization techniques and
corresponding parameter definitions the interested reader is referred to, e.g., Wall [174],
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3.4 Residual-based variational multiscale finite element method

Forster [65] and Gamnitzer [69].

For the present problem formulation including convection due to fluid flow as well as
migration, the stabilization parameter (3.85) is adopted as proposed by Bauer et al. [12]
reading

1
Tk = , (3.88)
2
2 h h . (ah 207 .
\/(E + |0'mig,k|) +v -GV +CD:G: G
with vZ as defined in (3.80). Here, the reactive contribution o{’n ok = — ik A®" is in-

cluded in accordance to Hauke [92], Gravemeier and Wall [84]. The value for the constant
C in (3.88) is chosen as explained above.

An alternative closure taking into account the temporal variation of the unresolved scales
was proposed by Codina et al. [41] and later studied for turbulent incompressible flow
by Gamnitzer et al. [70]. The results of that study indicated, however, that the closure
by quasi-static subgrid scales as given in (3.69) appears to be sufficient for the type of
problems considered in this paper.

Since modeling of semiconductor devices involves similar governing equations for the
transport of charge-carriers as discussed here, the reader is also referred to Lin et al. [125],
Hennigan et al. [95] for a stabilized finite element formulation used for such applications.

3.4.6 Special case: binary electrolyte solutions

Additional analytical results exist for the most simple case of a binary electrolyte (m = 2).
It is worth considering these for the construction of stabilization terms. Solutions for both
concentration fields ¢; and c¢; of a binary electrolyte system coupled by electroneutrality
are also fulfilling the same linear convection-diffusion equation given as

00{1,2}
ot

+u-Vc{1,2}—DAc{172} =0 imQx(0,T,). (3.89)

Here, the effective diffusion coefficient for the binary electrolyte is defined as

_ 211D — 2oup Dy
M1 — 2242

D: (3.90)
It is emphasized that D non-trivially depends on the material parameters of both ionic
species. Details on the derivation of (3.89) are provided in Appendix A. Further details are
also given in Bauer et al. [11], Newman and Thomas-Alyea [137], for example.

The following conclusions can be drawn from (3.89)-(3.90). For a binary electrolyte
solution, migration causes a change in the diffusion behavior of both ionic species, but does
not contribute to the convective term. Thus, oscillations can not occur when diffusion and
migration are the only transport effects, since migration contributes to the diffusion term.
Convection is caused by the fluid velocity field only. This behavior is indeed also observed
in numerical simulations. Consequently, in such a case, a stabilization with respect to the
migration velocity umig « is not necessary.

Based on this observation, the convective stabilization term in the second row of (3.81)
should consider the fluid velocity field only. Consequently, the effective diffusion coef-
ficient D defined in (3.90) instead of Dj has to be used in the stabilization parameter
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definitions for correctly reflecting the migration effect. Additionally, no migration velocity
or migration-reaction parameter has to be accounted for. Thus, for a binary electrolyte,
it holds 71 = 12, which reflects the fact that the actual movement of both species is not
independent, but subject to the electroneutrality constraint. As a summary of these conse-
quences, in case of a binary electrolyte solution, it is suggested to replace (3.81) for the
two ionic species k = 1,2 by

h _hn+l xhn+l _ hn+l h hn+l zxhn+l
Bk(wk,ck , O N7 )+jk(wk,ck , O )

Te]
) (@ v RY) = Fi(wh) Ywie T, k=liom, (391)

e=1

and (3.88) by

! (3.92)

T =T =

\/(%)2 +u"-Gu"+CD?*G : G

Thus, only the stabilization terms are adapted, leaving the SGFEM part unchanged. For
binary electrolyte solutions, the use of the effective diffusion coefficient D defined in (3.90)
is one of the keys for improved stabilization parameter design. It is emphasized that in
(3.92) basically any other stabilization parameter definition developed for conventional
convection-diffusion equations can be used as long as the effective diffusion coefficient
D is used for computing both 71 and 7,. For an overview of other stabilization parameter
definitions the reader is referred to Donea and Huerta [50], for instance. The corresponding
modification of the CNP system of equations is straight-forward and follows directly from
(3.91). Thus, it is not explicitly shown here.

It is well-known that the element Peclet number serves as an indicator for estimating
local convection dominance. Another consequence from the considerations above is that
the element Peclet number for both ionic species is identical for k = 1 and k = 2 and reads

ook - Hlull

= (3.93)

with £ denoting a characteristic element length. This is a clear contrast to the interpretation

ek _ h||u +umig’k||2

b k: 1’2’
¢ 2Dy

that might have been concluded from (3.78). Based on the interpretation given in (3.78) the
migration velocity ui‘n gk should be included as a potential convective effect of migration
into the stabilization term. This approach is perfectly correct for any externally prescribed
potential field @ that is not depending on the solution variables c;. However, this is not
the case in the present context, since ® is an additional unknown field which couples all
ion-transport equations due to the migration term. As seen above, an isolated consideration
of each transport equation as implied by (3.78) is not always admissible, and the coupled

problem has to be considered as a whole.

For all cases with m > 2, no analytical relationship is known that can be used as for the
binary case above. For these problem classes, the general formulations introduced in the
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preceding sections are used for the time being.

3.4.7 Simplified model for the electric potential

For completeness, the finite element discretization of the simplified model presented in
section 2.6 is briefly summarized here. For the elliptic problem (2.53) the SGFEM pro-
vides an already sufficient discretization approach. Since the Laplace equation (2.53) is
addressed in nearly every textbook on finite element methods, details can be neglected
here. Thus, the reader is referred to, e.g., Hughes [100], Zienkiewicz and Taylor [185].
The discrete finite element formulation of (2.53) reads

(Ve ovoh) — ((ph,in(CDh))r(é, = (goh,hq;)rﬁ o e T, (3.94)

where the boundary conditions (2.56)-(2.57) have been inserted into the weak form. When
modeling a secondary current distribution at electrode surfaces, it holds i,(®") # 0 and the
problem formulation (3.94) is in general nonlinear due to the electrode kinetics boundary
condition (2.57). When addressing the primary current density distribution, the influence
of electrode kinetics is neglected. As a result, a simple linear problem has to be solved for
iy

3.5 Solution procedure

This section is devoted to the numerical solution procedure, which is applied to the fully-
discretized problem formulation derived above. Different algorithmic aspects are ad-
dressed in the following. The numerical treatment of the coupling of flow and electro-
chemistry subproblems is explained in section 3.5.1. In section 3.5.2, required extensions
for current-controlled (galvanostatic) electrochemical problems are presented. Afterwards,
the numerical solution approach for nonlinear equation systems is explained in 3.5.3. Ap-
propriate solution methods for the arising linear equation systems are presented in section
3.5.4. Finally, several important remarks on the postprocessing of simulation results are
given in section 3.5.5.

3.5.1 Coupling of flow and electrochemistry subproblems

If convection has to be accounted for, an appropriate treatment of the coupling of fluid
flow and multi-ion transport is required. In general, a two-way-coupled problem has to
be solved. On the one hand, multi-ion transport is influenced by the flow field due to
convection. On the other hand, the flow solution depends on the local bath composition,
since material properties such as the density and the viscosity of an electrolyte solution
typically depend on the local ion concentrations. Variations of the ionic concentrations
primarily occur close to the electrode surfaces as a result of electrochemical reactions.
Arising buoyancy forces due to the induced density variations cause natural convection
phenomena in electrochemical cells. In the following, only the more important case of
a concentration-dependent density is considered. Local variations of the viscosity can be
accounted for in the same manner as presented below for the case of natural convection.
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For electrochemical problems with natural convection, a two-way-coupled partitioned
scheme is proposed in this study. A sketch of the coupling algorithm is provided in
Fig. 3.1(a). The discrete forms of the fluid and ion-transport subproblems are solved
separately from each other representing the inner iteration loops. Within an outer itera-
tion loop, required data, such as velocity and density values are exchanged. As presented
above, matching discretizations for both the fluid and the electrochemical system based
on the same shape function order and identical time-integration schemes are utilized in
the present approach. As a consequence, a simple transfer of nodal values is sufficient.
The consideration of non-matching discretizations represents a possible future extension
and generalization of the present scheme. For that purpose, mesh tying methods (see, e.g.,
Wohlmuth [180]) may be also utilized to construct a general framework applicable for
volume-coupled problems such as the one considered here.

In the first outer iteration (i = 1) for each new time level #*!, first approximations for
the velocity u’1’+1 and the pressure p’l’“ are computed by the nonlinear flow solver based
on the density value of the preceding time step (i.e., p8+1 = p"). For further iterations
i > 1, the most recent computed density p?f]l is used to solve the discretized Navier-Stokes
equations for ul’.’“Ll and p?*l. After each flow solver call, the velocity vector u?mf for the
intermediate time level can be computed and is provided for solving the nonlinear multi-

ion transport subproblem. As a result, updated values for concentration ¢/*! and (I)l'.“rl are

ki
obtained. The new density field p:f‘“ is then calculated from a constitutive law such as

(2.65). The outer iteration loop is terminated as soon as the relative norms of the solution
increments for concentration, potential and velocity field are all smaller than a predefined
tolerance. Furthermore, inner iterations of the fluid and ion-transport subproblems are
performed, which are also terminated based on a predefined tolerance; this tolerance may
be similar or different to the tolerance for the outer iteration loop. This procedure ensures
that all physical fields are in equilibrium before proceeding to the next time step. In all
simulations presented in this contribution, both tolerances are set to be 1073 in order to
ensure a fully converged solution. Thus, although partitioned scheme is used, a fully-
implicit time discretization scheme is retained. According to Ehrl et al. [56], for most
numerical examples typically about three outer iteration loops are required for achieving
convergence.

For problem settings, where the effect of natural convection is negligible small, an outer
iteration loop is not necessary. A one-way coupled scheme as depicted in Fig. 3.1(b) is
sufficient in this case (see Bauer et al. [11] for further details). In many situations, the
so-called “forced convection” induced by a rotation of electrodes or other bath agitation
techniques is the dominant convective effect. In addition, when the electric current pass-
ing an electrochemical cell is far below the limiting current, concentration gradients be-
come usually negligible small, and buoyancy forces can be neglected. The methodology
presented here is also applicable for solving stationary problem formulations without pro-
ceeding in time. Of course, for simple models for the electric potential field (see section
2.6) no coupling to a flow field has to be considered at all.

3.5.2 Current-controlled simulations

For current-controlled (galvanostatic) electrochemical systems, an additional constraint on
the total electric current passing a cell arises (see section 2.5.4). For such situations an
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Flow solver Flow solver
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Multi-ion transport solver Multi-ion transport solver
Solve for ¢ tt, @1t < Solve for ¢!, il
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(a) Two-way coupling (b) One-way coupling

Figure 3.1: Partitioned solution schemes for the coupled simulation of electrochemical sys-
tems.

appropriate extension of the basic computational approach is required for continuously
adjusting the cell potential difference U = V, — V. in order to follow the prescribed current
curve. In the following, a cathode surface I'. and an anode surface I';, are considered as
introduced in section 2.5.4. However, it is emphasized that the consideration of any number
of electrode surfaces does not pose a problem for the computational approach presented
below.

From a computational point of view it is convenient to set V, = 0V to define a reference
level for the electric potential. Given that, U = —V,. represents the only additional degree
of freedom within the considered Galvanostatic Constraint Condition (GCC). Based on
a Newton-Raphson scheme, increments AV’ o AV, *!and A(I)i;ljl 111 are computed itera-
tively, yielding the new cell voltage

il il ij+1 ij+1
Upjer = =V =~V AV A0y (3.95)
~——
=Ui; =AViji1

until convergence is achieved, as shown in Algorithm 3.1. After solving the ion-transport
system, the new overall cell potential needs to be evaluated. Therefore, the potential in-
crements AVi’j 1 and AVli’j +l depending on the results of the ion-transport solver in GCC
iteration j are determined via (3.96) and (3.97).

An additional potential increment Ad){)’l’J H{l accounting for the potential drop due to ohmic
resistance in the electrolyte solution is also necessary to preserve a fast convergence rate of
the applied cell voltage U; ;1. This predictor step is particularly important for electrolyte
solutions with a rather low conductivity, since the overall resistive losses are dominated by
the ohmic resistance. The electrical resistance of an electrolyte solution is here approx-
imated by Ohm’s law, including a one-dimensional projection of the two-dimensional or
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Algorithm 3.1 Galvanostatic constraint condition.

Solve ion-transport system

Compute AVé’j +l , AVé’j *land A®"!:

bulk *
oRe (V) . .
i,j+1 _ c i,J
—v AV = —RE (V) (3.96)
oR (V) . .
i,j+1 _ a i,]
—v. AV = =R (Ve B397)
A(D{-;l]lﬁ(l ~ RbulkAI i,j
- i1 4
Check convergence: AV AV 4 ACDLIJJ;( | < egee
[RE(Ve')| < er (3.98)
|Ra(Vci[j)| < &R
Update: U,‘,j+1 = U,"j+AVi,j+1 (3.99)
three-dimensional domain:
. 1L
AR~ — = (hot L), (3.100)
g S——

Rpuik Alij

Here, o is the specific conductivity of the bulk electrolyte solution, Ryyx the electrical re-
sistance, A the area of an electrode, and generally, L the average length of the electric field
lines (for simple geometries with parallel electrodes, L is essentially the inter-electrode
distance). The conductivity is computed once in the beginning according to (2.26) as-
suming a uniform concentration level. Conductivity variations of the electrolyte solution
due to concentration variations in the vicinity of the electrode are neglected in this simple
approximation. After determining U; j, in the update step (3.99) and if not converged,
the multi-ion-transport system has to be solved again to compute the new current I;
and the resulting variations in all solution variables caused by the new cell voltage U; j1.
If the GCC loop has reached convergence, the current density calculated from the ionic
concentrations field ¢y ; ; is transferred to the fluid solver to compute the new velocity and
pressure field.

The GCC iteration is terminated when the absolute value of the computed voltage in-
crement falls below a user-specified tolerance egcc or the absolute value of the scalar
residuals |R¢ (Vé’j ) | and | R4 (VC’,’/ ) | is smaller than &g, where g denotes the tolerance for
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Figure 3.2: Algorithmic extension for the consideration of current-controlled electrolytic
cells.

the residual norm. In the numerical examples presented below the tolerances are usually
chosen to be egcc = 1-107% and eg = 1-1073. To proceed to the next time step, both
the criteria for terminating the outer iteration loop and the GCC have to be fulfilled. The
iterative scheme for a computation including the GCC in the two-way-coupled partitioned
scheme is shown in Fig. 3.2.

The proposed methodology works also for simpler cases, for example, when neglecting
contributions due to anode overpotential AV,”’ and ohmic drop ACDL’IJIE. However, very
slow convergence can be observed for particular configurations, since the computed volt-
age increment is considerably underestimated if not all potential increments are computed.
In the presented method, no temporal or spatial distribution of the local current density is
assumed; only the total amount of current is controlled. The actual current density distribu-
tion at the electrode surfaces is part of the unknown solution. This general current-control
algorithm can be easily added to already existing electrochemical solution schemes, just
introducing a GCC loop. The evaluation of the total current / and its derivative represent
the only additional evaluations which are required within the galvanostatic solution proce-
dure. Thus, the actual electrochemistry model enclosed inside the galvanostatic constraint
loop may be of any kind as long as it provides the required information about the elec-
tric current. Besides the multi-ion transport model considered above, also simpler models
for the electric potential (see section 2.6) can be enclosed inside the proposed GCC loop.
Thus, secondary current distributions under current-controlled situations can be computed
with the proposed algorithm as well.

A potential future extension would be a simultaneous solution of the equation for U and
all governing equations of the electrochemical problem. This would result in a monolithic
solution approach for galvanostatic applications with U as an additional degree of freedom.
In that case, no nested solution loops would be required.
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3.5.3 Numerical solution approach for nonlinear equations

The discretized formulations of both the flow and the multi-ion transport subproblem are
representing discrete nonlinear equation systems. In this work, each of these problems
is solved numerically by a Newton-Raphson methodology. This iterative procedure for
solving the nonlinear subproblems represents the inner iteration loops within the outer
loop of the two-way coupled scheme presented above. For a general nonlinear problem
given as

F(y) =0, (3.101)

the iteration procedure of the Newton-Raphson method reads as follows:

OF (y)

8—@ Ay =—F(y), (3.102)
Yy,

Y1 =Yt Ay, (3.103)

Thus, in each iteration step / a linear equation system (3.102) has to be solved to determine
the next increment vector Ay,;, which is required for the subsequent update step (3.103).
The iteration is terminated when either a user-defined convergence criterion is fulfilled or
a maximum number of iterations is reached, which would indicate potential divergence of
the method. This basic strategy (3.102)-(3.103) is now applied to each of the nonlinear
subproblems that arise within the coupling schemes presented above.

Flow subproblem

The discrete nonlinear formulation of the incompressible Navier-Stokes equations ob-
tained from the generalized-alpha time-integration scheme and the stabilized finite element
method can be expressed as

RnM+1 (U"+1, pn+l)
Ré+1 (un+l , pn+1 )}

un+1

At 0
4 = [0] with y+! = [pn+1]. (3.104)

am

F;+1 (y;+1) —

In accordance to Gravemeier et al. [80], an additional scaling factor yAt/anm is introduced
in (3.104). The discrete residuals of momentum and continuity equation are denoted by
R’l\‘/f and Ré” , respectively. For details concerning this discrete formulation of the incom-
pressible Navier-Stokes equations the reader is referred to Gravemeier et al. [80].

The arising linear equation system (3.102) to be solved at iteration step [ of the Newton-
Raphson iteration has the form

M+ af AtKn+af,l @ AtKn"'af,l n+1,l At n+1.l
AyArKy, " Sy [AU ]:_7 [RM ] (3.105)

vp
aj n+ay,l o7 n+ay,l n+1,l n+1,l
&y AK A || AP am |RE

Here, the matrix M emanates from the transient term in the momentum equation and the
matrices Ky, K, are aresult of the linearization of all remaining terms in Ry ' (u™+!, p™+1).
For the discrete continuity equation Ré”(u”“, p”“), respective submatrices K, K,, are
obtained. Note that the factors s in (3.105) arise from the fact that Ju™*% /ou*! = o5 and

AP+ /op™! = a4. Since U™ /U™ = ay,/(yAt), the performed scaling of the nonlin-
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ear problem with yAt/am ensures that no actual factor appears in front of the matrix M
(cf. Gravemeier et al. [80]).

Multi-ion transport subproblem

For the multi-ion transport subproblem, the resulting nonlinear equation system for all
nodal unknowns at time #**! is given by

YAt pn+1 ( an+1 n+1
chl (Cl ,¢ ) crll+1

n+1 (,n+1\ _ _ : : n+l ._

FE (yE )_ )’_AfRn+l n+1 ¢n+l —10 WlthyE = Cn+] (3.106)
am Cm cm ? m
R1(£+1(crlz+1’.“’cnm+1) 0 ¢n+1

The corresponding discrete residuals of the ENP system of equations are defined as

+1 +1 n+1 .+ + n+a, n+aq n+aq;
R, (CZ O ):MCZ “m+(C(u” “f)+Kk)ck "+ Ei(c] M, 9"

+Sk(€Fm, L QT U £ T (e L @ — 17, (3.107)
m

Ry (ert, o) = ) aMe . (3.108)
k=1

Here, M denotes the mass matrix, C(u"*%") the matrix arising from the discretization of
the convective term, K the matrix emanating from the diffusive term, and E; (¢, """
represents the nonlinear migration term in its discretized form. Potential stabilization terms
are represented by Sk(ézmm,czm‘,d)"mf, utan). Contributions due to mass-flux boundary

conditions (2.37) and (2.40) are denoted by an+l? f

similar manner as performed for the flow problem above, the residuals RZ’: ! of the ion-
transport equations are scaled with yAt/am.

and I k(csz,(bnmf), respectively. In a

As shown by Bauer et al. [11], the weak enforcement of the algebraic electroneutrality
constraint leading to (3.108) is equivalent to a nodewise enforcement of electroneutrality,
since the mass matrix M is regular.

The nonlinear problem (3.106) is solved via Newton’s method for all nodal unknowns
collected in the vector y’é“. The simultaneous solution for ion concentrations and electric
potential results in a monolithic solution approach for the electrochemistry subproblem. In
each iteration step / of the nonlinear solution algorithm, a sparse linear equation system
(3.102) has to be solved for the solution increment Ay"“’l. Owing to the electroneutrality

E
condition, the tangent matrix in (3.102) exhibits a saddle-point structure of the form

,Arlz+ozf,l 0 0 BrlH—(zf,l‘ EAC’iH—l’lﬁ ,r,lH_l’l_
n+as,l n+as,l n+1,1 n+1,l
0 A2 f B, f A02 r
: — : =] (3.109)
n+1,l n+1,1
0 L 0 Azja/f,l Bz-k—af,l Ac), y r y
n+l, n+1,
| C C» Cn 0 |[A®™ ] ry
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Here, the individual contributions to the block matrix are defined as

AZ+af,l — aR}(;llj-l(clk’l-i-],l’ ¢n+1,l)/acz+l’ (3.110)
Bz+af,l — 6RZ;—1(CZ+1,1,¢n+1,l)/a¢n+l’ (3.111)
Co = M. (3.112)

The contributions to the right-hand side of (3.109) read rZH’l = Zx—ﬁf R’Z.I‘Ll (CZH’I,(D"H’I) and

rgr]’l = Yo szchf. Note that the zero block in the unsymmetric saddle-point matrix
(3.109) is challenging for the numerical solution of this linear system, as will be explained
in the subsequent section.

In case of the CNP system of equations the solution procedure utilizing Newton’s method
remains basically the same. Only the properties of the arising linear system given as

,An+a’f,l 0 . 0 Bi’l‘HIf,r - n+l, TR
1 1 AC1 r1

n+ay,l n+ay,l n+1,1 n+1,1
0 A, B, Ac, r,

: : 0 : Do |=—] (3.113)
0 0 An+af,l Bn+af,l Acn-f-_lil rn-l—_lil
I ! medy omel i1l 1]
n+ay, n+ag, n+at, n+ai, ’ >

D) D, b, E JlA®™] o

are different compared to the ENP model. For the ion-transport equations of ionic species
k=1,...,m— 1, the matrix entries and right-hand terms are identical to those in (3.109).
Thus, the same matrix blocks AZW"Z and Bsz’l are present in (3.113). Also the right-
hand-side contributions —rZ+a”l are identical to the ENP model (3.109). Since ionic
species concentration C,, is eliminated by means of electroneutrality, the corresponding
line from (3.109) does not appear in (3.113). The alternative closing equation for the

electric potential leads to different matrix entries denoted by D! Errer! and the cor-

k
responding right-hand-side —7‘“’&:0‘“1 in the last row of the linear block system. The main

differences of (3.113) compared to (3.109) are the reduced size of the linear problem and
the nonzero submatrix E, which replaces the zero block in (3.109).

3.5.4 Numerical solution of linear equation systems

As stated above, in each iteration step of Newton’s method a linear system of equations
has to be solved in order to determine the new increment vector. For problems with a
relatively small number of degrees of freedom, direct sparse solvers can be used for this
purpose. For the numerical examples in the present study, the UMFPACK package by
Davis [46] is utilized whenever a direct solution approach is applicable. When considering
large systems w.r.t. the number of unknowns, iterative solution strategies in combination
with efficient preconditioning techniques are mandatory. The GMRES method by Saad and
Schultz [153] is used as the basic iterative procedure for such situations. For improving
the condition number of the Jacobian matrix, and thus, the convergence rate of the GM-
RES method, appropriate preconditioning of the linear system is required. Libraries from
the Trilinos package (Heroux et al. [96]) provide a broad variety of preconditioning meth-
ods. Typically, Algebraic Multigrid (AMG) methods with smoothed aggregation exhibit

74



3.5 Solution procedure

good numerical performance as preconditioner for linear systems within Newton-Krylov
schemes.

ENP system of equations

In the case of the ENP system of equations, the saddle-point structure of the matrix in
(3.109) is challenging from a numerical point of view. If the problem size in terms of
degrees of freedom is still small, a direct solution approach can be used without any lim-
itations. However, problems arise in the context of iterative solution approaches required
for large-scale problems. Standard preconditioning techniques typically utilize the inverse
value of the main diagonal entries. Unfortunately, the zero entries on the main diagonal
in (3.109) prevent the usage of these methods. A comprehensive overview of solution
techniques for general saddle-point problems is provided by Benzi et al. [17].

In this work, a block-preconditioning technique of the popular SIMPLE (Semi-implicit
method for pressure-linked equations) type is used in combination with GMRES. Origi-
nally, SIMPLE was proposed by Patankar and Spalding [140] as a solution approach for
solving the discretized incompressible Navier-Stokes equations. SIMPLE and its vari-
ants can be utilized as block-preconditioners (see, e.g., EIman et al. [60], Rehman et al.
[151]) or smoothers in multigrid methods (Benzi et al. [17]). In the present computational
approach, the first of these two options is applied. For performance reasons, actually
a cheaper approximative version of SIMPLE is used as a preconditioner. Although the
usage of this SIMPLE-like preconditioner enables the parallel solution of large-scale elec-
trochemical problems, difficulties may be experienced in practice in finding appropriate
parameters.

Recently, AMG techniques with a special focus on electrochemical problems were pro-
posed by Thum et al. [167]. Since the drift-diffusion equations used in the context of
semiconductor device modeling lead to similar problem structures as considered here, also
the investigations by Lin et al. [125, 126] are worth considering in the present context.
Therein, the performance of a parallel algebraic multilevel preconditioner was studied for
these types of problems.

CNP system of equations

Considering the CNP system of equations, an explicit dependency on the electric potential
is given in the closing equation for the electric potential. Thus, the lower right block of
the matrix in (3.113) is nonzero, and the full spectrum of preconditioning (e.g., AMG,
ILU) and linear solution techniques is applicable to solve (3.113). Furthermore, due to the
elimination of the ionic species concentration c¢,, from the system of equations, the system
size is reduced by one from m + 1 degrees of freedom per node to m degrees of freedom
per node. For a binary electrolyte (m = 2), the relative difference is maximal. Then, the
CNP formulation leads to a system size which is only 2/3 of the size of the corresponding
linear problems obtained from the ENP model.

This illustrates the enormous numerical potential provided by the CNP system of equa-
tions. Since often the time spent for solving linear equation systems is (much) higher than
the time spent in evaluation of element contribution and assembly of those into the sys-
tem matrix, the benefits of the CNP model are obvious. For smaller problems the saved
computational time might be negligible, but for parallel large-scale problems a substantial
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improvement can be obtained. However, a more detailed investigation on solver techniques
for electrochemical problems in general and a comparison of ENP and CNP formulation
in particular, will be required in the future.

3.5.5 Postprocessing of simulation results

The present chapter on the computational approach is ended with a brief comment on the
postprocessing of numerical simulations. Of course, the primary simulation results are
the approximations to the unknown physical fields. In the present case these are velocity,
pressure, ionic concentrations and electric potential field. The proposed computational
approach enables the investigation of their spatial and temporal behavior as well as their
interaction.

In the context of electrochemistry, some secondary results are of even greater impor-
tance. One of the main objectives is the computation of current density distributions at
electrode surfaces. This value directly corresponds to the rate of electrochemical reaction
at the electrodes. For electroplating applications, a prediction of deposit thickness distribu-
tions is possible based on these data (see section 2.5.5). A categorization of current density
distributions into primary, secondary and tertiary distributions is given in section 2.6. For
an actual calculation of these boundary-related quantities, it is strongly recommended to
use consistent flux-calculation methods such as the one presented by Gresho et al. [86].
For the present context of electrochemical systems the method is adapted accordingly as
outlined in the Appendix B. Besides current density distributions, also ionic mass flux
densities at boundaries can be computed.

Sometimes, a vector-field representation of the current or the individual mass fluxes
in the whole computational domain is required for visualization purposes. An appropri-
ate method to obtain these data from finite element solutions in a consistent manner is
proposed in Appendix B. An L2-projection is utilized to compute the desired nodewise
approximations from finite element results.

The open-source software ParaView developed by Kitware Inc. was used for the visual-
ization of the simulation results presented in this work.
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In this chapter, the proposed computational method is tested for several different numerical
examples, demonstrating that it is robust and provides accurate results. Among others, sev-
eral realistic problem configurations with complex three-dimensional geometries are con-
sidered in the context of electroplating. Each numerical example focuses on quite different
aspects of both the mathematical modeling and the computational approach. Regarding
the coupling of ionic transport and incompressible flow, both laminar and turbulent flow
regimes are considered. Also the two-way-coupled case of natural convection in electro-
chemical cells is investigated. The variety of considered examples demonstrates the broad
spectrum of capabilities. Some of the following numerical examples have been published
in Bauer et al. [9, 11, 12] and Ehrl et al. [56]. Further simulation results obtained with the
present computational approach can also be found in these references.

The remainder of this chapter is as follows. In section 4.1, several simpler problem
setups are considered that enable a detailed study of the computational approach and its
properties. After these rather fundamental numerical investigations, coupled multi-ion
transport within an oscillating shear flow cell is simulated in section 4.2. Natural convec-
tion in a copper electroplating cell under galvanostatic control is addressed in numerical
example 4.3. A collection of three different examples considering the modeling of rotating
cylinder electrodes is provided in section 4.4. In particular, simple potential-based models,
natural convection phenomena and multi-ion transport in turbulent flow are considered in
the context of this electrochemical configuration. A three-dimensional model for copper
pulse plating at a rotating disk electrode is presented in section 4.5. Finally, a summary of
simulation results for a nickel pulse-reverse plating experiment within a realistic galvanic
bath is given in 4.6.

4.1 Basic numerical test cases

Within this first subsection, some simpler numerical test cases are considered, demonstrat-
ing that the developed computational approach is correct and provides accurate results.
Since for most of the following model problems even analytical solutions are available,
numerical convergence studies are presented as well. In addition, the positive effect of
the proposed stabilization terms on both stability and accuracy for convection-dominated
regimes is highlighted. Note that all quantities in this subsection have to be interpreted
as dimensionless values. For simplicity of notation, the additional asterisk introduced in
section 2.8.5 for denoting dimensionless quantities is neglected below.

4.1.1 One-dimensional convection-diffusion-migration equation

A one-dimensional model problem including convection, diffusion and migration is studied
first. The computational domain is given as Q :=]0,L[ with L = 1. A binary electrolyte
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4 Numerical examples

solution based on cation concentration ¢; and anion concentration c; is considered. The
corresponding valences are given as z; = +1 and z; = —1. Diffusion constants are chosen
tobe D; = 1/150 and D, = 1/50. The ENP system of equations is considered here, where
ion transport is subjected to the electroneutrality constraint. Dirichlet boundary conditions
in the form ¢1(0) = c2(0) = go with go = 1 are applied at the left boundary located at x = 0.
In addition, a reference level for the (dimensionless) electric potential is set via %(D(O) =
0. At the right boundary, located at x = L, the condition c1(L) = g7, = 0.1 is prescribed.
Defining no explicit boundary condition for the anion concentration ¢, results in a zero-
flux condition on the right boundary. A constant convective velocity of u = 2 is assumed.
The corresponding Peclet number of the problem is given as Pe = uL/D = 200, where
D = 1/100 denotes the effective diffusion constant for the binary electrolyte as defined in
(3.90).

In Bauer et al. [12], an analytical solution for this simple model problem is provided.
The equilibrium concentration profiles for both ionic species in the case Pe > 0 read:

Pe _ oPez ePer 1
1) =2 (0) = g0—pg—— + 8L .1)

The corresponding electric potential field is determined by

F F c1(x)
ﬁCD(X) —CD(O) — —1 (CI (O)) (x gLG (%)), 4.2)
together with
Pe _1 L o L
G(X) :g()eePTgL (X — P_e ln(go epe —gr+ (gL — go)epez) + P_e ln(go (ePe —1))) (43)

For discretizing the one-dimensional computational domain, 10 linear elements with con-
stant element length 2 = 0.1 are used. For one-dimensional convection-diffusion prob-
lems, utilizing linear shape functions, a stabilization parameter definition exists that gives
nodally exact finite element solutions for stationary problems (see, e.g., Brooks and Hughes
[26]). The formula involves a value for the local element Peclet number. For a binary elec-
trolyte solution, this well-known definition is adopted as explained in section 3.4.6. Thus,
for both 71 and 75, the definition

h 1 1
Tana = = (4.4)
2 ul ( tanh Pe¢t Peiﬁ]

is used. Here, the effective element Peclet number, as defined for a binary electrolyte
solution in (3.91), is Pegff =uh/(2D) = 10, indicating local convection dominance, since
the value is greater than one.

The results from the steady-state simulations are depicted in Fig. 4.1, showing the cal-
culated cation concentration c¢;. The analytical solution is given as a reference, and it can
be clearly seen that the chosen mesh is too coarse to resolve the strong concentration gra-
dient evolving near the right boundary. The SGFEM solution is highly oscillatory in the
whole domain. With the additional stabilization terms in (3.93), the spurious oscillations
are removed. Only when using the effective element Peclet number Pec for calculating
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Figure 4.1: Stationary concentration profiles of ¢; for the convection-dominated case with
Pectt = 10.

the stabilization parameter 7,5, defined in (4.4), the nodally exact finite element solution
is obtained as depicted in Fig. 4.1. For comparison, also the results obtained when using
the more general formulation of 7, as specified in (3.92) for the case of a binary elec-
trolyte solution, are shown. Of course, a nodally exact solution cannot be achieved in this
case. However, spurious oscillations in the cation concentration are removed as shown in
Fig. 4.1.

Oscillations in computed ionic concentration fields also cause oscillations in the electric
potential field due to the inherent coupling of all physical fields. This can be clearly seen
in Fig. 4.2 for the SGFEM case. Again, the additional usage of a stabilization technique
substantially improves the situation compared to the analytical potential curve. For the
current example, both choices for the stabilization parameter considered here lead to very
similar results for the electric potential. Thus, both curves almost coincide in Fig. 4.2.

Since a 1-D problem is considered, total mass fluxes of ionic species as well as the
current passing the cell are constant along [0, L]. The exact value for the cation flux can be
computed using (4.1), (4.2) and definition (2.4). For the right boundary, a value of

12
N (1) = 5= 2.4 (4.5)

1,exact
is obtained. However, when computing fluxes based on a simple evaluation of the gradient
of the finite element solution that is nodally exact for the concentration field, one obtains
Nf}‘élM (L) = 0.1205. Comparison with the exact value (4.5) reveals a dramatic difference,
even for the nodally exact stabilized finite element solution.
Such a simple flux evaluation approach is a common mistake, since for a consistent cal-

culation of fluxes, the additional subgrid-scale terms present in the problem formulation

79



4 Numerical examples

T T T .
oRRT exact solution
SGFEM
or Stabilized FEM, Ty ——— -
stabilized FEM, T, -
72t |

74 + i
76 | i
78 | i
.80 | i

82 - 4

86 | i
88 | i

-90 + .

'92 C 1 1 1 1
0.75 0.8 0.85 0.9 0.95 X 1

Figure 4.2: Results for the dimensionless electric potential ®F/RT near the right boundary
(convection-dominated case with Pe‘;ﬂc =10).

have to be accounted for. Furthermore, differentiating the finite element solution requires
a well-resolved boundary layer to produce acceptable results. Especially in the context of
stabilized methods, this requirement is often not fulfilled. In fact, the fluxes already con-
tained in the weak problem formulation are the consistent values that have to be extracted.
Since predicting mass fluxes and particularly current densities at electrode surfaces is cru-
cial for electrochemical applications, it is strongly recommended using consistent flux cal-
culation methods such as the one specified by Gresho et al. [86], for instance. Its derivation
within the present context of electrochemical systems is briefly outlined in Appendix B.

For the present 1-D problem, merely the residual of the weak form has to be evaluated at
the boundary node of interest, after the nonlinear solution procedure has converged. Note
that this has to be performed prior to imposing any boundary conditions to the residual vec-
tor. From the nodally exact simulation results, Ng“n (L) = 4.3-10~1 is obtained, clearly
showing that the zero flux condition is numerically fulfilled for the anion species. The
computed value for the cation mass flux is N‘f*m (L) = 2.4 and matches the analytical value
given in (4.5). In summary, although the concentration boundary layer at the right bound-
ary was not adequately resolved, the cation flux at the right boundary can be computed
correctly in a consistent manner using the recommended method.

4.1.2 One-dimensional transport of three ionic species

This example is similar to the first example, but now an electrolyte solution containing
three different ionic species is considered. The geometrical problem settings are identical
to the previous numerical example. The valences are set as z; = +2, 2 = —2, z3 = +1, while
for the diffusion coefficients the values Dy = 1/150, D, = 1/50, D3 = 3/1000 are used.
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Figure 4.3: Stationary concentration profiles of ¢; for the 3-ion system and u = 2.0.
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Figure 4.5: Stationary concentration profiles of c¢3 for the 3-ion system and u = 2.0.
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Figure 4.6: Mesh refinement study for the stationary concentration profiles of ¢3 for the
3-ion system and u = 2.0 obtained with SGFEM.
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Figure 4.7: Mesh refinement study for the stationary concentration profiles of c¢3 for the
3-ion system and u = 2.0 obtained with stabilized FEM.
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Figure 4.8: Stationary concentration profiles of ¢ (left) and ¢, (right) for the 3-ion system
and u = 0.3 obtained with different stabilization approaches.

At the left boundary, x = 0, the following conditions are prescribed: ¢y = 1.0, ¢o = 2.0,
c3 = 2.0 and FO(0)/RT = 0. At the right boundary, x = L, only ¢; = 0.1 is prescribed.
As a consequence, the natural boundary conditions NS*m(L) = Ng”m(L) = 0 hold at the
right boundary without specifying them in an explicit way. The velocity range u = 0 up
to u = 2.0 is studied in this example, which corresponds to Pe; = uL/D; € [0;300]. The
results obtained for the stationary version of the SGFEM formulation (3.64)-(3.65) are
compared with the results of the stationary form of the stabilized finite element model
stated in (3.81)-(3.82) in combination with (3.88).

Computed concentration profiles for the case Pe; = 300 are depicted in Figs. 4.3-4.5. For
comparison, results obtained for a very fine spatial resolution (SGFEM with 10,000 linear
elements) are shown, which represent very good approximations to the (unknown) exact
concentration profiles. Oscillations in the concentration profiles for all three ionic species
are observed when using only 10 linear elements for the SGFEM. In contrast, results for the
stabilized FEM with stabilization parameter as defined in (3.88), do not exhibit oscillations
and agree well with the reference solution. In particular, the good prediction of ¢3 in
Fig. 4.5 is emphasized, which is nearly optimal when considering the given coarse mesh
of only 10 elements. Of course, none of the arising concentration boundary layers are
properly resolved based on the present spatial discretization.

In addition, a mesh-refinement study for this problem setting is performed. For this
purpose, further uniform discretizations using 20, 40, 80, 160, 320 and 640 linear finite
elements are considered. As a result, with decreasing element size h, convergence of
each of the unknown fields towards the respective reference solution is observed. As an
exemplary result, the different numerical approximations obtained for c¢3 are compared.
For better illustration, only the region close to the right boundary is shown. SGFEM results
for c¢3 are provided in Fig. 4.6, while Fig. 4.7 shows results obtained with the stabilized
finite element approach. It is obvious from the results that both finite element formulations
converge towards the same reference solution. As expected, the boundary layer is more
and more resolved with decreasing element size.
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The large benefit of the proposed stabilization is especially visible for mesh sizes, which
do not yet resolve the boundary layer. Then the stabilization technique considerably re-
moves spurious oscillations caused by apparent convection dominance. In comparison to
the SGFEM results, this leads to very good and smooth approximations in the bulk solu-
tion.

Finally, the numerical results obtained with the proposed method including and exclud-
ing the migration velocity, respectively, in both stabilization term and parameter, are com-
pared. As can be seen in Fig. 4.8, both approaches lead to numerical approximations of the
reference solution without spurious oscillations. However, the inclusion of the migration
velocity, as proposed in this study, leads to slightly improved results. This is exemplarily
depicted in Fig. 4.8 for the concentration profiles ¢; and ¢, obtained for u = 0.3.

4.1.3 Analysis of a transient diffusion-migration problem in 3D

To demonstrate that the computational approach performs well for transient problems, ion
transport governed by diffusion and migration is simulated in the following for a time
interval [0, T.]. A binary system with two ionic species is considered. In the following, the
SGFEM version of the ENP system of equations is utilized.

The computational domain is the three-dimensional unit cube Q = (0, 1)3. At all bound-
aries, zero flux conditions for both ionic species are prescribed, i.e., it holds dQ =T'\ | =
I'n2 and Ay = hp = 0. The material parameters are set to be z; = 1, zp = —2, D1 = 0.008
and D, = 0.005. The initial concentration fields, fulfilling the electroneutrality condition
at r =0, are given as:

c? (x,y,2) =2.0+cos (mx)cos (2rmy) cos (3nz), 4.6)
Z
£um@=—éﬁum@. 4.7)

Visualizations of the initial field c(l) and the corresponding potential field ®° are provided
in Fig. 4.9.

A similar configuration was investigated by Choi and Chan [33] as a 1-D problem. The
analytical solution of the problem considered in that work was the basis for a more general
extension to two spatial dimensions performed by Kwok and Wu [119]. Using similar
methods, the logical extension to three space dimensions was provided recently by Bauer
et al. [11] as a special case of a more general analysis. Parts of the following numerical
results were published in Bauer et al. [11], too. The exact solution for the specified initial
boundary value problem reads:

c1 (x,y,2,1) = 2.0 + cos (x) cos (27y) cos (3nz) e~ 4P 1 (4.8)

(60) (X,y,Za t) = _%CI (X,y,Z, t)a (4'9)
F DZ_DI CI(X,}’,ZJ)

—®(x,y,2,0) = 1 , 4.10
TR mDrﬂﬂbn&NQQQU (510)

where @ (0,0,0,7) = 0 is fixed to define a reference level for the electric potential ®. The
factor F/RT remains arbitrary and is assumed to be 1.0 in this example.
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Figure 4.9: Initial cation concentration field 0(1) (left) and potential field @Y (right) for the
transient three-dimensional diffusion-migration problem depicted on the dis-
cretization with element edge length 4 = 0.1.

For studying the convergence behavior in space and time, the absolute errors

&=l —all 2 forke{1,2}, (4.11)

g = ||@" — D 2 (4.12)
are computed for each of the three unknown fields at the time of interest using the L?-norm
as defined in (3.30). In the following, hexahedral elements with trilinear shape functions
are used. A series of four uniform discretizations with characteristic element edge lengths
h=0.2,h=0.1,h=0.05 and h = 0.025 are considered. For the temporal error being
negligible compared to the error introduced by the spatial discretization, a small (constant)
time-step size At = 0.005 is used. Using the Crank-Nicolson scheme (6 = 0.5), 20 time
steps are performed until 7. = 0.1 is reached. The computed errors depicted in Fig. 4.10
show second-order convergence in space for both ionic species concentrations as well as
for the electric potential. Note that (4.9) is reflected in the computed values for the absolute
errors, leading to &) = 2&, for the given valences. When depicting relative instead of
absolute errors, the curves for cation and anion concentration would coincide.

For investigating the temporal accuracy of the computational approach, the spatial error
contributions have to be minimized. Owing to the approximation of cosine functions with
trilinear shape functions, the spatial error is dominating in this example. Hence, a very
fine uniform discretization with 2 = 0.01 has to be used for revealing the error contribution
due to time discretization. Consequently, a spatial resolution of 100 x 100 x 100 elements
is utilized for this investigation. Different numbers of constant time steps are used to
reach T, = 2.0, where the error measures introduced above are evaluated. Note that the
end time T, has a different value compared to the choice used above. The results for
the Crank-Nicolson scheme (8 = 0.5) are shown in Fig. 4.11. As expected, second-order
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Figure 4.10: Spatial convergence for cation concentration ¢, anion concentration ¢, and
electric potential ©.
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Figure 4.11: Temporal convergence for cation concentration ¢, anion concentration ¢ and
electric potential @ using the Crank-Nicolson scheme.
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Figure 4.12: Temporal convergence for cation concentration ¢, anion concentration ¢, and
electric potential ® using the generalized-alpha scheme with p,, = 0.5.

accuracy in time is observed for all physical fields. This second-order convergence rate is
also observed for the generalized-alpha method with po, = 0.5 (i.e., am = 5/6, a; = 2/3,
v =2/3) as illustrated in Fig. 4.12.

When the CNP system of equations (3.66)-(3.67) is utilized for the latter simulations
instead of the standard ENP model, a considerably increase in computational efficiency is
observed. For the CNP model the inert ionic species k = 2 is eliminated from the system
of equations by means of electroneutrality. Consequently, it has only to be solved for the
nodal values of ¢ and ®. For the structured mesh with 10° hexahedral elements considered
here, the corresponding number of nodes reads n,oq =1,030,301. Thus, for the CNP model
only 2n,0q degrees of freedom arise, while a number of 3n,,q degrees of freedom have
to be determined in the usual formulation. As a consequence, the sparse system matrix
has 2n,0,q rows in case of the CNP model and 3n,,q rows in case of the ENP problem
formulation. The number of nonzero entries into the sparse matrix are 1.09- 10°(CNP) and
2.45-10°(ENP), respectively. For this specific example the simulations are carried out in
parallel using four processors. As a rough estimate, a reduction of about 40% in required
simulation time is observed. This demonstrates the benefit of the CNP formulation and
encourages further investigations of this modeling approach in the future. Finally, it has to
be emphasized that identical results for all unknown fields are obtained with both the CNP
and the ENP model.

4.1.4 Electrolytic cell between two concentric cylinders

In the following numerical example, a model problem for an electrolyte solution confined
between two concentric cylinder surfaces is considered (see Bauer et al. [11]). The inner
cylinder with radius r; = 1 is forming the cathode surface, while the outer cylinder with
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parameter c‘l’O B | ag | ac | iy Vg

anode 1.01.0[1.0] 00| 1.0 | 5.0(Va)
cathode | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | 0.0(V¢c)

Table 4.1: Parameters for the Butler-Volmer law used for the concentric cylinder example.

radius r, = 2 is defining the anode surface. The height of the computational domain is
given as H = 1. Material properties and boundary conditions are set identical as specified
in Bauer et al. [11]. Thus, the values z; =1,z = =1, Dy =5.0 and D, = 10.0 are used in the
following. In this example, the ionic species k = 1 is reacting, while species k = 2 is inert.
At both cylinder surfaces, the Butler-Volmer law (2.44) is used for modeling electrode
kinetics. The corresponding parameters are listed in Table 4.1. Here, the SGFEM for the
ENP systems of equations is considered. According to Bauer et al. [11], the rotationally-
symmetric exact solution to this problem is given as

. Inr—Inr ~
exact _ 1 1 o_ 1
) =+ (¢ —ch). (4.13)
O™ (r) = @' +1n(c) (1) /c}). (4.14)
and again chm(r) = —zlc?‘ac‘(r) /z» due to the electroneutrality condition. Since the two

cylinder surfaces are aligned with the z-axis, the cylinder radius is defined as r(x) =
vx2+y2. The problem-specific constants ci1 (cation concentration at inner cylinder sur-
face), c‘l’ (cation concentration at outer cylinder surface) and @' (electric potential at inner
cylinder surface) are obtained from simulation results using a very fine spatial resolution
(h=0.01).

A backward Euler time-integration scheme (6 = 1) is used to compute the stationary
solution. This procedure ensures that the total amount of inert ions contained is fixed, so
that the computed solution fulfills

fcz(x) dx = JT(}’(Z) — rlz)H =3, 4.15)
Q

corresponding to an average anion concentration value of one. When the stationary form
of the ENP system of equations is considered instead, (4.15) must be explicitly added as an
additional constraint in order to obtain a unique solution. In contrast, the pseudo-transient
approach utilized here automatically ensures (4.15) given appropriate initial fields for the
ionic concentrations.

Successive, simultaneous mesh refinement in each spatial direction is performed. The
coarsest mesh uses two elements in radial as well as axial direction and twelve elements in
the circumferential direction. A characteristic element length / is defined by the gap size
ro — ri divided by the number of elements in radial direction. Fig. 4.13 depicts computed
solutions for ¢; and @ based on a mesh with 2 = 0.125. As can be seen in Fig. 4.14, a
second-order convergence rate is also obtained for the current setting including nonlinear
Butler-Volmer kinetics and curved boundaries.

88



4.2 Oscillating shear flow cell

phi
34618

1.0870 3.2861
0.92967 3.1104
077232 2.9347

0.61498 2.7591

() (b)

Figure 4.13: Numerical results for cation concentration ¢ (a) and electric potential field ®
(b) at steady state obtained for a mesh with 4 = 0.125.
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Figure 4.14: Spatial convergence for cation concentration c¢; and electric potential @ ob-
tained for an electroplating problem including Butler-Volmer electrode kinet-
ics.

4.2 Oscillating shear flow cell

As an example for unsteady tertiary current density distributions a configuration governed
by an oscillating shear flow is considered. In the following a summary of the results
presented in Bauer et al. [11] is given. The setup of the problem investigated below is
originally described in detail by Yang and West [182]. A two-dimensional sketch of the
cell configuration is provided in Fig. 4.15.

Here, the cathode with length 2L is part of the bottom plane that is oscillating in its own
plane. The counter electrode (anode) is placed above the working electrode in a distance
H. In the following it holds L =0.125mm and H = 16 mm. In the experiments carried out
by Yang and West [182], the anode of size 20cm x 13cm and the bottom plane are very
large compared to the line-shaped cathode (2L x 2cm). Thus, the planes at top and bottom
can be assumed infinitely long. However, the computational domain has to be limited by
two artificial boundaries located at x; = —(D + L) and x| = D+ L. The value for D has to be
chosen sufficiently large for not introducing errors due to these artificial boundaries. Here,
a value of D =20mm is used. Dimensional input parameters were derived from the non-
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Figure 4.15: Two-dimensional sketch of the oscillating shear flow cell (not drawn to scale).

dimensional data specified by Yang and West [182]. The velocity of the bottom boundary
plane at x, = 0 is given as

u® (x1,0,x3,1) = (Upsin(w?),0,0)", (4.16)

where Uy = 32.6mm/s and w =0.645s~!. Consequently, the periodic time is T, =9.74s.

This example is especially interesting, since the one-way coupling of multi-ion trans-
port to fluid flow is tested for an unsteady problem including all three mechanisms of
ion transport. In addition, the usage of nonlinear kinetic models at the cathode surface is
emphasized. Depending on the applied cell potential, situations far below and also near
the limiting current density are investigated. In Yang and West [182], two-dimensional
simulations using finite-difference schemes were performed. Here, an appropriate three-
dimensional “slice” with thickness L/20 is used as computational domain for testing the
present three-dimensional implementation and proving that the computational approach
can also deal with essentially two-dimensional problem setups. In Yang and West [182], a
linear approximation to the convective velocity field was used in the vicinity of the cathode,
which was derived analytically. In contrast, the time-dependent incompressible Navier-
Stokes equations are actually solved at every time step to provide the current flow field.
This way, the proposed one-way coupling algorithm is tested within this example as well.
For the incompressible flow problem, the proposed stabilized finite element formulation is
used. In accordance to Bauer et al. [11], the SGFEM formulation of the ENP system of
equations is utilized for modeling the present multi-ion transport problem.

A zero initial velocity field is used to start computing the flow of electrolyte solution.
For this purpose, a sinus function is used in (4.16) instead of a cosine curve as done by
Yang and West [182]. However, this merely amounts to a simple shift in time, redefining
the origin of the time axis 7 = 0. The kinematic viscosity of the dilute electrolyte solution is
assumed to be v = 1.0mm?/s. The degrees of freedom located at the nodes of the artificial
left and right boundary representations are connected by periodic boundary conditions.
This enables the computation of unsteady shear flow between two infinitely long plates,
where the lower one is oscillating in its own plane with velocity u®°. At the top boundary,
a zero velocity boundary condition is prescribed, and the pressure reference level is set to
zero. The x3-component of the velocity vector is set to zero at the front and back boundary
of the three-dimensional computational domain.
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4.2 Oscillating shear flow cell

Copper deposition from an aqueous 0.003 M CuSO, - 0.1 M H,SO, electrolyte solution
under potentiostatic conditions is considered. As done by Yang and West [182], complete
dissociation is assumed resulting in a multi-ion transport problem involving three different
jonic species: Cu?* (k=1), SO?[ (k=2) and H" (k=3). The specific properties and bulk
concentration values are listed in Table 4.2. The electrode kinetics boundary condition for
the cathode is based on the following relationship for the normal current density:

in = io [exp( ol oy q))) - (C%)ﬁ exp ( —ack cp))} . (@.17)

a
RT : RT

Note that here the concentration-dependency is only present at the cathodic term. The
parameter values are ig =4.0 uA/mm?, 8= 0.5, @, = 1.5 and a. = 0.5. The anode potential
defines the reference level for @ and is set to zero (V,, =0V). No overpotential is considered
at the anode. The potential V, at the metal side of the cathode is V. = —0.095V in the first
experiment, corresponding to 45% of limiting current density, and V., = —0.245V in the
second one. According to Yang and West [182], the latter corresponds to 97% of limiting
current density. The applied cell potential differences are the same as those used in the
reference, but a different reference level for the electric potential is used here.

Since the temperature of the electrolyte solution is not explicitly given in the reference,
a reasonable value of 7' = 298K is assumed. At left, right and top boundary, being far
away from the cathode, the boundary conditions are set as ¢ = ¢;° and ® =0V. At all
other boundary parts not yet discussed, zero mass flux is assumed for all concentrations.
It is beneficial to solve the electrochemistry equations in a frame of reference where the
cathode and its associated boundary part are at rest. Thus, the relative motion of electrolyte
solution with respect to the origin is required for solving the electrochemistry problem.
Consequently, the velocity of the origin has to be subtracted from the velocity field uf
computed from the Navier-Stokes solver. Thus, the relative convective velocity to be used
in the ion-transport equations reads

u(x,t) =u' (x,1) —u®0,1), (4.18)

being zero all along the bottom boundary plane. Since fluid flow and ionic transport are
considered in the complete area between the parallel planes, one can choose H/2 as char-
acteristic length and a time-averaged velocity value of 2U/x as characteristic velocity.
The corresponding Reynolds number is Re = UgH/(vrr) = 166 and the according value for
the Peclet number is Pe = Re-Sc = 230,609 with a Schmidt number of Sc = v/D; = 13809.
A particular definition of a Peclet number was given by Yang and West [182], reading
Pe = (w/v)"> UyL?/D; = 568.

ionic species Cu®* | SO | H*

Zk +2 -2 +1
Dy [1073mm?/s] | 0.721 | 0.0659 | 0.312
¢?® [umol/mm?] | 0.003 | 0.103 | 0.2

Table 4.2: Material parameters and electrolyte bulk concentrations of ionic species.
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Figure 4.16: Locally refined mesh near the cathode surface.

The computational domain is discretized using a symmetric mesh with 184 elements in
x1-direction and 60 in x,-direction. The considered three-dimensional slice is discretized
with one element in x3-direction. Refinement towards the bottom plane is realized with
mesh grading using a bias factor of 1.065. The elements next to the bottom plane exhibit a
height of about 24.3 um. Near the cathode surface an additional local refinement is applied
(see Fig. 4.16). Thus, the minimum edge length in x;-direction of elements adjacent to the
cathode is locally reduced to 3.041 um. In total, the mesh consists of 12,296 hexahedral

elements with trilinear shape functions and 25,148 nodes.

Here, a generalized trapezoidal rule with 6 = 0.5 is utilized for time integration. A
constant time-step length of Az = T},/100 is used in all simulations. For the start-up phase
of each simulation, an appropriate smooth ramp function is applied for changing V, from
zero to its final value within one period of oscillation. With four degrees of freedom per
node for the fluid problem (velocity u', pressure p) and four degrees of freedom per node
for the electrochemistry fields (cy, ¢z, 3, @), in total, more than 200,000 degrees of freedom

have to be determined within each time step.

At least 15 periodic cycles (1500 time steps) are computed before any data evaluation is
performed. This ensures that initial transients have vanished and the quasi-static periodic
solution has been reached. In Fig. 4.17, the computed copper cation concentration profiles
near the cathode are depicted for the case V. = —0.245V. Snapshots at four different times
are provided which clearly reveal the influence of the oscillating shear flow on the shape
of the concentration boundary layer. The periodic changes in the boundary-layer thickness
cause the observed oscillatory behavior of mass flux and current density at the cathode
surface. In Fig. 4.18, the temporal evolution of the spatially averaged current density at the
cathode surface is shown over two periods of oscillation. The comparison with the exper-
imental data from Yang and West [182] shows excellent agreement for both investigated
values of applied cell voltages. The computed evolution of copper cation concentration at
the cathode surface relative to the bulk value is depicted in Fig. 4.19. These data are also
space-averaged along the electrode surface. Oscillation of concentration due to periodic
shear flow is observed here as well. For V., =—0.245V the Cu?"-concentration is varying
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(a) 1= 146.15 (= 15T)

(b) t = 148.55

() 1= 151.0s

(d) t=153.4s

Figure 4.17: Concentration boundary layer of Cu?" forming near the cathode surface:
snapshots at various times within one oscillation period (T}, =9.74s).
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Figure 4.18: Temporal evolution of space-averaged cathodic current density. Comparison
of computed results with experimental data provided in Yang and West [182].
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Figure 4.19: Numerical results for the temporal evolution of space-averaged surface con-
centration of Cu>* ions at the cathode.
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Figure 4.20: Numerical results for the temporal evolution of space-averaged surface over-
potential s . = V. — © at the cathode.

between 1% and 10% of the bulk concentration value reflecting that the cell is operating
near the limiting current density in the second experiment. For the same time interval as
before, the average surface overpotential ns. = V. — @ is finally plotted in Fig. 4.20 for
both experiments.

4.3 Natural convection in a rectangular electrolytic cell

In the following numerical example, galvanostatic copper deposition from a binary elec-
trolyte solution coupled to buoyancy-driven flow is investigated. In this context, the ad-
vantage of the proposed general galvanostatic boundary condition combined with a Butler-
Volmer formulation is demonstrated. The considerations below are a summary of the sim-
ulation results presented recently in Ehrl et al. [S6]. A rectangular electrolytic cell with
parallel vertical electrodes is considered. In Fig. 4.21, the exact geometrical setup is il-
lustrated. The electrodes of the cell are directly embedded into an insulator. The simula-
tions are conducted in a two-dimensional domain to be comparable to respective results of
Kawai et al. [113, 114].

Here, two different modeling approaches are compared. In the computational model
M1, the ENP system of equations is considered. A Butler-Volmer condition (2.44) for
the reacting ionic species is used at the electrode surfaces. This boundary condition is
combined with the proposed approach to galvanostatic simulations (see section 3.5.2).
For comparative reasons also a second computational model is investigated, denoted as
model M2, for which the single scalar transport equation (3.89) including a Neumann
boundary condition for the reacting ionic species on the electrode is used. In this simplified
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Figure 4.21: Rectangular electrochemical cell with vertical electrodes (C: cathode,
A: anode, LE: leading edge, TE: trailing edge).

model M2 applicable only for binary electrolyte solutions, the potential is not a solution
variable, but the migration effect is included in the diffusion coefficient of the electrolyte
solution D defined in (3.90). The influence of the ionic surface concentration and the
surface overpotential on the local current density is neglected when using a Neumann
boundary condition.

For all inert ionic species, no-flux boundary conditions are applied at the electrode sur-
face. No-flux boundary conditions are also used for all ionic species at the remaining
boundary parts, which are representing insulating surfaces or a free surface at the top of
the cell. The latter is modeled using a free-slip boundary condition for the flow problem.
All other boundaries represent rigid walls. Thus, no-slip boundary conditions are applied
there. In order to obtain a unique solution, a zero value for the pressure is prescribed at
the left lower corner of the cell. The Boussinesq approximation is utilized to account for
natural convection in the electrolytic cell. Standard gravity acceleration g = 9.81m/s” is
assumed.

The required physical properties of the aqueous CuSO, solution considered here are
provided in Table 4.3. Complete dissociation is assumed for this binary electrolyte. Con-
sequently, the valences of the two ionic species are zo 2+ = 2 and zg2- = —2. According

4

to Ehrl et al. [56], the two ionic diffusion coefficients D2+ and Dy are calculated

05~
from the diffusion coefficient of the electrolyte solution Dcyso, using definition (3.90) and

the transference number for binary electrolyte solutions given by (see, e.g., Newman and
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aqueous electrolyte solution (Kawai et al. [113]): 0.05M CuSOyq4
applied current densities iy [MA cm 2] 1.96, 3.65
Dcyso, [em?s™1] 6.50 x 10~°
Do+ [em?s™!] 5.08x107°
Dy [em?s™!] 9.03x107°
" 4

tCu2+ [-] 0.36

v [em?s™1] 1.0 x 1072

oo [g cm ] 0.99

@Cuso, [cm®mmol ] 0.16
parameters for Butler-Volmer law (Kawai et al. [116]):

io [MA cm™2] 3.73

Bl1—] 0.75

a, [—] 1.5

ac [—] 0.5

Table 4.3: Physical properties and model parameters.

Thomas-Alyea [137] and Appendix A)

L2+ +
t* _ Cu2 /'lC:ll2 (4.19)

Cu2+ - _ *
Leu?tHen?t T 2502 Hs02-

Strictly speaking, this approach is only valid in the bulk of the electrolyte solution, since
definition (4.19) is only valid for binary electrolyte solutions in the absence of concen-
tration gradients. The densification factor acyso, can be used instead of the densification
factors of single ionic species, since the electroneutrality requires the same amount of
cations as anions to be at each point of the domain. The parameters for the Butler-Volmer
condition (2.44) are taken from Kawai et al. [116] and are listed in Table 4.3. According
to Kawai et al. [113, 114], a temperature value of 7 = 293K is assumed.

The computational domain is discretized by 180x640 bilinearly-interpolated quadrilat-
eral elements. Towards both electrode surfaces the element length 4y is reduced to fully
resolve the concentration boundary layers. The minimal element length adjacent to the
electrode is /ix min = 20 um. The element length Ay is reduced towards the leading and trail-
ing edges, since concentration gradients and current densities are higher in these regions.
A minimal element length in y-direction of Ay min = 70um is used. The element size is
similarly refined towards the free surface and the bottom of the cell. For discretization in
time, a generalized trapezoidal rule with 8 = 0.67 is utilized here. A constant time step
At =0.05s 1s used for all simulations.

The numerical results obtained with the present computational approach are compared to
numerical and experimental results published by Kawai et al. [113, 114]. In Fig. 4.22(a),
the Cu>* concentration field including streamlines is plotted at r = 600s. Therein, the
black rectangles at the left and right hand side indicate the electrodes of the electrolytic
cell, whereas the dark-gray areas represent the insulators above and below the vertical
electrodes. The lighter electrolyte solution with a decreased ion-concentration level ac-
cumulates at the top, the heavier at the bottom. In the center of the cell, the electrolyte
solution rotates in clockwise direction. This flow pattern is slightly disturbed at the top
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Figure 4.22: (a) Cu”* concentration field including the velocity field displayed by stream-
lines and (b)-(g) detailed views of the Cu?* concentration field in the vicinity
of the cathodic trailing edge including the velocity field vectors at different
time steps.

and bottom of the cell as shown in Fig. 4.22(a). The thin ionic diffusion layers at the
electrodes can only be observed in a more detailed depiction. As an example, the trailing
edge of the cathode is shown in Fig. 4.22(b)—4.22(g). This series of figures illustrates the
development of the concentration boundary layer at the cathode while being carried away
by the self-induced buoyancy-driven flow field. The presented computational approach
(referred to as model M1 in this numerical example) is able to represent the three effects
of ohmic overpotential, concentration overpotential and surface overpotential (see section
2.5.3). The surface overpotential is a result of the Butler-Volmer model for electrode ki-
netics, whereas ohmic and concentration overpotentials are accounted for automatically by
the coupled ion-transport equations, as it can be observed in Fig. 4.23. In this figure, the
electric potential is depicted along the horizontal line y = 0, which almost corresponds to
an electric field line directed from the middle of one electrode to the other. Along such
a line, the ohmic overpotential causes a linear potential profile behavior in the bulk elec-
trolyte solution, since the uniform concentration levels lead to a constant conductivity. In
the vicinity of the electrodes, that is inside the ionic boundary layer, the additional con-
centration overpotential causes a nonlinear potential profile which differs from the linear
curve (black dotted line) obtained when assuming solely ohmic losses and a constant con-
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Figure 4.23: Electric potential along the horizontal line y=0 at time ¢ = 600s (ij; =
1.96mA /cm?).

ductivity. It is emphasized that the influence of the concentration overpotential is much
smaller at the anode.

The natural convection effects observed for the present cell configuration are caused
by density variations inside the thin ionic diffusion layers. The latter are a result of the
ongoing electrochemical reactions at the electrodes. Here, the electrochemical reaction
(1.6) is considered here, where copper deposition takes place at the cathode and a corre-
sponding dissolution process is occurring at the anode surface. A comparison of computed
vertical velocities u, (model M1 and M2) with experimental and numerical values from
Kawai et al. [114] is presented in Fig. 4.24(a). Additionally, the temporal evolution of
the maximal vertical velocity uy max 1s depicted in Fig. 4.24(b). Both simulation results
agree very well with the numerical results of Kawai et al. [114], with the maximal velocity
values being slightly higher, though. The higher value of uy max predicted by model M2
is in the range of the velocity fluctuations, as shown in Fig. 4.24(b). According to Kawai
et al. [114], these fluctuations are the result of interacting upward and downward natural
convection. However, in the present simulation, the fluctuations are not as distinct as the
fluctuations reported by Kawai et al. [114]. The higher maximal velocity computed with
model M1 is probably the result of different electrode surface concentrations (and there-
fore boundary-layer thicknesses), leading to different buoyancy effects. Additionally, the
maximal velocity determined experimentally also confirms both numerical results.

Ionic surface concentrations can be expressed analytically in the case of an unsteady
one-dimensional diffusion equation in a semi-infinite medium by the equation

2(1 _téu2+)itot ¢

ot F nDcuso,

Cop2+ (D) = ca% +
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Figure 4.24: (a) Vertical velocity u, for iy = 1.96 mA/cm? in the vicinity of the cathode
along a horizontal line at y = 0 at time ¢t = 600s and (b) maximal vertical
velocity component uy max for ige = 1.96mA/ cm? along a line at y = 0 over
time .

where iy = liot/A is the total applied current per electrode surface A (see, e.g., Bard and
Faulkner [7]). The analytical solution fits very well to the present numerical results based
on model M2, as may be observed in Fig. 4.25. Analytical, experimental and numerical
(model M1 and M2) results are depicted against the square root of time in Fig. 4.25.
Initially, diffusion and migration are the dominating ion-transport phenomena. As shown
in Fig. 4.25, the ionic concentration ¢ 2+ decreases proportional to the square root of time.
Later on, the emerging buoyancy force becomes dominant and causes the surface concen-
tration to converge to a quasi-steady state. From then on, numerical results deviate from the
analytical solution, which does not account for convection effects. After the quasi-steady
state has been reached, fluctuations can be observed in the ionic surface concentrations,
which are due to the velocity fluctuations. In the case of i = 1.96 mA/ cm?, the solution
resulting from model M2 is almost identical to the numerical results presented by Kawai
et al. [114]. For a higher current density ijo; = 3.65mA/ cm?, the numerical results match
very well until the beginning of the quasi-static state ( = 100s). At this point, a jump in
the surface concentration curve provided by Kawai et al. [114] is observable in Fig. 4.25,
which is probably related to the specific boundary condition used by Kawai et al. [114],
which includes a correction factor for the limiting current condition that is activated at
a concentration limit of ¢ 2+ = 0.0025 mmol/cm? (cf. Kawai et al. [113]). This specific
boundary condition in combination with the galvanostatic constraint condition leads to a
non-uniform current density distribution at the cathode as shown by Kawai et al. [114].
In contrast to model M2, the galvanostatic constraint condition for model M1 leads to a
slower reduction of the ionic surface concentration from the beginning on for both current
densities considered. After the quasi-steady state has been reached, the observed concen-
tration level is about 0.0025M lower compared to the simulation with model M2, whereas
the influence on the concentration is larger in the case of the lower current density. The
galvanostatic constraint condition does not prescribe a local fixed current density at the
single nodes of the electrode but allows a variable current density constrained by equation
(2.48) and (2.49) at the cathode and the anode, respectively. As indicated in (2.44), the
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Figure 4.25: Surface concentration of Cu”* ions in the middle of the cathode at y = 0 plot-
ted against the square root of time.

local current density i, depends on the ionic surface concentration c(y) and the surface
overpotential 775(y) = Vg — @(y).

The effect of the galvanostatic Butler-Volmer boundary condition is demonstrated in
Fig. 4.26 and 4.27. In Fig. 4.26, the cathodic current density i, normalized by the applied
current density iy is shown along the cathode. The solid black line indicates a uniform
current distribution as it is imposed in the case of a Neumann boundary condition (model
M2). In Fig. 4.27(a), the molar concentration of Cu®* along the electrode is depicted. The
solid lines represent the numerical solution obtained from model M2, whereas the dashed
lines correspond to the application of galvanostatic Butler-Volmer conditions. In the case
of it = 3.65mA/cm?2, model M2 results in negative ionic concentrations at the trailing
edge of the cathode, since a uniform current density distribution is prescribed along the
whole electrode via a Neumann condition. In Kawai et al. [113], negative concentrations
are avoided by introducing a specific boundary condition for limiting current conditions.
For model M1, no negative concentration values occur and the zero concentration level for
limiting currents is automatically fulfilled, as shown in Fig. 4.27(a).

In Fig. 4.27(b), the distribution of the electric potential ® normalized by the applied
cell voltage U = V. -V, is depicted. The applied cell potentials are U = 0.72V for iy =
1.96mA/cm? and U = 1.45V for i = 3.65mA/cm?. These values are a result of the
proposed galvanostatic simulation approach. In particular, for each prescribed electric
current required, values for the cathodic potential V.. are determined based on the choice
V, = 0V. The difference between the applied cathodic potential V, and the potential @ at
the electrolyte solution side of the electrode represents the cathodic surface overpotential
Ns.c = V. — @ (ct. section 2.5.3). Its non-uniform distribution along the cathode can be also
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Figure 4.27: (a) Concentration and (b) normalized potential distribution ®/U for iy =
1.96mA /cm? and iio; = 3.65mA/cm? along the cathode surface at r = 600s.

be observed in Fig. 4.27(b).

The current density computed with the galvanostatic condition exhibits a characteristic
distribution dominated by the ohmic drop (i = 1.96mA/ cm?) and by convection and
diffusion (irof = 3.65mA/cm?). In the latter case, the higher current density causes a lower
ionic concentration at the cathode (see Fig. 4.27(a)). Consequently, higher buoyancy forces
and vertical velocities arise in this case. Thus, unconsumed electrolyte solution is brought
faster to the electrode at the leading edge, resulting in a very thin diffusion layer and
locally very high, but finite, current densities. The finite value is a result of the non-
uniform potential distribution at the electrode, particularly by the jump in the overpotential
at the leading edge, as shown in Fig. 4.27(b). In contrast, the value would be infinite
in the case of an equipotential surface on the electrolyte solution side of the electrode
(primary current density distribution), as discussed in Newman and Thomas-Alyea [137].
The Cu?* concentration declines to zero at the trailing edge (see Fig. 4.27(a)), since the
majority of the cupric ions has already been consumed in the electrodeposition process
further upstream. In the case of the lower current density, i.e., it = 1.96mA/ cm?, the
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influence of convection can be observed in the declining concentration downstream (see,
Fig. 4.27(a)), which has obviously a minor influence on the current distributions, since
the concentration level does not decline to zero. Anyway, the current density peak at the
leading edge is more distinct than the peak at the trailing edge. Both peaks are finite as a
result of an increased surface overpotential at leading and trailing edge (see, Fig. 4.27(b)),
whereas it is almost uniform in the middle of the electrode.

As discussed, e.g. in Newman and Thomas-Alyea [137], concentration variations along
the electrode are usually ignored for the evaluation of current distributions in electrochem-
ical systems with strong convection; it is emphasized that this is not the case for natural
convection. Besides the surface overpotential, the ion-concentration level at the electrode
influences the current density distribution. As a result, one observes non-uniform current
density distributions exhibiting a characteristic U-shaped form as also described, e.g., by
Wallgren et al. [176].

When the CNP system of equations (3.83)-(3.84) is utilized for this challenging two-
way-coupled problem instead of the standard ENP model, identical results for all unknown
fields are obtained. This is a very important observation, since it confirms the theoretical
expectations. As a consequence, the number of iterations in the outer and inner loops of
the two-way coupled partitioned scheme are identical as well.

Nevertheless, an increase in computational efficiency is observed, since within the CNP
model the inert ionic species SO?{ is eliminated from the system of equations by means
of electroneutrality. Consequently, it has only to be solved for the nodal values of ¢; and
@ within the electrochemistry subproblem. For the structured mesh with 115,200 quadri-
lateral elements considered here, the corresponding number of nodes is npoq =116,383.
Thus, for the CNP model only 2n,0,4 =232,766 degrees of freedom arise, while a number
of 3np0q =348,063 degrees of freedom have to be determined for the ENP formulation.
Furthermore, the CNP formulation does not lead to a saddle-point matrix system which is
in general difficult to solve. This preliminary result demonstrates the benefit of the CNP
formulation and encourages further investigations of this promising approach in the future.

4.4 Rotating cylinder electrodes

Another particularly important electrochemical cell configuration is the rotating cylinder
electrode (RCE), where a cylinder-shaped cathode is rotating in the center of an electrolytic
cell. A series of review articles by Gabe [66], Gabe and Walsh [67] and Gabe et al. [68]
documented the research and development of RCE configurations. In the present context,
the RCE also serves as an important model problem for electrodeposition applications,
since rotationally-symmetric parts to be plated are usually rotated to achieve more uniform
plating results.

Several different RCE configurations and physical phenomena are addressed in the fol-
lowing three examples. In section 4.4.1, primary and secondary current density distribu-
tions subject to galvanostatic conditions are computed for a rotating cylinder Hull cell.
Natural convection induced by local density variations in the vicinity of a RCE is consid-
ered in section 4.4.2. Finally, coupled multi-ion transport in turbulent Taylor-Couette flow
is studied in section 4.4.3. It is successfully demonstrated that the proposed computational
approach is capable to provide accurate results for all of these challenging electrochemical
configurations.
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4.4.1 Primary and secondary current density distribution

The first numerical example devoted to RCE configurations is based on the study by
Madore et al. [129], who investigated primary and secondary current density distributions
in a rotating cylinder Hull cell. In this reference also experimental results are provided,
which enables a sophisticated comparison of experiment and simulation.

The basic experimental setup is depicted in Fig. 4.28(a), while the geometrical defini-
tions are provided in Fig. 4.28(b). The cathode with height 6cm and diameter 1.5cm is
part of the inner cylinder which is rotating around its own axis with 1250 rpm. The rotating
cylinder is located in concentric position within a cylindrical insulating tube made of plex-
iglass with diameter 5.5 cm. The planar, circular counter electrode (anode) is located at the
bottom of the vessel and has a diameter of 8 cm. Further details on the geometrical config-
uration are given in Fig. 4.28(b). The volume outside the insulating tube is not considered
in the numerical simulations, since this region is assumed to be completely shielded by
the insulating components of the cell. An illustration of the final computational domain is
provided in Fig. 4.28(c).

Copper deposition from an aqueous 0.5 M CuSO, — 1.0 M H,SO, electrolyte solution
is considered at a temperature of 25°C (T = 298.15K). The specific conductivity of the
electrolyte solution is oo =0.286 S/cm, which is derived based on data provided by Madore
et al. [129]. Four galvanostatic copper electrodeposition experiments with average ca-
thodic current densities iyyg =2,10,35 and 75mA/ cm? were performed by Madore et al.
[129]. Since the surface area of the cathode is 28.27 cm?, the four corresponding values
for the total electric current are i = 56.54,282.7,989.5 and 2120.3mA.

According to Madore et al. [129], the highest applied current density corresponds to
about 20% of the limiting current density. Thus, mass transfer effects can still be neglected
and the simple model for the electric potential (2.53)-(2.57) is applicable. For both cathode
and anode, the Butler-Volmer law (2.44) with parameters iy =2.0mA/ cm?, B=0, a; =
1.285 and @, = 0.571 is used for modeling electrode kinetics. For the anode, the electrode
potential is set to V, =0V, while the cathode potential V. is a further unknown of the
galvanostatic problem, which has to be adjusted in order to reach the prescribed current
values Ii;. For this purpose, the solution approach for current-controlled problems as
presented in section 3.5.2 is utilized here.

The computational setup described here for modeling the secondary current density dis-
tribution can also be used to compute the primary current density distribution subject to a
galvanostatic control. For this purpose, the value for the exchange current density is simply
set to a very high value. In the present example, a value of iy = 1000.0mA /cm? is used. As
a result, the influence of the surface overpotential 75 in the Butler Volmer equation (2.44)
is artificially reduced to a negligible value and the ohmic resistance of the electrolyte so-
lution becomes the only relevant dissipative effect. For a justification of obtained results,
the computed values for V, and V, can be applied as Dirichlet boundary conditions (2.55)
at the electrodes within a subsequent simulation run.

Owing to the radial symmetry of the present setup, the computations are actually per-
formed only on one quarter of the cylindrical volume. The natural boundary condition
V®-n =0 is used at all arising artificial boundaries. Except the electrodes, all other re-
maining boundaries are regarded as insulators, and homogeneous Neumann boundary con-
ditions V® - n = 0 are applied there as well. For all simulations, a very fine structured mesh
consisting of 1,033,320 trinilearly-interpolated hexahedral elements is used.
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Figure 4.28: Problem setup for a rotating cylinder Hull cell: experimental setup (adapted
from Madore et al. [129]) (a), geometric definitions (b) and three-dimensional
visualization of the computational domain (c).
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Figure 4.29: Visualization of the primary current density distribution at the cathode with
electric field lines between the electrodes (a) and the electric potential field
inside the electrolyte solution (b) .

105



4 Numerical examples

favg [MA/cm?] 2 10 35 75
V. [mV] (primary current density) -55.38 | -276.9 | -969.2 | -2076.8
V. [mV] (secondary current density) | -84.56 | -389.3 | -1162.9 | -2319.6

Table 4.4: Calculated cathodic electrode potentials required for reaching the four pre-
scribed average current densities.

In Fig. 4.29(a), the computed primary current density distribution at the cathode sur-
face is illustrated. Additionally, some characteristic field lines between the electrodes are
shown. A visualization of the electric potential field inside the electrolyte solution is pro-
vided in Fig. 4.29(b). The depicted result is obtained from the model for the secondary
current density distribution with an applied electric current of I;o; =56.54 mA.

The calculated current density distributions for the four experimental conditions are de-
picted in Fig. 4.30. Owing to the geometrical setup of the cell, non-uniform current density
distributions are obtained along the cathode surface. For the primary current density distri-
bution, the presented curves for i/i,y, are independent from the actual value of the electric
current. Thus, the primary current density distribution is identical for all of the four sim-
ulations as shown in Fig. 4.30, reflecting that the cell geometry is governing the electric
potential field in this case. Only for the higher applied currents the primary current density
distribution comes close to the experimentally determined profiles, while the approxima-
tion at low currents is rather poor. In contrast, the secondary current density distribution
shows very good agreement with the experimental data for all of the four applied cur-
rents. This example clearly demonstrates the importance of including the effects of surface
overpotential into the model.

The cathodic electrode potentials V,. required to achieve the four prescribed mean cur-
rents are listed in Tab. 4.4 for both modeling approaches considered here. Unfortunately,
no values for electrode or cell potentials are provided by Madore et al. [129]. Hence, a
comparison of computed cell voltages with experimentally determined values is not pos-
sible for this example. In general, a combined comparison of current density distributions
and corresponding cell voltages is important to validate a given computational model on a
rigorous basis.

As a summary, the modeling approach for the secondary current density distribution
provides an adequate model for the range of electric currents studied here. It is clearly
demonstrated that it is important to take into account the surface overpotential at electrode
surfaces. However, for higher current densities, an a priori assumption of negligible ionic
mass transfer as done here is not valid anymore. For such situations, the full multi-ion
transport model has to be solved. Since the inner cylinder is rotating with 1250 rpm, a
turbulent flow problem has to be considered. A numerical example addressing such a
challenging situation is presented below in section 4.4.3.
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Figure 4.30: Numerical results for primary and secondary current density distributions
along the cathode in comparison to the experimental values provided by
Madore et al. [129].
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4.4.2 Natural convection at a rotating cylinder electrode

The rotation of a RCE mainly induces so-called forced convection, which in turn influences
the rate of electrochemical reaction (e.g., the deposition process in the present context
of electroplating). When the rotational speed is low enough and concentration gradients
are present, natural convection phenomena can become important as well. For a RCE
configuration as considered by Mandin et al. [130], tertiary current density distributions
influenced by natural convection are investigated below. Parts of the following example
were published in Ehrl et al. [56]. In this reference further numerical examples for natural
convection in electrolytic cells are provided.

For details on the present RCE setup, the reader is referred to Mandin et al. [130] as well
as literature referenced therein. Mandin et al. [130] used a two-dimensional, rotationally-
symmetric model to solve a stationary, conservative formulation of the Navier-Stokes equa-
tions. A single transport equation for the copper ion concentration was solved in a station-
ary and convective form for investigating the system at limiting current. Only convection
and diffusion of copper ions was considered resulting in a “single-ion model”. Such a
neglect of migration was justified by the high electric conductivity of the electrolyte solu-
tion due to an excess of supporting electrolyte (sulfuric acid) and the solely consideration
of limiting current conditions. For a thorough discussion of this single-ion model for the
electrolytic cell at limiting current and a validation of the present numerical method based
on numerical results provided by Mandin et al. [130], the reader is referred to Ehrl et al.
[56].

In contrast to that simplified ion-transport model, three-dimensional time-dependent
simulations are performed here using the proposed two-way-coupled computational ap-
proach to account for natural convection. The limiting current value referenced in Mandin
et al. [130] was determined experimentally by a linear voltammetry measurement pre-
sented in Mandin et al. [132]. Thus, time-dependent simulations are performed here in
order to reproduce that voltammetry experiment. In addition, the full multi-ion transport
problem is considered in the following, including a Butler-Volmer law for the reacting
cupric ion at the cathode. The proposed stabilized finite element formulation for the ENP
system of equations is utilized in this example.

In Fig. 4.31, the three-dimensional computational domain is illustrated. The rotating
inner cylinder has a diameter of d; = 2r; = 12mm. The part of the cylinder that is im-
mersed in the electrolyte solution has a length of /; = 60mm. Only a part with length
[, = 4mm of the total cylinder surface is an electro-active area (cathode) with a surface
area of A = [.nd; = 150mm?. The center position of the cathode surface is located 38 mm
below the free surface of the electrolyte solution. The entire outer cylindrical boundary
surface (height /, = 135mm and diameter d, = 76 mm) is acting as anode. According to
Mandin et al. [130], the inner cylinder is rotating with w = 1.0rad s~! and a constant tem-
perature of 7 = 337K (64 °C) is assumed for the electrolyte solution. For these conditions,
the hydrodynamic regime is considered mixed, i.e., both natural and forced convection are
important effects for the given problem setup.

In accordance to Mandin et al. [130], a value of v = 6.6- 107" m2s! is used for the
kinematic viscosity of the electrolyte solution at the given temperature. Furthermore, the
density of the bulk electrolyte solution is given as p> = 1158.7 kgm—>. For the present
setup, the Reynolds number is computed as Re = wri(r, — r;)/v = 290. Therefore, a laminar
flow regime without any physical instabilities can be considered for this particular rotat-
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ing cylinder configuration, as pointed out in Mandin et al. [130] and the previous studies
referenced therein. Additionally, the laminar character of the developing flow field is also
confirmed by a fully three-dimensional simulation not presented here. Assuming a laminar
flow regime, the efficiency of the simulations can be enhanced by performing calculations
only for a segment of the three-dimensional domain utilizing the rotational symmetry of
the considered problem setup. Here, a wedge-shaped domain with an angle of @ = 15° is
chosen. This reduction of the domain size is only possible when imposing rotationally-
symmetric boundary conditions at the same time, as described in more detail in Appendix
C.

Copper electrodeposition from an aqueous electrolyte solution consisting of 0.567 M
CuSOy4 and 1.63 M H,SOy4 as additional supporting electrolyte is studied. Complete disso-
ciation is assumed, resulting in a multi-ion transport problem involving three different ionic
species. These are given as Cu’* (k=1), SOi_ (k=2), and H" (k=3). The corresponding
bulk concentration values are set to be

CZ?;% =0.567mol/1, Cgooi‘ =2.197 mol/l, c;?r =3.26 mol/I.

In the experimental study by Moats et al. [134], the diffusion coefficient for cupric ions is
given as D2+ =1.07- 10~?m?/s for a temperature of 60°C and Dqpr=1.23- 10~m?/s for
65°C for a very similar bath composition as the one considered here. It is important to note
that these values are significantly lower than the value D2+ = 1.62- 102 m2s~! which
was used by Mandin et al. [130]. For a thorough discussion and comparison of results con-
cerning these different diffusion coeflicients the reader is referred to Ehrl et al. [56]. In the
following, two characteristic cupric diffusion coefficients given as D2+ = 1.1+ 10~2m?/s
(DCI) and Do+ = 1.2+ 10~"m?2/s (DC2) are considered, which are in accordance to the
range of values experimentally determined by Moats et al. [134]. The Schmidt number
of the problem is computed as Sc = v/D 2+ = 660 in case of DC1. A value of Sc =550
is obtained when the diffusion coefficient DC2 is considered. Corresponding values for
diffusivities of inert ionic species at 64°C are derived from so-called ionic equivalent con-
ductances reported in the literature (for details, see, e.g., Newman and Thomas-Alyea
[137): Dgep- =2.73-10m*/s and Dy = 2.38-10"°m?/s. The density of the elec-
trolyte solution is correlated to the ionic concentrations via (2.65). The molar mass of
each ionic species scaled by the density of the bulk electrolyte solution My /p™ serves as
the basis for individual densification coefficients, resulting in Qo2+ = 5.48.107 m?3/mol,
@502 =8.29- 10~ m?/mol and ay+ = 8.63-10 " m*/mol.

At the inner cylinder surface, the velocity resulting from the rotation with w = 1.0rads ™!
is prescribed via
Uy =wy, Uuy=—wx u;=0. (4.20)

The outer cylinder and the bottom of the cell are at rest. As done by Mandin et al. [130],
the free surface at the top of the computational domain is modeled by free-slip boundary
conditions for the flow problem. Based on experimental data provided by Mandin et al.
[132], appropriate coefficients for the Butler-Volmer law (2.44) applied at the cathode sur-
face were determined as: ip = 5.0 A/m?, o, = 1.0, @, = 1.0 and B = 1.0. This parameter
choice was found by a parameter study performing a series of simulations. A curve fitting
without simulation is not possible in the present case since polarization curves are a re-
sult of the coupled ion-transport problem natural convection. At the outer cylinder surface
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Figure 4.31: Computational domain and locally refined mesh towards the inner cylinder
(left) and top view of the 15° segment (right).

0

-200

-400 e —

600 R {F/ ——

-800

o [A/M?]

ao00 | 050 N N —

-1200 IS -

-1400 experiment, [132]

21600 | B S el num. result (DC1)

1 1 g N num. result (DC2)
-1800 1 1 1 1 I I I
-400 -350 -300 -250 -200 -150 -100 -50 0

cathode potential ve [mV]

Figure 4.32: Linear voltammetry experiment for the considered RCE setup: comparison
of present numerical results and experimental data provided by Mandin et al.
[132].

110



4.4 Rotating cylinder electrodes

the individual ionic concentrations and a reference level for the electric potential are pre-
scribed reading ¢y = czo and ® = 0mV. For the free surface, the bottom of the cell as well
as the insulating parts of the inner cylinder, no-flux boundary conditions are applied for all
ionic species.

In total, the mesh consists of 260,085 trilinearly-interpolated hexahedral elements. The
spatial discretization is refined towards the rotating cylinder in radial direction, with addi-
tional local refinement near the cathode surface. In Fig. 4.31, the wedge-shaped computa-
tional domain including the discretization is depicted. For illustration, the cathode surface
on the inner cylinder is marked by a black area. In accordance to the experimental proce-
dure referenced by Mandin et al. [132], the cell voltage U = V, — V.. is linearly increased
from U =0mV to U = 350mV with a rate of ImV/s. Since V, = 0mV is kept fixed,
the cathode potential V. is decreased from V. =0mV to V. = —350mV. For this time-
dependent simulation, a generalized trapezoidal rule (8 = 0.66) with a constant time-step
size At = 1.0s is used. Before starting the linear decrease of V,, a number of 30 time steps
is used to compute a developed flow field induced by the rotation of the inner cylinder.

In Fig. 4.32, the numerically determined mean current densities are shown against the
cathode potential V.. for the two considered diffusion coefficients DC1 and DC2. Both
graphs match the experimental curve presented by Mandin et al. [132] quite well. The
importance of including buoyancy effects is demonstrated by the two curves obtained from
a one-way coupled simulation neglecting the effect of density variations. In this case, the
obtained mean current densities are significantly lower compared to both the experiment
and the simulations including natural convection. In general, the experimental curve used
by Mandin et al. [132] to determine the value of 1544 A/ m? for the limiting current does
not show a complete horizontal slope around V. = —350mV, as shown in Fig. 4.32. This
may represent an uncertainty for the experimentally determined limiting current value.

In Fig. 4.33, simulation results for velocity, cupric ion concentration and density fields
for the cell operating at limiting current (U = 350mV) are displayed. Cupric ion concen-
tration profiles towards the cathode surface are depicted in Fig. 4.34. These are evaluated
for the electrode center position at z = 38 mm. With increasing cell voltage U, the surface
concentration declines due to the increased consumption of ions in the electrochemical
reaction. Finally, as shown for the case U = 350mV, the ionic concentration at the cath-
ode surface approaches to zero and the limiting current condition is reached. Computed
current density profiles along the RCE are presented in Fig. 4.35 for several intermediate
states during the linear voltammetry experiment. In all curves, an increased current value
at the leading edge of the electrode at z = 40mm is observed. From there towards the
trailing edge, located at z = 36 mm, the current density is decreasing, since the concentra-
tion boundary-layer thickness is increasing in vertical direction. In summary, the current
density profiles exhibit a characteristic shape dominated by vertical convection. The differ-
ence in the diffusion coefficients DC1 and DC2 leads to slightly different results w.r.t. the
current density. This difference is maximum when the limiting current is reached.

Limiting factors of the present numerical simulation are general inaccuracies in deter-
mining exact diffusion coefficients for individual ions, the concentration dependence of
the diffusion coeflicients, particularly for such concentrated electrolyte solutions, and un-
known parameters for the phenomenological Butler-Volmer law. Finally, especially for
such high temperatures as considered here, the temperature dependence of diffusion coef-
ficients becomes important, as indicated above and also stated by Moats et al. [134].
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Figure 4.33: Simulation results at # = 380s (U = 350mV) for the considered RCE config-
uration: (a) velocity magnitude |||, (b) zoom to the concentration boundary
layer of cupric ions at the surface of the cathode and (c) detailed view of the
density field including the vertical velocity component u, near the cathode.
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Figure 4.34: Concentration profiles near the cathode in radial direction for the case DC1
(evaluated at the cathode center position at z = 38 mm).
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Figure 4.35: Computed current density distributions along the cathode surface in axial di-
rection.

4.4.3 Multi-ion transport in turbulent Taylor-Couette flow

In this numerical example, multi-ion transport in turbulent incompressible flow within
the gap between two concentric cylinders is considered. The problem setup described in
the following is a model problem for the well-known electrochemical configuration of a
rotating cylinder electrode (RCE), which is usually used under turbulent flow conditions.
The rotating inner cylinder surface acts as cathode, while the outer cylinder represents the
anode of the electrolytic cell. The present geometric configuration is taken from Dong [52]
and illustrated in the left part of Fig. 4.36. The dimensionless problem formulation of the
ENP model as introduced in section 2.8.5 is used here. In the following, dimensionless
quantities are marked with an asterisk.

The inner cylinder with radius R = 1 is rotating about the z-axis with constant angular
velocity w* = 1. Based on the radius R}, = 2 of the fixed outer cylinder a gap of width d* =
RS — R =1 results. The space between the cylinder surfaces is filled by a dilute electrolyte
solution. The height of the computational domain is set to H* = z. For the flow solver, no-
slip boundary conditions are prescribed on inner and outer cylinder surface, respectively.
In the direction of the rotation axis, periodic boundary conditions are assumed.

The Reynolds number definition used by Dong [52] as well as Bazilevs and Akkerman
[15] reads Re = Uid/v, where U; = w-R; is the imposed rotation velocity of the inner
cylinder surface and v the kinematic viscosity of the electrolyte solution. In the following,
the case Re = 8000 is considered. According to Dong [52], the Taylor-Couette flow at this
Reynolds number is fully turbulent. For the corresponding pure flow problem, DNS and
LES data for comparison are provided in Dong [52], Bazilevs and Akkerman [15]. Other
definitions for the Reynolds number were proposed in literature for the present geometrical
configuration. For instance, in Eisenberg et al. [58], the diameter of the inner cylinder was
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Figure 4.36: Problem setup (left) and patches for isogeometric discretization approach
(right).

taken as the characteristic length, instead of the inter-electrode gap width. For the present
geometry, this alternative definition yields a Reynolds number Rep = 16,000.

In an experimental realization, all aforementioned dimensionless parameters describing
the geometry and flow for Re = 8000 would correspond, for instance, to U; = 32 cm/s,
Ri=25cm, Rob =50cm,d=25cm and v = 1072 cm?/s. Consequently, rotation of the
inner cylinder takes place with about 122 rpm. These dimensional values are obtained from
the non-dimensional setting based on the reference quantities Ly = 2.5 cm, U,er = 32 cm/s
and ter = Lrer/ Urer. Compared to the experimental settings used by Eisenberg et al. [58],
it is evident that the present numerical model is indeed justified as an example for real
applications.

As an example for multi-ion transport in this flow, potentiostatic copper electrodepo-
sition from an aqueous 0.003 M CuSO4 — 0.1 M H,SOq4 electrolyte solution is consid-
ered. A reasonable constant temperature value of 7 = 298 K is assumed. Most of the
required model parameters correspond to those used by Yang and West [182], who simu-
lated copper deposition for a different geometry. As done by Yang and West [182], com-
plete dissociation of the electrolyte is assumed, resulting in a multi-ion transport problem
involving three different ionic species [Cu®* (k=1), SOZ_ (k=2), H" (k=3)]. The spe-
cific properties and bulk concentration values are listed in Table 4.5 in non-dimensional
form. Dimensional molar concentrations are obtained by multiplying with the reference
concentration ¢ = 0.003 mmol/cm?, leading to ¢ = Cref - c;;. Values for the molecular dif-
fusion constants are taken from Newman and Thomas-Alyea [137]: D; =0.72- 1072 cm?/s,
D> = 1.065-107° cm?/s and D3 = 9.312-107° cm?/s. The Peclet numbers are defined as
Pe; = U;d/Dy. Values for the inverse of the Peclet number 1/Pe; required for the non-
dimensional problem formulation are specified in Table 4.5. The reference flux is de-
fined by Nier = Upercrer. The Schmidt number of the problem with respect to the reac-
tive species is Sc = v/D; = 1389. Consequently, the Peclet number of the problem is
Pe=Re-Sc~1.1-10".

The electrode-kinetics boundary condition for both cathode and anode is based on the

114



4.4 Rotating cylinder electrodes

following nonlinear relationship for the normal current density:

Y —
i (c1,®) = i [exp(%(v{w}—d)))—(c%) exp( gf (V{w}—cb))],
1

where y =0.5, a, = 1.5, @, = 0.5 and ig =1/ (Lyef - Urer), With ig = 40.0mA /cm? (see Yang
and West [182] as well as Bauer et al. [11]). As a consequence of (2.40), the expression
in/zxF defines a non-dimensional current density. The electric potential V, at the metal
side of the cathode is linearly decreased from OV down to V. = —0.2V within the time
period [0;0.2]. Afterwards, the potential is kept constant at value V. = —0.2V. The anode
potential defines the reference level for @ and is set to zero (V,, = 0V) at the outer cylinder
surface. The resulting total cell voltage difference of U = 0.2V is chosen high enough to
reach limiting current conditions, where ¢} tends to zero at the inner cylinder surface. As a
result, diffusive mass transfer becomes the limiting factor of the electrochemical reaction
and prevents further increase of current density with increasing cell voltage. Note that
®* = FO/RT provides a natural definition for a non-dimensional electric potential, since
F/RT has the unit 1/V (cf. section 2.8.5).

For the spatial discretization of the present RCE configuration, an isogeometric rep-
resentation consisting of 300,000 quadratic NURBS elements is used, constructed from
four patches as displayed in the right part of Fig. 4.36. The computational domain is
constructed geometrically exact, using a minimal number of control points and NURBS
functions, which are first-order in u and w direction and second-order in v direction. Here,
the directions u, v, and w refer to the Cartesian coordinates of the knot space defined by
the patches knot vector. Each patch is order-elevated geometrical exact to second-order in
each direction and furthermore refined by knot insertion to 60 x 25 x 50 elements in r-, 6-
and z- direction, respectively.

In radial direction, the knot insertions were performed based on the mesh-stretching
relationship 4 : [0,1] — [0,1] :

+1.0],

1 (tanh (Cstrerch Cu—1))

h(u) = =
u— hu) ) tanh (Cgiretch)

with Cgyech = 2.3. This mesh-stretching ensures a proper resolution of both flow and
ion-concentration boundary layers close to both cylinder surfaces. For further details on
the present spatial discretization and the required periodic coupling of basis functions in
z-direction, the reader is referred to Bauer et al. [9].

ionic species Cu?* SOi_ H*
k 1 2 3
Zk +2 -2 +1
1/Pey 9.0-108 1.33-1077 | 1.164-1076
™ 1.0 34.33 66.66

Table 4.5: Parameters for the multi-ion transport model (in non-dimensional form).
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With four degrees of freedom per node (i.e., control point) for the fluid subproblem
(velocity vector u*, pressure p*) and four degrees of freedom per node for the electro-
chemical subproblem (ionic concentrations cT,cé,cg‘, electric potential ®*), in total, it has
to be solved for more than 2.7 million degrees of freedom, as a result of a total number of
control points of 339,456.

A generalized-alpha scheme with p, = 0.5 (i.e., oy =5/6, a; =2/3, y = 2/3) is used
here for time integration. As initial flow field, the steady-state radial-symmetric solution is
applied, which holds for laminar flow conditions at low Reynolds number. For Cartesian
coordinates, the analytical solution is given as

[ 4 r* x*( 4 r*
u;:__(ﬁ_?)’ e

with the (dimensionless) radial position r* = \/(x*)2 + (y*)2 (for elaboration see, e.g.,
Spurk [161]). For the ionic concentrations, constant initial fields according to their re-
spective bulk concentration values given in Table 4.5 are used. Note that, for isogeometric
discretizations, in general, a least-squares problem has to be solved to determine the correct
control point values for representing the prescribed initial fields.

The results shown in the following are obtained by running the simulation for more than
5000 time steps with Ar* = 0.1. This non-dimensional value corresponds to a time-step
size of about At = 7.81ms, when converted to dimensional units based on fof = Lyef/ Uret.
Statistical sampling is performed over the last 3000 time steps, after a turbulent state of
flow has been achieved. This sampling period corresponds to about 48 full rotations of the
inner cylinder, providing a sufficiently large statistical data basis. First, the results obtained
for a pure turbulent flow problem are evaluated. An isosurface for instantaneous pressure
is provided in the left part of Fig. 4.37. The norm of the velocity field ||u*| obtained
at time ¢* = 500 is depicted in the right part of Fig. 4.37. Mean azimuthal velocity and
corresponding fluctuations of the turbulent Taylor-Couette flow are presented in Fig. 4.38.
For comparison, DNS results reported in Dong [52] are included, marked by “Dong DNS".
The computed velocity results are in very good accordance with those DNS results. When
neglecting the cross- and Reynolds-stress terms within the fluid problem formulation, a
slightly larger deviation of the obtained mean velocity profile from the DNS results is
observed as shown in Fig. 4.38. For the root-mean-square profiles there are not any notable
differences, such that only one result curve is depicted in Fig. 4.38.

Second, the results obtained for multi-ion transport in turbulent flow are presented. Sta-
tistical results for mean and root-mean-square concentration profiles for ¢} (Cu®* concen-
tration) are depicted in Fig. 4.39. Owing to the very high Schmidt number of the problem
(Sc = 1389), the concentration boundary layer of ¢j is found to be much smaller than the
flow boundary layer. The formation of the boundary layer at the inner cylinder is caused
by the consumption of ions due to the electrodeposition process at the cathode, while the
anodic oxidation reaction occurring at the outer cylinder surface establishes a source for c7.
Turbulent velocity fluctuations govern the boundary-layer thickness for ionic concentration
species. Resolving these layers, typically forming inside the flow boundary layers, is one
of the most challenging issues in the simulation of turbulent multi-ion transport. By choos-
ing an isogeometric spatial discretization, the variation diminishing properties of NURBS
are exploited to accurately represent the sharp boundary layers. It is emphasized that no a
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Figure 4.37: Pressure isosurface p* = —0.025 (left) and velocity magnitude ||u*|| (right) at

time * = 500.
1
mio ——
0.8 EIJEEho cross-/reynolds ------
[ligiDong DNS -~
rms(u5 .............

06 ||  rms(ug) Dong DNS =

04 r

02

1 1.25 15 175 r 2

Figure 4.38: Mean azimuthal velocity and corresponding fluctuations.

priori knowledge of the boundary-layer thickness is put into the model. The obtained mean
and root-mean-square concentration profiles are qualitatively in good accordance with typ-
ical curves obtained for simulations of high-Schmidt-number mass transfer in turbulent
channel flow (see, e.g., Dong et al. [53]). With increasing Schmidt number, the concen-
tration profile typically flattens in the bulk volume, whereas the boundary-layer thickness
decreases, and concentration gradients close to the boundaries increase. An isosurface for
the instantaneous concentration c¢j at #* = 500 is depicted in Fig. 4.40. Mean concentration
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Figure 4.39: Mean and root-mean-square concentration profile for ¢} (Cu®* concentra-
tion). For better illustration, additional zooms of the regions next to the cylin-
der surfaces are provided.

Figure 4.40: Concentration isosurface for ¢} = 1.0 at time ¢* = 500.

profiles for ¢; and c; are provided in Fig. 4.41, while corresponding root-mean-square pro-
files for the normalized quantities c5/c;"™, ¢;/c3™ are depicted in Fig. 4.42. In the bulk
volume (i.e., the volume in the center of the gap), all concentration fields remain merely
constant at their original bulk values.

Although ion species 2 and 3 are inert at the boundaries, they also form boundary layers,
in order to maintain local electroneutrality. Thus, fluctuations in c] always cause fluctu-
ations in C; and cé, as well, and vice versa. In Fig. 4.43, computed results for the mean
and root-mean-square electric potential field are shown. Fluctuations in the ionic concen-
trations also give rise to temporal and spatial variations in the electric potential field inside
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Figure 4.41: Mean concentration profiles for the inert ionic species SOZ_ (cé) and H* (cg)
in the regions close to the cylinder surfaces.
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Figure 4.42: Root-mean-square concentration profiles for the inert ionic species SOi* (c3)
and H' (c}) in the regions close to the cylinder surfaces.
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Figure 4.43: Mean and root-mean-square electric potential field inside the electrolytic cell.

the electrolytic cell. From the mean electric potential field, the mean voltage drop due
to ohmic resistance of the electrolyte solution between the electrodes is computed to be
0.0162V.

Furthermore, the observed fluctuations in all physical fields occurring near the electrode
surfaces also result in temporal and spatial fluctuations in the boundary mass fluxes of the
reacting ionic species. Thus, due to the relation of mass and charge transfer, local current
densities and the total measured current are fluctuating values, as well. In Fig. 4.44, the
temporal evolution of the total current across the inner cylinder surface is compared to
the total current across the outer cylinder electrode. Conservation of charge is obviously
ensured, since the electric current entering the domain and leaving the cell are always
identical in the simulations. This is a natural consequence of the full electrochemical
model, which ensures mass conservation and also charge conservation (see section 2.4),
since ions are both mass and charge carriers at the same time.

Simplified models for ionic transport at limiting current, which typically solve only a
convection-diffusion equation for a single reactive ionic species, cannot ensure this prop-
erty. For such models, the mass flux at inner and outer cylinder surface are not automati-
cally coupled and may in principle evolve independent from each other, as a result. As a
further effect of mass conservation and the balanced deposition and dissolution of copper
ions, the overall mass of each ionic species contained in the closed electrolytic cell remains
constant over time. This conservation of mass is also observed from the numerical results.

Finally, the obtained simulation results are compared with the well-known empirical
correlation proposed by Eisenberg et al. [58]. Therein, the limiting current density i; for
RCE configurations is correlated to the Reynolds number Rep characterizing the flow and
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Figure 4.44: Temporal evolution of total current at cathode and anode.

the Schmidt number Sc characterizing the electrolyte solution via

nFDc$°
iL =0.0791 —— L Rel7S035. 4.21)
2R;
For the present problem with n = z; = 2, Rep = 16,000 and Sc = 1389, a dimensional
value of i;, = 0.76mA/cm? is predicted by (4.21). Statistical evaluation of the results

shown in Fig. 4.44 provides a value of /"™ = 165.03 for the mean total current and
ii’Sim = IE’Sim /A% = 8.36 for the mean current density at the inner rotating electrode with
(dimensionless) surface area A} = 2nR;H = 272, Transferred to dimensional values by
multiplication with (Uyef - cref), a value of iSLim =0.803mA/cm? is obtained from the simu-
lation, which is in good accordance with the predicted value from the empirical correlation
(4.21), since the relative difference (iiirn —ip)/ip is only 5.7%. Hence, the proposed com-
prehensive computational approach appears to provide the opportunity to verify empiric
correlations, such as the famous Eisenberg correlation (4.21) in the present context, by
means of numerical simulation. It is emphasized that the present model is not restricted
to the consideration of limiting current densities, but provides a rather general problem
formulation. In addition, it is successfully demonstrated that the proposed computational
approach is able to correctly simulate coupled multi-ion transport in turbulent incompress-

ible flow.

4.5 Copper pulse plating at a rotating disk electrode

The rotating disk electrode (RDE) is probably the most popular electrochemical device. A
sketch of a basic RDE configuration is provided in Fig. 4.45. According to the definition
given by Bard et al. [8], a RDE is a small metal disk inlaid into an insulating cylinder which
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Figure 4.45: Rotating disk electrode (RDE): side view (left, according to Kontturi et al.
[117]) and bottom view (right).

has a large base. The disk is flush-mounted in concentric position and represents the work-
ing electrode (cathode). The insulating cylinder is immersed into an electrolyte solution
and rotated around its own axis. The counter electrode (anode) of the electrochemical cell
is usually placed at a sufficiently large distance to the cathode. Since the flow properties
near the rotating disk are well-known, experiments can be conducted under controlled hy-
drodynamic properties. This is one reason why the RDE cell-configuration is well-suited
as a laboratory device for investigating electrolyte solutions and electrochemical reactions.

The rotation of the disk electrode causes local centrifugal forces that accelerate the elec-
trolyte solution in radial direction away from the axis of rotation. The induced radial
velocity generates a suction effect, which leads to a flow of electrolyte solution from the
bulk towards the electrode surface. As a result, a nonzero velocity component normal to
the cylindrical surface is observed. The arising characteristic flow field is also sketched in
Fig. 4.45. In a generally accepted approximation (see, e.g., Newman and Thomas-Alyea
[137]), the velocity component u#, normal to the electrode surface (located at z = 0) is given
by a polynomial expression reading

] Ut | e e S

together with a = —0.51023 and b = —0.601. Here, v denotes the kinematic viscosity of
the electrolyte solution and w is the angular velocity of the RDE.

This normal velocity component is responsible for the transport of fresh electrolyte from
the bulk towards the electrode surface. It is emphasized that u, given by (4.22) is indepen-
dent of the radial position, i.e., from the distance to the axis of rotation. This property
allows the commonly performed reduction to a one-dimensional problem considering only
the normal direction to the electrode. For larger distances from the electrode surface the
exponential approximation

2B, 050
0= vo —A+Xe*A‘”°5V iy (4.23)
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Figure 4.46: Computational domain (segment of 15°) (left) and computed secondary ve-
locity field close to the RDE (right).

holds (see, e.g., Newman and Thomas-Alyea [137]). The required constants are given as
A =0.88447 and B =0.934.

The following example is based on the experimental investigations and corresponding
numerical computations presented by Tsai et al. [168]. All required input parameters are
taken from that reference. In contrast to the one-dimensional model utilized by Tsai et al.
[168], a complete three-dimensional model is considered here. This approach allows to
actually compute the arising three-dimensional flow field and compare the results with the
theoretical velocity predictions specified in (4.22) and (4.23). In the context of a RDE, the
Reynolds number for characterizing the flow is usually defined as

(.4)7"2

Re = —, (4.24)
v

where r denotes the radius of the rotating disk. For the present example, the kinematic
viscosity of the considered copper electrolyte solution is given as v =1.43-1073 cm?/s, the
angular velocity is set to w = 52.4rad/s and the radius of the rotating cylinder containing
the cathode is = 1 cm. Thus, the flow induced by the RDE is characterized by a Reynolds
number of Re = 36,650. According to Newman and Thomas-Alyea [137], the flow in the
boundary layer at the surface of a rotating disk remains laminar for Reynolds numbers
up to a value of about 2- 10°. Thus, the flow can still assumed to be laminar for the
current problem setting. Furthermore, a stationary flow solution is obtained, after initial
transients vanished. Thus, first the laminar, stationary flow field is computed. Afterwards,
the transient pulse-plating problem is considered taking into account the result for the
velocity field.

In order to enhance the efficiency of the numerical simulations, rotationally-symmetric
periodic boundary conditions are used (see Appendix C for details). Here, the computa-
tional domain is chosen to be a segment of angle 15°, which is discretized using in total
101,179 trilinearly-interpolated hexahedral finite elements (see Fig. 4.46). The mesh is
locally refined towards the working electrode to resolve the concentration boundary layer
adjacent to the electrode surface. It is emphasized that the elements adjacent to the cathode
surface have a height of only 7 um. The free surface at the top of the computational domain
is modeled by free-slip boundary conditions and the rotation of the RDE is imposed via
Dirichlet conditions for the velocity.
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Figure 4.47: Comparison of the computed vertical velocity component u, with different
polynomial approximations obtained from (4.22).

The computed results for the vertical velocity component u, depicted in Fig. 4.47 are
in very good agreement with the polynomial approximations obtained from (4.22). The
higher the polynomial degree used in (4.22), the better the accordance of analytical and
computed results. For polynomial degree four, good accordance is found up to a normal
distance to the electrode of about 0.15mm. The exponential approximation (4.23) for u,
matches the numerical solution for vertical distances to the electrode within the range
0.4mm to 1.3mm. In Fig. 4.49, the vertical velocity component u; is depicted for different
normal distances d to the surface of the RDE. The independence of u,; from the radial
position is clearly visible and is in very good accordance with the theory. Of course,
close to the outer edge of the rotating cylinder further flow effects become important as
illustrated in Fig. 4.49. Since the expressions (4.22), (4.23) have been derived analytically,
the observed agreement of numerical results and theoretical predictions serves also as a
validation of the flow solver.

The computed stationary velocity field is used for the following time-dependent simu-
lation of copper pulse plating. The plating bath is made of 0.348 M CuSO, with 2.06 M
H,SO, and has a temperature of 7 = 300K. Complete dissociation is assumed leading to
a multi-ion transport problem with three ionic species. The physical properties and Butler-
Volmer parameters for the cathode surface are chosen according to Tsai et al. [168]. For
this example, the stabilized finite element formulation of the ENP system of equations is
considered. Following Tsai et al. [168], an equal duration of 4ms is chosen for the pulse
(ton = 4ms) as well as for the pulse pause (fo¢ = 4ms). Thus, the so-called duty cycle is
computed as fon/(fon + tor) = 0.5 for the present case. The intensity of the current pulses
corresponds to a mean current density of i, = 0.05A/m. The pulse curve is numerically
applied using the general algorithm for current-controlled problems introduced in section
3.5.2. Since the area of the RDE is A = 27rg ~ 3.14cm?, where rg = 0.5cm is the diameter
of the cathode, a total current of Iio; = i, A = 0.157A has to be achieved during the pulse.
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Figure 4.48: Comparison of the computed vertical velocity component u, with the expo-
nential approximation (4.23) for larger distances to the electrode surface.
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Figure 4.49: Vertical velocity component u, depicted for different normal distances d to
the surface of the RDE.
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Figure 4.50: Obtained simulation results for the current density (left) and the surface over-
potential (right), both evaluated at the center of the RDE.

For time integration, a generalized trapezoidal rule with 6 = 0.66 is used.

In the following, a brief summary of the simulation results obtained from the transient
multi-ion transport simulation is presented. In the left part of Fig. 4.50, the temporal
evolution of the current density evaluated at the center of the cathode is depicted. As can
be clearly seen, the current density follows the prescribed current curve enforced by the
galvanostatic control algorithm. In the right part of Fig. 4.50, the corresponding values for
the surface overpotential at the center of the RDE are shown. Note that during the current
pulse, the overpotential is not constant but slightly varies in time. This is a result of the
ion-transport processes at the electrode surface and the continuous adjustment of the cell
voltage within the galvanostatic control.

As final important result, the temporal evolution of the Cu?* ion concentration at the
surface of the RDE is depicted in Fig. 4.51. The effect of the applied current pulses on
the ionic concentration is clearly visible. During the pulse, the cupric ions are consumed
within the electrochemical reaction. Consequently, the surface concentration decreases
during this period of time. During the pulse pause, actually no current passes the elec-
trolytic cell. The observed increase in the Cu?* jon concentration is solely caused by a
diffusion of Cu* ions towards the electrode.

In summary, copper PP is successfully simulated for a three-dimensional RDE config-
uration. The consideration of double-layer charge and discharge phenomena (see, e.g.,
Puippe and Leaman [146]) remains as a future extension of the present computational
model. In general, the normal component of the total current density at an electrode sur-
face is a sum of a faradaic current ir and a second current contribution denoted by iq; (see,
e.g., Puippe and Leaman [146]):

I, =if+iq. 4.25)

The faradaic current density iy represents the partial current caused by the electrodepo-
sition process. Thus, ir is usually determined by an electrode kinetics law such as the
Butler-Volmer equation, for example. The partial current ig; is related to the charging and
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Figure 4.51: Computed surface concentration of cupric ions at the center of the RDE.

discharging of the electric double layer and is typically modeled by a simple macroscopic
relationship reading

41 = Cdl o1 . (426)
Here, 75 is the electrode surface overpotential and Cq; denotes the double-layer capaci-
tance. For rapid changes in the surface overpotential 7, the total normal current density
in 1s partially consumed by the charging (or discharging) current ig;. This is an important
phenomenon in the context of PP and PRP methods when short pulse durations are used.

However, when an ideal (step-wise) pulse curve for the electric current is considered,
the applied current is formally discontinuous which leads to % — 00. Thus, for a sophis-
ticated modeling of double layer charging and discharging in the context of PP and PRP
methods, deeper knowledge on the actual form of the pulse imposed by the external pulse
rectifier is required, since real current curves deviate from the ideal step-wise profile. This
is a limitation not mentioned by Tsai et al. [168] in the context of their simulations devoted

to the double-layer effect.

An alternative to (4.26) appears also to actually simulate the electric double layer using
the PNP system of equations as a nanoscale model (see, e.g., Bazant et al. [14]). This more
sophisticated approach to charging and discharging of the electric double layer could then
be incorporated into the continuum-based models considered here.
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Figure 4.52: Geometric setup of a laboratory nickel electroplating cell (left) and corre-
sponding computational domain (right).

4.6 Numerical simulation of a nickel pulse-reverse
plating experiment

The work presented in this section was performed during the project “Numerische Simu-
lation von galvanischen Beschichtungsvorgingen” supported by the Space Agency of the
German Aerospace Center (DLR). In the following, the numerical simulation of a nickel
pulse-reverse plating (PRP) experiment is addressed. The experimental work was carried
out by the contractor Happy Plating of the industrial partner EADS Astrium. This experi-
ment serves as an important validation example for the developed computational methods
in the context of industrial electrodeposition applications. Below, a brief summary of the
utilized modeling approach and the obtained simulation results is given. Although not all
details can be provided here, this numerical example illustrates the challenges to be faced
when considering real electroplating baths. For the present problem setup, three different
modeling approaches are compared. In particular, primary, secondary and tertiary current
density distributions (cf. section 2.8.4) are computed using the proposed computational
approach. Finally, the predicted results for the nickel deposit thickness distribution are
compared with experimental data.

The electroplating bath consists of a S0L basin filled with an aqueous nickel electrolyte
solution. In Fig. 4.52, the basic geometric setup of the electrolytic cell is illustrated. Two
vertical anodes made of nickel are immersed into the solution. In the center of the basin,
a rotation unit is positioned. This rotationally-symmetric part consists of three cylindrical
cathodic areas (stainless steel) with identical diameter but different heights. These three
cathodes are separated by cylindrical insulators, which have a larger diameter than the
electrodes. During the electroplating process, the central unit is rotating with 34 rpm. It
is emphasized that the proposed computational approach allows for the consideration of
two anodes and three cathodes without any special modifications. In the present model,
only the flow induced by the rotation of the central unit is investigated, since it dominates
the velocity field close to the cathodes. A well-mixed electrolyte solution is assumed for
the bulk. Hence, additional bath agitation and filtering systems present in the experimental
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Figure 4.53: Pulse curves used within the nickel PRP experiments.

setup are neglected here. The computational domain is confined to the volume occupied
by the electrolyte solution, as depicted in the right part of Fig. 4.52.

For a general overview of recent developments regarding the electrodeposition of nickel
and nickel-based alloys the interested reader is referred to Orinakova et al. [138]. Here,
a nickel electrolyte solution of Watts bath type is considered at a temperature of 55°C.
Physicochemical properties of different nickel electrolytes are reported in the study of
Imamura and Toguri [104], for instance. The present electroplating bath is made from
two different nickel salts (nickel(Il)-sulfate-hexahydrate, nickel(II)-chloride-hexahydrate)
dissolved into water. Additionally, boric acid is added. Since the latter is a very weak acid,
its degree of dissociation is quite low. Thus, the effect of the corresponding ions is assumed
to be negligible for the ion-transport model. In summary, the following three ionic species
are considered in the ion-transport model: Ni2+, SOi_ and CI™.

The nickel ion Ni** represents the reacting ionic species, while the two anions are inert.
Phenomenological boundary conditions of Butler-Volmer type are used at all electrode
surfaces. Adequate parameters for the Butler-Volmer law (2.44) were determined from
measured polarization curves considering the relevant range of current densities. Three
different pulse forms are investigated for this PRP experiment as shown in Fig. 4.53. As
a preliminary investigation, PRP is simulated for an essentially one-dimensional model
problem, considering a flat nickel cathode in contact with a stagnant electrolyte solution.
The proposed approach for current-controlled electrochemical systems (see section 3.5.2)
is used to impose the three different pulse curves.

The computed temporal evolution of the Ni?* surface concentration is presented in
Fig. 4.54. During the cathodic pulse, electrodeposition takes place at the cathode and
the nickel ion concentration decreases. During the short, but intense reverse pulse, a small
amount of deposited material is dissolved again. Consequently, the ion concentration is
increasing in this time period as shown in Fig. 4.54. Essentially this leveling effect leads
to more uniform plating results in the case of complex geometries, which is one of the ad-
vantages of PRP methods compared to conventional DC plating. In Fig. 4.55, the temporal
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Figure 4.54: Temporal evolution of Ni** surface concentration at a cathode.
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Figure 4.55: Temporal evolution of Ni?* surface concentration at a cathode. Comparison
of results obtained for applying pulsating current and a corresponding DC
with the same mean current density.

evolution of Ni?* surface concentration as obtained for applying either pulsating current
or the corresponding DC with the same mean current density is shown. As a result, both
modeling approaches yield the same mean behavior in time. This observation justifies the
consideration of the corresponding DC within the three-dimensional simulations, which
are addressed in the following. This observation is important to account for the multiscale
character with respect to time, since typical pulse durations are in the order of milliseconds,
but characteristic times for flow phenomena are in the order of seconds.

For the three-dimensional model, the ENP system of equations is considered here in-
cluding a one-way coupling to incompressible flow. For time integration, the general-
ized trapezoidal rule (§ = 2/3) with a constant time step of Az = 0.05s was used. The
computational domain is discretized using a hexahedral-dominant (hex-dominant) mesh
and trilinearly-interpolated elements. In total, 1,420,429 elements are used for the spatial
discretization. In particular, the hybrid mesh consists of hexahedral, pyramidal, wedge-
shaped and tetrahedral elements. The corresponding number of nodes is 1,063,025. An
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4.6 Numerical simulation of a nickel pulse-reverse plating experiment

Figure 4.56: Details of the spatial discretization.

illustration of the spatial discretization is provided in Fig. 4.56. Adjacent to the three
cathode surfaces, a very fine mesh resolution with element sizes of only about 7 um is uti-
lized. Given the total bath volume of 50L, the creation of an appropriate mesh is already
a challenging task. Owing to the large number of unknowns, parallel computations are
mandatory. For this example, up to 32 processors are used for the parallel solution of the
coupled multi-ion transport problem.

The electric potential field and corresponding electric field lines are depicted in the left
part of Fig. 4.57 as obtained for the primary current density distribution. In the right part of
Fig. 4.57, the corresponding current density distribution on the three cathodes is illustrated.
As expected from the design of the experiment, the current density already increases from
the top to the bottom due to purely geometrical reasons. This is an effect of the cylindrical
insulators separating the cathodes. Snapshots of the unsteady complex flow field induced
by the rotation of the central unit are given in Fig. 4.58. It is noted that the free surface at
the top of the computational domain is modeled by free-slip boundary conditions.

From the computed current density distributions, a deposit thickness distribution for the
copper layer is predicted using equation (2.51). The plating time for each experiment was
within the range 13 — 20 min depending on the chosen current pattern. The efficiency factor
A introduced in section 2.5.5 is important for reflecting the non-ideal plating behavior,
taking into account side reactions such as hydrogen reduction. It is emphasized that values
for A were determined a priori, based on a comparison of experimental measurements
and theoretical expectations. Thus, no “fitting” of numerical results to experimentally
determined data is performed here.

In Fig. 4.59, the numerical predictions for the copper thickness distribution are com-
pared to the provided measurements. Overall, a good accordance is observed for all of the
three modeling approaches and all of the three investigated current patterns. The simpler
potential models utilized to compute the primary and secondary current density distribu-
tion perform quite well, since still low current densities are considered here, which in turn
leads to an almost negligible importance of ionic mass transport. Furthermore, the effect
of ohmic losses between the electrodes is the dominating the electric potential field.

In summary, a successful numerical simulation of a nickel PRP experiment is presented.
In particular, multi-ion transport coupled to a complex flow field is simulated within a re-
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Figure 4.57: Visualization of electric field lines and electric potential (left) and correspond-
ing primary current distribution at the rotation unit (right).
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Figure 4.58: Snapshots for the velocity magnitude ||u||, depicted on vertical cuts through
the computational domain.
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4 Numerical examples

alistic three-dimensional geometry. The numerical predictions for the deposit-thickness
measurements are in good accordance. For comparison, also simpler potential models for
computing primary and secondary density distributions are considered. Although in this
specific situation these simpler approaches perform comparable well, the proposed ion-
transport model represents the much more general approach. Especially when a given
configuration of an electroplating bath is investigated for the first time, the more com-
prehensive model can be used to either justify the use of simpler models in subsequent
numerical studies or to show that such approaches are not applicable due to the importance
of ion-transport processes.
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“At the end, one realizes that a manuscript is never finished.
It is just abandoned.”

D. P. Telionis [165, p. ix]

5.1 Conclusions

In this work, a comprehensive computational approach for the coupled numerical simu-
lation of electrochemical systems is proposed. The focus is on electrolytic cells in gen-
eral and on electrodeposition of metals in particular. Based on a continuum hypothesis, a
macroscopic mathematical model is established, which accounts for all three ion-transport
phenomena in dilute electrolyte solutions, that is, convection, diffusion and migration. The
latter effect describes the movement of ions caused by an electric field. A coupled set of
Nernst-Planck equations subject to an electroneutrality constraint is used for describing
multi-ion transport in electrolyte solutions. For an appropriate modeling of electrode ki-
netics, nonlinear phenomenological boundary conditions such as the Butler-Volmer law
are applied at electrode surfaces.

In the context of electrodeposition processes, ion transport is typically coupled to a
complex, often turbulent flow field. Taking into account this inherent coupling due to con-
vection represents one of the key aspects of this thesis. Besides incompressible flow of an
electrolyte solution induced by a rotation of electrodes or other bath agitation techniques,
the proposed model additionally accounts for buoyancy-driven flow (natural convection).
As a result, a challenging two-way-coupled problem has to be solved. Finally, a general
approach for the simulation of current-controlled (galvanostatic) electrochemical problems
completes the comprehensive model.

In this work, a novel residual-based variational multiscale finite element method is pro-
posed as the unique discretization approach to all governing equations. It is successfully
demonstrated that the proposed stabilization techniques for the coupled ion-transport prob-
lem contribute to the robustness of electrochemical simulations when convection plays a
significant role. In particular, the importance of correctly defining both stabilization term
and parameter for the coupled system of ion-transport equations is emphasized, and the
special case of a binary electrolyte solution is highlighted. Important surface-related quan-
tities such as ionic boundary mass fluxes and current densities at electrode surfaces are
computed from the finite element representation in a consistent manner including the in-
fluence of possible subgrid-scale terms.

Since the variational multiscale method can also be exploited for developing an ap-
proach to large eddy simulation of turbulent flows, the proposed computational framework
is capable of simulating coupled multi-ion transport in laminar, transitional and turbulent

135



5 Conclusions and outlook

flow of electrolyte solutions. Besides the classical finite element method, where piece-
wise polynomial approximations to the unknown solutions are computed, an isogeometric
discretization approach utilizing NURBS basis functions is also considered. In this work,
the concepts of isogeometric discretization and variational multiscale methods are suc-
cessfully combined in the challenging context of coupled multi-ion transport in turbulent
flow. As an example, ionic mass transfer in turbulent Taylor-Couette flow is investigated,
an important model problem for rotating cylinder-electrode configurations. Moreover, for
natural convection phenomena in electrochemical cells, a partitioned solution scheme is
proposed in this work. This algorithmic approach is successfully used for the simulation
of electrolytic processes coupled to buoyancy-driven flow.

For time discretization, a generalized-alpha scheme is utilized here, which includes a
broad spectrum of common implicit schemes. The capability of simulating transient elec-
trochemical processes is mandatory for the numerical modeling of many electrochemical
applications. One such example, which is addressed in this study, is the simulation of
pulse and pulse-reverse plating methods. The developed algorithmic approach to current-
controlled simulations used for this kind of applications is an important further contribution
to the provided portfolio of numerical methods.

The proposed computational approach is successfully tested for several numerical exam-
ples, demonstrating that the method is robust and provides accurate results. Among others,
realistic problem configurations with complex three-dimensional geometries are consid-
ered. This illustrates its geometrical flexibility, allowing for the consideration of complex
geometries, an important property for simulating real laboratory devices or industrial fa-
cilities. The diversity of numerical examples presented in this thesis illustrates the broad
spectrum of capabilities.

In summary, the present work represents an important contribution concerning the de-
velopment of a predictive tool for industrial electroplating applications in particular and
the numerical simulation of electrochemical systems in general.

5.2 Outlook

The proposed computational framework provides a valuable basis for future research and
development in the field of computational electrochemistry. Open questions and remaining
issues were emphasized at several points in the main part of this thesis. Based on the
current implementation, possible model extensions or alternative numerical techniques can
be investigated in the future. In the following, some of these potential future research topics
are briefly addressed.

Further investigations of the residual-based variational multiscale method for multi-ion
transport seem necessary. The current work has to be seen as a first promising step, which
raises a couple of interesting questions. One aspect that needs further detailed analysis
is the investigation of the additional terms in the coupled ion-transport model emanating
from the general variational multiscale method and not being considered up to now. As
stated above, the variational multiscale method utilized here also represents an approach to
developing numerical methods for large-eddy simulation (LES) of turbulent flows. Hence,
the present work is also a first step towards future development of canonical numerical
methods for electrochemical systems with ionic mass transfer coupled to turbulent flow.

Especially for this type of problems, which are typically linked with high computational
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costs, efficiency of the computational method is a further important requirement. In this
work, the electroneutrality condition is primarily used to close the system of ion-transport
equations. The use of this algebraic constraints leads to linear systems with a saddle-
point matrix, which are difficult to solve. An alternative closing equation derived from the
electroneutrality constraint was provided here in addition. As indicated in this work, the
use of this closing equation represents a very promising alternative, since it is linked with
lower computational costs and does not lead to linear systems with a saddle-point matrix.
Since this alternative approach was developed quite recently, further investigations will be
required in the future.

In this work, matching spatial discretizations for both the flow and the ion-transport
model are used. The consideration of different meshes for each subproblem might be ad-
vantageous to account for the different characteristic length scales related to incompress-
ible flow and ion-transport processes. At the moment, the spatial resolution requirements
of the ion-transport model govern the element sizes, especially near the electrode surfaces,
where very thin concentration boundary layers arise. A volume-coupled problem formu-
lation with non-matching computational grids would further enhance the flexibility and
numerical efficiency of the method, since the computational cost for solving the flow prob-
lem could be reduced. Mortar-type methods for mesh tying (see, e.g., Wohlmuth [180])
are promising techniques that might be extended to establish a volume coupling of com-
putational grids. In addition, mesh-tying techniques as recently proposed by Ehrl et al.
[57] could be utilized to improve mesh creation by a flexible connection of regions with
different resolutions. An even more important option of this method is to apply different
modeling approaches in different regions of the domain. Thus, close to electrodes, the full
ion-transport model is solved, while a simpler model for the electric potential (e.g., the
Laplace equation) is sufficient in the bulk of the electrolyte solution. It is expected that
computational cost can be significantly decreased by means of such techniques.

From a numerical point of view, several extensions or alternative methods are worth be-
ing considered in the future. Monolithic solution schemes are promising alternatives to the
partitioned schemes proposed here for the two-way coupling in case of natural convection
and also for current-controlled (galvanostatic) problems. In the context of fluid-structure
interaction, for example, monolithic solution strategies showed considerably improved nu-
merical efficiency compared to conventional partitioned schemes (see, e.g., Gee et al. [73]).

Computational techniques might also be instrumental for determining values of required
model parameters from experimental measurements. Examples are the parameters of elec-
trode kinetics laws or other physical properties such as ionic diffusion coefficients. Numer-
ical methods for inverse analysis (see, e.g., Rausch et al. [150]) offer a powerful systematic
approach within a combined experimental and numerical research. In addition, computa-
tional methods for uncertainty quantification might perhaps also be valuable in the context
of electrochemical systems.

Besides the use of phenomenological boundary conditions for describing electrode ki-
netics, more sophisticated modeling based on a multiscale approach offers a promising
alternative. Within a microscopic model for the electrode surface, electrode kinetics and
electric double layer effects can be simulated. The relevant effects of the microscale are
integrated into the simulation on the macroscale. This will result in a kind of “enhanced”
boundary conditions directly based on the results for the simulated microscale model. This
“bridging the scales” is definitely one of the future topics in computational electrochem-
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istry (see, e.g., Alkire [2]).

In the context of electrodeposition applications, a natural extension of the proposed
method is to actually incorporate the electrode shape changes into the simulations. One
simple possibility to account for the arising moving-boundary problem is to use an Arbi-
trary Lagrangian-Eulerian (ALE) approach (see, e.g., Donea et al. [51]). The eXtended
finite element method (X-FEM) represents a promising alternative for the numerical sim-
ulation of such moving-boundary problems. Methods such as those recently developed for
the simulation of premixed combustion (see, e.g., van der Bos and Gravemeier [170]) and
two-phase flow (Rasthofer et al. [149]) employ level-set approaches to treat the respective
interfaces. Thus, these methods are able to account for large, complex interface deforma-
tions and even topological changes. This is an important requirement for the simulation of
typical electrodeposition applications in semiconductor industries and of electrochemical
machining processes. A modeling of surface growth including a prediction of the develop-
ing surface roughness of deposits might also be important for the investigation of laminar
and especially turbulent flow along such boundaries. Certainly one of the ultimate goals
is the prediction of material properties of the deposited metal layers, such as hardness,
porosity, brightness, ductility, and the distribution of internal stresses.

The developed computational approach may also serve as a basis for numerical simula-
tion of other electrochemical phenomena, such as they arise in the context of other types
of electrolytic or galvanic cells. Applications in the context of batteries and fuel cells, bio-
electrochemistry, electrophysiology (heart, cerebral system) and corrosion of metals are
some examples. However, it is emphasized that each electrochemical application poses its
own requirements for both the mathematical modeling and the computational methods.

As a conclusion, computational electrochemistry represents a challenging, but at the
same time fascinating scientific field, offering a broad variety of aspects to focus on. Es-
pecially the future needs for renewable energy supply and electromobility will further in-
crease the demand for research and development in electrochemistry. Certainly, numerical
simulation represents one important approach to contributing to these efforts.
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For the special case m = 2, commonly referred to as binary electrolyte, the electroneutrality
condition enables further analytic considerations. The following analysis is an excerpt
from Bauer et al. [11], extended by additional remarks. The basic ideas can also be found
in Newman and Thomas-Alyea [137] and Kontturi et al. [117], for example.

In the following, a transient convection-diffusion-migration problem for a binary elec-
trolyte solution enclosed in a bounded d-dimensional domain Q C R? with d < 3 is consid-
ered. For the time interval [0, 7.], the solutions for the molar concentration c¢; of cations
with charge number z; > 0 and anion concentration ¢, with 7o < 0 are sought as well as the
electric potential denoted by ®@. Using the notation as introduced in the main part of this
thesis, the complete problem formulation is given as follows. For a given velocity field u,
find c1,cp, @ such that in Q x (0, T,) it holds

(901

E+u-Vcl—ZlulFV-(qVCD)—DlAcl =0, (A1)
P
% +u-Ver — 2o F V- (caV®) — DyAcs =0, (A.2)

zic1 +2202 =0, (A.3)

together with the following boundary and initial conditions for k = 1,2:

Ck = 8k onIpy x(0,Te), (A4)
(Zxpx FerVO + DN cey) -n = hy, onIny x(0,Te), (A.5)
ck=ch in Q x {0}, (A.6)
and the constraints
k>0 inQx|[0,T]. (A7)

Owing to the electroneutrality condition (A.3), the anion concentration c¢; is already

uniquely determined by ¢ via

cr=—Lel. (A.8)
22

Consequently, cg = —%c(]) is required to be satisfied by the initial conditions (A.6). Fur-
thermore, ¢, can be eliminated from (A.2) by multiplication with —z;/z; and application

of (A.8). Subtraction of the resulting equation from (A.1) then yields:

(z22p2 —21u1) F V- (1 VO) + (D — Dy) Acy = 0. (A9)
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From the expression for the current density,

2 2
i=F Y aNi™=F ) g (~auF VO - DiVey), (A.10)
k=1 k=1
as introduced in (2.30), the following integrated form of (A.9) is deduced by using (A.8):
i
ZI_F = (2ou2 —z11) Fe VO +(Dy — D) Vey. (A.11)

For problems where no current i is passing the electrochemical cell, a solution formula
for the electric potential ® can be deduced by integration, which is applicable once ¢ is

known:
Dy — Dy i ( c1(x,1) )
n .
(zip1 —22m2) F \ 1 (x0,1)

DO (x,1) — D (xp,1) = (A.12)
Here, xo € Q is an arbitrary point with c¢j(xg,t) > 0Vt € [0,T.]. For the case i # 0, an
explicit knowledge of the current density i is required for integrating (A.11). For one-
dimensional problems this requirement is typically fulfilled since the current density is a
constant function due to charge conservation. As a result, the solution formula (A.12) will
be extended by an additional linear term representing the ohmic voltage drop caused by
the passage of electric current. An example for this situation is provided in section 4.1.1.

Finally, using (A.9) in (A.1) reveals that the concentration c; is governed by a transient
convection-diffusion equation of the form

0
§+u-va—mc1:o in Q x (0,Te), (A.13)

with a resulting diffusion coefficient

_ 211 D2 — z2oup Dy
1M1 — 22M2

D: (A.14)

depending on the properties of both ionic species of interest. It is important to note that
(A.13) holds also in the case when an electric current is passing the considered electro-
chemical system.

In the same manner as above, one can eliminate ¢, and ® from the flux boundary condi-
tions (A.5), resulting in a new boundary condition

DVei-n=h onDn; x(0,Te), (A.15)

with L 5
T (—22) (uahy +py 2)’ (A.16)
1M1 — 2212

which has to be fulfilled by the solution of (A.13). For the case s, =0, i.e., the anion is an
inert ionic species, one can also write

h=(—t)h =th, (A.17)
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where 7., . denote the two transference numbers of the binary electrolyte (see, e.g., New-
man and Thomas-Alyea [137]). In particular, the two transference numbers are given as

< —Z
f, = M ;= 2H2

; =—, (A.18)
TIML 222 TIM1 — 222

and fulfill the relation 7, +¢. = 1. It is important to note that due to (A.8) also ¢, is fulfill-
ing the convection-diffusion equation (A.13). In addition, the boundary condition (A.15)
changes to DV ¢;-n = —z1h/z2, when concentration ¢, is considered instead of c.

In summary, the task of solving the coupled nonlinear ion-transport problem (A.1)-(A.7)
has been reduced to solving a linear convection-diffusion problem for ¢; governed by equa-
tion (A.13) with boundary conditions (A.4), (A.15) and initial condition (A.6). The analy-
sis presented above holds for an arbitrary number of space dimensions and is the basis
for the construction of analytical solutions for ion-transport problems in binary electrolyte
solutions. In the context of computational methods the knowledge of exact solution formu-
lae is a very important aspect for code-validation purposes. In addition, the convergence
behavior of numerical methods can be investigated on the basis of error calculations.
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B Flux calculation for finite element
approaches

In the following, appropriate methods for a consistent calculation of nodal fluxes from fi-
nite element solutions are presented. Since interfacial phenomena are of special interest
in the context of electrochemistry, an accurate computation of surface-related quantities
is especially important. Examples for such data are the normal mass flux densities of re-
acting ionic species and the corresponding normal current density distribution at electrode
surfaces. In addition, vector-valued representations for mass fluxes and electric current
inside the whole computational domain are sometimes required for visualization purposes.
Besides, such a flux reconstruction is also of importance in the context of low-order sta-
bilized finite element methods as shown below. An appropriate method to calculate such
vector-valued data from finite element solutions is outlined in the second part of this sec-
tion.

B.1 Consistent boundary-flux calculation

On coarse meshes, the method outlined in the following and originally proposed by Gresho
et al. [86] typically results in better numerical approximations for derived boundary quan-
tities compared to those gained from simple differentiation of the finite element represen-
tation of the solution. Furthermore, possible subgrid-scale contributions are included in a
natural way. A comprehensive overview of such methods for consistent flux calculation is
provided by Gresho and Sani [85], including a survey of related literature.

As shown by Bauer et al. [12], the basic idea can also be applied to ion-transport equa-
tions to compute the normal mass fluxes for each ionic species on respective boundaries
and, based on that, normal current density distributions as specified in (2.28). The reader
is also referred to Hennigan et al. [95] for current-density calculation from finite element
solutions in the context of semiconductor device modeling.

The weak form (3.81) can be rewritten as

fWZNI(?—m (Ch,n+a/f, (Dh,n+af) .ndS = — Bk (w}kz, CZ,n-i—l , (Dh,n+1 i uh,n+l)

k
0Q
Ne] 5
. ,n+a/f_ h _nt+asph
DTV RY), L B
e=1
together with
hn+ap h,n+as h,n+ag
Ve =u +umig’k . (B.2)

The right-hand side of (B.1) is easily evaluated once the solution fields are determined,
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and it already contains all necessary information about the normal boundary fluxes: it is
essentially the residual of the weak problem formulation without boundary terms. For each
ion species k = 1,...,m, a finite element representation of the normal boundary flux of the

form
Nbdry

=N (B.3)
= 00

is sought, where npqry denotes the number of associated boundary nodes. Each representa-
tion has to fulfill the relation

k1 k
oQ 0Q

fwhqh,n+a/f ds = fWZNI(:-'_m (Ch,n+af,q)h,n+af) -ndS VYwy € ,TCk k=1,...,m. (B4)

After inserting (B.3) into the left term of (B.4) and substituting the right-hand side via
relation (B.1), one obtains

h _hn+a; _ h  hn+l hn+l _ hn+l
fwqu dS=-5; (wk,ck , O U )
oQ

Te|

— Z (VZ"HQf . th,TﬁmfR{(’)Q Vwg € T, (B.5)

e=1

Consequently, the solution of a small linear system of the form

Mg = (B.6)

af

will be required to determine the nodal normal flux values Z]Zt arranged in the vector

qu’. The arising boundary mass matrix M is given by

Mij= | N/Nds, (B.7)
0Q

where Nl.h denotes the shape function associated to node i. The nodewise contributions to

the right-hand side r;;"*" of (B.6) are computed as

el

_ h
Zntar _ _Bk (Nlh, Cz,nﬂ ’ (I)h’n+1 , uh,n+l) . Z (v Atar VN.h, Tn+afRﬁ)

ki ‘ ; (B.8)

Q.
e=1

However, according to Gresho et al. [86], in most situations a lumping strategy for the aris-

ing boundary mass matrix M in (B.6) provides sufficient accuracy and saves computational

time. In the present work, a simple lumping strategy of the form

g =T (B.9)
with
§,~:fN;1ds (B.10)
0Q
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B.2 Flux approximation in the computational domain

is used. The required values for the integrated shape functions s; can by computed once
and simply reused for executing the nodewise division specified in (B.9). Note that the
approach outlined here provides nodal boundary-flux values for the time level #***f. For
the case s # 1, the present method can be combined with an extrapolation technique to
obtain flux values for the time level #*!.

It is emphasized that the proposed method can also be used for consistent flux calculation
at a subset of 9Q, e.g., only at electrode surfaces. One important feature of the consistent
flux calculation method is that it provides exactly the value A that is prescribed at the
Neumann boundary part I'y 4 (see Gresho et al. [86]).

B.2 Flux approximation in the computational domain

The following method enables a consistent calculation of nodal flux vector fields in the
whole computational domain €. This is often required for visualization purposes, but
is also important in the context of stabilized finite element methods as explained below.
Examples in the present context of electrochemistry are vector field representations of the
electric current density Z, as well as individual mass flux vector fields, such as Ny or Ng“n.
Again, the most natural approach to simply evaluate the definition of these quantities is
not recommended, since it requires the computation of derivatives of the finite element
approximation at nodes.

As a remedy, a consistent flux reconstruction method by means of an L?-projection
is utilized here. The basic idea outlined in the following is identical to the technique
presented by Jansen et al. [109] for improving consistency of stabilization terms in case of
low-order finite element discretizations. Thus, the reader is encouraged to consult Jansen
et al. [109] for further details. As a consequence, an implementation of the following flux
calculation procedure can be utilized for two different purposes. First, as an improvement
for low-order stabilized finite element methods and, second, as a valuable postprocessing
feature.

Here, the aim is to globally reconstruct a continuous approximation to the ionic mass
flux due to diffusion and migration by means of an L2-projection. Thus, a finite element
representation qZ with the components

Nnod

Ghy=> NlGia a=1...d (B.11)
i=1

is sought, which approximates the d-dimensional flux vector field. The corresponding
governing equations emanate from the idea of L2-projection and read for the present case

fN{lq’,jdx:foNgm(c’,j,q)h)dx Vi=1,...,tod, k=1,...,m. (B.12)
Q Q

As a result, for each spatial component g; , of the nodewise flux-vector representation a
linear system of the form
Mgqy , =Tia (B.13)
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B Flux calculation for finite element approaches

has to be solved for a = 1,...,d. The mass matrix M is given by

Mij= [ N/'Ndx, (B.14)
Q

and the right-hand-side ry , of (B.13) is computed from the nodewise contributions

Thai = leh(_Dk [VCZL — ZiF el [V(Dh]a) dx. (B.15)
Q

Again, instead of actually solving the global linear system (B.13), lumping strategies are
commonly used (Jansen et al. [109]). For an overview of different lumping strategies the
reader is referred to Hughes [100].

Note that the procedure outlined above is not restricted to any specific time level. Typi-
cally, for the purpose of postprocessing, values for the time **! will be of primary interest.
For improving stabilized finite element methods as proposed by Jansen et al. [109], an eval-
uation at /**f appears reasonable in the context of a generalized-alpha method, since the
approximated flux terms are required at the intermediate time level 7+,

Finally, it is emphasized that also other vector-valued quantities such as the total ionic
mass flux Ny or the electric current density i can be inserted into (B.4) in order to compute
a nodewise vector representation of these fields.
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C Rotationally-symmetric periodic
boundary conditions

When a given problem setting shows rotational symmetry with respect to both the geo-
metric setup as well as for the unknown physical fields, efficiency of simulations can be
enhanced by performing calculations only on a segment of the computational domain. Sev-
eral electrochemical cells exhibit such a symmetry, such as rotating disk or rotating cylin-
der electrodes. A confinement of the calculations to a wedge-shaped segment with angle
a is only applicable for stagnant electrolyte solutions or laminar, rotationally-symmetric
flow conditions. In contrast, the symmetry assumption is not valid for turbulent flow. The
required conditions for master and slave boundary read

us = R(@)up, (C.1D
{p.ck. @} = {p.cr. O}, - (C.2)

For the case of rotational symmetry with respect to the z-axis, the rotation matrix R (@)
required in (C.1) is given by

cosa —sina O
R(a)=| sina cosa O
0 0 1

Since the matrix R is orthogonal, it holds that R"=R~". Scalar-valued degrees-of-freedom
(i.e., pressure p, ionic concentrations ¢ and electric potential @) take on the same values
on master and slave boundary, as stated in (C.2). Vector-valued degrees-of-freedom, such
as the fluid velocity u on slave and master side are related through a linear transformation
(C.1) defined by the rotation matrix R. The situation for rotationally-symmetric periodic
boundary conditions is also sketched in Fig. C.1.

For the implementation of rotationally-symmetric periodic boundary conditions stan-
dard master-slave relationships can be used. The evaluation of a finite element adjacent
to the slave boundary necessitates the implementation of two additional operations. For
the calculation of element contributions to element right-hand-side vectors and Jacobian
matrices the current nodal velocity field is required. Thus, for element nodes belonging
to the slave boundary, the velocity vector values received from the corresponding master
node have to be rotated according to (C.1) before an interpolation to integration points is
performed. This rotation is required for both the fluid and the electrochemistry subprob-
lem. In general, if the problem formulation depends on further vector-valued data, such as
displacements, for example, an analogous procedure has to be executed for that data.

The second action to be implemented is only required for the Navier-Stokes equations.
During the assembly process, at slave boundary nodes, nodal contributions w.r.t. the mo-
mentum equation are rotated backwards using R before assembling to the set of degree-
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C Rotationally-symmetric periodic boundary conditions

Figure C.1: Rotationally-symmetric periodic boundary conditions.

of-freedom of the corresponding master node takes place.
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