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1 Introduction

Random recurrence equations have been used in numerous fields of applied probability. We re-
fer for instance to Kesten (1973), Vervaat (1979) and Embrechts and Goldie (1994). Stochastic
models in finance are an important field of application for random recurrence equations. Over
the last years a variety of these models have been suggested as appropriate models for financial
time series (see e.g. Priestley (1988), Tong (1990), Taylor (1995)). Due to the random recurrence
structure, many of these models possess the property that their conditional variance depends on
the past information (conditional heteroskedasticity). Empirical work has confirmed that such
models fit quite many types of financial data. The most known examples of volatility models in
finance with random recurrence structure are autoregressive conditionally heteroskedastic pro-
cesses (ARCH). These models were introduced by Engle (1982). They serve as special exchange
rate or asset price models and are very popular in econometrics. In a series of papers, the ARCH
models have been analyzed and generalized, see for instance the survey article by Bollerslev,
Chou and Kroner (1992) and the statistical review paper by Shephard (1996).

The class of autoregressive (AR) models with ARCH errors proposed by Weiss (1984) are a
natural extension of ARCH processes. These models are also called SETAR-ARCH models (self-

exciting autoregressive). They are defined by the random recurrence equation
Xn=f(Xn-1,: 0, Xpn—k) + onen, n>k, (1.1)

where f is a linear function in its arguments, the innovations (e, ),cn are i.i.d. symmetric random

variables with mean zero and o, is given by
P
2 2
o, =agp+ Zann—j’ ag >0, ag, ..., >, ap >0, (1.2)
j=1

for some p > 1. These models combine the advantages of AR models which target more on
the conditional mean of X, given the past and ARCH models which concentrate on the con-
ditional variance of X,, (given the past). Autoregressive models with ARCH errors capture the
structure of financial data quite well, i.e. the tendency of volatility clustering and the fact that
unconditional price and return distributions tend to have fatter tails than the normal distribu-
tion. Statistical and/or probabilistic properties of such models have been investigated by Weiss
(1984), Diebolt and Guégan (1990), Maercker (1997) and Borkovec and Kliippelberg (1998).

In the present paper we study the extremal behavior of AR processes with ARCH errors. We
focus on the AR(1) process with ARCH(1) errors, i.e. f(X,—1,..., Xp k) = o X,_1 for some



a € R and oy, is given in (1.2) with p = 1. This Markovian model is analytically tractable and
serves as a prototype for the larger class of models (1.1). Furthermore, in the special case a = 0
we get just the ARCH(1) model of Engle (1982) and hence our results for the extremes will be
an extension of the results in de Haan, Resnick, Rootzén and de Vries (1989).

Extremal behavior of a Markov process (X, )nen is for instance manifested in the asymptotic

behavior of the maxima

M, = max X, n>1.
1<k<n

The limit behavior of M, is a well-studied problem in extreme value theory. Two review paper
on this and related problems are Rootzén (1988) and Perfekt (1994). For a general overview
of extremes of Markov processes, see also Leadbetter, Lindgren and Rootzén (1983) and the
references therein. Loosly speaking, under quite general mixing conditions, one can show that

for n and z large
P(M, <)~ F™(z), (1.3)

where F' is the stationary distribution function of (X,),en and € € (0,1) is a constant called
extremal index. A natural interpretation of 0 is that of the reciprocal of mean cluster size (see
e.g. Embrechts, Kliippelberg and Mikosch (1997, Chapter 6) and the references therein). The
practical implication of (1.3) is that dependence in data does often not invalidate the application
of classical extreme value theory. There are many methods for determing the extremal index.
However, most are very technical and often useless in practice. An alternative is then to estimate
f from the data.

For the AR(1) process with ARCH(1) errors we derive an explicit formula for the extremal index.
We furthermore investigate the point process of exceedances of a high threshold u of (X,)nen
which characterizes the extremal behavior of the process in detail. This point process converges
in distribution to a compound Poisson process with a well-specified intensity and a well-specified
distribution of the size of the jumps.

The paper is organized as follows: in section 2 we present the model and introduce the re-
quired assumptions on the innovations (¢,)nen. The conditions are the same as in Borkovec
and Kliippelberg (1998), namely the so-called general conditions and the technical conditions
(D.1) —(D.3). The general conditions guarantee the existence of a stationary version of (X, )nen
whereas (D.1) — (D.3) allow us to describe the tail behavior of the stationary distribution. We

present furthermore some results on the AR(1) process with ARCH(1) errors (X, )nen and on the



related process (Z,)nen = (In(X2))nen. It turns out that the process (Zy)nen is crucial for the
study of the extremal behavior of (X},),cn. We show in Lemma 2.3 that (Z,),cn behaves above
a high threshold asymptotically as a random walk with negative drift which can be completely
specified. Theorem 2.1 collects some known results on the AR(1) process with ARCH(1) errors
(Xn)nen which were proved in Borkovec and Kliippelberg (1998). In particular, the stationary
distribution of (X, )nen has a Pareto-like tail. Section 3 contains the main results (Theorem 3.1)
concerning the extremal behavior of (X,),cny . We interprete these results and present some

simulations. We conclude the paper in section 4 with the proof of Theorem 3.1.

2 Preliminaries

We consider an autoregressive model of order 1 with autoregressive conditional heteroskedastic
errors of order 1 (AR(1) model with ARCH(1) errors) which is defined by the stochastic difference

equation

X, =aXnp_1+4/B+AX2_,e,, nEN, (2.1)

where (e, )nen are i.i.d. random variables, o € R, 8, A > 0 and the parameters o and X satisfy

in addition the inequality
E(ln]a+vXe|) <0. (2.2)

This condition is required to guarantee the existence and uniqueness of a stationary distribution.
Let € be a generic random variable with the same distribution as €,,. Throughout this paper, we
assume the same conditions for ¢ as in Borkovec and Kliippelberg (1998). These are the so-called

general conditions:

¢ is symmetric with continuous Lebesgue density p(z),
¢ has full support R, (2.3)
the second moment of ¢ exists .

and the technical conditions (D.1) — (D.3):

(D.1) p(z) > p(z') forany 0 < z < z’.



(D.2) For any ¢ > 0 there exists a constant ¢ = ¢(c) € (0, 1) and functions fy(c,-), f—(c,-) with

fi(e,z), f—(¢c,z) — 1 as x — oo such that for any z > 0 and ¢ > x7

Tt ol s (2 ) fi(en).

nl VB + M2 VB + 2

—at —at
x+ca>xa

p(ﬁ) Z p(\/ﬁ) f-(e,z

(D.3) There exists a constant > 0 such that

).

O(x*(N+1+n+3tI)/(lfq))

p(z) = , as T — 00,

where N := inf{u > 0; E(|vVAe|*) > 2} and ¢ is the constant in (D.2).

There exists a wide class of distributions which satisfy these assumptions. Examples are the
normal distribution, the Laplace distribution or the Students distribution. Conditions (D.1) —
(D.3) are necessary for determing the tail of the stationary distribution. For further details
concerning the conditions and examples we refer to Borkovec and Kliippelberg (1998). Note
that the process (X, )nen is evidently a homogeneous Markov chain with state space R equipped
with the Borel g-algebra. The transition kernel density is given by
1 Yy —azx
B \/ﬁ-l-)\pr(\/ﬂ-l-)\xQ

The next theorem collects some results on (Xy),en from Borkovec and Klippelberg (1998).

P(X, edy|Xy=1x)

)dy, (2.4)

Theorem 2.1 Consider the process (Xp)nen in (2.1) with (en)nen satisfying the general con-

ditions (2.3) and with parameters o and X satisfying (2.2). Then the following assertions hold:

(a) Let v be the normalized Lebesque-measure v(-) = A(- N [-M, M])/\([—M, M]). Then
(Xn)nen is an aperiodic positive v-recurrent Harris chain with regeneration set [—M, M]
for M large enough. In particular, there exists a constant C' € (0,1) such that for any
Borel-measurable set B and x € [—M, M]

P(X, € B|Xo=1) > Cv(B). (2.5)

(b) (Xp)nen is geometric ergodic. In particular, (X, )nen has a unique stationary distribution
and satisfies the strong mizing condition with geometric rate of convergence. The stationary

df is continuous and symmetric.



(c) Let F(zx)

= P(X > z), x > 0, be the right tail of the stationary df and the conditions
(D.1) — (D.3) are in addition fulfilled. Then
F(z) ~cz ™™, z— o0, (2.6)

where

IR (‘a|X| + ng‘" - ‘(oz + \/Xg)|X|‘”)

25 E<|a+\/Xe|""ln|a+\/Xe|>
and K is given as the unique positive solution to
E(la+Ve|®) =1. (2.8)

Furthermore, the unique positive solution  is less than 2 two if and only if o>+ E(2) > 1.

Remark 2.2 (a) Note that E(|a + v/ Ae|®) is a function of x, « and A. Tt can be shown that for
e ~ N(0,1) and fixed A, the exponent « is decreasing in |«|. This means that the distribution
of X gets heavier tails when |&| increases. In particular, the AR(1) process with ARCH(1)
errors has for a # 0 heavier tails than the ARCH(1) process (see also Table 3 in Borkovec and
Kliippelberg (1998)).

(b) Theorem 2.1 is crucial for investigating the extremal behavior of (X}, ),cn. The strong mixing
property includes automatically that the sequence (X, )nen satisfies the conditions D(u,) and
A(uy,). The condition D(uy,) is a frequently used mixing condition due to Leadbetter et al. (1983)
whereas the slightly stronger condition A(u,) was introduced by Hsing (1984). Loosly speaking,
D(u,) and A(uy,) give the “degree of independence” of extremes situated far apart from each
other. This property together with (2.6) implies that the maximum of the process (X, )nen
belongs to the domain of attraction of a Fréchet distribution. We will specify the normalizing

constants of the maxima and the limit distribution in section 3. O

In order to study the extremal behavior of (X,,)nen and (X?2),en we define the auxiliary process
(Zy)nen = (In(X2))nen which is again a regenerative, strongly mixing process. Since (X, )nen

follows (2.1) the process (Zy)nen satisfies the stochastic difference equation
Zn=Zn 1+ ln((a +/Be Zn-1 + )\5“)2) , n€N, (2.9)

where (ep,)nen are i.i.d. random variables that satisfy the general conditions and (D.1) — (D.3),

the constants are the same as in our old process (X,)neny and Zy equals In(X3) a.s.. Note that



the process (Z,)nen is independent of the sign of the parameter « since ¢, is symmetric. Hence
we may w.l.o.g. in the following assume that o > 0. We will see that (Z,)nen can be bounded
by two random walks (S5%),en and (S%")nen from below and above, respectively. This result is
essential for the study of the extremal behavior of (X},)nen. Via results for (7, )nen, we prove for
instance that the regenerative process (X, )nen has finite mean recurrence times which allow us
to consider only the extremal behavior of the stationary process (X, )nen. The process (Z, )nen
will be also important in the proof of Lemma, 4.1. For the construction of the two random walks

(S5 en and (SY%)nen we need some more definitions. With the same notation as before, let

—«
w <eglw) < , 2.10
=1 |\/ e+ A \/_e a/2 = ( )_\/ﬁe—“—i-)\—l—\/ﬁe—aﬂ} (2.10)
pla,a,8,0,¢) i=In((a+ VBe o+ xe)?),
201/Be 2
a,a,B,\,¢) :=In(1— 1 , 2.11
q(a,a, B, A €) ( ot i) {a<0}) (2.11)
B628_a
r(a,a,B,\,e) :=1In(1— 1r, .
( B 2ve) ( (a++/Be @+ Xe)? { <0})
Note that g(a, o, B, A, €),7(a,a, B, A, e) — 0 a.s. for a — oo. Now define
n n
S =Y "Uf and Sp:=) V! neN, (2.12)
i=1 =
where
U]"I = —0 - ]-Aa + (p(a7a7137 >‘76j) -I-r(a,oz,ﬁ, >‘76])) ' 1Agﬂ{5j<0}
+ In(a + \/ij)Z . 1{aj20} (2.13)
and
ija ::p(a’aaaﬁa}‘agj)+Q(aaaaﬁa>‘76j) (214)

for some a > 0. The following lemma shows that the random walks defined in (2.12)-(2.14) are

really upper and lower bounds for (Z,),cn above a high level.

Lemma 2.3 Let a be large enough, N, :=inf{j > 1|Z; < a} and Zy > a. Then

Zy + S,lc’a < Zp < Zy+ S;;’a for any k < N, a.s. (2.15)



Proof. We prove only the lower bound. The proof of the upper bound is similar but easier. Let

> a be arbitrary. If ¢ > 0 it is obvious that
(a+vBe T4+ Xe)? > (a4 Vhe)?. (2.16)
Consider now € < 0, then
(a+vVBe®+Xe)? - (a+ V/Be o+ Ae)?

= 2a(—¢) (\/ﬂ e+ X—/Be T+ A) —Ble® —e ") e
> —fete%. (2.17)

Note that we have a non-trivial lower bound of (a + y/Be~% + Ae)? if and only if
(a4 /Be v+ Xe)? —Be %e? > 0. (2.18)

It is straightforward that (2.18) is equivalent to

(2.19)

—Q —«
e > or < .
VBe "+ A+/Be o VBe "+ A—/Be o

From (2.16), (2.17) and (2.19), we obtain

(a0 +VAe(@)?, we{e>0}
2
(a-l— ﬁe*"”-l—)\s(w)) > (a+/Bet+re(w)? —Pee(w)?, we AN {e<0}(2.20)
0, weA,

Now take logarithms and use the additive structure (2.9) of (Z,)nen. O

Remark 2.4 (a) If a is large enough then S;,* and Sh* are random walks with negative drift.

Proof. Note that

E(‘/la) = E(p(a7a7167 >‘7€1) +Q(a’7a7/87>‘781))
= E(ln ((a—i— 56_“—%)\81)24—204\/_67&/2(—51)1{81<0}>>
— E(n(a+vXe)?) <0, asa— oo,

where we used the dominated convergence theorem and (2.2) in the last step. Hence for a large

enough the statement follows. O
(b) Let (Sp)nen := (Z?:l ln<(a + \/ng)Q)) o For a 1 oo we have
n
ske 5 g, and SM %% 5, (2.21)

8



for any k£ € N, i.e. both random walks converge at least in probability to the same random walk.

Furthermore,

sup S,i’a N supS; and sup S;j’a 2 sup Sy - (2.22)
k>1 k>1 k>1 k>1

Proof. The a.s. convergence of (Sp*)nen and SUpPy>1 S;;’a is straightforward since p,q and r

converge a.s.. Consider therefore the lower random walk (S5%),cn. Note that for a 1 oo

P(A4,) — 0
and hence
P P
Lacnfe<oy = Liecoy and 1y nge<oy = 0. (2.23)
Furthermore,
p(a’7 «, Ba >‘7 81) + 7’(@, «a, /67 >‘7 51) (g. In ((O{ + \/Xgl)Q) ) (224)

and therefore (2.21) holds. Finally we note that

Emax([), U{I) = EmaX(O, (p(aaaaﬁa)‘agl) +’f’(a,0&,ﬁ,)\,81)) 1Agﬂ{61<0}>
+ E max (0, In(a + Vep)? 1{5120})

—  Emax(0,In(a + VAe1)?), as a— o0, (2.25)

where we used (2.23), (2.24) and the dominated convergence theorem. By Borovkov (1976),
Theorem 22, p.53, (2.21) and (2.25) we derive that

d
sup S,lc’a — sup Sy, .
E>1 k>1

Lemma 2.3 characterizes the behavior of the process (Z,)nen above a high treshold a and
hence also the behavior of (X2),en. This is the key to what follows: the process (S, )nen will
determine completely the extremal behavior of (X2). Recall from Theorem 2.1 that (X,)nen
is Harris recurrent with regeneration set [—ea/ 2 o/ 2] for a large enough. Thus there exists in

particular a renewal point process Tp, 17, Tb, ... which describes the regenerative structure of

(Xn)nEN-



’

20

-20
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Figure 1: Simulated sample path of (Z,)nen with parameters @ = 0.6, 3 = 1, A = 0.4 and starting point Zo = 50
(solid line) and the corresponding random walks (S4%)neny and (S*),en with a = 20 (dotted lines), respectively.
Note that the random walks are hardly distinguishable from each other and (Z,)nen for n < 47. Hence they
are extremely good bounds above the level a = 20. If the process falls far below the level 20 they are still very
close, but are no longer bounds for (Z, )nen. The picture also confirms our statement that the random walks have

negative drift and converge to the same limit.

Corollary 2.5 The renewal point process (Ty)nen, which describes the regenerative structure

of (Xn)nen is aperiodic and has finite mean recurrence times Cy = Ty and Cy = Ty — Ty.

Proof. The renewal process can be constructed in the following way (see e.g. Asmussen (1989),
Section V1.3 for some background on regenerative processes):

Define
= inf{k > 1| X € [—e¥2,e¥?]} =inf{k > 1|2, < a} = N,

and 7,41 :=inf{k > 7;| Zx < a} for i = 1,2,3,.... Since (Z,)nen is above the level ¢ dominated
by the random walk with negative drift (Sp’*)nen and
sup E(max(0,721)|Zy =1x) < 00, (2.26)
z€(—00,a]
it follows that 7y, T, 73, ... are well defined and have finite expectations. Now let M; := inf{i >
1| I, =1} and Mjyq = inf{i > M;|I;, = 1} for j = 1,2,3,... with P([; = 1) =1—- P(I; =
0) = C and independent of (X, ),cny where C is the constant in (2.7). Note that

P(Mj—M; ,=i)=C(1—-C)"" fori,j=1,2,..and My=0. (2.27)

10



From Asmussen (1989), p.151 and (2.5), the renewal process (T3, ),>0 is now given by
Ty :=7Mm,,, +1, n>0,
and hence, by (2.27)
E(Cy) = E(Ty) < E(tmy+1) < const E(M; +1) < 0.

Similar calculation shows that E(C1) < oo as well. Since the transition density of (Zy)nen is

positive and continuous it follows finally that ' is aperiodic. O

As a consequence of Corollary 2.5 we may suppose in the following that the process (X, )nen
is stationary. One can show by a coupling argument that for any probability measure p and any
sequence (Up)neN

‘P”(max ngun) —P”(max ngun)‘—)o, as n — 0o,
1<k<n 1<k<n

where P* denotes the probability law for (X, )n,en when X starts with distribution p and 7
is the stationary distribution. For the coupling argument one needs explicitly that the process
(Xn)nen is regenerative and that the embedded renewal process is aperiodic and has finite mean

recurrence time. We refer to Lindvall (1992, Chapter II and III) for further details.

3 Extremal behavior of the AR(1) process with ARCH(1) errors

In this section we present the main results concerning the extremal behavior of the AR(1) process
with ARCH(1) errors and the accompanying squared process. Let ()?n)nEN be the associated
independent process of (X, )nen, i.e. )?1,)?2, ... are i.i.d. random variables with the stationary
distribution function of (X, )nen. From (2.6) and classical extreme value theory we obtain

lim P(n~!/% X < 1) = exp(—cz™" > 1
Jim P (n max k< z) =exp(—cz™"), >0, (3.1)

hence the maximum of the associated independent process ()?n)neN belongs to the domain of
attraction of a Fréchet distribution. In the dependent case we prove a similar result. The limit
distribution is still a Fréchet distribution but a constant # occurs in the exponent. @ is called
the extremal indez of the process (X, )nen and is a measure of local dependence amongst the

exceedances over a high threshold by the process (X,)nen. It has a natural interpretation as

11



the reciprocal of the mean cluster size. In order to describe the extremes in more detail, we also
consider the point process (N, )nen of exceedances of an appropriately chosen high threshold u,

given by
No() =#{k/n€ | Xy >uy, k€ {l,...,n}} (3.2)

and show that this point process converges to a compound Poisson process N. We derive the
intensity and the distribution of the jumps which we denote by (71 )ren. Note that in the extreme
value theory for strong mixing processes the jumps equal the lengths of clusters of exceedances.
For further background we refer to Leadbetter et al. (1983), Rootzén (1988) or Embrechts
et al. (1997, Section 8.1). For the ARCH(1) process it was convenient to investigate first the
squared process. This is not the case for our model since we have a completely different structure
due to the autoregressive part of (X, )nen. Nevertheless, only for the squared process (X2),en
a comparison with results in the ARCH(1) case (see de Haan et al. (1989)) is possible. The

following theorem collects our results.

Theorem 3.1 (a) Suppose (X, )nen is given by equation (2.1) with (¢, )nen satisfying the gen-
eral conditions (2.3) and (D.1) — (D.3) with parameters o and X\ satisfying (2.2) and Xy ~ p.
Then

s 1 —1/K, . < — _ —K >
nll)HoloP (n 121;2{an <z)=exp(—clz™"), x>0, (3.3)
where P* denotes the law for (Xp)nen when Xy starts with the distribution p, k solves the
equation E(|a + Ael®) =1, ¢ is defined by (2.7) and

k

o.¢]
0=k / P(sup H(a +Vei) <y Hy T ldy.
1

k=154

For x € R, let Ny, be the point process of exceedances of the threshold u, = nt/sg by X1,..., X,
given by (3.2). Then

K

where N is a compound Poisson process with intensity cOx™" and cluster probabilities

Or — 01
= - T k
9 2

Tk

€N, (3.4)

where

5o j
O = K / P#{j =1 [[(e+Vre) >y~ "} =k — 1)y 'dy, keN.
1 i=1

12



In particular, 61 = 6.
(b) Let (Xp)nen be the AR(1)-process with ARCH(1)-errors in (a) and (X2),en the squared

process. Then

lim P*(n~%* max X; < z) = exp(—2e0Pz75/%) | £ >0, (3.5)

n—00 1<j<n

where k,c are the same constants as in (a) and

~ k
0 = g /1 P(igrfﬂ(a +Ve)? <y hy e ldy.
="i=1

Forx e R, let N,gQ) be the point process of exceedances of the threshold u, = n*/*z by X2, X2,
Then

—Kk/2

where N@ s a compound Poisson process with intensity 202 and cluster probabilities

) = kL ke N, (3.6)
where

o j
o) = g /1 P#G =1 [[la+Vre)? >y} =k = 1)y 27 'dy, keN.
i=1

In particular, 6‘%2) =02,

Remark 3.2 (a) Theorem 3.1 is a generalization of the result of de Haan et al. (1989) in the
ARCH(1) case (i.e. @« = 0). They use a different approach which does not extend to the general

case because of the autoregressive part of (Xp,)nen-

(b) Note that for the squared process one can describe the extremal index and the cluster

probabilities by the random walk (S}, )nen, namely
9\? = —/ P(#{j >1|8;> -z} =k—1)e 5%dz, keN.
0

The description of the extremal behavior of (X2),en by the random walk (Sy,)nen is to be
expected since by Lemma 2.3 and Remark 2.4 the process (Z,)nen = (In(X2)),en behaves
above a high threshold asymptotically like (S, ),en. Unfortunately, this link fails for (X, )nen -

Another possibility for proving statement () is to follow the work of Hooghiemstra and Meester

13



(1995) using the regenerative structure of (Z,)nen, Lemma 2.3, Corollary 2.5 and Remark 2.4(b).
(c) Analogous to de Haan et al. (1989) we may construct “estimators” for the extremal indices
92 and 0,22) of (X2),en, respectively, by

N
so) _ 1 _ _
TN ;HWKM s\ <-B)

and

:k—l} y for k S N,

>-e{}

A 1y

2

O =ﬁ21{2ﬁ11{5§i)
1=

where N denotes the number of simulated sample paths of (Sy)nen, E,Ef) are i.i.d. exponential
random variables with intensity x and m is chosen large enough. These estimators can be studied
as in the case & = 0 and € ~ N(0, 1) in de Haan et al. (1989). In particular,

P2 _ p2)
(00 (1= ) /N) /2

is approximately N (0,1) distributed. Because of Remark 3.2(b) this approach is not possible for

(Xn)nen. We choose as “estimators” for 6 and 6y for (X, )nen

~ 1
0= N £ 1{suplgjgm [T_, (a+vAe)<1/PP} (3.7)
and
~ 1 N
6, = — 1 m . W =k—1) for k = N’ 3.8
k le:; {ijl 1{H{:1(a+\/xel)>1/}3'£z)}—k 1} or ( )

where N denotes the number of simulated paths of ([T} (@ + VA &;))nen, P are i.i.d. Pareto-
distributed random variables with intensity &, i.e. with distribution function G(z) =1 — 2",
z >0, and m is large enough. These are suggestive estimators since [[}_;(a + vXg) — 0 a.s.

as n — 0o because of assumption (2.2).

(d) Note that the extremal index 6 of (X, )nen is not symmetric in the parameter « (see Ta-
ble 1). This observation is intuitively obvious since for @ > 0 the clustering is stronger by the

autoregressive part than for a < 0.
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119.00 25.40 19.10 13.80 11.20 9.29 7.57 6.40 5.32 4.75 3.51 2.63

A

0.40

0.35

0.30

theta (167 blocks of size 60)

0.25

0.20

5 9 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 105 113 121 129 137 145 153 161
K

Figure 2: Estimated extremal index of a simulated sample path of (X, )o<n<10000 With parameters o = 0.8, 8 =
1,A = 0.6 and € ~ N(0, 1) using the blocks method for the data (see Embrechts et al. (1997), Section 8.1). The
length of a block is chosen as 60. The solid line is the numerically computed extremal index using (3.7), see also

Table 1.

a A 02 0.4 0.6 0.8 1.0 1.2 1.5 20 25 3.0 35

—-1.2 - 0.001 0.001 0.003 0.004 0.001 0.000 - - - -
-1 0.15 0.19 019 016 013 009 0.05 0.01 - - -
—-0.8 || 0.56 047 041 034 026 0.21 0.13 0.05 0.01 - -
-0.6 || 0.86 071 061 050 041 033 0.22 0.10 0.03 0.00 -
-04 1096 08 071 0.60 050 040 030 0.14 0.06 0.01 -
—-0.2 | 098 089 077 065 056 047 033 0.18 0.07 0.02 0.00
0 098 0.89 078 065 055 045 033 0.18 0.08 0.02 0.00
0.2 094 082 072 061 052 043 032 0.18 0.07 0.02 0.00
04 108 072 0.63 053 045 037 028 0.13 0.06 0.01 -
0.6 0.68 0.55 048 041 035 029 021 0.10 0.03 0.00 -
0.8 039 034 032 027 022 019 012 0.06 0.01 - -
1.0 | 0.09 014 013 013 011 008 0.04 0.01 - - -
1.2 - 0.000 0.001 0.003 0.004 0.001 0.000 - - - -

Table 1: “Estimated” extremal index 6 of (X,)new in the case e ~ N(0,1). We chose N = m = 2000. Note that

the extremal index decreases as || increases and that we have no symmetry in a.
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|| Al 02 0.4 0.6 0.8 1.0 1.2 1.5 20 25 3.0 35
0 095 080 065 052 041 031 022 0.11 0.04 0.01 0.00
0.2 094 077 062 049 038 031 022 0.10 0.04 0.01 0.00
0.4 0.84 0.67 055 043 035 026 019 0.08 0.03 0.01 -
0.6 0.67 052 041 034 025 018 0.14 0.06 0.02 0.00 -
0.8 038 031 026 020 016 013 0.08 0.03 0.00 - -
1.0 0.09 0.12 011 010 0.07 005 0.03 0.01 - - -
1.2 - 0.000 0.001 0.001 0.000 0.000 0.000 - - - -

Table 2: “Estimated” extremal index 6® of (X2),en dependent on |o| and X in the case € ~ N(0,1). We chose

N = m = 2000. Note that the extremal index decreases as |a| increases.

o] A 0 T Ty T3 Ty s g

0 02095 0959 0.037 0.004 0.000 0.000 0.000
0 0.6 0651 0.682 0.18 0.092 0.018 0.010 0.008
0 1 {0406 0455 0.233 0.135 0.054 0.044 0.023
04 0.2]0844 0.853 0.122 0.018 0.004 0.002 0.001
0.4 0.6 | 0.553 0.610 0.201 0.095 0.054 0.015 0.008
04 1 ]0342 0431 0.216 0.107 0.066 0.045 0.023
0.8 0.2]0378 0445 0.184 0.159 0.071 0.057 0.011
0.8 0.6 | 0.2556 0.328 0.202 0.145 0.088 0.012 0.045
0.8 1 ]0.152 0.237 0.178 0.099 0.092 0.053 0.010

Table 3: “Estimated” extremal index §® and cluster probabilities (m4)1<r<s of (X2)nen dependent on o and A

in the case € ~ N(0,1). We chose N = m = 2000.
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« A 0 T Ty 3 Ty s T

0 02 0974 0973 0.027 0.000 0.000 0.000 0.000

0 06 0.781 0.799 0.147 0.036 0.012 0.005 0.001

0 1 0549 0.607 0.188 0.107 0.036 0.034 0.017
-0.4 0.2 0962 0.962 0.037 0.001 0.000 0.000 0.000
04 0.2 0.853 0.867 0.103 0.026 0.002 0.002 0.000
-04 0.6 0.715 0.747 0.168 0.048 0.026 0.006 0.002
04 0.6 0624 0.676 0.182 0.066 0.040 0.019 0.012
-04 1 0497 0.540 0.210 0.115 0.075 0.040 0.004
04 1 0445 0.533 0.185 0.080 0.109 0.032 0.017
-0.8 0.2 0572 0.626 0.185 0.111 0.026 0.033 0.001
0.8 0.2 038 0470 0.172 0.148 0.062 0.068 0.006
-0.8 0.6 0414 0.520 0.159 0.134 0.072 0.043 0.016
0.8 0.6 0314 0443 0.156 0.110 0.087 0.073 0.041
-0.8 1 0273 0429 0.137 0.126 0.106 0.016 0.012
08 1 0224 0346 0.132 0.114 0.129 0.045 0.004

Table 4: “Estimated” extremal index 6 and cluster probabilities (7;)1<k<6 of (X5 )nen dependent on « and X in
the case € ~ N(0,1). We chose N = m = 2000. Note that the extremal index for a > 0 is much larger than for

a < 0.
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Figure 3: Simulated sample path of (X, )nen with parameters o = 0.8, 8 = 1, A = 0.2 (top, left), of (X2),en with
the same parameters (top, right), of (X, )nen with parameters a = —0.8, 8 = 1, A = 0.2 (middle, left), of (X2)en
with the same parameters (middle, right), of (X, )nen with parameters a = 0,8 = 1, A = 0.2 (bottom, left) and
of (X2)nen with the same parameters (bottom,right) in the case ¢ ~ N(0,1). All simulations are based on the

same simulated noise sequence (€, )nen.
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4 The proof of Theorem 3.1

The proof of Theorem 3.1 will be an application of results in Perfekt (1994) (see also the
Appendix). In order to apply these results we need to check the assumptions in Theorem Al.1
and A1.2. The next lemma provides a technical property for the squared AR(1) process with
ARCH(1) errors (X?2)nen. It is the most restrictive assumption in Perfekt (1994).

Lemma 4.1 Let (py)nen be an increasing sequence such that

P und n7y(y/Pn)

— =0

-0 asn— o0, (4.1)
n Pn

where v is the mizing function of (Xn)nen. Then for u, = n?/*z

lim limsup P( max X > up | X2 > uy) =0. (4.2)
P00 pn—oo P<j<pn

Remark 4.2 (a) The strong mixing condition is a property of the underlying o—field of a
process. Hence 1 is also the mixing function of (X2),en and (Z,)nen and we may work in all
these cases with the same sequence (pp)nen -

(b) In the case of a strong mixing process, conditions (4.1) are sufficient to guarantee that
(Pn)nen is a A(uy,)-separating sequence. The notion of a A(u,)—separating sequence was first
introduced by O’Brian (1989) and describes somehow the interval length needed to accomplish
asymptotic independence of extremal events over a high level u, in separate intervals. For a
definition see also Perfekt (1994). Note that (p,)nen is in the case of a strong mixing process

independent of (uy,).

Proof. Note that

P( max X > u, | X3 >u,) = P(N,<p, max X > up | X3 > uy)
P<j<pn P<j<pn
+ P(p < N, < pp, max X > Uy | X3 > uy)
<j<pn
+ P(N, > p,, max X > up | X3 > uy)
p<ji<pn
= L+ 1+ I3, (43)

where N, = inf{j > 1|Z; < a} =inf{j > 1| X]2 < e} as in Lemma 2.3. In order to get upper
bounds of I, I and I3 we show first that there exist constants C' > 0 and N € N such that for

any n >N, z € [e"",e?] and k € N
nP(X?>u,| X =z) < C. (4.4)
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Assume that (4.4) does not hold. Choose C, N > 0 arbitrary and n > 0 small. Because of

the continuity of the transition probability (i.e. equicontinuity on compact sets), there exist

n>N,zele " e,k € Nand §=0d(n) >0 such that for any y € (z — 0,z + ) N [e™ ", e?]
nP(X?>u, | X2 =y) > C—1. (4.5)

Let Fy> denote the stationary df of (X2),en. By Theorem 2.1 we have that

lim nF yo(uy,) =2cz"?, (4.6)

n—o0
where ¢ is given by the formula in (2.7) and & is the solution of (2.8). Furthermore, by (4.5) we

have
nFoluy) = / n P(X2 > un | X2 = y)dFy2(y)
(—O0,00)

> / 0 P(X? > up | X3 = y)dFys(y)
(z—0,x+d)N[e—™,e2]

(C—n)P(XZ e(z—6z+d6)N[e™e)

Vv

v

where D := inf, ¢y ca)(Fx2(2 + 6) — Fx2(2)) > 0 because Fy» is continuous. Since C' > 0 is
arbitrary this is a contradiction to (4.6).

Now we estimate (4.3).

p—1
L < ZP(Na =1, pinj:?;{;nX]? > Uy, Xg > un>
=1 T
p—1l pn
< S P(Na=1, X3 > | X3 > u)
I=1 j=I+1
p—1 p
-3 E(1{Na:l}P(X]? > uy | X2) \Xg > un) (4.7)
I=1 j=I+1
p—1 pn
- ¥ E(l{Na:l} Lixzse ny P(X2 > uy |X?)‘X§ > un)
I=1 j=I+1
p—1 pn
+> N E<1{Na=l} L2 ce-ny P(XF > un | X7) ‘Xg > Un)
I=1 j=I+1
= Ji + Js.

Furthermore, by (4.4),

p—1
Ji < Z
=1

n

p

1
3 EE(l{Na:l} Lixpse ny 1 P(X2 > uy | X7) \Xg > un)
=111
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p—1l pn C
= Z Z EE<1{Na:l} 1{Xz226_”} Xg > un>
I=1 j=I+1
P
< ZgP(Na<p|X§>un) (48)
j=1
< ol
n

—- 0, as n— oo,

since p, = o(n). Similarly, with B, := {X? > e,..., X? | > e} forany [ = 2,3,4,... and By = Q,

we obtain
p—1 pn
B 303 Bl Loy | X8 > un)
I=1 j=l+1
P 1 n
l 1j= l+1
= Z Z E (131 P( (aX;—1 + \/ B+ >‘Xl2—1 6l)2 <e " ‘X?_1> ‘Xg > un)
=1 j=I+1
p—1 pn —n/2 —n/2
—e X1 —« e X1 —«
= Z Z FE 1Blﬂ{Xl_1>0}P< / ! <8l< / 1 )‘Xg>un
I=1 j=i+1 BIXE + A BIXP + A

<

%

Pn e~ 2/ X —en/2/X
+Z Z K 1Bm{Xz 1<0}P< / ite <g < ¢ / l_1+a) ‘Xg > Uy,
I=1 j=i+1 BIXP |+ A BIXP .+

efn/2fa/2 efn/2fa/2

p—1 pn . . .
Z Z K (1B10{Xl—1>0} P( VoY - <g < Ta> ‘Xg > Un)

1=1 j—l+1

1 Pn —e—n/2—a/2 +a e—n/2—a/2 +
+Z Z E(le{Xl 1<0}P( 7 <el<T>‘X§>un

=1 j=I+1

2constppp e 22

0, as n— oo,

and therefore with (4.8) I; — 0 as n — oc.

Now we estimate limsup,,_,., I3. Note first that by the Markov inequality

P( max Sua ) ZP(@ZSJM > e*%Z>

p<j<pn

- iP< ﬁ ((04 +VBemt + Xep)? — 2a ﬁe_a/2€m1{€m<0})n/4 > e—ﬁz)
Jj=p

m=1
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Pn ’
) Kk/4
< eﬂZE(((oz—i— Be o+ Xei)’ —2a ﬁe_a/2811{51<0}> )
Jj=p
K pn y
< S (4.9)
Jj=p

Kk/4
where 1 < 1 such that E(((a-l— Be o+ \ey)? — 2a\/_e_“/2511{51<0}> ) < @ for a large
enough. This is possible because of (2.2) which implies that E(ja+vAe1[*) < 1 for allu € (0, )
and the fact that

E(((a + v/Bexp(—a) + \ep)? — 204\/_6’“/2511{51@})&/4) — E(|a + \/X51|“/2> , a4 — 00

by the dominated convergence theorem. Thus from Theorem 2.1, Lemma 2.3, (4.9) and a large

enough,

limsupls < limsup P(N, > pp, max Zy + S;-L’a > lnuy, | Zp > Inuy,)
p<j<pn

n—00 n—00 J<p

< limsup P( max Zy+ 5% > Inuy, | Zg > Inuy,)
n— 00 p<j<pn J
' /Oo > —2) e (4.10)
= limsu P( max S." > —z)—e” 2%dz .
n—)oop 0 (PSJSPn J 2
oo 77p_1
< 2 J =2 .
o ZU 1—n
J=p

Finally, note that

I, < P(p<N,<pp, Narg?%(anf > Uy, |X§ > up) + P(p < Ny < pa, pér];%)](VaX? > Uy, |X§ > Up)

= K1 +K2.

Similarly as for I1 and I3, respectively, we derive that

p—1
limsupK; =0 and limsupKsy = Ll .
n—00 n—00 1-— n
Now plugging all together and letting p — oo the statement follows. O

Corollary 4.3 Let (pp)nen be the same sequence as in Lemma 4.1. Then (pp)nen 18 also a

A(uy)—separating sequence for (Xp)nen, where u, = n'/*z and z € R arbitrary and

lim limsup P( max X; > u,|Xo > u,) =0. (4.11)

P—0 psoo P<j<pn
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Proof. Because of Remark 4.2(a) and (b), it is straightforward that (p,)nen is a A(uy, ) —separating

sequence for (X, ),en. Note furthermore that

P(maxpgjgpn X]2 > U%, Xg > U%)

P X? > ul| X2 >ul) =
(max 7 un| 0 un) P(Xg>u%)

p<j<pn

P(maxp<j<p Xj > Uy, Xg > Un) 1
>J>Pn g —_P a X > X >

and hence the statement follows using Lemma 4.1. O

Now we are finally able to prove Theorem 3.1.

Proof of Theorem 3.1. The proof is an application of Theorem A1.2. We prove only
statement (a), statement (b) follows along the same lines using Theorem A1l.1. As stated already
we may assume w.l.o.g. that (X,,),en is stationary. Let € R be arbitrary. Note that

P(Xo>u+ iuz) oo , 14+1z<0

lim =
umoo P(Xo > wu) (1+iz)=% | 1+Liz>0

and

X
lim P(ZL < 2| Xo=u)=Pla+Vie<z).

U—00 u
By Corollary 4.3 and the strong mixing property of (X, )nen all assumptions of Theorem A1.2
are fulfilled and we have that the extremal index 0 is given by
J

o — /100 P#{ = 1 (J[(a + VAe)Yo > 1} = 0| Yo = ) sy dy

=1
o j .
= P(max a+Vie) <y HNry " ldy.
/1 e[ T )<y my Ly

The cluster probabilities can be determined in the same way and hence the statement follows.

a

Al Appendix

The theorem below gives the extremal properties of a fairly large class of stationary Markov
chains. The original version can be found in Perfekt (1994, Theorem 3.2, p. 538). We present a

simplified version of Perfekt’s result which can be directly applied to our situation.
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Theorem A1.1 Suppose (Xp)nen 8 a stationary Markov chain which satisfies for some vy €
(—00,00) the following properties
(i)

o 1= Pt g(w)e)
utxp 1— F(U)

=(1—y2){", z € (~o0,00),
where F' is the stationary df, zp := sup{z; F(x) < 1}, y4 := max{0,y} and

xp =00 and g(u)=—yu ifvy<0

zp <oo and g(u) =v(zr—u) ify>0

If v = 0, then the auziliary function g is unique up to asymptotic equivalence and strictly positive

on (zg,xr) for some xy < Tp.
(ii)

(X1 —u)

lim P((1—7 o

~1/7 _ ) _

< = =

Jim )2 <z Xo=u H(z)

for some df H on [0, 00).

Let furthermore (Ay)nen be an i.i.d. sequence with marginal df H and let Yy be a random variable
independent of (An)nen. Define the tail chain (Yp)nen by Yn = Ay Yn_1 for n > 1 and denote
by P the law of (Yp)nen when Yy has distribution p. Assume p(dz) = x=2dx, x > 1 and let

(un(T)) be a sequence which satisfies

lim n(l — F(uy(7))) = 7.

n—0o0

(a) Assume D(un(7)) holds for each T > 0. If for some 1y there is a D(u,(19))-separating

sequence (pp)nen such that
lim limsup P( max X; > u,|Xo > u,) =0 (A.1)
P—=X p—oo P<j<pn

holds with u, = u,(7) then (X, )nen has extremal index 6 given by

0=Pi(#{n>1|Y, >1}=0).
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(b) Suppose (Xp)nen has extremal index 0 > 0 and, for some 11 > 0 satisfies A(up(o71))
for each o > 0. Suppose further there is a A(u,(71))-separating sequence (pp)nen Ssuch that
(A.1) holds with u, = un(11). Then, for each o > 0, NI™ = #{k € {1,...,n}|k/n € -, X}, >
un(om1)} converges in distribution to a compound Poisson process N with intensity om and
Jump probabilities m; given by

mz%(P“(#{n21|Yn>1} — i 1)~ PM#n>1|Y, > 1) = i)), i eN.

The next theorem is an extension of Theorem Al.1. In some cases it is easier to apply then the

last one.

Theorem A1.2 (Eztension of Theorem 3.2 of Perfekt (1994), p. 543) Suppose (X, )nen 1S a

stationary Markov chain which satisfies

Lo L= F(ut glu))
utrp 1— F(u)

— (1 —y2)}", =z € (—o00,00),

where F is the stationary df, rp := sup{z; F(z) < 1} = o0, y4 := max{0,y} and
g(u) = —yu for some vy <0.
Suppose furthermore that inf{z; F(z) > 0} = —oo and that
Jim P <] Xo = u) = H(s),

for some df H on (—o00,00). Let (Ap)nen be an i.i.d. sequence with distribution H and define
the tail chain through Y, = ApYn_1, n > 1, Yy being independent of (Ap)nen. Then, if (Xp)nen
satisfies the conditions in (a) and (b) of Theorem Al1.1, the result of the theorem holds with the

initial distribution p given by p(dz) := |y|~ 2"/ 'dx, for z > 1.
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