
Subexponential DistributionsCharles M. Goldie and Claudia Kl�uppelbergAbstractWe survey the properties and uses of the class of subexponential prob-ability distributions, paying particular attention to their use in modellingheavy-tailed data such as occurs in insurance and queueing applications.We give a detailed summary of the core theory and discuss subexponen-tiality in various contexts including extremes, random walks and L�evyprocesses with negative drift, and sums of random variables, the latterextended to cover random sums, weighted sums and moving averages.1. De�nition and �rst propertiesSubexponential distributions are a special class of heavy{tailed distributions.The name arises from one of their properties, that their tails decrease moreslowly than any exponential tail; see (1.4). This implies that large values canoccur in a sample with non{negligible probability, and makes the subexponen-tial distributions candidates for modelling situations where some extremely largevalues occur in a sample compared to the mean size of the data. Such a patternis often seen in insurance data, for instance in �re, wind{storm or 
ood insur-ance (collectively known as catastrophe insurance). Subexponential claims canaccount for large 
uctuations in the surplus process of a company, increasingthe risk involved in such portfolios. This situation is treated in Section 2.Subexponentials play a similar role in queueing models. Situations withextreme service times, modelled by a subexponential distribution, result in hugewaiting times in the system (see Example 2.7). The workload process also showslarge 
uctuations (see Example 6.4).Linear models are widely used as simple models for (or �rst order approx-imations to) dependent data. Extremely large values in the innovations, mod-elled by subexponential distributions, have immediate consequences for the sin-gle observation. Moreover, they cause e�ects in larger parts of the sample,determined by the linear �lter.In all these models a few large values may determine the long{term behav-iour of a system. This can be made very precise by describing the sample pathbehaviour of resulting stochastic processes as the surplus process in insuranceor the workload process of a queue, since the latter models have been the mostfully investigated. This is reviewed in Section 6.Heavy tails are just one of the consequences of the de�ning property ofsubexponential distributions, which is designed specially to work well with theprobabilistic models commonly employed in the above{mentioned areas of ap-plication. The subexponential concept has just the right level of generality1



to be usable in these models while including as wide a range of distributionsas possible. It includes all distributions with regularly varying tails (domainsof attraction of sum{ or max{stable laws) but is considerably wider (see Ta-ble 3.7). Hence it encompasses many more types of behaviour in the extremes(see Section 4).Subexponential distributions were �rst studied in 1964 by Chistyakov. Re-search during the seventies was centred around applications in insurance, queue-ing and branching processes, based on the Pollaczek{Khinchin formula (2.2),linking a subexponential input df and an output df of interest. In a simpleinsurance model this output df may be the ruin probability, while in a sim-ple queueing model it may be the df of the stationary waiting time. Methodswere rather more analytic than probabilistic at that time. Properties of subex-ponential moment generating functions, necessary and su�cient conditions forsubexponentiality, and closure properties were investigated.Extensions to more general models followed: renewal arrival streams re-placed Poisson arrivals. Modelling in that generality required the tracing ofsubexponential input distributions through a Wiener{Hopf factorisation. Useof random Markov environments required tracing di�erent input distributions(light{ and heavy{tailed), by means of matrix algebra.Recently, more probabilistic methods have entered the �eld. Questions like\how does ruin happen?" or \when is ruin most likely to happen?" given ithappens at all, or \what does the workload process at a high level look like?"were asked and answered. They necessitated novel methods to investigate pathproperties using the regenerative structure of models, as well as excursion theoryfor Markov processes and extreme value theory.Against this background we present two de�ning properties of subexponen-tial distributions. The �rst, more analytic one, is motivated by the Pollaczek{Khinchin formula (2.2) below, while the second probabilistic one provides amore intuitive interpretation of subexponentiality.De�nition 1.1. (Subexponential distribution function)Let (Xi)i2N be iid positive rvs with df F such that F (x) < 1 for all x > 0.Denote F (x) = 1� F (x) ; x � 0 ;the tail of F and Fn� = 1� Fn�(x) = P (X1 + � � �+Xn > x)the tail of the n{fold convolution of F . F is a subexponential df (F 2 S) if oneof the following equivalent conditions holds:(a) limx!1 Fn�(x)F (x) = n for some (all) n � 2 ;(b) limx!1 P (X1 + � � �+Xn > x)P (max(X1; : : : ; Xn) > x) = 1 for some (all) n � 2. 22



Remarks 1) De�nition (a) goes back to Chistyakov (1964). He proved that thelimit (a) holds for all n � 2 if and only if it holds for n = 2. It was shown inEmbrechts and Goldie (1982) that (a) holds for n = 2 if it holds for some n � 2.2) The equivalence of (a) and (b) was shown in Embrechts and Goldie (1980).A proof goes as follows:P (max(X1; : : : ; Xn) > x) = 1� Fn(x) = F (x) n�1Xk=0 F k(x) � nF (x) ; x!1 ;(� means that the quotient of lhs and rhs tends to 1). HenceP (X1 + � � �+Xn > x)P (max(X1; : : : ; Xn) > x) � Fn�(x)nF (x) ! 1 () F 2 S :3) De�nition (b) provides a physical interpretation of subexponentiality: thesum of n iid subexponential rvs is likely to be large if and only if their maximumis likely to be large. This accounts for extremely large values in a subexponen-tial sample.4) From De�nition (a) and the fact that S is closed with respect to tail{equivalence (see De�nition 3.3) we conclude thatF 2 S =) Fn� 2 S ; n 2 N : (1.1)Furthermore, from De�nition (b) and the fact that Fn is the df of the maximumof n iid rvs with df F , we conclude thatF 2 S =) Fn 2 S ; n 2 N :Hence S is closed with respect to taking sums and maxima of iid rvs. Therelationship of subexponentials and maxima will be further investigated in Sec-tion 4. Various generalisations of (1.1) will be considered in Section 5.5) De�nition (b) demonstrates the heavy{tailedness of subexponential dfs. It isfurther substantiated by the implications (�rst proved by Chistyakov (1964))F 2 S =) limx!1 F (x� y)F (x) = 1 8 y 2 R (1.2)=) Z 10 e"x dF (x) =1 8 " > 0 (1.3)=) F (x)=e�"x !1 8 " > 0 : (1.4)Property (1.4) accounts for the name subexponential df: the tail of F decreasesmore slowly than any exponential tail. Property (1.3) shows that subexponentialdfs have no exponential moments. This prevents any method being applicablethat requires the existence of exponential moments. 2
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2. The supremum of a random walk with negative driftSubexponential dfs traditionally play an important role in continuous time mod-els with a random walk skeleton. We choose a class of insurance risk models fordemonstrating the general method.The classical insurance risk process is de�ned asR(t) = u+ ct� N(t)Xi=1 Xi ; t � 0 ;where u � 0 is the initial capital (or risk reserve), and c > 0 is the premium rate,i.e. premiums are linear in time. (N(t))t�0 is a homogeneous Poisson processwith intensity � > 0, counting the number of claims up to time t. (Xi)i2N are iidpositive claims, independent of (N(t)), with df F , �nite mean � and integratedtail df FI(x) = 1� Z x0 F (t) dt ; x � 0 : (2.1)Denote by  (u) the ruin probability, given a risk reserve u, i.e. (u) = P �R(t) < 0 for some t > 0�:The risk process (R(t)) has two important features: the inter{arrival times areiid exponential rvs (Ei)i2N with mean 1=�; and ruin can occur only at claimtimes. Hence if we de�neS0 = 0 ; Sn = nXi=1(Xi � cEi) ; n 2 N ;then  (u) = P �S(t) > u for some t > 0�= P �Sn > u for some n 2 N�= P�maxn�1 Sn > u� :Under the net{pro�t condition � = ��=c < 1, the random walk (Sn) has negativedrift and  (u)! 0 as u!1. If we denote by�(u) = inffn � 0 : Sn > ugthe ruin time, then P�maxn�1 Sn > u� = P ��(u) <1� ;representing the ruin problem as a problem of �rst hitting times. The ruinproblem can be handled by an analysis of the ladder heights or by solving arenewal equation (see Asmussen(1996), Embrechts, Kl�uppelberg and Mikosch4
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Figure 2.1. Idealised sample path of the risk process.(1997), Feller (1971), Grandell (1991)), representing the non{ruin probabilityin terms of the Pollaczek{Khinchin formula:1�  (u) = (1� �) 1Xn=0 �nFn�I (u) ; u � 0 ; (2.2)where FI is the integrated tail df (2.1) and F 0�I = I[0;1) is the df of Dirac (unit)measure at 0. In this representation �FI is the ladder height df. The in�niteseries on the rhs of (2.2) de�nes a defective renewal measure (�FI(x) ! � < 1as x ! 1), and the corresponding renewal process is transient: the sequenceof renewals eventually stops, and at each renewal 1 � � is the probability oftermination then and there.If Cram�er's condition holds, i.e. if there exists some 
 > 0 such thatZ 10 e
xF (x) dx = c� ; (2.3)the defect can be removed and, under the usual conditions, Smith's key renewaltheorem implies that  (u)e
u ! C ; u!1 ; (2.4)where C is a non{negative constant; thus  (u) decreases exponentially fast to0. It is clear from (1.3) that for FI 2 S Cram�er's condition (2.3) does not hold.But a di�erent approach, as we now describe, shows that subexponentials formthe class of heavy{tailed distributions that allows for ruin estimates.We rewrite formula (2.2) in terms of the tails, (u) = (1� �) 1Xn=1 �nFn�I (u) ; u � 0 :Dividing both sides by F I(u), we see that De�nition 1.1(a) yields an asymptoticestimate for  (u) provided that one can safely interchange the limit and the5
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Figure 2.2. Sample path of the process (S(t)) and its embedded random walk(Sn). The ladder points are indicated by dots.in�nite sum. This is ensured by the following lemma due to Kesten (for a proofsee Athreya and Ney (1972)), and Lebesgue's dominated convergence theorem.Lemma 2.3. If F 2 S, then for every " > 0 there exists some positive constantK(") such that for all n 2 N and x > 0,Fn�(x)F (x) � K(")(1 + ")n : 2As remarked, these considerations lead to an asymptotic evaluation of  .It turns out that this is not just a consequence of subexponentiality, but ischaracterised by it, as follows.Theorem 2.4. (The ruin probability in the classical risk model)FI 2 S () 1�  2 S () limu!1  (u)F I(u) = �1� � : 2This theorem can be generalised by a Wiener{Hopf factorisation to the moregeneral Sparre Andersen model, where the claim arrival process is an arbitraryrenewal process.Theorem 2.5. (The ruin probability in the renewal risk model)1�  2 S () FI 2 S =) limu!1  (u)F I(u) = �1� � : 26



The result of Theorem 2.4 has been further extended by Asmussen, Fl�eHenriksen and Kl�uppelberg (1994) to aMarkov{modulated risk model, where therisk process is not time{homogeneous, but evolves in an environment given by aMarkov process with �nite state space. A state of the Markov process de�nes thearrival intensity of the Poisson process and the claim{size distribution. Furtherresults in the realm of this model have been obtained by Asmussen and H�jgaard(1995) and Jelenkovi�c and Lazar (1996).Asymptotic estimates for the ruin probability change when the companyreceives interest on its reserves. For regularly varying claim{size df F and apositive force of interest � the corresponding ruin probability satis�es �(u) � c�F (u) ; u!1 ;for some positive constant c�, i.e. it is tail{equivalent to the claim{size df itself.This has been proved in Kl�uppelberg and Stadtm�uller (1996). The case of gen-eral subexponential claims has been treated in Asmussen (1996).Remarks 1) The importance of subexponential dfs for insurance risk theorywas recognised by Teugels (1975).2) A textbook treatment of subexponential distributions in the context of risktheory is to be found in Embrechts, Kl�uppelberg and Mikosch (1997).3) Theorem 2.4 is due to Embrechts and Veraverbeke (1982) based on work byEmbrechts, Goldie and Veraverbeke (1979). Theorem 2.5 can be found in Em-brechts and Veraverbeke (1982); see also Veraverbeke (1977) and Bertoin andDoney (1996). A density version of Theorem 2.4 can be found in Kl�uppelberg(1989a), Theorem 4.1 (since FI has a density, so does 1�  ).4) Theorem 2.5 can be further generalised to a general discrete time or continu-ous time random walk or L�evy process with negative drift and increment variableS1 with df B such that the right tail of B satis�es B(x) = P (S1 > x) � F (x)for a subexponential df F . Notice that this is in accordance with the situationfor the classical risk process, where S1 = X1 � cE1 andP (X1 � cE1 > x)P (X1 > x) = Z 10 F (x+ cy)F (x) � e��y dy ! 1 ; x!1 :(F (x + cy) � F (x) for all x > 0 and the quotient tends to 1 by (1.2), henceLebesgue dominated convergence applies.) What is needed is that the ladderheight df FI is subexponential. This also shows that in this context it is quitenatural to de�ne subexponentiality only for positive rvs. 2Similar results to those for the risk models have been derived in the contextof branching processes and queueing theory.Example 2.6. (Branching processes)Let (Z(t))t�0 denote the population size in the Bellman{Harris model, i.e. theparticles produce (independently of each other) at the end of their lifetime arandom number of o�spring. Let F be the lifetime df of a particle andm < 1 themean number of o�spring. A renewal{type argument similar to the argument7



leading to equation (2.2) yields, for �(t) = EZ(t),�(t) = � 1Xn=0mnFn�� � (1� F )(t) = 1Xn=0mn �F (n+1)�(t)� Fn�(t)� :An application of Lemma 2.3 yields together with De�nition 1.1 an obviousanalogue of Theorem 2.4. Early references in this context are Athreya and Ney(1972), Chistyakov (1964) and Chover, Ney and Wainger (1973). 2Example 2.7. (Queueing models)Consider a GI/G/1 queue with renewal arrival stream and general service timedf F . Let F have �nite mean � and integrated tail distribution (2.1). Weconsider a stable queue, i.e. with tra�c intensity � < 1. Then the stationarywaiting time df can be represented as the df of the maximum of a random walk(Feller (1971), VI.9). Hence analogues of Theorem 2.4 (corresponding to anM/G/1 queue) and Theorem 2.5 are immediate. Early results were derived byPakes (1975), Smith (1972) and Veraverbeke (1977). 23. Conditions for subexponentialityIt should be clear from the de�nition that a characterisation of subexponentialdfs or even of dfs whose integrated tail df is subexponential (as needed in therisk and queueing models) will not be possible in terms of simple expressionsinvolving the tail.Recall that all subexponential dfs have property (1.2), hence the class ofsuch dfs provides potential candidates for subexponentiality. The class is namedas follows.De�nition 3.1. (The class L)Let F be a df on (0;1) such that F (x) < 1 for all x > 0. We say F 2 L iflimx!1 F (x� y)F (x) = 1 8 y > 0 : 2Unfortunately, S is a proper subset of L. Examples for a df in L but not inS can be found in Embrechts and Goldie (1980) and Pitman (1980).A famous subclass of S is the class of dfs with regularly varying tail. Fora positive measurable function f we write f 2 R(�) for � 2 R (f is regularlyvarying with index �) if limx!1 f(tx)f(x) = t� 8 t > 0 :A function f 2 R(0) is called slowly varying. For further properties of regularlyvarying functions we refer to the monograph by Bingham, Goldie and Teugels(1989). 8



Example 3.2. (Distribution functions with regularly varying tails)Let F 2 R(��) for � � 0, then it has the representationF (x) = x��`(x) ; x > 0 ;for some ` 2 R(0). Notice �rst that F 2 L, hence it is a candidate for S.We check De�nition 1.1(a). Let X1; X2 be iid rvs with df F . Now use thedecompositionP (X1 +X2 > x) = P (X1 � x2 ; X1 +X2 > x) + P (X2 � x2 ; X1 +X2 > x)+P (X1 > x2 ; X2 > x2 ) :Then F 2�(x)F (x) = 2 Z x=20 F (x� y)F (x) dF (y) + F 2(x=2)F (x) :Immediately, by the de�nition ofR(��), the last term tends to 0. The integrandsatis�es F (x � y)=F (x) � F (x=2)=F (x) for 0 � y � x=2, hence Lebesguedominated convergence applies and, since F 2 L, the integral on the rhs tendsto 1 as x!1.Examples of dfs with regularly varying tail are Pareto, Burr, log{gamma andstable dfs (see Table 3.7). If � > 1 then F has �nite mean and, by Karamata'stheorem, FI 2 R(�(�� 1)), giving FI 2 S as well. 2In much of the present discussion we are dealing only with the right tail ofa df. This notion can be formalised, starting with the following de�nition.De�nition 3.3. (Tail{equivalence)Two dfs F and G with support unbounded to the right are called tail{equivalentif limx!1 F (x)=G(x) = c 2 (0;1) : 2The next representation is a consequence of Theorem 1.3.1 of Bingham,Goldie and Teugels (1989) and the fact thatF 2 L () F � ln 2 R(0) :Lemma 3.4. (Representation of dfs in L)F 2 L if and only if it has representationF (x) = c(x) exp�� Z xz q(t) dt� ; x � z � 0 ;where c and q are non{negative measurable functions such that c(x) ! c 2(0;1) and q(x) ! 0, as x!1, and R1z q(t) dt =1. 2This implies in particular that each F 2 L is tail{equivalent to an absolutelycontinuous df with hazard rate q which tends to 0 (for a de�nition see after9



Remark 3 below). Since S is closed with respect to tail{equivalence (Teugels(1975)) it is of interest to �nd conditions on the hazard rate such that thecorresponding df or/and integrated tail df is subexponential. In order to unifythe problem of �nding conditions for F 2 S and FI 2 S, the following class wasintroduced in Kl�uppelberg (1988).De�nition 3.5. (The class S�)Let F be a df on (0;1) such that F (x) < 1 for all x > 0. We say F 2 S� if Fhas �nite mean � and limx!1 Z x0 F (x� y)F (x) F (y) dy = 2� : 2The next result makes the class useful for applications.Proposition 3.6. If F 2 S�, then F 2 S and FI 2 S. 2Name Tail F or density f ParametersPareto F (x) = � ��+ x�� �; � > 0Burr F (x) = � ��+ x� �� �; �; � > 0Log{gamma f(x) = ���(�) (ln x)��1 x���1 � > 1; � > 0Truncated F (x) = P (jX j > x) 0 < � < 2�{stable where X is an �{stable rvLognormal f(x) = 1p2� �xe�(lnx��)2=(2�2) � 2 R, � > 0Benktander{ F (x) = c(�+ 2� lnx) c; �; � > 0type{I e�(�(lnx)2+(�+1) lnx)Benktander{ F (x) = c�x�(1��)e�� x�=� c; � > 0type{II 0 < � < 1Weibull F (x) = e�x� 0 < � < 1\Almost" exponential F (x) = e�x(lnx)�� � > 0Table 3.7. Subexponential dfs. All of them are in S� provided they have �nitemean. 10



Remarks 1) The class S� is \almost" S \ fF : �(F ) <1g, where �(F ) is themean of F . A precise formulation can be found in Kl�uppelberg (1988).2) The tails of dfs in S� are subexponential densities (Kl�uppelberg (1989a),Willekens (1986)).3) The class S� is closed with respect to tail{equivalence. 2The task of �nding easily veri�able conditions for F 2 S or/and FI 2 S hasnow been reduced to the �nding of simple conditions for F 2 S�. We formulatesome of them in terms of the hazard function Q = � lnF and its density q, thehazard rate of F . (Recall that S� � S � L, hence by Lemma 3.4 each F 2 S�is tail{equivalent to an absolutely continuous df whose hazard rate tends to 0.)Proposition 3.8. (Conditions for F 2 S�)(a) If lim supx!1 xq(x) <1, then F 2 S�.(b) If there exist � 2 (0; 1) and v � 1 such that Q(xy) � y�Q(x) for allx � v ; y � 1 and lim infx!1 xq(x) � (2� 2�)�1 ; then F 2 S�.(c) If q is eventually decreasing to 0, thenF 2 S� () limx!1Z x0 eyq(x)F (y) dy = � : 2Corollary 3.9. (More conditions for F 2 S�)Suppose limx!1 q(x) = 0 and limx!1xq(x) =1 :If additionally one of the following conditions holds, then F 2 S�.(a) lim supx!1 xq(x)=Q(x) < 1.(b) q 2 R(��) for � 2 (0; 1].(c) Q 2 R(�) for � 2 (0; 1) and q is eventually decreasing.(d) q 2 R(0), q is eventually decreasing, and Q(x)� xq(x) 2 R(1): 2There are many more conditions for F 2 S or FI 2 S to be found inthe literature. We mention Chistyakov (1964), Cline (1986), Goldie (1978),Kl�uppelberg (1988), Pitman (1980), Teugels (1975); the selection above is takenfrom Kl�uppelberg (1988, 1989b).4. Subexponentials and maximaDe�nition 1.1(b) suggests subexponential dfs as appropriate models for extremalevents. This immediately warrants an investigation of their relationship to clas-sical extreme value theory. For an introduction to the latter we refer to Em-brechts, Kl�uppelberg and Mikosch (1997), Chapter 3, or Resnick (1987).11



Let (Xn)n2N be iid rvs with df F 2 S and assume that there exist constantsan > 0 and bn 2 R such thata�1n �max(X1; : : : ; Xn)� bn� d! G ; n!1 ;where G is some non{degenerate df. In this case we say F is in the maximumdomain of attraction of G and write F 2 MDA(G). If F 2 S its supportis unbounded above, hence G is either the Fr�echet df ��(x) = expf�x�g forx � 0, where � > 0, or the Gumbel df �(x) = expf�e�xg for x 2 R. We writeF 2 MDA(��) or F 2 MDA(�), respectively.It is well known that F 2 MDA(��) if and only if F 2 R(��). Thus itremains to investigate S \MDA(�).A good indicator for the extremal behaviour of a model is the mean{excessfunction (which exists for dfs with �nite mean)a(x) = E(X � x j X > x) = Z 1x F (y) dy=F (x) ; x > 0 :From Karamata's theorem we know that F has �nite mean when F 2 R(��)with � > 1. Moreover, F 2 R(�(� + 1)) for � > 0 if and only if a(x) � x=� :For the lognormal df we have a(x) � �2x= lnx ; and for the Weibull df a(x) �x1��=� in the parametrisation of Table 3.7. (Recall that a(x) is constant forthe exponential df and converges to 0 for the normal df.)Necessary conditions and su�cient conditions for F 2 MDA(�) \ S havebeen derived by Goldie and Resnick (1988). The following condition applies tothe examples in Table 3.7.Lemma 4.1. Let F be a df with �nite mean and assume that a(x) is eventuallynon{decreasing and there exists some t > 1 such thatlim infx!1 a(tx)a(x) > 1 :Then F 2 MDA(�) \ S. 2Remarks 1) Pareto, Burr, log{gamma and stable dfs belong to MDA(��) forsome � > 0, while lognormal, Benktander and Weibull dfs are in MDA(�).2) For F 2 MDA(�) with in�nite right endpoint we have limx!1 a(x)=x = 0.A generalisation of Karamata's theorem ensures that F 2 R(�1), i.e.limx!1 F (tx)F (x) = � 0 t > 1 ;1 t < 1 :3) The fact that subexponential dfs may belong to MDA(��) and MDA(�) hasconsequences when studying extremal events in various models with subexpo-nential input functions; see Theorems 5.4 and 6.2 for examples. 25. Subexponentials and sumsFrom (1:1) we know that S is closed under the operation of taking sums of iidrvs. It is also closed under convolution roots; that is, the converse to (1:1) istrue (Embrechts, Goldie and Veraverbeke (1979)). In this section we investigatefurther closure and other properties related to sums of subexponential rvs.12



Convolution closureA question naturally emerging from (1.1) is whether S is in general convolutionclosed, i.e. if F , G 2 S, does it always follow that F � G 2 S? The (negative)answer was given by Leslie (1989), who found two subexponential dfs whoseconvolution is not in S. However, this must be a rather pathological example,as the following result covers most \reasonable" cases.Theorem 5.1. (Convolution closure properties of S)(a) Let F 2 S and Gi(x) � ciF (x), where ci 2 (0;1) for i = 1; 2. ThenG1 �G2(x) � (c1 + c2)F (x) :(b) Let F 2 S and G(x) � cF (x) for c 2 [0;1). Then F �G(x) � (1+c)F (x) :(c) Let F;G 2 S. Then F �G 2 S if and only if pF + (1� p)G 2 S for some(all ) p 2 (0; 1) : 2Remarks 1) It has been known for a long time (see Feller (1971)) that thesubclass of dfs with regularly varying tails is convolution closed. Indeed, ifF (x) = x��`1(x) and G(x) = x��`2(x) ; then F �G(x) � x��(`1(x) + `2(x)) :Notice that the case of two di�erent indices of regular variation is covered byTheorem 5.1(b) for c = 0.2) For a proof of Theorem 5.1 we refer to Embrechts and Goldie (1982); seealso Cline (1986). It is possible to develop a special algebra to handle convo-lution questions. After all everything happens in the convolution semigroup ofmeasures on (0;1) and subexponential dfs can be considered as idempotentelements in the factor{semigroup with respect to tail{equivalence. Cline (1987)and Kl�uppelberg (1990) follow such an approach. 2Random sumsTheorem 2.4, together with (2.2), can be viewed as a generalisation of (1.1) torandom (geometric) sums. The following result is due to Embrechts, Goldie andVeraverbeke (1979), Embrechts and Goldie (1982), and Cline (1987).Theorem 5.2. (Random sums of iid subexponential rvs)Suppose (pn) de�nes a probability measure on N0 such thatP1n=0 pn(1+")n <1for some " > 0 and pk > 0 for some k � 2. LetG(x) = 1Xn=0 pnFn�(x) ; x > 0 : (5.1)ThenF 2 S () limx!1 G(x)F (x) = 1Xn=1npn () G 2 S and F (x) 6= o(G(x)) : 2
13



Remarks 3) Let (Xi)i2N be iid with df F and let N be a rv taking values inN0 with distribution (pn). Then G is the df of the random sum PNi=1Xi (withthe convention P0i=1Xi = 0) and the result of Theorem 5.2 translates intoP� NXi=1Xi > x� � ENP (X1 > x) ; x!1 :If (pn) is a Poisson or geometric distribution the condition F (x) 6= o(G(x)) in(c) is unnecessary (Cline (1987)). 2A further generalisation of Theorem 5.2 is towards in�nite divisibility. LetF be an in�nitely divisible df on (0;1). Then its moment generating functionbf has the representationbf(s) = exp�as� Z 10 (1� esx) d�(x)� ; s � 0 ; (5.2)where a � 0 is a constant and � is the L�evy measure of F . The following resultwas proved by Embrechts, Goldie and Veraverbeke (1979). It is based on therepresentation of F as F = F1 � F2, where F1(x) = o(e�"x) for all " > 0 andF2(x) is compound Poisson with the normalised L�evy measure as compoundingdf. Then F (x) � F 2(x) by Theorem 5.1(b), and the closure of S with respectto tail{equivalence ensures F 2 S () F2 2 S. From Theorem 5.2 one obtains:Corollary 5.3. (In�nitely divisible dfs and L�evy measures)F 2 S () �(1; x]=�(1;1) 2 S () F (x) � �(x;1) : 2Remarks 4) This result has been extended to in�nitely divisible processes byRosinski and Samorodnitsky (1993) who relate subadditive functionals of a sam-ple path to a subexponential L�evy measure.5) The asymptotic behaviour of high quantiles of an in�nitely divisible processwith regularly varying L�evy measure has been investigated by Embrechts andSamorodnitsky (1995). 2Large DeviationsA further question immediately arises from De�nition 1.1, namely what happensif n varies together with x. Hence large deviations theory is called for. Noticethat the usual \rough" large deviations machinery based on logarithms cannotbe applied. Classical results for F 2 R(��) state thatP (Sn �ESn > x) � P (max(X1; : : : ; Xn) > x) � nF (x) ; n!1 ; (5.3)which relation holds uniformly for x > 
n for every �xed 
 > 0. \Uniformly"here is in a ratio sense:supx2(
n;1) ����P (Sn �ESn > n)nF (x) � 1����! 0 ; n!1 ;14



see Heyde (1967a, 1967b, 1968), A.V. Nagaev (1969a, 1969b) and Vino-gradov (1994). Large deviations results for so{called semi{exponential tailsF (x) = expf�x�`(x)g, for � 2 (0; 1) and ` 2 R(0), have been derived by S. V.Nagaev (1979); see also Rozovskii (1993). However, for such tails the x{regions,where (5.3) holds, do not in general include all the region [
n;1). A very gen-eral treatment of large deviation results for subexponentials is given in Pinelis(1985). For references and extensions of (5.3) towards random sums we refer toKl�uppelberg and Mikosch (1997), where also certain applications to insuranceand �nance are treated. Generalisations to mixing sequences are to be found inGantert (1996).Weighted sums of subexponential random variablesWeighted sums are the �rst objects to study on the way to linear processes;they are the one{dimensional objects. The results given in Theorem 5.5 belowwere derived by Davis and Resnick (1985, 1988), and they have been used incombination with point{process techniques for studying the extremes of linearprocesses.Assume that (Zj)j2Z are iid with subexponential df F , and form theweighted sum X = 1Xj=�1 jZj : (5.4)The real sequence ( j) is assumed to have properties such that X is well{de�nedas an almost{surely converging series. For this application it is natural to extendthe notion of subexponentiality to dfs on the real line. Let F be a df on R andF (x) < 1 for all x 2 R. F is called a subexponential df on R if there existsa subexponential df G on (0;1) such that F (x) � G(x) as x ! 1. In orderto derive the tail behaviour of the df of the weighted sum X given in (5.4) weassume the tail balance conditionF (x) � p P (jZj > x) ; F (�x) � qP (jZj > x) (5.5)for p 2 (0; 1] and q = 1� p.Proposition 5.4. Assume that Z is a rv with df F , subexponential on R.(a) Let F (x) � px��`(x) and F (�x) � qx��`(x). ThenP ( jZ > x) = 8<: P �Z > x= j� �  �j px��`(x) if  j > 0;P �Z < �x=j j j� � j j j�qx��`(x) if  j < 0;= j j j�x��`(x) �pIf j>0g + qIf j<0g� :(b) Let F 2 R(�1) and assume that (5.5) holds, thenP ( jZ > x)F (x) = 8><>: 1 if  j = 1;q=p if  j = �1;0 if j j j < 1: 215



From Theorem 5.1(b) we derive for independent rvs (Xi)jij�m such thatP (Xi > x) � aiF (x), where ai 2 [0;1), thatP�Xjij�mXi > x� � F (x) Xjij�m ai :This result can immediately be applied to the truncated sumX(m) = Xjjj�m jZj ;where the Zj are iid with subexponential df F on R satisfying the tail balancecondition (5.5). If the sequence ( j) tends su�ciently fast to 0, then the resultfor the truncated sum X(m) extends to the in�nite sum (5.4).Theorem 5.5. Let (Zj)j2Z be iid rvs with df F , subexponential on R, and letX be the random sum given by (5.4).(a) If F 2 R(��) for � 2 (0;1), i.e. P (jZ1j > x) = x��`(x), andP1j=�1 j j j� <1 for some � 2 (0;min(�; 1)), thenP (X > x) � x��`(x) 1Xj=�1 j j j� �pIf j>0g + qIf j<0g� :(b) If F 2 MDA(�)\S andP1j=�1 j j j� <1 for some � 2 (0; 1) and withoutloss of generality maxj j j j = 1 (or else we normalise X), thenP (X > x) � (pk+ + qk�)P (jZ1j > x) ;where k+ is the total number of times  j takes the value 1 (there can onlybe �nitely many), and k� is the total number of times  j takes the value�1. 26. Rare events of a L�evy process with subexponential incrementsLet (St) be a L�evy process in continuous time or a random walk in discrete timewith increment S1 having df B. Assume furthermore that (St) has negativedrift, i.e. �� = ES1 < 0. Then M = maxt�0 St < 1 a.s. and, if we de�ne�(u) = infft > 0 : St > ug, then fM > ug = f�(u) < 1g : Furthermore, for ularge, this event is rare, i.e. (u) = P (�(u) <1) = P (M > u)is small. Typical large deviations problems are the asymptotic form of  (u) asu ! 1 (derived in Section 2), and properties of a sample path leading to anupcrossing of a high level u. LetP (u) = P (� j �(u) <1) ;16
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Figure 6.1. Sample path of a classical ruin process leading to ruin. (Yi)i2N arethe ladder heights, (S�+(k))k2N are the ladder epochs of (St)t�0. The rv N(u),giving the number of ladder segments until ruin, is geometric.then we are interested in the P (u){distribution of the pathS[0;�(u)) = (St)0�t��(u)leading to the occurrence of a rare event.We are in particular interested in the following quantities:Y (u) = S�(u) the level of the process after the upcrossing;Z(u) = S�(u)� the level of the process just before the upcrossing;Y (u)� u the size of the overshoot;W (u) = Y (u) + Z(u) the size of the increment leading to the upcrossing:For the sake of contrast we brie
y report on the results under a Cram�er condition(see Asmussen (1982) and references therein). Suppose there exists some 
 > 0such that the moment generating function bb(s) = EesS1 has bb(
) = 1. Thenthe P (u){distribution of S[0;�(u)) is in an appropriate sense the same as theunconditional distribution with respect to the L�evy process obtained by theexponential change of measure de�ned bydB
(x) = e
xdB(x) :The L�evy process so de�ned (with increment df B
) has positive drift. Inparticular, if the cumulant generating function �(s) = lnbb(s) has �0(
) < 117



then, as u!1,�(u)u P (u)�! (�0(
))�1 and St�(u)t�(u) P (u)�! �0(
) :We can summarise the situation under a Cram�er condition as follows: thebehaviour of the sample path of the L�evy process (or random walk) leading toan upcrossing is as if the increment distribution changed from B to B
 . Themain dramatic feature we see in the sample path is a change of drift causing theupcrossing. The intuitive picture is that rare events occur as a consequence ofa build{up of claims over a period where the underlying parameters change byexponential change of measure. The sample path of the risk process leading toruin exhibits a change of drift.This picture changes radically for subexponential increment distributions(Asmussen and Kl�uppelberg (1996); see also Asmussen (1996)). Here an up-crossing happens as a result of one large increment whereas the process behavesin a typical way until the rare event happens. The following result describes thebehaviour of the process before an upcrossing, and the upcrossing event itself.Theorem 6.2. (Sample path leading to ruin)Assume that the increment S1 has df B with �nite mean �� < 0. Assumefurthermore that B(x) � F (x) as x!1 for some F 2 S� \MDA(G) for someextreme value distribution G. Let a(u) = R1u F (y) dy=F (u) : Then, as u!1, Z(u)a(u) ; �(u)a(u) ; Y (u)� ua(u) ;�St�(u)�(u) �0�t<1! �! �V�; V�� ; T�; (��t)0�t<1�in P (u){distribution in R �R+ �R+ � D [0; 1), where D [0; 1) denotes the spaceof cadlag functions on [0; 1), and V� and T� are positive rvs with df satisfyingP (V� > x; T� > y) = G�(x+ y) = 8><>: �1 + x+ y� ��� if F 2 R(��� 1) ;e�(x+y) if F 2 MDA(�) :(Here � is a positive parameter, the latter case when F 2 MDA(�) being con-sidered as the case � =1 :) 2Remarks 1) The normalising function a(�) is unique only up to asymptoticequivalence. Since a(u) � Z 1u B(y) dy=B(u) ; u!1 ;the rhs here is also a possible normalising function.2) Extreme value theory is the foundation of this result: recall �rst that F 2R(�(�+1)) is equivalent to F 2 MDA(��+1), and hence to FI 2 MDA(��) byKaramata's theorem. Furthermore, F 2 MDA(�)\ S� implies FI 2 MDA(�)\S. Extreme value theory then provides the form of G� as the only possible18



limit df for the excess distribution (Balkema and de Haan (1974)). G� is calleda generalised Pareto distribution. The normalising function a(u) tends to in�nityas u ! 1. For F 2 R(�(� + 1)) Karamata's theorem gives a(u) � u=�. ForF 2 MDA(�) this is Lemma 2.1 in Goldie and Resnick (1988).3) The limit result for (St�(u)) given in Theorem 6.2 substantiates the assertionthat the process (St) evolves typically up to time �(u). 2Theorem 6.2 applies in particular to the models in Section 2. Indeed,stronger results (employing total variation distance) can be obtained for theseexamples since (St) is a downwards skip{free Markov process (with paths havingonly upwards jumps and deterministic downwards movements). We concludewith two special results which answered questions that were open for some time,but refer to Asmussen and Kl�uppelberg (1996, 1997) for details.Example 6.3. (Finite time ruin probability)De�ne the ruin probability before time T by	(u; T ) = P (�(u) � T ) :From the limit result on �(u) given in Theorem 6.2 one �nds the following: ifF 2 R(�(�+ 1)) for some � > 0 thenlimu!1  (u; uT ) (u) = 1� �1 + (1� �)T ��� ;and if F 2 MDA(�) \ S� thenlimu!1  (u; a(u)T ) (u) = 1� e�(1��)T : 2Example 6.4. (Excursions of the workload process of an M/G/1{queue)Let P (u) denote the distribution of the doubly in�nite version (Vt)t2R of theworkload process, for which a stationary excursion above level u starts at time0. Assume that � = �� < 1, � being the arrival rate and � the mean servicetime, and let � denote the stationary distribution of (Vt) and FI the stationaryexcess distribution. By the Markov property, the existence of a limit law for anexcursion is equivalent to P (u){convergence of V0 � u.In the light{tailed case the excess V0�u and hence the whole excursion hasa limit as u!1. However, if FI 2 S, this limit is defective; more precisely,limu!1P (u)(V0 � u � y) = �FI(y) ; y > 0 :Furthermore, if F 2 L,P (u)(V0 > u+ y j V0� = z) = F (u+ y � z)F (u� z) ! 1 ; u!1 ;for all y, z > 0 . So for F � 2 S (then F 2 L and FI 2 S) there are two types ofexcursions. 19
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Figure 6.5. Sample path of the workload process showing three high{level ex-cursions.(1) With probability 1� � the excursion starts from V0� = O(1) and the excessis huge. There is one indicated in Figure 6.5, the �rst one.(2) With probability � the excursion starts from pre{level u� V0� = O(1) andthe excess V0 � u has df FI . There are two indicated in Figure 6.5, namely thelast two.This can be interpreted as that the process evolves in a typical way, with negativedrift, until a very large service time causes an excursion. After the overshootthe drift takes over again, but there may be some smaller excursions on the waydown which can be considered as aftershocks caused mainly by the precedinglarge service time. 27. Concluding remarksRecent interest in subexponential distributions concentrates mainly on relationsbetween heavy tails, long range dependence and self{similarity.If for instance the input stream of a GI/M/1 queue exhibits long rangedependence, then the stationary queue size and the stationary waiting time dis-tributions are each heavy{tailed; see Resnick and Samorodnitsky (1996). Theydescribe a special model for a long range dependent arrival stream (the inter{arrival times are stationary with a special long range dependence structure) andderive bounds for the tails of the stationary queue size and the stationary wait-ing time distributions. Their results are by no means as explicit as the resultspresented in this paper, but they derive bounds for distribution tails. As stated20
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