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Abstract

We survey the properties and uses of the class of subexponential prob-
ability distributions, paying particular attention to their use in modelling
heavy-tailed data such as occurs in insurance and queueing applications.
We give a detailed summary of the core theory and discuss subexponen-
tiality in various contexts including extremes, random walks and Lévy
processes with negative drift, and sums of random variables, the latter

extended to cover random sums, weighted sums and moving averages.

1. Definition and first properties

Subexponential distributions are a special class of heavy—tailed distributions.
The name arises from one of their properties, that their tails decrease more
slowly than any exponential tail; see (1.4). This implies that large values can
occur in a sample with non—negligible probability, and makes the subexponen-
tial distributions candidates for modelling situations where some extremely large
values occur in a sample compared to the mean size of the data. Such a pattern
is often seen in insurance data, for instance in fire, wind—storm or flood insur-
ance (collectively known as catastrophe insurance). Subexponential claims can
account for large fluctuations in the surplus process of a company, increasing
the risk involved in such portfolios. This situation is treated in Section 2.

Subexponentials play a similar role in queueing models. Situations with
extreme service times, modelled by a subexponential distribution, result in huge
waiting times in the system (see Example 2.7). The workload process also shows
large fluctuations (see Example 6.4).

Linear models are widely used as simple models for (or first order approx-
imations to) dependent data. Extremely large values in the innovations, mod-
elled by subexponential distributions, have immediate consequences for the sin-
gle observation. Moreover, they cause effects in larger parts of the sample,
determined by the linear filter.

In all these models a few large values may determine the long—term behav-
iour of a system. This can be made very precise by describing the sample path
behaviour of resulting stochastic processes as the surplus process in insurance
or the workload process of a queue, since the latter models have been the most
fully investigated. This is reviewed in Section 6.

Heavy tails are just one of the consequences of the defining property of
subexponential distributions, which is designed specially to work well with the
probabilistic models commonly employed in the above—mentioned areas of ap-
plication. The subexponential concept has just the right level of generality



to be usable in these models while including as wide a range of distributions
as possible. It includes all distributions with regularly varying tails (domains
of attraction of sum— or max-stable laws) but is considerably wider (see Ta-
ble 3.7). Hence it encompasses many more types of behaviour in the extremes
(see Section 4).

Subexponential distributions were first studied in 1964 by Chistyakov. Re-
search during the seventies was centred around applications in insurance, queue-
ing and branching processes, based on the Pollaczek—Khinchin formula (2.2),
linking a subexponential input df and an output df of interest. In a simple
insurance model this output df may be the ruin probability, while in a sim-
ple queueing model it may be the df of the stationary waiting time. Methods
were rather more analytic than probabilistic at that time. Properties of subex-
ponential moment generating functions, necessary and sufficient conditions for
subexponentiality, and closure properties were investigated.

Extensions to more general models followed: renewal arrival streams re-
placed Poisson arrivals. Modelling in that generality required the tracing of
subexponential input distributions through a Wiener—Hopf factorisation. Use
of random Markov environments required tracing different input distributions
(light— and heavy—tailed), by means of matrix algebra.

Recently, more probabilistic methods have entered the field. Questions like
“how does ruin happen?” or “when is ruin most likely to happen?” given it
happens at all, or “what does the workload process at a high level look like?”
were asked and answered. They necessitated novel methods to investigate path
properties using the regenerative structure of models, as well as excursion theory
for Markov processes and extreme value theory.

Against this background we present two defining properties of subexponen-
tial distributions. The first, more analytic one, is motivated by the Pollaczek—
Khinchin formula (2.2) below, while the second probabilistic one provides a
more intuitive interpretation of subexponentiality.

Definition 1.1. (Subexponential distribution function)
Let (X;)ien be #id positive rvs with df F such that F(x) < 1 for all z > 0.
Denote

the tail of F' and
F"=1-F"()=P(X,+- 4 X, >x)
the tail of the n—fold convolution of F. F' is a subexponential df (F' € S) if one

of the following equivalent conditions holds:
F" ()

(5) lim PXi+- 4+ X, >1)
z—oo P(max(Xy,...,X,) > )

(a)

= n for some (all) n > 2,

=1 for some (all) n > 2. O



Remarks 1) Definition (a) goes back to Chistyakov (1964). He proved that the
limit (a) holds for all n > 2 if and only if it holds for n = 2. It was shown in
Embrechts and Goldie (1982) that (a) holds for n = 2 if it holds for some n > 2.

2) The equivalence of (a) and (b) was shown in Embrechts and Goldie (1980).
A proof goes as follows:

P(max(Xy,...,X,) >z)=1-F"(z) = X:F]’C ) ~nF(z), z— o0,

(~ means that the quotient of lhs and rhs tends to 1). Hence

PXi+--+X,>u2) F (z)

~———>—=1 <<= FecS.
P(max(Xy,...,X,)>z) nF(x)

3) Definition (b) provides a physical interpretation of subexponentiality: the
sum of n iid subexponential rvs is likely to be large if and only if their maximum
is likely to be large. This accounts for extremely large values in a subexponen-
tial sample.

4) From Definition (a) and the fact that S is closed with respect to tail-
equivalence (see Definition 3.3) we conclude that

FeS = F"eS, neN. (1.1)

Furthermore, from Definition (b) and the fact that F™ is the df of the maximum
of n iid rvs with df F', we conclude that

FeS — F'eS, neN.

Hence S is closed with respect to taking sums and maxima of iid rvs. The
relationship of subexponentials and maxima will be further investigated in Sec-
tion 4. Various generalisations of (1.1) will be considered in Section 5.

5) Definition (b) demonstrates the heavy—tailedness of subexponential dfs. It is
further substantiated by the implications (first proved by Chistyakov (1964))

Fes — 1m 28=Y 1 vyer (1.2)
:>/ eTdF(z) =00 Ve>0 (1.3)
= F(z)/e™™" w00 Ye>0. (1.4)

Property (1.4) accounts for the name subexponential df: the tail of F' decreases
more slowly than any exponential tail. Property (1.3) shows that subexponential
dfs have no exponential moments. This prevents any method being applicable
that requires the existence of exponential moments. O



2. The supremum of a random walk with negative drift

Subexponential dfs traditionally play an important role in continuous time mod-
els with a random walk skeleton. We choose a class of insurance risk models for
demonstrating the general method.

The classical insurance risk process is defined as

N(t)
Rit)=u+ct—>» X, t>0,
=1

where u > 0 is the initial capital (or risk reserve), and ¢ > 0 is the premium rate,
i.e. premiums are linear in time. (N (t))¢>0 is a homogeneous Poisson process
with intensity A > 0, counting the number of claims up to time ¢. (X;);cn are iid
positive claims, independent of (N(t)), with df F, finite mean p and integrated
tail df

Fr(z) = l/xf(t) dt, x>0. (2.1)
HJo
Denote by ¢ (u) the ruin probability, given a risk reserve u, i.e.
Y(u) = P(R(t) <0 for some t>0).
The risk process (R(t)) has two important features: the inter—arrival times are

iid exponential rvs (E;);eny with mean 1/A, and ruin can occur only at claim
times. Hence if we define

So=0, Sp=Y» (X;—cE), neN,
i=1

then
V() = P(S(t)>u for some ¢>0)

= P(Sn>u for some nEN)
= P(rﬁl§¥5n>u).

Under the net—profit condition p = Au/c < 1, the random walk (S,,) has negative
drift and ¥ (u) — 0 as u — oo. If we denote by

7(u) =inf{n >0:S, > u}
the ruin time, then

P(rrrllgicSn > u) = P(7(u) < o),

representing the ruin problem as a problem of first hitting times. The ruin
problem can be handled by an analysis of the ladder heights or by solving a
renewal equation (see Asmussen(1996), Embrechts, Kliippelberg and Mikosch



X
X2 3 X4

Xs

Figure 2.1. Idealised sample path of the risk process.

(1997), Feller (1971), Grandell (1991)), representing the non—ruin probability
in terms of the Pollaczek—Khinchin formula:

L—p)=(1—-p) Y p"Fi*(w), u>0, (2:2)
n=0

where F7 is the integrated tail df (2.1) and FP* = Ijg o is the df of Dirac (unit)
measure at 0. In this representation pF7 is the ladder height df. The infinite
series on the rhs of (2.2) defines a defective renewal measure (pFj(z) = p < 1
as * — 00), and the corresponding renewal process is transient: the sequence
of renewals eventually stops, and at each renewal 1 — p is the probability of
termination then and there.

If Cramér’s condition holds, i.e. if there exists some v > 0 such that

/0 " F(z)dx = 1 (2.3)

the defect can be removed and, under the usual conditions, Smith’s key renewal
theorem implies that

Ywe™ = C, u— o0, (2.4)

where C' is a non—negative constant; thus ¢ (u) decreases exponentially fast to
0. It is clear from (1.3) that for F; € S Cramér’s condition (2.3) does not hold.
But a different approach, as we now describe, shows that subexponentials form
the class of heavy—tailed distributions that allows for ruin estimates.

We rewrite formula (2.2) in terms of the tails,

Y(u)=(1-p)> p"Fy (u), u>0.

Dividing both sides by F;(u), we see that Definition 1.1(a) yields an asymptotic
estimate for ¢ (u) provided that one can safely interchange the limit and the
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Figure 2.2. Sample path of the process (S(t)) and its embedded random walk
(Sn). The ladder points are indicated by dots.

infinite sum. This is ensured by the following lemma due to Kesten (for a proof
see Athreya and Ney (1972)), and Lebesgue’s dominated convergence theorem.

Lemma 2.3. If F € S, then for every e > 0 there exists some positive constant
K(e) such that for alln € N and x > 0,
F" (x)

Ty SKEO+" 0

As remarked, these considerations lead to an asymptotic evaluation of .
It turns out that this is not just a consequence of subexponentiality, but is
characterised by it, as follows.

Theorem 2.4. (The ruin probability in the classical risk model)

Fles e 1-vpes e tim 28 _ 2 u
u—)ooFI(u) 1—p

This theorem can be generalised by a Wiener—Hopf factorisation to the more
general Sparre Andersen model, where the claim arrival process is an arbitrary
renewal process.

Theorem 2.5. (The ruin probability in the renewal risk model)
¥(u) P

1-Yv€eS < F1e€S = lim =———=—. O
w I u—)coFI(u) ]_—p



The result of Theorem 2.4 has been further extended by Asmussen, Flge
Henriksen and Kliippelberg (1994) to a Markov-modulated risk model, where the
risk process is not time—homogeneous, but evolves in an environment given by a
Markov process with finite state space. A state of the Markov process defines the
arrival intensity of the Poisson process and the claim—size distribution. Further
results in the realm of this model have been obtained by Asmussen and Hgjgaard
(1995) and Jelenkovi¢ and Lazar (1996).

Asymptotic estimates for the ruin probability change when the company
receives interest on its reserves. For regularly varying claim—size df F' and a
positive force of interest d the corresponding ruin probability satisfies

Ys(u) ~ csF(u), u— oo,

for some positive constant cs, i.e. it is tail-equivalent to the claim-size df itself.
This has been proved in Kliippelberg and Stadtmiiller (1996). The case of gen-
eral subexponential claims has been treated in Asmussen (1996).

Remarks 1) The importance of subexponential dfs for insurance risk theory
was recognised by Teugels (1975).

2) A textbook treatment of subexponential distributions in the context of risk
theory is to be found in Embrechts, Kliippelberg and Mikosch (1997).

3) Theorem 2.4 is due to Embrechts and Veraverbeke (1982) based on work by
Embrechts, Goldie and Veraverbeke (1979). Theorem 2.5 can be found in Em-
brechts and Veraverbeke (1982); see also Veraverbeke (1977) and Bertoin and
Doney (1996). A density version of Theorem 2.4 can be found in Kliippelberg
(1989a), Theorem 4.1 (since Fy has a density, so does 1 — ).

4) Theorem 2.5 can be further generalised to a general discrete time or continu-
ous time random walk or Lévy process with negative drift and increment variable
S; with df B such that the right tail of B satisfies B(x) = P(S; > x) ~ F(x)
for a subexponential df F'. Notice that this is in accordance with the situation
for the classical risk process, where S; = X1 — cF; and

))\e*Aydy—>1, T — 0.

P(X, —cEy > x) _/‘X’F(x-l-cy
P(Xy > x) A F(x)

(F(x + cy) < F(x) for all x > 0 and the quotient tends to 1 by (1.2), hence
Lebesgue dominated convergence applies.) What is needed is that the ladder
height df F7 is subexponential. This also shows that in this context it is quite
natural to define subexponentiality only for positive rvs. O

Similar results to those for the risk models have been derived in the context
of branching processes and queueing theory.

Example 2.6. (Branching processes)

Let (Z(t))¢>0 denote the population size in the Bellman-Harris model, i.e. the
particles produce (independently of each other) at the end of their lifetime a
random number of offspring. Let F' be the lifetime df of a particle and m < 1 the

mean number of offspring. A renewal-type argument similar to the argument



leading to equation (2.2) yields, for u(t) = EZ(t),

- n pnk .- n (F(nt1)* ks
,u(t)z(ZmF >>|<(1—F)(t):2m (F (t)-F (t)).
n=0 n=0
An application of Lemma 2.3 yields together with Definition 1.1 an obvious
analogue of Theorem 2.4. Early references in this context are Athreya and Ney
(1972), Chistyakov (1964) and Chover, Ney and Wainger (1973). m|

Example 2.7. (Queueing models)

Consider a GI/G/1 queue with renewal arrival stream and general service time
df F. Let F have finite mean pu and integrated tail distribution (2.1). We
consider a stable queue, i.e. with traffic intensity p < 1. Then the stationary
waiting time df can be represented as the df of the maximum of a random walk
(Feller (1971), VI.9). Hence analogues of Theorem 2.4 (corresponding to an
M/G/1 queue) and Theorem 2.5 are immediate. Early results were derived by
Pakes (1975), Smith (1972) and Veraverbeke (1977). m|

3. Conditions for subexponentiality

It should be clear from the definition that a characterisation of subexponential
dfs or even of dfs whose integrated tail df is subexponential (as needed in the
risk and queueing models) will not be possible in terms of simple expressions
involving the tail.

Recall that all subexponential dfs have property (1.2), hence the class of
such dfs provides potential candidates for subexponentiality. The class is named
as follows.

Definition 3.1. (The class £)
Let F be a df on (0,00) such that F(z) <1 for all x > 0. We say F € L if

lim L(f — )

Unfortunately, S is a proper subset of £. Examples for a df in £ but not in
S can be found in Embrechts and Goldie (1980) and Pitman (1980).

A famous subclass of S is the class of dfs with regularly varying tail. For
a positive measurable function f we write f € R(a) for a € R (f is regularly
varying with index o) if

f(tr)

T—00 f(x

=t* Vt>0.

A function f € R(0) is called slowly varying. For further properties of regularly
varying functions we refer to the monograph by Bingham, Goldie and Teugels
(1989).



Example 3.2. (Distribution functions with regularly varying tails)
Let F € R(—a) for a > 0, then it has the representation

F(x) =2 %(z), x>0,

for some ¢ € R(0). Notice first that F € L, hence it is a candidate for S.
We check Definition 1.1(a). Let X, X» be iid rvs with df F. Now use the

decomposition

P(X1+X2>x) = P(X1§g,X1+X2>x)+P(XQ§g7X1+X2>x)
X xr
+P(X1 > §,X2 > 5)
Then 5 , )
e /2 17 _ Enl
F @) _ 2/ F@=9) gpgy) + L02)
F(z) 0 F(z) F(z)

Immediately, by the definition of R(—a), the last term tends to 0. The integrand
satisfies F(x — y)/F(x) < F(x/2)/F(x) for 0 < y < x/2, hence Lebesgue
dominated convergence applies and, since F' € L, the integral on the rhs tends
tolasx — oo.

Examples of dfs with regularly varying tail are Pareto, Burr, log—gamma and
stable dfs (see Table 3.7). If & > 1 then F has finite mean and, by Karamata’s
theorem, F1 € R(—(a — 1)), giving F1 € S as well. a

In much of the present discussion we are dealing only with the right tail of
a df. This notion can be formalised, starting with the following definition.

Definition 3.3. (Tail-equivalence)
Two dfs F and G with support unbounded to the right are called tail-equivalent
if lim,_, o F(x)/G(x) =c € (0,0). a

The next representation is a consequence of Theorem 1.3.1 of Bingham,
Goldie and Teugels (1989) and the fact that

Fel <= FolneR(0).

Lemma 3.4. (Representation of dfs in £)
F € L if and only if it has representation

F(2) :c(x)exp{—/jq(t)dt} L 2>2>0,

where ¢ and q are non—negative measurable functions such that c(x) — ¢ €
(0,00) and q(z) = 0, as & — oo, and [ q(t) dt = . m|

This implies in particular that each F' € L is tail-equivalent to an absolutely
continuous df with hazard rate ¢ which tends to 0 (for a definition see after



Remark 3 below). Since S is closed with respect to tail-equivalence (Teugels
(1975)) it is of interest to find conditions on the hazard rate such that the
corresponding df or/and integrated tail df is subexponential. In order to unify
the problem of finding conditions for F' € S and F € S, the following class was
introduced in Kliippelberg (1988).

Definition 3.5. (The class §*)
Let F be a df on (0,00) such that F(z) < 1 for allz > 0. We say F € §* if F

has finite mean p and

lim
T—r 00

Om %F(y) dy = 2.

The next result makes the class useful for applications.

Proposition 3.6. If F € §*, then F € S and F; € S.

Name Tail F or density f Parameters
Pareto F(x) = (;@ :i a:) a,k >0
Burr F(x) = ( _f ) a,k, >0
K+a7
aP
Log—gamma flx) = W(ln x)P-lpma-l a>1,8>0
Truncated F(z) = P(|X] > 2) 0<a<?2
a-stable where X is an a-—stable rv
L —(ne—w?/(20%)
Lognormal f(z) = \/%Uxe LER o0>0
Benktander— F(z) = c(a+2B1Inx) c,a,3>0
typefI e—(ﬁ(ln z)2+(a+1) Inz)
Benktander— F(z) = cax= (1= /6 c,a>0
type-1I 0<p<1
Weibull F(z)=e" 0<T<1
“Almost” exponential | F(z) = e~ *(n®)™" a>0

Table 3.7. Suberponential dfs. All of them are in 8* provided they have finite

mean.

10




Remarks 1) The class §* is “almost” SN {F : u(F) < oo}, where u(F') is the
mean of F. A precise formulation can be found in Kliippelberg (1988).

2) The tails of dfs in §* are subexponential densities (Kliippelberg (1989a),
Willekens (1986)).

3) The class S* is closed with respect to tail-equivalence. O

The task of finding easily verifiable conditions for F' € S or/and F; € S has
now been reduced to the finding of simple conditions for F' € §*. We formulate
some of them in terms of the hazard function Q = —InF and its density ¢, the
hazard rate of F. (Recall that S* € § C £, hence by Lemma 3.4 each F € §*
is tail-equivalent to an absolutely continuous df whose hazard rate tends to 0.)

Proposition 3.8. (Conditions for F' € §*)
(a) Iflimsup,_ . zq(x) < oo, then F € §*.

(b) If there exist & € (0,1) and v > 1 such that Q(xy) < y°Q(x) for all
r>v,y>1 andliminf, o 2q(z) > (2—-2°)"", then F € S*.

(¢) If q is eventually decreasing to 0, then

x

FeS§S << lim eVIOF () dy = . O

T —r00 0

Corollary 3.9. (More conditions for F' € §*)
Suppose

lim ¢(x) =0 and lim zq(z) =o00.
T — 00 T—00
If additionally one of the following conditions holds, then F € S*.
(a) limsup, .. 79(2)/Q(x) < 1.
(b) g € R(=9) ford € (0,1].
() Q € R(d) for § € (0,1) and q is eventually decreasing.
(d) q € R(0), q is eventually decreasing, and Q(x) — zq(x) € R(1). O

There are many more conditions for F' € S or F; € S to be found in
the literature. We mention Chistyakov (1964), Cline (1986), Goldie (1978),
Klippelberg (1988), Pitman (1980), Teugels (1975); the selection above is taken
from Kliippelberg (1988, 1989b).

4. Subexponentials and maxima

Definition 1.1(b) suggests subexponential dfs as appropriate models for extremal
events. This immediately warrants an investigation of their relationship to clas-
sical extreme value theory. For an introduction to the latter we refer to Em-
brechts, Kliippelberg and Mikosch (1997), Chapter 3, or Resnick (1987).

11



Let (X,,)nen beiid rvs with df F' € S and assume that there exist constants

a, > 0 and b, € R such that
a;l(maX(Xl,... , Xn) —bn) 4 G, n— oo,

where G is some non—degenerate df. In this case we say F' is in the maximum
domain of attraction of G and write FF € MDA(G). If F € § its support
is unbounded above, hence G is either the Fréchet df ®,(z) = exp{—z®} for
x > 0, where @ > 0, or the Gumbel df A(z) = exp{—e~"} for x € R. We write
F € MDA(®,,) or FF € MDA(A), respectively.

It is well known that F € MDA(®,) if and only if F € R(—a). Thus it
remains to investigate S N MDA(A).

A good indicator for the extremal behaviour of a model is the mean—excess
function (which exists for dfs with finite mean)

alz)=E(X —x| X >x) :/Oof(y)dy/F(ac)7 x>0.

From Karamata’s theorem we know that F has finite mean when F € R(—q)
with a > 1. Moreover, F € R(—(a + 1)) for a > 0 if and only if a(z) ~ z/a.
For the lognormal df we have a(z) ~ o%z/Inx, and for the Weibull df a(z) ~
2177 /7 in the parametrisation of Table 3.7. (Recall that a(z) is constant for
the exponential df and converges to 0 for the normal df.)

Necessary conditions and sufficient conditions for F' € MDA(A) NS have
been derived by Goldie and Resnick (1988). The following condition applies to
the examples in Table 3.7.

Lemma 4.1. Let F' be a df with finite mean and assume that a(x) is eventually
non—decreasing and there exists some t > 1 such that
lim inf a(tx)
T—y00 a(x)
Then F € MDA(A)N S. |
Remarks 1) Pareto, Burr, log—gamma and stable dfs belong to MDA(®,,) for
some a > 0, while lognormal, Benktander and Weibull dfs are in MDA (A).

2) For F' € MDA(A) with infinite right endpoint we have lim,_, a(z)/z = 0.
A generalisation of Karamata’s theorem ensures that F' € R(—c0), i.e.

. F(tx) 0 t>1,

lim = =

3) The fact that subexponential dfs may belong to MDA (®,,) and MDA(A) has
consequences when studying extremal events in various models with subexpo-
nential input functions; see Theorems 5.4 and 6.2 for examples. a

>1.

5. Subexponentials and sums

From (1.1) we know that S is closed under the operation of taking sums of iid
rvs. It is also closed under convolution roots; that is, the converse to (1.1) is
true (Embrechts, Goldie and Veraverbeke (1979)). In this section we investigate
further closure and other properties related to sums of subexponential rvs.

12



Convolution closure

A question naturally emerging from (1.1) is whether S is in general convolution
closed, i.e. if F, G € S, does it always follow that F'x G € §7 The (negative)
answer was given by Leslie (1989), who found two subexponential dfs whose
convolution is not in §. However, this must be a rather pathological example,
as the following result covers most “reasonable” cases.

Theorem 5.1. (Convolution closure properties of S)

(a) Let F € S and Gi(x) ~ ¢;F(x), where ¢; € (0,00) for i = 1,2. Then
G * Go(z) ~ (c1 + ) F ().

(b) Let F € S and G(x) ~ cF(x) forc € [0,00). Then F x G(x) ~ (1+c)F(x) .

(¢) Let F,G € S. Then FxG € S if and only if pF + (1 —p)G € S for some
(all) p€ (0,1). O

Remarks 1) It has been known for a long time (see Feller (1971)) that the
subclass of dfs with regularly varying tails is convolution closed. Indeed, if
F(z) = 270 (x) and G(x) = 2~%l5(x), then F x G(z) ~ 27%((1(x) + l2(z)) .
Notice that the case of two different indices of regular variation is covered by
Theorem 5.1(b) for ¢ = 0.

2) For a proof of Theorem 5.1 we refer to Embrechts and Goldie (1982); see
also Cline (1986). It is possible to develop a special algebra to handle convo-
lution questions. After all everything happens in the convolution semigroup of
measures on (0,00) and subexponential dfs can be considered as idempotent
elements in the factor—semigroup with respect to tail-equivalence. Cline (1987)
and Kliippelberg (1990) follow such an approach. a

Random sums

Theorem 2.4, together with (2.2), can be viewed as a generalisation of (1.1) to
random (geometric) sums. The following result is due to Embrechts, Goldie and
Veraverbeke (1979), Embrechts and Goldie (1982), and Cline (1987).

Theorem 5.2. (Random sums of iid subexponential rvs)
Suppose (p,) defines a probability measure on Ny such that >~ pa(1+e)™ < 00
for some e > 0 and py, > 0 for some k > 2. Let

G(x) =Y paF™(z), z>0. (5.1)
n=0

Then

Q|

FeS§S < lim _(x) = inpn < G eSand F(z) #0o(G(z)). O
T—00 F(x) —_

13



Remarks 3) Let (X;);en be iid with df F' and let N be a rv taking values in
Np with distribution (p,). Then G is the df of the random sum Y3~ X; (with
the convention Z?zl X; = 0) and the result of Theorem 5.2 translates into

N
P(ZXZ- >x> ~ENP(X|;>z), z— .
=1

If (p,) is a Poisson or geometric distribution the condition F(z) # o(G(z)) in
(c) is unnecessary (Cline (1987)). O

A further generalisation of Theorem 5.2 is towards infinite divisibility. Let
F be an infinitely divisible df on (0, c0). Then its moment generating function
f has the representation

f(s) = exp as — 00(1—6”)611/(@ , s>0, (5.2)
e |

where a > 0 is a constant and v is the Lévy measure of F'. The following result
was proved by Embrechts, Goldie and Veraverbeke (1979). It is based on the
representation of F' as F' = F| % Fy, where F}(x) = o(e°%) for all ¢ > 0 and

Fy(x) is compound Poisson with the normalised Lévy measure as compounding
df. Then F(z) ~ Fy(z) by Theorem 5.1(b), and the closure of S with respect
to tail-equivalence ensures F' € S <= F, € §. From Theorem 5.2 one obtains:

Corollary 5.3. (Infinitely divisible dfs and Lévy measures)
FeS = v(l,7]/v(l,00) €S < F(x) ~v(zr,0). a

Remarks 4) This result has been extended to infinitely divisible processes by
Rosinski and Samorodnitsky (1993) who relate subadditive functionals of a sam-
ple path to a subexponential Lévy measure.

5) The asymptotic behaviour of high quantiles of an infinitely divisible process
with regularly varying Lévy measure has been investigated by Embrechts and
Samorodnitsky (1995). |

Large Deviations

A further question immediately arises from Definition 1.1, namely what happens
if n varies together with . Hence large deviations theory is called for. Notice
that the usual “rough” large deviations machinery based on logarithms cannot
be applied. Classical results for F' € R(—a) state that

P(S, — ES, > ) ~ P(max(Xy,...,X,) >2) ~nF(z), n—=o00, (53)

which relation holds uniformly for x > yn for every fixed v > 0. “Uniformly”
here is in a ratio sense:

P(S, —ES, >n)
sup

2€(yn,00) nF(z)

-1 =0, n—o0;
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see Heyde (1967a, 1967b, 1968), A.V. Nagaev (1969a, 1969b) and Vino-
gradov (1994). Large deviations results for so—called semi—exponential tails
F(x) = exp{—2%(z)}, for a € (0,1) and ¢ € R(0), have been derived by S. V.
Nagaev (1979); see also Rozovskii (1993). However, for such tails the x—regions,
where (5.3) holds, do not in general include all the region [yn, c0). A very gen-
eral treatment of large deviation results for subexponentials is given in Pinelis
(1985). For references and extensions of (5.3) towards random sums we refer to
Klippelberg and Mikosch (1997), where also certain applications to insurance
and finance are treated. Generalisations to mixing sequences are to be found in
Gantert (1996).

Weighted sums of subexponential random variables

Weighted sums are the first objects to study on the way to linear processes;
they are the one-dimensional objects. The results given in Theorem 5.5 below
were derived by Davis and Resnick (1985, 1988), and they have been used in
combination with point—process techniques for studying the extremes of linear
processes.

Assume that (Z;),;ez are iid with subexponential df F, and form the
weighted sum

X = i i Z;. (5.4)

j=—oco

The real sequence (¢;) is assumed to have properties such that X is well-defined
as an almost—surely converging series. For this application it is natural to extend
the notion of subexponentiality to dfs on the real line. Let F' be a df on R and
F(z) < 1forall z € R F is called a subezponential df on R if there exists
a subexponential df G on (0,00) such that F(z) ~ G(z) as x — oco. In order
to derive the tail behaviour of the df of the weighted sum X given in (5.4) we
assume the tail balance condition

F(x) ~pP(12] > 2), F(-z)~qP(Z]> ) (5.5)
forpe (0,1] and ¢ =1 —p.
Proposition 5.4. Assume that Z is a rv with df F, subexponential on R.
(a) Let F(x) ~ pr=*l(x) and F(—x) ~ qv—*l(x). Then
P(Z > x/zpj) ~ Yspr=L(x) if ; >0,

P(Z < —x/lW5]) ~ Ij|*qz=l(z) if b <0,

P(;Z > x)

= |Y;|*e (@) (PLy; 501 + al{y,<o}) -
(b) Let F € R(—o0) and assume that (5.5) holds, then

TS Laf vy =1,
—=——={ v il ¥ -1,
0 if |vl 1. =

N
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From Theorem 5.1(b) we derive for independent rvs (X;)|;j<m such that
P(X; > z) ~ a;F(z), where a; € [0,00), that

P(Z Xi>a:> ~ F(x) Z a; .
i <m ] <m
This result can immediately be applied to the truncated sum
Xt = N" w75,
[7]<m

where the Z; are iid with subexponential df F' on R satisfying the tail balance
condition (5.5). If the sequence (1;) tends sufficiently fast to 0, then the result
for the truncated sum X (") extends to the infinite sum (5.4).

Theorem 5.5. Let (Z;) ez be iid rvs with df F, subexponential on R, and let

X be the random sum given by (5.4).
(a) If F € R(—a) for a € (0,00), i.e. P(|Z1] > 2) = 27 %U(x), and
S22 sl° < oo for some § € (0,min(a, 1)), then

j=—c0

P(X >z) ~ 2 x) Y 5% (PLiy; >0y + tLgy, <o) -

j=—o00

(b) If F € MDA(A)NS and 3772 112 < oo for some d € (0,1) and without
loss of generality max; [1;| =1 (or else we normalise X), then

P(X > x) ~ (pkt +qk™)P(|Z1| > ),

where k™ is the total number of times 1; takes the value 1 (there can only
be finitely many), and k= is the total number of times ; takes the value
1. a

6. Rare events of a Lévy process with subexponential increments

Let (S;) be a Lévy process in continuous time or a random walk in discrete time
with increment S; having df B. Assume furthermore that (S;) has negative
drift, i.e. =3 = ES; < 0. Then M = max;>0S; < oo a.s. and, if we define
T(u) = inf{t > 0:S; > u}, then {M > u} = {r(u) < oo} . Furthermore, for u
large, this event is rare, i.e.

Y(u) = P(1t(u) < 00) = P(M > u)

is small. Typical large deviations problems are the asymptotic form of ¢(u) as
u — oo (derived in Section 2), and properties of a sample path leading to an
upcrossing of a high level u. Let

P = P(-| 7(u) < 00)
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St Y(u) = S.,_(u)

0 T~ _ | - t'
s —ZN ()

—Z(u) = Sru)-

Figure 6.1. Sample path of a classical ruin process leading to ruin. (Y;):en are
the ladder heights, (Sy4(k))ren are the ladder epochs of (St)i>o0. The rv N(u),
giving the number of ladder segments until ruin, is geometric.

then we are interested in the P(*)—distribution of the path

Sio,r(w)) = (Stdo<i<r(u)

leading to the occurrence of a rare event.
We are in particular interested in the following quantities:

Y (u) = S;(w the level of the process after the upcrossing,
Z(u) = Sr(u)— the level of the process just before the upcrossing,
Y(u)—u the size of the overshoot,

W(u) =Y (u) + Z(u) the size of the increment leading to the upcrossing.

For the sake of contrast we briefly report on the results under a Cramér condition
(see Asmussen (1982) and references therein). Suppose there exists some vy > 0
such that the moment generating function 3(3) = Ee*S' has Z(fy) = 1. Then
the P(*)—distribution of Sjo,7(uw)) is in an appropriate sense the same as the
unconditional distribution with respect to the Lévy process obtained by the
exponential change of measure defined by

dB.(z) = e"*dB(z).

The Lévy process so defined (with increment df B,) has positive drift. In
particular, if the cumulant generating function x(s) = Inb(s) has &'(y) < oo
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then, as u — oo,

m(u) po Str(w)
- (K'(y))™" and (1)

We can summarise the situation under a Cramér condition as follows: the
behaviour of the sample path of the Lévy process (or random walk) leading to
an upcrossing is as if the increment distribution changed from B to B,. The
main dramatic feature we see in the sample path is a change of drift causing the
upcrossing. The intuitive picture is that rare events occur as a consequence of
a build—up of claims over a period where the underlying parameters change by
exponential change of measure. The sample path of the risk process leading to
ruin exhibits a change of drift.

This picture changes radically for subexponential increment distributions
(Asmussen and Klippelberg (1996); see also Asmussen (1996)). Here an up-
crossing happens as a result of one large increment whereas the process behaves
in a typical way until the rare event happens. The following result describes the
behaviour of the process before an upcrossing, and the upcrossing event itself.

Theorem 6.2. (Sample path leading to ruin)

Assume that the increment S1 has df B with finite mean —u < 0. Assume
furthermore that B(x) ~ F(z) as x — oo for some F' € S*NMDA(G) for some
extreme value distribution G. Let a(u) = [ F(y)dy/F(u). Then, as u — oo,

(i((s)) ’;EZ; ’ Y(;L()u; - (%(Zi?)oth) — <Va’ %vTav (_Nt)0<t<1)

in P —distribution in R x Ry x Ry xD[0,1), where D[0,1) denotes the space
of cadlag functions on [0,1), and V,, and T, are positive rvs with df satisfying

r+vy

P(Vy>a,Ty>y)=Golz+y) = <1+ > if FER(—a—1),

e~ (@+y) if F & MDA(A).

(Here « is a positive parameter, the latter case when F € MDA(A) being con-
sidered as the case o = 00 .) a

Remarks 1) The normalising function a(-) is unique only up to asymptotic
equivalence. Since

atw)~ [ "By dy/Blu), u— oo,

the rhs here is also a possible normalising function.

2) Extreme value theory is the foundation of this result: recall first that F €
R(=(a+1)) is equivalent to F € MDA(®,1), and hence to F; € MDA(®,,) by
Karamata’s theorem. Furthermore, F' € MDA(A) N S* implies F; € MDA (A) N
S. Extreme value theory then provides the form of G, as the only possible

18



limit df for the excess distribution (Balkema and de Haan (1974)). G, is called
a generalised Pareto distribution. The normalising function a(u) tends to infinity
as u — 00. For F € R(—(a + 1)) Karamata’s theorem gives a(u) ~ u/a. For
F € MDA(A) this is Lemma 2.1 in Goldie and Resnick (1988).

3) The limit result for (S, (4)) given in Theorem 6.2 substantiates the assertion
that the process (S;) evolves typically up to time 7(u). a

Theorem 6.2 applies in particular to the models in Section 2. Indeed,
stronger results (employing total variation distance) can be obtained for these
examples since (S;) is a downwards skip—ree Markov process (with paths having
only upwards jumps and deterministic downwards movements). We conclude
with two special results which answered questions that were open for some time,
but refer to Asmussen and Kliippelberg (1996, 1997) for details.

Example 6.3. (Finite time ruin probability)
Define the ruin probability before time T' by

U(u,T)=P(r(u) <T).

From the limit result on 7(u) given in Theorem 6.2 one finds the following: if
F € R(—(a + 1)) for some a > 0 then

1}3{;% =1-(1+0-pT)"",
and if '€ MDA(A) NS* then
Tim. 1/’(”;;(151)‘)11) e aT -

Example 6.4. (Excursions of the workload process of an M/G/1-queue)
Let P denote the distribution of the doubly infinite version (V;)icp of the
workload process, for which a stationary excursion above level u starts at time
0. Assume that p = Au < 1, A being the arrival rate and p the mean service
time, and let = denote the stationary distribution of (V;) and Fj the stationary
excess distribution. By the Markov property, the existence of a limit law for an
excursion is equivalent to P(*)—convergence of Vy — w.

In the light—tailed case the excess V5 —u and hence the whole excursion has
a limit as u — o0o. However, if F; € S, this limit is defective; more precisely,

lim P™(Vo —u<y)=pFi(y), y>0.

U— 00

Furthermore, if F' € L,

F —
P(“)(V0>u+y|V0,:z):M—>l, U — 00,
Fu—z)

for all y, z > 0. So for F* € S (then F' € £ and F; € S) there are two types of

excursions.
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i T+ bt bt

Figure 6.5. Sample path of the workload process showing three high—level ex-

CUTSIONS.

(1) With probability 1 — p the excursion starts from Vo— = O(1) and the excess
is huge. There is one indicated in Figure 6.5, the first one.

(2) With probability p the excursion starts from pre-level u — Vo = O(1) and
the excess Vp — uw has df F7. There are two indicated in Figure 6.5, namely the
last two.

This can be interpreted as that the process evolves in a typical way, with negative
drift, until a very large service time causes an excursion. After the overshoot
the drift takes over again, but there may be some smaller excursions on the way
down which can be considered as aftershocks caused mainly by the preceding

large service time. a

7. Concluding remarks

Recent interest in subexponential distributions concentrates mainly on relations
between heavy tails, long range dependence and self-similarity.

If for instance the input stream of a GI/M/1 queue exhibits long range
dependence, then the stationary queue size and the stationary waiting time dis-
tributions are each heavy—tailed; see Resnick and Samorodnitsky (1996). They
describe a special model for a long range dependent arrival stream (the inter—
arrival times are stationary with a special long range dependence structure) and
derive bounds for the tails of the stationary queue size and the stationary wait-
ing time distributions. Their results are by no means as explicit as the results
presented in this paper, but they derive bounds for distribution tails. As stated
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by the authors, “one simply needs to better understand the behaviour of queues
with long range dependent input”.

An on/off model for packet transmission has been described in Willinger,
Taqqu, Sherman and Wilson (1995). This model explains the slow rate of decay
of the covariance function of the data, which is an indicator for long range
dependence. An interesting review paper with updated references is Resnick
(1996).

Vesilo and Daley (1996) consider long range dependence of point processes
with queueing examples. They show for instance that certain regularly varying
inter—arrival times or service times lead to a long-range dependent departure
process in a queueing model.

On/off models with subexponential on—periods have been considered by
Jelenkovi¢ and Lazar (1996), using mainly regular variation arguments. There
is also a paper by Heath, Resnick and Samorodnitsky (1996) on this topic.
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