
Chapter 7

Tracing Carbon Fluxes: Resolving Complexity

Using Isotopes

H. Schnyder, U. Ostler, C. Lehmeier, M. Wild, A. Morvan-Bertrand,

R. Sch€aufele, and F.A. Lattanzi

7.1 Introduction

All trophic systems, from a single cell to the global biosphere, depend on photo-

synthesis and metabolism of reduced carbon substrates. Cells and ecosystems are, in

fact, interconnected and interdependent metabolic networks, which are operated by

carbon substrate fluxes. Biotic and abiotic stresses can perturb these fluxes at different

scales of biological organisation, from cell to organism (Chap. 1). Such perturbations

can affect substrate partitioning between biochemical pathways and allocation

between parts of an organism, potentially generating/involving tradeoffs between

growth and defence activities (Chaps. 5, 10–12). Knowledge of these responses to

stress can enhance our understanding of the controls and mechanisms of carbon

fluxes in plants, plant–microbe associations and ecosystems. Moreover, it provides a

mechanistic foundation for physiologically based models of plant growth and func-

tioning (Chaps. 15, 17 and 18). At the organism level, the mechanisms underlying

carbon cycling include metabolic pathways, transport processes, deposition and

mobilisation of stores, synthesis of structural compounds, and environmental and

genetic effects on these mechanisms. At the larger scale, such mechanisms may

concern the structure and operation of trophic networks or the stability of ecosystems.

Isotope methodologies are useful tools for tracing carbon substrate fluxes, in

autotrophic and heterotrophic organisms and trophic networks in ecosystems.

A large diversity of (artificial and natural) tracer approaches is available for such

investigations. These include feeding of position-labelled 13C substrates; pulse- or
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dynamic labelling with the radio-active short-lived 11C and long-lived 14C or the

stable 13C in CO2; and tracing of the natural alteration of isotopic signals, in

photosynthetic reactions and (post-photosynthetic) metabolic pathways. As we

show below, there are specific isotope approaches to address questions on very

different temporal and spatial scales. For instance the metabolic fluxes (“fluxome”)

in heterotrophic cells are usually analysed with position-labelled substrates (with

high artificial enrichment of the rare isotope), whereas regional- and global-scale

carbon fluxes are mostly traced on the basis of natural 13C or 14C signals.

Approach-specific mathematical tools are used to analyse the mechanisms

underlying tracer time courses in organisms and ecosystems. In this chapter, we

discuss general principles of different carbon isotope tracer methodologies and the

specifics of their use in studies of processes at various time frames and scales of

biological complexity. Then, we illustrate how the analytical tool “compartmental

modelling” can help to analyse tracer time courses. In particular, we demonstrate

how compartmental modelling can be used to (1) assess the relative merits of pulse-

and dynamic (continuous) labelling for the quantification of carbon pools and

fluxes, (2) constrain hypotheses of the topology (architecture, structure) of meta-

bolic systems and (3) elucidate the effect of fructan turnover on the half-lives of

fructose, glucose and sucrose in grass leaves. We point out constraints associated

with scales of application of different approaches. Finally, we advocate the joint use

of different isotope methodologies in future work.

7.2 Principles of Isotopic Tracer Methodologies

“Tracing carbon fluxes” means tracking carbon atoms in chemical reactions or

during displacement. Isotopes are ideally suited for this purpose. The word “iso-

tope” derives from the Greek words isos and topos, which refer to occupation of the
“same place” in the periodic table of elements. The isotopes of an element differ in

mass, because of a different number of neutrons, but they undergo the same

chemical reactions and physical processes. Since they behave the same, alteration

of the isotopic composition of a substrate does not (or only minimally) disturb the

metabolic and transport pathways. Rather it provides an identifiable tag, or label,

with which the course of a biological process can be traced or tracked without

disturbance. Detection methods include mass spectrometry, spectroscopy, nuclear

magnetic resonance, or radioactive decay measurements (De Groot 2004, 2008).

Isotope techniques were proved useful to partition photosynthesis and respiration

and to quantify carbon allocation to different compartments and partitioning

into different biochemical compounds at various scales, from the cell to the globe

(e.g. Bassham et al. 1950; Ludwig and Canvin 1971; Ryle et al. 1976; Geiger and

Fondy 1979; Kouchi and Yoneyama 1984; Thorpe and Minchin 1991; Ciais et al.

1995; Yakir and Wang 1996; Schimel 1995; Fung et al. 1997; Gebbing et al. 1998;

Gebbing and Schnyder 1999; Randerson et al. 1999; Hanson et al. 2000; Schnyder

et al. 2003; Schnyder and Lattanzi 2005; Heinemeyer et al. 2006; Grimoldi et al.

2006; Tcherkez et al. 2009; Gamnitzer et al. 2009; Grams et al. 2011).
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There are two principal ways by which isotopes can produce traceable signals in

study objects. Either the signal is created artificially, by exposure to isotopically

altered substrate, or it arises naturally in metabolism or transport processes. Artificial

tracer approaches havemade use of the radioactive short-lived 11C (half-life 20.5min)

and long-lived 14C (5,760 years) as well as the stable 13C. Methods of label provision

include exposure to isotopically altered CO2 (Ludwig and Canvin 1971; Geiger 1980;

Leavitt et al. 1994; Loreto et al. 1999; Haupt-Herting et al. 2001; Deléens et al. 1983;

Gamnitzer et al. 2009) or feeding with uniformly or position-labelled organic

substrates, such as sugars and amino acids (Libourel and Shachar-Hill 2008;

Schwender 2009; Kruger and Ratcliffe 2009). In the latter, the intra-molecular

labelling pattern, atmetabolic and isotopic steady state, reflects the label redistribution

in metabolic networks and, hence, the metabolic fluxes in the system.

Natural isotope signals are due to different reaction speeds of distinct isotopes in

various biochemical and physical processes. These cause isotope fractionation

(discrimination) in biochemical and physical processes in photosynthesis and

metabolism (Deines 1980; Farquhar et al. 1989; Ehleringer et al. 2000; Ghashghaie

et al. 2003; Hobbie and Werner 2004; Tcherkez and Farquhar 2005; Tcherkez and

Hodges 2008). Thus, primary CO2-fixation mechanisms (C3, C4 and marine

systems) generate distinct isotopic signals (Bender 1971; O’Leary 1981; Farquhar

et al. 1989). Furthermore, the isotope effect on pyruvate-dehydrogenase causes a

depletion of 13C in the metabolites of acetyl-CoA and lipids (DeNiro and Epstein

1977; Melzer and Schmidt 1987). Also, the fructose-producing aldolase reaction of

the chloroplast prefers 13C, which causes a 13C-enrichment of leaf starch stored

during photosynthesis (Gleixner and Schmidt 1997). Thus, sucrose produced from

the remaining triose phosphates (“day sucrose”) is 13C-depleted, whereas that

synthesised at night from depolymerised starch is 13C-enriched, since it inherits

the 13C signal from starch (Cernusak et al. 2009). Such isotopic signals are useful

tracers of metabolism (e.g. Tcherkez et al. 2003). A difficulty in the utilisation of

natural isotope signals in primary photosynthate is their non-steadiness. For

instance, the 13C signal of phloem sap contents can vary significantly in diurnal

cycles (Kodama et al. 2008). Such factors can complicate a quantitative evaluation

and analysis of tracer data.

There are two popular methods of applying labelled CO2 (or other substrates)

and monitoring the propagation of the tracer: pulse(-chase)-labelling and dynamic

(long-term) labelling. The latter method has also been referred to as “continuous”

(Gamnitzer et al. 2009) or “steady-state” labelling (Geiger 1980; Schnyder 1992).

However, in “fluxomics” studies the term “steady-state labelling” is used to denote

a labelling principle in which the labelled precursor (usually a specific isotopomer

of a substance) is supplied continuously at constant enrichment, and intra-

molecular labelling patterns are measured when the system is in isotopic and

metabolic steady state (Ratcliffe and Shachar-Hill 2006).

In dynamic labelling, the labelled substrate (e.g. CO2, see Fig. 7.1) is supplied

continuously during the time course of the studied process, at constant isotopic

composition. The amount of tracer in the substance of interest increases continu-

ously during label application until—eventually—all sources/pathways supplying
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the metabolite have reached label saturation (isotopic equilibrium with the labelled

substrate). Observations of label content are performed simultaneously with label-

ling (Geiger 1980; Lattanzi et al. 2005; Lehmeier et al. 2008; Gamnitzer et al.

2009). The change in isotopic composition with time reflects the functional

properties of the pool system supplying the synthesis of the metabolite (number

and arrangement of pools and the size, turnover rate and contribution of each pool

to the synthesis of the metabolite). Compartmental analysis (Atkins 1969; Jacquez

1996) is a useful tool to extract these functional characteristics from labelling

kinetics. If the metabolite is not completely labelled, then the metabolite may not

have turned over completely, or some unlabelled (or incompletely labelled) source

is still contributing to its synthesis. Examples of the latter are metabolites which are

synthesised from slowly turning over pools, such as stores or decomposing struc-

tural biomass (Lattanzi et al. 2005; Lehmeier et al. 2008).

In pulse-labelling the labelled substrate is provided for a period of time (pulse),

which is very short in relation to the time course of the studied process, generally at

high isotopic enrichment. Then follows an extended period in which again the

unlabelled form of the substrate is provided, as prior to the pulse (chase period)

(Austin et al. 1976; Jones et al. 1983; Gregory and Atwell 1991). In such an

experiment, the evolution of tracer content in the substance of interest exhibits

E

B

C

A

D

F

Fig. 7.1 Chamber system for 13CO2/
12CO2 labelling of a grassland ecosystem under field

conditions (Gamnitzer et al. 2009). An ecosystem section is enclosed in a chamber with an opening

in the top (A), therefore named “open-top chamber”. A buffer volume (B) prevents ambient air

incursion into the chamber headspace. Air with labelled CO2 (CO2 with altered 13CO2 content) is

provided to the chamber via the air supply tube (C) and distributed within the chamber headspace

with the perforated tube (D). A sampling tube (E) allows sampling of chamber headspace air for

monitoring of labelling conditions inside the chamber and for respiration measurements
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two phases: first, it increases as the labelled form of the substrate isotope becomes

incorporated, then it decreases as the labelled substance is diluted by incorporation

of the unlabelled form of the substrate (“washout” of the tracer). In general, the

incorporation of the tracer is not monitored during the pulse-period. Typically, the

first observation is made at, or shortly after, the end of the pulse. Further

observations occur over the time scale of the process of interest.

Data analysis and interpretation are conducted with approach-specific mathe-

matical tools/simulation models. They include compartmental analysis (Atkins

1969; Jacquez 1996; and see below) and modelling theory and computational

methods of metabolic flux analysis (Ratcliffe and Shachar-Hill 2006; Sauer 2006;

Schuetz et al. 2007; Libourel and Shachar-Hill 2008; Schwender 2009; Allen et al.

2009) for systems in metabolic steady state. Behaviour of non-steady systems—in

natural conditions and usually much larger scales—is analysed with statistical

methods such as wavelet coherence analysis (Vargas et al. 2010) or wiggle-

matching procedures (Kilian et al. 2000).

Although carbon and its isotopes are the subject of this chapter, we recognise

that isotopes of other bio-elements can be useful for carbon metabolism studies.

For instance, dual labelling with 32P and 14C ascertained the nature and role of

ribulose-1.5-bisphosphate in the reductive pentose phosphate cycle (Benson

1951). As another example, dual labelling experiments with nitrogen and carbon

isotopes can help to partition amino-C and carbohydrate-C fluxes (Schnyder and

de Visser 1999).

7.3 Processes, Time Frames and Scales of Biological Complexity

The use of carbon isotopes has advanced our understanding of carbon metabolism,

allocation and cycling in a great variety of processes: metabolic pathways studies

(including uptake/assimilation of CO2 and biosynthesis of primary, secondary and

structural compounds), synthesis and mobilisation of storage compounds, transport

across membranes and through vascular conduits, autotrophic and heterotrophic

respiration, carbon partitioning in ecosystems, and the roles of different photosyn-

thetic types in the biogeochemistry and biogeography of the earth. These processes

have characteristic and distinct time frames. The exchange of carbon in metabolic

pathways, such as the Calvin cycle, occurs in minutes (Bassham et al. 1954).

Transport of assimilate from leaves to roots in the phloem takes from several

minutes to several days, with transport time correlating with plant size. Stores

turn over at the scale of a day to many months, and the residence time of carbon

in structural biomass varies from months to centuries. Accordingly, the kinetics of

label propagation in a system is strongly affected by the types of participating

processes.

Moreover, studies of the different processes are performed at different levels of

biological organisation and complexity. Metabolic pathway studies (e.g. MFA) are

commonly performed in components of cells (chloroplasts, mitochondria, vacuoles
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or components thereof), cells or excised tissues. Transport studies require more

complex systems, such as whole organs or entire plants. Analyses of sink/source

relationships, storage/mobilisation and tissue life span are performed with intact

plants or plant stands/communities. On the other hand, carbon residence time was

studied on various levels of biological integration from single plant (Lehmeier et al.

2008) to global scale (Bird et al. 1996).

Along with differences in time frames and biological complexity go different

challenges in administration/exposure of the label and tracing its fate; metabolic

pathway analyses are performed in highly controlled and reproducible conditions

and terminated within minutes, whereas the studies of the residence time of carbon

in ecosystems generally occur in non-reproducible conditions and require

techniques with a resolution of days to centuries.

Also, the experimental methods for tracing label differ between different types of

process studies and associated spatial scales (moreover and obviously, there have

been transitions in the approaches used over the last 60 years). For instance, the

pioneering works of photosynthetic metabolism have used dynamic labelling (sensu
Ratcliffe and Shachar-Hill 2006) with 14CO2 (Bassham et al. 1954), whereas meta-

bolic flux analyses at organelle-, cell- or unicellular organism scales are mainly using

steady-state labelling with 13C-position-labelled organic substrates (Libourel and

Shachar-Hill 2008) at time scales of seconds to days. Both used high isotopic

enrichments. On the other hand, controlled-environment mesocosm studies have

employed dynamic labelling with 13CO2 at near-natural abundance levels for

weeks to months (Deléens et al. 1983; Schnyder 1992). Studies of phloem transport

have mainly used CO2 pulse-labelling with the radioactive short-lived isotope 11C

(Minchin andThorpe 2003) or long-lived 14C (Geiger and Fondy 1979; Geiger 1980).

Studies focusing on long-term processes at ecosystem-level have often used

pulse-labelling with 13CO2 and
14CO2 (Kuzyakov 2006) to investigate the residence

time of carbon or the labelling kinetics of respiratory CO2 (Ostle et al. 2000;

Johnson et al. 2002; Carbone and Trumbore 2007; Carbone et al. 2007; H€ogberg
et al. 2008; Bahn et al. 2009). Dynamic labelling experiments in ambient (free air)

conditions are methodically challenging, particularly at the ecosystem level

(Gamnitzer et al. 2009, 2011). Figure 7.1 shows an example of a field labelling

system for weeks-long exposure of a grassland ecosystem to an atmosphere with

altered 13CO2 content. Yet, free air carbon dioxide enrichment (FACE) experiments

have also employed continuous labelling with naturally 13C-depleted CO2 for CO2

enrichment (Leavitt et al. 1994). This provides a measurable isotopic label which

can be traced in the ecosystem (Glaser et al. 2006; Keel et al. 2006; Bock et al.

2007; Grams et al. 2011; Kuptz et al. 2011). However, the precision and accuracy of

labelling (e.g. signal to noise ratio) of FACE systems is generally inferior to that of

chamber-based systems (e.g. Gamnitzer et al. 2009).

At much larger scales, such as that of catchments, regions or the globe, the

artificial alteration of isotopic content of CO2 or carbon pools/substrates is gener-

ally not feasible. At field scale, C4 crops may be used to trace the fate of carbon in

C3 soils (Buchmann and Ehleringer 1998; Bol et al. 2009). At regional and global

scale, one must resort to natural isotopic signals, such as the different isotopic
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composition of terrestrial and oceanic CO2 sink, which allow partitioning of land/

ocean contributions to the missing global carbon sink (Ciais et al. 1995; Fung et al.

1997; Randerson et al. 1999). However, natural (and bomb) 14C signals provide a

powerful tool for studies of soil carbon turnover at decadal to millennial time scales

(Trumbore 2006, 2009). A remarkable exceptionality is given by the “anthropo-

genic” 14C bomb spike that has been used as a tracer (Stenhouse and Baxter 1977)

to address research questions from the scale of single organisms to that of the globe

(e.g. Broecker et al. 1985; Bird et al. 1996; Richter et al. 1999; Spalding et al. 2008).

7.4 Pulse- Versus Dynamic Labelling

The relative merits of pulse- and dynamic labelling were discussed previously

(Geiger 1980; Meharg 1994; Kuzyakov 2006; Paterson et al. 2009), but the two

approaches were not compared directly and with quantitative methods. Here we

quantitatively compare the tracer time courses (the so-called “tracer kinetics”) of

pulse and dynamic labelling. Based on data from a dynamic labelling experiment,

the pool characteristics were determined by compartmental analysis (Fig. 7.2a).

The dynamic labelling data suggested that the sink was supplied by a two-pool

system, as shown in the inset of Fig. 7.2b. Compartmental analysis revealed that

this system was composed of a “metabolic and transport pool” (P1) with a half-life

of 0.1 day, and a “store” with a half-life of 6 days (P2).

These pool characteristics were then used to derive the tracer kinetics for pulse-

chase labelling, based on a 0.8-day-long pulse (Fig. 7.2b). The kinetics of label

uptake during the pulse is identical to the initial kinetics of dynamic labelling. The

pulse caused a strong labelling of the rapidly turned-over P1 (63 % label saturation

just after the pulse), but a weak labelling of the slowly turned-over P2 (5 % labelling

just after the pulse). In the subsequent washout period, P1 lost much more label than

P2, as the latter was much less labelled during the pulse. In consequence, detecting

the contribution of P2 in supplying the sink would require adjusting (i.e. increasing)
the 13C-enrichment of the labelling pulse. Otherwise, pulse-labelling experiments

may be “biased” as the contribution of pools with slow turnover goes undetected.

For instance, failure to recognise this restriction/disadvantage of pulse-labelling can

lead to overestimation of the contribution of current assimilation in supplying a

function (sink), and underrating of the role of slowly turned-over stores. Dynamic

labelling avoids this problem, provided that the measurement frequency directly

after the onset of labelling is high enough to resolve the fast pool(s) and the

labelling is continued until (or close to) isotopic saturation of the slow pool(s).

However, there are also advantages for pulse-labelling. For instance, transloca-

tion velocity in plants can be assessed simply by providing a short pulse of 11CO2 or
14CO2 to photosynthesising leaves and monitoring the transit time of the labelled

assimilate-pulse using radiation detectors placed at different positions along the

translocation path (Geiger and Swanson 1965; Jahnke et al. 1981). Also,

fluctuations in allocation patterns in non-steady systems can be detected by
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sequential pulse-labelling of replicates of the system. Furthermore, pulse-labelling

studies are experimentally less demanding than dynamic labelling, in particular

under field conditions.

7.5 Using Compartmental Modelling to Assess Network

Architecture/Topology and Metabolite Compartmentation

One of the present challenges to analysing and understanding metabolic fluxes in

plants, as compared with unicellular organisms, is the much greater complexity of

plant metabolic networks. To a significant extent, the greater complexity is related

to compartmentation, which causes separation of networks, and to the existence and

involvement of stores/storage compartments, which are a source of slowly labelled

substrate (Kruger et al. 2007; Allen et al. 2009; see above). Failure to consider

compartmentation can lead to misinterpretations of labelling patterns (Sweetlove

et al. 2008).

Fig. 7.2 Tracer time course (tracer kinetics) in a “dynamic labelling” (a) and a “pulse-chase

labelling” experiment (b). Tracer kinetics of identical biological systems are compared in (a) and

(b). This system conforms to a two-pool model, shown as an inset in (b). The system includes a

“metabolic and transport pool” (P1) and a “store” (P2). Tracer taken up from the source must pass

through P1, before arriving in the sink. But, some of the tracer first cycles through P2, before being

passed on to the sink. In both panels, the labelling duration is indicated by a grey shaded bar. The
measured data (filled circles in (a) give the fraction of labelled carbon in the amino-C flux

supplying the leaf growth zone of a perennial ryegrass leaf (sink). Plants were grown in a (near-)

steady-state in continuous light. The data were obtained from Wild et al. (unpublished) and

analysed using procedures as described by Lattanzi et al. (2005). The continuous line in (a)

represents the fit of the two-pool model to the data as obtained with compartmental analysis. In

(b) the dashed line reflects the label increase during the pulse; the solid line gives the subsequent
decay (washout) kinetics calculated using the same compartmental model as in (a), with identical

pool characteristics. The dotted line in (a) and (b) give the labelling kinetics of P2
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Compartmental modelling is one of the tools which may assist in resolving some

of these problems. It can distinguish distinct pools of a metabolite, if the pools differ

in the kinetics of labelling (i.e. slow- versus fast-labelled pools). Such differences

are expected for metabolites originating from current assimilation and stores. Here

we demonstrate the usefulness of compartmental modelling for this purpose using

data from dynamic labelling of the water-soluble carbohydrates (glucose, fructose,

sucrose and fructan) in the leaf blades of perennial ryegrass (Fig. 7.3).

The tracer kinetics of fructan, a vacuolar storage carbohydrate, fitted a one-

pool (first-order kinetics) model with a half-life of 69 h (r2 ¼ 0.98). Conversely,

the tracer kinetics of sucrose, glucose and fructose reflected two-pool systems.

Their tracer kinetics fitted double exponential functions of the form y ¼ a·e�b·t +

(1 – a)·e-c·t. The interpretation of the fit parameters depends on the system

structure, which is discussed in detail below. However, to illustrate the power

of the compartmental analysis tool, we discuss an example. This is represented by

a system in which both pools incorporate and release tracer and in which no

exchange occurs between the two pools. In such a system, the parameters a and
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Fig. 7.3 Semi-logarithmic plot of the fraction of unlabelled carbon in fructan, sucrose, glucose

and fructose during labelling. The data were obtained from a steady-state 13CO2/
12CO2 labelling

experiment with Lolium perenne grown in continuous light with a high nitrogen supply (unpub-

lished data). Carbohydrates were extracted from the youngest fully expanded leaf of mature tillers.

Data modified from Lattanzi et al. (2012)
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1 � a represent the fractional contributions of pools 1 and 2 to the total concen-

tration of the respective carbohydrates. The parameters b and c represent the

turnover rates (h�1) of pools 1 and 2, which are directly linked to the respective

half-lives.

The fast pool (pool 1) of fructose, glucose and sucrose had very similar half-

lives: 2.4 h for sucrose (r2 ¼ 0.95), 4.3 h for glucose (r2 ¼ 0.98) and 2.0 h for

fructose (r2 ¼ 0.96), consistent with the expectation that they were formed from

primary photosynthetic products. A more comprehensive analysis of central carbo-

hydrate metabolism (considering both fructan metabolism and invertase activity)

with a four-pool compartmental model demonstrated even faster half-lives of

sucrose, glucose and fructose (Lattanzi et al. 2012).

The half-life of the carbon in pool 2 of these carbohydrates was the same as that

of the fructan pool. This is consistent with the view that the residence time of

carbon in pool 2 of these carbohydrates was controlled by the (vacuolar) fructan

pool; the carbon in pools 2 of fructose, glucose and sucrose originated from the

turnover of fructan. Fructan degradation yields (mainly) fructose. Part of this is

used to form glucose via isomerisation, and both sugars are used for (re-)synthesis

of sucrose (Pollock and Cairns 1991). The close similarity of the half-lives of pool

2 of fructose, glucose and sucrose indicates that the metabolic steps leading to

sucrose re-synthesis occurred very rapidly. This interpretation was also supported

by the low concentrations of pool 2 of fructose and glucose (data not shown). These

results demonstrate the usefulness of dynamic labelling and compartmental analy-

sis to unravel differences in the sub-cellular origin of metabolites in complex

metabolic networks.

Compartmental modelling can also help to constrain predictions on the topology

of networks. This is exemplified by different two-pool models fitted to the data of

Fig. 7.2a. Table 7.1 shows the ten variants of two-pool models which differ in

structure. One- and three-pool models were also fitted to the data shown in

Fig. 7.2a. The one-pool model exhibited a significant lack of fit, whereas three-

pool models were not supported by the data due to over-parameterisation (not

shown). Among the two-pool models (Table 7.1), model 5 represented a system

consisting of a storage compartment which exchanges with a metabolic and trans-

port pool. Biological evidence supported the realism of this model (Wild 2010). The

results of the model fits were consistent with the empirical expectation: model 5

fitted the data equally well or better than the other models.

Models 1 and 2 represented a serial arrangement of the two pools, with one pool

receiving tracer from the source and the other pool releasing the tracer to the sink

end of the system. These models fitted the data very poorly, compared to the other

models, suggesting that a serial arrangement of the pools was unlikely. Models

7–10 fitted the data well, but the estimates of pool size and half-life were associated

with large errors. These errors were a consequence of over-parameterisation of the

models. This means that the models were more complex than was necessary to

explain the tracer data. These models were therefore rejected, following the rule of

parsimony. Simpler models (models 3–6) fitted the data equally well, but exhibited

much less error than models 7–10. Therefore, these simpler models provided the
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best reflection of the topology of the system represented in Fig. 7.2a. Among these,

models 3 and 6 represented systems serving two sinks, whereas models 4 and 5

served only one. As the experimental system considered here (Fig. 7.2) had only

one physical sink, the leaf growth zone, models 3 and 6 seemed unapt. However, it

is still possible that this single sink was fed by two distinct metabolic pathways,

utilising two (groups of) metabolites with different origins in the supply system.

Chemical analysis might reveal this possibility. This example demonstrates that

modelling can guide experimentation, by pointing to system features which merit

further analysis. Such work could lead to advances in hypothesis development.

Some system properties are sensitive to differences in topology, but others are

not. For instance, the half-life estimate of pool 1 was the same for models 3–6. Also,

predictions of pool contributions to the total sink flux (or shares of the total source

flux) agreed perfectly. So these features were independent of differences in topol-

ogy, meaning that uncertainties of topology were non-critical for the estimation of

these parameters. Conversely, estimates of the half-life of pool 2 and of the size of

pools 1 and 2 were dependent on topology, showing that knowledge of model

topology is critical for accurate assessment of other system features.

7.6 Conclusions

Today, a wide range of isotope methodologies are available for tracing carbon fluxes

at widely differing scales, from cellular metabolic pathways to global biogeochemi-

cal cycles. The development of the various methodologies has historic roots in

different disciplines of bioscience, and the methods have been used to great advan-

tage in their original disciplines. However, many methods have potential for appli-

cation outside their traditional discipline. Furthermore, we can expect much benefit

from applying different isotope methodologies to the same research questions.

Investigations of natural intra-molecular isotope distributions can be combined

with 13C-labelling based metabolic flux analysis in microorganisms, plants or

plant–microbe associations using paired experimental units for the two approaches.

Such joint methodologies could be combined with dynamic labelling and compart-

mental modelling to shed light on the role of stores/recycling pools in metabolic

networks. Inter alia, such work should be performed with plants and plant–microbe

associations in non-stressed environments and conditions of abiotic and biotic stress,

to further our mechanistic understanding of the real-world controls of tradeoffs in

carbon substrate allocation and partitioning in these systems (Chaps. 1 and 20).
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