TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fur Bodendkologie

Diversity, abundance and activity of microbes involved in nitrogen turnover in the
rhizosphere of different plants grown on sites contaminated with the antibiotic

sulfadiazine or heavy metals

Julien Ollivier

Vollstandiger Abdruck der von der Fakultdt Wissenschaftszentrum Weihenstephan fir
Erndhrung, Landnutzung und Umwelt der Technischen Universitat Minchen zur Erlangung
des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzende(r):
Univ.-Prof. Dr. J.-Ch. Munch
Prifer der Dissertation:
1. Hon.-Prof. Dr. M. Schloter
2. Univ.-Prof. Dr. Dr. h.c. J. Bauer

Die Dissertation wurde am 10/12/2012 bei der Technischen Universitat Miinchen eingereicht
und durch die Fakultat Wissenschaftszentrum Weihenstephan fur Erndhrung, Landnutzung

und Umwelt am 02/04/2013 angenommen.



Table of contents

List of publications and contributions

Summary

Zusammenfassung

Introduction

1. Nitrogen transformations in soil
1.1 Nitrogen management in agricultural ecosystems and the environment
1. 2. Microbial nitrogen cycling in terrestrial ecosystems
1. 2. 1. Nitrogen fixation
1. 2. 2. Nitrification
1. 2. 3. Denitrification

1. 2. 4. Nitrogen transformations in the rhizosphere

2. The antibiotic sulfadiazine in soil
2. 1. Mode of action of sulfadiazine
2. 2. Occurrence and fate of sulfadiazine in soil

2. 3. Effects of sulfadiazine in soil

3. Heavy metals in soil
3. 1. Occurrence and fate of heavy metals in soil

3. 2. Effects of heavy metals in soil

4. Molecular tools to study soil microbial communities
4. 1. Microbial nucleic acids extraction from soil
4. 2. Quantitative PCR
4. 3. Microbial community profiling
4. 3. 1. Cloning/sequencing approach

4. 3. 2. Terminal restriction fragment length polymorphism analysis

5. Aim and hypotheses

10
11
12
15
17

19
19
21
22

23
23
25

27
27
28
29
29
29

30



Discussion
1. Nitrogen fixation
2. Nitrification
2.1. Ammonia oxidation
2.2. Nitrite oxidation
3. Denitrification
4. Plant/microbes interactions
Conclusions
References
List of abbreviations
Acknowledgement
Publications
Publication |
Publication Il
Publication Il

Publication IV

Curriculum vitae

34

34

35

35

38

39

40

43

45

77

79

80

80

88

98

132

147



List of publications and contributions

Publications:

I. Ollivier J., Kleineidam K., Reichel R., Thiele-Bruhn S., Kotzerke A., Kindler R, Wilke B.-
M., and Schloter M. (2010) Effect of sulfadiazine-contaminated pig manure on the
abundances of genes and transcripts involved in nitrogen transformation in the root-
rhizosphere complexes of maize and clover. Applied and Environmental Microbiology

76, 7903-7909. doi: 10.1128/AEM.01252-10

Il. Ollivier J., Wanat N., Austruy A., Hitmi A, Joussein E., Welzl G., Munch J.-C., and
Schloter M. (2012) Abundance and diversity of ammonia-oxidizing prokaryotes in the
root-rhizosphere complex of Miscanthus x giganteus grown in heavy metal

contaminated soils. Microbial Ecology in press. doi: 10.1007/s00248-012-0078-y

lll. Ollivier J., Schacht D., Groeneweg J., Engel M., Wilke B.-M., Kleineidam K., and Schloter
M. Effects of repeated application of sulfadiazine-contaminated pig manure on the
abundance and diversity of ammonia- and nitrite oxidizers in the root-rhizosphere
complex of pasture plants under field conditions. Submitted to Frontiers in

Microbiology on November 23, 2012

IV. Ollivier J.*, Téwe S.*, Bannert A., Hai B., Kastl E.-M., Meyer A., Su M. X., Kleineidam K.
and Schloter M. (2011) Nitrogen turnover in soil and global change. FEMS
Microbiology Ecology 78, 3-16. doi: 10.1111/j.1574-6941.2011.01165.x

*Authors contributed equally to this work.



My contributions to the publications:

Iv.

| was involved in planning and conducting the experiment and the sampling. Only the
measurement of sulfadiazine in soil was performed by Rudiger Reichel, University of
Trier. | analyzed the data and the manuscript is mainly based on my input.

| performed gPCRs and T-RFLP analysis, and analyzed the data. The manuscript is
mainly based on my input.

| was involved in planning and conducting the experiment and the sampling. |
performed the gPCRs and analyzed the data obtained. | contributed to the analysis
of data obtained from the clone library with Dr. Marion Engel, Helmholtz Zentrum
Munchen. The manuscript is mainly based on my input.

| was responsible for the chapter “Xenobiotics”.



Summary

Industrial processes and agricultural practices can result in the release of potential
toxic chemicals and trace elements into the environment, and consequently impact
microbial communities responsible for important soil functions such as nutrient turnover.
Whereas most studies focused on bulk soil so far, we studied the impact of contaminants,
the antibiotic sulfadiazine (SDZ) and heavy metals (HMs), on the rhizosphere microbial
communities, as they differ in term of activity and diversity from those in bulk soil, and play
a major role in plant growth, mainly through nutrients mobilization. Particularly nitrogen is of
key importance for plant health and yield.

SDZ can reach the soil ecosystem by application of manure, which is commonly
used as organic fertilizer in agriculture, from antibiotic-treated animals. We surveyed the
potential impact of this broad spectrum antibiotic on the nitrogen-transforming microbial
communities in the root-rhizosphere complexes (RRCs) of agricultural plants () in a
greenhouse experiment and (i) under field conditions. In the greenhouse experiment, we
measured in the RRCs of Maize (Zea Mays) and clover (Trifolium alexandrinum) the
abundance of functional genes and transcripts involved in nitrogen fixation, ammonia
oxidation and denitrification using nifH, amoA (in both ammonia-oxidizing bacteria and
archaea), nirK, nirS, and nosZ, respectively, as molecular markers, after a single application
of SDZ-contaminated pig manure. Sampling was performed 10, 20, and 30 days after the
application. SDZ affected the abundance pattern of all investigated genes in the RRCs of
both plant species (with stronger effects in the RRC of clover) 20 and 30 days after the
addition. However, effects on the transcript level were less pronounced, which might
indicate that parts of the investigated functional groups were tolerant or resistant against
SDZ or, as in the case of nifH and clover, have been protected by the nodules. In the field
experiment, we investigated the impact of repeated applications of SDZ-contaminated pig
manure on functional microbial communities involved in ammonia and nitrite oxidation in the

RRCs of diverse plants composing a pasture. We assessed the abundance of ammonia-
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oxidizing archaea (AOA) and bacteria (AOB) as well as Nitrobacter- and Nitrospira-like
nitrite-oxidizing bacteria (NOB) and the diversity of amoA AOA and Nitrobacter-like nxrA
partial sequences. Whereas the first SDZ-contaminated manure application caused only
slight effects on the investigated microbial communities and did not change diversity and
abundance pattern significantly, the second application of SDZ-contaminated manure
induced pronounced effects compared to the control treatment where non-contaminated
manure was applied, and resulted in an up to 15 fold increased ratio of AOA:AOB and a
reduction of nrxA genes. Diversity of amoA AOA increased after the second application of
SDZ-contaminated manure compared to the control treatment whereas a clear reduction of
nrxA OTUs was visible in the same samples.

HM contamination, such as by abandoned mine wastes, can result in severe
pollution in the local environment and negatively impact important ecosystem services.
Whereas HM-contaminated soils are unsuitable for food production, energy crops can allow
the commercial exploitation of these soils by establishing biofuel feedstock production
systems. In addition, the cultivation of these plants offers opportunities for site stabilization
and phytoremediation of contaminated soils. In a pot experiment, we investigated the
response of ammonia-oxidizing microbes in the RRC of Miscanthus x giganteus, a perennial
grass with large annual biomass production potential, grown in soils with different levels of
long-term arsenic (As) and lead (Pb) contamination. We measured the abundance of AOB
and AOA at two different points of plant growth. Furthermore, bulk soil samples before
planting were analyzed. In addition terminal restriction fragment length polymorphism (T-
RFLP) analysis was used to investigate the diversity of archaeal amoA amplicons. Whereas
high concentrations of As and Pb in soil (83 g/kg respectively 15 g/kg) resulted independent
from the plant growth in a clear reduction of AOA and AOB compared to the control soils
with lower HM contents, in soils with contamination levels of 10 g/kg As and 0.2 g/kg Pb,
only AOB were negatively affected in bulk soil samples. Diversity analysis of archaeal amoA

genes revealed clear differences in T-RFLP patterns, in response to the degree of HM
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contamination. Therefore our results could clearly prove different response patterns of AOA
and AOB in HM contaminated soils and the development of archaeal amoA phylotypes
which are more tolerant towards HMs in soil samples originating from the areas the most
impacted by the mining waste, which could contribute to functional redundancy of

ammonia-oxidizing microbes in soils and stability of nitrification pattern.

Zusammenfassung

Industrielle Prozesse und landwirtschaftliche Praktiken kénnen bei der Eintragung
von potenziell toxischen Chemikalien sowie Spurenelementen in die Umwelt beitragen. Sie
nehmen damit Einfluss auf mikrobielle Gemeinschaften, welche flr essenzielle
Bodenfunktionen, wie etwa den Stoffkreislaufen, verantwortlich sind. Wahrend die meisten
Studien bisher Fokus auf die Bodenmasse legten, untersuchten wir die Auswirkungen von
Kontaminationen mit dem Antibiotikum Sulfadiazin (SDZ) sowie mit Schwermetallen (HMs)
auf die mikrobiellen Gemeinschaften der Rhizosphére. Sie unterscheiden sich sowohl in
Aktivitdt wie Diversitdt von den mikrobiellen Gemeinschaften im Bodenkdrper und tragen
wesentlich zum Pflanzenwachstum, hauptsachlich durch die Mobilisierung von Nahrstoffen,
bei.

Sulfadiazin kann Uber die Ausbringung von Gille antibiotikabehandelter Tiere,
welche in der Landwirtschaft flir gewdhnlich als organischer Dinger Verwendung findet, in
den Boden eingetragen werden. Wir untersuchten die moglichen Auswirkungen dieses
Breitbandantibiotikums auf die mikrobiellen Gemeinschaften des Stickstoffkreislaufs im
Bereich des Wurzel-Rhizospharen-Komplexes (RRC) von Nutzpflanzen () im
Gewachshausexperiment und (ii) im freien Feld. Im Gewéachshausexperiment haben wir fir
Mais (Zea Mays) und Klee (Trifolium alexandrinum) im Bereich des Wurzel-Rhizosphéaren-
Komplexes die Abundanz funktioneller Gene sowie Transkripte gemessen, welche bei der

Stickstofffixierung, Ammonifikation und Denitrifikation eine Rolle spielen. Nach einmaligem
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Auftragen SDZ-kontaminierter Schweinegiille wurden die Gene nifH, amoA (sowohl in
Ammonia-oxidierenden Bakterien als auch Archaeen vorkommend), nirK, nirS und nosZ als
molekulare Marker herangezogen. Die Probennahme erfolgte jeweils 10, 20 sowie 30 Tage
nach der Auftragung. SDZ beeinflusst die Abundanzmuster aller untersuchten Gene im RRC
beider Pflanzenarten (mit starkerem Effekt auf den RRC von Klee) 20 und 30 Tage nach dem
Einsatz. Allerdings waren die Auswirkungen des Antibiotikums auf Transkriptebene weniger
stark ausgepragt, was darauf hindeutet, dass ein Teil der funktionellen Gruppen tolerant
bzw. resistent gegen Sulfadiazin war. Oder sie wurden, wie im Fall von nifH und Klee, durch
Kndllchen geschutzt. Im Freifeldexperiment untersuchten wir den Einfluss von mehrfach
aufgetragener, SDZ-haltiger Schweinegulle auf funktionelle mikrobielle Gemeinschaften der
Ammonia- und Nitritoxidation im RRC diverser Weidepflanzen. Wir maBen die Abundanz
Ammonia-oxidierender Archaeen (AOA) und Bakterien (AOB) sowie die der Nitrobacter- und
Nitrospira-ahnlichen Nitrit-oxidierenden Bakterien (NOB). Des Weiteren untersuchten wir die
Diversitat von amoA AOA sowie die der Teilsequenzen Nitrobacter-ahnlicher nxrA Gene.
Wahrend die erste Ausbringung SDZ-kontaminierter Gille nur geringe Auswirkungen auf die
untersuchten mikrobiellen Gemeinschaften hatte und weder die Diversitats- noch
Abundanzmuster signifikant veranderte, flihrte die zweite Gulleausbringung zu deutlichen
Effekten. Ein Vergleich mit Werten aus Proben eines Kontrollbodens, welcher mit nicht-
kontaminierter Gille behandelt wurde, zeigte ein bis zu 15-fach hdheres Verhaltnis von
AOA:AOB sowie eine Abnahme der nrxA Gene. Die Diversitat von amoA AOA war nach der
zweiten Ausbringung der SDZ-haltigen Gille héher als beim Kontrollboden, wohingegen
eine deutliche Abnahme der nrxA OTUs zu verzeichnen war.

Schwermetall-Kontaminationen, wie sie beispielsweise aus Abféllen stillgelegter
Minen hervorgehen, kdénnen zur erheblichen Belastung der Umgebung flhren und sich
negativ auf wesentliche Okosystemdienstleistungen auswirken. Wahrend HM-kontaminierte
Bdden fur die Lebensmittelerzeugung ungeeignet sind, kdnnen Energiepflanzen die

kommerzielle Nutzung dieser Béden durch die Etablierung von Biokraftstoff erzeugenden



Produktionsverfahren erméglichen. Zusatzlich wirkt sich der Anbau solcher Pflanzen positiv
auf Bodenstabilitdt und Schadstoffabbau (mittels Phytoremediation) aus. In einem
GefaBexperiment  untersuchten wir die Reaktion von  Ammonia-oxidierenden
Mikroorganismen im RRC von Miscanthus x giganteus, einem mehrjahrigen Grases mit
jahrlich hohem Biomasseproduktionspotenzial. Dieses wuchs auf Bdden mit langfristiger
Arsen (As)- und Blei (Pb)-Behandlung unterschiedlicher Konzentration. Wir flhrten eine
Abundanzmessung von AOB und AOA zu zwei verschiedenen Stadien des
Pflanzenwachstums durch. Darlber hinaus wurden vor der Bepflanzung Bodenproben
entnommen und analysiert. Des Weiteren wurde mittels terminaler Restriktionsfragment-
Langen-Polymorphismus (T-RFLP)-Analyse die Diversitat archaealer amoA Amplikons
untersucht. Wahrend unabhangig vom Pflanzenwachstum hohe Konzentrationen von As und
Pb im Boden (83 g/kg bzw. 15 g/kg) zu einer deutlichen Reduktion von AOA und AOB
fihrten (im Vergleich zu Kontrollbdden mit einer niedrigeren Schwermetallbelastung), wurde
in Proben aus Bdden mit einem Kontaminationsgrad von 10 g/kg As und 0,2 g/kg Pb nur
AOB negativ beeinflusst. Diversitatsanalysen archaealer amoA Gene zeigten zudem klare
Unterschiede in ihren T-RFLP-Mustern beziiglich des HM-Kontaminationsgrades. Demnach
kédnnen unsere Ergebnisse als Beweis fir die Ausbildung unterschiedlicher Abundanzmuster
von AOA und AOB als Reaktion auf die Schwermetallbelastung dienen. Zudem belegen sie
die Entstehung archaealer amoA Phylotypen, welche in Bodenproben aus Regionen, die am
starksten durch Tagebauabfille belastet sind, eine hdhere Toleranz gegenlber
Schwermetallen zeigen und zur funktionellen Redundanz Ammonia-oxidierender
Bodenmikroorganismen sowie zur Stabilisierung von Nitrifikationsprozessen beitragen

konnen.



Introduction

1. Nitrogen transformations in soil

1. 1. Nitrogen management in agricultural ecosystems and the environment

Nitrogen (N) is essential for the synthesis of nucleic acids and proteins, the two most
important polymers of life, and the biogeochemistry of its inorganic forms relies almost
entirely upon reduction-oxidation reactions primarily mediated by microorganisms (Canfield
et al.,, 2010). N can be divided into two classes: unreactive and reactive N (Nr). Triple-
bonded N> makes up 78% of Earth's atmosphere and constitutes the largest N reservoir on
earth; N in this form is virtually inert. Nr comprises every other form of the element. Thus, Nr
includes inorganic forms of N (e.g., ammonia [NHs] and ammonium [NH4*], nitrogen oxides
[NO,], nitrous oxide [N-QO], and nitrate [NOs7]), and organic compounds (e.g., urea, amines,
proteins, and nucleic acids). The size of N reservoirs on earth is highly variable, and besides
the mains reservoirs (i.e. the atmosphere, the terrestrial mantle and crust) which are
evaluated to contain 5.6 x 10*®* moles N, about 8 x 10" moles N are stored in the biosphere
(Canfield et al., 2010).

N is of key importance for plant growth and crop yield. In almost all ecosystems,
plants take up mainly NHs* and NOjs, rather than amino acids or monomers, which
apparently only play a role in extremely N-poor and cold ecosystems where N mineralization
from soil organic matter is limited (Jackson et al., 2008). However, a few studies have
shown that temperate trees have the ability to use amino acid N (Bennett and Prescott,
2004;Hofmockel et al., 2007;Warren and Adams, 2007;Scott and Rothstein, 2011).
Supplying agricultural ecosystems with Nr is therefore essential for crop production. Until
the end of the nineteenth century, the main agricultural source of N was fixation of N, by
symbiotic bacteria in legumes, combined with the amount of N contained in animal and
green manure; in this respect, N mineralization, the process by which microbes decompose

organic N to ammonium, is of major importance (Schimel and Bennett, 2004). By 1900,
8



industrial processes, e.g., the Haber-Bosch process, were developed to reduce N2 to NHs,
implementing agricultural practices and boosting crop yields. Thus in the past 4 decades,
world food production doubled thanks to an almost 7-fold increase of N fertilization (Tilman,
1999;Tilman et al., 2001). During 2008 alone, the Haber-Bosch process supplied 9.5 x 10"
mol N whereas agriculture alone contributes about 2.4 x 10" mol because of cultivation
induced N fixation, essentially from fodder legumes (Canfield et al., 2010).

Parallel to the increasing of food production and consequent beneficial effects on
human health, N inputs through anthropogenic activities contribute to a host of
environmental problems (Galloway et al., 2008). Nitrifying microorganisms can convert
ammonia (corresponding to nearly 90% of N fertilizer applied worldwide) to highly mobile
NOs", which can leach into rivers, lakes, and aquifers and possibly leads to eutrophication of
coastal waters (Diaz and Rosenberg, 2008). Microbial denitrification together with
nitrification can form N.O which is lost to the atmosphere and in absorbing terrestrial
thermal radiation, contributes to greenhouse effect; N.O has 300 time, on a per molecule
basis, the warming potential of CO, (Schlesinger, 2009). Besides its contribution to climate
change, N.O destroys ozone in the stratosphere (Ravishankara et al., 2009). Agricultural
ecosystems account for about one quarter of global N.O emissions (Mosier et al., 1998). In
addition, excessive N fertilizer use results in biodiversity loss and soil acidification (Vitousek
et al., 1997). It was recently calculated that excess N in the environment costs the European
Union between €70 billion and €320 billion per year, so more than twice the value that N
fertilizers are estimated to add to European farm income (Sutton et al., 2011).

Therefore investigations on the microbial scale are necessary to gain better insight
into the mechanisms behind the N cycle to (i) develop better N management strategies in
agricultural cropping systems and (ii) monitor ecological changes and reduce the negative
impact of agriculture on the environment. The following section describes the different

processes of the microbial N cycle and involved key functional groups. Special focus has



been laid on the inorganic N cycle, in particular N fixation, nitrification and denitrification, as

those processes make the major contribution to N turnover in agricultural soils.

1. 2. Microbial nitrogen cycling in terrestrial ecosystems

The biological N cycle in terrestrial ecosystems consists of two cycles interlinked by

NH.*: the organic and the inorganic N cycle (Fig. 1). Considering the inorganic part,

particularly three processes of key importance in agricultural ecosystems, mainly driven by

prokaryotes, will be focused in this thesis: (i) N fixation, (ii) nitrification and, (iii) denitrification.

The physiology of these processes and their significance in soil ecology will be addressed in

the next chapter.
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Figure 1. The major biological nitrogen transformation pathways linked to their associated

enzymes (adapted from Canfield et al., 2010). Abbreviation: DRNA, dissimilatory nitrate

reduction to ammonium.
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1. 2. 1. Nitrogen fixation

Biological N fixation is a process where prokaryotes in the bacterial and archaeal
domains, collectively called diazotrophs, reduce atmospheric N2 to NH,* (Fig. 1). Most
microorganisms that perform biological N fixation catalyze this reaction with the nitrogenase
protein complex, which has been highly conserved through evolution (Howard and Rees,
1996). The heterodimeric enzyme complex nitrogenase is composed of two multisubunit
metallo-proteins: (i) the dinitrogenase a.3. heterotetramer also called MoFe-protein (where a
= NifD and B = NifK proteins; component I) and (i) the dinitrogenase reductase y:
homodimer also called Fe-protein (NifH protein; component Il). Component | contains the
active site for N, reduction, typically a MoFe;Ss metal cluster (termed FeMo-cofactor),
whereas component |l couples ATP hydrolysis to interprotein electron transfer. Alternative
nitrogenases wherein Mo is replaced by either Fe or V (in which case the nomenclature Anf
or Vnf, respectively, is used instead of Nif) can be found in a limited subset of diazotrophs.
They are closely related to the conventional Mo-based nitrogenase and are present, in all
cases studied so far, secondarily to it (Newton, 2007). These enzymes have to some extent
different kinetics and specificities; the FeMo nitrogenase has been found to be more
specific and more efficient in binding N>, and reducing it to ammonia than either of the
alternative nitrogenases (Burgess and Lowe, 1996;Eady, 1996). The activation energy
required to break the N=N bond is tremendous (16 ATP and 8 electrons per molecule of N
fixed), and the enzyme in vitro is sensitive to inactivation by oxygen (Newton, 2007).
Moreover, a fourth type of nitrogenase, structurally dissimilar from the others and that is
linked to CO reductase activity has been described in Streptomyces thermautotrophicus
(Ribbe et al., 1997). nifH, one of the nitrogenase structural genes, is commonly used as a
marker for the detection and identification of potential N fixing microbes in the environment
(e.g., Zehr et al., 1998;Hamelin et al., 2002;Rdsch et al., 2002;Fong et al., 2008).

Diazotrophs demonstrate diverse lifestyles and N fixation occurs in varied metabolic

contexts under both aerobic and anaerobic conditions. Rhizobia in symbiosis with legumes
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and the actinomycete Frankia in symbiosis with a number of plants (e.g., Alnus, Myrica,
Rosaceae) assume agricultural importance in performing most of biological N fixation in
terrestrial ecosystems (Peoples et al., 1995). However under specific conditions, free-living
bacteria (e.g., cyanobacteria, Pseudomonas, Azospirillum, and Azotobacter) may fix

significant amounts of nitrogen in soil (Kahindi et al., 1997;Burgmann et al., 2004).

1. 2. 2. Nitrification

Nitrification is a two-step process consisting of: (i) the oxidation of NH,* to NO, by
ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) (Kowalchuk and
Stephen, 2001;Leininger et al., 2006) and (ii) the oxidation of NO,  to NOs™ by nitrite-oxidizing
bacteria (NOB) (Prosser, 1989) (Fig. 1). The nitrification pathway plays a central role in the
terrestrial nitrogen cycle. In agricultural ecosystems, this process is responsible for
significant losses of N through leaching of nitrate. Moreover, nitrifiers have a further
substantial environmental impact as contributors to greenhouse gas emissions; N.O is a by-
product of the nitrification process (Wrage et al., 2001).

NHs; oxidation was long attributed to aerobic autotrophic chemolithotrophic
ammonia-oxidizing bacteria. However, novel microbial players and new metabolisms have
been discovered, such as planctomycetes catalyzing anaerobic ammonia oxidation
(ANAMMOX) (Strous et al., 2006), and archaea of the phylum Thaumarchaeota (Brochier-
Armanet et al., 2008;Spang et al., 2010), ubiquitous in marine and fresh waters, soils and
sediments, capable of oxidizing ammonia to nitrite (Kénneke et al., 2005;Treusch et al.,
2005;Tourna et al.,, 2011). In the bacterial domain, the oxidation of NH; to NO, via
hydroxylamine (NH.OH) is performed by certain organisms belonging to two specific groups
of B- and y-proteobacteria (Bock and Wagner, 2001). To date, most cultured strains belong
to the B-subgroup (Kowalchuk and Stephen, 2001). The oxidation of NH; to NH,OH, which
constitutes the rate-limiting step of the nitrification pathway (Bock and Wagner, 2001), is

catalyzed by the ammonia monooxygenase (AMO). AMO is a membrane-bound protein
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consisting of three subunits (a-, B-, y-AMO) encoded by amoA, amoB, and amoC,
respectively, and is evolutionarily and functionally related to particulate methane
monooxygenase (PMMO) enzymes of methane-oxidizing bacteria (Holmes et al., 1995). The
subsequent dehydrogenation of NH,OH to NO, is catalyzed by the hydroxylamine
oxidoreductase (HAQO). HAO is located in the periplasm and is a homotrimer with each
subunit containing eight c-type hemes, encoded by the hao gene (Arp et al., 2002). The
discovery of genes encoding proteins with homology to AMO in genome fragments of
archaea from soil (Treusch et al., 2005) and in shot-gun sequences of marine environments
(Venter et al., 2004), as well as the cultivation or enrichment of archaea from marine waters
(Kénneke et al., 2005;de la Torre et al., 2008;Hatzenpichler et al., 2008) and soil (Tourna et
al.,, 2011) indicates that AOA are an abundant and predominant group of microorganism
(Leininger et al., 2006;Wuchter et al., 2006) and play a key role in global nitrification.
Particularly, soil archaea that convert ammonia aerobically to nitrite were recently isolated
(Jung et al., 2011;Tourna et al., 2011;Kim et al., 2012), thus confirming that AOA from soil
have the capacity of ammonia oxidation. However, the ecological role and metabolism of
soil AOA remains mysterious (Schleper, 2010); contrasting results have been thus reported
when nitrification rates in soils were directly analyzed in the context of both AOB and AOA
populations (Tourna et al., 2008;Di et al.,, 2009;Jia and Conrad, 2009;0Offre et al.,
2009;Schauss et al., 2009b). Moreover, It remains to be determined how significant
heterotrophy and/or mixotrophy is to AOA in natural environments (Zhang et al., 2010;Jung
et al., 2011;Pratscher et al., 2011;Tourna et al., 2011;Kim et al., 2012).

The gene amoA is commonly used as functional marker for studying aerobic
ammonia oxidation (Rotthauwe et al., 1997). Phylogenetic analysis of both bacterial and
archaeal amoA shows that archaeal genes are comparatively distant to their bacterial
homologues (Nicol and Schleper, 2006). No homology is apparent at the DNA level between
AOA and AOB amo-like sequences. However ~ 25% sequence identity and 40% sequence

similarity can be found at the protein level between archaeal and bacterial variants with
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conserved amino acid residues that coordinate potential metal centers. This indicated that
these enzymes belong to the same protein family (Nicol and Schleper, 2006). Therefore
bacterial and archaeal amoA genes can be easily differentiated.

The second step of nitrification is carried out by NOB, which are phylogenetically
heterogeneous, and occur in a wide range of aquatic and terrestrial ecosystems. NOB are
widely distributed, among a, B, y and & classes of proteobacteria and the bacterial phylum
Nitrospirae, for Nitrobacter, Nitrotoga, Nitrococcus, Nitrospina and Nitrospira respectively
(Orso et al., 1994;Teske et al., 1994;Ehrich et al., 1995;Koops and Pommerening-Rdser,
2001;Alawi et al., 2007). However, Nitrobacter and Nitrospira are the major NOB genera
encountered in soil. According to studies performed on wastewater (Schramm et al.,
1999;Daims et al., 2001;Wagner et al., 2002;Blackburne et al., 2007) and soil environments
(Attard et al., 2010), Nitrobacter bacteria are commonly characterized as r-strategists, with
higher growth rate/specific activity and lower N substrate affinity as compared with
Nitrospira bacteria, defined as K-strategist. Whereas most study on the physiology of NOB
used pure cultures of Nitrobacter, the knowledge about Nitrospira is relatively scarce; only
recently, the complete genome of a Nitrospira strain, tentatively named “Candidatus
Nitrospira defluvii” was reconstructed from a metagenomic librairy of an activated sludge
enrichment culture (Lucker et al., 2010). The key enzyme for NO;™ oxidation by NOB is nitrite
oxidoreductase (NXR). In Nitrobacter, NXR is an iron-sulfur molybdoprotein (Meincke et al.,
1992) located at the inner cell membrane and at the intracytoplasmic membranes. NXR was
found to consist of either two (Meincke et al., 1992) or three subunits with a supposed
0oB2y1 stoichiometry (Sundermeyer-Klinger et al., 1984), depending on the purification
method applied. The a-subunit (NxrA) is thought to contain the substrate binding site with
the molybdopterin cofactor (Sundermeyer-Klinger et al., 1984;Meincke et al., 1992), whereas
the B-subunit (NxrB) with [Fe-S] clusters probably channels electrons from the a- to the y-
subunit or directly to the membrane-integral electron transport chain (Kirstein and Bock,

1993). However, Nitrospira has been shown to differ distinctly from Nitrobacter in the
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enzyme NXR, being membrane-bound and located in the periplasm (Spieck et al.,
1998;Lucker et al., 2010). Therefore, so far nxrA has been only used as a molecular marker
to investigate Nitrobacter-like NOB communities (Poly et al., 2008;Wertz et al., 2008),
whereas the 16S rRNA gene is preferred to survey Nitrospira-like NOB communities (Attard

et al., 2010;Wertz et al., 2012).

1. 2. 3. Denitrification

Denitrification is a heterotrophic microbial process which consists of four reaction
steps by which NOs is reduced to N, by the metalloenzymes NOs; reductase, NO;
reductase, NO reductase, and N.O reductase, under anaerobic conditions (Fig. 1), by which
N oxides serve as terminal electron acceptors for respiratory electron transport. In addition
to considerable loss of N, this process contributes to the greenhouse effect through N,O
emission (Schlesinger, 2009) and destruction of the ozone layer (Ravishankara et al., 2009).
Denitrifiers include representatives of more than 60 genera of Bacteria and Archaea, as well
as some Eukaryotes (Philippot et al., 2007), and can represent up to 5% of the total soil
community (Henry et al., 2006). Some microorganisms produce only N, as end
denitrification product, while others give a mixture of N.O and N,, and some only N,O
(Philippot et al., 2007). Also, the dissimilatory NOs™ reduction to NH,* (DNRA; Fig. 1) should
be distinguished from denitrification. Thus, different criteria have been proposed to identify
“true” denitrifiers (Mahne and Tiedje, 1995): (i) No.O and/or N, must be the major end product
of NOs™ or NO;™ reduction, and (i) this reduction must be coupled to an increased in growth
yield that is greater than when NO3z™ or NO, served as an electron sink. Using these criteria,
it is possible to distinguish bacteria possessing only the NO reductase as a protection
against nitrosative stress (Philippot, 2005).

Two types of molybdoenzymes catalyzing the first step of the pathway, the reduction
of NOs” to NO2 have been described: a membrane-bound (Nar) and a periplasmic (Nap)

NOs reductases. Both types of enzymes can be present in the same strain (Carter et al.,
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1995;Roussel-Delif et al., 2005). The membrane-bound nitrate reductase is composed of
three subunits: (i) a catalytic a subunit encoded by narG, containing a molybdopterin
cofactor, (ii) a soluble B subunit, encoded by narH, containing four [4Fe-4S] clusters, and (jii)
the y subunit, encoded by narl, containing two b-types hemes. NarGHI is arranged in two
domains with the a and B subunits constituting the cytoplasmic domain and the y subunit
constituting the membrane domain required for the attachment of the a and B subunits to
the cytoplasmic side of the inner membrane (Philippot, 2002). The periplasmic nitrate
reductase is a heterodimer encoded by the napA and napB genes. NapA is the large subunit
containing a molybdopterin cofactor catalytic subunit and a [4Fe-4S] cluster. NapB is a ¢
cytochrome (Philippot, 2002).

The reduction of soluble NO, into gaseous nitric oxide (NO), the key step in the
denitrification process, can be catalyzed by evolutionary unrelated enzymes that are
different in terms of structure and of prosthetic metal: a copper- (NirK) and a cytochrome
cds- (NirS) NO.™ reductase (Zumft, 1997). In contrast to the NOs reductases, bacteria carry
either the copper or the cdi NO, reductase but the two enzymes are functionally equivalent
(Glockner et al., 1993). The nirK gene and the nirS gene encode the copper- and cdi-NO;
reductase, respectively. The ecology of nirS- and nirK-harboring microbes is still poorly
understood. However, it has been shown in several studies that microbes harboring the nirk
gene form the major part of the NO, reducers in different rhizospheres (Avrahami et al.,
2002;Hui¢ Babi¢ et al., 2008;Hai et al., 2009) and show increased activity compared to
microbes harboring the nirS gene (Sharma et al., 2005), while nirS genes may be more
abundant in bulk soil (Kandeler et al., 2006;Melero et al., 2011) indicating a niche
differentiation between the denitrifying populations in soil (Enwall et al., 2010).

Three types of metalloenzymes are involved in the reduction of NO to N.O: (i) cNOR,
a cytochrome ¢ NO reductase which consists in a complex of two subunits encoded by the
norC and norB genes (Zumft et al., 1994;Arai et al., 1995), (i) gNOR, a quinol NO reductase

encoded by norZ (Cramm et al., 1997), and (iii) qCuaNOR, a menaquinol:NO oxidoreductase
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which in contrast to the other NO reductases, contains copper in form of copper A (Suharti
et al., 2001). The genes encoding qCusNOR are still unknown.

The last step of the denitrification cascade, the reduction of N.O into N, is
performed by the multicopper enzyme N.O reductase (NOS), which is composed of two
identical subunits and contains eight copper ions and is located in the periplasm. The

catalytic subunit is encoded by the nosZ gene (Philippot, 2002).

1. 2. 4. Nitrogen transformations in the rhizosphere

The rhizosphere, first defined by Hiltner in 1904 as the volume of soil influenced by
plant roots, represents a unique microenvironment in terrestrial ecosystems, where the
growth and activity of the root system induce significant modifications in the
physicochemical and biological properties (e.g., microbial activity, abundance, as well as
structural and functional diversity) of the soil surrounding the roots (Brimecomb et al.,
2001;Berg and Smalla, 2009). The so-called “rhizosphere effect” describes the phenomenon
that, in comparison with bulk soil, the biomass and activity of microorganisms is enhanced.
Roots exert, amongst others, strong effects on the major factors regulating the complex set
of N transformations in soil (Fig. 2) (Jackson et al., 2008). Organic compounds are released
by plant roots in the surrounding soil through rhizodeposition. They consist in refractory
organic matter (e.g., root debris and mucilage), on the one hand, and readily available
molecules including sugars, amino acids, organic acids, on the other hand (Brimecomb et
al., 2001). Subsequently, depolymerization of refractory organic matter to labile compounds
can be performed by extracellular enzymes produced by C-limited fungi and bacteria.
Through mineralization, heterotrophic microbes break down organic monomers and release
NHs, which can be used as an energy source by ammonia oxidizers. However, several
studies have reported nitrification to be negatively affected in the rhizosphere (e.g., Norton

and Firestone, 1996;Priha et al., 1999). It has been explained by (i) the competition between
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Figure 2. The N cycle in the rhizosphere of maize (Zea mays).

plants and soil microbes for NH4*; the lower activity of nitrifiers in the rhizosphere can
therefore be explained by a decrease in NH4* concentration due to the plant uptake (in
cropping systems, plants take up mainly NH,* and NOg) (i) the competition between
heterotrophic microbes and autotrophic nitrifiers, the firsts being more competitive in this
carbon rich environment (Philippot et al., 2009), and (iiij the presence of nitrification
inhibitors in root exudates (Subbarao et al., 2007). The release of organic compounds
through root exudation can also positively affect denitrification rates: (i) directly by providing
an additional source of electron donor, since most denitrifiers are chemoheterotrophs, and

(i) indirectly by increasing overall microbial activity, which lowers the oxygen concentration.
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However, factors regulating denitrification in the rhizosphere are strongly interlinked and the
stimulating effect of root exudates is only observed under nonlimiting concentrations of NO;"
and oxygen. It is therefore not possible to state that plant roots always stimulate
denitrification (Philippot et al., 2007). Indeed, plant and denitrifiers compete for NOs", and
consumption of water by plant roots increases soil gas exchange and oxygen
concentration. Finally, leguminous plants are known to exude phenolic compounds of the
flavonoid class, which are key signals in initiation of nodule formation in the N fixing

symbiosis with compatible rhizobia, under conditions of N limitation (Broughton et al., 2000).

2. The antibiotic sulfadiazine in soil

2. 1. Mode of action of sulfadiazine

The target of the antibiotics forming the class of the sulfonamides, which includes
sulfadiazine (SDZ), is the enzyme dihydropteroate synthase (DHPS) catalyzing the
condensation of p-aminobenzoic acid (PABA) and 1,8-dihydro-6-hydroxymethylpterin-
pyrophosphate (DHPPP) to form dihydropteroic acid, which is the penultimate step in the
formation of dihydrofolic acid (Fig. 3). Dihydrofolic acid is subsequently reduced to
tetrahydrofolic acid (THFA), an essential cofactor for the synthesis of purines, certain amino
acids, and thymidine. Sulfonamides competitively inhibit DHPS by their structural analogy to
the PABA substrate (Brown, 1962). Sulfonamides can also function as alternative substrates
for DHPS forming pterin adducts that cannot participates in folate synthesis and
presumably diffuse from the cell (Roland et al., 1979). Higher eukaryotes, like Mammalian,
are not dependent on endogenous synthesis of folic acid, and generally lack DHPS; they
can use dietary folates by uptake through a transport system, which most prokaryotes and
some lower eukaryotes lack. Thus, the latter have to synthesize folates de novo, making the

basis for the selective effect of sulfonamides on bacteria and for their broad spectrum of
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Figure 3. The folate biosynthetic pathway (adapted from Xiao et al., 1999). Abbreviations:
HPPK, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; DHPS, dihydropteroate
synthase; DHFS, dihydrofolate synthase; and DHFR, dihydrofolate reductase, PABA, p-

aminobenzoic acid.

antibacterial activity (Skold, 2000). Numerous studies have shown that sulfonamides act
bacteriostatic on sensitive microorganisms (e.g., Garrett and Wright, 1967;Seydel et al.,
1972). Many of investigated sensitive microorganisms are pathogens and belong to the
domains of bacteria (e.g., Mycobacterium spp. (Nopponpunth et al., 1999), Staphylococcus
spp. (Hampele et al., 1997), Streptococcus spp. (Haasum et al., 2001), but also to the

domain of eukaryotes in fungi (Achari et al., 1997) and protozoa (Triglia et al., 1997).
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However, effects of sulfonamides on archaea, a fortiori AOA (as the first cultures of soil
AOA, which may form the basis for such studies, have been isolated only recently; Jung et
al., 2011;Tourna et al., 2011;Kim et al., 2012), remain widely unknown.

In bacteria, resistance to sulfonamides is mediated mainly by the genes su/7 and
sul2, coding for dihydropteroate synthases which are insensitive to sulfonamides (Skold,
2000). The genes occur in a wide range of species, because they are often located on
transposable elements of self-transferable or mobilizable broad-host-range plasmids

(Schluter et al., 2003;Heuer et al., 2004;Byrne-Bailey et al., 2009).

2. 2. Occurrence and fate of sulfadiazine in soil

In Europe, antibiotics are nowadays used in animal husbandry to treat infectious
diseases; their use as food additives and growth promoters is forbidden since 2006.
Sulfonamides constitute one of the major groups of veterinary drugs and are mainly used in
pigs (Thiele-Bruhn and Aust, 2004). SDZ is poorly adsorbed in the animal gastro-intestinal
tract; manure from SDZ-treated pigs can thus contain considerably high amounts of the
parent compound, and, to a lower extent, of the two main metabolites N*-acetyl-sulfadiazine
(Ac-SDZ) and 4-hydroxy-sulfadiazine (OH-SDZ; Fig. 4) (Lamshoéft et al, 2007).

Concentrations of the SDZ and its metabolites have been shown to be stable during manure
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Figure 4. Chemical structure of (a) sulfadiazine and its two main metabolites (b) N*-acetyl-

sulfadiazine (Ac-SDZ) and (c) 4-hydroxy-sulfadiazine (OH-SDZ) (from Zarfl et al., 2009).
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storage and the SDZ concentrations even increased over time due to the deacetylation of
the Ac-SDZ (Heuer et al., 2008). Thus, the antibiotic and its potentially bioactive metabolites
reach the soil ecosystem through the use of manure as fertilizer.

SDZ is known to persist in soil (Burkhardt and Stamm, 2007;Forster et al.,
2009;Rosendanhl et al., 2011) and its long-term fate is governed by its sequestration into
hardly extractable and non-extractable forms (Kreuzig and Héltge, 2005;Forster et al., 2009)
— the term sequestration corresponding to the mechanisms decreasing the extractability and
thus the bio-availability of the compound in soil (Lueking et al., 2000). Three fractions of
SDZ in soil have been described (Zarfl et al., 2009): (i) the CaCl,- and MeOH-extractable
fraction corresponding to the bioavailable fraction, (i) the subsequent microwave-
extractable fraction (Forster et al., 2008) identified as the residual fraction, and (jii) the non-
extractable fraction consisting of bound residues. Whereas rapid decreased in SDZ
extractability with the sequential CaCl, and MeOH extraction procedure has been described
(Kotzerke et al., 2008;Forster et al., 2009), kinetic modelling suggests that the underlying
sequestration mechanisms are at least partly reversible and SDZ can be released back into
available forms (Zarfl et al., 2009). Moreover, Rosendahl and colleagues (2011) showed that
dissipation from both easily extractable and residual SDZ fractions was largely temperature-

dependent and soil moisture controlled sequestration, being accelerated in dry soil.

2. 3. Effects of sulfadiazine in soil

SDZ has been reported to affect general and potential microbial activities and the
bacteria community structure (Zielezny et al., 2006). However, effects of SDZ have been
shown to depend on the addition of an energy source, i.e. to the addition of a substrate to
promote microbial growth. This is mainly relevant for manure as the main carrier of
antibiotics to soil. Thus, Hammesfarh and colleagues (2008) showed that amending soil with

manure that had been spiked with SDZ lowered microbial biomass and altered bacterial
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community structure. Soil respiration provides information about the broad status of
microbial activity in soil. Kotzerke and co-workers (2008) observed reduced CO; production
in response to manure contaminated with SDZ. Overall the antibiotic effect of SDZ depends
on time, dose and soil (Schauss et al., 2009a). Particularly, effects on N turnover and
functional microbial communities have been investigated. Potential nitrification activity
remained unchanged under low SDZ concentration conditions in bulk soil when applied in
combination with manure (Kotzerke et al., 2008). This might have been due to a substitution
of the highly affected AOB by their archaeal counterparts (Schauss et al., 2009b). Moreover,
potential denitrification rates decreased in treatments where sulfadiazine was applied
(Kotzerke et al., 2008). However, it remains unclear if the observed alterations in potential
denitrification rates are caused by a general reduced abundance of denitrifiers, a loss of
specific phylotypes, or changes in expression levels of the corresponding genes (Kleineidam

et al., 2010).

3. Heavy metals in soil

3. 1. Occurrence and fate of heavy metals in soil

The accumulation of heavy metals (HMs) in topsoil can result from (i) industrial
deposition e.g., from mining activities (ii) livestock manure and other organic wastes e.g.,
sewage sludge and waste waters used as fertilizer, and (iii) pesticides. Besides, HMs can
also occur naturally, but rarely at toxic levels (Alloway, 1990). Whereas Zinc (Zn), copper
(Cu), nickel (Ni) arsenic (As), chromium (Cr), and cadmium (Cd) can be essential trace
elements for living organisms (although they can be toxic if present at excessive levels), ,
lead (Pb), and mercury (Hg) have no biological function and can be harmful if they enter the
environment. Industrial activities can be responsible for atmospheric fallout of HMs; the
most important sources include energy production, mining, metal smelting and refining,

manufacturing processes, transport and waste incineration (Nriagu, 1990;Martley et al.,
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2004;Rodriguez Martin et al., 2007). HM deposited on the soil surface will gradually become
incorporated into the soil and will contribute to overall soil concentrations. Atmospheric
deposition is ubiquitous, although deposition rates vary depending on proximity to point
sources of pollution such as industrial sites or major roads (Nicholson et al., 2003). In some
cases, areas far from the source region may be considerably affected (Steinnes et al.,
1989;Steinnes et al., 1997;Fitzgerald et al., 1998;Douay et al., 2008). Particularly, the mining
industry represents a major source of contamination. Indeed, abandoned mine wastes, e.g.,
tips and tailings, can result in severe HM pollution in the local environment owing to dust
blow, and from the leaching of mineral weathering products. Agricultural practices are also
considered as sources of HM contamination, although to a more limited land area. Thus,
sewage sludge and livestock manures have been identified as significant sources of HMs
(Nicholson et al., 2003). Indeed, HMs are present in sewage sludge as a result of domestic,
road run-off and industrial inputs to the urban wastewater collection system. Moreover,
HMs, e.g., Cu or Zn are present in livestock diets at background concentrations and may be
added to certain feeds as supplementary trace elements for health reasons or as growth
promoters. Most of the HMs consumed in feed is excreted in the faeces and urine, and will
thus be present in manure (Nicholson et al., 2003). Finally, HMs can be present in
agrochemicals. The use of inorganic fungicides with a high Cu content (e.g., Bordeaux
Mixture) are regularly applied to vineyards and have been identified as significant source of
contamination (Komarek et al., 2010).

The retention of HMs in soil systems depend to a large extent on their chemical
speciation and soil characteristics, and is mainly linked to pH and redox potential (Chuan et
al., 1996;de Matos et al., 2001;Cappuyns and Swennen, 2008;Wilson et al., 2010). For
example, As occurs in the environment mainly as arsenate [As(V)] and arsenite [As(II)]
anions, the first dominating in oxidizing environmental conditions and the second being
more stable in reduced environments. Moreover, organic As species are known to exist; the

methylated As species are the most widespread organic As species know in soil although
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more complex forms such as arsenosugars, arsenobetain, arsenocholine and arsenolipids
have also been identified (Wilson et al., 2010). As speciation, solubility and bioavailability
depends on pH, CEC, texture (clay mineralogy), amorphous Fe-Al oxides, organic matter,
sulfur content, phosphorus concentration, and soil redox conditions (Voigt et al., 1996;Fitz

and Wenzel, 2002;Moreno-Jimenez et al., 2010;Wilson et al., 2010).

3. 2. Effects of heavy metals in soil

HM pollution has been reported to alter the microbial community structure and
decreased diversity (Kandeler et al., 2000;Muller et al., 2001;Li et al., 2006;Macdonald et al.,
2007) as well as microbial activities (Frostegard et al., 1993;Kuperman and Carreiro,
1997;Konopka et al., 1999;Dai et al., 2004). However the results obtained depend on the
experimental system, e.g., short-term versus long-term incubation, various dosing of a
single HM or a combination of HMs, the presence of organic matter. Thus, short-term
responses of microbial processes to HMs spiked in soils are, in general, not predictive of
long-term effects due to microbial adaptations reactions (Giller et al., 1998). Community
adaptation may be explained by selective growth of tolerant populations and selective
decay of sensitive groups (Diaz-Ravina and Baath, 1996;Diaz-Ravina et al., 2007;Fernandez-
Calvino et al., 2011). The mechanisms of metal resistance of microbes consist in (i) intra-
and extracellular metal resistance mechanisms, (i) metal excretion via efflux transport
systems, (iii) sequestering compounds of the cytosol binding and detoxifying metals inside
the cell, (iv) the release of chelators into the extracellular milieu, and (v) binding of metal on
the cell envelope by sorption thus preventing influx (Haferburg and Kothe, 2007; Fig. 5).
Thus, Park and Ely (2008) determined 27 genes that were up-regulated by Zn in the
ammonia-oxidizing bacteria Nitrosomonas europaea. These included for example mercury
resistance genes and inorganic ion transport genes. Furthermore, microbial communities
tolerant to a certain HM have been shown to better cope with stress caused by another HM

due to, e.g., similar physiological mechanisms (Bruins et al., 2000;Tobor-Kaplon et al.,
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2006). For example, Ruyters and colleagues (2012) reported co-tolerance to Zn and Cu of
the soil nitrifying community.

Several studies have shown that N fixation, mineralization, nitrification and
denitrification are affected to HMs (e.g., Bardgett et al., 1994;McGrath et al., 1995;Giller et
al., 1998;Holtan-Hartwig et al., 2002). Especially the nitrification process is altered by HM
contamination, making this process one of the most sensitive microbial assays to indicate
HM toxicity (Broos et al., 2005). Thus, nitrification is for example highly sensitive to elevated
Zn (Smolders et al., 2004). However, recovery of nitrification after Zn exposure occurs
gradually and has been attributed to the development of Zn-tolerant AOB communities,
AOA being more sensitive (Mertens et al., 2006;Mertens et al., 2009;Ruyters et al., 2010).
The adaptation to the contamination is accelerated by the stimulation of the activity of the
nitrifying community (Ruyters et al.,, 2010). Nevertheless, Xia and colleagues (2007)
suggested that AOA may play an important role in long-term fertilized soils contaminated
with Zn; moreover, Li and colleagues (2009) shown that AOA were more tolerant than AOB

to Cu contamination.
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Figure 5. Overview of microbial resistance mechanisms (adapted from Haferburg and
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4. Molecular tools to study soil microbial communities

The characterization of soil microbial community diversity and function has been
long based on cultivation-dependent methods. While leading to remarkable discoveries in
the field of microbial physiology and genetics, culturing provides only poor access to many
organisms; it is estimated that microorganisms refractory to cultivation represent the vast
majority (>85 to 99.999%) of organisms in most environments (Amann et al., 1995). Thus,
the application of polymerase chain reaction (PCR) technology since the early 1990’s (e.g.,
Giovannoni et al.,, 1990;Schmidt et al., 1991;Barns et al.,, 1994) together with the
development of nucleic acids extraction methods from environmental samples (Tsai and
Olson, 1991;Zhou et al., 1996;Miller et al., 1999) has been a major breakthrough in microbial
ecology. Indeed, the combination of PCR amplification of a target gene and/or its
transcripts — the 16S rRNA gene being the predominant target for studying the microbial
diversity (Hugenholtz et al.,, 1998) whereas functional genes are the basis to assess
subpopulations with particular physiological capabilities, as these can be widely distributed
among different genera or even domains (see chapter 1.2.) — with fingerprinting- (e.g.,
terminal restriction fragment length polymorphisms [T-RFLP]) or sequencing-based analyses
allows the description of the diversity and ecology of the uncultivated majority (Head et al.,
1998;Hugenholtz et al., 1998). By targeting a gene, these approaches provide information
about the genetic potential of a given environment whereas RNA-based methods give an

indication on microbial activity status.

4. 1. Microbial nucleic acids extraction from soil

Two main approaches to microbial nucleic acids extraction from soil are currently
available: (i) direct extraction, which relies on direct cell lysis inside the soil matrix —
following the lysis, the nucleic acids are extracted and purified — and (ii) indirect extraction,
in which microbial cells are first isolated from the soil matrix, and then lysed for subsequent

nucleic acids extraction and purification. Although direct extraction is widely in use now,
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both methods present contrasting advantages and drawbacks in term of nucleic acids
quantity and quality (Lombard et al., 2011). Thus, direct DNA extraction method is often
yielding 10—100-fold more DNA whereas the indirect extraction method further releases
high-quality DNA in terms of large fragments and a higher DNA purity (Gabor et al., 2003).
Therefore, differences in community structures between different extraction methods have

been described (Thakuria et al., 2008;Inceoglu et al., 2010).

4. 2. Quantitative PCR

Quantitative PCR (gPCR) allows the estimation of the abundance of a targeted gene
and/or transcript in environmental samples. This technique is based on the detection of
fluorescence signals corresponding to the synthesis of PCR amplicons (Heid et al., 1996).
Quantification of gene and/or transcript numbers is determined during the exponential
phase of the PCR amplification when the numbers of amplicons detected are directly
proportional to the initial number of target sequences present in the environment. The data
utilized for the analysis of samples is acquired at the cycle at which the fluorescence signal
is higher than the background, known as threshold cycle (Wittwer et al., 1997). The copy
number of the target DNA or cDNA can be accordingly determined using a standard curve
generated with target of a known concentration (Smith and Osborn, 2009).

In this thesis, SYBR® green was used as double-stranded DNA (dsDNA) binding dye
to monitor amplicons synthesis. It was preferred to labeled-probes for cost considerations
as it can be used for any reaction without sequence information. However, SYBR® green
assays don’t allow the discrimination between amplicons sequences and false-positives
may occur. Therefore, a post dissociation curve analysis should be carried out to confirm
that the fluorescence signal is generated only from target templates and not from the

formation of non-specific PCR products or primer-dimers (Smith and Osborn, 2009).
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4. 3. Microbial community profiling
4. 3. 1. Cloning/sequencing approach

Sequencing is the method offering the highest phylogenetic resolution, allowing
either species identification or determination of similarity to already known species through
the use of extensive and rapidly growing sequence data-bases (Nocker et al., 2007).
However, the number of clones required to adequately catalog the majority of taxa in a
sample is unwieldy and cultivation, construction and screening of clone libraries are
laborious and time consuming. It has been suggested that environmental samples may
require >10* sequencing reactions to document half of the microbial richness (Dunbar et al.,
2002). Nevertheless, it is possible to predict richness within microbial communities by using
rarefaction and statistical estimators (Schloss and Handelsman, 2005;Schloss et al., 2009).
In the last decade, the development of next generation sequencing technologies, e.g.,
pyrosequencing (Margulies et al., 2005), has revolutionized the field of microbial ecology in
permitting a much deeper sampling of microbial communities by providing magnitude more
sequence information than Sanger sequencing of PCR clone libraries (Roesch et al., 2007).
However, more detailed phylogenetic information can be obtained by the latter, as this very
high throughput is achieved with substantial sacrifices in length of the individual reads when

compared to Sanger sequencing (Hutchison, 2007).

4. 3. 2. Terminal restriction fragment length polymorphism analysis

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a high-
throughput fingerprinting technique allowing the detection of differences in the composition
and structure of microbial communities by targeting small-subunit (SSU) rRNA and also
functional marker genes (Bruce, 1997;Liu et al., 1997). Thus, fingerprinting of functional
communities involved in N cycling in soil, e.g., N fixers (Yeager et al., 2005), archaeal and
bacterial ammonia oxidizers (Boyle-Yarwood et al., 2008) nitrite reducers (Wolsing and

Prieme, 2004) and nitrous oxide reducers (Stres et al., 2008), have been performed. T-RFLP
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analysis consists of the PCR amplification of a target gene using a fluorescently labeled
forward primer and subsequent digestion of the amplicons with one or several restriction
enzymes typically containing a four base-pair recognition site. In silico digestion to evaluate
the ability of restriction enzymes to discriminate between sequences can be done, e.g., with
Restriction Endonuclease Picker (REPK) (Collins and Rocap, 2007). Finally, only the
fluorescently labeled terminal restriction fragments (T-RFs) are visualized by electrophoresis
on an automated sequencer, and the differences in the length and abundance of the T-RFs
are determined by comparison to an internal standard (Schutte et al., 2008). Thus, each T-
RF is assumed to represent a single operational taxonomic unit (OTU) or ribotype. However,
an individual T-RF may correspond to several OTU leading to the underestimation of the
community diversity (Kent et al., 2003).

PCR based methods for microbial community profiling, include limitations because
of the inherent biases of the end-point PCR methodology (Osborn et al., 2000;Lueders and
Friedrich, 2003), e.g., difference in gene copy number and preferential amplification of
certain templates (von Wintzingerode et al., 1997;Polz and Cavanaugh, 1998;Crosby and
Criddle, 2003;Huber et al., 2009). Therefore, they are considered to allow semiquantitative
assessment of community population, as the profiles generated are a quantitative reflection
of the PCR product pool and not a quantitative reflection of the original community (Nocker

et al., 2007).

5. Aims and hypotheses

Rhizosphere microbial communities involved in nutrient turnover are of central
importance for plant nutrition, health and quality; this especially in a context of crop
production, either in food/feed or biofuel feedstock production systems. However, the
soil/plant interface can be exposed to various contaminants through human activities -

intentionally or not, when using HM polluted soils for the cultivation of energy crops (Hartley
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et al., 2009) or when manure contaminated by antibiotics is used as fertilizer (Halling-
Sarensen et al., 1998), respectively — impacting these functional communities, and can
affect eventually the plant biomass production.

Contrary to pesticides, which in most cases when applied at the recommended field
rate concentration don’t have a significant impact on the structure and function of the soil
microbial communities (Review of the effects of xenobiotics on N transforming communities
in Publication V), antibiotics, such as sulfonamides, are explicitly designed to affect
microorganisms. Although changes in turnover rates have been reported for some microbial
processes (e.g., Kotzerke et al., 2008), a number of studies in the last decade have shown
that the influence of sulfonamides on microbes and their metabolic performance in bulk soil
is relatively low (reviewed in Schauss et al., 2009a). These findings have been explained by
() the large microbial diversity in bulk soil systems and by possible mechanisms of
functional redundancy (Nannipieri et al., 2003), (i) the relatively low activity of microbes in
bulk soil that are nearing the dormancy state (Roszak and Colwell, 1987) in which microbes
are not affected by sulfonamides, and (iii) the development of resistant populations by
horizontal gene transfer (Heuer and Smalla, 2007). Moreover, no results on effects of
sulfonamides on functional or structural diversity are available under field conditions.

Most studies published so far concerning the impact of HM contamination on
ammonia oxidizers focused on AOB communities (e.g., Mertens et al., 2006) and therefore
little is known about the response AOA. Besides, the effects of HMs on soil NOB remains
largely unexplored so far. However, heavy metal resistance genes were found in Nitrobacter
hamburgensis (Starkenburg et al., 2008) and “Candidatus Nitrospira defluvii” (Lucker et al.,
2010). Although AOA are thought to be more tolerant to chronic stress conditions than
bacteria (Schleper et al., 2005;Valentine, 2007), the influence of HM on AQOA is discussed
controversially in literature (Xia et al., 2007;Mertens et al., 2009;Ruyters et al., 2010).
Furthermore the few studies assessing the response of both AOA and AOB to HM

contaminations were mostly performed using soils spiked with contaminant, without
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including plant effects (e.g., Gremion et al., 2004;Frey et al., 2008;Mertens et al., 2010) and
short-term responses of microbial processes to HMs spiked in soils are in general not
predictive of long-term effects due to microbial adaptations (Diaz-Ravina and Baath,
1996;Giller et al., 1998).

Thus, the aim of this thesis was to assess the effects of the antibiotic SDZ or HMs on
the rhizosphere functional microbial communities involved in the inorganic N cycle;
specifically in NH; oxidation (Publication I, I, and Ill), NO, oxidation (Publication Il), NO
reduction, N>O reduction, and N fixation (Publication I), using genes encoding subunits of
the bacterial and archaeal ammonia monooxygenase (amoA), the Nitrobacter-like nitrite
oxidoreductase (nxrA), the nitrite reductase (nirK and nirS), the nitrous oxide reductase
(nosZ2), and the nitrogenase (nifH) as molecular markers, respectively. Moreover, since no
primers targeting Nitrospira-like nxrA were available (Attard et al., 2010), the abundance of
Nitrospira-like NOB was quantified targeting the 16S rRNA Nitrospira gene.

The abundance of the functional populations of interest was measured by gPCR
(Publication I, I, and Ill) and their community structure was assessed by
cloning/sequencing (Publication lll) or T-RFLP analysis (Publication Il). Moreover, changes
were surveyed at the gene level (representing the genetic potential for the corresponding
pathways; Publication I, Il, and Ill) as well as the transcript level (representing the
expression level of the enzymes under study; Publication I), in a greenhouse experiment
(Publication I and Il) or under field conditions (Publication Ill).

The main hypotheses of this thesis were:

()] Processes in the rhizosphere are more affected by the application of SDZ compared
to bulk soil, as highly active organisms will react more intense to the antibiotics compared
to inactive or dormant microbes in the bulk soil. Additionally, due to reduced diversity in the
rhizosphere compared to bulk soil, functional redundancy is lower in this soil compartment

resulting in lower resilience of turnover rates.
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(1n SDZ affects the ratios between archaeal and bacterial ammonia oxidizers as these
phylogenetically diverse groups presumably exhibit different life strategies and different
susceptibility to the antibiotic. Similarly, AOA and AOB are affected by HM contamination to
different extent. Nitrospira- and Nitrobacter-like nitrite oxidizers are both inhibited by the
application of the SDZ-contaminated manure, considering the broad spectrum nature of the

antibiotic.

(1 Plant growth will be affected by the contaminants; especially in the case of the

legume where the symbiosis between plant and microbes is a major determinant of plant

health.
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Discussion

The present study was part of the German Research Foundation (DFG) research
group 566 (FOR 566) “Veterinary medicines in soils: basic research for risk analysis” which
aim to determine the fate and effects of veterinary antibiotics in soils. Such antibiotics can
reach the soil environment by the application of manure from antibiotic-treated animals to
arable fields and pasture, manure being commonly used as organic fertilizer in agriculture.
The major focus of this PhD thesis was to assess the effects of the antibiotic SDZ on
microbial communities involved in N cycling in the rhizosphere of plants of agricultural
importance, as N is of key importance for plant growth and yield. To this end, functional
communities involved in N fixation, nitrification and denitrification were investigated.
Besides the contamination by xenobiotics due to agricultural practices, industrial activities
can lead to the pollution of the soil ecosystem, notably by HMs, making impossible
food/feed crop production. However HM-contaminated soils can be employed to establish
biofuel feedstock production systems. In addition to biomass production, the cultivation of
bioenergy crops offers opportunities for site stabilization and phytoremediation of
contaminated soils. Therefore, the effect of long-term HM contamination on ammonia-
oxidizing microbes in the rhizosphere of the bioenergy crop Miscanthus x giganteus was

investigated.

1. Nitrogen fixation

In Publication |, the phenol-chloroform co-extraction of DNA and RNA from soill
followed by a column-based separation (Griffiths et al., 2000;Towe et al., 2011) allowed the
comparison on the effect level. Whereas the presence of a functional gene (e.g., nifH) is not

necessarily evidence of the associated ecosystem function but rather provides information

34



on potential activity, the transcription level of a gene allows a better estimation of the actual
activity. Legume roots exude various flavonoid and isoflavonoid molecules that are known

to induce development of symbiotic interactions between the plant and N-fixing a-proteo-

bacteria within root nodules (Squartini, 2003). This is consistent with our results showing
explicitly higher nifH gene expression and, to a lower extent, higher nifH gene abundance in
the clover RRC, which includes nodules, compared to the maize RRC (Publication I). We
postulated that legume growth would be more affected by SDZ (Hypothesis lll), as legumes
need a symbiotic partner for an optimal supply of N. Despite a considerable decrease in
nifH gene abundance in the clover RRC 20 days after application of the SDZ-contaminated
manure, the abundance of transcripts was not significantly affected by the antibiotic, which
might be the reason for similar plant quality and yield in both treatments. It is possible that
the active N-fixing bacteria within the root nodules are protected from the antibiotic and
therefore are not affected. However, it must be noted that external N was introduced to the
soil during manure application; thus, N provided by diazotrophs was not needed to maintain

a high plant yield.

2. Nitrification

2.1. Ammonia oxidation

The antibiotic tended to abolish the increase of the AOB population in response to
the manure application in the RRCs of the different crops investigated (Publication | and
lll). Similar results were shown in bulk soil (Schauss et al., 2009b). These results
demonstrate that SDZ clearly inhibited the growth of AOB. Moreover, in Publication I, lower
ammonium values were measured in the SDZ-contaminated manure treatment at the 10-
day time point that might be related to an overall inhibition of N mineralization by the
antibiotic. This relative ammonia depletion clearly induced lower bacterial amoA transcripts

in comparison to the control treatment. Therefore, in addition to direct effects on AOB, SDZ
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may influence these communities indirectly in impacting processes of the organic N cycle,
such as the N mineralization.

Archaea are characterized by their broad-spectrum resistance to antimicrobial
agents (Khelaifia and Drancourt, 2012). In particular, their cell wall lacks peptidoglycan
(Koga and Morii, 2007) making archaea resistant to the antimicrobials agents interfering with
peptidoglycan biosynthesis (e.g., ampicillin and vancomycin; Dridi et al.,, 2011). However,
effects of sulfonamides on archaea remain widely unknown, since mechanistic information
about the folic acid requirements of AOA is missing. Still, SDZ inhibition constants of 30
mg/kg have been estimated for AOA in the soil used in our study, in comparison with 0.01
mg/kg soil for AOB, indicating a lower susceptibility to the antibiotic in AOA compared to its
bacterial counterpart (Schauss et al., 2009b). Consistently, in Publication I, although AOA
were significantly influenced by SDZ, they were affected to a lower extent than AOB.
Moreover, in Publication Ill, AOA abundance significantly increased in response of the
application of SDZ-contaminated manure. Possibly, the reduced susceptibility of AOA to
SDZ-contaminated manure can be explained by a shift in the AOA diversity towards more
SDZ resistant phylotypes over time, as amoA diversity has been shown to well reflect
phylogeny of AOA (Nicol et al., 2008; Publication IlI).

Yet the major environmental drivers determining AOB and AOA population dynamics
are little understood, despite both groups having a wide environmental distribution.
However, parameters e.g., pH (Nicol et al., 2008;Yao et al., 2011;Zhang et al., 2012) or
salinity (Moin et al., 2009;Li et al., 2011) have been demonstrated to influence AOA:AOB
ratios in soils and sediments. Thus, the relative importance of these two groups in soil
nitrification is still debated (Schleper, 2010). Whereas AOB were recently reported to be key
players in nitrification in agricultural soils exhibiting relatively high ammonia concentrations
(Di et al., 2009;Jia and Conrad, 2009;Di et al., 2010), it was also observed that AOA were
actively involved in nitrification (Offre et al., 2009;Zhang et al., 2010) and responded to

ammonia as well as organic fertilizer amendments (Schauss et al., 2009b;Verhamme et al.,
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2011). Interestingly, the occurrence of functional redundancy under antibiotic stress
between the two communities in bulk soil has been shown by Schauss and colleagues
(2009b). Inasmuch (i) one copy of an amoA AOA gene represents one AOA cell and 2.5
copies of amoA AOB, one AOB cell (Leininger et al., 2006), and (ii) effective AOB maximum
oxidation rate constants are mostly below 32 fmol NO, cell” h™' (Prosser, 1989;Jiang and
Bakken, 1999;0kano et al., 2004) — although the maximum value has been reported to be
83.3 fmol NO, cell” h™' for Nitrosocystis oceanus (Ward, 1987) — and maximum oxidation
rates for AOA range between 0.3 (Nitrosopumilus maritimus, Kénneke et al., 2005) and 1.4
fmol NO. cell” h' (Nitrosocaldus yellowstonii, de la Torre et al., 2008), they could
demonstrate by model calculations, that AOA can perform a substantial proportion of
ammonia oxidation. AOA appears thus to hold a “back-up function” (McCann, 2000) and
might serve as insurance for the soil ecosystem to maintain the ammonia oxidation under
more unfavorable environmental conditions (Valentine, 2007). According to our results, such
a functional redundancy could also be relevant in the rhizosphere under SDZ stress
(Publication | and IlI).

In Publication I, AOA were found to be less sensitive towards Pb and As than AOB.
Similarly, a higher tolerance of AOA than AOB in soils contaminated by Zn (Xia et al., 2007)
and Cu (Li et al., 2009) has been suggested. However, other studies showed contrasting
results and ascribed tolerance development in ammonia-oxidizing communities to AOB
rather than AOA populations (Mertens et al., 2009;Ruyters et al., 2010). Nevertheless, as
most of these results are based on soils spiked with HMs, a direct comparison to the data
presented in our study was not possible, as bioavailability of HMs is different in soils with
artificially added HMs, and the time of adaptation of microbes in response to the stressor is
missing (Diaz-Ravina and Baath, 1996). The latter argument has been proven to be of high
importance in our study, as different AOA phylotypes showing differences in HM tolerance
were observed. However, detailed data on the resistance development towards HMs of

AOA are still missing, due to the extremely limited and recent availability of cultivated
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representative of AOA from terrestrial environments (Jung et al., 2011;Tourna et al.,

2011;Kim et al., 2012).

2.2. Nitrite oxidation

As ammonia oxidation is considered to be the rate-limiting step of nitrification, and
despite their role in soil functioning, only few studies addressed the physiology and ecology
of NOB and their response to disturbance such as those generated by agricultural practice
are scarcely known (Attard et al., 2010;Xia et al., 2011;Wertz et al., 2012). However various
stress conditions, e.g., steam disinfestation of soil (Roux-Michollet et al., 2008) or drought
(Gelfand and Yakir, 2008), inducing a higher nitrite oxidation compared to ammonia
oxidation have been reported. In Publication Ill, we hypothesized that Nitrospira- and
Nitrobacter-like nitrite oxidizers are both inhibited by the application of the SDZ-
contaminated manure, considering the broad spectrum nature of the antibiotic (Hypothesis
Il). However, parallel to the inhibitory effects affecting directly the functional communities
investigated (e.g., related to their respective activity status and related susceptibility; Lewis,
2007), dissimilar ecological strategies for survival and proliferation among these populations
may influence their response to the antibiotic stress. While niche differentiation and
competition is known to influence the composition of functional microbial communities, the
components of the nitrite oxidizing communities investigated respectively in this study
possess different substrate affinities and therefore are adapted to distinct N availabilities. It
has been suggested that Nitrobacter-like NOB bacteria are r-strategists with higher growth
rate/specific activity and lower affinity for nitrite and oxygen, whereas Nitrospira-like NOB
are K-strategists with a higher substrate affinity (Schramm et al., 1999;Attard et al., 2010).
However, Maixner and colleagues (2006) shown that nitrite concentration influences the
structure of Nitrospira-like bacterial communities, and assumed that sublineages may
occupy different positions on an scale reaching from K- to r-strategists within the genus

Nitrospira. Thus, the reduction of AOB abundance and activity may have resulted in lower
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nitrite availability and consequently favorable conditions for Nitrospira-like NOB compared
to Nitrobacter-like NOB, explaining the reduction of Nitrobacter-like nxrA abundance (P =
0.030) and the increase of Nitrospira 16S rRNA gene abundance (P = 0.036) at day 49 with
PMSDZ treatment. However the release of organic substrates from the dead microbial
biomass under the antibiotic treatment could have also influenced indirectly the abundance
of different Nitrospira sublineages as some Nitrospira-like bacteria are mixotrophic (Daims et
al., 2001).

To bring further clarification on putative community structure shift towards SDZ-
resistant populations, effects of SDZ contamination on diversity was investigated using a
cloning/sequencing approach in Publication Ill, focusing on Nitrobacter-like NOB
communities. Indeed, antibiotic resistance genes have been found in the genomes of
Nitrobacter hamburgensis (Starkenburg et al., 2008) and Nitrobacter Winogradskyi
(Starkenburg et al., 2006). Thus, shifts towards putative SDZ resistant phylotypes were
observed, accompanied by a decrease of diversity where SDZ-contaminated manure was

applied.

3. Denitrification

As indicated by decreased copy numbers of all three genes involved in
denitrification, SDZ had a long-lasting negative effect on the denitrification potential in the
RRC (Publication I). This is in contrast to results obtained in bulk soil where denitrifiers
were only slightly affected by SDZ (Kleineidam et al., 2010) and underlines the assumption
of more pronounced antibiotic effects on highly active microbial communities living in hot
spots like the RRC (Hypothesis [). We observed that nirK-harboring microbes were more
affected by SDZ than nirS-denitrifying bacteria. This can be explained by different abilities
exhibited by the microbes to regulate their internal pH, affecting the accumulation and

speciation of the SDZ in the cells (Tappe et al., 2008;Zarfl et al., 2008), and therefore its
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antimicrobial effects; in addition to resistance mechanisms mediated by the genes sul7 and
sul2 (cf. Introduction, chapter 2). Furthermore, the quantification of both genes and
transcripts revealed significant impacts on the gene level but to a lower extent on the
transcript level, this in contrast to what could be assumed taking into consideration the
bacteriostatic mode of action of SDZ. Presumably, microbial subpopulations intrinsically
able to cope with the antibiotic stressor could have taken advantage of the altered
competitive environment and maintained denitrification, the wide phylogenetic diversity of
denitrifying bacteria allowing the maintenance of the process (Wallenstein et al., 2006).
However, an indirect antibiotic effect could have contributed to the reduced abundances of
nirK (and nosZ) transcripts via impaired microbial respiration activity in the RRC, hence

higher oxygen levels and consequently inhibited gene expression in the PMSDZ treatment.

4. Plant/microbes interactions

In Publication I, the differences in gene abundance patterns between the two
treatments were more pronounced and long-lasting in the RRC of clover than in the RRC of
maize. Presumably, differences in quality and quantity of root exudates and in root
morphology known to shape microbial communities and to form the basis for microbial
activity in the rhizosphere might have contributed to the different effects observed
(Marschner et al., 2001). Whereas maize may have provided primarily recalcitrant organic
carbon from decaying root material to the microflora of its RRC (Semenov et al., 1999),
clover roots might have excreted more readily available organic compounds (Haichar et al.,
2008), resulting in an increase in microbial biomass and activity in this RRC. In contrast,
AOA, which might exhibit a rather oligotrophic lifestyle (Jung et al., 2011;Kim et al., 2012),
could have been outcompeted by the faster-growing microorganisms in the clover RRC, as
indicated by the reduced numbers of AOA amoA gene copies found in the clover RRC

compared to the maize RRC. As dormancy or reduced activity results in reduced
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susceptibility to SDZ, the bacteriostatic antibiotic might have found fewer targets (Balaban
et al., 2004;Lewis, 2007), thus explaining the differences observed in the effect of SDZ when
both plant species were compared.

In Publication Ill, the extent of the impact of the antibiotic contamination on the
rhizosphere ammonia oxidizing populations was greater after the second manure
application compared to those observed after the first application. This could be explained
by a shift in the community structure of the plants composing the grassland during the
experimental period, influencing the response to the antibiotic stress of the rhizosphere
microbial communities. Indeed, plant diversity and species composition are known to
influence the magnitude and the stability of ecosystem processes over time, as well as the
size and composition of associated microbial communities (Hooper and Vitousek,
1997;Kowalchuk et al., 2002;Steenwerth et al., 2002;Johnson et al., 2003;Balvanera et al.,
2006;Millard and Singh, 2010). However, interactive effects between contaminants and plant
diversity received little attention so far (Eisenhauer et al., 2009). Moreover, the mechanisms
through which changes in plant diversity affect soil microbial communities remain unclear,
Whereas Zack et al., (2003) observed changes in microbial abundance and composition
across a plant diversity gradient in a long term experimental grassland system and
concluded that these changes were more related to differences in plant productivity
associated with diversity rather than plant diversity per se. In contrast, Einsenhauer et al.,
(2010) suggested that the quality of rhizodeposits rather than plant productivity affects soil
microbial community.

Although not investigated in this thesis, N mineralization is of critical importance in
crop production systems in supplying available N for crop uptake. In Publication I, for both
plant species, the yield of the green biomass was not influenced by the presence of SDZ in
the manure applied, and the extent of manure N mineralization might have played a key role
in maintaining plant health and growth. In addition, the action of the antibiotic on the

microbial biomass could have (i) induced the release of organic matter from dead cells into
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the soil N pool and (ji) alter the competitiveness of the microbial communities for nutrients,
with possible positive effects in plant nutrient acquisition and growth (Jackson et al., 2008).
However, such effect would have negative implications for ecosystem nutrient storage, as
immobilization of N by microbes has been shown (i) to act as a short-term sink for N in
several terrestrial ecosystems (Zogg et al., 2000;Bardgett et al., 2003), thus potentially
limiting the export of N to e.g., groundwater and (i) to be important for longer-term
ecosystem N retention, via the transfer of the nutrient form to more stable organic matter
pools after cell death (van der Heijden et al., 2008). In Publication Il, no influence of the
degree of HM contamination on plant growth was observed. Possibly, the amount of N
contained in the rhizome was sufficient to maintain plant health and growth during the

experimental period (Wiesler et al., 1997) as the soils used were not fertilized.
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Conclusions

Using molecular techniques, it was possible to apprehend changes in the
abundance, activity, and diversity of functional communities involved in N cycling (i) in
response to the application of SDZ-contaminated pig manure or (i) in long-term HM-
contaminated soils.

Our data revealed that the application of manure contaminated with SDZ has a
lasting impact on the functional microbial biomass involved in N cycling in the RRCs of
different plants of agricultural importance under greenhouse (Publication 1) and field
(Publication IllI) conditions. In Publication |, effects on the transcript level were less
pronounced, which might indicate that parts of the investigated functional groups were
tolerant or resistant against SDZ. Moreover, NOB community shifts towards potential
resistant phylotypes were observed (Publication lll). In addition, the antibiotic does not
impact AOA and AOB to a similar extent, which could allow functional redundancy between
these two groups of ammonia-oxidizing microbes and contribute to the stability of N
turnover. The effects of SDZ on the microbial communities involved in the major processes
of the inorganic N cycle, i.e. N fixation, ammonia oxidation, nitrite oxidation, nitrite reduction
and nitrous oxide reduction, are sum up in Fig. 6. In addition, these effects have been
shown to be influenced by plant factors such as rhizosphere effect and the development of
root nodules (Publication 1), and potentially the plant community structure of a pasture
(Publication Ill). However, the effect of plant diversity on the microbial response to
antibiotic stress needs to be further investigated in future studies.

Based on our data (Publication Il), it can be postulated that selected phylotypes of
AOA tolerate higher concentrations of Pb and As in soil and RRC compared to AOB.
However, abundance of a functional group cannot be directly linked to the activity of these

microbes. Therefore, it remains unclear if, mainly in soil M, AOA can substitute AOB and if
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Figure 6. Effects of the antibiotic sulfadiazine on the microbial communities involved in N
cycling. Asterisks indicate plant factors influencing the effects of sulfadiazine. Abbreviations:
AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria; NOB, nitrite-oxidizing

bacteria.

functional redundancy between both groups of ammonia-oxidizing microbes exists under
the given conditions. To address these points in detail, further studies are needed, including
(i) analysis of mRNA, and (ii) using "*N-labeled ammonium. Moreover, further studies should
include the assessment of the impact of HMs on NOB communities and on nitrite oxidation
rates to determine whether ammonia oxidation remains the rate-limiting step in the

nitrification process in HM-contaminated soils, as an accumulation of nitrite in soils could

have further implications on microbial N immobilization due to nitrite toxicity.
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The antibiotic sulfadiazine (SDZ) can enter the environment by application of manure from antibiotic-
treated animals to arable soil. Because antibiotics are explicitly designed to target microorganisms, they likely
affect microbes in the soil ecosystem, compromising important soil functions and disturbing processes in
nutrient cycles. In a greenhouse experiment, we investigated the impact of sulfadiazine-contaminated pig
manure on functional microbial communities involved in key processes of the nitrogen cycle in the root-
rhizosphere complexes (RRCs) of maize (Zea mays) and clover (Trifolium alexandrinum). At both the gene and
transcript level, we performed real-time PCR using nifH, amoA (in both ammonia-oxidizing bacteria and
archaea), nirK, nirS, and nosZ as molecular markers for nitrogen fixation, nitrification, and denitrification.
Sampling was performed 10, 20, and 30 days after the application. SDZ affected the abundance pattern of all
investigated genes in the RRCs of both plant species (with stronger effects in the RRC of clover) 20 and 30 days
after the addition. Surprisingly, effects on the transcript level were less pronounced, which might indicate that
parts of the investigated functional groups were tolerant or resistant against SDZ or, as in the case of nifH and

clover, have been protected by the nodules.

Antibiotics have been used in animal husbandry worldwide
to treat infectious diseases. Sulfonamides, including sulfa-
diazine (SDZ), belong to one of the major groups of veter-
inary drugs and are mainly used in pigs (10). Sulfonamides
are poorly adsorbed in the animal gut; consequently, they
are excreted unchanged in urine and feces (1, 12, 16, 26) and
reach the soil ecosystem via manuring. Sulfonamides have
been characterized as broad-spectrum antibiotics with a bac-
teriostatic mode of action based on inhibition of folic acid
metabolism (9). Therefore, sulfonamides in the environ-
ment may impact soil health by changing microbial activity
patterns and the kinetics of important turnover processes (6,
25, 48). Although changes in turnover rates have been re-
ported for some microbial processes (e.g., see reference 24),
a number of studies in the last decade have shown that the
influence of sulfonamides on microbes and their metabolic
performance in bulk soil is relatively low (42). These find-
ings have been explained by (i) the large microbial diversity
in bulk soil systems and by possible mechanisms of func-
tional redundancy (37), (ii) the relatively low activity of
microbes in bulk soil that are nearing the dormancy state
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(40) in which microbes are not affected by sulfonamides, and
(iii) the development of resistant populations by horizontal
gene transfer (20).

The impact of sulfonamides on microbial turnover processes
may be more pronounced in highly active microbial communi-
ties (e.g., in the rhizosphere) than in inactive or dormant mi-
croorganisms in bulk soil. The rhizosphere is defined as the soil
that is influenced by the plant root system, which strongly
affects the surrounding soil chemistry through nutrient deple-
tion, acidification, and the secretion of organic substances (53).
Due to the organic compounds they release, plant roots pro-
vide suitable ecological niches for microbial growth and activity
(3). Furthermore, several studies have indicated changed or
even reduced diversity patterns in the rhizospheres compared
to bulk soils (29). Therefore, it can be postulated that the
effects of antibiotic-contaminated manure on microbes in
rhizosphere soil might differ from that in bulk soil. Moreover,
the extent of the antibiotic effect together with the manure
effect is difficult to predict due to the complexity of plant-
microbe interactions in the rhizosphere.

As rhizosphere microbial communities exert strong effects
on plant quality (53), the questions of whether and how anti-
biotics in soil alter microbial activities in the rhizosphere are of
interest not only for basic research and ecotoxicology but also
for farmers and plant breeders. Supplying plants with nitrogen
is of key importance for yield and plant health in agricultural
ecosystems.

The aim of this study was to investigate the effects of the
antibiotic sulfadiazine in combination with pig manure (PM)
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on the functional microbial biomass involved in nitrogen (N)
cycling in the root-rhizosphere complex (RRC) of two different
agricultural crops, a C4 plant (maize [Zea mays]) and a legume
(berseem clover [Trifolium alexandrinum]). As it is well ac-
cepted that plant species are a dominant factor influencing the
composition of the rhizosphere microbial communities (54),
we chose for the cultivation of the two different crops one
typical arable soil. SDZ and manure concentrations applied
were in accordance with agricultural practice in Germany (48).
Ten, 20, and 30 days after application, we analyzed the abun-
dance of functional genes (representing the genetic potential
for the corresponding pathways) catalyzing key steps of nitri-
fication, denitrification, and nitrogen fixation as well as tran-
scripts of the same marker genes (representing the expression
level of the enzymes under study) in order to reconstruct major
parts of the nitrogen cycle in the RRC.

We hypothesized that nitrogen turnover processes in the
RRC would be affected by the application of SDZ and that
the changes would consequently influence plant growth, es-
pecially in the case of the legume where the symbiosis be-
tween plant and microbes is a major determinant of plant
health. Furthermore, we assumed that the abundance pat-
terns of transcripts would be more affected than the gene
copy numbers due to the bacteriostatic mode of action of
the antibiotic.

MATERIALS AND METHODS

Experimental design. A silt loam (Orthic Luvisol) from the A, horizon (0 to
40 cm) of an agricultural field located near Merzenhausen, Germany (50° 56" 3"
N, 6° 17’ 31" E; see Table S1 in the supplemental material) that had not been
previously fertilized with manure was used for the greenhouse experiment. The
experiment was conducted in a randomized block design with four independent
replicates per treatment and sampling time point. Polypropylene tubes (height,
70 em; diameter, 15 ¢cm) containing 14 kg of air-dried soil (sieved at 4 mm) were
used. After an equilibration phase of 14 days at 20°C and 50% maximum water
holding capacity of the soil, three seeds of maize (Zea mays) and 30 seeds of
berseem clover (Trifolium alexandrinum) were sown per pot. Two weeks after
germination, 250 ml each of pig manure (PM) and pig manure contaminated with
sulfadiazine (PMSDZ) were applied per tube to the soil surface, resulting in final
concentrations of 7.4 mg nitrogen kg™ ' soil and 20 mg SDZ kg~ soil (in the
upper 20 cm). The plants were subjected to a photoperiod of 15 h of light and 9 h
of darkness with a constant soil water content. Sampling was performed 10, 20,
and 30 days after manure application; each of the four independent replicates
was treated separately. A composite sample of roots with the attached soil was
taken from the upper 20 cm of each tube. After the roots were vigorously shaken,
the roots and attached soil were treated as one compartment called the root-
rhizosphere complex (RRC). One part of the RRC was immediately snap-frozen
in liquid nitrogen and stored at —80°C for nucleic acid extraction; the other part
was directly extracted with 0.01 M CaCl, for the determination of water-extract-
able organic carbon (WEOC), water-extractable organic nitrogen (WEON), am-
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Analyst 1.4.2 application (Applied Bio , Germany) with a minimum sig-
nal-to-noise ratio (SNR) of 10:1. The limit of detection was determined by the
method of Antignac et al. (2) and was in the range of 0.2 ng SDZ, 1 ng
hydroxy-SDZ, and 5 ng N-acetyl-SDZ g~ soil, respectively.

Nitrogen and carbon content in plants. The total green plant biomass was
dried at 65°C for 48 h, ball milled (Retsch MM2; Retsch GmbH, Germany) and
transferred into tin capsules (5- by 3.5 mm; HEKAtech GmbH, Germany). Total
carbon and nitrogen contents were determined using the elemental analyzer
Euro-EA (Eurovector, Italy) (32).

Water-extractable nitrogen and carbon fractions in the RRC. Samples con-
sisting of 5 g RRC were shaken overhead for 45 min in 25 ml of 0.01 M CaCl,.
After filtration, water-extractable total nitrogen and organic carbon were mea-
sured using a total organic carbon (TOC) analyzer (DIMA-TOC 100;
DIMATEC, Germany) equipped with a total bound nitrogen (TNb) module. A
continuous-flow analyzer (SA 20/40; Skalar Analytical, Netherlands) was used to
determine ammonium-N and nitrate-N. Water-extractable organic nitrogen was
calculated as the difference between total nitrogen and ammonium plus nitrate.

DNA and RNA coextraction and separation. DNA and RNA were coextracted
from 0.5 g of RRC by the method described by Griffiths et al. (13). Extraction
was performed with Precellys-Keramik kit lysing tubes (Peglab Biotechnologie
GmbH, Germany) in combination with the Bertin Precellys 24 bead beating
system (Bertin Technologie, France). DNA and RNA were separated using the
AllPrep DNA/RNA minikit (Qiagen, Germany) according to the manufacturer’s
instructions. DNA and RNA yield and purity were measured with a microvolume
fluorospectrometer (NanoDrop Technologies, DE). Contamination of RNA
samples with coextracted DNA was excluded by PCR assays targeting the 16S
rRNA genes using the universal primers 341F (5'-CTGCTGCCTCCCGTAG-3")
and 1401R (5'-CGGTGTGTACAAGACCC-3') (36).

Single-stranded cDNA synthesis from total RNA. Samples of 2.5 pg total RNA
were converted into single-stranded cDNA by reverse transcription using the
high-capacity cDNA reverse transcription kit (Applied Biosystems, Germany)
according to the manufacturer’s instructions. cDNA yield and purity were mea-
sured using the microvolume fluorospectrometer.

Abundance of functional genes and their transcripts. Quantitative PCR
(qPCR) was used to determine the abundance of functional communities in-
volved in the nitrogen cycle and their activities by targeting genes and their
corresponding transcripts encoding key enzymes of nitrogen fixation (nifH en-
coding nitrogenase), ammonia oxidation (amoA encoding ammonia monooxy-
genase) in both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing ar-
chaca (AOA), and denitrification (nirK, nirS, and nosZ encoding cytochrome cd,,
copper nitrite reductases, and nitrous oxide reductase, respectively). Absolute
quantification of all investigated target genes was carried out in 25-pl samples in
triplicate on the ABI Prism 7300 cycler (Applied Biosystems, Germany) with the
following reagents: bovine serum albumin (Sigma-Aldrich, Germany), primers
(Table 1) (Metabion, Germany), dimethyl sulfoxide (Sigma, Germany), and
Power SYBR green PCR master mix (Applied Biosystems, Germany) (21). All
PCR runs started with an initial enzyme activation step performed at 95°C for 10
min, but the subsequent thermal profiles differed from gene to gene as indicated
in Table 1. The specificity of the amplification products was confirmed by melt-
ing-curve analysis. No template controls gave a null or negligible value. To avoid
inhibitory effects on quantitative PCR, samples were diluted 10-fold based on
results from a previous experiment (data not shown). Dilution series of plasmid
DNA with cloned bacterial nifH, amoA, nirK, nirS, and nosZ genes and archaeal
amoA functional gene fragments were used to generate standard curves ranging
from 10” to 10° gene copies pl~* for cDNA quantification and from 10" to 10°
gene copies pul~! for DNA quantification with efficiencies ranging from 97 to
100%.

Prior to analysis, DNA and cDNA abundance data were

monium-N (NH,*-N), and nitrate-N (NO;~-N) concentrations. les of ho-
mogenized bulk soil were frozen at —20°C until used for the quantification of
SDZ and its metabolites.

Sulfadiazine and in bulk soil The totally desorbable and
hence potentially bioavailable SDZ fraction and its metabolites, N-acetyl-SDZ
and 4-hydroxy-SDZ, were isolated by a sequential extraction procedure using
0.01 M CaCl, (soil/solution ratio of 1:2.5) followed by an extraction step with
methanol (MeOH) (soil/solution ratio of 1:2.5) (17). Separation and detection of
extracted sulfadiazine and its metabolites were carried out using a Shimadzu
Prominence LC20 high-performance liquid chromatography (HPLC) system.
The stationary phase consisted of a SunFire C,5 column (3.0- by 100 mm; 3.5-um
particle size; Waters, Germany). The injected volume (10 ul) was mobilized at a
flow rate of 300 ul min~' in a gradient program by phase A (0.1% HCOOH in
water) and phase B (0.1% HCOOH in MeOH). HPLC-separated fragment ions
of sulfadiazine and metabolites were captured using an API 3200 mass spec-
trometer (Applied Biosystems, Germany). The data were analyzed using the
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log transformed (In) to achieve normal distribution. Data were analyzed by
two-way analysis of variance (ANOVA) with treatment (PM, PMSDZ) and time
(10, 20, and 30 days) as independent factors. Homogeneity of the variances was
checked by the Levene test. The significance level was set to « = 0.05. Further-
more, independent 7 tests were used to test for a significant difference between
the two treatments at a given time point with significance level corrected by the
Siddk’s equation to a = 1 — (1 — 0.05)** = 0.017. Statistical tests were calcu-
lated with SPSS 11.5 (SPSS, Inc., IL).

RESULTS

SDZ concentrations in bulk soil samples. At all sampling
time points, the concentrations of CaCl,/methanol-extractable
sulfadiazine (SDZ), N-acetyl-SDZ, and 4-hydroxy-SDZ in bulk
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TABLE 1. Primers and thermal profiles used for real-time PCR quantification of different functional genes

Target gene” Primer set” Reference Thermal profile r:;::k‘;f /:lr;cpiﬁ;r

nifH nifH-F-Rosch 39 45 s at 95°C, 45 s at 55°C, and 45 s at 72°C 40 458
nifH-R-Rosch 39

AOB amoA amoA-1F 41 60 s at 94°C, 60 s at 60°C, and 60 s at 72°C 40 500
amoA-2R 41

AOA amoA 19F 27 45 s at 94°C, 45 s at 50°C, and 45 s at 72°C 40 624
CrenamoA616r48x 43

nirk nirK-876 18 15 s at 95°C, 30 s at 63°C to 58°C, and 30 s at 72°C 6 td* 164
nirK-5SR ) 40

nirS nirS-cd3af 35 60 s at 94°C, 60 s at 57°C, and 60 s at 72°C 40 413
nirS-R3cd 50

nosZ nosZ2F 19 15 s at 95°C, 30 s at 65°C to 60°C, and 30 s at 72°C 6td 267
nosZ2R 19 40

“ Abbreviations: AOB, ammonia-oxidizing bacteria; AOA, ammonia-oxidizing archaca.

" The forward (F) and reverse (R) primers are indicated.
“td, touchdown.

soil were below 0.2, 1, and 5 ng g '

shown).

Nitrogen and carbon content of the plants. For both plant
species, the yield of the green biomass was not influenced by
the presence of SDZ in the manure applied at the sampling
time points. In the clover biomass, increased nitrogen content
was found compared to maize and decreased N content was
observed with pig manure contaminated with sulfadiazine
(PMSDZ) treatment (see Tables S2 and S3 in the supplemen-
tal material). A significant treatment effect on the carbon con-
tent of the maize plants was revealed by slightly higher carbon
concentration in the PMSDZ treatment after 10 days (see
Tables S2 and S4 in the supplemental material).

Nitrogen and carbon content in the RRC. The application of
SDZ had no significant effect on the amount of water-extract-
able organic nitrogen (WEON) and carbon in the root-rhizo-
sphere complex (RRC) of either plant type (see Table S3 in the
supplemental material). However, plant species- and time-de-
pendent differences, i.e., larger amounts of WEON in the RRC
of the legume, were detected (Fig. 1; see Table S2 in the
supplemental material). Differences in ammonium and nitrate
concentrations between the treatments were observed; in the
RRC of clover 10 days after application, there were lower
ammonium concentrations in the PMSDZ treatment (20 pg
NH,"-N g ') than in the PM treatment (50 pg NH,"-N g ")
(P = 0.044). In the RRC of maize 30 days after application of
the different types of manure, the ammonium concentration
was higher in the PMSDZ treatment than in the PM treatment
(P = 0.026).

Quantification of functional genes and their corresponding
transcripts. For all genes and transcripts, clear variations over
time were visible in both plant species.

In clover RRC, SDZ contamination of the manure sig-
nificantly reduced nifH, ammonia-oxidizing bacteria (AOB)
amoA, nirK, nirS, and nosZ gene abundance patterns 20 days
after application (Fig. 2A and Table 2). At this time point, the
difference in copy numbers between the treatments PM and

, respectively (data not
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PMSDZ reached up to 2 orders of magnitude. AOB amoA,
nirK, nirS, and nosZ copy numbers remained lower in the
PMSDZ treatment at day 30. In contrast, ammonia-oxidizing
archaea (AOA) amoA gene abundance was not influenced at
any sampling time point by the SDZ-treated manure. Similar
to the observations at the DNA level, AOA amoA transcripts
did not respond to the contaminated manure. As expected, the
reduced number of genes involved in denitrification (nirS, nirk,
and nosZ) and nitrification (AOB amoA) in the PMSDZ treat-
ment resulted in a reduced number of transcripts. Moreover,
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FIG. 1. Ammonium and nitrate concentrations in the root-rhi-
zosphere complex of clover (A) and maize (B) after the addition of
pig manure (PM) or pig manure plus sulfadiazine (PMSDZ) at
three different time points (10, 20, and 30 days) after application.
Error bars represent standard deviations of means (n = 4). Abbre-
viations: RRC, root-rhizosphere complex; bld, below limit of detec-
tion.
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FIG. 2. Quantification of functional gene and transcript copies involved in nitrogen cycling (nifH, AOB amoA, AOA amoA, nirK, nirS, and
nosZ) in the root-rhizosphere complex of clover (A) and maize (B) after the addition of pig manure (PM) or pig manure plus sulfadiazine
(PMSDZ) at three different time points (10, 20, and 30 days) after application. Significant differences between the two treatments at a particular
time point are indicated by solid black circles (P < 0.017). Error bars represent standard deviations of means (n = 4). Abbreviations: RRC,
root-rhizosphere complex; bld, below limit of detection; AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria.

we observed a reduced number of transcripts for AOB amoA recovery at a later time point, AOB amoA gene copy numbers
10 days after application (P = 0.023) and lower abundance remained low compared to the corresponding PM-treated
values for nirK transcripts (P = 0.032) 30 days after application samples 30 days after application. The abundance of tran-

of the PMSDZ compared to the control PM treatment. How- scripts for nirK, nirS, and nosZ in maize RCC was not affected
ever, despite reduced gene abundance, nifH transcripts were by PMSDZ at the early sampling time points. However, 30 days
not affected by PMSDZ. after application, lower levels of nirK, nosZ, and nirS transcript

In maize RRC, nifH, AOA and AOB amoA, nirK, nirS, and copy numbers were observed in the PMSDZ treatment (Fig.
nosZ gene levels were significantly decreased by PMSDZ treat- 2B). Abundance patterns of amoA (AOB and AOA) tran-
ment, notably 20 days after application (in the range of 0.5 scripts were not affected by the treatment (Table 2), whereas
order of magnitude; Fig. 2B and Table 2). Whereas most of the the number of nifH transcripts was below the detection limit at
investigated genes in the PMSDZ-treated samples exhibited all sampling time points.

TABLE 2. Statistical evaluation of gene and transcript abundance by two-way ANOVA

P value®

Plant and factor nifH AOB amoA AOA amoA nirk nirS nosZ

DNA cDNA DNA cDNA DNA cDNA DNA cDNA DNA cDNA DNA cDNA

Clover
Treatment 0.000 0.764 0.000 0.000 0.553 0.094 0.000 0.000 0.000 0.001 0.000 0.007
Time 0.002 0.045 0.002 0.000 0.165 0.117 0.001 0.002 0.000 0.003 0.055 0.222
Treatment X time 0.000 0.000 0.001 0.244 0.250 0.439 0.012 0.984 0.000 0.576 0.009 0.777
Maize
Treatment 0.006 0.000 0.408 0.001 0.159 0.028 0.263 0.020 0.616 0.006 0.426
Time 0.493 0.487 0.000 0.014 0.266 0.174 0.000 0.047 0.035 0.241 0.008
Treatment X time 0.120 0.306 0.265 0.605 0.675 0.828 0.034 0.747 0.059 0.551 0.201

“ The P values show the impact of the manure treatments and time on functional genes and their corresponding transcripts involved in nitrogen turnover. Boldface
values indicate significant effects (P < 0.05).
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DISCUSSION

The objective of this study was to assess the impact of a
single application of SDZ-contaminated manure on the func-
tional biomass involved in major nitrogen turnover processes
in the RRC:s of two different crops. By targeting marker genes
for nitrification, denitrification, and nitrogen fixation, we quan-
tified the functional communities and functionally redundant
populations (37, 38, 43) on both the DNA and RNA level to
comprehend the effect of SDZ on the genetic potential and
activity status. Although molecular methods have been shown
to be suitable tools to improve our understanding of microbial
community structure and function in soils, they are accompa-
nied by drawbacks, such as biased extractions of nucleic acids
from soils. Therefore, it is difficult to compare results that are
based on the same extraction protocol but derive from samples
of different soil type and texture, as extraction efficiencies of
DNA and RNA might differ. In addition, primer selection for
PCR as a possible cause of bias should be kept in mind, as not
all environmental sequences of the targeted genes might be
detected due to the limited number of species used for primer
development. For example, the primers used to target nosZ in
this study are probably specific only for the nitrous oxide re-
ductase gene from Gram-negative bacteria (19), and thus, the
response of the functional biomass to the antibiotic could be
underestimated. Moreover, metagenomic analysis has demon-
strated in the past few years that protein families can cover a
much broader sequence diversity than that usually captured (5,
51, 52).

Differences in DNA and RNA levels. As much care was taken
to use the same protocol for DNA and RNA extraction, a
comparison on the effect level was possible in this study. The
quantification of both genes and transcripts revealed, in con-
trast to our assumption based on the bacteriostatic mode of
action of SDZ, significant impacts on the gene level but to a
lower extent on the transcript level. Presumably, microbial
subpopulations intrinsically able to cope with the antibiotic
stressor could have taken advantage of the altered competitive
environment and maintained nitrogen turnover. Whether a
significant community change took place under the influence
of SDZ remains to be clarified.

Delayed microbial response. Ten days after application of
PMSDZ, no CaCl,/methanol-extractable SDZ was detected in
bulk soil samples. It has been shown that the potentially bio-
available fractions of SDZ quickly decline in bulk soil (17),
because sulfonamides have a large potential for rapid adsorp-
tion into the soil matrix and manure constituents (23, 49). In
both maize and clover RRCs, we observed a time lag between
the application of SDZ and its effect on the functional micro-
bial biomass (Fig. 2). Significant effects of the antibiotic-con-
taminated manure on gene abundance levels were observed 20
and 30 days after application, whereas the concentration of
bioavailable SDZ in the surrounding bulk soil had declined
below the detection limit. Such a time lag may be related to the
slow generation times of microbes in soil and the bacteriostatic
action of sulfonamide. However, it must be taken into account
that the fate of SDZ in the rhizosphere may differ from that in
bulk soil due to differences in chemical, physical, and microbial
properties. Decreased pH values by up to two pH units in the
rhizosphere compared to bulk soil (8) may affect SDZ bioavail-
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ability. This has been demonstrated for other xenobiotics; a
faster degradation of selected pesticide residues was observed
in rhizosphere soil than in bulk soil (11).

Rhizosphere effects of different plant types. The differences
in gene abundance patterns between the two treatments were
more pronounced and long-lasting in the RRC of clover than
in the RRC of maize. Presumably, differences in quality and
quantity of root exudates and in root morphology known to
shape microbial communities and to form the basis for micro-
bial activity in the rhizosphere might have contributed to the
different effects observed (22, 30). Whereas maize may have
provided primarily recalcitrant organic carbon from decaying
root material to the microflora of its RRC (44), clover roots
might have excreted more readily available organic compounds
(15), resulting in an increase in microbial biomass and activity
in this RRC. In contrast, AOA, which might exhibit a rather
oligotrophic lifestyle (31), could have been outcompeted by the
faster-growing microorganisms in the clover RRC, as indicated
by the reduced numbers of AOA amoA gene copies found in
the clover RRC compared to the maize RRC. As dormancy or
reduced activity results in reduced susceptibility to SDZ, the
bacteriostatic antibiotic might have found fewer targets (4, 28),
thus explaining the differences observed in the effect of SDZ
when both plant species were compared.

nifH. Legume roots exude various flavonoid and isoflavonoid
molecules that are known to induce development of symbiotic
interactions between the plant and nitrogen-fixing alphapro-
teobacteria within root nodules (46). This is consistent with our
results showing explicitly higher nifH gene expression and, to a
lower extent, higher nifH gene abundance in the clover RRC,
which includes nodules, compared to the maize RRC. We
postulated that legume growth would be more affected by
SDZ, as legumes need a symbiotic partner for an optimal
supply of nitrogen. Despite a considerable decrease in nifH
gene abundance in the clover RRC 20 days after application of
the SDZ-contaminated manure, the abundance of transcripts
was not significantly affected by the antibiotic, which might be
the reason for similar plant quality and yield in both treat-
ments. It is possible that the active nitrogen-fixing bacteria
within the root nodules are protected from the antibiotic and
therefore are not affected. However, it must be noted that
external nitrogen was introduced to the soil during manure
application; thus, nitrogen provided by nitrogen fixers was not
needed to maintain a high plant yield.

amoA (AOB and AOA). In the RRC of clover, the antibiotic
abolished the increase of the ammonia-oxidizing bacterial pop-
ulation between day 10 and 20 in response to the manure
application (PM). Similar results were shown by Schauss and
coworkers (43) in bulk soil, although the effect of SDZ was less
pronounced. Moreover, 20 and 30 days after application of the
manure, the AOB abundance patterns in both plant RRCs
were significantly reduced in the PMSDZ treatment, indicating
a sustainable reduction in nitrification potential (Fig. 2). Lower
ammonium values were measured in the PMSDZ treatment at
the 10-day time point that might be related to an overall inhi-
bition of nitrogen mineralization by the antibiotic. This relative
ammonia depletion clearly induced lower bacterial amoA tran-
scripts in comparison to the PM treatment and consequently
resulted in a lower availability of nitrite, which in turn may
have affected denitrifiers harboring the nirK gene and a lower
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transcript abundance of the corresponding gene. Genes and
transcripts of archaeal ammonia oxidizers were not affected by
SDZ in the RRC of clover, possibly due to their lower abun-
dance compared to AOB. In contrast, in the maize RRC, AOA
were as abundant as AOB during the sampling period and
although AOA were significantly influenced by SDZ, they were
affected to a lower extent than AOB were, indicating a reduced
susceptibility of AOA toward the antibiotic. Thus, the func-
tional redundancy between AOB and AOA under antibiotic
stress described by Schauss and coworkers (43) for bulk soil
could also be a mode of action in the RRC.

nirK, nirS, and nosZ. As indicated by decreased copy num-
bers of all three genes involved in denitrification, the denitri-
fication potential in both plant RRCs was reduced 20 days
after application of PMSDZ and remained low in the clover
RRC even until day 30. This is in contrast to results obtained
in bulk soil where denitrifiers were only slightly affected by
SDZ (unpublished data) and underlines the assumption of
more pronounced antibiotic effects on highly active microbial
communities living in hot spots like the RRC.

It has been shown in several studies that microbes harboring
the nirK gene form the major part of nitrite reducers in differ-
ent rhizospheres (14, 21) and show increased activity compared
to bacteria harboring the nirS gene (45). In our study, we
confirmed higher nirK gene copy numbers than nirS gene copy
numbers in both treatments at all sampling time points and
observed that nirK-harboring microbes were more affected by
SDZ than nirS-denitrifying bacteria. In addition to the differ-
ences in activity between nirS- and nirK-harboring microbes in
the RRC samples, which may explain the differences in re-
sponse to SDZ, an indirect antibiotic effect could have con-
tributed to the reduced abundances of nirK (and nosZ) tran-
scripts via impaired microbial respiration activity in the RRC,
hence higher oxygen levels and consequently inhibited gene
expression in the PMSDZ treatment. Furthermore, the uptake
of SDZ may vary between different functional populations.
Recently, Zarfl and coworkers (55) described a mechanistic
model explaining substance-specific and pH-dependent antibi-
otic effects. In this model, they assumed that differences in the
accumulation and speciation of sulfonamides in bacteria are
due to different abilities of bacteria to regulate their internal
pH value. Tappe and colleagues (47) examined the influence of
diverse sulfonamides, including SDZ, on bacterial growth at
different pH values and concluded that a possible impact on
the microbial population in soil could strongly depend on the
method by which bacteria regulate their internal pH value.
This could explain the dissimilarities observed in the responses
of the denitrifiers in the RRC.

Conclusion. This greenhouse study revealed that a single
application of manure contaminated with the antibiotic sulfa-
diazine has a lasting impact on the functional microbial bio-
mass involved in nitrogen cycling on both the gene and tran-
script levels in the RRCs of different plants of agricultural
importance. However, the data presented are based on con-
stant climatic conditions, and the role of environmental factors
like drought periods on the antibiotic effect has been excluded.
Besides, influences of the antibiotic in combination with other
agricultural management tools, e.g., the application of pesti-
cides (mainly the role of fungicides), have to be assessed before
the results can be transferred into practice. Finally, in this
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study, a single application of SDZ-contaminated manure was
performed, but under field conditions manure (possibly con-
taminated with antibiotics) is applied several times during the
vegetation period and consequently, the microbial communi-
ties might adapt to the antibiotic stressor.

Furthermore, it remains to be studied how microbial diver-
sity patterns are affected by antibiotics. It might be assumed
that for denitrification this issue is not of such high relevance
because many soil prokaryotes are able to use nitrate and
nitrite as terminal electron acceptors when oxygen is lacking.
In contrast, for other processes like nitrogen fixation and am-
monia oxidation, which can only be performed by a limited
number of soil microbes, this topic seems of interest. In addi-
tion, the question of how the antibiotic might influence the
organic nitrogen cycle, mainly the process of nitrogen miner-
alization, needs to be investigated in further experiments.
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Abstract Mine wastes have been considered as a source of
heavy metal (HM) contamination in the environment and
negatively impact many important ecosystem services provid-
ed by soils. Plants like Miscanthus, which tolerate high HM
concentrations in soil, are often used for phytoremediation and
provide the possibility to use these soils at least for the pro-
duction of energy crops. However, it is not clear if plant growth
at these sites is limited by the availability of nutrients, mainly
nitrogen, as microbes in soil might be affected by the contam-
inant. Therefore, in this study, we investigated in a greenhouse
experiment the response of ammonia-oxidizing microbes in
the root-rhizosphere complex of Miscanthus * giganteus
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grown in soils with different levels of long-term arsenic (As)
and lead (Pb) contamination. Quantitative PCR of the ammo-
nia monooxigenease gene (amoA) was performed to assess the
abundance of ammonia-oxidizing bacteria (AOB) and archaea
(AOA) at two different points of plant growth. Furthermore,
bulk soil samples before planting were analyzed. In addition,
terminal restriction fragment length polymorphism (T-RFLP)
analysis was used to investigate the diversity of archaeal amoA
amplicons. Whereas high concentrations of As and Pb in soil
(83 and 15 g/kg, respectively) resulted independent from plant
growth in a clear reduction of AOA and AOB compared to the
control soils with lower HM contents, in soils with contami-
nation levels of 10 g/kg As and 0.2 g/kg Pb, only AOB were
negatively affected in bulk soil samples. Diversity analysis of
archaeal amoA genes revealed clear differences in T-RFLP
patterns in response to the degree of HM contamination.
Therefore, our results could clearly prove the different re-
sponse patterns of AOA and AOB in HM-contaminated soils
and the development of archaeal amoA phylotypes which are
more tolerant towards HMs in soil samples from the areas that
were impacted the most by mining waste, which could con-
tribute to functional redundancy of ammonia-oxidizing
microbes in soils and stability of nitrification pattern.

Introduction

The mining industry produces large amounts of waste contam-
inated by metals and metalloids [ 1], leading to the accumulation
of toxic elements in the environment. Whereas heavy metal
(HM)-contaminated soils are unsuitable for food production,
energy crops (e.g., Miscanthus % giganteus, a perennial grass
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with large annual biomass production potential) can allow the
commercial exploitation of these soils by establishing biofuel
feedstock production systems. In addition, the cultivation of
these plants offers opportunities for site stabilization and phy-
toremediation of contaminated soils [2, 3].

However, macronutrients deficiency is one of the growth-
limiting factors of plant cultures on contaminated soils [4]. It
is therefore of key importance to investigate the response of
the functional microbial biomass involved in nutrient turnover
to contamination. In this respect, nitrogen (N) cycling is of
major concern as contaminated sites are usually not fertilized,
and N available to plants is closely linked to N mineralization
from dead biomass and subsequent transformation. Several
authors have postulated that nitrification responds at a very
sensitive level to different types of contamination [5, 6] due to
low functional diversity compared to other steps in the N cycle
[7]. Nitrification is a two-step process consisting of: (1) oxi-
dation of NH4" to NO,~ by ammonia-oxidizing bacteria
(AOB) and ammonia-oxidizing archaea (AOA) [8, 9] and
(2) oxidation of NO, to NO; by nitrite-oxidizing bacteria
(NOB), the first step being assumed as rate limiting [10].
While HM contamination can affect AOB communities
[11-13], little is known about how AOA is affected by con-
tamination. Although AOA are thought to be more tolerant to
chronic stress conditions than bacteria [14, 15], the influence
of HMs on AOA is discussed controversially in literature
[16-18]. Furthermore, the few studies assessing the response
of both AOA and AOB to HM contaminations were mostly
performed using spiked soils [12, 16-21], which do not allow
a prediction of the AOA and AOB dynamics in soils with a
long history of HM contamination due to adaptation processes
of the microflora on the one hand and changes in the amount
of bioavailable HMs on the other hand [22, 23].

Therefore, in this study, we investigated in a greenhouse
experiment the response of ammonia-oxidizing microbes in the
root-thizosphere complex (RRC) of Miscanthus * giganteus
grown in soils with different levels of long-term combined
arsenic (As) and lead (Pb) contamination. We analyzed the
abundance of both archaeal and bacterial amoA genes in the
bulk soils before planting and 6 and 12 weeks, respectively,
after planting of the bioenergy crop. Furthermore, we studied
the diversity of the amoA genes of AOA. We postulated that
AOA will be less affected by HM contamination in soil than
AOB due to a shift in the AOA diversity towards more HM-
resistant phylotypes over time.

Materials and Methods
Experimental Design

Soils classified as Anthroposol Artificiel according to the
French classification or Technosol (WRB nomenclature,
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FAO 2006) from the former gold mining area at La Petite
Faye (Limousin, France, 01°34'23" E, 46°08'37" N) were
chosen for the experiments. This site, which has been aban-
doned since 1964, presents zones with different As and Pb
concentrations and has been colonized by local vegetation
(e.g., grasses, ferns, horsetails, birches). Three plots were
selected for soil sampling, reflecting zones with severe (S),
medium (M), and low (L) levels of HM contamination based
on total Pb and As values. The values for Pb ranged from
15,200 mg/kg at plot S to values smaller than 500 mg/kg at
plots M and L. Arsenic values ranging from 83,000 mg/kg at
plot S to 1,700 mg/kg at plot L were measured. Soils were
sampled in January 2010 up to 20 cm soil depth after remov-
ing the organic horizon. Sieved soil (2 mm) was transferred
into plastic bags and placed into pots (21x21%21 cm) at a
bulk density of 1.0 and equilibrated for 1 month at 20 °C and
constant water content. Major chemical and physical soil
parameters are summarized in Table 1.

After an equilibration phase of 7 days at 50 to 60 % of
field water capacity at 20 °C, one pre-grown Miscanthus %
giganteus thizome (Novabiom, France) was introduced per
pot. Miscanthus * giganteus plants were grown in a phyto-
tron for 3 months, without receiving additional nutrients.
The plants were subjected to a photoperiod of 16 h light at
350 umol m s~ and 8 h of darkness at temperatures of 23
and 18 °C, respectively, under constant soil water content
(field capacity). Samplings were performed before planting
the rhizome (#y) and after 6 (z,) and 12 (#,) weeks. The
experiment was conducted in a randomized block design
with four independent replicates per soil and per sampling
time point. Bulk soil (at #,) and composite samples of roots
with attached soil (at 7, and £,) were sampled from each pot.
After shaking the roots vigorously, the roots and attached
soil were treated as one compartment called the RRC. One
part of the samples was immediately shock-frozen in liquid
nitrogen and stored at —80 °C for nucleic acid extraction; the
other part was directly extracted with 0.01 M CaCl, for
determination of water-extractable As and Pb, organic car-
bon (WEOC), ammonium-N (NH, -N), and nitrate-N

Table 1 Soil parameters

Soil S Soil M Soil L

Soil type Silty loam Silty loam Silty loam
pH 34 3.6 5.6
Ciotal [%] 7.3 54 9.7
Niotar [%] 0.5 0.4 0.7
C/N 13.8 13.5 13.6
AS gl 83,000 9,300 1,700
Pb o’ 1,520 200 300
“mg/kg soil
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(NO3 —N). Bulk soil samples were directly treated by lith-
ium metaborate/tetraborate fusion and nitric acid digestion
for HM determination.

Soil Parameters

Samples consisting of bulk soil or RRC were shaken over-
head for 45 min in 0.01 M CaCl, for determination of water-
extractable As and Pb (soil/solution ratio 1:10), WEOC,
NH, "N and NO; N (soil/solution ratio 1:4). After filtra-
tion, Pb and As were measured by graphite furnace atomic
absorption spectrometry (SpectrAA 880 Z, Varian, CA, US)
equipped with a Zeeman background correction. NH; N
and NO3; —N were determined using a continuous-flow ana-
lyzer (SA 20/40, Skalar Analytical, The Netherlands).
WEOC was measured using a TOC analyzer (TOC-5050A,
Shimadzu Corporation, Japan).

Plant Parameters

The dry weight of rhizome, stem, and leaves of Miscanthus
plants, respectively, were measured 12 weeks after planting
(). As and Pb contents were determined in each organ at 1,
by ICP-MS after nitric acid digestion (Acme Analytical
Laboratories Ltd., Canada).

DNA Extraction

DNA of each of 12 samples (four replicates x three time
points) was extracted from 0.5 g of bulk soil and RRC,
respectively, after a bead beater lysis step (Bertin Technologie,
France) using the FastDNA SPIN kit for soil (MP biomedicals,
Germany) according to the manufacturer’s instructions. DNA
concentration was measured by using a microvolume spectro-
photometer (NanoDrop, PeqLab, Germany).

Quantitative PCR Assay

Quantitative PCR (qQPCR) was used to determine the abun-
dance of functional communities involved in ammonium
oxidation by targeting amoA genes (encoding the ammonia
monooxygenase) in both AOB and AOA using a SYBR®
Greenl-based detection system (Applied Biosystems, Ger-
many). Absolute quantification of investigated target genes
was carried out in 25-uL samples in triplicate on the ABI
Prism 7300 Cycler (Applied Biosystems). The reaction mix-
ture contained 15 pg bovine serum albumin (Sigma-Aldrich,
Germany), 0.2 uM of each primer for amo4 AOA, and
0.3 uM of each primer for amoA AOB amplification, respec-
tively (Metabion, Germany), 1X Power SYBR Green PCR
master mix (Applied Biosystems), and 40 ng DNA template.
PCR conditions and primers used are shown in Table 2. The
specificity of the amplification products was confirmed by
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melting curve analysis and agarose gel electrophoresis. No
template controls served as null value. Samples were diluted
tenfold as no inhibitory effects on the PCR amplification were
detected when known amounts of standard (AOB and AOA)
were spiked with tenfold diluted environmental DNA samples
(data not shown). Dilution series of plasmids containing
cloned DNA of the amoA gene from Nitrosomonas multi-

Sformis ATCC25196 for AOB and of the fosmid clone 54d9

[9] for AOA, respectively, were used to generate standard
curves ranging from 10" to 10° gene copies per microliter.
The calculated efficiencies for gPCRs of AOA and AOB were
comprised between 90 and 95 %.

Terminal Restriction Fragment Length Polymorphism
Fingerprinting

Diversity analysis of archaeal amoA gene was carried out by
terminal restriction fragment length polymorphism (T-RFLP).
Archaeal amoA gene amplicons were generated by two suc-
cessive PCRs using the primers described for qPCR assay,
with forward primer labeled with 5'-carboxyfluorescein. The
first PCR reaction (50 pL) contained ~100 ng of template
DNA, 0.2 uM of each primer, 0.2 mM dNTPs (Fermentas,
Germany), 60 pg of BSA (Sigma-Aldrich, Germany), 1 U Top
Taqand 1 x PCR buffer (Qiagen, Germany), and nuclease-free
water (Promega, Germany). The PCR reaction was achieved
according to the following thermal profile: 5 min at 95 °C,
followed by 30 cycles of 45 s at 94 °C, 45 s at 55 °C, 45 s at
72 °C, and finally 5 min at 72 °C. Four microliters of PCR
products was amplified subsequently in the same conditions as
previously described in a final volume of 100 pL. Generated
amplicons were checked by standard agarose gel electropho-
resis and ethidium bromide staining and purified with the
QIAquick PCR purification kit (Qiagen) prior enzymatic di-
gestion with the restriction enzyme Mwol (Fermentas, Ger-
many) according to the manufacturer’s protocol. The
restriction enzyme was selected based on in silico T-RFLPs
using the program REPK (Restriction Endonuclease Picker)
[24]. Digested amplicons (~50 ng in 10 pL) were subsequently
purified with the MinElute Reaction cleanup kit (Qiagen).
Desalted digests (1 pL) were mixed with 13 uL of Hi-Di
formamide (Applied Biosystems) containing an 800-fold dilu-
tion of a 6-carboxy-X-rhodamine-labeled MapMarker 1000
ladder (Bio-Ventures, TN, US), denatured (3 min at 95 °C),
and cooled on ice. Electrophoresis was performed as described
previously [25] using an ABI 3730 DNA analyzer (Applied
Biosystems). Electropherogram evaluation was performed us-
ing the GeneMapper 5.1 software (Applied Biosystems).

Statistical Analysis

Prior to analysis, gene abundance data were In-transformed
to achieve normal distribution. Data were analyzed by one-
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Table 2 Primers and thermal

profiles used for real-time PCR Target gene Primer Set Reference Thermal profile Cycles Amplicons e, bp
quantification of bacterial and
archaeal amoA AOB amoA amoA-1 F [45] 94 °C/60 s, 58 °C/ 40 500
amoA-2R [45] 60 s, 72 °C/60 s
AOA amoA 19 F 9] 94 °C/45 s, 55 °C/ 40 624
CrenamoA616r48x [30] 455,72 °C/45 s
way ANOVA with soil (L, M, S) as factor at a given Results

time point for both bacterial and archaeal amoA genes
with significance level set to a=0.05. Soil parameters
data were analyzed similarly. Statistical tests were cal-
culated in SPSS 11.5 (SPSS, Inc., IL, USA). T-RFLP
data were imported into T-REX [26] and a data matrix
based on peak area was generated. Peaks were inacti-
vated for lack of length (<50 bp) and aligned using
clustering threshold of 1 bp. Fragments with relative
abundance of less than 1 % were considered as back-
ground noise. The data matrix was exported for analy-
sis with the ADE4 package [27] within the R software
environment (www.R-project.org) using between-group
analysis (BGA) based on correspondence analysis using
the function dudi.coa followed by bca. Because corre-
spondence analysis is only the first step in the
between-group analysis, no detrended form with down-
weighting of variables was used. The between-groups
inertia percentage was used for a global test of any
difference between the groups. Based on 999 permuta-
tions, a P value was calculated. In case of significant
results (P<0.05), pairwise tests were performed; the
P values were adjusted for multiple comparisons by
the method of Hommel [28].

Physical and Chemical Characterization of Bulk Soil, RRC,
and Plants

The CaCly-extractable fraction of As and Pb in all soil samples
was lower than 1 % of the total amount of the respective HM
and ranged from 10.4 to 2.1 mg/kg for As and from 134.2 to
1.6 mg/kg for Pb, respectively, at #,. Surprisingly, the clear
gradient in total HM in soil samples from S, M, and L was not
reflected in the amount of CaCl,-extractable As and Pb. Over
the experimental period, the values for the As CaCl,-extract-
able fraction did not change significantly in all soil samples; for
Pb in soil samples from plot S and L, a clear reduction was
visible (Table 3).

Initial NO; —N and NH, —N concentrations in bulk soil
were independent of the degree of metal and metalloid
contamination (Table 3). Higher NO; —N and NH, "N con-
centrations were found in all samples at £,. At ¢,, signifi-
cantly higher NO; —N concentrations and lower NH; N
concentrations were measured in RRC samples from soil L
compared to soil S. At 7, however, no differences in
NO; —N and NH,; —N concentrations were apparent. The
amount of WEOC was not influenced by the degree of HM

Table 3 Ammonium-N,

nitrate-N, WEOC, and Soil $ Soil M Soil L
CaCl,-extractable As and Pb in
the three studied soils NH,—N?* 10 119.7+63.4 a 82.6+253 a 85.9+225a
(S, M, and L) at the three time tl 55.7+6.7 a 37.1+11.1a,b 28.0+9.4 b
sampling points (fo, 1, and £,) 2 47.1+73a 3334542 33171 a
NO; -N* 10 39+26a 44+14a 6.1+1.4 a
tl 0.6+0.2 a 14+0.6 a 4.7+0.6 b
2 0.5+04 a 09+0.2a 24+19a
WEOC* 10 16.3+£53 a 16.8+4.5 a 20.1+3.1 a
tl 29.3+24a 25.0+5.2a 334+82a
2 30.6+28 a 30.1+4.5a 44.1+16.1 a
CaCl,-extractable As® 10 2.1+09 a 7.7+0.7b 10.4+0.6 ¢
1l 1.8£0.2 a 7.0+£0.2 b 11.3+09 ¢
Significant differences between 2 1.74£03 a 58+0.2b 9.9+0.3 ¢
soils at a given time point are CaCly-extractable Pb* 10 1342+4.6 a 1.6+0.1 b 183+34 ¢
indicated by different letters 1l 62.146.6 a 1.5+0.1 b 0.0+0.0 ¢
(n=4) 2 6394313 a 1.6+03 b 0.040.0 ¢
“mg/kg soil
4 springer
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contamination and was, as expected, higher in the RRC than
in bulk soil. Between #; and #,, no changes in WEOC
amount were observed.

Biomass of plant leaves, steam, and rhizomes was not
affected by the different amounts of HM present in soil
(Table 4) at the last sampling time point #,. All plants
accumulated As over time. At #,, highest As concentra-
tions were measured in the rhizomes independent from the
degree of contamination in soil. Surprisingly, the highest
accumulation of As was found in plants grown in soil M
with total As concentrations of 282.7 mg/kg. For soil S
and L, the accumulation of As in plants was comparable
(56.2-72.0 mg/kg). The accumulation of Pb in the plants
was also observed, and a higher accumulation of this
element in leaves and stem was observed in soil S com-
pared to As. Greater Pb accumulations were found at #, in
plants grown in soil S and M (103.2-121.5 mg/kg). Pb
contents in plants harvested from soil L were lower than
10 mg/kg.

Quantification of Bacterial and Archaeal Ammonia
Oxidizers

In bulk soil at 7, a clear influence of the HM contamination
on the abundance of AOA and AOB was visible. Whereas
amoA copy number in the control soil L was, for both AOA
and AOB, in the range of 2.9-4.8x10° copies/g soil, in the
severely impacted soil S only 2.2-5.2x10* copies/g were
measured. In soil M, AOA was obviously not influenced by
HM contamination and values were comparable to soil L;
for AOB, a clear influence of contamination was visible and
values were similar to soil S (Fig. 1).

At ¢; in the RRC of plants grown in soil L, as expected,
AOB outcompeted AOA by almost one order of magnitude
(2.4x10° and 4.0x10* amoA copies/g RRC, respectively).

Table 4 Plant parameters at 7,

Soil Plant organ Biomass® As® Pb”
S Rhizome 11.81£5.60 a 49.5 30.6
Stem 0.73+£0.44 a 5.4 29.5
Leaves 0.88+0.45 a 17.1 43.1
M Rhizome 9.41+4.63 a 195.7 70.0
Stem 0.20+0.17 a 66.9 28.6
Leaves 0.36=0.18 a 20.1 12,9
L Rhizome 8.82+4.24 a 48.3 3.8
Stem 041+0.31 a 3.6 0.6
Leaves 042+0.33 a 43 1.1

Significant differences between soils are indicated by different letters
(n=4)

“g dry weight
* mg/kg

93

In contrast, in the RRC of plants from soil M, AOA copy
numbers were higher (5.7 % 10° amoA copies/g) compared to
those from soil L, whereas no significant differences in
AOB copy numbers between plants from soil L and M were
visible. In the RRC from plants obtained from soil S, as
expected, amoA copy numbers for AOA and AOB showed
similar response pattern and were significantly lower com-
pared to plants from the other soils (9.9x10*—1.7x10*
amoA copies/g).

At t,, similar copy numbers for amoA could be measured.
Only in the RRC of plants from soil L were the differences
observed at 7; between AOA and AOB no longer visible and
values for both groups of ammonia oxidizers were in the
range of 1.5%10° amoA copies/g.

Diversity Analysis of Archaeal amoA genes

T-RFLP analysis of the archaeal amoA gene resulted in a
detectable T-RF number/sample ranging from two (#,) to six
(t;) in soil S, from two (¢, £,) to three (#) in soil M, and
from two (#) to nine (#;) in soil L (Fig. 2). T-RF-162 was
dominant in bulk soil samples (#) for all soils and in the
RRC samples (1, t,) for soil S and M, ranging from 66 to
97 % of the total relative community. In the RRC of soil L,
T-RFs-162 and -253 had a similar level of relative abun-
dance, contributing for 33 and 30 % of the total amo4 AOA
community at #; and 43 and 51 % at t,, respectively. The
contribution of T-RF-253 to the community richness in
soil L was comparable at the different time points.
However, T-RF-253 was absent in soil S. An increased
number of T-RFs was found at ¢, and, to a lower extent,
at , compared to 7 in soil S and L. Statistical evalua-
tion of overall AOA diversity by BGA revealed a clus-
tering according to the different soils at a given time
point, with the exception of soils S and M at #, which
clustered together (Fig. 3; Tables 5 and 6). BGA also
indicated significant differences for all soils between %,
and t;, as well as between #, and #, for soil S and ¢, and
t, for soil M.

Discussion

The objective of this study was to assess the impact of
different degrees of As and Pb contamination in soil and
the planting of the energy crop Miscanthus * giganteus on
the functional microbial biomass involved in the oxidation
of ammonia in soil. Therefore, soils with different long-term
As and Pb contamination were used for plant growth. By
targeting the marker gene amoA, we quantified ammonia-
oxidizing bacteria and archaea in bulk soil as well as in the
RRC at two different time points during plant development
and described the diversity pattern of archaeal ammonia

@ Springer



J. Ollivier et al.

Figure 1 Quantification of
amoA (AOB and AOA) in bulk
soil (#y) and in root-rhizosphere
complex of Miscanthus *
giganteus after 6 (1)) and 12 (1)
weeks in three acidic soils
contaminated with heavy
metals (S, M, and L).
Significant differences between
the three soils at a particular
time point are indicated by
letters. Error bars represent
standard deviation of mean
(n=4). RC RRC root-
rhizosphere complex

I ron
N Ao

1E+06

1,E+05

1,E+04

gene abundance (copies.g”' soil)

1,E+03
t

oxidizers. As shown by Nicol and coworkers [29], there is
good evidence that amoA diversity well reflects the phylog-
eny of ammonia-oxidizing bacteria and archaea. Further-
more, Schauss et al. [30] calculated the maximum number
of amoA genes per cell for AOA and AOB and estimated for
both groups of ammonia oxidizers a maximum of three
operons per cell; thus, amoA has been considered as a good
proxy for the total number of ammonia-oxidizing microbes.

Bioavailability of Pb and As in Soils with a Long History
of Contamination

In this study, the investigated soils showed different degrees
of As and Pb contamination. Remarkably, the total Pb and
As contents and the CaCl,-extractable fractions, respective-
ly, did not follow the same trend. This might be related to
the pH values of the different soils and the difference in the
HM speciation to mineralogy (e.g., respective amount of
As- and Pb-bearing phases). Similarly, Cui and colleagues
[31] observed an increased availability of As and Pb with
higher and lower soil pH, respectively. Total HM concen-
trations are a poor indicator of the actual concentration in
the soil solution to which soil microbes are exposed, and
there is no universally acceptable method to assess bioavail-
able soil metal concentrations [32].

As and Pb as Drivers for Abundance and Diversity
of Ammonia-Oxidizing Microbes

In our study, AOA and AOB amoA copy numbers in bulk soil,
ranging from 4.4x 10° to 4.8x 10°, were lower than what has
been previously reported [16-19, 21] (Fig. 1). However, the
investigated soils in this study were of mining waste origin,
presumably hostile for microbial populations, low in organic
matter content, and not of agricultural provenance. In soil S,
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amoA copy numbers for both groups of ammonia oxidizers
were significantly reduced compared to soil M and L, which
could be interpreted as a negative impact of the high HM
concentration in this soil. These results may indicate low in
situ turnover rates of ammonia in response to high HM con-
tamination, as observed in our experiment by the increased
NH, N and reduced NO; —N concentrations at ¢, in soil S
compared to soil L. However, potentially lower transforma-
tion rates of ammonia into nitrate in soil S might be partly
compensated by higher dentrification activities in soil L.

At to, while amo4 AOA gene abundance was significant-
ly higher in soil M than in soil S, no significant difference
between these two soils was observed in amo4 AOB abun-
dance, indicating a higher sensitivity of AOB than AOA
towards Pb and As. Similarly, a higher tolerance of AOA
than AOB in soils contaminated by Zn [17] and Cu [21] has
been suggested. However, other studies showed contrasting
results and ascribed tolerance development in ammonia-
oxidizing communities to AOB rather than AOA popula-
tions [16, 18]. Nevertheless, as most of these results are
based on soils spiked with HMs, a direct comparison to
the data presented in this study is not possible as bioavail-
ability of HMs is different in soils with artificially added
HMs, and the time of adaptation of microbes in response to
the stressor is missing [22].

Mainly, the latter argument has been proven to be of high
importance in our study as different AOA phylotypes show-
ing differences in HM tolerance were observed. For exam-
ple, T-RF-253 was below the detection limit in soil S and
relatively less abundant in soil M than L, possibly indicating
the sensitivity of this genotype to high HM contamination
(Fig. 2). Vice versa, T-RF-162 was dominating AOA diver-
sity patterns in soil S and M at all time points, indicating the
importance of this phylotype in soils highly contaminated
by HMs and possibly its increased resistance against HMs.
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Figure 2 Contributions of T-RFs to total amo4 AOA gene fragment
diversity in bulk soil (#y) and in root-rhizosphere complex of Miscan-
thus * giganteus after 10 (#;) and 20 (#,) days in three acidic soils
contaminated with heavy metals (S, M, and L). Significant differences
between the three soils at a particular time point are indicated by letters

Although Mertens and colleagues [13] demonstrated that
AOB populations from long-term contaminated soil samples
were able to tolerate higher Zn concentrations than AOB
populations from uncontaminated soil samples and microbial
HM, resistance mechanisms for AOB including Nitrosomonas
europaea [33, 34] have been described in literature in our
study; obviously, only a very low tolerance level towards Pb
and As of AOB was observed. This might be related to the
contamination with two HM in combination with other stres-
sors which affect AOB, like low pH. In contrast, detailed data

95

Figure 3 Between-group analysis based on correspondence analysis
of the T-RFLP data set for amo4 AOA gene fragments. The first two
axes explain 61 % of variance. Symbols illustrate the four replicates for
each soil (S, M, and L) at each time point (%, f;, and t,). Ellipses
surround the four replicates for each soil, showing that they cluster
together

on the resistance development towards HM of AOA are still
missing as the first cultures of AOA from soil, which may
form the basis for such studies, have been isolated only
recently [35].

Other Factors Driving the Abundance and Diversity
of Ammonia-Oxidizing Microbes

When plots for this study were selected, much care was
taken on identifying soils which only differ in their As and
Pb concentrations. Therefore, soil parameters like soil tex-
ture, total C, and total N content were comparable. Howev-
er, soils differed in their pH values. Whereas soil S and M
had a comparable pH (3.5), soil L was less acidic with a pH
of 5.3. Soil pH is known to shape the distribution and

Table 5 P values of pairwise comparisons for T-RFLP profiles of
amoA AOA adjusted for multiple comparisons by the method of
Hommel. Comparison between two soils at a given time point

Soil P values for comparisons between two time points
to/ty Lt it

S 0.028* 0.049* 0.371

M 0.045* 0.371 0.040%*

L 0.049* 0.115 0.081

*P<0.05 (significant differences)
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Table 6 P values of pairwise comparisons for T-RFLP profiles of
amoA AOA adjusted for multiple comparisons by the method of
Hommel. Comparison between two time points for a given soil

Time P values for comparisons between two soils

S/M S/L M/L
to 0.049* 0.016* 0.047*
[ 0.043* 0.018* 0.049*
) 0.172 0.048* 0.041*

*P<0.05 (significant differences)

activity of archaeal and bacterial ammonia oxidizers [29, 36]
and is a driver for selecting different bacterial and archaeal
communities [37-40]. Furthermore, nitrification has been
suggested to be driven by AOA in highly acidic soils [36,
40]. Therefore, the effects observed in this study may be
partly assigned to differences in soil pH.

Although no clear influence of the degree of HM con-
tamination on plant growth was observed, as plant biomass
values were comparable from all soils (Table 4), differences
were observed in the amount of accumulated As and Pb.
Roots are known to shape microbial communities and ac-
tivity because of the wide variety of organic compounds that
they provide [41, 42]. Accumulated HM change overall
plant physiology and consequently alter the quantity and
quality of root exudates. Taking into account that mainly
AOA, as autotrophic microbes, which exhibit a rather oli-
gotrophic lifestyle [43], are often outcompeted by heterotro-
phic microbes in the rhizosphere due to (1) the increased
amounts of available carbon and (2) the competition be-
tween plants and microbes for ammonia, resulting in the
release of nitrification-inhibiting substances by the plant
[44], the change in exudation patterns may explain the shifts
in the relative abundance of AOA and AOB, mainly in
plants grown in soil M.

Conclusion

Based on the data of this study, it can be postulated that
selected phylotypes of AOA tolerate higher concentrations
of Pb and As in soil and RRC compared to AOB. However,
abundance of a functional group cannot be directly linked to
the activity of these microbes. Therefore, it remains unclear
if, mainly in soil M, AOA can substitute AOB and if
functional redundancy between both groups of ammonia-
oxidizing microbes exists under the given conditions. Based
on the ammonium levels measured, which are similar be-
tween soil L and M, this might be speculated; nitrate con-
centrations between both soils differ significantly though.
Thus, in situ data cannot answer this question in total as it is
not clear how nitrite oxidation is influenced by As and Pb.
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To address these points in detail, further studies are needed,
including (1) analysis of mRNA, (2) using 'SN-labeled
ammonium, and (3) studying the effects of HM on nitrite
oxidation.
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Abstract

Nitrification is a two-step process consisting of: (i) the oxidation of NH," to NO, by
ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) and (ii) the oxidation
of NOy™ to NOj3” by nitrite-oxidizing bacteria (NOB). In a field experiment, we investigated the
impact of repeated application of the antibiotic sulfadiazine (SDZ)-contaminated pig manure on
functional microbial communities involved in ammonia and nitrite oxidation in the root-
rhizosphere complexes (RRCs) of diverse plants composing a pasture. We surveyed the
abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) as well as Nitrobacter- and
Nitrospira-like nitrite-oxidizing bacteria (NOB) by quantitative PCR, and the diversity of amoA
AOA and Nitrobacter-like nxrA amplicons using a cloning-sequencing approach. Whereas the
first SDZ-contaminated manure application caused only slight effects on the investigated
microbial communities and did not change the diversity and abundance pattern significantly, the
second application of SDZ-contaminated manure induced pronounced effects compared to the
control treatment where non-contaminated manure was applied, and resulted in an up to 15 fold
increased ratio of AOA:AOB and a reduction of nrxA genes. The diversity of AOA amoA
increased after the second application of SDZ-contaminated manure compared to the control
treatment whereas a clear reduction of nrxA OTUs was visible in the same samples. Thus, our
results indicate that mainly nitrite oxidation by NOB might be affected by the application of SDZ

and alternative pathways like nitrite reduction might be favored under these conditions.
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1. Introduction
Nitrification rates in soils can be considered as an important indicator for sustainable use.
While the base product for this process, ammonium respectively ammonia, is of high importance
for plant nutrition and biomass formation, the end product, nitrate, often causes significant losses
of nitrogen as well as huge environmental problems including contamination of groundwater by
leaching or the formation of the green house gas N>O by denitrifying microbes (Ollivier et al.,
2011). Nitrification is a two step processes including (i) the oxidation of NH4* to NO, via
hydroxylamine by ammonia-oxidizing microbes (Kowalchuk and Stephen, 2001;Leininger et al.,
2006) and (ii) the oxidation of NO,  to NOs™ by nitrite-oxidizing bacteria (NOB) (Prosser, 1989).
Ammonia oxidation and nitrite oxidation are both performed by phylogenetically well separated
microorganisms. Thus, ammonia oxidation is performed by autotrophic bacteria belonging to two
specific groups of B- and y-proteobacteria (Bock and Wagner, 2006) and archaea recently
assigned to the phylum Thaumarchaeota (Spang et al., 2010); NOB are broadly distributed among
the a-, B-, y-, and d-proteobacteria as well as the Nitrospira phylum (Spieck and Bock, 2005).
Despite the fact that an efficient nitrification requires the presence of both ammonia
oxidizers and nitrite oxidizers, most studies in the past have been dedicated to understand factors
driving abundance, diversity and activity of ammonia oxidizers. ISI Web of Knowledge reveals
almost 2500 articles using the keywords “ammonia oxidation” and “soil”, whereas only 600 hits
were found using “nitrite oxidation” and “soil”. Studies where both processes were investigated

using the same samples are rare, and include less than 30 articles in peer reviewed journals. The
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reason for this strong focus on ammonia oxidation is mainly related to several studies from the
last century where the oxidation of ammonia has been considered as rate limiting for the whole
process of nitrification (Prosser, 1989). Main findings from that time include varying copy
numbers of AOB (Phillips et al., 2000) and nitrite concentrations below the detection limit in
many soil samples (Burns et al., 1995), indicating that once nitrite is formed it is more or less
quickly further oxidized to nitrate. However at that time, the existence of ammonia oxidizing
archaea was not proven and ammonia oxidation in soil was essentially related to some
proteobacteria.

With the detection of AOA, the paradigm of nitrification changed and a number of new
questions has been raised since then, with regards to the role of AOA for nitrification including
(i) the transformation of hydroxylamine (NH,OH) to nitrite by AOA as no homolog of bacterial
HAO gene (hao) encoding the enzyme catalyzing the oxidation of NH,OH to NO, has been
found in the genome of AOA so far, (ii) the functional role of the described nirK sequences from
AOA, (iii) possible pathways indicating mixotrophy of AOA, and (iv) the interplay between
AOA and NOB. These potential differences between AOA and AOB may result in dissimilarities
in the response of these communities to inhibitive agents (Schauss et al., 2009). Therefore the
aim of this study was to investigate the response of ammonia (AOA and AOB) and nitrite
oxidizers (NOB) to a repeated application of antibiotics (sulfadiazine; SDZ) in the root
rhizosphere complex (RRC) of a mixture of typical grassland plant species at different plant
development stages during the growing season in a field study, and thus to link the data to
ammonium and nitrate fluxes in soil. In order to assess changes in the genetic potential, we
analyzed the abundance pattern of genes encoding key enzymes of ammonia oxidation (amoA

encoding the ammonia monooxygenase) in both AOB and AOA, and nitrite oxidation in
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Nitrobacter-like NOB (nxrA encoding the nitrite oxidoreductase). Nitrospira-like NOB were
quantified based on 16S rRNA genes. Moreover, the functional diversity of archaeal amoA and
respectively Nitrobacter-like nxrA, was determined using a cloning-sequencing approach.

As the administration of antibiotics to treat infectious diseases is a common practice in
animal husbandry, substances like the sulfonamide, which is mainly used in pig production
(Burkhardt et al., 2005), are poorly adsorbed by the animal and excreted mostly unaltered in urine
and feces together with various metabolites (Elmund et al., 1971;Alcock et al., 1999;Halling-
Sgrensen, 2001;Lamshoft et al.,, 2007), and thus reach the soil ecosystem via manuring. In
inhibiting the folic acid metabolism, SDZ impairs growth of most Gram-positive and many
Gram-negative bacteria (Brown, 1962). The occurrence of SDZ in soil might therefore alter the
microbial community structure as well as the activity pattern, and modify kinetics of important
turnover processes such as nitrogen (N) cycling. We hypothesized that SDZ affects mainly the
ratio between archaeal and bacterial ammonia oxidizers, whereas Nitrospira- and Nitrobacter-
like nitrite oxidizers are both inhibited by the application of the contaminated manure, despite
their different phylogenetic classification. Therefore, under antibiotic pressure, we postulate that

nitrite oxidation might be the rate limiting step of nitrification.

2. Materials and methods
2.1. Experimental design

An agricultural field located near Merzenhausen, Germany, (50°56'3" N, 6°17'31" E)
which was never fertilized with manure before, and therefore has never been in contact with
SDZ, was chosen as experimental site. The soil has been characterized as a silt loam (Orthic

Luvisol; Table 1). The experiment was setup as a randomized split plot design with a mixture of
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pasture plants (47% Lolium perenne, 17% Phleum pratense, 20% Festuca pratensis, 10% Poa
pratensis, and 6% Trifolium repens) using manure from untreated pigs (PM) and SDZ-treated
pigs (PMSDZ) respectively with four replicates for each variant, resulting in 8 plots in total.

Manure was applied twice during the vegetation season (applied total N ranged from 16 to 19
gN m~ and from 3 to 6 g N m?, respectively; Table 2). The first manure application (30 m? ha™')
was completed in May 2009. The second application (10 m?® ha) was done 48 days later. Pasture
plots were cut one day prior the second manure application. The amount of SDZ applied in
treatments PMSDZ was equivalent for both applications to 100 mg SDZ m™. The amount of SDZ
recovered from soil during the experimental period declined quickly after each manure
application, as already described by Rosendahl and colleagues (2011).

Rhizosphere samples were collected from all plots at day 1 (after the first application of the
manure) 7, 14, 42, 49 (1 day after the second manure application), 56, 63, and 106 (8, 15, and 58
days after the second manure application, respectively). For each plot, ten subsamples were
collected, mixed, and homogenized to obtain one sample per plot. Samples taken from plots with
the same treatments were used as true replicates. After shaking the roots vigorously, the root-
rhizosphere complex samples (RRC; roots and adhering soil) were divided into two sub-samples.
One part was immediately shock-frozen in liquid nitrogen and stored at -80°C for nucleic acid
extraction, the other part was directly extracted with 0.01 M CaCl, for the determination

ammonium-N (NH4*-N) and nitrate-N (NO3-N) concentrations.

2.2. Inorganic nitrogen fraction in the RRC
Three hundred mg of RRC was shaken overhead for 30 min with 5 ml of 0.01 M CaCl,. After

filtration, ammonium-N and nitrate-N measurements were performed on Nanocolor 300D
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photometer from Macherey Nagel (Germany) by using the Nanocolor Ammonium 3 kit and the

Nanocolor nitrate 50 kit, respectively (Macherey Nagel, Germany).

2.3. Nucleic acid extraction
RRC DNA was directly extracted after a bead beater lysis step (Bertin Technologie, France),
using the FastDNA SPIN kit for soil (MP biomedicals, Germany). Quality and quantity of the

extracted DNA were checked with a spectrophotometer (Nanodrop, PeqLab, Germany).

2.4. Abundance of functional genes

Quantitative PCR (qPCR) of genes encoding key enzymes of ammonia oxidation (amoA
encoding the ammonia monooxygenase) in both ammonia-oxidizing bacteria (AOB) and archaea
(AOA), and nitrite oxidation in Nitrobacter-like NOB (nxrA encoding the nitrite oxidoreductase)
was used to determine the density of the functional communities involved in nitrification. In
addition, the abundance of Nitrospira-like NOB was quantified targeting 16S rRNA Nitrospira
gene since no primers targeting Nitrospira-like nxrA were available (Wertz et al., 2012). An
absolute quantification of all investigated target genes using a SYBR® Green I-based detection
(Applied Biosystems, Germany) was carried out in 25 pL in triplicates on the ABI Prism 7300
Cycler (Applied Biosystems). The reaction mixture consisted of 15 pg bovine serum albumin
(Sigma-Aldrich, Germany), 0.2 uM of each primer for amoA AOA, nxrA and 16S rRNA
Nitrospira gene amplification and 0.3 pM of each primer for amoA AOB amplification,
respectively (Metabion, Germany), 1x Power SYBR Green PCR master mix (Applied
Biosystems), and 40 ng DNA template. All PCR reactions started with an initial enzyme

activation step performed at 95°C for 10 min. The subsequent thermal profile was different for
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181

182

183

each gene amplified (Table 3). The specificity of the amplification products was confirmed by
melting-curve analysis and migration on 2% agarose gel. No template controls gave null or
negligible values. To avoid inhibitory effects on quantitative PCR, samples were diluted 10-fold
based on a preexperiment (data not shown). Dilution series of a plasmid with cloned
Nitrosomonas multiformis ATCC25196 amoA gene (amoA AOB), the fosmid clone 54d9
(Leininger et al., 2006) for archaeal amoA, Nitrobacter hamburgensis X14 (DSMZ 10229) nxrA
gene (Nitrobacter-like nxrA), Nitrospira 16S rRNA gene (Accession No. FI529918) (Nitrospira-
like 16S rRNA gene), were used to generate respective standard curves ranging from 10" to 10°
gene copies ul”! with efficiencies ranging from 94 to 98%, 98% to 100%, 93 to 98%, and 93% to

99%, respectively.

2.5. Cloning and sequencing of archaeal amoA and nitrobacter-like nxrA fragments
sequences and phylogenetic analysis

Prior to PCR amplification, replicates corresponding to the treatments PM and PMSDZ at the
time points 1, 49 and 106 days after the first manure application, were pooled together to
constitute one sample corresponding to one treatment at one time point.

Archaeal amoA and nxrA gene amplicons were generated by PCR using the primers described
for qPCR assay (Table 3). The reaction mixture (50 uL) contained 1X PCR buffer, 1X CoralLoad
concentrate, 1X Q-solution, 1 U TopTaq (Qiagen, Germany), 200 uM of each dNTP, 0.2 uM of
each primer, and 30 ng template DNA. The PCR thermocycling program for nxrA amplification
was 94°C for 3 min, followed by 35 cycles of 94°C for 30 s, 55°C for 30 s and 72°C for 1 m, and
a final elongation step at 72°C for 10 min. A similar program was used for amoA AOA

amplification with an annealing temperature of 50°C. The cloning was carried out using the TA
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206

cloning kit (Invitrogen, Germany) in accordance with the manufacturer’s instructions. 30 clones
were picked randomly for each treatment and time point. Plasmids were extracted using the
NucleoSpin plasmid kit (Machery-Nagel, Germany). Inserts from clones amplified with specific
primers (M13 forward and M13 reverse) using the BigDye Terminator cycle sequencing kit
(Applied Biosystems) were purified by ethanol precipitation. amoA AOA and nxrA fragments
were sequenced using an ABI 3730 DNA analyzer (Applied Biosystems). Sequences were run
through a mega BLAST search (http://blast.ncbi.nlm.nih.gov/ Blast.cgi) using the nr database and
were deposited in the Genbank with the accession numbers KC137376-KC137546 and
KC152658-KC152839 for amoA and nxrA, respectively. For further analysis nucleotide
sequences were transcribed to aminoacid sequences. These were aligned using clustal W protein
alignment (Thompson et al., 1994) implemented in ARB (Ludwig et al., 2004). The nucleotide
sequences were realigned according to aligned protein sequences. DNA based maximum
likelihood trees were reconstructed applying PhyML (Guindon and Gascuel, 2003) implemented
in ARB. Rarefaction curves were created using Mothur for a distance of 0.02 (98% similarity
level) (Schloss et al., 2009). The clustering of amoA AOA was done according to Pester and

colleagues (2012).

2.6. Statistical analysis

Prior to analysis, gene abundance data were In-transformed to achieve normal
distribution. Independent T-tests were used to test for a significant difference between the two
treatments at a given time point with significance level corrected by the Sidak’s equation to o = 1
- (1 -0.05)"™ = 0.013 (Sidak, 1967), as each manure application was followed by four sampling

time points. Statistical tests were calculated in SPSS 11.5 (SPSS, Inc., Illinois, USA).
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3. Results
3.1. Inorganic nitrogen

The first manure application resulted, independent from the level of SDZ contamination in
the highest NH,;*-N concentrations measured during the experimental period shortly after the
application at day 1 (up to 22.8 pug NH4"-N per gram of dry weight RRC). Only one week later
the values dropped to below 10 ug NH4*-N g'l RRC in the PM treatments respectively below 5
ug NH;*-N g"' RRC in the PMSDZ treatments. However differences between the two treatments
were not significant. This level remains constant during the experimental period; the second
manure application at day 49 did not influence NH,*-N concentrations in the RRC (Figure 1).

NOs-N concentrations peaked independent from the treatment 14 days after the first
application of manure (up to 35.4 ug NO3y-N g RRC). Towards day 42, the values dropped
sharply and were close to the detection limit in some of the replicates. Similarly to the
observation regarding NH4*-N concentrations, the second manure application had no effect on the

NO3™-N concentrations in the RRC independent of the treatment (Figure 1).

3.2. Gene abundance

The first application of manure did not influence amoA gene copy numbers for AOA and
AOB 1, 7 and 14 days after application. Higher copy numbers (in the range of 6.5 x 107 copy
numbers per gram of dry weight RRC) were measured for AOB; AOA copy numbers were at the
same time points slightly lower (in the range of 2.5 x 107 copies g' RRC) resulting in an
AOA:AOB ratio of 0.4. No influence of SDZ was visible at these time points either on AOA or

AOB. However, 42 days after application, AOB amoA gene copy numbers in the treatments with

10

108



230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

control manure (PM) increased up to 1.8 x 10 copies g" RRC, whereas in the plots where
contaminated manure (PMSDZ) was applied no changes were visible compared to the earlier
time points. AOA amoA gene abundance did not differ 42 days after application of the manure
compared to the earlier time points. Therefore, at this time point AOA:AOB ratio in the PM
treatment was the lowest measured (0.1). After the second manure application amoA AOA and
AOB copy numbers in the RRC of plants from the PM treated plots were comparable, as amoA
AOA copy numbers increased compared to earlier sampling time points (ratio AOA:AOB =1). A
clear influence of the antibiotic was visible on both AOA and AOB at all time points
investigated. Copy numbers for amoA AOB decreased in PMSDZ plots compared to the control
samples. Thus, values were in the range of 2 x 10’ gene copies g' RRC in PMSDZ plots
compared to 7 x 10 g'l RRC in the plots treated with PM. In contrast AOA amoA gene copy
numbers increased significantly in the RRC of plants in PMSDZ treated plots compared to
control plots, with gene copy numbers in the range of 3 x 10° copies g‘I RRC, whereas copy
numbers in the control treatment were approximately 1 x 10° copies ¢! RRC. Interestingly, the
described effect was stable at day 106. Consequently AOA:AOB ratio increased up to 15 after the
second application of SDZ-contaminated manure.

Copy numbers for 16S rRNA genes from Nitrospira ranged from 6.1 x 10° to 2.3 x 10" gene
copies g"l RRC during the experimental period. The highest gene copy numbers were measured
after the first manure application at day 1. The lowest gene copy numbers were detected at the
end of the experimental period at day 106. The second manure application did not increase 16S
rRNA gene copies of Nitrospira. Surprisingly SDZ had no influence on the abundance of
Nitrospira over the experimental period. The abundance of nxrA genes from Nitrobacter were 2

orders of magnitude lower compared to 16S rRNA gene copy numbers of Nitrospira. Overall
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none of the two manure applications changed the nxrA gene abundance significantly. Copy
numbers ranged at all time points between 1.0 x 10° and 2.3 x 10° copies g' RRC in PM treated
plots. We observed a tendency for reduced gene copies 49 days after the first application of the
PMSDZ compared to the control PM treatment group (P=0.030). All data are summarized in

Figure 2.

3.3. Diversity of AOA amoA and Nitrobacter-like nxrA genes

The number of 30 clones per library that have been sequenced per treatment were not
enough to cover the total diversity of AOA amoA OTUs present in the samples as indicated by
the rarefaction curves (Figure 3). The total number of OTUs for amoA AOA varied from 12 to 14
in the PM treated plots, independent from the time point of sampling. In contrast in the PMSDZ
treatment, the number of OTUs decreased between day 1 and day 49, and thereafter increased
between day 49 and day 106 after the first application. Overall, 85% of the sequences sampled
were contained in the Nitrosphaera subclusters 1, 4, and 9; and the Nitrosphaera cluster (soil
metagenome fragment 54d9). The Nitrosphaera subclusters 1 and 4 were represented by
sequences from all treatments and time points, respectively. However in the Nitrosphaera
subcluster 9, the abundance of sequences from the treatment PMSDZ one day after the second
manure application (day 49) was higher compared to PM. In contrast, in the Nitrosphaera cluster
(soil metagenome fragment 54d9), at time point 106 days, the abundance of sequences from the
control treatment was higher compared to PMSDZ (Figure 4, Figure S1).

The number of different OTUs for nrxA was lower compared to AOA amoA. Therefore
the investigated 30 clones per library nicely reflected the diversity present in the samples and the

collector’s curves indicated saturation. The total number of OTUs for nrxA ranged between 4 and
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11. However the diversity pattern observed followed the opposite trend compared to AOA amoA.
The highest number of OTUs was observed in the treatments with control manure one day after
the second application (day 49). The lowest number of OTUs was observed at the last sampling
time point (day 106) in the PMSDZ treated plots. However at this time point also in the control
samples the number of OTUs was already reduced compared to day 49 (Figure 3). Four major
clusters containing 89% of the total nxrA sequences sampled were determined (I, II, IV, and V;
Figure 4, Figure S2). Each individual cluster was represented by sequences from both treatments
and all three time points. The relative abundance of sequences from the treatment where
contaminated manure was added one day after the second application of the manure was higher in
cluster I compared to the control treatment. A similar picture was observed for the last sampling
time point (day 106) for cluster IV. An opposite trend was observed in cluster V where a higher
number of sequences was found from the control treatment at the last sampling time point (day

106).

4. Discussion
4.1. Effects on ammonia oxidizers

The antibiotic tended to abolish the increase of the ammonia-oxidizing bacterial population
after 42 days in response to the manure application in RRC of the pasture plants (P=0.091)
(Figure 2). Similar results were shown in bulk soil (Schauss et al., 2009) and in the rhizosphere of
agricultural crops (Ollivier et al., 2010). These results demonstrate that SDZ clearly inhibited the
growth of AOB. The response of bacterial and archaeal ammonia oxidizers respectively differed
one day after the second SDZ-contaminated manure application. From this time point, the amoA

AOB and AOA gene abundance patterns were decreased and increased, respectively (Figure 2).
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Although it has been already shown that AOA were impacted to a lower extent by SDZ than
AOB in greenhouse experiments (Schauss et al., 2009;Ollivier et al., 2010), in this study we
observed for the first time a significant increase in amoA AOA gene copies (P = 0.005 at day 56)
while amoA AOB gene copies were significantly decreased (P = 0.005 and P = 0.013 at day 49
and 63, respectively) with PMSDZ treatment, confirming the potential occurrence of functional
redundancy between the two communities under antibiotic stress (Schauss et al., 2009).

Possibly, the reduced susceptibility of AOA to PMSDZ can be explained by a shift in the
AOA diversity towards more SDZ resistant phylotypes over time, as amoA diversity has been
shown to well reflect phylogeny of AOA (Nicol et al., 2008). Thus, whereas 1 day after the first
manure application, a similar number of clones from each treatment was observed in the
Nitrosphaera subcluster 9, after 49 days a higher relative abundance of clones was sampled in
PMSDZ compared to PM (Figure 4). However, the development of antibiotic resistance in AOA
has not been described so far, as the first cultures of soil AOA, which may form the basis for such

studies, have been isolated only recently (Jung et al., 2011;Tourna et al., 2011;Kim et al., 2012).

4.2. Effects on nitrite oxidizers

Because of the broad spectrum nature of the SDZ, we hypothesized that Nitrospira- and
Nitrobacter-like nitrite oxidizers are both inhibited by the application of the contaminated
manure. However, parallel to the inhibitory effects directly affecting the functional communities
investigated, e.g. related to their respective activity status and related susceptibility (Lewis,
2007;Ollivier et al., 2010) or to their abilities to regulate their internal pH, which affect the
accumulation and speciation of the SDZ in the cells (Tappe et al., 2008;Zarfl et al., 2008),

dissimilar ecological strategies for survival and proliferation among these populations may
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explain their response to the antibiotic stress. While niche differentiation and competition is
known to influence the composition of functional microbial communities, the components of the
nitrite oxidizing communities investigated respectively in this study possess different substrate
affinities and therefore are adapted to distinct N availabilities. It has been suggested that
Nitrobacter-like NOB bacteria are r-strategists with higher growth rate/specific activity and lower
affinity for nitrite and oxygen, whereas Nitrospira-like NOB are K-strategists with a higher
substrate affinity (Schramm et al., 1999;Attard et al., 2010). However, Maixner and colleagues
(2006) have shown that the nitrite concentration influences the structure of Nitrospira-like
bacterial communities, and assumed that sublineages may occupy different positions on an scale
reaching from K- to r-strategists within the genus Nitrospira. In the RRC of the pasture plants
from 42 days after the first manure application, the reduction of AOB abundance and activity
may have resulted in lower nitrite availability and consequently favorable conditions for
Nitrospira-like NOB compared to Nitrobacter-like NOB, explaining the reduction of
Nitrobacter-like nxrA abundance (P = 0.030) and the increase of Nitrospira 16S rRNA gene
abundance (P = 0.036) at day 49 with PMSDZ treatment. However the release of organic
substrates from the dead microbial biomass under the antibiotic treatment could have also
influenced indirectly the abundance of different Nitrospira sublineages as some Nitrospira-like
bacteria are mixotrophic (Daims et al., 2001).

A community shift due to SDZ was observed for Nitrobacter-like NOB at time point 49 days
in cluster I. Moreover, the antibiotic treatment had a long lasting effect on these communities as
differences in relative abundance in cluster IV and V between the two treatments were still
observed after 106 days after the first application of manure, as well as a decrease in diversity

(Figure 3). Therefore, whereas SDZ resistant phylotypes might have developed in response to the
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antibiotic stress, the studied system was not shown to recover in terms of microbial diversity after
the PMSDZ treatment during the experimental period, which may imply negative effects on the

ability of the soil to respond to future disturbances (Ives et al., 2000;McCann, 2000).

4.3. Consequences for nitrification and N turnover

This field experiment revealed that the application of manure contaminated with the
antibiotic SDZ has a lasting effect on the abundance and diversity of nitrifying microbial
communities. However, although SDZ impaired the growth of certain microbial populations, no
significant effect of the treatment PMSDZ was visible on the concentrations of nitrate and
ammonium in the rhizosphere of the plants composing the pasture. Difference in tolerance
between the different microbial functional communities, or the development of resistant
populations (Heuer et al., 2011) could contribute to functional redundancy of ammonia oxidizing
microbes (Schauss et al., 2009) and NOB, and therefore to the stability of nitrification pattern in
the rhizosphere. However, the studied system was not shown to recover in terms of nxrA diversity
after the PMSDZ treatment during the experimental period, which could indicate that mostly
nitrite oxidation by NOB might be affected by the application of SDZ. Possibly, alternative
pathways like nitrite reduction might be favored under these conditions; as many soil microbes
are able to use nitrite as terminal electron acceptors under anaerobic conditions, the extent of the

SDZ-contamination effects on denitrification may be reduced.
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Figures legends

Figure 1. Ammonium and nitrate concentrations in the root-rhizosphere complex (RRC)
of the plants composing a pasture after addition of pig manure (PM; full circles, ®) or SDZ-
contaminated pig manure (PMSDZ; empty circles, o) at 4 different time points after the first
application (day 1, 7, 14, and 42), respectively the second application (day 49, 56, 63, and 106).
Significant differences between the two treatments at a particular time point are indicated by

asterisks (*). Error bars represent standard deviation of mean (n = 4).

Figure 2. Quantification of amoA (AOB and AOA), Nitrobacter-like nxrA and
Nitrospira-like 16S rRNA gene in the root-rhizosphere complex of the plants composing a
pasture after addition of pig manure (PM, blue bars) or SDZ-contaminated pig manure (PMSDZ,
gray bars) at 4 different time points after the first application (day 1, 7, 14, and 42), respectively
the second application (day 49, 56, 63, and 106). The arrow indicates the second application at
day 48. Significant differences between the two treatments at a particular time point are indicated
by asterisks (*). Error bars represent standard deviation of mean (n = 4). Abbreviations: RRC,

root-rhizosphere complex.

Figure 3. Rarefaction curves obtained at three different time points (1, T1; 49, T2; and
106 days, T3) after application of pig manure (PM) or SDZ-contaminated pig manure (PMSDZ)
for amoA AOA and Nitrobacter-like nxrA sequences, i.e. number of OTUs as a function of the

number of the sequences sampled in each library.

Figure 4. Maximum likelihood trees of partial amoA AOA (A) and Nitrobacter-like nxrA

(B) nucleic acid sequences (624 and 322 bp, respectively) obtained at three different time points
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(1, blue bars; 49, red bars; and 106 days, grey bars) after application of pig manure (PM) or SDZ-

contaminated pig manure (PMSDZ) and reference sequences. AOA amoA clustering was done

according to Pester and colleagues (2012). Ungrouped trees can be found in Figure S1 and S2.
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Tables

Table 1: Physical and chemical characterization of the soil used in the experiment

Parameter

Clay (%) 15.4
Silt (%) 78.2
Sand (%) 6.4
WHC ux (%) 45.8
Corg (%) 2:1
pH (CaCl,) 72
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540
541 Table 2: Chemical characterization of the pig manures either contaminated with SDZ

542 (PMSDZ) or not (PM) applied in the experiment.

Manure pH Total N* NH4-N* P,Os* K,O0* MgO* CaO*
first application
PM 8.0 6.19 3.66 421 377 2.57 2.89
PMSDZ 7.6 543 4.46 335 3.30 1.96 2.87
second application
PM 8.7 5.50 3.13 4.02 390 2.61 2.88
PMSDZ 8.3 3.47 2.39 1.05 354 0.72 1.16
543 *kg/m’
544
545
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546 Table 3: Primers and thermal profiles used for real-time PCR quantification of bacterial

547  and archaeal amoA, Nitrobacter-like nxrA and Nitrospira-like 16S rRNA gene.

Amplicons

Target gene Primer Set Reference Thermal Profile Cycles size
AOB amoA amoA-1F (Rotthauwe et al., 1997) 940C/60 s 58°C/60 s, 40 500 bp

amoA-2R (Rotthauwe et al., 1997) 72°C/60 s
AORGRGA 19F (Leininger et al., 2006) 940C/45 s, 55°C/45 s, 40 624 bp

CrenamoA616r48x (Schauss et al., 2009) 72°C/45 s
Nitrobacter FlnorA (Poly et al., 2008) 94°C/30 s, 55°C/30 s,

0 40 322 bp

nxrA R2norA (Wertz et al., 2008) 72°C/30 s
NittoRpiEa 168 Nspra675f (Graham et al., 2007) 940C/3O ?’ 64°C/30 s, 40 71bp

Nspra746r (Graham et al., 2007) 72°C/60 s

548
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Figure 4
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Abstract

Nitrogen management in soils has been considered as key to the sustainable use of
terrestrial ecosystems and a protection of major ecosystem services. However, the
microorganisms driving processes like nitrification, denitrification, N-fixation and
mineralization are highly influenced by changing climatic conditions, intensifica-
tion of agriculture and the application of new chemicals to a so far unknown
extent. In this review, the current knowledge concerning the influence of selected
scenarios of global change on the abundance, diversity and activity of microorgan-
isms involved in nitrogen turnover, notably in agricultural and grassland soils, is
summarized and linked to the corresponding processes. In this context, data are
presented on nitrogen-cycling processes and the corresponding microbial key
players during ecosystem development and changes in functional diversity
patterns during shifts in land use. Furthermore, the impact of increased tempera-
ture, carbon dioxide and changes in precipitation regimes on microbial nitrogen
turnover is discussed. Finally, some examples of the effects of pesticides and
antibiotics after application to soil for selected processes of nitrogen transforma-
tion are also shown.

Introduction

Nitrogen is one of the crucial nutrients for all organisms
(LaBauer & Treseder, 2008), as it is an essential component
of important biopolymers. However, most of the N in nature
occurs as dinitrogen gas or is fixed in organic compounds,
like proteins or chitin, both of which cannot be directly used
by plants and animals. Only specialized microorganisms are
able to transform the gaseous dinitrogen into ammonia or
to make organically bound N bioavailable by mineralization.
Not surprisingly, N input by fertilization has always been a
key factor for high crop yields and plant quality. Therefore,
crop production is by far the single largest cause of human
alteration of the global N cycle (Smil, 1999). Whereas in
preindustrial times exclusively organic fertilizers had been
used, the invention of the Haber Bosch procedure in the
20th century made huge amounts of mineral fertilizer
available. The doubling of world food production in the
past four decades could only be achieved with a strong land-
use intensification including an almost sevenfold increase of
N fertilization (Tilman, 1999) as well as wide-ranging land
reclamations. These developments have contributed to the

FEMS Microbiol Ecol 78 (2011) 3-16

doubling of N loads to soil since the beginning of the 20th
century (Green et al., 2004). The total global N input in the
year 2000 was about 150 TgN (Schlesinger, 2009), whereas
supply in croplands via mineral fertilizer was the single
largest source accounting for almost half of it. Surprisingly,
N entry from N-fixation was the second largest factor and
contributed to 16%, while manure and recycled crop
residues provided similar amounts and each accounted for
only 8-13% of the total global supply. Remarkably, the entry
of N via atmospheric deposition was in the same range. In
regions with high mineral fertilizer application, the highest
N accumulation potential in ecosystems could be observed,
whereas the accumulation of N leads to high impacts on
environmental quality like loss of diversity (Cragg & Bard-
gett, 2001), dominance of weed species (Csizinszky &
Gilreath, 1987) and soil acidification (Noble et al., 2008).
Additionally, land-use intensification also results in an
increased use of bioactive chemicals, like pesticides and
herbicides as well as antibiotics, which enter the environ-
ment via manure (Lamshoéft et al., 2007).

According to Liu et al. (2010), 55% of the global applied
N was taken up by crops. The remainder was lost in leaching
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(16%), soil erosion (15%) and gaseous emission (14%).
Such N depletion of soils leads to eutrophication (Stoate
et al., 2009), surface- and groundwater pollution (Spalding
& Exner, 1993) and emission of the greenhouse and ozone-
depleting gas nitrous oxide (N,O) (Davidson et al., 2000),
impacting on human health and climate change (Fig. 1).

To reduce these threats, Schlesinger (2009) suggested that
policy makers and scientists should focus on increasing N-
use efficiency in fertilization, reducing transport of reactive
N fractions to rivers and groundwater and maximizing
denitrification to N,.

Because of the use of advanced molecular tools (Gabriel,
2010) and stable isotopes (Baggs, 2008) in recent years,
scientists have been able to identify new key players of N
turnover for selected processes like nitrification (Leininger
et al., 2006) or N-fixation (Chowdhury et al., 2009) as well
as completely new processes like anammox (Op den Camp
et al., 2006). All these findings have revolutionized our view
of N transformation processes in soils, although the rele-
vance for the overall understanding of N transformation is
not entirely clear yet and discussed controversially in the
literature. However, despite numerous studies and a large
amount of collected data, we have to admit that N turnover
and factors driving the corresponding populations are not
yet completely understood.

Furthermore, according to the UN Millenium Ecosystem
Assessment  (http://www.maweb.org/), global change will
highly affect N turnover in soils to a so far unknown extent.
According to the definition given in Wikipedia, the term
‘global change” encompasses interlinked activities related to
population, climate, the economy, resource use, energy
development, transport, communication, land use and land
cover, urbanization, globalization, atmospheric circulation,
ocean circulation, the C cycle, the N cycle, the water cycle
and other cycles, sea ice loss, sea-level rise, food webs,
biological diversity, pollution, health, overfishing and altera-
tion of environmental conditions including climate change as
well as land-use changes and effects of xenobiotic substances.
Therefore, there is a need for experimental approaches to
study the consequences of altering environmental conditions
including climate change as well as land-use changes and the
effects of xenobiotic substances on N turnover in soil. In the
following review, state-of-the-art knowledge is summarized
concerning the impact of selected global change scenarios on
microbial N turnover as well as the abundance and diversity of
key players. Additionally, implications for future research
strategies and priorities are given.

Ecosystem development

Natural and anthropogenic activities lead to new terrain for
soil development. In this context, different chronosequences
of ecosystem development like glacier forefields, sand dunes,
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volcanoes or restoration sites have emerged. These are
interesting aspects to study the development of N-cycling
processes as well as the contributing functional microbial
groups. Overall, three phases can be postulated: initial,
intermediate and mature phases. Depending on the investi-
gated ecosystem, these phases can range from a few days or
weeks (Jackson, 2003) to hundreds of years (Kandeler et al.,
2006; Brankatschk et al., 2011), respectively.

Most of the initial ecosystems are characterized by
nutrient shortage, barren substrate and scarce vegetation
(Crews et al., 2001; Nemergut et al., 2007; Smith & Ogram,
2008; Lazzaro et al., 2009; Brankatschk et al., 2011). The
total N concentrations are often far below 0.1% and only
traces of ammonia and nitrate can be measured (Bran-
katschk et al., 2011). Additional N input by the weathering
of bedrock material is unlikely as it only contains traces of N.
Thus, the colonization with N-fixing microorganisms seems
to be the only way for N input, despite the high energy
demands for the transformation of N, into ammonium.
Crews et al. (2001) demonstrated that the total N input in
young lava flows was mainly driven by N fixation, although
fixation rates were low. This has been confirmed in several
other studies, which demonstrated a high abundance of
nonheterocystous N-fixing cyanobacteria like Microcoleus
vaginatus (Yeager et al., 2004; Nemergut et al., 2007; Abed
et al., 2010). It is obvious that in initial ecosystems,
cyanobacteria play a prominent role in ecosystem engineer-
ing. They not only improve the N status of soils by N-
fixation, but also secrete a polysaccharide sheath, resulting
in the formation of soil crusts. This leads to a stabilization of
substrates, capture of nutrients and an increase of the water-
holding capacity, which paves the way for other organisms
and processes (Garcia-Pichel et al., 2001; Schmidt et al.,
2008). Therefore, at early stages of soil development hetero-
trophic microorganisms, which are able to mineralize the N
derived from air-driven deposition (e.g. chitin) or ancient
and recalcitrant materials are able to find their niches and
stimulate N turnover (Bardgett et al., 2007; Brankatschk
etal., 2011). However, this process is highly energy demand-
ing and thus the turnover rates typically low. Obviously, as
only limited competition for N resources exists at this stage
(due to a lack of plants), the amount of ammonia is
sufficient for the development of microbial communities
involved in nitrification. This process results in the forma-
tion of nitrate, which leaves the ecosystem mainly by
leaching. Therefore, N accumulation rates at initial sites are
low (Tscherko et al., 2004).

If the total N concentrations in soil exceed 0.2%, plant
development starts and cyanobacterial soil crusts are dis-
placed by shadowing by plant growth (Brankatschk et al.,
2011). Therefore, the intermediate stage of ecosystem
development is characterized by increasing plant coverage
and surface stabilization resulting in an increased C input
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Key players of soil nitrogen cycle

Fig. 1. Nitrogen turnover at the global scale.

via exudation and litter material. However, ammonium and
nitrate contents are still much lower (Kandeler et al., 2006;
Brankatschk et al., 2011) than in well-developed grassland
sites (Chronakova et al., 2009). Although it has been argued
that this stage of ecosystem development is characterized by
a competition between microorganisms and plants for N
(Schimel & Bennett, 2004; Hiammerli et al., 2007), associa-
tive or symbiotic networks between N-fixing microorgan-
isms (mainly bacteria) and plants become a central element
at this stage (Duc et al., 2009). This results in an increased
N-fixation activity in the rhizosphere and a highly efficient
share of nutrients between plants and microorganisms.
Because of the patchy distribution of C and N concentra-
tions at those sites, many studies have revealed the highest
microbial diversity at intermediate stages of ecosystem
development by targeting functional genes like nifH (Duc
et al., 2009) or general microbial diversity by 16S rRNA gene
(Gomez-Alvarez et al., 2007). This fits with the intermedi-
ate-disturbance hypothesis, postulating that medium dis-
turbance events cause the highest diversification (Molino &
Sabatier, 2001). However, besides the development of
plant-microorganism interactions, the intermediate phase
of ecosystem development is also characterized by highly
efficient degradation of litter and subsequent N mineraliza-
tion (Esperschiitz et al., 2011) as well as an increase in fungal
biomass (Bardgett & Walker, 2004), probably also of arbus-
cular mycorrhiza, which may contribute to a better distribu-
tion of the N in soil with ongoing succession. At this stage,
the abundance and activity of nitrifiers (Nicol et al., 2005)

FEMS Microbiol Ecol 78 (2011) 3-16

and denitrifiers (Smith & Ogram, 2008) is still low due to
the high N demand of the plants. Whether typical plants at
those sites are able to produce nitrification inhibitors to
better compete for ammonium might be a highly interesting
question for future research (Verhagen et al., 1995).

In contrast, when total N concentrations above 0.7% are
reached in soils at well-developed sites and vegetation is no
longer dominated by legumes, nitrification becomes a highly
significant process. Interestingly, in ecosystems of glacier
forefields, nitrification activity seems to be driven by
ammonia-oxidizing archaea (AOA), although being lower
in abundance than their bacterial counterpart [ammonia-
oxidizing bacteria (AOB)]. This might be due to the better
adaptation to relative ammonium-poor environments (Di
et al., 2009) and low pH (Nicol et al., 2008). In combination
with pronounced root penetration resulting in increased
exudation, enhanced water retention potential and less
oxygen diffusion (Deiglmayr et al., 2006), denitrification
becomes a key process for the overall N budget at those sites
in soil. Interestingly, Brankatschk et al. (2011) only found a
good correlation of a part of the functional genes of the
denitrification cascade, for example, nosZ (nitrous oxide
reductase) gene abundance and potential denitrification
activity, whereas nirK and nirS (nitrite reductases) gene
abundance did not correlate with the rates of potential
activity. Moreover, the highest relative gene abundance of
narG was observed in early development stages of soils
(Kandeler et al., 2006), while the nitrate reductase activity
peaked at late stages of soil development (Deiglmayr et al.,
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Fig. 2. Scheme of the development of the nitrogen cycle during ecosystel
represents the impact of the corresponding process for nitrogen turnover.

2006). Similar observations were made by Smith & Ogram
(2008) along a restoration chronosequence in the Everglades
National Park. The mechanistic bases for these observations
are still not clear. In addition to high activities of nitrifiers
and denitrifiers at well-developed sites, the highest values of
mineralization activity have been observed there in several
studies (Tscherko et al., 2004; Brankatschk et al., 2011).
These data are congruent with the observations of Frank
et al. (2000), who found a positive correlation between
nitrification, denitrification and N mineralization processes
in Yellowstone Park grasslands.

Overall, the studies performed so far using the chronose-
quence approach to describe ecosystem development have
revealed surprisingly similar patterns of the participation of
different functional groups of microorganisms involved in N
cycling at the three different phases (Fig. 2). In summary, all
systems described were characterized by very low C and N
concentrations in soil as well as less pronounced organismic
networks of interaction at the initial stages of soil development.

Changing land-use patterns

A generalization of the results described above to other
scenarios of global change related to ecosystem develop-
ment, for example, in response to natural disasters (earth-
quakes), after manmade destructions (clear cuts of forest
sites) or due to land-use changes is not possible. This is due
to the different quality and amount of C and N present in
soil as well as the biodiversity, mainly related to soil animals
and plants at the initial stages in these disturbed systems.
Whereas the consequences of natural disasters for N turn-
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over have been rarely addressed, the impact of land-use
changes on N turnover and the corresponding functional
communities has been studied extensively. However, in this
context, it is difficult to identify one main driver for shifts in
the microbial population structure, as land-use changes
often encompass a combination of different forms of
management. For example, the use of extensively used
grassland for crop production will not only change above-
ground biodiversity, but will also result in changes in
pesticide application, tillage and fertilizer management.
Overall, the conversion of forests or grasslands to agri-
cultural land has an impact on almost all soil organisms
(Postma-Blaauw et al., 2010). Therefore, the functional
diversity of microorganisms involved in N cycling is also
highly influenced by land-use changes. This has been well
documented for nitrifiers and denitrifiers, whereas surpris-
ingly for N-fixing bacteria, clear response patterns have been
described in only a small number of cases. In some cases,
even no response of nifH towards land-use changes was
detected (Colloff et al., 2008; Hayden et al., 2010), which
might be related to the high concentrations of ammonium
and nitrate before land-use change. In terms of nitrification,
good correlations between gene abundance and land use
have been described for AOB in several studies. Colloff et al.
(2008) found higher gene abundance of the bacterial amoA
gene in agricultural soils compared with soils from rain-
forests. By contrast, Berthrong et al. (2009) observed con-
sistently reduced nitrification rates in soils that were
converted from grassland into forest. These trends were also
confirmed by Bru et al. (2010) comparing land-use changes
between forests, grassland and agricultural soils in different
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parts of the world. The authors found a strong correlation
between AOB and the form of land use. Interestingly, in the
same study, no differences were observed for archaeal
ammonia oxidizers (AOA) in relation to the investigated
land-use types. Hayden et al. (2010) almost consistently
observed a greater abundance of AOB amoA genes in
managed compared with remnant sites. The good correla-
tion between AOB and land use might be related to the
different ammonium concentrations in soil in response to
different land-use types. AOB often colonizes habitats with
high ammonium concentrations, whereas for AOA abun-
dance, so far, no general dependency on ambient ammo-
nium concentration has been documented. Furthermore,
the results might be related to the high sensitivity of AOB
towards low pH, which is often present in forest soils and
leads to low availability of ammonia.

It was reported that land-use changes from forest to
grassland soils are often accompanied by high N losses from
soil (reviewed by Murty et al., 2002). However, no clear
trends are visible so far, if these losses occur in general due to
increased denitrification rates or leaching of the nitrate
formed during nitrification, as both observations have been
described in the literature. This might be explained by the
different soil types under investigation in the various
studies. Whereas in loamy soils, which tend to have more
anoxic microsites, denitrification might be stimulated (Rich
et al., 2003; Boyle et al., 2006), in sandy soils, the nitrate
formed may leach fast to the groundwater (Murty et al.,
2002). For denitrifiers, land-use changes overall influence
the abundance and diversity patterns of selected functional
groups. Attard et al. (2010) described, for example, higher
potential denitrification rates in grassland soils compared
with soils under cropping management. This was in accor-
dance with a 1.5-5-fold higher abundance of denitrifiers
(based on the abundance of nirK genes) in grassland soils
than arable soils found in various studies (Baudoin et al.,
2009; Attard et al., 2010), including shifts in the diversity
patterns of nirK-harboring bacteria. Whereas a strong
correlation between gene copy numbers of nirK and poten-
tial denitrification rates has been described, no correlation
was found between the diversity patterns of nirK and turn-
over of nitrate. This indicates highly similar ecophysiological
patterns of nitrite reducers of the nirK type.

Agricultural management

Not only changes in land-use patterns, but also shifts in
agricultural management practice can result in alterations of
functional microbial communities involved in N cycling. In
general, there is consensus that an intensification of agricul-
ture and subsequent increased fertilization regimes result in
higher nitrification and denitrification rates as well as an
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increase of both functional groups (Le Roux et al., 2003,
2008; Patra et al., 2006). In the case of ammonia oxidizers,
mainly AOB benefit from the increased availability of
ammonium in soil (Schauss et al., 2009a). For N-fixing
prokaryotes, several studies have indicated a reduction
based on the abundance of nifH and consequently also lower
N-fixation activity in highly fertilized soils (Coelho et al.,
2009). Interestingly, the inoculation of seeds from legumes
with rhizobia, which is a common practice in low-input
farming to enhance N-fixation, does not only increase nifH
abundance in the rhizosphere, but also leads to higher
abundance of nitrifiers and denitrifiers (Babic et al., 2008).
This indicates that at least a part of the fixed N is released
into soil, despite the symbiotic interaction (Babic et al.,
2008). As the use of monocultures and the intensification of
agriculture per se (including the transformation of sites,
which are less suited for agriculture, for the production of
renewable resources) is often accompanied by a loss in
nutrients (Malézieux et al., 2009), which is primarily com-
pensated by the application of inorganic fertilizers, changes
in N turnover and the corresponding microbial commu-
nities might be primarily a result of changed fertilization
regimes, as described by Drury et al. (2008). It has been
confirmed in several studies that the type of fertilizer
(mineral vs. organic fertilizer) has a clear influence on the
N budget of soils and the corresponding functional micro-
bial groups (Hai et al., 2009; Ramirez et al., 2010). As
expected, the application of a mineral fertilizer based on
ammonia-nitrate increases the nitrification and denitrifica-
tion patterns in soil shortly after application, when the
fertilizer is not taken up by the plant due to increased
availability of the corresponding substrates. In contrast, the
application of an organic fertilizer leads to higher abun-
dance of microorganisms involved in mineralization and
only relatively slight increases of nitrifiers and denitrifiers
and their activity in the long run. Because of the overall
more balanced N budget in soil when organic fertilizers are
applied, N-fixing microorganisms are favored by this prac-
tice (Pariona-Llanos et al., 2010). Not surprisingly, the
effects observed in soils that have been used for grazing can
be compared with those where manure has been applied,
including clear shifts mainly in the diversity patterns of
ammonia- and nitrite-oxidizing microorganisms as well as
denitrifiers (Chronakova et al., 2009) Furthermore, grazing
also induces shifts in root exudation patterns (Hamilton &
Frank, 2001), which may further influence the abundance
and activity of microorganisms involved in N turnover.

In the last decades, the influence of tillage management
on N turnover has been studied in several projects, as
nontillage systems have been described to be of advantage
in terms of nutrient supply and are very popular in organic
farming (Hansen et al., 2011). Overall, changes in nitrifica-
tion activity after modifying the tillage practice were well

© 2011 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

137



explained by the accumulation of ammonium in the top soil
due to nontillage and the corresponding changes in the
abundance of nitrifiers (Attard et al., 2010). In most studies,
performed so far, a higher nitrification activity and subse-
quent higher nitrate concentrations in soil were linked to
increased denitrification rates in the top soil layer in non-
tillage compared with tillage treatments (Petersen et al.,
2008; Baudoin et al., 2009; Attard et al., 2010). This is due to
tillage-induced higher C concentrations in top soils and a
stronger formation of aggregates with anoxic microsites due
to a lack of tillage-induced mixing. In addition, tillage
results in a merging of the surface soil layers with the lower
layers, the latter being characterized by lower denitrification
potential (Attard et al., 2010), which causes overall lower
denitrification rates and abundance of the corresponding
functional genes (especially nirK). However, as stated above,
in most cases, changes in tillage management are accompa-
nied by changes in pest management and cropping se-
quences. The changes observed in long-term studies
therefore cannot be linked conclusively to tillage manage-
ment alone. Thus, most studies performed so far in this area
were linked to short-term perturbations. They may not
reflect the typical response patterns of the soil microorgan-
isms to the new conditions after the change of the tillage
management, as they do not account for microbial adapta-
tion, in the context of the intermediate-disturbance hypoth-
esis (Molino & Sabatier, 2001) as well as the increasing C
contents in the top soils over time where nontillage practice
has been performed.

Changing climatic conditions

Because of ongoing climate change, various modifications in
land use and agricultural management have been imple-
mented. Thereby, climate and land management are highly
interlinked and cannot be separated. In addition, it is well
accepted that climatic conditions notably influence micro-
bial performance in soil. Thus, several studies have been
performed to estimate the consequences of increased atmo-
spheric temperature or carbon dioxide (CO,) concentra-
tions as well as shifts in precipitation on N turnover and the
corresponding functional communities.

In general, it is difficult to simulate increased temperature
scenarios in experiments, as an increase of the average
temperature of 3 °C over the next 50 years would at most
result in an annual increase of < 0.2 °C. Therefore, experi-
ments comparing soils with ambient temperature with soils
increased in temperature by 2-5 “C do not simulate climate
change, but are more appropriate to understand the overall
stress response of the soil microbial community. An air
temperature increase of 3 °C for example, induced shifts in
the AOB community structure, decreased AOB richness and
concurrently increased potential nitrification rates in the
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rhizosphere of legumes. It remains open whether AOA
adopted the ability to transform ammonia, while their
bacterial counterparts were sensitive to the elevated tem-
perature (Malchair et al., 2010a). Besides questioning the
relevance for studying climate change effects, it is unclear
whether the observed shifts were a direct effect of the
temperature or were rather related to changes of the plant
performance, for example, increased exudation, in response
to the increased temperature.

More relevant in the context of temperature-related
effects are questions addressing changes in soils of perma-
frost regions, as here, only a slight increase of air tempera-
ture results in a prolonged period in which soils are unfrozen
during the summer time. In these studies, the focus has
mostly been on C turnover and methane emission, although
clear effects on N transformation have been described. There
is broad agreement that thawing of permafrost soils leads to
a rapid increase of denitrification and hence high N,O
emissions, due to the high water saturation and the avail-
ability of easily degradable C and nitrate in those soils (Repo
et al., 2009; Elberling et al., 2010). Measured emissions were
comparable to values from peat soils (0.9-1.4gN,0Om >
and year). In contrast, nitrifying communities did not
benefit from the changed environmental conditions in the
short run. Metagenomic analysis and clone library studies
revealed a low diversity and a relatively low abundance for
ammonia oxidizers (AOA and AOB) (Liebner et al., 2008;
Yergeau et al., 2010). Obviously, the high concentrations of
available C as well as the anoxic conditions do not favor the
growth of AOA and AOB. Therefore, not surprisingly, in
permafrost soils, clear evidence for anaerobic ammonia
oxidation has been obtained (Humbert et al., 2010), in
contrast to many other soil ecosystems. N-fixing microor-
ganisms did not play a major role in the investigated sites
and did not change in abundance and diversity after thawing
(Yergeau et al., 2010).

However, also in moderate climatic zones, small shifts in
the temperature affect freezing and thawing regimes in soil
during winter time and increased numbers of freezing—
thawing cycles are expected. Therefore, this topic is of
interest for agricultural management practice, notably when
intercropping systems are used over winter. Like in perma-
frost regions, soil thawing is mainly accompanied by an
accelerated release of nutrients, but also by the emission of
greenhouse gases, such as N,O and nitric oxide (NO), as
well as CO, and methane. Considerable research was
focused on gaseous N losses and the N,O/N, ratio in the
last two decades (Philippot et al., 2007). A modeling study
by De Bruijn et al. (2009) indicated that N,O emissions
resulting from freezing-thawing are not monocausal and
mainly depend on the amount and quality of available C and
N, the microbial biomass and the redox conditions in soil
after thawing. Although N,O emissions were reported from
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soils that are generally characterized by a low temperature
(< 15°C), these values are far lower than the N,O concentra-
tions emitted from thawing soils (Koponen & Martikainen,
2004). Wolf et al. (2010) could show that up to 70% of the
annual N,O emissions from agricultural fields might occur
in the winter period. Peak emissions of N,O were reported
from arable soils during or shortly after thawing (Dorsch
et al., 2004) and could only be attributed in part to N,O
physically trapped in soil aggregates during freezing (Teepe
et al., 2001). A large part of N,O arises from the microbial
denitrification process, which fits with decreased oxygen and
increased C and N availabilities in soils that were subject to
freezing—thawing cycles (Oquist ef al., 2004). Sharma et al.
(2006) observed an increase in transcripts of the nitrate and
nitrite reductase genes napA and nirK, respectively, straight
after thawing began. Other studies have shown a significant
increase in N mineralization compared with nonfrozen soils
(De Luca et al., 1992). In contrast to permafrost soils, where
aerobic ammonium oxidation did not play an important
role, increased nitrification rates were measured after thaw-
ing in soils from moderate climatic zones. Su et al. (2010)
demonstrated that bacterial ammonia oxidizers were im-
paired by freezing and thawing, whereas their archaeal
counterparts even increased in abundance. This is in accor-
dance with the hypotheses by Schleper et al. (2005) and
Valentine (2007), who presumed that archaea are more
tolerant to stress conditions than bacteria. Therefore, ar-
chaea could be the main contributors to ammonia oxidation
after freezing and thawing.

Studies on the effects of changes in precipitation on
microbial N turnover are rare, notably when questions
about the effects of extreme weather events are addressed,
although it is well accepted that the increased variability in
precipitation and the resulting soil water dynamics directly
alter N cycling in terrestrial ecosystems (Corre et al., 2002;
Aranibar et al., 2004). Not surprisingly, irrigation increased,
on the one hand, nitrate leaching rates mainly in sandy soils
(Olson et al., 2009). On the other, increased denitrification
activities were measured. For example, scenarios simulating
high rainfall events resulted in 2.4-13-fold increases in
ammonia, nitrate, NO and N,O fluxes in clay loam, whereas
NO and N,O fluxes decreased in sandy soils in response to
water drainage (Gu & Riley, 2010). Ruser et al. (2006) found
maximum N,O emission rates in differently compacted soils
after rewetting of dry soil that increased with the amount of
water added. Muhr et al. (2008) postulated that rather
than the intensity of rewetting, the length of the drought
period might be more important for the process patterns
and the microbial communities involved in N,O and NO
emissions. Again, the effects of precipitation depend on
other factors like agricultural management. For example, it
could be shown that the effects of irrigation depend on
the type of cover crop in soil (Kallenbach et al., 2010).
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Overall, studies mainly focused on the effects of precipita-
tion on denitrification rates. Other processes of the N cycle
as well the corresponding communities have been rarely
studied so far. It must also be assumed that these processes
are also highly affected directly or indirectly by dryness and
precipitation, respectively. Interestingly, Zavaleta et al.
(2003) demonstrated changes in plant diversity patterns in
different grasslands in response to different precipitation
regimes, which may indicate indirect effects of different
precipitation regimes on nitrifiers as well as on N-fixing
microorganisms.

The same authors could show that enhanced CO, con-
centrations in the atmosphere decrease plant diversity at
grassland sites. However, C input into the soil via exudation
was enhanced, which resulted in an overall stimulation of
most microorganisms. Mainly N-fixing bacteria benefited
from the additional C input, as their abundance was
increased at grassland sites with increased CO, (He et al.,
2010). As expected, enhanced CO, concentrations also
stimulated denitrifiers in soil due to a general reduction of
the redox potential in soil as a result of the increased
microbial activity (Pinay et al., 2007). Furthermore, a
stimulation of N mineralization has been proven (Muller
et al., 2009). Consequently, elevated CO, values in the
atmosphere resulted in reduced abundance of autotrophic
microorganisms like ammonia oxidizers (Horz et al., 2004)
in combination with reduced activity patterns (Barnard
et al., 2006) due to competition from heterotrophs as well
as lower and lower activity in grassland soils. In addition,
several studies have described a positive correlation between
plant species richness and AOB richness in grassland soils.
Malchair et al. (2010b) hypothesized that this link could be
due to the spatial heterogeneity of ammonia, promoted by
the plant species richness. In contrast, AOB were unaffected
by increased atmospheric CO, (Nelson et al., 2010) in soils
under intensive agricultural use (e.g. soybean or maize
cultivation), probably as the present ecotypes in these soils
are already adapted to higher C input into the soil, for
example, by manuring, litter application and intensive
exudation by the cultivated crop. However, when relating
those results to ongoing climate change, it must be con-
sidered, as described above for temperature effects, that we
are challenged with an continuous increase in CO, concen-
trations in the atmosphere and not with a doubling from 1
day to another as simulated in most experiments.

Xenobiotics

New climatic conditions and changed agricultural practice
have led to an emerging pressure from weeds and phyto-
pathogens, which complicates farming practice and has
resulted in the increased use of (new) chemical substances
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worldwide. Pesticides, i.e. herbicides, fungicides and insecti-
cides, can exert collateral effects on soil microorganism and
important functions such as N cycling. Some of these
compounds also represent a source of N to microbial
communities through mineralization. For example, the
ability of microorganism to use atrazine as a sole N source
has been demonstrated (Mandelbaum et al., 1995; Struthers
et al., 1998). As bioavailability of pesticides depends on the
formulation as well as on diverse crop and soil factors (e.g.
percentage crop cover of the soil surface, soil type, structure,
pH, N and C contents, pore volume, water-holding capa-
city) determining sorption, leaching and degradation of the
compound, the response of the microbial biomass is ex-
pected to be linked to both the soil type and the pesticide
used. Moreover, herbicides are typically applied onto bare
soil while fungicides and insecticides are used on dense
crops and the exposure of the soil is consequently lower
(Johnsen et al., 2001).

The effects of pesticides on bacterial groups involved in N
transformation have been thoroughly studied using cultiva-
tion-dependent methods in the past, for example, Rhizo-
bium fixing N in symbiosis with leguminous plants
(Aggarwal et al., 1986; Kishinevsky et al., 1988; Martensson,
1992; Revellin ef al., 1992; Ramos & Ribeiro, 1993; Singh &
Wright, 2002), free-living diazotrophs Azotobacter and
Azospirillum (Banerjee & Banerjee, 1987; Jena et al., 1987;
Martinez-Toledo et al., 1988) and nitrifying bacteria (Do-
neche et al., 1983; Banerjee & Banerjee, 1987; Martinez-
Toledo et al., 1992a,b). On the contrary, only a few recent
studies have used culture-independent approaches to better
gain insight into the effects on the structure and function of
soil microbial communities (Engelen et al., 1998; Rousseaux
et al., 2003; Seghers et al., 2003; Devare et al., 2004; Saeki &
Toyota, 2004; Bending et al., 2007). In many cases, pesticides
applied at the recommended field rate concentration did not
have a significant impact on the structure and function of
the soil microbial communities (Saeki & Toyota, 2004;
Ratcliff et al., 2006). Seghers et al. (2003) demonstrated that
the community structure of AOB in bulk soil of a maize
monoculture was unaltered by 20 years of atrazine and
metolachlor application. Some other studies have indicated
more pronounced effects. Thus, Chang et al. (2001) ob-
served a severe impact of atrazine on both the abundance
and the community structure of AOB. However, in this
study, short-term microcosm experiments were performed
with high herbicide concentrations (c. three orders of
magnitude higher than the field rates). There is also increas-
ing evidence that chloropicrin and methyl isothiocyanate
can stimulate N,O production (Spokas & Wang, 2003;
Spokas et al., 2005, 2006). For other herbicides like prosul-
furon, glyphosate and propanil as well as the fungicides
mancozeb and chlorothalonil, decreased N,O emissions
were observed, possibly because the compounds inhibited
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nitrification and denitrification (Kinney et al, 2005).
Cernohlavkova et al. (2009) confirmed this hypothesis and
demonstrated that mancozeb and dinocap can impair
nitrification at a field rate in an arable and a grassland soil.

Besides pesticides, antibiotics are also extensively used in
agricultural production systems, predominantly in livestock
husbandry. As slurry and manure are usually applied as
organic fertilizers in agricultural farming, a substantial
fraction of the administrated compounds enters the envir-
onment (Lamshoft et al., 2007). Unlike pesticides, antibio-
tics are explicitly designed to affect microorganisms. The
impact of, for example, sulfadiazine, a broad-spectrum
bacteriostatic agent, has been intensively evaluated due to
its frequent use, high excretion rate and persistence in soil
(Thiele-Bruhn, 2003; Lamshoft et al., 2007; Schauss et al.,
2009a). Similar to pesticides, soil and crop characteristics
are major factors influencing the response patterns of the
microbial communities toward antibiotics in soil (Heuer &
Smalla, 2007; Hammesfahr et al., 2008; Kotzerke et al., 2008;
Schauss et al., 2009a; Ollivier et al., 2010). Potential nitrifi-
cation activity remained unchanged under low sulfadiazine
concentration conditions in bulk soil when applied in
combination with manure (Kotzerke et al., 2008). This
might have been due to a substitution of the highly affected
AOB by their archaeal counterparts (Schauss et al., 2009b).
Similar observations concerning sulfadiazine effects on the
abundance patterns of AOB and AOA were made in the
rhizosphere of maize and clover (Ollivier et al., 2010). Also,
both functionally redundant groups of nitrite reducers were
negatively influenced by antibiotic addition to manure.
Hence, not surprisingly, potential denitrification rates de-
creased in treatments where sulfadiazine was applied (Kot-
zerke et al., 2008). While nitrite reducers harboring the nirS
gene increased in abundance after bioavailable sulfadiazine
had declined, the abundance of nirK-harboring nitrite
reducers remained on the level of the nonmanured control
treatment (Kleineidam et al., 2010). Clearly, pronounced
effects of sulfadiazine on the denitrifying bacteria were also
observed in the rhizosphere of maize and clover, where the
dominating nirK, but also the nirS nitrite reducers as well as
the nosZ-harboring N,O reducers were significantly im-
paired (Ollivier et al., 2010). Furthermore, the abundance
of nifH genes, coding for key enzyme of N fixation, was
significantly impacted by sulfadiazine in the rhizosphere of
both plant types, but to a greater extent in the rhizosphere of
the legume.

Conclusions and outlook
The research over the last two decades linking N transfor-

mation processes in soil to the corresponding functional
microbial communities has improved our knowledge
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significantly about the factors driving the abundance, diver-
sity and activity mainly of microorganisms involved in the
inorganic N cycle as well as the dynamics of the correspond-
ing turnover processes and nutrient fluxes. Overall, most
studies that addressed questions linked to the consequences
of land-use changes or agricultural management included
data for nitrifiers, denitrifiers and N-fixing microorganisms,
whereas studies in the area of climate change in most cases
focused only on consequences for denitrification and N,O
emissions. This reflects well the areas of interest of the
various scientific communities involved in the different
research areas. However, it must be taken into account that
the processes of the N-cycle are closely interlinked and thus
influence each other. Thus, even if the focus is on trace gas
emissions from soil, knowledge of processes like nitrification
and N-fixation is of key importance too. In general, data on
the diversity and abundance of N-mineralizing microorgan-
isms are rare in microbial ecology, due to the huge variety of
different biochemical pathways, which are so far mostly
unknown. Therefore, not surprisingly, in most studies that
are of relevance for consequences of global change on N-
transformation, this functional group of microorganisms
has been excluded from analyses. Nevertheless, it is generally
accepted that the amount of mineralized nitrogen is one
major driver for the inorganic nitrogen cycle mainly in
nonfertilized natural soils.

From the recently published data, the following conclu-
sions can be drawn generally: (1) global change-related
modifications of environmental factors affect nitrifiers,
denitrifiers and N-fixing microorganisms and alter the
corresponding processes. (2) The abundance of the auto-
trophic ammonia oxidizers and nitrite oxidizers in soil is
negatively correlated with additional C input by plants as a
result of land-use changes towards agricultural land or a
more intensive agriculture as well as enhanced CO, concen-
trations in the atmosphere. This results in soils, where
no inorganic fertilizer has been applied, in reduced nitrate
concentrations and consequently, despite the presence of
easily degradable carbon sources, in reduced denitrifica-
tion activity under anoxic conditions. Although N-fixing
microorganisms benefit from the additional carbon input,
their activity is only increased under low ammonia con-
centrations in soil, for example, conditions where most of
the ammonia is taken up by the plant or by soil microorgan-
isms for biomass production. Overall, plants might
benefit from this scenario due to reduced competition for
ammonium with ammonia-oxidizing microorganisms in
soil. Furthermore, such conditions may reduce the amount
of leached nitrate as well as emissions of N,O. (3) By
contrast, ammonia oxidizers might benefit from the
application of xenobiotics as AOA in particular seems to
tolerate a number of compounds that, like antibiotics, are
toxic for other prokaryotes (Schauss et al, 2009a,b).
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This may result in increased nitrification rates if enough
ammonia is available and consequently in the formation
of nitrate. As denitrifiers might be reduced in their
activity under the given scenario, nitrate could leach to the
ground water, if it is not taken up by the plants. (4) Water
conditions and the oxygen content in soil highly influence
nitrifiers and denitrifiers. Under anoxic conditions, how-
ever, the activity of denitrifiers again depends on the amount
of available nitrate and, therefore, either on fertilization
regimes or the activity of nitrifiers in non-water-logged
habitats in soil.

As stated in the introduction, ‘global change’ encom-
passes interlinked activities of the different scenarios de-
scribed above. Because each scenario results in a different
response pattern of the investigated microbial communities,
a prediction of what happens if two or more scenarios are
mixed is almost impossible. For example, whether the
addition of xenobiotics and increased carbon inputs by
increased atmospheric CO, concentrations will lead to
higher or lower concentrations of nitrate in soil cannot be
predicted from currently available data. However, these
types of predictions are needed to transform scientific
results into concrete recommendations for practice.
Another important aspect of research linked to global
change is to understand the long-term consequences of
changes in the environment for microbial life in soil. As
yet, most studies in the past have concentrated on
short-term effects using sometimes highly unrealistic pre-
dictions of future conditions. Therefore, in many cases,
results represent data more relevant for disturbance
ecology than for global change research. As described
above, this is true for many experimental setups in the frame
of climate change. Finally, the different scales of relevance
must be taken into account. Microorganisms act on the pum”
scale; however, the scales that need to be addressed in terms
of political recommendations are at regional or even at a
global scale. And conceptual approaches to overcome the
scale problem are far from being ‘on the market’ This holds
true for ‘upscaling’ from 1g of soil to the ha or km” scale,
but also for ‘downscaling’ 1 g of soil to microsites of pm?,
where microbial life occurs. In this respect, research addres-
sing questions about the relevant scale that must be con-
sidered for different scenarios of global change is currently
absent.
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