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Abstract

We present a simple Gaussian mixture model in space and time with generalized
hyperbolic marginals. Starting with Rice’s celebrated formula for level upcrossings
and outcrossings of safe regions we investigate the consequences of the mean-variance
mixture model on such quantities. We obtain explicit formulas and also present some
explicit examples and limit results.
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1. Introduction

Level crossings and extreme values of physical processes are of considerable interest
in engineering sciences dealing with structural reliability. If X = (X(t));>0 is a
stationary stochastic process and S is a safe region, properties of the outcrossings of .S
by X, such as their expected number per unit time or the distribution of their size, are of
prime interest. Such quantities have been derived in particular for Gaussian processes,
but also for functions of Gaussian processes like lognormal processes (Desmond and
Guy (1991)) or x? processes (Lindgren (1980b)). Our goal is to prove analogous results
for Gaussian variance-mean mixture models, in particular for a class of generalized
hyperbolic processes.

The one-dimensional generalized hyperbolic distribution, introduced in 1977 by
Barndorff-Nielsen (Barndorff-Nielsen (1977)), is a normal variance-mean mixture dis-
tribution of a very general form, including e.g. the Student’s ¢-, the Cauchy, the variance
Gamma and the skewed Laplacian distributions, and the normal and the generalized
inverse Gaussians occur as limiting distributions for certain parameters tending to ap-
propriate values. Details about their properties have been nicely summarized in (Prause,
1999, Chapter 1). All of these distributions have been applied to statistical and proba-
bilistic modelling; for applications in finance and turbulence see e.g. Barndorff-Nielsen
et al. (2004) and Prause (1999).

The extension from Gaussian to Gaussian mixture models is natural in the context
of the above applications, where Gaussian mixture models have been prominent when
modelling time series data. It is known that Gaussian mixture models are able to capture
observed heavier tails in data, and allow for dependence modelling on high levels. In
the present paper we study the effect of a simple Gaussian mixture model in space and
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time for level crossings and outcrossings of safe regions and compare with Gaussian
space-time models.

Our paper is organised as follows. In Section 2 we state the definitions of the
ingredients and of the generalized hyperbolic process. We also state some properties of
the process, define outcrossing and recall Rice’s formula for the expected number of
outcrossings of a stochastic process of arbitrary dimension of a safe region. Section 3
contains the main results of our paper, presenting closed form expressions for Rice’s
formula for a generalized hyperbolic process in arbitrary dimension and in dimension
1. Section 4 presents the limiting Poisson process for outcrossings of a cylinder by the
time and space normalized generalized hyperbolic process. In Section 5 we calculate the
Palm density of X’ at level crossings of X. We conclude with some explicit examples
and limiting results.

2. Definitions and basic facts

To define the generalized hyperbolic distribution as a normal mixture, we need to
introduce the generalized inverse Gaussian:

Definition 1 (Generalized inverse Gaussian). The generalized inverse Gaussian distri-
bution (GIG(\, x, %)) is given by the Lebesgue density

. (/)2 L
fw (@) =gig(z, A\, x,¥) = o ——=2""exp| —5(xz™ +9¢z) ), x>0
2K (Vx) 2
where A € R, ¢, x € R and K, is the modified Bessel function of the third kind given
by
1

Ky(w) = 5/0 a:)‘_lexp(—Qw(ﬂc—I— m_l)) dz, z>0.

For later reference we summarize some properties of the GIG distributions. Further
properties of the GIG can be found in Jgrgensen (1982).

We shall use the following notation throughout: For functions f,g: R — R we
write f(z) ~ g(z) as z — oo if f(z)/g(x) = 1asz — oo.

Remark 2. (i) The GIG(), x, v) is positively skewed for any choices of A, x and 1,
see Nguyen et al. (2003).

(i) Kyx(z) ~ \/gx*%e*x as x — oo (with identity for all x > 0 if A = %). This is
easily seen by using standard properties of K that can be found in e.g. (Prause, 1999,
Appendix B).

(iii) The GIG distributions include the inverse Gaussian distributions (A = —%), the
reciprocal inverse Gaussian distributions (A = %), the Gamma distributions (I'( ), ¢/2),
A > 0,x = 0) and a subclass of the the inverse Gamma distributions (I'"!(v, 3),
X = v, A = —r/2). More properties of the Gamma and inverse Gamma distributions
can be found for example in Johnson et al. (1994).

We now define the generalized hyperbolic distribution as a mean-variance Gaussian
mixture:

Definition 3 (Generalized hyperbolic distribution). The d-dimensional (d > 1) random
variable X is generalized hyperbolically (GH(u, 3, \, x, v)) distributed, if

X ~p+ W + VIWAY (D)

where Y ~ Ny (0, I,) (a k-dimensional standard normal vector), 1, 3 € R?, A € R4¥F
satisfying | AAT | = 1. Moreover, W ~ GIG(), x, ) with Y and W independent.



Clearly, X|W = w ~ Ng(p + fw,wAAT). If k = d and A = I, then VWY is
rotationally invariant, 4 is just a location parameter, and 3 introduces some asymmetry
into the model.

A simple stationary GH process can now be defined by replacing the Gaussian vector
by a Gaussian process with appropriate covariance function and sample path properties
(Alodat and Aludaat (2008); cf. Lindgren (1980b) for the assumptions on the Gaussian
process).

Definition 4 (GH process). Let Y = (Y (¢)):>0 be a d-dimensional Gaussian process
with independent, stationary, mean-zero and unit-variance components, each having
continuously differentiable sample paths. Assume further that each component Y, of
Y = (Y3,...,Yy) has covariance function 7, (t) = C (Y, (s + t), Y, (s)) admitting the
expansion r,,(t) = 1 — wa ,t2/2 + o(t?), as t — oc. Here wy ,, is the second spectral
moment Var(Y, (t)) = —r)/(0) of the n’th Gaussian component Y,,. Let W be an
independent GIG(A, x, ) distributed random variable. The stochastic process

X(t)=p+ W +VWAY (t), t>0, )
is then called GH process with parameters (u, 3, A, X, ¥).

Before turning to the main results of our paper, we first want to summarize some
properties of the GH process.

Remark 5. (i) X has conditionally (on W) independent Gaussian components.

(i) X has GH (dependent) components with positive tail dependence coefficient, if
1 = 0, cf. Hult and Lindskog (2002).

(iii) The sample paths of each component are continuously differentiable, so questions
about local extrema (i.e. points where the derivative changes sign) make sense. In
particular, if d = 1, then the expected number of local extrema remains for X the
same as for the Gaussian process Y. This means that if Y has finite fourth spectral
moment wy, the expected number of local maxima of X in a unit time interval is equal

1 Jwa
to 2 wa *

Definition 6 (Outcrossing). Let X = (X(t)):>0 be a d-dimensional process where
each component has continuously differentiable sample paths and let S be a measurable
set in R? with smooth boundary 9. Then we define the following.

(a) X has an ourcrossing of S at time t¢ if X (tg) € 9S and for some £ > 0 and all
O<7<e,X(t—-7)eS\0Sand X(t+7) & SUIS.

(b) N(X,S) denotes the number of outcrossings of S by X in the unit interval (0, 1].
Moreover, we denote by .y (S) = E(N (X, S)) the expected number of outcrossings in
a unit interval.

() N(X,S,U), where U C 95 is a subset of the boundary of S, denotes the number
of outcrossings of S by X through U in the unit interval (0, 1].

We now formulate Rice’s famous formula for the expected number of outcrossings.
It was originally proved for d = 1 by Rice (Rice (1944, 1945)). The proof in its present
form for arbitrary dimension goes back to Belyaev (1968), the assumptions have been
weakened in Lindgren (1980a). For textbook discussions, see Leadbetter et al. (1983);
Lindgren (2012).

Here and in the following, we use the notation z* = max(0, z).



Theorem 7 (Rice’s formula for multivariate processes). Let X and S be as in Defini-
tion 6 and ds(z) denote the Hausdorff measure of 0S. Then

e (8) = /8 B, X0 [ X(0) = )0 (@)ds(o).

where v, is an outgoing normal vector of 0S.

We now introduce some notation that will be used throughout the paper. For any
d>1,u € Ry and u € RY, we denote by B, (1) = {z € R?|||z|| < u} the open
u-ball around y with radius u. Likewise for every d, let S4=1 = {z € R?|||z|| = 1}
denote the sphere in R%. If u € R and S C R? is a set, we define their product
uS = {z € R |z = uy,y € S}.

Remark 8. We shall calculate mean outcrossings for the GH process X with parameters
(0,8, )\, x,%) from Definition 4. Note that if fiy (B, () := E(X, By(1t)) where
X = 1+ X is a GH process with parameters (u, 3, \, x, 1), then fi (B, (1)) =
1+ po (B, (0)). Hence, it suffices to consider 1 = 0.

3. Expected number of outcrossings

The following result gives the expected number of outcrossings of a u-ball around 0
by the rotationally invariant and centered GH process.

Theorem 9. Let X = (X1,...,Xy) denote the GH process from Definition 4 with
= 0and B = 0. Then the mean number of outcrossings per unit time of B,,(0) by the
process X is given by

Ky (v (@ + X)) (Ju2 + )M 2"

p+ (Bu(0)) = Cqu’™ e )
Kxa(Vxv) X2y
where
1+d d %
Cy=(2m)~ = / <Z zﬁwzn) ds(2). 4)
Sa-t n=1
Here wy ,, are the second spectral moments of X, forn =1,...,d. If wy , = wo for
1-d
all n, then Cy simplifies to Cq = /=2 ?(Z) .
2



Proof. We iterate the expectation by conditioning on W

B.(0)
/ o Bl KON X0) = 2) fx 0 ()@

fe%s) 1;—‘1“(1 16 3% 1
:/0 HW/Sd 1<Zznw2n> )fW( )

n=1
1

d_l 2 g w2
<Zz wzn> ds( )/ w2 e 2w fy(w)dw.
si-1 \ 0

T e

/ Oo /S E((vz, X' (0) " |W = w) fx(0) | w=uw(@)ds(x) fi (w)dw
/ / usit /2w (Zz “”) (2m) Fw f e B ds() fur (w)du

o R X 05 1X0) = W = 0) 0w o) o () (2)
0

Now the factors in front of the last integral is just u¢~! times a constant which we

recognize as Cy from the formulation of the theorem. We can now write

d—1 0 1a w2
Cau w2 e 2 fiy(w)dw
0

= Cdud_lM /000 w<’\+1;’~’d)_1 exp (—;((u2 +x)w™ + ww)>dw

2K, (VX))
w1 X MVxy) 2KA+1;2(1( (x + u?)y)
200A0) (x+0?) OB (i )
_ CdudflK”%( (x + u2)v) (\/m)mrl;?d
Ka(Vx¥) X%#)l%d ’

yielding (3) with Cy as in (4). If wy ,, = wo for all n, then Cy reduces to:

d 1—d

Curmony % [ (w3 ) wi = (2) 27

n=1

by the formula for the area of the (d — 1)-dimensional sphere.

O

Letu > 0 and S C S% ! be a measurable subset of S?1, such that «.S is a subset
of the boundary of B, (0). Then, following Lindgren (1980b), the expected number
E(N(X,S,U)) of outcrossings of B, (0) through wS can easily be found by inspecting

the above result and redefining Cj in the obvious way. We state this as a corollary.

Corollary 10. Let X = (X1,..., Xq) denote the GH process from Definition 4 with
p=0and B =0andlet S C S* ! be a measurable subset. Then the mean number of
outcrossings of the centered u-ball B,,(0) through uS per unit time by the process X is

given by

f1+(Bu(0),uS) = Cqsu®!

K,\Jr%( (u? +x)¥) (vu?+ X))‘+%

Kx(Vxi) X3t



where
Cas = ( 277_# (Zz w2n> ds(z).

If we , = wo for all n, then Cy g simplifies to Cq5 = , / (% 1+d Ag—1(S) where Ay_q
denotes the (d — 1)-dimensional Hausdorff measure on the (d — 1)-dimensional sphere

s,

In the univariate case, we can even calculate outcrossings for the full model (2). The
u-ball around g reduces to (u — u, u + u) = p+ (—u, u). So we set 4 = 0 in (2) and
calculate the outcrossings of B, (0) = (—u, u).

Theorem 11. Let X be the GH process from Definition 4 for d = 1 and pn = 0. Then
the mean number of outcrossings of (—u, u) by X is:

() = (¢ + ey Y2 EAC/ O H A0+ ) (U’(X+u2)>;,

2 Kxa(vx¥) (¥ + B%)x
where K is the modified Bessel function of the third kind.

Proof. We start again with Rice’s formula:
e (Bu0) = [ Bln, X (0)T1X(0) = 2)xo )ds(a).

Now uS? is just {—u,u}, ds(x) is the counting measure and v_,, and v, are just —1
and 1, respectively. This means that we only need to compute

E((£X'(£)" [ X(0) = u) fx(0) ()

Conditioning on W = w and using that in the Gaussian model Y and Y are independent
gives

/000 E(£X'(t)* | X(0) = +u, W = w) fx 0y | w=w(Fu) fw (w)dw

= [ B @) W =) e S )
_ tup / “;“;2 —c e~ ¥ flw)dw
= eiuﬁﬁ (\/W)/\w’\_lexp(—l((x-i-u%w_l +(1/1+52)w)>dw

2m Jo 2KA(\/>W) 2

_ iuﬂr( (X+u2)>QKA(\/(X+U2)(¢+62))
(W + B2) K (vx0) !

and the result follows by adding the “+4” and the “—” term. O

For 1-dimensional processes, the “one-sided outcrossing” of the set (—oo, ) (or
“upcrossing” of the level u) is often of interest. The result for this case now clearly
follows as an easy corollary of the proof of Theorem 11.



Corollary 12. Let X be the GH process from Definition 4 for d = 1 with u = 0. Then
the mean number of outcrossings of the set (—oo,u) by X is:

D) e s (o)) — 8 VP2 AV (X w?) (0 + B)) ((x + u?) 3
i () = gy (o0, ) - e <<w+52>x) ,

where K is the modified Bessel function of the third kind.

Remark 13. (i) Corollary 12 corrects Theorem 1 of Alodat and Aludaat (2008).
(ii) Outcrossings of the set (—u, u) are now related to Corollary 12 by observing that:

i (—u,w)) = p (=00, w)) + fiy (=00, ),
where fi.((—o0,u)) = E(N (=X, (—o0,u))) = E(N(X, (=, 0)).

4. Asymptotic Poisson character of outcrossings

As X is assumed to be stationary, the mean number of outcrossings in any time
interval of length T is just T'u (Bo(w)) with p4 (Bg(w)) given by Theorem 9. Using
this and the result for the Gaussian case (Lindgren (1980b)), we now prove an asymptotic
result on the probability P(X (¢t) € Bo(u) forallt € [0,T]) as T — occ.

Theorem 14. Let X be the GH process from Definition 4 with . = = 0. Assume that
additionally the following holds for the covariance function of the Gaussian components
of the process Y : forn =1,...,d,

rn(t)log(t) = 0 as t— oo,

Denote by N, the point process of outcrossings of the cylinder (0,1] x S4=1 by the
time- and space-normalized process (t, u’lX(Tt))te(O,l]. Now assume that T, u — 00
such that for some T > 0

2 A 2— d
T~ \EchKA(\/xwxwqu‘?eW. (5)

Then N, A N, where N is a Poisson point process on (0,1] x S4=1 with intensity
Tdtx (Y wa, a2 ) 2ds(z). Here dt is Lebesgue measure and ds(x) is Hausdorff measure
normalized such that the total mass of the product measure is equal to T.

Proof. We begin by noting that if u,7" — oo in such a way that (5) holds, then the
expected number of outcrossings E(N,,) — 7:

E(Ny) = T4 (Bu(0))
Aog e (VP X)Y) (JuZ )M

= TCdud_ —
Kx(vxv) Nt e
2 _
~ \/;m“KHl;( (w2 +2)0)0H (V2 £ )M T e
2 1 X 1w D
NT\/;U2K/\+12LI(U (1—|—u2)¢>w4e
— T,



recalling from Remark 2 that K (z) ~ \/gx*%e’”” as © — oo. Let N, (U) denote
the number of outcrossings of the cylinder C' =: (0, 1] x S~ through U C C by
(t,u"tX(Tt)), i.e.

N, (U) = N((t,u ' X (Tt),C,U),

cf. Definition 6. Let N (U) denote the Poisson point process N on U. Then by (Kallen-
berg, 1976, Theorem 4.7), it is enough to show that E(N,(U)) — E(N(U)) and
P(N,(U)=0) — P(N(U) = 0) for any measurable subsets U of the cylinder. That
E(N,(U)) = E(N(U)) is trivial by construction, cf. Corollary 10. We now prove that
P(N,(U)=0) = P(N(U) = 0). Since by Lindgren (1980b) this is already known
for Gaussian processes, it follows by using the law of total probability on P(N, (U)) by
conditioning on W = w and interchanging the order of limits:

P(NL(U) = 0) = /0 T P(NL(U) = 0| W = w) far (w)dw

— /OOP(N(U) =0|W = w) fw(w)dw
0
— P(N(U) = 0),

by dominated convergence as 7', u — oo at the given rate. O

5. The Palm distribution

Rice’s formula has been extended to include outcrossings of X, which are marked
by the value of another stationary process, the derivative process X’ being one of the
possibilities. In the 1-dimensional Gaussian framework, Y (¢) and Y’ (¢) are independent
for fixed ¢ (see e.g. Section 8.1.4 of Lindgren (2012)), and the Palm distribution of
Y at outcrossings of (—oo, u) is just the Rayleigh distribution with density gy (y) =
wglye*yz/%? for y > 0; see e.g. Leadbetter and Spaniolo (2004).

Denote by N (X, u, X', y) the number of outcrossings of (—oo, u) by X at which
X' is less than or equal to y, cf. Corollary 12. Then the Palm distribution of the slope
X' at outcrossings of (—oo, u) by X for v fixed and positive and y > 0 is given by

G(y) = E(N(X,u, X', y)) /E(N(X, (-o0,u))), y>0. (6)

Theorem 15. Let X denote the GH process from definition 4 with d = 1. The Palm
distribution of X' at outcrossings of (—oo, u) by X has the following density:

()_@y(x—i—tﬂ—&-fj—z)% K- ( ¢(X+U2+£)) S 0.
R R L N

Proof. 1t is well-known that G is absolutely continuous with density given by the
formula g(y) = yfx0),x'0)(u,y)/p+(u), see e.g. (Leadbetter and Spaniolo, 2004,




Section 8). Now note that E(N (X, u, X", y)) = [ 2fx(0),x"(0)(u, z)dz with
Yfx0),x7(0) (s y)
o 1 W2 v
= y/ e e 2w f(w)dw
0

2mw./wa
— OQw_1 ex (—u2+%) (w/x)? wr Lex (=2 (xw™" +Yw))dw
2my/wa Jo p 2w ) 2K\ (V¥x) P{7aX
Y (¢/X)% /00 A—2 ( 1 2, 3y, -1 >
= w exp| —3((x +u” + Z)w™" +Yw) |dw
2m\/wa 2K (vV¥X) Jo 2 ( ;) )

v @W)? B +u+ L)

2

D (V) (9 (x +ut+ )

w2

Dividing by f4 (u) from Corollary 12 now gives the result. O

6. Examples

In this section we will discuss special cases and present the Gaussian case as a limit
by letting x, % — oo in such a way that x/1¢» — 1 (cf. Barndorff-Nielsen (1978) or
Prause (1999)).

Example 16. For specific values of A the modified Bessel functions of the third kind
K have an explicit form. In that case the outcrossing results of Theorem 9 and 11
become explicit:

(1) For A = —% (W inverse Gaussian) and d = 1 the expected number of outcrossings
of (—oo, u), cf. Corollary 12, can be written as:

po(w) = Y2 [ X (- VR E BT ).

27\ x +u

(2) For A = % (W is reciprocal inverse Gaussian) and d = 1 the expected number of
outcrossings of (—oo, u), cf. again Corollary 12, can be written as:

po(w) = P2 L (V= 0+ ).

(3) For A = % (W is reciprocal inverse Gaussian), d = 3 and $ = 0, the expected
number of outcrossings of B,,(0), cf. Theorem 9, is given by:

pa (Bu(0) = o | = exp(vxh = Vi +u)0).

where C'5 is given in (4).
We now turn to limits of certain parameters.
Example 17. For Gaussian processes X the Palm distribution of X’ at outcrossings of
(—o0,u) by X is the Rayleigh distribution with density
2

Yy
gx(y)=*ye 2, y>0. (®)
w2



We show that the Palm density of the GH process (7) converges as x,¢ — oo with
1 /x — 1 to the Rayleigh density (8). Note first that

2 A—1 2 A
X +u? 4 L) X+u?+ N2
\/E( ) T Ld ( “2> —1
)

(x +u2)? (x+u+ )\ xtu?

as x, ¥ — 00,9 /x — 1. Now recall from Remark 2(ii) that for all A € R we have that
) ~ \/Zx~"%e " as x — oco. Consequently,
Ky a(y/o(x +u?+ 2))
Ka(vVib(x +u?))

Now rewriting the exponent we get

~ exp(—/Ulx+u? + L) + VI + ).

2
which is easily recognized as a differential quotient with limit 5
2

Example 18. In view of Example 17, the outcrossing results of Theorem 9, 11 and
Corollary 12 are now easily seen to satisfy the following limit laws:

V@K@ 0Y) (v X ? Ve w2
M+(u)— o KA(\/W) ( X > — 2ﬂ_e

and

2
d-1,-%
— %Cdu e 2

o i1 oz (u? + X)) (\/u? )
‘ Kx(VXD) P

as x, ¥ — 00,1 /x — 1, reproducing the classic Gaussian results.
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