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A Strictly Dissipative State Space
Representation of Second Order
Systems
Eine strikt dissipative Zustandsraumdarstellung von Systemen zweiter Ordnung
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Summary This article introduces a novel way of transform-
ing linear second order systems to first order state space
models in strictly dissipative realization. This property extends
the potential for the analysis of large-scale systems in many
ways: it allows for the application of efficient methods for the
solution of Lyapunov equations and the guaranteed preser-
vation of asymptotic stability during model order reduction.
The transformation is easy to implement and applicable to
models of very high order due to its negligible computa-
tional effort. ��� Zusammenfassung Dieser Beitrag

stellt eine Transformation linearer Systeme zweiter Ordnung
auf strikt dissipative Zustandsraummodelle vor. Strikte Dissi-
pativität erweitert die Möglichkeiten zur Analyse sehr großer
Modelle in mehrfacher Hinsicht: Beispielsweise erlaubt sie
den Einsatz effizienter Methoden zur Lösung von Ljapunow-
Gleichungen oder die garantierte Erhaltung von asymptotischer
Stabilität bei der Modellordnungsreduktion. Aufgrund ihres
vernachlässigbaren numerischen Aufwands ist die einfach zu
implementierende Transformation auch auf größte Modelle
anwendbar.

Keywords Dissipativity, second order systems, model order reduction ��� Schlagwörter Dissipativität, Systeme zweiter
Ordnung, Modellordnungsreduktion

1 Introduction
Mathematical modeling of complex dynamic systems, like
mechanical structures or integrated circuits, often leads
to linear time-invariant (LTI) systems G(s) of the form

Eẋ(t)= Ax(t) + Bu(t) ,

y(t)= Cx(t) ,
(1)

with m ∈ N inputs, p ∈ N outputs and n ∈ N state
variables, where n is called the order of the system.
E, A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n are matrices with
constant coefficients; in this paper, we assume E to be
regular. u(t) ∈ Rp, y(t) ∈ Rm and x(t) ∈ Rn are, respec-
tively, the input, output and state vectors.

With increasing demands on the accuracy of the
model, its order n typically grows dramatically, for in-

stance due to finer meshing in a finite element method
(FEM). The direct analysis or simulation of such a system
is then numerically expensive or not even feasible [1].

Instead, one aims to approximate G(s) by a system of
far smaller order q � n by means of so-called model order
reduction (MOR). Unfortunately, most MOR techniques,
like proper orthogonal decomposition, approximate bal-
anced truncation or Krylov subspace methods do not
guarantee preservation of stability during the reduction
process, in general.

One remedy to this issue is the theory of the loga-
rithmic norm, which was introduced independently by
Dahlquist and Lozinskii in the 1950’s and defined as

μ(A)= lim
h↓0

||I + h A|| – 1

h
. (2)
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Originally, it was intended to bound the error growth of
solutions to ODE systems; one central finding was the
bound on the matrix exponential [3; 9]:

||eA t || ≤ eμ(A) t ∀ t ≥ 0 . (3)

Meanwhile, however, the theory of the logarithmic norm
has been used for various applications, among which we
recall the following sufficient conditions for preservation
of stability during the reduction of G(s): when the log-
arithmic norm of A is non-positive while E is positive
definite (e. g. identity), stability of the reduced model is
assured in a one-sided (Galerkin-type) projection [4].
A strictly negative value of μ(A) can even guarantee
asymptotic stability of the reduced order model.

The same prerequisite also holds in other domains,
including the solution of Lyapunov equations: the re-
cently introduced KPIK algorithm [11], for instance,
exhibits remarkable speed-up compared to standard
solvers but requires μ(A) to be strictly negative.

Whenever this is not the case, it has been shown that an
asymptotically stable system can be transformed into an
equivalent realization that fulfills μ(A) < 0 and E= I [6;
7]. But the computation of a suitable state transformation
requires the solution of a Lyapunov inequality, which
is not feasable for large n.

The modeling of mechanical systems or electric cir-
cuits, on the other hand, often leads to ODE systems of
second order form:

Mz̈(t) + Dż(t) + Kz(t)= Fu(t) ,

y(t)= Sz(t) ,
(4)

where M, D and K are called mass, damping and stiff-
ness matrices. For a large class of finite element models
M=MT > 0, K= KT > 0 and D=DT > 0 can be as-
sumed. The special structure of these systems can be used
to reformulate them equivalently in a non-strictly dissipa-
tive state space model, i. e. such that E > 0 and μ(A)= 0
hold; see [10] and Sect. 2.3.

In this work, it is shown how second order systems
with the above described properties can be arranged dif-
ferently in state space such that μ(A) is strictly negative
and the logarithmic norm theory applies to its full extent.

The rest of this paper is organized as follows: in Sect. 2,
related preliminary knowledge is given; the new model-
ing is described in Sect. 3; numerical results are given in
Sect. 4, followed by conclusions.

2 Preliminaries and Problem Formulation
In this section, preliminaries towards the logarithmic
norm in LTI systems are presented. We first introduce
the logarithmic 2-norm and its application to state space
and descriptor systems, respectively. We then show how
second order systems can be transformed to (non-strictly)
dissipative first order form.

2.1 The Logarithmic Norm Induced
by the Euclidian Norm

We will focus on the logarithmic norm subordinate to the
Euclidian norm. For this case, μ2(A) can be expressed as

μ2(A)= λmax(sym A)= λmax

(
A + AT

2

)
, (5)

which is the right-most eigenvalue of the symmetric part
of A [3], also called the numerical abscissa of A.

The matrix A is called (strictly) dissipative if μ2(A) ≤ 0
(μ2(A) < 0) [12].

2.2 The Logarithmic Norm in Descriptor Systems
It is well known, that systems (1) with regular E �= I can
be transformed to an explicit representation or realiza-
tion, respectively, e. g. by premultiplication of the ODE
system by E–1 or by a change of basis z= Ex.

Inspired by the form of (5), a third possibility is often
favorable if E is positive definite: using the Cholesky
factorization E= LLT , system (1) can be transformed in
the following way:

I︷ ︸︸ ︷
L–1EL–T ˙̂x(t)=

Â︷ ︸︸ ︷
L–1AL–T x̂(t) +

B̂︷︸︸︷
L–1B u(t) ,

y(t)= CL–T︸ ︷︷ ︸
Ĉ

x̂(t) .
(6)

The logarithmic norm of the transformed dynamic ma-
trix Â is then equivalent to

μ2(Â)= μ2

(
L–1AL–T

)
=

=
1

2
λmax

[
L–1AL–T +

(
L–1AL–T

)T
]
=

=
1

2
λmax

[
L–1

(
A + AT

)
L–T

]
.

(7)

One can see from Eq. (7) that the eigenvalues λi of sym Â
are identical to the solutions of the generalized eigen-
value problem det(sym A –λiE)= 0. For that reason, the
resulting value is also referred to as [5]

μE(A) := μ2(E, A) := μ2(Â) (8)

In order to compute μE(A), the explicit calculation of
Â = L–1AL–T can therefore be avoided by finding the
right-most generalized eigenvalue instead. A possible
Matlab implementation is

mu = eigs(A+A’, E, 1, ’LA’)/2;

Please note that if μ2(A) < 0, then μ2(Â) can be shown
to be negative as well, since L is of full rank:

μ2(A) < 0 ⇐⇒ A + AT < 0

⇐⇒ xT(A + AT)x < 0 ∀ x

⇐⇒ xTL︸︷︷︸
yT

L–1(A + AT)L–T LTx︸︷︷︸
y

< 0 ∀ x

⇐⇒ yT L–1(A + AT)L–Ty < 0 ∀ y

⇐⇒ Â + ÂT < 0
⇐⇒μ2(Â) < 0 .

(9)
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Accordingly, every system with μ2(A) < 0 and E > 0 can
be transformed in a way such that Ê= I and Â preserves
the dissipativity of A.

2.3 Transforming Second Order Systems
to First Order

Second order systems (4) can be transformed into an
equivalent state space formulation [10]:[

R 0
0 M

] [
ż(t)
z̈(t)

]
=

[
0 R

–K –D

][
z(t)
ż(t)

]
+

[
0
F

]
u(t) ,

y(t) =
[
S 0

] [
z(t)
ż(t)

]
. (10)

As the first line only serves to constitute equality of ż(t)=
ż(t), it can be equivalently premultiplied by any regular
matrix R of appropriate size. Setting R= K, as it was
suggested in [10], can be directly seen to deliver E > 0
and μ2(A)= 0, as the symmetric part of A only contains
D in the bottom-right entry, which makes it negative
semi-definite. This is beneficial in many respects but not
sufficient in others, as we have seen.

3 Strictly Dissipative State Space Formulation
In this section, the main contribution of the article is pre-
sented: It is shown how second order systems (4) can be
transformed to a state space representation with positive
definite E and strictly dissipative A.

3.1 A New Arrangement in State Space
The main idea is to premultiply (10) by a matrix

T :=

[
I αI

αMK–1 I

]
(11)

with α ∈ R+. This changes the representation of (1) to-
wards

Ẽ︷︸︸︷
TE ẋ(t)=

Ã︷︸︸︷
TA x(t) +

B̃︷︸︸︷
TB u(t) ,

y(t)= C x(t) ,

(12)

with

Ã=

[
–αK K – αD
–K –D +αM

]
,

Ẽ=

[
K αM

αM M

]
, B̃=

[
αF
F

]
.

(13)

It is stressed that neither the state vector x(t) nor the
output y(t) are affected by the transformation; besides,
Ẽ remains symmetric. It will be shown in the following,
though, that the choice of α has a strong effect on the
eigenvalues of Ẽ and the logarithmic norm of Ã. This de-
pendency will be used to find a strictly dissipative system
representation.

Looking at Ẽ, it is clear that due to continuity the
positive definiteness of K and M will be carried over to Ẽ
for small values of α. To investigate the logarithmic norm

of Ã, on the other hand, we consider the symmetric part
of Ã:

sym Ã=
Ã + ÃT

2
=

⎡
⎣ –αK –

α

2
D

–
α

2
D –D +αM

⎤
⎦ (14)

Different from the symmetric part of A in (10), the upper
left diagonal block is now negative definite; the eigenval-
ues of –αK drop as α increases. This leads to an evident
trade-off, because at the same time the eigenvalues of
the bottom right block, –D +αM, climb too far unless α

is chosen sufficiently small. Therefore, it seems plausible
that the matrix can be negative definite in a certain range
of α – which leads to the desired negative logarithmic
norm of Â – although the influence of the off-diagonal
blocks is not clear a priori.

3.2 How Large May α Be?
We shall clearify and quantify this idea in the following.

Theorem 1. Let Ẽ, Ã be defined as in (13). Then the fol-
lowing conditions hold for α:
a) α < α∗

E :=
√

λmin(KM–1) ⇒ Ẽ > 0.

b) α < α∗
A := λmin

[
D(M + 1

4 DK–1D)–1
]

⇒ μ2(Ã) < 0.

Proof: Both parts follow directly from Schur’s Lemma on
positive definite matrices [13].
a) Ẽ is positive definite iff
i) M > 0, which is true by assumption,
ii) K – αMM–1αM > 0 ⇐⇒ K – α2M > 0,

which is equivalent to α < α∗
E.

b) sym Ã is negative definite iff
i) –αK < 0, which is true by assumption,
ii) –D +αM – α

2 D(–αK)–1 α
2 D < 0 ⇐⇒

–D +α(M + 1
4 DK–1D) < 0,

which is equivalent to α < α∗
A. �

In order to obtain a system with positive definite Ẽ and
strictly dissipative Ã, both conditions must be true. Ac-
cordingly, when α∗

E and α∗
A are computed separately, any

positive value of α which is smaller thanmin{α∗
E, α∗

A} ful-
fills the required properties.

It turns out, however, that α∗
E is always greater or equal

to α∗
A, which is shown in the following:

Theorem 2. α∗
E ≥ α∗

A.

Proof: We will show that Ẽ > 0 is always true when
sym Ã < 0 is fulfilled. To this end, we define

W :=

⎡
⎣ 1√

α
I 0

2
√

αMK–1 –2
√

αMD–1

⎤
⎦ . (15)

Obviously, sym Ã < 0 is equivalent to

0 < X :=W(–sym Ã)WT

=

[
K αM

αM 4αMD–1(D – αM)D–1M

]
.
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We want to show that Ẽ ≥ X. It is sufficient to compare
the bottom-right entry:

Ẽ ≥ X=W(–sym Ã)WT

⇐⇒ Ẽ – W(–sym Ã)WT ≥ 0

⇐⇒ M – 4αMD–1(D – αM)D–1M ≥ 0

⇐⇒ DM–1D – 4α(D – αM) ≥ 0

Using the Cholesky decomposition M= RRT :

⇐⇒ 4α2RRT – 4αD + D(RRT )–1D ≥ 0

⇐⇒ 4α2I – 4αR–1DR–T + R–1DR–T R–1DR–T ≥ 0

⇐⇒ (2αI – R–1DR–T )T(2αI – R–1DR–T ) ≥ 0

The last line is always true; accordingly, Ẽ ≥ X holds.
Therefore, μ2(Ã) < 0 induces Ẽ ≥ X > 0, which completes
the proof. �

From the above considerations it follows that α should
neither be too small nor too large in order to make μẼ(Ã)
as negative as possible. Without claim of optimality, it is
therefore suggested to choose

α :=
α∗

A

2
. (16)

3.3 Numerical Considerations
Please note that both α∗

E (which is not actually required,
as we have seen above) and α∗

A can be computed as solu-
tions to generalized eigenvalue problems involving only
symmetric matrices:

a) Kvi = λ2
i · Mvi

b) Dvi = λi ·
(

M +
1

4
DK–1D

)
vi

with eigenvalues λi and corresponding eigenvectors vi.
The task of finding the smallest solution λmin of such

symmetric problems has extensively been studied and
can typically be performed without tremendous numer-
ical effort [8]. In particular, one can avoid the explicit
calculation of matrix inverses (e. g. DK–1D) by adept im-
plementation. In Matlab, for instance, the generalized
eigenvalue problem b) can be solved by passing an anony-
mous function to the eigs command:

mfun = @(x) (M*x + D*(K\(D*x))/4);
n = size(D, 1);

alpha = 1/eigs(mfun, n, D, 1, ‘LR’);

4 Numerical Example: Butterfly Gyroscope
In order to demonstrate the procedure derived above, we
use the model of a Butterfly Gyroscope [2]. The dynamics
is described by a second order system of 17361 ODEs;
damping is modeled artificially as D= 10–6K.

For this system, the computation of α has been per-
formed according to Sect. 3, lasted below 5 sec and yielded
α∗

A = 113.06 (for completeness, α∗
E = 10 633 was com-

puted, too). According to Eq (16), we choose α= 56.529.
In fact, the resulting system fulfills all desired properties:

Ẽ > 0 and sym Ã < 0 hold; the logarithmic norm of Â is
μ2(Â)= μẼ(Ã)= –56.528.

Additionally, the transformed system (12) has been
analyzed for multiple values of α; results can be seen
in Fig. 1. Figure 1a shows the smallest eigenvalue of Ẽ
over α, Fig. 1b and c give the logarithmic 2-norm of Ã
and Â, respectively.

One can see that the smallest eigenvalue of Ẽ merely
decays (although the graph is slightly disturbed by
numerical noise); positive definiteness is successfully pre-
served. This is due to the fact that α∗

E is about 100
times larger than the visible section of α. The right-

Figure 1 Simulation results for the Butterfly Gyroscope.
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most eigenvalue of sym Ã, on the other hand, drops
abruptly to about –3.3 ×10–6 even for very small values
of α – although it is clearly zero for α= 0. With in-
creasing α it rises towards zero again and changes sign at
α= α∗

A = 113.06, which confirms the results from above.
Looking at the evolution of the generalized logarithmic
norm μẼ(Ã), finally, one can perfectly see a mini-
mum which is indeed almost caught by our choice of
α= 56.529.

In fact, the graph of μẼ(Ã) resembles a kind of shifted
absolute value function. This observation has been con-
firmed also for other models with moderate damping.
The exact relationship between α and μẼ(Ã) is, however,
more complicated.

Please note, finally, that among μ2(Ã) and μẼ(Ã), the
latter is the quantity whose absolute value matters for
applications like error bounds or the analysis of the tran-
sient system behavior, as μ2(Ã) disregards the influence
of the matrix Ẽ and therefore uses a non-physical norm.

5 Conclusions and Outlook
We have shown how large scale second order systems with
standard definiteness properties can be transformed into
state space models with positive definite E and strictly
dissipative A. This is achieved by a novel arrangement of
the matrices which depends on a scalar parameter α.

Although no optimal choice w.r.t. the resulting
logarithmic norm of A has been derived so far, a straight-
forward way to compute a valid interval for α has been
presented. Numerical examples supported that in practice
it is satisfactory to choose α in the middle of this interval.

Future work is aimed at various generalizations of the
restrictive case M, D, K > 0 presented in this article. First
studies indicate that definiteness is not generally necessary
to allow for a strictly dissipative state space realization.
For instance, gyroscopic (i. e. skew-symmetric) compo-
nents in D hardly affect the above results, if the symmetric
part of D remains positive definite.
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