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Abstract

Modern driver information systems are able to provide a large amount of data to the
driver. If all these data is delivered unfiltered to the driver, information overload becomes
a serious problem. Recommender systems are a promising approach to reduce informa-
tion overload. However, they are mainly designed for desktop systems or mobile devices.
Therefore, they do not take the restrictions of the automotive environment into consid-
eration. We believe that proactively delivered recommendations are the most promising
solution to handle these restrictions. Such systems process and deliver information au-
tomatically without explicit user request. The goal of this thesis is to investigate the
design of proactive recommender systems in an automotive environment.

Proactive behavior requires an intelligent information processing. In case of proac-
tive recommender systems, the system provides recommendations in the right situation
and adapts user preferences to situational circumstances. We propose a framework
for situation awareness which is tailored to proactive in-vehicle recommendations. The
framework is based on human situation awareness which is represented by well-known
machine learning methods. A study for gas station recommendations with artificial user
data shows the applicability of our framework.

Intelligent information processing also involves selecting the right items for the users.
Besides user preferences, the recommender system should also consider the context of
the users in an automotive environment. Context integration into recommender systems
became a popular research area in recent years. We apply a context integration method
that exploits well-known paradigms from multi-criteria decision making (MCDM). The
advantage of using MCDM methods is to be able to handle multiple heterogeneous
context and user information. In combination with the context integration paradigms
of prefiltering and postfiltering, the MCDM methods can be applied efficiently in a dy-
namic automotive environment. For evaluation, we compare the performance of different
MCDM approaches in a user study based on gas station recommendations. Comparative
models show better results than linear models or dominance-based filters.

As proactive recommendations are delivered without explicit user request, comprehen-
sibility is an important issue. Adding explanations is a promising method to improve
the comprehensibility of a recommendation. We investigate two explanation methods
for proactive recommendations. The first method justifies the selected items. It uses the
resulting items of our context-aware recommender system and generates arguments for
explanations. Our user study with gas station recommendations shows that the users
are mostly satisfied with the generated explanations. The second method justifies the
reason of a recommendation. We propose a method to explain the reasoning in the
Bayesian network that we used in our situation awareness framework and show example
explanations.
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The individual investigation of important components of a proactive recommender sys-
tem is not enough to tell whether the integrated system is designed properly. Therefore,
we want to know whether the drivers would accept a proactive recommender system con-
sisting of the presented components. To investigate user acceptance, we implement an
in-vehicle prototype of a gas station recommender system based on our previous results.
To make the prototype easy to use, it is equipped with an adequate user interface that
is validated with expert interviews. We investigate user acceptance with the technology
acceptance model (TAM). The results show the importance of choice and a clear presen-
tation of information. They also indicate that drivers tend to accept such a proactive
recommender system inside their cars. Therefore, we conclude that our system design
is adequate to provide proactive recommendations in automotive environments.
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Kurzfassung

Heutige Fahrerinformationssysteme bieten dem Fahrer eine Vielzahl von Informationen.
Wenn diese Informationen ungefiltert an den Fahrer weitergeleitet werden würden, dann
kann es zu Informationsüberflutung kommen. Zur Vermeidung von solcher Informa-
tionsüberflutung haben sich Empfehlungssysteme (Recommender Systeme) etabliert.
Empfehlungssysteme sind in erster Linie für den Desktopbereich konzipiert worden und
berücksichtigen deshalb keine Einschränkungen der Interaktion und der menschlichen
Informationsverarbeitung im Fahrzeug. Es existieren bereits Ansätze um diese Ein-
schränkungen aufzuheben. Der Einsatz von proaktiven Empfehlungssystemen ist dabei
einer der aussichtsreichsten Möglichkeiten. Diese Systeme arbeiten selbstständig und
präsentieren Empfehlungen ohne Benutzeranfrage. Der Schwerpunkt dieser Arbeit liegt
darin den Aufbau von proaktiven Empfehlungssystemen im Fahrzeug zu konzipieren.

Proaktives Verhalten erfordert eine intelligente Verarbeitung von Informationen. In
Kombination mit Empfehlungssystemen bedeutet dies, dass das System Informationen
in einer passenden Situation präsentiert und Benutzerpräferenzen an die jeweilige Situa-
tion anpasst. In dieser Arbeit wird ein Framework zur Modellierung von Situationsbe-
wusstsein für proaktive Empfehlungssysteme beschrieben. Das Framework basiert auf
menschlichem Situationsbewusstsein, da dieses Gebiet in der Forschung bereits weitrei-
chend untersucht wurde. Menschliches Situationsbewusstsein wird dabei mit Hilfe von
Methoden aus dem Bereich des maschinellen Lernens abgebildet. Zur Evaluation werden
Daten für ein proaktives Tankstellenempfehlungssystem erhoben und die Anwendbarkeit
des Frameworks gezeigt.

Neben der Wahl einer passenden Situation, spielt auch die Wahl von geeigneten
Empfehlungen eine entscheidende Rolle. Dies beruht bei Fahrern nicht nur auf ihren
Präferenzen, sondern auch auf ihrem Kontext. Um dem heterogenen Charakter ver-
schiedener Kriterien einer kontextadaptiven Empfehlung gerecht zu werden, werden in
dieser Arbeit Methoden aus der multikriteriellen Entscheidungstheorie eingesetzt (Multi-
Criteria Decision Making (MCDM)). Diese werden mittels Vor- und Nachfilterung in den
Empfehlungsprozess integriert. Die Evaluation vergleicht verschiedene MCDM Metho-
den auf Basis von Tankstellenempfehlungen. Vergleichende Methoden schneiden dabei
besser ab als lineare Modele oder Methoden, die auf Dominanz basieren.

Da proaktive Empfehlungssysteme ohne Anfrage empfehlen, sollte ihr Verhalten für den
Benutzer verständlich sein. Explizite Erklärungen sind eine gängige Methode um die
Verständlichkeit eines Systems zu erhöhen. In dieser Arbeit werden zwei Methoden
vorgestellt um proaktive Empfehlungen zu erklären. Die erste Methode rechtfertigt die
Inhalte einer Empfehlung. Dabei werden passende Argumente auf Basis des kontext-
adaptiven Empfehlungsansatzes generiert. Bei einer Benutzerstudie mit Tankstellen-
empfehlungen waren die Benutzer in den meisten Fällen zufrieden mit den generierten
Erklärungen. Die zweite Methode rechtfertigt mit Hilfe der aktuellen Situation das
eigenständige Verhalten des Systems. Die Methode basiert auf der Modellierung des
Situationsbewusstseins und wird mit Beispielen untersucht.
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Die individuelle Betrachtung von Bestandteilen eines proaktiven Empfehlungssystems
ist nicht ausreichend um die Anwendbarkeit des integrierten Systemdesigns abzuleiten.
Deshalb wird in einer finalen Benutzerstudie in einem Fahrzeug die Benutzerakzeptanz
eines Systems untersucht, das aus den vorgestellten Bestandteilen besteht. Hierfür
wird eine angemessene Benutzerschnittstelle für das Fahrzeug entwickelt und mit Ex-
perteninterviews validiert. Als Grundlage der Studie dient das Technologieakzeptanz-
model (Technology Acceptance Model (TAM)). Die Ergebnisse zeigen, dass Auswahl
und die klare Vermittlung von Informationen eine wichtige Rolle spielen. Ferner
tendieren die Testfahrer dazu ein solches System zu akzeptieren. Somit kann daraus
geschlossen werden, dass das vorgestellte Systemdesign für den Einsatz von proaktiven
Empfehlungssystemen im Fahrzeug hinreichend ist.
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1. Introduction

Modern cars have become a powerful digital device over the last couple of years. They
are able to capture environmental information with sensors and access digitally available
information from the Internet over broadband connections. Nevertheless, the primary
task of a driver is to drive the car and maneuver through traffic situations (Tonnis et al.
[TBK06]). Other tasks are even secondary including responses to the environment (e.g.,
a honk or a turn signal) or tertiary. Tertiary tasks are decoupled from driving and aim
to provide more convenience (e.g., turning on the air conditioner).

Interacting with in-vehicle information systems (IVIS) represents a tertiary task.
An example for IVIS is searching for a point-of-interest (POI). POIs comprise services
such as restaurants or gas stations. They are described by their location and additional
information like opening times or available facilities such as ATMs or shops. In general,
POIs are stored in a database inside the car. With broadband Internet connection, the
database can be updated and additional information for POIs can be downloaded. This
increases the amount of potentially interesting information for the driver. The usual way
of searching a POI is by querying the local database and browsing through the results.
Finding the right POI and formulating queries may impose cognitive load on the driver.

IVIS for POIs usually display information on a small central information display
(CID). The interaction with visual IVIS may cause driver distraction because the glance
of the driver is off the road. Furthermore, displaying large amounts of POIs on small
screens is a challenge inside a car. Besides, the number of IVIS that might have relevant
information for the driver increased over the last couple of years. This is due to the
increase of computational power on small chips for lower prices, new high-resolution
displays and affordable cellular broadband connection. As a consequence, solutions have
to be found to avoid information overload like depicted in Figure 1.1.

Intelligent selection of POIs by means of recommender systems (Resnick and Varian
[RV97]) is a possible solution. Recommender systems comprise a group of methods to
support an active user with suggestions to find relevant items. The idea is to assist like-
minded users with ”Word of Mouth” knowledge. Recommendation methods use item
details, user preferences, demographic information and most recently the context of the
user to select suitable items. Recommender systems became popular by commercial
services such as Amazon.de (e-commerce), Last.fm (music) or Netflix (movie rental).
However, available recommender systems are designed for desktop computers or mobile
devices. Due to interaction limitations, they should be designed differently for cars.
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1. Introduction

Figure 1.1.: Information overload inside a car due to many in-vehicle information systems
(IVIS) (Tretten [Tre11])

1.1. Mobile Information Need

Classical in-car information need comprises status information of driver assistance sys-
tems (e.g., the speed indicator) and warnings (e.g., low current gas level warning). In-
fotainment systems extend the scope of relevant information. They belong to the group
of IVIS that provide entertaining information in addition to warnings and status infor-
mation. Infotainment systems are designed to fulfill the information need of a driver.

There are lots of sources of relevant information to cover mobile information need. To-
day, so-called apps for smartphones provide an easy way to access several information
sources. According to App of the day [App11], Apple’s app store offered 300.000 apps
by end of 2010. Among others, the categories navigation (e.g., DB Navigator, Navigon),
travel (e.g., Tripadvisor, PrimoSpot Parking, Gasbuddy, Expedia) and lifestyle (e.g.,
Filmstarts, Yelp, Qype, Post app) make up approximately 15%. Content provider used
in these apps offer large amounts of POIs. Next to static information such as location,
address or business hours, additional dynamic information of interest such as user rat-
ings, movie critics or gas prices are offered. However, apps are designed for smartphones.
They do not consider interaction restrictions inside a car and are not connected to in-car
sensory. These sensors provide valuable context information about the driver, the car
and the environment.
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1.2. Problem Description

Several user studies investigated what kind of information people want to access while
they are on the go. A diary study of mobile information need by Sohn et al. [SLGH08]
reveals what is of interest for mobile users. One quarter of mobile information need
is related to either discovering a POI or navigate to one. Trivia information like the
birthday of Bob Marley also appears in 18% of the diary entries. Furthermore, business
hours and news are also of interest. 72% of information is context related, e.g., location
(35%), activity (24%) or time (28%). Vrcek et al. [VBB09] confirm that mobile users
seem to be most interested in navigational systems. Such systems include routing and
traffic services and information systems for parking opportunities or tourist information.
Alt et al. [AKS+10] confirm with an online survey that news, weather and nearby sights
are relevant for the drivers. An interesting observation of Sohn et al. is the reason why
information need is not addressed. Only 45% of needed information is accessed at the
desired time and 25% later. 28% of the users who access information later mention the
involvement in driving or biking as reason.

1.2. Problem Description

The general problem of accessing information inside a car is driver distraction. Informa-
tion sources like POIs comprise much information of relevance for the user, e.g., their
position on a digital map. Therefore, POIs are mainly displayed in the CID of the car
like a navigation system. With much information, the risk of information overload is
high. This may lead to long phases of glances away from the street. The drivers are also
subject to cognitive load because they have to handle this information. Furthermore,
the drivers interact with the CID to find relevant information. These aspects may lead
to driver distraction. Driver distraction should be avoided before it becomes a serious
risk.

There is need for information inside a car but driving often leads to postpone or skip the
consumption of this information. Several approaches are possible to solve the problem
of in-car information access. Some researchers distinguish traffic situations according
to the load they impose on the driver. Stationary situations, e.g., standing still at
a traffic light, impose low cognitive effort. For instance, Alt et al. [AKS+10] detect
standstill times at a traffic light and push information in that time slot. Their approach
depends on infrastructure. Furthermore, important information might be missed, if
too few standstill times occur. Another approach to solve the problem is to improve
the access to large amounts of information. Either the visualization on small displays
or the interaction with large amount of information can be improved. However, this
could be challenging for large sets of POIs. Furthermore, most of the information is not
relevant for the drivers in their situation. The third solution is to reduce the amount of
information. Intelligent agents (e.g., Maes [Mae94]) are an abstract class of methods to
work out tasks such as information filtering. They decide which information is filtered
based on knowledge and models of the user, the domain and the environment. The main
challenge for intelligent selection is to infer on the right information at the right time.
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1. Introduction

The research area of artificial intelligence offers several methods for intelligent filtering.
This work focuses on recommender systems as a solution of intelligent filtering to avoid
information overload. However, classical recommender systems are designed for the users
who are able to focus their full attention to the system. In an automotive environment,
we have to approach recommender systems from a different viewpoint. In contrast to
desktop systems and mobile devices, information access is restricted because of the pri-
mary task of driving. Interaction with visual IVIS to enter search queries or browse
catalogs should be reduced to avoid driver distraction. Another aspect of classical rec-
ommender systems is that they focus on the accuracy of delivered items considering user
preferences in general. However, mobile information need is mainly defined by context
and the situations of a user. This information should be considered when providing
suggestions.

1.3. Goals

The goal of this thesis is to investigate proactive recommender systems as a solution of
integrating recommender systems into the automotive environment. Proactive behavior
involves the freedom of a system to react on an input on its own (Covey [Cov89]). It
allows the system to support the driver intelligently with the right information at the
right time. Our overall research question is:

How should proactive recommender systems be designed inside a car to assist
the drivers receiving relevant items for their current situation at the right
time?

We apply the research methodology of design science in this work by following the guide-
lines of Hevner et al. [HMPR04] to design science in information systems. Our proposed
approach contains four main artifacts in system design: inferring on situations to make
a recommendation, selecting appropriate items, explaining the decisions of the system
and delivering the results to the driver. We show the relevance of the problem of in-
formation overload while driving by means of literature review in automotive research.
The artifacts are evaluated observationally with offline and online user studies. Addi-
tionally, experiments are carried out with common metrics from the field of intelligent
systems and recommender systems to make the results comparable. A review of related
work in proactive recommendation systems shows why other similar approaches could
not be applied to our problem. A comprehensive description of relevant methods from
intelligent systems, recommender systems and decision theory builds the groundwork for
the design of our artifacts. The results are communicated to the research community by
several publications on conferences and workshops.

Our proposed approaches for the artifacts are investigated with the simple example of a
proactive gas station recommender. This is a comprehensible and obvious use case that
concerns all drivers. Although some of the artifacts are more complex than it might
be needed for a gas station recommender, literature shows that they are important for
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1.3. Goals

a proactive recommender system. The goal of the selected example is to increase the
comprehensibility of the work. We do not aim to propose an adequate solution for a gas
station recommender.

To be able to answer the research question, we divide the question in four sub-questions.
The first question we answer is: How to infer from the situation of the user on the use-
fulness of recommendations? Human situation awareness involves sensing of information
that defines a situation, the comprehension of the current situation as well as the an-
ticipation of future situations (Endsley [End00]). Our goal is to transfer human models
of situation awareness into computational models. We assume that there are sensors
that deliver information about the situation of the user. The focus of our research is
to establish a situation awareness framework for decision making towards recommenda-
tions using data from information sources such as sensors or databases. The framework
should be able to incorporate existing inference methods such as Bayesian networks or
fuzzy logic to represent dependency of situations and information need.

The second question is: How to select useful items in the situation of the user? Classical
recommender research focuses on recommendation accuracy instead of usefulness in situ-
ations. The major difference is that usefulness is especially determined by the context of
the user. Context-aware recommender systems became popular (e.g., Adomavicius and
Tuzhilin [AT08]) recently. Our goal is to propose a flexible model of context integration
that is able to handle different types of heterogeneous context and user information. It
should not be specialized to classical methods such as collaborative filtering or content-
based filtering but should be able to integrate such methods. This problem can be
modeled as a multi-criteria decision making (MCDM) problem. Decision theory
provides well-defined methods for MCDM that can be used for that. Our goal is to ex-
ploit these MCDM methods in combination with common context integration methods
for recommender systems such as prefiltering or postfiltering.

The third question is: How to make intelligent behavior in proactive recommender sys-
tems comprehensible to the user? In contrast to classical recommendation systems, a
proactive system chooses its query for items itself. As the users do not request any
information, they might not understand why the system provides recommendations. In
research, comprehensibility is either out of scope of proposed proactive recommenders,
implicitly solved by design or domain-specific, e.g., persuading a shopper to buy. Ex-
planations are a promising method to make decisions of intelligent systems more com-
prehensible. Applied in a proactive recommender, explanations are able to justify the
decisions of the system in order to convince the driver that the recommended items are
useful in that situation. Our goal is to design and evaluate methods that are able to
generate suitable explanations for proactive recommendations.

The forth question is: Do the drivers accept proactive delivery of items inside a car?
The answers to the other three questions only comprise results for specific parts of a
proactive recommender system. However, an automotive environment is different to
usual application areas of recommender systems such as desktop computers and mobile
devices. Our goal is to investigate whether the drivers would accept such a system in
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1. Introduction

their cars. User acceptance comprises ease of use (EOU) and usefulness (U) (Davis
[Dav89]). EOU requires an adequate user interface that follows principles of usability.

1.4. Road Map

Chapter 1:Introduction

Chapter 2:
Basics

Chapter 3: Related Work

Chapter 4: Proactive In-Vehicle Recommendation Systems (P-IVRS)

Chapter 5:
Situation Awareness in 

P-IVRS

Chapter 6:
Context-Aware 

Recommendations for 
P-IVRS

Chapter 7:
Recommendation 

Justification 
in P-IVRS 

with Explanations

Chapter 8: User Acceptance of a P-IVRS

Chapter 9: Conclusions and Future Work

Figure 1.2.: Structure of the thesis

Figure 1.2 shows the structure of the thesis. We distinguish general chapters (1, 9),
literature review (2, 3) and our own contribution (4, 5, 6, 7, 8).

Chapter 1 gives an introduction to the topic of proactive recommender systems in au-
tomotive scenarios. It shows that there is need for information inside a car, what the
problem of information access is and what goals we pursue to solve the problem.

Chapter 2 establishes basics to understand our approach and models for proactive rec-
ommender systems. First, the conditions of the automotive environment are derived
from literature. Second, we give a definition of our understanding of the terms context
and situation. Third, we describe methods of decision making and intelligent systems,
we used for our models. Fourth, we introduce recommender systems in general and es-
pecially context-aware recommender systems and explanations in recommender systems.
Finally, we describe properties of proactive assistance in general.

Based on this information, Chapter 3 details related approaches of proactive informa-
tion systems. The chapter is divided in approaches for the desktop, for mobile devices
and for cars. Furthermore, each section distinguishes approaches which either trigger
information delivery by the task of the user, the environment or user preferences.
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1.4. Road Map

Chapter 4 classifies our approach of proactive in-vehicle recommender systems
(P-IVRS). It defines the scope of P-IVRS compared to similar recommender systems,
potential use cases, requirements and the design of a P-IVRS. As a central component,
we detail how the system makes proactive decisions on its own.

The next three chapters describe our generic approach for each system component and
its evaluation. Chapter 5 details our framework for situation awareness in proactive
recommender systems. For evaluation, we describe the collection of training data and
three implementations of the core of the framework.

Chapter 6 comprises our approaches for context-aware recommendations. First, we show
the generic parts of our proposed model including prefiltering, postfiltering and a multi-
criteria decision making (MCDM) recommender to assess the items. Next, we focus
on detour as context because it is one of the most important context information in
our use case of gas station recommendations. Finally, a user study is described which
compares different kinds of MCDM methods for item assessment and postfiltering and
our location-based filter for prefiltering.

The third system component to generate explanations is described in Chapter 7. First,
findings from a preliminary study about explanations for gas station recommendations
are detailed. Second, we describe a general approach for an explanation interface for
P-IVRS. Third, our method for generating item explanations and its evaluation with an
offline study is described. Finally, our method for situation explanations is detailed.

The last Chapter 8 of our contribution comprises a user acceptance study. We design
an adequate user interface for proactive in-vehicle recommendations. It is used together
with the implementation the situation awareness model, the context-aware recommender
and the explanation component, to carry out the user acceptance study inside a car.

We close the thesis in Chapter 9 with a summary of our major findings and conclu-
sions. Based on the findings in this thesis and our experience with proactive in-vehicle
recommender systems, we give an outlook to further research.
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2. Basics

In this chapter, we investigate characteristics of the automotive environment, recom-
mender systems and proactive systems and describe basic notations for our problem.
The limitations of the automotive environment are important because our proactive
recommender is embedded into the car as an information system. Additionally, incor-
porating the context of the users and their situations is also necessary for drivers. We
describe our understanding of context and situations. As recommender systems lead
to a final choice, we introduce human decision making and mathematical methods for
multi-criteria decision making (MCDM). To make the system able to act intelligently,
we also introduce fuzzy logic and Bayesian networks and describe how Bayesian net-
works can be made comprehensible with explanations. We use these methods later to
build our proactive recommender system. Along with classical recommender systems, we
introduce context-aware recommender systems (CARS) and explanations in rec-
ommender systems. Finally, we describe general characteristics of proactive assistance
and proactive information systems.

2.1. Automotive Environment

Cars have developed in recent decades more and more into electronic devices assisting
the driver in various ways. Especially the numbers of advanced driver assistance sys-
tems (ADAS) have increased significantly over the years. ADAS comprise additional
systems in a car to support the driver. Some ADAS are supplemented by in-vehicle in-
formation systems (IVIS). IVIS either deliver relevant information for the driving task,
e.g., a warning, or assist the user with other kinds of information, e.g., music controls
(infotainment). Telematics systems such as a navigation system are the most popular
IVIS. In the context of designing information delivery as well as the interaction for IVIS,
designers have to be aware of driver distraction issues.

2.1.1. Advanced Driver Assistance Systems (ADAS)

Driving Task Classification

The classification of ADAS depends on the task of the driver which ADAS want to
assist and how the driver handles these tasks. The three level human performance model
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Figure 2.1.: Three levels of performance of skilled users (Rasmussen [Ras83])

of Rasmussen [Ras83] (Figure 2.1) describes goal-oriented behavior based on cogni-
tive load of a task. It is a psychological model that is widely used for ADAS because
driving itself is a goal-oriented task. The highest level of the model is knowledge-based
behavior for unexpected or untrained tasks inside a car. The driver identifies input in-
formation and creates a plan by weighting alternative actions based on current goals and
prior knowledge. It is the intention of the driver to follow this plan. Decisions are stored
in memory to shorten future reaction on similar input information. Knowledge-based
behavior is demanding for the driver, therefore Förster [F8̈7] recommends minimizing
intentional behavior while driving. On the second level, patterns in memory are rec-
ognized based on input information and behavior rules for these patterns are retrieved
(rule-based behavior). Recognition and retrieval of rules may become a routine dur-
ing a learning phase in which the process is often repeated. It leads to a subconscious
course of actions which is called skill-based behavior. The more skill-based an action
is executed, the more cognitive resources for other tasks are available. It strongly de-
pends on the experience of a driver or how often a traffic situation was experienced
respectively. A novice driver starts using the controls of a car such as the steering wheel
or the pedals on a knowledge-based level. On this level, the drivers have to think about
every action before they perform it. After some time, the user or driver becomes more
familiar with the controls of the car (skilled-based).

Donges [Don82] describes a three-layer driving task oriented model to complement
the human performance oriented model of Rasmussen. All layers of the model contain
parts which can be assigned to levels of Rasmussen’s model. The highest layer is the
planning or strategic layer. For instance, the drivers choose a route among alterna-
tives depending if the area is unknown (knowledge-based level), known (rule-based level)

10



2.1. Automotive Environment

or if it is routine (skill-based level). The next layer is the maneuvering or tactical
layer. It comprises the control of the car on the road and among other traffic partici-
pants. The lowest layer is the operational or control layer to stabilize the car. The
layers are subject to human, car and environmental influences.

Donges discusses components of the driving task itself and makes no difference how
much they contribute to the driving task. Bubb [Bub03] classifies tasks inside the
car by their contribution to the fulfillment of the driving task. Tasks which are directly
associated to the driving task are primary tasks. Secondary tasks comprise responses
to the environment, e.g., to honk or to indicate a turn, and reactions on the current
situation, e.g., turning on the windshield wipers or the lights. Tertiary tasks are
decoupled from the actual driving task and make driving or being in the car more
convenient, e.g., searching for points-of-interest (POIs) or turning on the air conditioner.

Resource-based Information Processing

The model of Rasmussen is derived from classical human information processing.
Abendroth [Abe01] distinguishes between sequential and resource-based models for hu-
man information processing. A sequential model assumes that the next stage of the
process can only be executed if the previous stage is finished. A resource-based model
implies that people only have limited resources available to perform tasks. Abendroth
and Bruder [AB09] mention visual, acoustic, haptic and vestibular recognition as im-
portant human resources for driving, whereas the visual sense is the most import one.
If tasks claim different resources their interference is lower but not fully unrestricted.
The resource-based approach is traced back to Wickens’ [Wic84] model of how people
process information to perform tasks. It contains the reception of information by human
sensory, the retrieval and the storage in the human memory and the choice of an action
based on a risk-benefit analysis. For driving, a zero or very low willingness to risk an
accident in the choice of an action is assumed. How efficiently an action can be per-
formed by the driver depends on the attention of the driver, i.e., how many resources
are available and how many resources the action needs.

Prediction and Preview

One of the most important capabilities of people for driving is prediction and preview
(for example, see Sheridan [She87]). Preview is the ability, mainly visually, to recognize
situations that are relevant for the driving task. Prediction is the estimation of future
situations that influence the driving task. The ability of prediction and preview is
strongly influenced by the experience of the driver. The anticipation time for predicted
situations is different depending on the level a task has in Donges’ [Don82] model, i.e.,
the time the driver needs to choose an appropriate action before a critical point. It
ranges from a long horizon of some hours on the strategic layer, e.g., for route selection,
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to some seconds to stabilize the car. For instance, guidance systems deliver instructions
to choose a maneuver some minutes before the critical point.

ADAS Classification

There are many ways to classify ADAS. Naab’s [Naa04] classification distinguishes
the systems according to their contribution to security and comfort. Complex driving
situations lead to high workload. This may decrease the performance of the driver.
This is a security risk where ADAS can deliberately intervene (for example, collision
avoidance or warning, emergency brake or curve speed control). ADAS can also deliver
higher comfort by taking over parts of the driving task (for example, adaptive cruise
control (ACC), parking assistant, lane keeping assistant or a navigation system). In
the last couple of years a third group of assistance systems became more and more
important which classifies systems according to their contribution to energy efficiency
(for example, stop and go systems). ADAS can be further classified by distinguishing
between active and passive systems (for example by Kosch [Kos05]). Passive safety
systems react in case an accident occurs to reduce negative consequences of a crash, e.g.,
airbags. Active systems react in case of a dangerous situation (generally just before an
accident) to prevent the accident at the last minute (e.g., electronic stability program
(ESP)).

Driver
Assistance

Information

Warning

Vehicle Dynamics Control

Action Recommendation

Partial Automation

Full Automation

Driver
responsible

System
responsible

?

Autopilot

Figure 2.2.: Categories of ADAS implementations according to the level of automation
(Donges [Don99])

Donges [Don99] makes a classification according to the level of automation (Figure
2.2). It is driven by the actual implementation of the assistance system. A system ranges
from simply showing information, over making a warning or recommending actions to
taking over parts of the driving task. A proactive recommender system is on the same
level as a warning system. It delivers recommendations instead of warnings but item
recommendations are no action recommendations. As a simplification, there are systems
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which inform the driver (in-vehicle information systems (IVIS)), others which act and
some which do both.

It is important to note that for all assistance systems the driver has always to be in
full control. In case tasks are performed by ADAS, the driver should always be able
to take back the control. In general, the costs of supervision should not lead to more
conscious behavior of the driver, i.e., a skill-based task should not become a rule-based
or knowledge-based task.

Sensory systems

The more automation is involved, the more a system needs the capability to interpret
environmental, human or car information. This calls for powerful sensory systems de-
ployed in the car. Sensors either capture the state of the car with integrated sensors (for
example, the current gas level or the temperature of the motor), the driver (for example,
with cameras or driver interaction behavior) or the environment (for example, with cam-
eras, lidar, radar or ultrasonic). Knowledge about the individual situation of a car can
be augmented by sensor information from other cars. Car2X (C2X) communication
(Car2Car or Car2Infrastructure) is a new technology to enable short-range exchange of
information between cars (for example, Rockl et al. [RRFS07], Strassberger [Str07] or
Kosch [Kos05]). Sensor data fusion aggregates pieces of sensor data to comprehend the
situation and enable to choose an appropriate action.

2.1.2. In-Vehicle Information Systems (IVIS)

IVIS Classification

In-vehicle information systems (IVIS) complement ADAS by providing information to
the driver. In the 1990s where assistance systems came up inside cars, information
systems comprised informing and warning the driver and to make action recom-
mendations (Naab [NR98] or Donges [Don99]). Informing the drivers comprises either
to show information relevant to the driving task, e.g., current speed, or to show the status
of an assistance system, e.g., detected lane information. The drivers receive information
to augment their situation awareness. This information would be hidden without the
system. With the fast development in consumer electronics, another category of IVIS
becomes more present inside cars. Infotainment systems are a mix of entertainment
and information systems and are not related to the driving task, i.e., they do not inter-
vene in the driving dynamics (Strassberger [Str07]), but can elsewhere be useful inside
a car. Examples of infotainment systems are POI systems and systems which provide
information about the weather or news.

13



2. Basics

Human Machine Interface (HMI)

IVIS use channels of output and input to interact with the driver, called human
machine interface (HMI). The goal of the HMI is to make in-car systems (technology)
usable (ergonomy) by means of the interface (design). Generally, the design follows a
separation of display and control. For displaying information, the central information
display (CID), the instrument cluster and the head-up display are common channels. In-
formation in the head-up display is generally more urgent and is needed continuously
by the driver (e.g., current speed, route guidance, gas level warning). Until the head-up
display was introduced into cars, the instrument cluster was responsible for this kind of
information. The CID is used for less urgent information such as the map view of the
navigation or POI search. In general, visual output is the closer to the glance direction
of the driver, the more urgent displayed information is. The CID is controlled in many
current cars by a central controller like the iDrive controller. Function-specific con-
trols are mounted around the steering wheel. Additional output channels, e.g., acoustic
(e.g., park distance control), audio (e.g., route guidance) or haptic (e.g., lane departure
warning), are also in use.

Warning Systems

The design of warning systems is related to proactive recommender systems as both
act without user request. Hoffmann and Gayko [HG09] state that a warning should
lead the attention of the driver to the right situation, for example, to avoid a crash,
and the driver should be supported in making a decision among alternative actions.
Warning elements are distinguished by their urgency and type. The choice of the
output channel influences the effectiveness of the warning. Visual warnings have a
high information rate and can be recognized quickly. Haptic warnings can be recognized
even more quickly but are only able to provide low information. Acoustic warnings are
only able to be recognized moderately and provide moderate information. The timing of
a warning system can be early, medium or late. It depends on the amount of information,
coverage (availability of resources) and pardonableness (false positives) which timing to
choose. Elements with low coverage should warn early to have the possibility to repeat
the warning later. The higher the amount of information is, the later an element can
warn. With more information, the reaction time is shorter. A warning is less disturbing
if it is more excusable, therefore it can be given earlier. Finally, warning elements
which indicate an action (e.g., to break) cannot warn early, because they have a low
pardonableness.

Information Flow

A challenge for IVIS is information overload. Information overload has emerged since
cars contain more and more information systems. Additional systems can be applied
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Figure 2.3.: Information flow inside a car (according to Ablassmeier [Abl09])

to regulate the information along the flow of information as described by Ablassmeier
[Abl09] (Figure 2.3). Heterogeneous information of driver information systems is on the
application layer, e.g., sensor data or a POI database. Information is processed by
deciding which information is relevant for the driver (What? ) and when to deliver it
(When? ). The representation layer prepares information for the output (How? ) and
chooses an adequate channel and modality of output (Where? ). With the HMI, the driver
is able to give feedback to the delivery. The feedback may propagate down the layers.
All of the layers may be influenced by contextual information which helps to achieve
each of the goals of the layer. For instance, a gas level indicator captures the current
gas level from the sensor inside the tank on the application layer. On the processing
layer, rules trigger a warning or simply forward the gas level. On the representation
layer, either the warning is shown in the instrument cluster accompanied by an acoustic
output or the current gas level.

Telematics Systems

A special kind of IVIS is a telematics system. The term itself is a composition of
telecommunication and informatics. It describes information systems that make use of
telecommunication technologies for information gathering. Although the term covers
many systems such as fleet management or e-learning, we are only interested in in-car
telematics. The most popular application of telematics inside a car is a navigation
system. Navigation systems comprise both the actual routing from one point to
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another in a street network and services around the routing such as POI search or traffic
information. Static information about the environment of the driver is stored in local or
distributed databases. The most important databases are the digital street map and
the storage of POIs. Current development considers making use of navigation systems
as sensor to support long-term preview and prediction capabilities. For instance,
Ress et al. [REHK05] describes an ”electronic horizon (EH)” which is a subset of
navigation information along the route provided on the internal bus system.

A navigation system consists of several components. The positioning system uses the
current position of the car to provide navigational services. An absolute position is
generally delivered by a global navigation satellite system (GNSS) like the geo-
graphical positioning system (GPS) with an uncertainty of about 10 to 15 meters
(depending on the system and environmental circumstances). Cars also use in-car sen-
sors to improve the accuracy with relative positioning, called dead reckoning. The route
planner calculates a route based on user input, databases and the position of the car.
Common algorithms use modifications of Dijkstra’s algorithm [Dij59] to determine the
shortest path between two nodes in the street network based on a cost model, e.g., time
or length. A wireless communication component assists the route planer by provid-
ing dynamic information about the current traffic situation, for example, in form of a
traffic message channel (TMC) message. On the go, the map-matching compo-
nent matches information from the positioning system to the street database to show the
drivers the current position and guide them to their destination. The guidance assists
the drivers by selecting next maneuvers. Besides the acoustical or visual output of the
guidance, information such as the current position, POIs or the street map can also be
shown in a digital map display. More detailed information about in-car navigation
systems can be found in Kleine-Besten et al. [KBKPS09].

2.1.3. Driver Distraction

Cause

The drivers interact with IVIS by consuming the output or putting information into
the system. Output as well as input is a tertiary task concurrently performed with the
primary task of driving the car. Therefore, designer of IVIS should take driver distraction
into regard. Although distraction is also caused by sources such as eating or talking to a
passenger, we are nevertheless interested in how distraction is caused by an information
system. For a more comprehensive view, Kircher [Kir07] provides an exhaustive review
of driver distraction literature.

The danger of distraction arises when two different tasks are executed at the same time.
However, according to Wickens’ [Wic84] interference model, a concurrent task not
necessarily lowers the task (driving) performance if two different human resources are
required, e.g., haptic for one task and visual for another. Ranney et al. [RMGG01]
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distinguish visual distraction (short or long glances away from the road), auditory dis-
traction (voices or environmental noise), physical distraction (hands and feet are doing
something else than driving) and cognitive distraction (thoughts not related to the driv-
ing task). Cognitive distraction may cause ”tunnel vision” (Victor et al. [VHE05]) which
lets the drivers stare on the road but ignore environmental circumstances important for
the driving task. Research on distraction by visual and interaction-demanding systems
such as navigation systems (for example, in Tijerina et al. [TPG98]) shows that vi-
sual and physical distraction cause higher performance degradation than auditory and
cognitive distraction.

Compensation

The drivers have different conscious and unconscious abilities to adapt driving be-
havior to compensate the demand of the situation (Haigney et al. [HTW00]). On the
strategic level, they can decide to postpone and avoid distracting tasks, e.g., interacting
with an in-car system. On the operational level, the reaction can be to reduce speed.
Chiang et al. [CBW01] found that the drivers reduce speed when they enter a destina-
tion into a navigation system. Driver distraction occurs when there are not enough
resources left to share attention and compensate the demand of a concurrent task by
adaptation. It can also occur if the driver focuses on an object, event or person not re-
lated to driving (Tasca [Tas05]). If the drivers cannot adapt to the distraction, a crash,
misses in navigation or low driving performance, e.g., frequent lane crossings, can be the
outcome of distraction.

Consequence

Characteristics of the driver, the complexity of the driving task and the current task
determine the level of distraction. The state of the driver is one of the characteristics.
Kopf [Kop05] distinguishes long-term (e.g., experience, load-bearing capacity, personal-
ity or disabilities), mid-term or enduring the ride (e.g., fatigue, drowsiness, health or
alcohol/drugs) and short-term (e.g., attention, emotion and vigilance) driver states.
In this context, Shinar et al. [STC05] show that solving a mathematical question repre-
senting a complex concurrent task has more negative influence on driving than making
an emotional call. Next to characteristics of the driver, also characteristics of the driving
task have an influence. For instance, different kinds of traffic situations are differently
complex for the driver (Fastenmeier [Fas95]). Other tasks than driving are the third
influence factor. If a concurrent task involves other devices, their design is important.
Design properties are among others, integration into the car HMI, kind of interaction
(e.g., iDrive Controller, touch screen) or colors and size of text information. Many stud-
ies mention the danger of using a mobile phone while driving (a review is provided by
Young and Regan [YR03]). The design as well as legislature may lower potential driver
distraction (e.g., prohibit the usage of mobile phones while driving).
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The danger of distraction increases as soon as the driver interacts with IVIS. Tijerina
et al. [TPG98] show that putting information into a navigation system requires long
completion time, long eyes off the road and frequent glances on the device. Dingus et
al. [DMH+95] found that a voice-based turn-by-turn guidance has lower demand of the
driver compared to map-based guidance, especially for complex maps. Therefore, Green
[Gre99] proposes a 15-second completion rule for navigation-related tasks involving visual
display and physical control.

2.2. Context and Situation

Research in the area of proactive information retrieval has shown that the usefulness of
such systems depends on their capabilities to retrieve information depending on context
(e.g., Rhodes [Rho03] and Leake and Scherle [LS01]). Nevertheless, it is difficult to
define what context is at all. Bazire and Brezillon [BB05] found 150 definitions of
context in their literature search and Adomavicius and Tuzhilin [AMK11] add that
every application domain of context uses its own tailored definition. In automotive
research, authors such as Ablassmeier et al. [APRR07] emphasize the role of context for
information delivery inside a car. In this section, we define our understanding of context
for this work. Especially in the automotive area, the situation of the driver influences the
consumption of information. Situation and context share some characteristics. Similar
to context, the term situation is often used with different meanings or even equivalent
to context. We also define how we use situation in this work.

2.2.1. Context

Definition

Context is defined in mobile systems as information that is additionally used to enhance
mobile applications. In early definitions, researchers listed information that belongs to
context. Location is one of the most applied context types in the mobile environment
but not the only relevant one (Schmidt et al. [SBG99]). Schilit and Theimer [ST94]
state that user context (profile, location, people around and the social situation),
physical context (light, noise, traffic and temperature) and computational context
(connectivity and nearby resources, e.g., printer) are the most important aspects of
context. Brown et al. [BBC97] add the time of day or the season of the year. Ryan et
al. [RPM98] additionally use the environment and the identity of the user and Dey et
al. [DAS01] add the emotional status and the attention of a user. Wörndl and Groh
[WG07] emphasize the usefulness of physical and social context in case of recommender
systems.

Dey et al. [DAS01] note that ”the notion of context is still ill defined” by that time.
They define context in a generic way:
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Context is any information that can be used to characterize the situation of
entities (i.e., whether a person, place, or object) that are considered relevant
to the interaction between a user and an application, including the user and
the application themselves.

The definition of Dey et al. refers to context in computer systems with a user and an
application. Information comprising context in the interaction is kept open but should
be relevant for the situation of an entity. Winograd [Win01] refers to the work of Dey
et al. and notes that ”context is an operational term” because ”something is context
because of the way it is used in interpretation, not due to its inherent properties”. That
means that the same information can be context in one case and no context in another.
For instance, the identity of a user is generally no context, but if demographic informa-
tion about the users is known to the system, it becomes context. The interpretation of
information as context depends on the entity it is interpreted for. Kosch [Kos05] em-
phasizes that context is always connected to an entity and never occurs detached from
it. Schmidt et al. [SBG99] state more precisely what context for an entity is. They refer
to context as the ”knowledge about the user’s and IT device’s state”. Similarly, Strang
et al. [SLPF03] refer to context information as part of context that ”characterizes
the state of an entity concerning a specific aspect”. They explain aspect as a specific
dimension of the state space with a semantic meaning. An aspect is characterized by a
scale of possible values that it adopts. Finally, they define context itself as the set of
context information relevant for the task of the user if the entity is a user. If this
task is executed by means of interaction between the user and the application, the view
on context of Strang et al. and Dey et al. overlap.

Classification

Research in context-aware systems mainly focuses on context related to mobile de-
vices (e.g., see a review of applications in Chen and Kotz [CK00]). We are especially
interested in context concerning a driver. Hoch et al. [HSAR07] describe the principle
idea of BMW’s ”ConntectedDrive” vision based on three major sources of context rele-
vant in the automotive environment (Figure 2.4). The environment context comprises
the surroundings of the car (e.g., traffic participants, weather, road surface conditions
and facilities and buildings around). The car context tells us something about the
car itself and its components (e.g., current pressure of tires, oil or gas level, position or
velocity). The driver context includes the mood of the drivers, their physical condition
(e.g., fatigue), what the drivers are doing or where they are looking. Together, these
three types of context form the so-called ”situational context” (Hoch et al. [HSAR07])
as an abstract construct.
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Figure 2.4.: Automotive context (Hoch et al. [HSAR07])

For context modeling and incorporation, it is common to differentiate context types
(see Strassberger [Str07]). Dey et al. [DAS01] distinguish between low-level and high-
level context. Sensors directly observe low-level context and high-level context is derived
from observed context. Furthermore, Dey and Abowd [DA99] refer to primary context
as information that directly characterizes the situation of an entity (e.g., its name)
and leads to secondary context (e.g., its email address). Strassberger [Str07] further
distinguishes raw sensor information and its mapping to the scale of an aspect as
abstract sensor information. Both are low-level context. The fusion of a set of sensor
information that refers to the same aspect is called aggregated information, e.g.,
several sensors for the speed of a car. Derived information is received by interpreting
low-level information. Aggregated as well as derived information are high-level. Mapped
on the understanding of context of Dey and Abowd, raw sensor information is primary
context and the rest is secondary context.

Different to the classification in types, Dourish [Dou04] makes a distinction between a
representational and an interactional view. In the representational view the type of
context to be processed is known in advance and its current value has to be captured
during the run-time of the application. The interactional view assumes that the
behavior during interaction depends on context, but context itself does not have be
known by the system itself. A bidirectional view of context influencing actions and vice
versa is assumed.

Incorporating Context

For the incorporation of context into applications, we distinguish the terms awareness,
adaptivity, dependency and sensitivity. Awareness means to process context in some
way. One of the ways is adaptivity. It comprises a change of behavior. We distinguish
two kinds of behavior change. A system is dependent if its functionality only works
when context is known. It is sensitive if it changes its output based on context, e.g., the
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position of an item in the ranking. This definition is consistent to Dey et al. [DAS01].
The authors state that ”a system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on user’s task”. Chen
and Kotz [CK00] distinguish active context awareness where an application changes
its behavior due to context and passive context awareness where an application only
presents a new context but does not process it.

Context Modeling

To process contextual information, it has to be modeled in an adequate and computer
understandable way. In a recent survey by Bettini et al. [BBH+10], further information
about context modeling can be found. Strang and Linnhoff-Popien [SLP04] conclude
on an exhaustive survey of context modeling methods that ontologies are the most
expressive method to describe context. They also list characteristics of context processed
by a system. The quality of context depends on the sensor that captures the information
and therefore may differ based on the sensor itself and the environment. Information that
is sensed can be incomplete or ambiguous. Depending on the application, different
level of granularity may be required.

The work of Baldauf et al. [BDR07] investigates several software frameworks for
context-aware systems. A typical structure is a hierarchical infrastructure with a lay-
ered architecture. The highest layer comprises the application itself. It communicates
with a central broker or manager of context information that typically supports a het-
erogeneous context model. On the lowest level, resource services (e.g., sensors) deliver
information and context recognizers provide functionality to process information.

2.2.2. Situation

Definition

We define a situation as an abstract construct that does not exist without context and
cannot be measured by sensors. Anagnostopoulos et al. [ANH07] state that ”situations
are viewed as logically aggregated pieces of context”. In contrast to context, a situa-
tion occurs detached from an entity (Kosch [Kos05]). Entities are rather involved in
situations. Multiple entities can share the same situation but need not to have exactly
the same context. For instance, several cars can be in a congested traffic situation at
the same time but their speed context is not necessarily the same. It may differ slightly.
Even if two contexts have the same value, they belong to separate entities. Change
of context information of one entity does not affect the other. Regarding modeling of
context and situation, a context object belongs to exactly one entity object and several
entity objects may share a situation object. If a situation changes all entities are affected.
This is consistent to Dey et al. [DAS01]. The authors state that context ”characterize
the situation of entities”. It follows a direction of causality. Situations are caused by
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changes of individual context of entities. Situation changes do not cause the change of
context. A situation exists as long as at least one entity is in that situation. An entity
enters a situation if the situation already exists and context information of the entity
takes similar values as context information of other entities in that situation.

The definition of situation of Strang et al. [SLPF03] is ”the set of all known context
information”. They mention all context information in contrast to only relevant context
information. The consequence would be that only one situation exists. Similar to the
definition of context that should be relevant for the interaction (Dey et al. [DAS01]), we
define a situation by distinguishing between context information that is more relevant
and such that is less relevant for a specific situation. Hence, more than one situation
exists. For instance, the speed of a car makes a strong contribution to the situation ”We
are in a traffic jam”, whereas the volume of the music system inside a car has nearly
no contribution to ”We are in a traffic jam” but to the situation ”It is noisy”. We only
need to measure the set of context information that sufficiently defines a situation.

A situation depends on the specific understanding of a user or a system of the under-
lying context information. Barwise [Bar81] describes a situation as an excerpt from the
reality that people perceive and live in.

Characteristics

In contrast to context, we do not distinguish hierarchical structure of granularity and si-
tuation information and situation. Situations can only be derived from other situations.
Furthermore, context has no semantic information. On the other hand, individual con-
text information describes so-called aspects which are semantic information (Strang et
al. [SLPF03]). In our understanding, situations include semantic information. Based
on these observations, we treat situations as abstract context information with special
characteristics. Similarly, Anagnostopoulos et al. [ANH07] emphasize that ”situation
awareness is considered as the particular kind of context awareness”.

Temporal aspects are an important characteristic of situations. Situations appear in
a range of time, whereas context is considered independent from time. Situations that
occur over a range of time are not disjoint and therefore have temporal dependencies.
According to Pfennigschmidt and Voisard [PV09], a situation comprises situation char-
acteristics itself and an interval [tb, te] in which a situation begins and ends. There are
also relationships among situations in time depending on different granularity of time
(e.g., minute, hour, day, month). The authors call a set of non-overlapping situations
over time a situation sequence. From the field of temporal reasoning by Allen
and Ferguson [AF94], we adopt the relationships which situations can have. Situations
X and Y in a sequence use the relations: X meets Y , X takes place before/after Y or
X starts/ends Y . Additionally, situations in different sequences can use: X during Y
or X overlaps with Y . Temporal reasoning is especially valuable for generating plans
which contain actions in a sequence.
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Situation Awareness

Research in context and context awareness focuses on the exploitation of context in
computational systems. Situation awareness is driven, mainly in cognitive science, by
the concept which people use for performing tasks, e.g., in surgery or aviation. Billings
[Bil95] describes situation awareness as ”an abstraction that exists within our minds,
describing phenomena that we observe in humans performing work in a rich and usually
dynamic environment”. Endsley [End00] simply says that ”situation awareness is know-
ing what is going on around you”. She emphasizes that the more data that is produced
does not necessarily mean that more information is needed. We do not need to know
everything but depending on our goals and the nature of our decision task, we need to
understand things around us. For example, a surgeon and a pilot need to know different
things because they have different goals. This work follows the definition of situation
awareness by Endsley’s [End00]:

The perception of the elements in the environment within a volume of time
and space, the comprehension of their meaning, and the projection of their
status in the near future.

Endsley [End00] defines a general model for situation awareness (Figure 2.5). Situa-
tion awareness is in between a system and a user included in the process of performing a
task. Individual factors such as goals, personal characteristics such as the memory
and system characteristics mainly influence situation awareness. Situation awareness
is used to make decisions that lead to actions. Actions are part of a plan. Anag-
nostopoulos et al. [ANH07] emphasize that ”uncertainty plays a central role in the area
of situation awareness” because context is subject to imperfection. Even if situation
awareness is entirely perfect, incorrect decisions can be made with an incorrect decision
model. The core of situation awareness contains three levels:

• 1. Level: The perception of information the situation awareness is based on
is fundamental. The more information is missing or inaccurate the worse the
picture of the environment becomes which may lead to wrong decisions. A system
perceives its environment by means of sensors and through communication with
other systems.

• 2. Level: The comprehension of the situation combines pieces of information
according to their relevance towards the decision task. Not all information that is
perceived needs to be interpreted but only a subset of relevant information. The in-
terpretation involves a subjective (awareness) and objective (situation) component
because every comprehension is a subjective interpretation of how things really are.

• 3. Level: On the highest level, a prediction of future situations is done. The pre-
diction is done based on the comprehension of current situations (Level 2) or based
on perceived states of the environment. Both the situation and its implication can
be part of a forecast. Forecasts allow for timely decisions.
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 

          
           
     
 

              
           
    
            
  

     

    

      
        
              
            
 

    

   
          
            

Figure 2.5.: Model of situation awareness in dynamic decision making (Endsley [End00])

Time plays an important role on Level 2 and 3 of the model. The system has to
understand how much time it has to make a decision or perform an action. It also
should measure how soon projected situations have an impact on decisions.

McGuinness and Fox [MF00] propose a fourth level called ”Resolution” on Endsley’s
model. It decides about an action from a set of available actions. The analogy is to ask
what shall we do, after we know the facts (Level 1), what is going on (Level 2) on and
is going to happen (Level 3). To make such cognitive concepts of situation awareness
applicable for computation systems, models for data fusion, e.g., the JDL model (Llinas
and al. [LBR+04]), were proposed (see Esteban [ESW+05] or Salerno et al. [SHBB03]
for a review).

2.3. Decision Making

Situation awareness provides fundamental information for making good decisions during
a task. Recommender systems assist the user with the task of finding appropriate items.
This involves making a decision towards one or more items. Jameson [Jam11] empha-
sizes the role of results from psychosocial research in decision making for recommender
systems. Incorporating these results may lead to better results in the usability of the
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system. A proactive system may also take over some of the decisions to assist the user.
To do this adequately, the same decision strategies should be used by the system as
are used by the user. This section comprises general aspects of decision making, which
strategies are applied by people and which methods exists for computational decision
making.

2.3.1. Background

Decision Strategies

The researchers in utility theory assumed that people make decisions by maximizing
benefit and minimizing costs which is called a rational decision. This view was
extended and refined by findings in the last couple of decades. The prospect theory
model of Kahneman and Tversky [KT79] describes how decisions are made if probabilities
(prospects) are assumed with alternatives. Such uncertainty is common for real world
decisions. The model assumes that people tend to have an aversion against lost. Simon
[Sim97] found that decisions are subject to bounded rationality. Decision making is
limited by available information and its certainty, the cognitive ability of people and the
amount of time to make a decision. The result is that decisions are often made without
taking all criteria into account but more out of a ”gut feeling” (e.g., Gladwell [Gla05]
or Gigerenzer [Gig07]). Simple rules and heuristics are applied to make decisions.
Gigerenzer [Gig07] shows that the quality of these decisions is often better than with
exhaustive assessment. Payne et al. [PBJ93] refer to the principle of least effort by
Zipf [Zip49] to explain the usage of simple decision strategies such as heuristics. People
choose the decision strategy that provides enough accuracy for the current task with
minimal cognitive effort.

Payne et al. [PBJ93] emphasize that the selection of a decision strategy is adapted
to context and situation of a decision. Influencing factors are the nature of the decision
problem (the task itself and its context), the person (cognitive abilities, prior knowledge)
and the social context. Task complexity comprises the number of alternatives and
attributes and if time pressure is involved. Miller [Mil56] shows that the maximum
number of items such as alternatives or attributes that can be processed at once is 7
plus minus 2. Context effects comprise such aspects like the similarity of alternatives,
the quality of the alternative set or framing effects. Framing effects mean that the
decision makers only use the information that is displayed and the way it is displayed
(Slovic [Slo72]). As a result, inconsistency in preferences can occur if alternatives
are presented in a different kind (Kahneman and Tversky’s prospect theory [KT79]).

Choice

The process of decision making results in a final choice, e.g., to choose an item among
alternatives from a recommendation. Early studies in psychology demonstrated that in-
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trinsic motivation and task performance increase with choice (see Deci and Ryan [DR85]).
According to Iyengar and Lepper [IL00], this only means that choice is better than no
choice but does not tell anything about the number of alternatives. In fact, early studies
incorporated only small sets of alternatives. Iyengar and Lepper show that less choice
leads to a higher probability of purchasing products and higher satisfaction with the
selection compared to choosing among large sets of alternatives. With a more complex
decision space, people tend to switch to simple heuristics and rules or avoid choosing
at all (e.g., see Shafir [SST93]). Faced with large decision spaces, people tend to create
so called consideration sets as a trade-off between decision costs and benefits of a
choice (Hauser and Wernerfelt [HW90]). They risk to leave an alternative out which
should belong to the set or add one which is of poor quality (Keller and Staelin [KS87]).
Methods to reduce the set of alternatives are to ignore dominated alternatives (Keeney
and Raiffa [KR76]) or to incorporate user preferences. However, these methods require
making trade-offs and making trade-offs imposes effort on people (Luce et al. [LPB99]).

People want to justify their choice to themselves and others. They seek for reasons to
make a decision (Shafir [SST93]). These reasons can be rational and bound to criteria
but can also be decoupled from criteria.

Time of Outcome

Another influence factor for decisions is the time of outcome of a decision, e.g., the
decision to save money with the outcome of a new car in some years. The benefit of an
event is perceived as higher if the event takes place sooner than later (Löwenstein et al.
[L0̈3]). A disadvantage of immediate benefit maximization is that more decisions have
to be made over time.

2.3.2. Human Decision Making Strategies

Classification

People use several decision strategies flexibly (Payne et al. [PBJ93]). Compen-
satory strategies evaluate every relevant attribute of the alternatives and make trade-
offs. Bad attributes of an alternative can be compensated by good attributes. Non-
compensatory strategies only regard a subset of attributes. In contrast to compen-
satory strategies, they avoid conflicts. Compensatory strategies impose in general more
cognitive load. These strategies differ in the amount of information processed. Either
every relevant attribute is evaluated or the amount is reduced, e.g., to lower cognitive
load. Furthermore, attributes can either be processed across alternatives (attribute-
based) or within each alternative separately (alternative-based). According to Russo
and Dusher [RD83], attribute-based strategies impose less cognitive load. The strategies
also differ in the formulation of alternatives, for example, by using an overall evalua-
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tion metric like a score. Finally, strategies may calculate metrics to compare alternatives
(quantitative) or alternatives are compared directly (qualitative).

Strategies

The weighted additive (WADD) strategy (e.g., in Keeney and Raiffa [KR76]) is a
rule that considers all relevant attributes of each alternative and the preference weights
of the decision maker to determine an overall evaluation metric. To simplify the WAAD
strategy, Dawes [Daw79] suggests a heuristic called equal weight (EQW) that ignores
weights or probabilities but evaluates all alternatives and attributes. Similar to WAAD,
Tversky [Tve69] describes the additive difference (ADDIF) strategy. The difference
of each attribute is weighted and summed in a pairwise comparison.

Simon [Sim55] noticed that decision maker often do not optimize the output of a decision
(rational) but are satisfied if an alternative is found which is ”good enough”. The
heuristic is called satisficing (SAT). Alternatives are evaluated one after another and
in case an alternative is found which fulfills the preference requirements, then the process
is stopped. The outcome depends on the order or processing. Variants of the strategy
involve all attributes or a subset for the assessment. The heuristic is often used when
the set of alternatives is large.

Another heuristic that can be applied in case of large choice sets is elimination-by-
aspect (EBA) (Tversky [Tve72]). It orders the most important attributes (aspects)
and a predefined cut-off level eliminates all alternatives that do not exceed the level.

Ordering of attributes is also done by the lexicographic (LEX) heuristic. Hereby,
attributes are ordered according to the preferences of the decision maker (Fishburn
[Fis74]). Equal alternatives concerning the most important attribute are compared on
the second most important attribute and so on.

Another group of strategies counts good and bad attributes of alternatives. Russo and
Dosher [RD83] describe the majority of confirming dimensions (MCD) heuristic.
Alternatives are evaluated pairwise on each attribute and the alternative with the most
winning attributes is compared to the next. This is similar to ADDIF but without user
weights. Alba and Marmorstein [AM87] describe a similar heuristic called frequency of
good and bad features (FRQ). A metric for grouping attributes in a binary set of good
and bad is chosen, e.g., a cut-off level, and the frequency of attributes in these groups
are counted for each alternative. It corresponds to a type of voting for alternatives.

2.3.3. Multi-Criteria Decision Making (MCDM) Methods

The challenge of comprehensive strategies is to aggregate attributes of alternatives to
a final assessment. Research in multi-criteria decision making (MCDM) defines a set
of mathematical tools to aggregate multiple criteria or to select alternatives. Criteria
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can be either attributes or high-level information based on attributes. The methods
are developed for complex decisions tasks, e.g., buying a new car or choosing a financial
product. Fülöp [F0̈5] groups the methods in multi-attribute utility theory (MAUT)
(Keeney and Raiffa [KR76]) and Outranking. There are also methods to select alter-
natives based on dominance of criteria. For all methods, alternatives and criteria can
be set up as a decision matrix:

Criteria

Alternatives
C1 C2 · · · CN
W1 W2 · · · WN

A1 a11 a21 · · · a1N

A2 a21 a22 · · · a2N
...

...
...

...
...

AM aM1 aM2 · · · aMN

A multi-criteria decision problem is the selection of the best alternative Ai from a decision
matrix M ×N . In case of recommendation systems, an alternative is an item and aij is
the characteristic of a criterion Cj of this item. Every criterion has a weight Wj which
is either relative with

∑
W = 1 or absolute, depending on the method. The weights

correspond to user preferences.

MAUT

MAUT methods maximize a function. The main characteristic of MAUT is that bad
performing items on one criterion can be compensated by good performing criteria.
The weighted sum model (WSM) is the simplest MAUT method and calculates the
weighted mean score Si over every criterion for all alternatives with the Equation 2.1.

Si =
N∑
j=1

aij × wj (2.1)

This allows ranking the alternatives according to Si but fails if the units of the criteria are
not equal. The method also disregards the range of the values within a criterion. To cope
with heterogeneous information, the weighted product model (WPM) approach can
be used. It multiplies instead of sums up the criteria and powers instead of multiplies
the weights to calculate the score Si (Equation 2.2).

Si =
N∏
j=1

a
wj

ij (2.2)
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WPM has to be applied carefully to attributes that can be 0 because the output would
always be 0 independent from other dimensions. Contrary to WSM and WPM, the
analytic hierarchy process (AHP) (Saaty [Saa80]) uses relative importance of alter-
natives and calculates assessments pairwise. It decomposes the decision problem into
hierarchies by comparing each alternative in each criterion dimension separately. A pair-
wise comparison does not require the scale of the criteria to be ordered, e.g., a numeric
scale, because the assessment is built by comparing two alternatives directly. First, the
decision maker assesses all criteria with a relative importance. The importance scale
used in the original AHP is:

1 Equal importance or preference

3 Moderate importance or preference of one over another

5 Strong or essential importance or preference

7 Very strong or demonstrated importance or preference

9 Extreme importance or preference.

0,2,4,6,8,10 Values in between

With n alternatives n2 pairwise comparisons have to be made theoretically. As aji is

equal to 1
aij

and no alternative have to be compared with itself, we get n∗(n−1)
2 com-

parisons finally. Pairwise comparison is done once for the criteria by building a N ×N
matrix and once for all alternatives by building N M ×M matrices. In case the weights
for each criterion are already known, e.g., because the user entered them explicitly, only
the pairwise comparison for the alternatives is necessary. After the pairwise comparisons,
the square matrices are reduced to a priority vector with N respectively M values. The
original AHP calculates the maximum Eigen vector of the matrices. Calculating the
Eigen vector involves the successive multiplication of the matrix with itself and building
the normalized check sum of the rows. If the difference between consecutive vectors
becomes very small, the process stops. The last step in AHP is to use other MAUT
methods such as WSM or WPM to calculate the final assessment.

Outranking

In Outranking, alternatives are compared to the ideal alternative and the worst alter-
native. The first step is to construct an outranking relationship by determining the
preference between two alternatives. The second step is to evaluate the relationship to
construct a preferred set of alternatives or a ranking. In contrast to MAUT, Outrank-
ing methods can cope with weak as well as with strict preferences that often results
from imprecise preferences models in reality. Among several existing methods, we select
the technique for order preference by similarity to ideal solution (TOPSIS)
(e.g., in Hwang and Yoon [HY81]) as Outranking method because it is more generic.
Another popular method called ELECTRE only provides a set of preferred alternatives
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and no explicit ranking. The basic idea behind TOPSIS is to rank the alternatives by
the shortest distance to the ideal alternative and the longest distance to the worst alter-
native. TOPSIS starts with converting M attribute values aij for each alternative into
dimensionless values using the Equation 2.3.

rij =
aij√
M∑
i=1

a2
ij

(2.3)

Next, a weighted normalized matrix V is constructed using normalized weights W with∑
W = 1. The ideal value A∗ (Equation 2.4) and the worst value A− (Equation 2.5)

are taken from the weighted matrix V .

A∗ = {(max vij |j ∈ J), (min vij |j ∈ J∗)|i = 1, · · · ,M} (2.4)

A− = {(min vij |j ∈ J), (max vij |j ∈ J∗)|i = 1, · · · ,M} (2.5)

The ideal value is a virtual alternative with the ”best” criterion from every dimension.
Either the value is the minimum if the criterion j is cost oriented (J∗), e.g., detour, or
it is the maximum if the criterion j is benefit oriented (J), e.g., cost saving. The worst
value is the same but vice versa. Next, we calculate the distance between all alternatives
and the ideal and the worst value by using the Euclidean distance (Equations 2.6 and
2.7).

Si∗ =

√(∑
(vij − vi∗)2

)
, i = 1, 2, 3, · · · ,M (2.6)

Si− =

√(∑
(vij − vi−)2

)
, i = 1, 2, 3, · · · ,M (2.7)

The last step aims to calculate the relative closeness to the ideal solution. It should
have the longest distance to the worst solution simultaneously. This is done by Ci∗ =
Si−/(Si∗ + Si−), 0 ≤ Ci∗ ≤ 1, i = 1, 2, 3, · · · ,M . The result is a vector C = (Ci, ..., Cn)
which enables us to rank the alternatives. To receive values in [0, 1], all elements of the
vector have to be normalized with

∑
C.

Dominance Filtering

Instead of calculating single assessment scores from several criteria, alternatives can also
be filtered directly. The Skyline operator is a technique from database engineering
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(Bor̈zson̈yi et al. [BKS01]) to classify a set of dominant items with multidimensional
criteria. As there is no single solution in a multidimensional optimization problem, the
dominance of an alternative ~a = (b1, ..., bn) over an alternative ~b = (b1, ..., bn) is defined
with the so-called Pareto dominance in Equation 2.8.

~a >D ~b↔ ∀i : ai ≤ bi ∧ ∃k : ak < bk (2.8)

The alternative ~a Pareto dominates alternative ~b if ~a is better in at least one dimension
and equal in all others. The more the dimensions are correlated, the fewer elements
are classified. The amount of alternatives in the Skyline set also increases with the
number of dimensions. Skyline can be applied without having the exact utility function
of an attribute. It has only to be known if the attribute is monotonically increasing or
decreasing. For many attributes this can easily be derived, e.g., a cheap gas station has
obviously more utility than an expensive one.

The regular Pareto dominance uses stringent comparison between the dimensions.
Therefore, items such as ~a = (8.75, 7.5), ~b = (8.70, 7.55) and ~c = (1.25, 7.6) are all
in a Skyline set. To reduce the set further, we make the Skyline comparison fuzzy with
a fuzzy factor µ in [0%, 100%]. This excludes either ~a or ~b because they are too similar
and ~c because it only dominates slightly in one dimension and is much worse in the other
dimension. A fuzzy factor µ extends the comparison operators > (Equation 2.10) and
= (Equation 2.9).

ak =µ bk ↔ |
ak − bk
rk

| < µ (2.9)

ak >µ bk ↔
ak − bk
rk

> µ (2.10)

~a µ dominates ~b if ~a is much better (>µ) in at least one dimension and equal, better or

worse (=µ) in all other dimensions. If ~a and~b are equal, better or worse in all dimensions,
only one item is taken randomly. The value r is used for normalization and is the upper
range border of the kth dimension.

A different way of reducing the Skyline set is to loosen the dominance requirement on k
dimensions where k < n for the number of dimensions n (Chan et al. [CJT+06]). This
can especially be useful if the number of dimensions is large because it is more unlikely
that the Pareto dominance condition is fulfilled. Alternative ~a k-dominates ~b if it is
better in at least one dimension and equal in k other dimensions. The k Skyline set is a
subset of the Skyline set and becomes equal for k = n. It is also possible to incorporate
user weights. User weights W indicate the relative importance of a dimension. This can
be exploited in an extension of the k Skyline to the ω Skyline by using a threshold
weight ω on k dimensions. Then, alternative ~a ω dominates ~b when the sum of weights
of all regarded dimensions exceeds ω.

31



2. Basics

2.4. Intelligent Systems

Besides the selection of relevant items, a proactive recommender also triggers the deliv-
ery of recommendations automatically. To be able to decide the right moment for the
delivery ”intelligently”, the proactive recommender needs a component that processes
information towards this decision. Relevant information to process in this case is context
information, situations of the users or user preferences. The research area of intelligent
systems provides well-defined methods for information processing. However, real-world
information involves uncertainty and even if we have perfect knowledge, the decision is
subject to uncertainty. Therefore, only methods that cope with uncertainty are relevant
in our case. In this section, we focus on fuzzy logic and Bayesian networks because these
methods are applied in our system. There are many other approaches from the field of
intelligent systems that could be used in our case but these approaches are out of scope
for this thesis. We refer to basic literature in this field of research (e.g., see Russell and
Norvig [RN02]). Furthermore, we describe basics of explanations in Bayesian networks
to make the intelligence of the system comprehensible for the user. Finally, feature
selection methods are used to investigate situations relevant for a decision.

2.4.1. Fuzzy Logic

Fuzzy Sets

Fuzzy logic is dated back to Lotfi Zadeh [Zad65]. It tries to cope with uncertain and
vague information by mapping this information to a set. In contrast to first-order logic,
a fuzzy variable can have more than one value at the same time. The term fuzzy logic
comprises mathematical models as extension to set theory and an inference mechanism.

A fuzzy variable maps a crisp value like 15◦ to one or more fuzzy values like ”mild”
or ”cold” with a certain degree of membership. The fuzzy values form a fuzzy set A
which members are taken from a universe U . Like a discrete set, a fuzzy set contains a
finite number of elements u ∈ U . Additionally, a total projection µA : U → [0, 1] called
membership function defines the degree of membership of an element u ∈ U to the
set A (Equation 2.11).

A := {(u, µA(u)|u ∈ U, µA(u) ∈ [0, 1]} (2.11)

The interval [0, 1] is called membership space M . The set A corresponds to a regular
discrete set if the membership function µA maps on the values 0 or 1 for all crisp
values. Usually, there are fuzzy linguistic terms such as ”low” or ”warm” which are
associated with the values u. We distinguish primary terms such as ”low” and ”warm”
from terms with modifiers such as ”very low” or ”rather warm”. Membership functions
can be arbitrary but because of better computational processability and storage, simple
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functions such as triangular, trapezoidal, Gaussian, sigmoidal or singletons functions
are used. These functions can easily be described in mathematical form. Instead of a
continuous representation, membership functions can also be a discrete vector of values
defining the degree of membership. Properties from set theory such as equality, empty
set, subset, complement, union or intersection can be associated with fuzzy sets, too. A
fuzzy set is normalized if the largest membership value is 1.0.

Fuzzy Inference

In the fuzzification phase, crisp values are mapped to the fuzzy set A by determining
the degree of membership to one or more values in the set. In contrast to regular discrete
sets, an input value can have more than one membership. This corresponds to human
perception of terms such as ”mild” or ”cold”. People perceive the transition as smooth
rather than abrupt.

To make inference with fuzzy variables by means of a fuzzy logic system, a rule base
is set up. The rules connect linguistic terms and are used in an inference mechanism.
The terms are connected by connectives (AND, OR, IF-THEN or IF and ONLY IF)
and can be negated. In a conjunction with AND, all terms need to be fulfilled, i.e., all
terms need to have a degree of membership µA(u) > 0. In a disjunction with OR at
least one term needs to have a degree of membership µA(u) > 0. We apply the most
common definition of the operator AND, OR and NOT for fuzzy sets. If p, q ∈ A, we
take the minimum membership in case of AND (Equation 2.12), the maximum in case
of OR (Equation 2.13) and the complement for the negation (Equation 2.14).

µA(q AND p) ≡ min{µA(p), µA(q)} (2.12)

µA(q OR p) ≡ max{µA(p), µA(q)} (2.13)

µA(NOT q) ≡ 1− µA(q) (2.14)

Rules are constructed as conditional IF-THEN sentences with operators and terms as
conditions on the left side (antecedent) and the result of inference on the right side
(consequence). Two kinds of inference methods are distinguished. The Mamdami-
type method (Mamdani [Mam77]) infers on the membership to a fuzzy set in the
consequence. In the Sugeno-type method (Sugeno [Sug85]), the variable in the con-
sequence is a linear or constant function. Mamdami is the more common and intuitive
method. It is used in systems in which human input and understandability is required.
Therefore, we apply this type of method in our research. Sugeno is more suitable for
mathematical analysis.
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The Mamdami-type inference consists of three steps. First, the aggregation of the
terms in the antecedent is done by means of the operator MIN, MAX and NOT. Second,
the implication of the antecedent to the consequence results in a membership µ∗A(r)
for the value r ∈ A in the consequence. The Mamdami implication simply takes the
minimum of the antecedent membership a and the consequence membership c: a→ c =
min{a, c}. The implication is done for every rule in the rule based. If rules are weighted
with a certainty grade w ∈ [0, 1], the implication is extended to a → c = min{a, c, w}.
Third, all implications are aggregated in the composition phase with an operator. A
commonly used operator is again the maxni=1{µ∗i (r)} operator for all n rules in a rule
base. The result of the inference is a final membership function for the variable in the
consequence.

The optional defuzzification phase converts the result in a crisp value again. A com-
monly used technique is the center-of-gravity (COG) method. The area defined by
the membership and the discrete values represents the result in the consequence. The
COG method calculates the centroid of the area and takes the crisp value belonging to
the centroid as defuzzified value.

2.4.2. Bayesian Networks

Bayes’ Rule

A popular method for reasoning under uncertainty is a Bayesian model. Introducing a
degree of belief with probability makes decision under uncertain conditions feasible.
The basic notation of probability is a random variable A that can have either a
Boolean, discrete or continuous value range. An atomic event is an assignment of a value
out of the value range of A, e.g., A = true. The prior or unconditional probability
assigns a degree of belief p to every atomic event independent of other information:
P (A = true) = p. A probability distribution P (A) =< p1, p2, ..., pn > describes the
whole set of beliefs for a random variable. The probability of all events of a random
variable sums up to 1:

∑n
i=1 P (A = pi) = 1.

If more than one random variable is involved, P (A,B, ...) describes the probabilities of
all possible combinations of these variables, called joint probability distribution. For
continuous valued random variables, it is not feasible to denote all the single probabilities.
There, a probability density function P (A = a) = F (a) is used instead. It is a
parameterized function of a and can be, for example, normally or uniformly distributed.

Besides prior probability, we are also interested in conditional or posterior proba-
bilities: P (A = a|B = b) = p. If we observe the event b, A is in state a with a belief of
p.

P (A|B) =
P (A,B)

P (B)
(2.15)
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By means of the product rule in Equation 2.15, we calculate the posterior probability
with prior probabilities if P (B) > 0.

P (A,B) = P (A|B)P (B) (2.16)

P (A,B) = P (B|A)P (A) (2.17)

If we reformulate the product (Equations 2.17 and 2.17), the Equation 2.18 of Bayes’
rule can be derived.

P (B|A) =
P (A|B)P (B)

P (A)
(2.18)

Bayesian Inference

We are now able to calculate posterior probabilities from observations (evidence). We
assume that we have a full joint probability distribution of our environment P (A,B, ...).
If we want to know the probability of P (A) out of the joint distribution, we simply sum
up all the posterior probabilities over all other random variables B: P (A) =

∑
B P (A,B)

(marginalization). The same can be achieved if the joint probability is replaced
by posterior probabilities according to the product rule: P (A) =

∑
B P (A|B)P (B)

(conditioning). The probability P (A) resulting from marginalization or conditioning
serves as normalization factor to make sure the probabilities of all values for A sum up
to 1.

With the Equation 2.15, the causal inference calculates P (A|B) with evidence for B.
The problem with full joint probability distributions is that they do not scale well for
many random variables and it is also impractical to estimate all probabilities in the
distribution. Causal inference can be simplified by taking independence of random
variables into regard. If variables A and B are independent from C, than the equation
holds: P (A,B,C) = P (A,B)P (C). Based on this equation, we derive that P (C|A,B) =
P (C) which reduces the number of probability estimations in the joint distribution.

In practice, the conditional probability as well as prior probabilities are often known
or can easily be estimated. Bayes’ rule in Equation 2.18 allows for diagnostic infer-
ence from the cause A to the effect B. If more than one cause variable is involved, the
assumption of independence simplifies the calculation. In this case, we have a condi-
tional independence P (A,B|C) = P (A|C)P (B|C) or P (A|B,C) = P (A|C) of A and B
under C. C separates A and B because it is the cause of both of them. With these as-
sumptions, the full joint probability distribution of one cause A influencing many effects
B1, B2, ..., Bn can be written as naive Bayes model (Equation 2.19).
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P (A,B1, B2, ..., Bn) = P (A)
n∏
i

P (Bi|A) (2.19)

Bayesian Network

If we construct the Equation 2.19 as a direct acyclic graph (DAG), we receive a Bayesian
network like Figure 2.6.

A

B
1

B
2

B
n

intercausal
inference

diagnostic
inference

causal
inference

Figure 2.6.: Simple Bayesian network with three types of inference in the network

Random variables become nodes of the network that are connected by arrows from the
cause to the effect. Each node is described by a conditional probability table (CPT)
with P (Bi|Parent(Bi)). All distributions in the network together determine the full joint
probability distribution under conditional independence (Equation 2.20).

P (B1, B2, ..., Bn) =
n∏
i

P (Bi|Parent(Bi)) (2.20)

The nodes in a Bayesian network can be either discrete, continuous or a mix of both.
For inference, we distinguish evidence variables which can be observed and hidden
variables. The result of the inference is the posterior probability distribution of the
hidden variables. The resulting state of the hidden variables is also called the belief.
Bayes’ rule in Equation 2.18 is used to marginalize the variables and to normalize them.
Several exact and approximate methods for inference are proposed which can handle
large networks (e.g., see Russell and Norvig [RN02]).

Learning Parameters

Because estimating probabilities in a network manually is often unfeasible, automated
learning from data is used. To simplify learning in our case, we assume that complete
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training data and a predefined structure are known. In this case, we simply use a
maximum likelihood (ML) estimator to determine CPTs. Otherwise, we have to
apply methods such as expectation maximization (EM) with incomplete training
data or a local search for structure learning. The ML estimator determines the maximum
likelihood for an observation xi = j and pa(xi) = k by counting frequencies of the
observation (Equation 2.21).

P (xi = j|pa(xi) = k) =
P (xi = j, pa(xi) = k)

P (pa(xi) = k)
=
α+Nijk

α+Nik
(2.21)

The number of occurrences of the parent Nik normalizes the number of observations
for a specific Nijk. A prior α (e.g., α = 1.0) is used because of unreliable estimations
of unobserved events. There are several kinds of applying a learning method. We use
a 10-fold cross validation in our tests. The method divides the data in 10 subsets
and runs the ML estimator with 9 subsets. The 10th subset is the testing set on which
performance metrics such as accuracy are calculated. The procedure is repeated 10 times
and each run leaves out another subset.

2.4.3. Explanations for Bayesian Networks

Explanations and Transparency

Research in intelligent systems shows that comprehensibility and transparency are de-
sirable for systems that help the users to make decisions (e.g., in Southwick [Sou91] or
Richards [Ric03]), especially because intelligent systems are black boxes. The meaning
of the term ”transparency” in this thesis should not be confused with its usage in the
paradigm of ”transparent computing” in ubiquitous computing. Authors such as Brown
[Bro01] refer to transparent computing in case the actions of a system take place without
the notice of the user. In this case, transparent means invisible. In combination with
explanations, transparency describes that the user understands the behavior of a sys-
tem. In this case, transparent means comprehensible. We use the term ”transparency”
exclusively to describe a comprehensible system behavior in this thesis.

Explanations are a common method to make intelligent systems more comprehensible.
They are useful for the user to detect errors in the reasoning process, learn the capabilities
of the system or when information is needed to make decisions (Gregor and Benbasat
[GB99]). Furthermore, they may contribute to make the user trust the system, persuade
the user to select and lead to more acceptance of the system. We focus our description
on Bayesian network explanations. To explain rule-based systems such as a
fuzzy logic system, we refer to other approaches such as Southwick [Sou91], Swartout
et al. [SPM91], Richards [Ric03] or Nakatsu [Nak04]. In research, especially expert
systems and decision support systems in medical diagnosis, e.g., MYCIN (Buchanan
and Shortliffe [BS84]), are widely studied.
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Classification

In general, explanations can be structured in what to explain (content), how the system
interacts with the user (communication) and to whom the explanation is delivered
(adaptation) (Lacave and Diez [LD03]). For Bayesian networks, methods that explain
the content can be further grouped in three categories. We distinguish nodes in a
network by variables that explain (explanatory variables H), variables that are explained
(explanandum E) and observations O. The rest of the nodes are part of all available
variables V , e.g., unobserved variables.

Explanations for the evidence focus on justifications of the evidence (observations) by
analyzing the probabilities of unobserved variables (abductive reasoning). Abductive
reasoning explains a subset of observed variables (E ⊆ O) with unobserved or observed
variables (H ⊂ V ). The explanandum E and explanatory variables H do not share any
variables (H ∩ E = ∅). Abductive reasoning is mainly used in domains like medical
expert systems to derive a diagnosis about observed anomalies.

Another category of explanations explains the model. It makes the knowledge base
transparent and helps experts to construct or debug a model or introduce novice users
to the capabilities of a system.

The third category explains the reasoning of the system. It helps experts to evaluate
a system by testing different kinds of evidence and analyzing the inference result. Ex-
plaining how the result was reached makes it easier to detect errors in the model. It
can also explain why some expected results are not obtained or how the system would
behave assuming some hypothetical input. Explaining the reasoning searches for the
explanandum E in unobserved variables (E ⊆ V \ O). These variables are sometimes
even unobservable, e.g., the class variable in a Bayesian network. The explanandum is
explained by observations (H ⊆ O).

Explanation Methods

To make the proactivity of our recommender comprehensible, we use methods to explain
the reasoning and abductive reasoning. We restrict our discussion to fundamental meth-
ods. A more detailed review of approaches can be found in Lacave and Diez [LD03]. The
most probable explanation (MPE) in a Bayesian network (e.g., explained by Pearl
[Pea88]) seeks for the set of assignments A for unobserved variables (explanandum E)
which maximizes the joint probability P (A,E) where E is the set of evidence (Equation
2.22).

A = argmaxAP (A|E) (2.22)

We determine the MPE by repeatedly calculating the joint probability P (A,E) with
Equation 2.20. Using all observations for the explanation is called total abduction,
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otherwise partial abduction. The disadvantage of total abduction is that also irrelevant
variables are included, i.e., variables which do not have an impact on the observation.
This makes the explanation not compact.

Irrelevance is defined by means of statistical independence proposed by Shimony
[Shi91]. If P (E|A,X) = P (E|A), then X is irrelevant. For practical reasons, a less
restrictive formulation with |P (E|A,X) = P (E|A)| ≤ δ may be used. Furthermore,
if the variable adopts its most ”usual” (probable) state in the explanation, it is irrele-
vant (de Campos et al. [dCGM01]). Finally, the user or an expert may also explicitly
determine irrelevant variables.

Another abductive reasoning method is to compare two explanatory variables H1 and
H2 with the posterior ratio divided by the prior ratio of the explanations for every
explanandum variable e (Equation 2.23).

Bayes factor =
p(H1|e)/p(H2|e)
p(H1)/p(H2)

=
p(e|H1)

p(e|H2)
(2.23)

If the so called Bayes factor (Jeffreys [Jef61])is less than 1, then H2 is preferred. If
it is less than 3, then H1 is slightly preferred and if it is between 3 and 12, then H1 is
strongly preferred. With the Bayes factor, also explanations for the reasoning can be
tested by measuring the impact of an explanatory variable Hi to other explanandums
E1 and E2, given already observed evidence e, i.e., e 6∈ Hi (Equation 2.24).

Bayes factor =
p(Hi|E1, e)

p(Hi|E2, e)
(2.24)

Thus, we can compare two explanatory variables Hi and Hj towards their impact on the
explanandum E1 and E2.

A further method is to measure the influence of evidence by a cost function, e.g., the
cross-entropy (Suermondt [Sue92]) in Equation 2.25.

H(P (H|e), P (H)) =
∑
i

p(Hi|e) log(
p(Hi|e)
p(Hi)

) (2.25)

The amount of information is measured with evidence e by comparing the posterior
distribution of H after e with the prior distribution. Furthermore, Suermondt computes
with the cross-entropy the importance of the chain of reasoning to H for each evidence
e to the inference result, i.e., the final posterior distribution of H.

More recent approaches are proposed by Flores [FGM05] and Nielsen et al. [NPE08]
which build trees of arguments. The explanation is a path from the root to a leaf.
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Their method is tailored to medical diagnosis explanations where the result may also
include variables for which no evidence exists but are highly probable because of other
variables.

2.4.4. Feature Selection

We investigate the influence of situations on the decisions of a user towards the relevance
of a recommendation with feature selection methods. These methods allow assessing the
impact of observed context (situations) to a class variable (recommendation).

Entropy-Based Metrics

The mutual information (MI) (also called information gain) of two random vari-
ables X and Y measures how much knowing one variable determines and reduces the
uncertainty about the other. It is based on Shannon’s entropy value that indicates
the uncertainty of a random variable. For a discrete random variable X with n values,
Shannon’s entropy is depicted in Equation 2.26.

H(X) = −
n∑
i=1

p(xi)× log(p(xi)) (2.26)

Furthermore, if a variable Y with m values is known, we can measure the remaining
entropy of X by the conditional entropy in Equation 2.27.

H(X|Y ) = −
n∑
i=1

m∑
j=1

p(xi, yj)× log(
p(xi)

p(xi, yj)
) (2.27)

Based on these equations, the mutual information is composed of the joint distribution
of X and Y and their individual distributions (Equation 2.28).

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y)× log(
p(x, y)

p1(x)× p2(y)
) =

H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ) (2.28)

In case of independence of X and Y the mutual information is 0 because p(x, y) = 0.
Otherwise, if one variable fully determines the other or both variables are identical, the
mutual information reaches its maximum. The mutual information is non-negative and
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symmetric. It can also be expressed by means of the entropy. The entropy or uncertainty
of X is reduced by the uncertainty about X which remains if Y is known. By means
of the mutual information, we measure the redundancy of a variable by knowing the
other.

R =
I(X;Y )

H(Y ) +H(X)
(2.29)

If the normalized version of the mutual information in Equation 2.29 becomes zero, the
two variables are independent, as I(X;Y ) = 0. If R reaches its maximum, one of the
variables is completely redundant. Equation 2.30 determines the maximum value of R.

Rmax =
min(H(Y ), H(X))

H(Y ) +H(X)
(2.30)

Two times the redundancy yields the symmetric uncertainty SU = 2×R. A problem
with mutual information is that it prefers attributes with many values, because the
logarithm with the same base can be higher for attributes with more values. The gain
ratio (GR) solves this problem. It penalizes a multi-valued attribute by normalizing
with the entropy of the attribute Y (Equation 2.31).

GR =
I(X;Y )

H(Y )
=
H(X)−H(X|Y )

H(Y )
(2.31)

ReliefF (RFF)

The method of ReliefF (RFF) is based on Relief with the extension of more robustness
against noise and the ability to handle more than two valued classes. The basic idea is
to evaluate the quality of attributes by the similarity of instances in case of the same
class and the difference of instances for different classes. Therefore, for an attribute A k
nearest hits H (instances with the same class value) and k nearest misses M (instances
with different class values) are searched for a random selected instance R. This is done
for m instances and for every instance a quality estimation W [A] is updated. W [A] is
decreased for different attribute values A of R and H and increased for different values A
of R and M . Additionally, the k nearest instances can be weighted inversely proportional
to their distance to R. We apply ReliefF with k = 10 (suggested by Kononenko [Kon94])
and with and without a weighting by distance. For weighting an exponential decrease
with σ = 2 is used.
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chi square (χ2) (CHI)

The chi square (χ2) (CHI) test in statistics evaluates a null hypothesis, i.e., an ob-
served distribution is compared with a theoretical distribution. For feature selection, the
independence of an attribute A with a class C can be tested with the null hypothesis of
independence of the variables. For that, the observed joint distribution O of A and C is
compared with the expected joint distribution E if A and C are independent. The last
distribution can be derived from the observed distribution of C. Finally, a score with
Pearson’s chi squared test of independence is calculated (Equation 2.32).

χ2 =

n∑
i=1

m∑
j=1

(Oi,j − Ei,j)2

Ei,j
(2.32)

For discrete variables, n is the number of values of A and m for the class C. The smaller
the value of χ2 is, the more independent the variables are.

2.5. Recommender Systems

Recommender systems are a special kind of intelligent systems used to select relevant
items for a user. In this section, we describe characteristics and goals of recommender
systems. Classical recommender systems are commonly distinguished by the technique
they use to select items: content-based filtering, collaborative filtering, knowledge-based
filtering and utility-based filtering. For proactive recommendations, context is impor-
tant. We describe techniques to integrate context into recommender systems. Like for
Bayesian networks, we use explanations to make recommender systems comprehensible
for the user. Our approaches are evaluated with common metrics from research.

2.5.1. Background

Origin

Recommender systems originate in the research of information retrieval (IR). IR is
the process of ”leading the user to those documents that will best enable him/her to
satisfy him/her need for information” (Robertson [Rob81]). The user who searches for
documents (mostly text-based) tries to accomplish a specific task. Searching involves a
query that is entered in the system and the system provides a list of results. At the
beginning of the 1990s, personal computers became more powerful and therefore other
kinds of delivering information to the user have been investigated. One of this kind
is information filtering (Belkin [BC92]). Information filtering is closely related to
information retrieval because it has the same goal to provide relevant information but
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it focuses more on the need and the task of the user. This leads to the usage of user
models as profiles to capture long-term preferences instead of short-term preferences
with a query. The goal of filtering is to remove data, not to find or rank data like
retrieval.

Definition

Recommender systems are a kind of information filtering with a special kind of user
profile. They are grounded on the idea of people recommending information to others
based on ”Word of mouth” (Resnick and Varian [RV97]). Konstan [Kon04] describes
recommenders systems as an automated way to use the opinions of a community of
people to help people who are like-minded in finding information. Resnick et al.
[RIS+94] mention the problem of information overload where people are overwhelmed
by large sets of choice. Recommender systems are proposed as solution for information
overload.

In the beginning, recommender systems mainly referred to the social aspect of finding
information. Later the term was extended also to non-social aspects. Burke [Bur02]
describes a recommender system as ”any system that produces individualized recom-
mendations as output or has the effect of guiding the user in a personalized way to
interesting or useful objects in a large space of possible options”. Hence, another im-
portant characteristic of recommender systems is personalization. According to Burke
[Bur00], recommender systems distinguish from information retrieval by being individual
to the user.

Recommender systems can be useful in many ways. Adomavicius and Tuzhilin [ASST05]
state that recommenders are useful when the user does not have enough domain-
specific knowledge to make a decision. For Belkin [Bel00], recommenders are useful
because users’ behavior in information seeking sometimes suggests that the users do
not really know by themselves what they want. A recommender may give a helpful
hint in this case. However, Quinn [TQ00] emphasizes that the users that are receiving
recommendations should be tolerant towards inaccuracies in the result.

Recommenders are used for e-commerce (Ben Schafer et al. [SKR01]) such as Ama-
zon.com (Linden et al. [LSY03]), movies such as Netflix.com (Bennett and Lanning
[BL07]) or Movielens (Dahlen et al. [DKH+98]), news (e.g., Billsus et al. [BBE+02]),
restaurants (e.g., Burke [Bur00]) or tourists (e.g., Ricci and Werthner [RW02]).

Calculating Recommendations

Recommender systems suggest items such as products or restaurants to an active user
based on implicitly observed behavior or explicit information given by the user (e.g.,
ratings or preferences). The basic task of a recommender system is to assess a set of
items I for a user U by predicting the item ratings R of the users with Equation 2.33.
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I × U → R (2.33)

Like Adomavicius and Tuzhilin [ASST05], we do not restrict recommendation systems
to ratings from the users. Rating is defined in this work as any kind of user-specific
information towards an item, e.g., utility.

Classification

There are several ways to classify recommender systems. Montaner [Mon03] and Rao
[RT08] distinguish approaches by their domain in web recommenders, movie recom-
menders, product recommenders and news recommenders. These approaches can fur-
ther be differentiated according to their commercial deployment, e.g., Amazon.com,
Last.fm and Netflix.com, in contrast to a research prototype. Furthermore, the receiver
of a recommendation can either be an individual, which is the case for most approaches,
or a group (e.g., see McCarthy et al. [MSC+06]). Jannach et al. [JZFF11] distinguish
three kinds of purposes a recommender can follow. The recommender either predicts
user preferences for items, interacts with the users to provide a ”good feeling” about
the system or makes the users to discover new information. Similar to Jannach et al.,
Herlocker et al. [HKTR04] distinguish systems by the goals and tasks of the user.
Early systems such as GroupLens extend IR with annotations in context, e.g., rat-
ings of the users, to recognize relevant items or find good items based on the predicted
ratings. For items with high involvement like financial products, a recommender should
find all good items. In domains where a lot of items are consumed in a short time or
in sequence, the recommendation of a sequence can be helpful, e.g., music or paintings
(e.g., see Bohnert et al. [BSZ09]). Finally, the users may just want to play around with
the system.

Most authors use a technical classification for recommender systems. The simplest clas-
sification is in systems that are collaborative and consider other users in the process or
only the individual user. Malone et al. [MGT+87] describe three kinds of information
filtering: cognitive (content-based), social (collaborative) and economic. Balabanovic
and Shoham [BS97] list three kinds: content-based, collaborative filtering and hybrid.
Burke [Bur02] adds demographic, knowledge-based and utility-based approaches and
Kautz et al. [KSS97] investigate social network-based approaches. Manouselis et al.
[MC07] and Adomavicius et al. [AMRT12] distinguish methods by how many item
criteria they take into regard. Multi-criteria decision making (MCDM) recom-
menders use more than one criterion to evaluate items instead of a single criterion like
most classical recommenders do.
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Outcome

Recommendation system approaches also different in the focus of their output. Towle
and Quinn [TQ00] note that classical recommenders operate in a preference-based
manner based on user preferences. In need-based approaches, the need of a user is
explicitly incorporated in the recommendation as a selection criterion (e.g., Herlocker
and Konstan [HK01]). In case of preference-based approaches, we also distinguish if
the system stores persistent user profiles like described by Montaner [Mon03] and if
it is able to handle ephemeral users (Ben Schafer et al. [SKR01] ) with short-term
preferences as well.

The output of a recommender itself and its generation can also be different. Adomavi-
cus and Tuxhilin [ASST05] distinguish absolute value recommendations and relative
order of items, e.g., a ranking. Ben Schafer et al. [SKR01] distinguish whether this out-
put was generated by a push-based mechanism, by a pull-based mechanism by giving
a hint without retrieving the results or passively by embedding the recommender in the
application like Amazon.com. If a recommendation is delivered push-based it can either
cover synchronous information need with a notification or asynchronous information
need, e.g., with an email. The trigger for pushing messages can be a need of informa-
tion or preferences of the user. Pull-based delivery is less disturbing than push-based
delivery but the probability that the user misses something is higher. Passive delivery
is similar to push-based delivery but recommendations are shown constantly embedded
in the search results.

2.5.2. Classical Recommender Methods

Content-based Filtering

Content-based recommender systems assume that the users rate items with similar
features similarly. They originate from information retrieval and information filtering
techniques (Belkin and Croft [BC92]) by incorporating user preferences. Recommenda-
tions are calculated by measuring the similarity of unrated items INR and already rated
items IR (Item-to-item correlation according to Ben Schafer et al. [SKR01]). The con-
tent for similarity measurement is extracted from rated items IR as a set of features,
e.g., keywords from text documents. The features have weights based on the ratings R
the user gave the items. Unrated items INR with the highest ratings are recommended.
Item features can be represented as database-like tables with predefined structures (e.g.,
restaurants), unstructured data (e.g., text documents or web pages) and semi-structured
data with features as well as free text (Pazzani and Billsus [PB07]).

Most content-based recommenders are for documents, web pages, products or news. In
general, short-term user profiles are built on search history and saved in the browser,
e.g., in a cookie (ephemeral user). If this information is saved, e.g., if the user is logged
in on a web page, long-term profiles can be built. Content-based recommendations
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are restricted to the features that are associated to an item (description problem).
Two items with identical feature sets cannot be distinguished in case the user rates them
differently. Furthermore, content-based recommendations can be over-specialized be-
cause only similar items to the ones already rated can be recommended. In news recom-
mendations, this leads to the portfolio problem (Belkin and Croft [BC92]). Finally,
content-based recommender systems are faced with ramp up problems if not enough
ratings are available and the new user problem if the user has not rated enough items
yet (cold start).

Collaborative Filtering

Content-based recommender systems only take the preferences of an individual user into
regard. Collaborative filtering (CF) considers the whole community to calculate the
rating for a single user. It assumes that users with similar taste rate items similarly. The
idea is to capture ”Word of Mouth” in computational systems. Early approaches try to
achieve this by regarding ratings inside a group of stereotype users (Rich [Ric79]) or to
allow the user to make free-text annotations (Goldberg [GNOT92]). The first automatic
collaborative filtering approaches are Ringo for music by Shardanand and Maes [SM95]
and GroupLens for news group articles by Resnick et al. [RIS+94].

Methods for collaborative filtering are classified according to the underlying processing
of data. Breese et al. [BHK98] distinguish two kinds of CF algorithms: Model-based and
memory-based approaches. Memory-based approaches consider the whole database
of rated items IR and try to calculate some kind of similarity to evaluate an unrated
item. Sarwar et al. [SKKR01] add item-to-item correlation to the older method of
user-to-user correlation. If the recommendation problem is regarded as matrix of the
users U as rows and the items I as columns and the ratings R as entries, then the user-
to-user correlation calculates similarity row-wise to find similar users and item-to-item
correlation column-wise to find similarly rated items. A common correlation metric is
Pearson’s correlation or cosine similarity. Memory-based methods in general do not scale
well for large databases. Model-based approaches learn a user model from ratings
and calculate the prediction or a recommendation based on the model. A popular recent
method is to build matrix factorization models (Koren et al. [KBV09]).

Ben Schafer et al. [SKR01] state conditions under which a domain is suitable to be
improved by a collaborative filter. First, many items and many ratings per item should
be available, in general more ratings than items, and the users have to rate multiple
items. Second, the nature of the domain should involve some kind of taste and items are
assumed to be homogenous items, i.e., items are similar in objective criteria but differ in
subjective criteria. Third, items should not change too often (e.g., news are challenging)
and taste should not change too fast (e.g., clothing can be demanding). CF is good at
finding niche items and it does not require features of an item such as content-based
filtering. A major issue is ramp up until a critical mass of users is reached. Furthermore,
cold start problems arise when a new user has to rate items first and a new item

46



2.5. Recommender Systems

has to be rated some times. According to Claypool et al. [CGM+99], 98% to 99% of
the items do not have ratings if the available set of items is very large. It is difficult
to find like-minded users in such a constellation (sparsity problem). A consequence
is the ”Lemming effect” described by Klahold [Kla09] where a popular item is often
recommended if it is often positively rated.

Knowledge-based Filtering

Both content-based and collaborative approaches depend on ratings a user gives to an
item. If not enough ratings are given, cold start and sparsity issues occur. Knowledge-
based recommender systems are not based on ratings but on explicit models. The
knowledge comprises models that match user preferences to item features (e.g., Towle
and Quinn [TQ00], Burke [Bur00] or Chun and Hong [CH01]). Preferences are either
entered by the user explicitly or are learned by means of machine learning methods. The
approach requires initial effort by the engineer of the system, whereas for other recom-
mender methods a user has to put in effort to get good recommendations. Knowledge-
based recommenders are applicable in domains where there is a need for a recommen-
dation (Towle and Quinn [TQ00]) instead of preference-based domains. For instance,
restaurant recommendations may either be provided based on the users’ taste or if they
are hungry and need a restaurant. Furthermore, all items instead of only rated items
can be taken into regard. These reasons make knowledge-based recommenders comple-
mentary to other approaches. They are often applied in hybrid approaches (e.g., by
Burke[Bur00]).

Knowledge-based recommender systems are distinguished by the knowledge source.
Burke [Bur02] defines catalog knowledge (item features and properties), functional
knowledge (mapping of user preferences to item features) and user knowledge as main
sources of knowledge. Case-base reasoning (Aamodt and Plaza [AP94]) is a pop-
ular method for knowledge-based filtering where the catalog knowledge is represented
by cases. Burke [Bur00] proposes a restaurant recommender in which a restaurant is
the case and Ricci [RW02] takes previous travel plans as cases in his travel recom-
mender. Another approach is a constraint-based recommender system like described
by Felfernig and Burke [FB08]. The user model (functional knowledge) is represented by
constraints to the items. The more the recommendations satisfy these constraints, the
better they are (constraint satisfaction [Tsa93]). Many approaches are also based on a
conversation with the user to refine the knowledge of the system about the user (e.g.,
Burke [Bur00], Mirzadeh et al. [MRB05]), e.g., by critiquing the recommender (Smyth
et al. [SMRM04]).

The knowledge base is also a valuable source to generate explanations for recommenda-
tions (Felfernig et al. [FB08]). However, the knowledge base has also disadvantages. The
effort of setting it up is transferred from the user (ratings) to the knowledge engineer
who has to build a system that captures user knowledge adequately. Knowledge-based
recommenders are also not suitable to discover niche items for people with no ordinary
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taste. Another disadvantage is that selection in some domains rely less on features of
an item. The users would have trouble to claim their preferences in these domains, e.g.,
for song features such as speed, kind of instruments and vocal.

Utility-based Filtering

Utility-based recommender systems are similar to knowledge-based recommenders.
They may also be seen as a special kind of knowledge-based recommenders. The idea is
derived from utility theory instead of knowledge-based systems. The knowledge source
in the system is extended by utility functions. Utility functions represent knowledge
to map user preferences to item features (functional knowledge). They can either be
general for all users or user-specific. The main characteristic of a utility-based recom-
mender is that it goes beyond the features of an item by interpreting them towards
the utility for a user. This makes features comparable on an abstract level. MCDM
methods (see Section 2.3.3) are used to predict user interests for an item. One of the
first approaches applying MAUT in recommender systems is Guttmann’s Tate-A-Tate
[Gut98] recommender for products. It elicits preferences for item features manually and
uses a weighted sum for prediction. The MAUT Machine of Schmitt et al. [SDB02] goes
a step further and allows more sophisticated user preference elicitation with OR and
AND operators. The approach of Price and Messinger [PM05] regards the utility of a
whole set focusing on the diversity of the items and the uncertainty of user preferences.
Manouselis and Costopoulou [MC07] combine MAUT and collaborative filtering in the
domain of product recommendations.

Utility-based recommenders are applied in domains where the choice is made on rational
decisions. The users should be able to formulate preferences, e.g., to prefer alternative
A over B or indifference between the alternatives. Otherwise, the method shares its
advantages and disadvantages with knowledge-based approaches.

Hybridization

Due to disadvantages of single recommendation approaches, researchers often combine
several techniques to hybrid recommenders. Malone [MGT+87] early noticed that
the combination is able to augment information filtering. For recommender systems,
Burke [Bur02] defines several kinds of combining. The simplest way of combining several
approaches is by weighting the predicted ratings of each method and combining them
to a single rating, e.g., linear. This approach is quite static as weights are generally
determined in advance. Switching between the outputs of several approaches allows
to react on the quality of recommendations which a method is able to provide. For
instance, if too few similar users are found, the method can switch to a content-based
approach. This requires additional knowledge, e.g., about the quality of the output, to
make a system-side decision. A mixed approach transfers the decision to the user by
presenting the results of several approaches at the same time and let the user decide.
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The predicted ratings are more like an explanation. The hybridization techniques so far
work horizontally. Cascading of single recommenders works in a vertically way where
the output of one recommender is the input of another. This requires setting up an
order of application. The performance of an approach, its quality or coarseness may
determine the order. In general, the set of items gets smaller after each step. Feature
augmentation does not aim to shrink the set but to increase the quality of aspects taken
into regard in the next step. For instance, a sparse rating matrix may be augmented
with artificial ratings to make collaborative filtering applicable.

2.5.3. Context-Aware Recommender Systems (CARS)

Classical recommender systems such as collaborative filtering, content-based filtering or
knowledge-based filtering aim to predict the rating, utility or preference for an item based
on the attributes of an item or models describing user preferences for items. However,
the consumption of items often depends on the context of the user. Individuals listen
to different music while they are at home compared to being on the treadmill in the
gym. They watch different movies with their partners compared to being alone. They
are interested in visiting different restaurants depending on the weather. Adomavicius
and Tuzhilin [ASST05] emphasize that context matters in recommender systems.

Calculating Recommendations with Context

In several publications concerning context-aware recommender systems (CARS), Ado-
mavicius and Tuzhilin describe a general view of context incorporation into recommender
systems ( [AT08], [AT10] and [AMRT12]). The Equation 2.33 shows the traditional 2D
view of predicting ratings R for an item I based on the user U . The extension with
context C leads to a multidimensional mapping function in Equation 2.34.

I × U × C → R (2.34)

Context becomes a further dimension in the prediction. Independent from the acquisition
of context in an explicit (by user input) or an implicit (with sensors) way, context is a set
of explicit variables in this view. A challenge which all rating-based multidimensional
methods share is that the users probably are unwilling to give ratings more than one time.
This especially applies in case of different context. Relevant context for recommendation
systems are the task of the user, physical or interaction context and also social context
(Wörndl and Groh [WG07]).

Based on Equation 2.34, Adomavicius and Tuzhilin describe three algorithmic paradigms
of incorporating context (Figure 2.7). Contextual prefiltering, postfiltering and modeling
differ mainly in the order of context incorporation.
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Figure 2.7.: Three paradigms of incorporating context into recommender systems ac-
cording to Adomavicius et al. [AMK11].

Contextual Prefiltering

Contextual prefiltering (Figure 2.7 (a)) selects items based on context and evaluates
only this subset with a classical recommender. Adomavicius et al. [AT05b] propose to use
several prefilters and combine their output. The approach uses loose coupling of user
preferences and context. Ratings are predicted with classical recommenders decoupled
from the context. In prefiltering, items are cut off based on context constraints they
have to fulfill, e.g., only movies on Saturday. We distinguish prefiltering by the type of
the classical recommender. For rating-based approaches such as collaborative filtering
or content-based filtering, the items which are in the subset are used to evaluate a new
item, i.e., predict its rating. For approaches that do not rely on item ratings, the items
in the subset are evaluated, e.g., movies which are only for kids.

In case of rating-based prefiltering, exact prefiltering can be too narrow leading to not
enough ratings to make an accurate prediction. Therefore, Adomavicius et al. [AT05b]
apply a generalization of context for prefiltering. Hierarchical generalization of context,
e.g., ”Saturday” → ”Weekend”, is used to increase the amount of prefiltered items. The
result is a multidimensional matrix. The reduction of the matrix by context, e.g., cut
off all items consumed during the week, aims to build a 2D matrix to be able to apply
a classical recommender.

Baltrunas and Ricci [BR09] and Baltrunas and Amatriain [BA09] apply a different ap-
proach for rating-based methods by splitting items and user profiles. In item-splitting
([BR09]), virtual item groups are generated based on the context they are consumed in.
In user-splitting ([BA09]), the user is represented by micro profiles for a specific context.
After splitting, classical recommenders can be applied.
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Wörndl et al. [WSW07] propose a hybrid approach to cope with the complexity of
context. Content- and knowledge-based filtering is used to shrink the set of potentially
relevant items and a 2D collaborative filter ranks the items.

Location is a powerful prefilter that is often used in research. Ahn et al. [AKH06]
use the current location of the user to prefilter the search space for items in mobile
advertisement (only items not closely located). Then, the authors apply a modified
Pearson’s correlation function which incorporates context to calculate the ratings for the
items. For a restaurant recommender, Horozov et al. [HNV06] exploits the assumption
that people who live in the same area are more likely to visit the same places. They
calculate the similarity of the users after prefiltering them according to their home
location. Location-based services (LBS) such as mobile guides filter out POIs which
are close to the position of the user and apply different models of user interest prediction
afterwards, e.g., CyberGuide [AAH+97], MapMobyRek [ARN08], CityGuide [DMM+04],
GUIDE [CDM+00], COMPASS [vSPK04] or CRUMPET [PLM+01]). The approach of
Kodama et al. [KIGI09] uses loose coupling of context and preferences by creating a
prefiltered rank according to closeness. A Skyline filter based on the categories of the
item features starts with the closest item (nearest neighbor query) and eliminates all
other categories that are Pareto-dominated (see Equation 2.8) by this item. Dominance
calculation is based on a user profile containing preferences for item categories. The
method continues with the next neighbor item until all categories are eliminated or are
in the Skyline set. The approach works fine for exactly one type of context information
that needs to be ordered (in this case, the location). With more than one context
information, some kind of ordering for this information is required.

Contextual Postfiltering

Contextual postfiltering (Figure 2.7 (b)) also uses loose coupling. A classical rec-
ommender evaluates the items and the output is adjusted to the context. Postfiltering
either filters out items that are not relevant in context or adjust the ranking of items
to context. Common methods to adjust the ranking use either specific item usage pat-
terns in context or bring more diversity (McGinty and Smyth [MS03]) among the items
into the ranking. Panniello et al. [PTG+09] investigate differences between postfiltering
and prefiltering in the e-commerce domain. Their results suggest that the performance
depends on the application itself.

We distinguish two general approaches of postfiltering. A heuristic-based postfiltering
approach regards user preferences for attributes of items in context and analyzes the
evaluated items. The heuristic-based context-aware ranking described by Agrawal et al.
[ART06] uses an ordered preferences set where feature A is preferred to feature B in con-
text C. Similarly, Stefanidis and Pitoura [SP08] also regard contextual preferences
to calculate interest scores for items. Park et al. [PYC06] propose a context-aware music
recommender with explicit user preferences for song attributes (genre, temp and song
mood) depending on the physical mood. The preferences correspond to utility functions
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relative to the physical mood. A fuzzy Bayesian network infers on the physical mood.
First, contextual information, e.g., temperature, noise, gender or age, is fuzzified with
trapezoidal membership functions to cope with uncertainty and heterogeneous infor-
mation. To avoid a loss of information in discretization for Bayesian networks, a fuzzy
Bayesian inference method is used. Based on the posteriori probability for physical mood
and the utility function, a final score is calculated for the items with a linear weighting
model.

A model-based approach calculates the probability that a user would take an item
with its attributes and in context. Yap et al. [YTP05] propose a model-based approach
with a separation of the context module and the recommender system. The user gives
a score to an item and the system learns user interests based on context information
and item attributes. It mines relevant context parameters. In a later work, Yap et
al. [YTP07] apply Bayesian networks in a restaurant recommender and show that it
outperforms decision trees (similar to Palmisano et al. [PTG08]). Brunato and Battiti
[BB03] describe PILGRIM, a mobile web site recommender that learns location-based
usage patterns of Internet searching to adapt the ranking of search results.

Contextual Modeling

Contextual modeling (Figure 2.7 (c)) uses a multidimensional approach with tight
coupling of preferences and context to calculate the ratings. A model based on user
preferences in context is established and used for prediction. In rating-based modeling,
the most obvious way to calculate a predicted rating is to extend the applied prediction
function to multiple dimensions (Adomavicius and Tuzhilin [AT05a]). However, the
U×I×C matrix is probably too sparse to make accurate predictions. Like for prefiltering,
Adomavicius et al. [AT05b] use aggregation functions based on context hierarchies
to reduce the matrix to a classical 2D matrix. Palmisano et al. [PTG08] also exploit
hierarchies but in a context hierarchy model instead of a multidimensional model. The
authors found better prediction performance for customers of an online retailer if context
is taken into regard. In contrast to Palmisano et al. [PTG08], Anand and Mobasher
[AM07] make the assumption that the behavior of the user indeed depends on context
but not all context information can be observed which is relevant. They propose a
state-based statistical process to solve this problem.

In contextual modeling also well-known methods from other research areas are used.
Matrix factorization is a more recent technique to predict ratings on multidimensional
context models (Karatzoglou et al. [KABO10]). Oku et al. [ONMU06] propose a model
with support vector machines (SVM) to calculate similarities between users. Their
model incorporates additional context information and binary preferences of users for
items (like or dislike).

Contextual modeling can also be applied using classical recommendation approaches. Yu
[YZZ+06] uses several recommenders in a hybrid approach (content-based, Bayesian
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classifier and rule-based) to incorporate context. Zimmermann [Zim03] applies context
awareness to case-based reasoning by storing and retrieving cases along with contex-
tual information.

2.5.4. Explanations in Recommender Systems

We already emphasized the usefulness of explanations for intelligent systems in Section
2.4.3. There, we focused on explanations for the reasoning process in Bayesian networks.
Comparable to an intelligent system, a recommender system can also be regarded as a
black box where the output is a set of items. The user may not understand why exactly
these items have been chosen. Transparency could be especially useful for proactive rec-
ommenders because not a user query leads to the retrieval of items. Amazon.com already
realized the usefulness of explanations, e.g., they show explanations like ”Customers who
bought this item also bought ...” along with the suggested items. Google+, the social
network of Google.com, provides in the list of search results also information about con-
tacts which liked the link as explanation. Besides explanations in classical recommender
systems, context provides a rich knowledge source to extract helpful explanations. In
contrast to intelligent systems, Lim et al. [LDA09] emphasize that context-aware sys-
tems are not necessarily built for expert users, i.e., users with rich domain knowledge like
physicians. Therefore, explanations in intelligent systems focus on making complex cor-
relations more transparent, whereas explanations in context-aware systems try to bring
the system closer to the user and enhance user experience.

Argumentation Theory

The concept of explanations is a part of argumentation theory. For a detailed discussion,
see common literature to argumentation theory such as Eemeren et al. [vEGH96]. An
explanation is a set of arguments to describe a certain aspect, e.g., an item or a
situation. An argument is a statement containing a piece of information related to the
aspect that should be explained, e.g., ”The gas station is inexpensive” or ”Current gas
level is low”. In an explanation, arguments can be for (positive) or against (negative)
an aspect or they can be neutral. The reason for an explanation is a claim, i.e., we
want to claim something therefore we use arguments in an explanation. Providing the
certainty of the system with the recommendations, e.g., as probabilities, can support
claims. However, Cramer et al. [CER+08] found that this kind of information does not
account for the trust in the system and are difficult to be interpreted by the user if
presented as probability measure from 0% to 100%.

Carenini and Moore [CM06] describe guidelines for good arguments based on argumen-
tation theory. Supporting and opposing evidence and their strength towards the claim
should be evaluated. User preferences should be incorporated for this. Depending on
the application scenario, the position of the main argument in an explanation is crucial
(at the beginning or the end). The selection of opposing and supporting arguments
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depends on brevity of the explanation and the strength of the argument. Supporting
arguments should be arranged at the first position of an explanation. If the explanation
is long enough, some supporting arguments can be positioned at the end, too. Opposing
arguments (counterarguments) can be left out, mentioned and refuted or only mentioned.

The structure of an explanation can either be a single argument, e.g., ”the movie A is
positively rated”, comparative arguments, e.g., ”the movie A is better rated than B” or
comparative to a global value, e.g., ”the movie A is better rated than the average”. The
length of an argument depends on the application domain. In product recommenda-
tions, the users prefer short arguments for low-priced products and detailed explanations
for high-priced products like cars or apartments (Pu and Chen [PC06]).

Explanations in Recommender Systems

Tintarev and Masthoff [TM11] define guidelines to make explanations in recommender
systems ”good”. They approach the problem from the evaluation side. First, the de-
signers of explanations in recommender systems need to formulate the goal they want
to achieve with explanations. Second, evaluating explanations is always affected by the
underlying recommendation approach. Third, the presentation of explanations and rec-
ommendations also affect each other. Fourth, the style of the generated explanations
should be related to the underlying recommendation approach.

Tintarev and Masthoff [TM11] describe seven generalizable goals for explanations in rec-
ommender systems. The goals are targeted to single item explanations. Which goals are
accomplished by an explanation depends on the field of the application. Transparency
explains how a system works, i.e., the selection of items. Sinha and Swearingen [SS02]
found that the users feel much more comfortable with recommendations if they are made
transparent. However, Cramer et al. [CER+08] found that it not necessarily increase
trust. Related to transparency is the concept of justifying the behavior of the system.
Herlocker et al. [HKR00] describe justification as transparency with the specific goal to
explain why a recommendation or item was selected. Vig and Riedl [VSR08] empha-
size that justification does not necessarily reveal the actual reasoning of the algorithm
in contrast to transparency. The result of a black box system can be justified with a
separate method without knowing how it works. Effective explanations aim to let the
users evaluate items towards user preferences quickly in order to be able to accept or
discard alternatives. Effectiveness is also one of the main goals of a recommender in
general. Explanations that increase efficiency let the user make faster decisions, i.e.,
shorten the interaction time and reduce interaction steps. Scrutable explanations may
contribute to this goal as well by giving the user the possibility to correct the system and
to understand what is going on. In e-commerce, it is beneficial to persuade the user
that the recommendations are useful and good. In contrast to justification, persuasion
is in favor of the system, e.g., an e-retailer. Cosley et al. [CLA+03] and Cramer et al.
[CER+08] show that user ratings can be manipulated towards the prediction of the sys-
tem with different persuasive interfaces. Many researchers found that explanations are
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able to increase satisfaction with a recommender system (e.g., Sinha and Swearingen
[SS02] or Herlocker et al. [HKR00]). Furthermore, some researchers were able to link
explanations to an increase of trust in the system, e.g., Sinha and Swearingen [SS02].
Chen and Pu [CP07] show that the users are more willing to return to the system if they
trust it.

Explanation Style

Tintarev and Masthoff [TM11] mention that the style of an explanation may or may not
reflect the underlying recommendation algorithm. Collaborative explanation style
either refers to the current item of the user such as ”Customers who bought this item also
bought . . .” or to the recommendation list by showing ratings from similar users (Her-
locker et al. [HKR00]). Content-based explanation style takes additional properties
of the item into account. Symeonidis et al. [SNM08] justify movie recommendations
with the favorite actor of the user. Vig and Riedl [VSR08] measure the relevance of tags
of items and preferences of users for tags to calculate recommendations and explanations.
In a case-based recommendation style, the retrieved case is compared to the query
or the current item (McSherry [McS05]). Finally, in a knowledge- and utility-based
explanation, the knowledge base of user preferences and item attributes is used, e.g.,
”Camera A is more expansive than camera B” (McCarthy et al. [MRMS04]).

Generating Explanations

Depending on the recommendation approach and available knowledge, different meth-
ods for selecting arguments for an explanation are applied. However, we have to take
restrictions of our environment into regard. Lim and Dey [LD11] emphasize that expla-
nations should be easy and quick to understand and compact in mobile context-aware
systems. Complex and long explanations like used for expert systems (e.g., in Amgoud
and Prade [AP09]) are not applicable. Carenini and Moore [CM06] propose a strategy
that allows generating simple explanations in our mobile environment. It consists of two
components. Content selection selects and organizes the content of an explanation
(deep generation). The authors use principles from argumentation theory to organize
the arguments. A metric called compellingness measures the strength of an argu-
ment. The most compelling argument is selected first and then the system decides
which arguments are further added if they are notably compelling. The output of deep
generation is an abstract text plan that is converted in a human readable text by the
content realization (surface generation). It selects terms and puts them in a correct
grammatical structure.

As our recommender is utility-based and knowledge-based, we focus on generating argu-
ments in a knowledge-based manner. Some knowledge-based approaches can be found in
the area of product recommendations. These explanations justify items that should
make the users to trust the system and persuade them to buy. Pu and Chen [PC06]
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group items into categories with knowledge-based titles as explanation. The method
is applicable if recommendations contain large sets of items. Felfernig et al. [FB08] use
a utility-based approach with multiple criteria to persuade the users. Stored text
phrases represent explanations ea with one argument. We call these explanations in
our model arguments. Additionally, the contribution of an explanation to predefined
item features i is stored as function con(ea, i). The utility of an argument ue(ea) is
calculated with user preferences as weights for an item feature wi and the argument
contributions: ue(ea) =

∑n
i=1 con(ea, i)wi. Furthermore, the position p of an argument

in an explanation has a utility up(p). The utility uo of an ordered set of arguments
is calculated as the utility over all arguments in the set for all possible permutations:
uo(a1, . . . , n) =

∑n
p=1 ue(ep)up(p). Dependencies between arguments are taken into re-

gard as constraints, e.g., argument ei should always be before ej . The task of ordering
arguments is seen as constraint satisfaction problem (CSP). Zanker and Ninaus
[ZN10] argue that complex recommendation approaches are difficult to track for ex-
tracting arguments. Like Felfernig et al. [FB08], they propose a justification method
decoupled from the recommender. Explanations are represented as a path in a directed
acyclic graph (DAG) with nodes as arguments. This leads to long and complex expla-
nations. Arguments are constructed based on domain knowledge, user preferences and
context information. Fahri [Fah08] proposes a theoretical model for explanations based
on Toulmin’s [Tou03] model of argumentation which also generates complex explanations
in a knowledge-based manner.

For other domains such as POIs or movies, the main goal of the available approaches is
providing transparency. Explanations allow the user to make more efficient and effective
decisions. This is especially desirable for mobile devices where interaction is difficult.
Baltrunas et al. [BLPR11] propose a method that is based on context-based ratings
for POIs in a mobile scenario. The authors estimate the rating of an item based on the
context, the rating of other users and a learned model which represents the connection of
contextual information and items. An explanation consists of one argument that has
the largest positive effect on the calculation of the rating. This is simply the argmax
in the learned model. The authors do not distinguish between positive or negative
arguments. If an item was not recommended, the argument shows the reason why.
They argue that only one argument is used to impose no overload to the user and to
make it easy to grasp. Instead of one simple argument, the approach of DeCarolis et al.
[dCNPG09] shows comparative descriptions of POIs about a whole map area for tourists.
The system selects items on the currently viewed map area by user preferences, item
features and context. Based on the items shown to the users, a description is generated.
It summarizes the map area by either showing individual or comparative arguments.
Finally, a human readable text is generated. The explanation is comprehensive but
too detailed to be presented automatically in an automotive scenario.

Besides explanation generation based on heuristics, learned knowledge can also be
used. Similar to Baltrunas et al. [BLPR11], the system of Symeonidis et al. [SNM08]
learns a user profile between users and features of items that were rated. Weighted
features describe the users. The application domains are movies and news. The au-
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thors build clusters of users to extract justifications from groups instead of individuals.
Explanations are feature-based (comparable to knowledge-based explanations without
utility), e.g., ”Item 1 was recommended because it has features X,Y,Z”. Vig and Riedl
[VSR08] use item tags instead of item features for their explanations in a similar way.

2.5.5. Evaluation Methods

Evaluation Approach

We discussed different approaches of recommender systems which are applied in different
domains. To measure which approach works better in a certain domain, evaluation
metrics are needed. Commonly established metrics also support the comparability of
approaches. Herlocker et al. [HKTR04] emphasize that this is not trivial because the
used data set, the domain and the desired output have an influence. Hence, there is
not a best approach for all applications. Additionally, the goals of an evaluation can be
different comparable to the application of explanations. The goals are reflected in the
way the evaluation is carried out. The evaluation can be either done offline with existing
data sets or online embedded in the environment of the application. Online tests are
more expressive, but are also more costly and subject to environmental noise. Terveen
and McDonald [TM05] recommend using scenario-based evaluation which is built on the
task a recommender system.

Quantitative Metrics

The main focus in recommender systems research is to measure the quality of an ap-
proach. Accuracy is the metric that is used most frequently to measure quality. The
ability of a recommender system to predict the rating of a user for an item accurately is
called prediction accuracy.

MAE =

∑N
i=1 |pi − ri|

N
(2.35)

Mean absolute error (MAE) in Equation 2.35 is the most common measure for
prediction accuracy. The difference between the true user rating ri and the predicted
rating pi is summed up for all predictions N . Other variants emphasize large errors
(mean square error (MSE)) or are normalized over the range of ratings (normalized
MRE). MAE is meaningful if ratings are shown to the user in the recommendation. For
Carenini [CM06], MAE misses a crucial point of recommender systems. Recommender
systems are less a machine learning application that has to predict the correct rating,
but a decision support tool to find interesting and relevant items.
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Another group of quality metrics comprise classification accuracy. It describes how
well relevant items are separated from irrelevant items. Items can be separated in four
disjunctive groups (Table 2.1) based on the prediction for the items (observation) and
how it actually should be (expectation).

actual items (observation)

predicted items (expectation)
true positives (tp) false positives (fp)
false negatives (fn) true negatives (tn)

Table 2.1.: Classification results

An terms ”true” or ”false” follow the classification result and ”positive” or ”negative”
refers to the prediction. The groups can be applied to the items that are shown or not
shown to the users. Correctly classified items are either relevant and shown to the user
(tp) or irrelevant and not shown to the user (tn). Incorrectly classified items are either
relevant and not shown to the user (fn) or irrelevant and shown to the user (fp). In
machine learning, the grouping corresponds to a so-called confusion matrix. Actual
accuracy metrics are defined according to these groups. The accuracy measures the
rate between correctly classified and all available instances n in the data set (Equation
2.36).

accuracy =
tp+ tn

n
(2.36)

Accuracy corresponds to the probability that a recommendation is relevant. It describes
the general performance of the algorithm. In recommender systems research, metrics
that focus on the accuracy of recommended items are more interesting. The precision
is the amount of correctly classified items among all shown items (Equation 2.37).

precision =
tp

tp+ fp
(2.37)

The recall states how many correct items have been found among all available correct
items (Equation 2.38).

recall =
tp

tp+ fn
(2.38)

For our application domain, Rhodes [Rho00] made an important observation. He found
that precision is more important in proactive information retrieval than recall. Precision
and recall are often considered together for evaluation. They are inversely related.
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Increasing the number of items classified as relevant generally leads to higher recall but
lower precision. Showing fewer items to the users decreases the probability to recommend
irrelevant items but also decreases recall. Precision and recall can therefore be combined.
F-measure is one example of combination (Equation 2.39).

f −measure = 2× precision× recall
precision+ recall

(2.39)

Metrics which group items depend on how the items are separated in ”positive” and
”negative” items, i.e., which threshold is selected for the predicted rating. This deter-
mines the notion of relevance in the system.

Another kind of metric is the receiver operating characteristic (ROC) curve. The
ROC curve is the plot of a function of the true positive rate x against the false positive
rate y. The true positive rate (sensitivity or hit rate) is calculated equally to the
recall. The false positive rate (complement of specificity or miss rate) states how many
incorrect instances are in the amount of all incorrect instances for a class c (Equation
2.40).

false positive rate = 1− specificity = 1− tn

tn+ fp
=

fp

fp+ tn
(2.40)

The ROC curve can be interpreted with the area under the ROC curve (AUC).
The values of the AUC are in [0, 1]. The straight line y = x separates good ROC results
from poor. Therefore we interpret AUC values in [0.9, 1.0] as ”excellent”, (0.8, 0.9] as
”good”, (0.7, 0.8] as ”fair”, (0.6, 0.7] as ”poor” and [0.5, 0.6] as ”failure” (according to
Araujo et al. [APTE05]).

Cohen’s κ is a metric that also allows an interpretation. It measures the agreement
between observed rates and chance. Values close to 1 express full agreement to the model
and values equal to or lower than 0 express no agreement, i.e., the model performs like
predicting the output with a random number or worse. Landis and Koch [LK77] give
an interpretation: < 0.0 as ”poor”, (0.0, 0.2] as ”slight”, (0.2, 0.4] as ”fair”, (0.4, 0.6] as
”moderate”, (0.6, 0.8] as ”substantial” and (0.8, 1.0] as ”excellent”.

Besides prediction and classification accuracy, ranking accuracy metrics describe the
quality of a ranked list of items. Basically, the predicted ranking of a system is compared
to the ranking of a user. Common metrics in this group are correlation-based approaches
that measure the similarity of lists of items. Another approach by Breese et al. [BHK98]
is the so called ”half-life utility metric” which assumes that items later in a list are
generally perceived as less relevant because the user does not browse the list deeply.
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Qualitative Metrics

Perceived
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Figure 2.8.: Technology acceptance model (TAM) by Davis [Dav89]

Besides objective measurements for accuracy, we are also interested in subjective mea-
surements for user acceptance of recommender systems. User acceptance is measured
in several studies of information systems with a well-known model called technology
acceptance model (TAM) proposed by Davis [Dav89]. It was originally proposed for
desktop information systems. Figure 2.8 shows the main components of the model. The
two main factors for user acceptance are:

• Perceived Usefulness (U): ”the degree to which a person believes that using a
particular system would enhance his or her job performance” [Dav89]

• Perceived Ease of Use (EOU): ”the degree to which a person believes that
using a particular system would be free from effort” [Dav89]

The perception of both factors is indirectly made through application-specific external
variables such as the design of the system. These factors influence the attitude (A) of
a user to use the system which finally determines if a system is actually used. A final
statement about the actual use can be made if there is behavioral intention (BI) to
use it, i.e., the user shows interest to use the system further during usage. An information
system that is easy to use increases the perceived usefulness as well. Two systems with
the same features may be perceived differently towards usefulness if one is more easy to
use. Although they are not always easy to use, expert systems are used because the users
have to. Particularly, the usefulness of a system can already be measured in an early
stage of prototyping (Davis and Venkatesh [DV04]). Davis and Venkatesh argue that it
has more influence on user acceptance than ease of use. However, ease of use should be
considered in a study with a prototype. Otherwise it can have negative influence.

Many extensions were proposed to TAM to tailor the model to other application domains
than desktop information systems. Kaasinen [Kaa05] derives for mobile services that
trust in the system and how much effort the installation causes are additionally impor-
tant in that domain. Kaasinen finds factors such as service features, user preferences,
comprehensibility and seamlessness as external variables for usefulness. A clear overview
of the content, no information overload, a fluent navigation, smooth interaction and low
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effort user preference setup to provide useful information right from the beginning are
external factors for ease of use.

Regarding aspects of TAM in the context of recommender systems, classical metrics
such as accuracy and relevance are not enough to measure usefulness (Rhodes [Rho00]
and Budzik et al. [BHBK00]). This is particularly the case for proactive information
systems. The most relevant restaurant can fail usefulness if the user is not hungry. User
satisfaction with the system also depends on context and the situations of the user in
this case (Beer et al. [BFH+07]). However, because TAM is flexible enough, Jones and
Pu [JP08] use the model for a survey of music recommendations to investigate which of
the systems is more accepted. Usefulness corresponds to the quality of a recommended
item. Quality describes whether the item fits the context, the mood and the profile of the
user. Ease of use is measured by effort. Effort describes how much involvement it needs
to get recommendations, how complex interaction with the systems is in general and
the usability of the system. In another survey, Cramer et al. [CER+08] investigate how
transparency influences user acceptance in content-based recommender systems. The
authors do not use an explicit model such as TAM. The results show that transparency
lead to a higher acceptance of the recommendations, not necessarily to the system.
In automotive research, the work of Meschtscherjakov et al. [MWST09] uses TAM to
investigate user acceptance of different persuasive interfaces for supporting fuel-efficient
driving. The authors perform an online questionnaire in a pre-prototype phase.

2.6. Proactive Assistance

We described Bayesian networks and fuzzy logic as methods for intelligent behavior and
recommender systems for filtering useful items for the driver. The idea of proactivity
uses these methods in the overall system design. Proactive computer systems are mainly
investigated in the area of artificial intelligence (AI). The application domain is often
office assistance (e.g., Horvitz et al. [Hor93], Myers et al. [MYs07], Hui and Boutilier
[HB06], Natarajan et al. [NJTF07], Seifert et al. [SBB04] or Cohen et al. [CCM04]).
Other application areas are assistance for elderly people (e.g., Haigh et al. [HKM+04]
and Boger et al. [BPH+05]), task assistance (e.g., Suzuki et al. [SMK+06]), shopping
assistance (e.g., Bohnenberger et al. [BJJ05]) or route planning assistance (e.g., Mukai
and Watanabe [MW05]). Billsus et al. [BBE+02] emphasize that intelligent ”agents that
select information for the users are convenient on the desktop but essential in mobile
use”. In this section, we introduce the idea of proactivity and summarize the most
important characteristics for the design of a proactive assistance system. Furthermore,
we regard proactive information systems as special type of proactive assistance and
distinguish different levels of proactive behavior.
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2.6.1. Proactivity

Definition

An early use of the term ”proactive” was in the book ”Man’s Search for Meanding”
by Frankl [Fra46]. People are described as proactive if they take responsibility for their
lives by choosing their response based on experiences. Covey [Cov89] takes this property
to make ”being proactive” as one of seven habits a highly effective person needs to
have. Covey describes proactivity as the freedom to choose the response to a stimulus.
In contrast, a reactive person in Covey’s definition is someone who is dependent on
environmental circumstances and their success. Before Covey, Martin [Mar83] brought
the term into economy with his decision making framework. The framework is based on
formulating goals and assessing alternatives before taking action. Martin emphasizes
that proactivity is the choice someone has.

Proactive Systems

Assisting people proactively is more difficult for computers than for people. In general,
people know their tasks and how to get information to accomplish that task. Computers
in contrast can only infer on users’ intention to be able to assist proactively. On the
other hand, computers offer large storage and powerful processing capabilities. With the
fast advance of mobile computers that are available in the daily lives of the users and
the problem to interact with all of these networked computers, proactive computing
was declared as solution to cope with this overflow by Tennehouse [Ten00]. He predicted
a movement from human-centered (interactive) to human-supervised or unsupervised
(proactive) computing. Computers sense the world and they are connected to monitor
and shape their environment. They are also able to respond to stimuli faster than
people. This makes people to move from in the loop to above the loop. Hence, the
vision of ubiquitous and mobile computing leads to a new paradigm of human
machine interaction.

A major property of a proactive or automatic system is to be able to predict the
future to anticipate user needs (Want et al. [WPT02]). The delimitation to a
reactive system is important at this point. Reactive decisions are well prepared actions
to signals. These actions can be performed very quickly. Proactive decisions involve a
process of comparing alternatives. For Duff et al. [DHT06] ”a proactive agent is required
to actively work towards achieving its goals, while a reactive agent is required to adapt
to environmental changes in order to maximize its ability to achieve its goals”. Salovaara
and Oulasvirta [SO04] call a system proactive if it is working for or on behalf of the
user.
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2.6.2. Proactive Assistance

Origin

The idea of software providing assistance by reducing work and information overflow is
influenced by work of Maes [Mae94]. The principle idea is that a piece of software often
called agent knows habits, preferences and interests of the user who asks for assistance.
The assistant has the capability to perform tasks that are delegated to it. These
agents hide complexity from the user. Maes took the metaphor of autonomous agents
from the field of artificial intelligence and adapts it to intelligent user interfaces. An
intelligent agent is between the application and the user and assists the user by making
suggestions, e.g., an email agent suggests an action with an email. At the same time,
Horvitz worked on a project called Lumiere [Hor93]. The goal was to improve human
machine interaction by means of intelligent software. However, the resulting commercial
system Clippy was a failure and not accepted by the users. Based on the experience with
Clippy, the research group proposed the concept of mixed-initiative user interfaces
(Horvitz [Hor99]). It is a mixture of being able to directly manipulating the interface
(proposed by Shneiderman [Shn93]) and intelligent reasoning.

Non-functional Requirements

Based on Horvitz’s research on mixed-initiative user interfaces and Iba’s [Iba07] criteria
for what helpful assistance is, Myers et al. [MYs07] define non-functional require-
ments on proactive behavior of an agent as nine guidelines. Overall, a proactive agent
has to add value to the task of the users or their interests. To add value, the agent
should be pertinent and pay attention to the current situation the user is in. The
anticipation of short-term as well as long term needs of the user is another factor.
This involves continuous learning to become better. To assist a user, the agent should
also have a competence in performing an action or gathering and processing knowl-
edge. However, Iba [Iba07] emphasizes that competence only is not enough to classify
assistance as helpful, although it is the central feature of an agent. Furthermore, if
the agent executes an action or starts communication with the user, then it should be
in an unobtrusive way, i.e., with as little as possible interference to the current task
of the users and their attention. Performed actions should also be transparent and
comprehensible to the user. The system should be controllable by allowing the user to
terminate, invoke or ignore the assistant and refining its results. Controllability reduces
the annoyance of poor system decisions (e.g., in Horvitz et al. [HJH99] or Haigh et al.
[HKM+04]). This includes that the agent works in a safe way by minimizing negative
consequences, e.g., distracting the user or costly backtracking. Finally, the agent should
be deferent. On the one hand, it should be unimposing and perform actions at the
right time. On the other hand, the users should notice that there is an assisting agent.
Horvitz [HJH99] emphasizes that the underlying uncertainty is involved in nearly all
properties.
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Functional Requirements

Want et al. [WPT02] set up functional requirements on a proactive computer system
as principles for system design. The first principle describes the connection to the
physical world. This comprises to gather knowledge about the environment the system
is in. Such systems also need to be scalable to upcoming unknown information sources.
Another principle is to generate real-time responses to physical conditions. Other-
wise, relevant situations for acting proactively are missed by the system. Predicting
the future is a further principle. It comprises the processing of observed contextual
data on a higher level, statistical reasoning about available information and prefetching
and caching of data that is potentially needed in the future.

Models of Proactive Assistance

In research, several models of intelligent systems are used to realize proactive assis-
tance. Horvitz [HJH99] apply Bayesian networks to cope with uncertainty and to
infer user actions. Fern et al. [FNJT07] give a definition of an assistant with a par-
tially observable Markov decision process (POMDP). It allows deciding not only
on the current situation but also on future situations with statistical models of predic-
tion. Anagnostopoulos et al. [ANH07] describe a situation awareness model as part of
proactive behavior for imprecise reasoning based on fuzzy sets. Myers et al. [MYs07]
use belief desire intention (BDI) agents to be able to model deliberate behavior of
the system. The goal of all models is to infer on the actions of a user to provide the
right assistance.

Interruption

A major characteristic of a proactive system is that it interrupts the user to consolidate
results, to request input or to present results. Psychology research shows that interrup-
tions generally impose uncontrollable and unpredictable stress (Cohen [Coh80]).
It occurs without control of the user. In case of human interruption, it ”requires im-
mediate attention” and ”insists on action” (Covey [Cov89]). Interruptions may lead to
information overload by either imposing time pressure or causing cognitive effort
at the recovery to the initial task. The more interruptions, the more a (complex) pri-
mary task performance is decreased (Speier et al. [SVV99]). McFarlane and Latorella
[McF02] propose four different methods of coordinating interruptions. An imme-
diate interruption requires handling the interruption immediately without the ability
to postpone. Another way is to let the user negotiate the interruption in a dialog.
The negotiation can also be delegated to a mediator system. To make the interruption
less to a surprise and predictable, it can also be scheduled with predefined timing.
Baron [Bar86] suggests making the timing of an interruption context-sensitive as a crit-
ical success factor for intelligent computer systems. McFarlane and Latorella [McF02]
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also describe three phases of interruption. In the before switch phase, the user should
be best possibly introduced to the upcoming interruption. During the switch the per-
formance of primary and interruption task should be maximized and after the switch
it should be easy for the users to return to their primary task.

2.6.3. Proactive Information Delivery

General Characteristics

Proactive assistance systems involve actions that are performed by the system auto-
matically. In case of recommender systems, actions are limited to the retrieval and
presentation of items to the user. Rhodes [Rho00] proposes the delivery of information
at the right time (just-in-time information retrieval (JITIR)). He emphasizes the
advantage compared to an interactive system. The user does not have to put in a query
into the system. Maybe the user does not even have a query in mind. Jones [Jon05]
states as a benefit of proactive delivery that information that the user is unaware of
can be found by the system.

A major characteristic of a JITIR is that it has to be unobtrusive but accessible
(Rhodes [Rho00]). For instance, a ringing phone may be obtrusive. However, turning the
ring tone off entails the risk that the user misses a call. Similarly, Billsus et al. [BHMA05]
emphasize that the interface of a proactive information system should neither be too
subtle nor too intrusive. Information should be noticeable to make a decision and
should be easy to access. Another aspect of accessibility and obtrusiveness is to have
the possibility to ignore the delivery and retrieve it later again. To enable proactive
behavior, a JITIR assistant should be aware of local context.

Furthermore, Rhodes [Rho00] describes two major functions of JITIR. First, it should
reduce the costs to get information by acting proactively. Second, it should be easy to
find out for the user what information is available and to retrieve more information
if necessary. Billsus et al. [BHMA05] emphasize that the users ignore recommendations
because the interface does not provide enough information so that they can assess
item relevance quickly. Information is either relevant to the current task, not relevant
to the current task but leads to discovery of relevant information or is valuable of other
reasons. Billsus et al. [BHMA05] state that the users are generally focused on their task
unwilling to interrupt it for a recommendation. Puerta Melguizo et al. [PBD+07] add
that the system should have a deep understanding of the task of the user to recommend
information.

Rhodes [Rho00] also makes three assumptions about the information provided by a JI-
TIR. First, delivered information is not always useful the same way because not all con-
textual information can be incorporated. Second, the users determine themselves
the usefulness of information in case of sufficient information. Third, the distraction by
making decisions caused by cognitive load should be minimized.
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Characteristics on Mobile Devices

So far, we regarded the characteristics of a proactive information system either in general
or for desktop systems. Jones and Brown [JB04] emphasize that in contrast to a desktop
and especially an interactive system, the users in a mobile scenario are not able to
fully concentrate their attention to the system. The users are rather engaged in
many other tasks. Each delivery that catches users’ attention is an intrusion. As a
consequence only relevant items that cannot be filtered by the system itself should be
delivered. Especially in an automotive environment, the major task of driving cannot
be interrupted to focus fully on the recommendation. The driver always ends up in
a multitasking situation. Jones [Jon05] proposes that a proactive mobile information
system needs to (1) detect the activity of a user, (2) decide if and when to deliver
information, (3) decide how much information to deliver and (4) choose the right interface
for delivery. While on the go, the physical environment determines the need of
information and needs to be captured by sensors. Furthermore, in mobile scenarios, the
communication with the user is limited by small screens and restricted possibilities for
interaction, e.g., for input of data. Therefore, van der Heijden et al. [vdHKK05] suggest
making the recommender as simple as possible in this case. This results in a trade-off
between simple accessibility and recommendation accuracy. Yeung and Yang [YY10]
denote reduction of interaction with less data input and browsing as one of the main
goals of proactive mobile recommender systems. As people are adaptive decision makers
(Payne et al. [PBJ93]), van der Heijden et al. [vdHKK05] suggest supporting human
decision strategies (see Section 2.3.2) by the system.

Mobile proactive recommender systems do not necessarily suggest information for the
current task such as supporting visitors in a museum (Bohnert et al. [BSZ09]) or to find
relevant individuals and buildings on a campus (Bouzeghoub et al. [BDW09]). They
are also able to provide task unrelated information such as news (Young and Yang
[YY10]).

2.6.4. Classification of Proactive Assistance

Separated Responsibility

In research, several kinds of proactive assistance are distinguished. One way comes from
delegating tasks to a proactive system. This leads to a separated responsibility.
Myers et al. [MYs07] distinguish between the tasks that are performed only by the user,
agent tasks and shared tasks that are performed by the users and the agents together.
Shared tasks are performed on behalf of an interface (mixed-initiative user interfaces).
Depending on the degree of proactivity, a system decides when to perform a delegated
task and when to communicate with the user, what actions to perform to fulfill the task,
how to perform the actions and how to learn to perform the actions better.
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Degree of Proactivity

Degree 
Proactive 
Behavior 

Do it yourself Tells you to pay 
attention 

Tells you 
what to pay 
attention to 

Make suggestions Make decisions 

Example: 
alarm clock 

Set your 
alarm 

„Check your 
alarm 
settings?“ 
 

„Looks like 
rain 
tomorrow. 
Check your 
alarm 
settings?“ 
 

„You might want to 
change your alarm 
settings because it 
look like rain and 
when it rains it takes 
you 20 minutes 
longer to get in.“ 

„I‘ve set your 
alarm to 6 am 
[because ... ].“ 

Feasibility Not impossible Harder Much harder Extremely hard 

Cost of 
failure 

Low Moderate Higher Very high 

Interface Non-intrusive Can be non-
intrusive 

More intrusive Very intrusive 

Required 
information 

Little More More (personal) A lot of, mostly 
personal 

Figure 2.9.: Degree of proactivity (according to Isbell and Pierce [IP05])

Isbell and Pierce [IP05] describe the degree of proactivity with an interface-
proactivity (IP) continuum (Figure 2.9). The IP continuum details a mixed-initiative
by providing a continuous view from direct manipulation only by the user (left most side)
to a completely autonomous agent (right most side). All degrees in between correspond
to a shared task processing. On the second degree from left to right, the agent draws the
attention of the user to the task, e.g., to set an alarm clock. The next degree additionally
provides information necessary for the task, e.g., it is raining tomorrow. At degree 4, the
agent makes a suggestion, e.g., set your alarm clock 20 minutes earlier because of rain
tomorrow. All degrees from 1 to 4 reduce the cognitive effort of the users to complete
the task but do not do it automatically. Only the last degree fully moves task comple-
tion from the user to the agent with feedback about what’s being done. Degrees 2 to 4
correspond to the definition of Lieberman and Selker [LS03] of an advisor that suggests
actions. The last degree is an assistant that performs tasks. The more proactive a
system is, the harder it is to realize. The more information it needs, the higher is the
cost of failure and the more intrusive it is. Proactive recommender systems are advisors
but cannot be matched exactly to one of the degrees in the continuum. Although they
make suggestions, they do not suggest actions to perform but items. Therefore, they are
between degree 3 and 4.

Isbell and Pierce [IP05] also describe design guidelines to decide for the degree of proac-
tivity. The first is the tradeoff between the benefit that the system offers to the user
when it works correctly and the costs if it fails. Already a small benefit and a high
cost of failure can make an agent helpful, if the likelihood of success is high. If the user
does not expect the system to fail, it will use it regardless of failure costs. Second, the
frequency of usage is crucial. Failure will be more accepted if the system is used more
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seldom. The attention or the cognitive effort of the user also varies on the continuum.
In general, it is low if the agent is more proactive. In case of failures, the attention
may dramatically increase depending on whether the user realizes mistakes quickly and
how much effort is needed to fix it. Therefore, the quality and the amount of feedback
needs to be better, the more proactivity is applied. The more proactivity, the more
amounts of high quality data are needed. This refers both to the access to data, e.g.,
user’s time schedule, and to the feedback from the user. Feedback can be acquired in
an implicit or an explicit way. Implicit acquisition reduces the amount of attention but
is more error-prone. The need to gather information also increases with the degree of
proactivity. In this context, the costs for resources increase with more proactivity, e.g.,
computational or storage costs.

Focus of Proactive Assistance

Yorke-Smith et al. [YSSMM09] describe the focus of an assistance system to classify
proactivity in application-, task-, and utility-focused proactivity. Application-focused
proactivity provides assistance for a specific application, e.g., Clippy in Microsoft Of-
fice. Task-focused proactivity is based on the current or a future task that a user
has to perform. Utility-focused proactivity generally helps with tasks. For instance,
if the agent derives high cognitive load of the users, it offers the users to take a task.

Outcome

Horvitz et al. [HBH+98] propose different control schema for proactive assistance. A
pulsed strategy starts the assistance based on a time interval. A deferred strategy
also uses a time interval but only in idle times. A triggered strategy starts the system
after an event occurred and a mixed strategy operates in a time interval but only when
an event occurred in that interval.

In case of proactive information systems, we distinguish two kinds of output.
Notification-based approaches have the goal to deliver their results as a notification
in a way that the user immediately notices them. This can be by email, a pop-up or
supported by audio or haptic feedback. The system forces its delivery on the user as it
is noticed immediately. In a retrieval-based approach, the results are only retrieved
and shown in a dedicated area, e.g., a widget. The users have to look up the results
by themselves. They decide when a recommendation is relevant. In case the users do
not think about to look up, they probably miss the recommendation. Note, the mean-
ing of retrieval-based is different to pull-based where the users are required to put in a
search query. Which approach to take for output, depends on the urgency of informa-
tion and the interface design. Gallego-Vico et al. [GVWB11] call these two approaches
notification- and widget-based for smart phones.
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2.7. Summary

Driver assistance systems are distinguished by their contribution to tasks inside a car.
Some are for security reasons. Others are for convenience or energy efficiency. The
systems differ in the level of automation, i.e., how much of the task they adapt from
the driver. Preview and prediction are important skills for a driver to anticipate future
situations and react appropriately to them. Driver information systems are either infor-
mation systems for assistance systems (e.g., to deliver warnings) or for infotainment, e.g.,
a POI search. The navigation system is the most popular information system. There are
several visual output channels for information, e.g., the CID or the instrument cluster.
Additional channels are audio or haptic. Input is limited to controllers like the iDrive
controller or speech. Information overload is a serious problem because it may cause
driver distraction. Driver distraction occurs if the same human resource is occupied by
other tasks than driving and there are not enough resources left to drive properly.

The knowledge of context and situations of a user contributes to make assistance for the
drivers more intelligent. Many different definitions for context exist. For automotive
scenarios, user, car and environment context are the most important. Context modeling
distinguishes between low-level, e.g., raw sensor data, and high-level context, e.g., derived
context. Situations are context information with special characteristics. They have a
temporal range and may be in a relation, e.g., situation A occurs before situation B.
Situation awareness comprises situation recognition, comprehension and projection into
the future. Human decisions are based on situation awareness.

In general, a recommender system involves a final choice by a user. Providing choice
is important if the users have to select between alternatives but to many choices may
decrease decision quality. Furthermore, people want to justify their choice. People ap-
ply decision making strategies according the accuracy-effort principle. They balance
the effort for decision making with the accuracy of the result. This often leads to
non-comprehensible methods with heuristics. There are many comprehensive as well as
non-comprehensive strategies. Besides human strategies, decision making with multiple
criteria is mathematically defined in multi-criteria decision making (MCDM). MCDM
can be distinguished in MAUT, Outranking or dominance-based methods. MAUT meth-
ods are the most popular and range from simple linear models to complex pairwise
comparison based methods like AHP.

To enable intelligent proactive behavior of a system, methods are needed to represent
operational knowledge. There are plenty of methods for intelligent systems. Based on
literature review, we picked Bayesian networks and fuzzy logic for our investigation.
As intelligent systems are black boxes, comprehensibility of the system by the user is
an important aspect. Explanations are one possible solution to make the system com-
prehensible. For a proactive recommender system, explanation methods for abductive
reasoning and the reasoning path are most valuable. Feature selection methods allow
assessing the impact of a situation or context to the final decision for or against recom-
mending.

69



2. Basics

Recommender systems are a special kind of intelligent systems in order to filter items.
They bring the users U , items of interest I and user preferences, e.g., as ratings R, to-
gether to predict unknown user preferences for new items. Depending on the application
domain, they follow different purposes, e.g., to find some good items or to annotate the
context with ratings. In literature, they are often distinguished by their recommendation
technique. Content-based filtering matches features of items to estimate unknown user
preferences. Collaborative filtering tries to find similar items or users based on their pref-
erences. As both methods suffer from cold start problems until enough user preferences
are known, they are often combined with knowledge-based filtering. Knowledge-based
filtering uses explicit user models, e.g., utility functions, to predict unknown user pref-
erences for an item. In recent years, context C is added as additional parameter for user
preference prediction. Context integration can be done with prefiltering items by con-
text, postfiltering by context or by establishing explicit models with context. To make
recommendations comprehensible, explicit explanations, e.g., ”movie A is more romantic
than movie B”, are used. Their application depends on the intention of the explanation,
e.g., to justify items or to persuade the user to buy. The style of an explanation depends
on the underlying recommendation method. To evaluate recommendation approaches,
the most common metrics are accuracy, precision and recall. However, they do not tell
anything about user acceptance of a system. To evaluate user acceptance, the technology
acceptance model (TAM) can be used.

Proactivity describes the freedom of a system to decide for an action based on an input.
In contrast to that, reactive behavior defines predefined actions for a specific input. A
proactive system works out tasks on its own and may contact the user for an input in
a mixed initiative user interface. Helpful proactive assistants share common properties
such as unobtrusiveness, competence, transparency or controllability. As they make
decisions on their own, assistants have to interrupt the users in their current task from
time to time. To lower the negative effects of interruptions, a proactive information
system should be unobtrusive as well as accessible for the user. The degree of proactivity
ranges from not providing assistance (degree 1) to fully performing a task without user
input (degree 5). Proactive recommender systems are between degree 3 and 4 because
they make suggestions of items instead of actions. We distinguish notification-based
proactivity with an explicit pop-up and retrieval-based proactivity with the display of
information in a dedicated area.
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Based on findings in automotive information systems, recommender systems and proac-
tive systems research from the previous chapter, we discuss related approaches of proac-
tive recommender systems in this chapter. The discussion is not limited to proactive
systems with classical recommender systems because only a few approaches are avail-
able in this area. We regard approaches that decide for taking action automatically and
deliver information to the user. This includes information retrieval. The discussion is
limited to those methods that deliver information instead of working out other kinds of
tasks proactively. All reviewed approaches have some kind of inference system to decide
when a user needs information, a filtering component that selects items to deliver and a
user interface in order to make the delivery. The chapter is structured according to the
application scenario of the systems. They are either designed for desktop computers,
mobile devices or in-car usage. The sections are further divided by the triggers that
lead to the delivery of information. We distinguish triggers with environmental context
information, user preferences and the task of the user. To decide to which section an
approach belongs, one of these information sources should be mainly responsible for the
delivery and the others may also be used for item assessment.

3.1. Proactive Desktop Recommender Systems

Desktop systems are laptops or desktop computers. The user works with these systems
to fulfill a specific task. Therefore, most of the systems are deployed in an office context,
e.g., to-do lists, email and documents. The main difference to a mobile setup is that
environmental context is less important to the behavior of the system, especially the
location. Besides support for office tasks, activities outside the context of working are
supported as well. This comprises searching for information, media (e.g., books and
news), e-commerce and web browsing.

3.1.1. Task-based

Document Retrieval

The goal of proactive office assistance is to enhance efficiency in task completion by fast
access to relevant information. XLibris by Price et al. [PGS98] aims to deliver addi-
tional documents while the user works on a document. Rhodes’ [Rho00] approach is
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similar but takes so-called just-in-time information retrieval (JITIR) systems in general
into regard. The remembrance agent is integrated in an application for word processing
to retrieve useful information such as email, net news or locally stored documents.
Unobtrusiveness is addressed by interface design. A so-called ramping interface de-
livers only reduced information in the beginning and makes more detailed information
easily accessible on user request. In both approaches, the task is represented by the
content of a document that is currently edited by the user. The users highlight words
or make annotations. This user input is transformed into queries to retrieve suitable
documents. The generating of implicit queries without them being entered by the
user manually is one of the main characteristics of proactive information retrieval. Holz
et al. [HMBR05] use implicit queries for heterogeneous and distributed documents. The
queries of Dumais et al. [DCSH04] are created from the content of emails. Ye and Fisher
[YF02] propose a system for reuse of source code fragments by monitoring program-
ming activities and generating queries from current source code. The approaches have
in common that information is shown continuously in a widget next to the document.

Puerta Melguizo et al. [PBD+07] propose a deeper representation of the task in their
recommender for writing a document. The task itself is distinguished in phases (e.g.,
planning, writing) and information need is supposed to be different in each stage. A
long-term user profile helps to assess the relevance of the document. The retrieval of
documents is triggered by assuming that the users are interested in the topic they write
about. In case of reading a document, the challenge is to infer about what is currently
in focus. Hardoon et al. [HSTA+07] apply eye movement to reason about the terms the
user is currently looking at. Training a support vector machine leads to weights that
represent the contribution of a term to an automatic query.

Proactive assistance approaches for offices are mainly document retrieval based ap-
proaches that are tailored to text fragment analysis. Reading or writing large amounts
of text is difficult because of driver distraction. Analysis of a text in an automotive
environment is not feasible because tasks inside a car are not characterized by reading
or writing. Text-based approaches are based on frequent interaction with the system.
That is also a source of driver distraction.

Monitoring User’s Behavior

Proactive information retrieval approaches share the implicit assumption that text frag-
ments determine the task and search queries are built from this text. There are other
application scenarios where the user is assisted by tasks not exclusively described by
text fragments. The challenge is to build powerful inference models to reason on user’s
actions during the task. Gong et al. [GNL+09] use ontologies to describe user’s con-
text related to required resources (people and machines) to perform tasks. A context
reasoner infers on implicit high-level context (goals) of the users from low-level context
(the resources, the users already used). Other resources that are associated with the
inferred goals and not already used are automatically recommended.
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In the Lumiere project, Horvitz et al. [HBH+98] monitor the user while working with
the Excel spreadsheet application of Microsoft. Users’ actions, the current document,
their profiles (competence), their goals, task history and explicit queries are aggregated
in a Bayesian network to reason on user needs for assistance. Benefits and costs
of recommending help topics (out of 40) are balanced to optimize expected utility for
the user. Goals are regarded as synonym for tasks and the user need is information that
helps to fulfill the task. Reasoning not only depends on static models but also takes
into regard temporal aspects of user goals, i.e., present or past goals cause future goals.
The authors use a ”horizon of analysis’’ in which observations are made for a specific
goal. Not only current context information is used as evidence in the Bayesian network
but a sequence. The reasoning results in a probability of user’s need for assistance.
If the probability of user needs for assistance exceeds a threshold, a notification is
delivered (based on notification preferences). The interface is designed unobtrusively
with an avatar. It delivers suggestions about what the user probably wants to do and
if a help topic exists to that action. Details to the topic are retrieved on demand
of the user. Without user action, the notification disappears after a timeout with an
apology for the disturbance. Microsoft introduced results from the Lumiere project
as a cartoon-like avatar called Clippy in Microsoft Office 97. However, many of the
investigated features were not included in the final product (e.g., long term user profiles,
differentiation between novice and experienced users, context-awareness and user action
monitoring). Clippy used a simple rule-based system. This made it appear quite often.
It was a failure in user acceptance and made Microsoft turn off the feature by default in
the 2001 Microsoft Office release.

Proactive assistance with recommender systems inside a car does not support the drivers
with the primary task (driving) but additional tasks (e.g., parking, refilling, hotel search)
or for fun (e.g., sightseeing, music). Other driver assistance systems such as ACC are
responsible to assist the driver while driving. Therefore, monitoring the user during
task completion and reasoning on information need is not possible to enable proactive
behavior towards recommendation delivery.

Reminder

The approaches discussed so far, focus on the benefit of information for a task. Other
approaches deal with the cost of delivery. An example is an email application that
receives messages and forwards them immediately to the user at arrival. Horvitz et
al. [HJH99] propose such a system and investigate methods to be sensitive of user’s
attention in order to decide when to present the email. The trigger for the notification
is the reception of an email. A Bayesian network reasons on expected costs of
interruption and costs of postponing email notifications based on criticality and
costs of delay. The system is integrated in Microsoft’s email client Outlook and does
not change the notification itself but the timing. Millard et al. [MdRS05] also describe
a system for deciding proactively about email delivery with ontology reasoning. The
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current task of the user and content of the received email are analyzed to decide what
to do with the email. If a message is assessed as relevant, the system also decides about
the mode of output, i.e., on which device it should be delivered.

Besides emails, notifications can also be delivered to remind a user. Kamar and Horvitz
[KH10] investigate reminders for Microsoft’s Outlook calendar. A Bayesian network is
used to establish a mental model of forgetting an appointment or details of an appoint-
ment (e.g., location or other attendees). Also the importance of a meeting accounts for
the value of a reminder. The timing of delivery is chosen by the expected utility of
a reminder, enough time until the meeting starts (not to forget it again) and closeness
to the meeting location. The probabilities for the Bayesian network are learned from
user interaction. CyberMinder by Dey and Abowd [DA00] gives the users the possibility
to define context conditions in which they want to be reminded (situation editor).
This extends common reminder approaches which mainly deliver according to the time.
CyberMinder also incorporates context such as location or more complex combinations.
The situation is described by rules which can be combined.

An approach that postpones or prevents information delivery because of costs (e.g., user
disturbance) is useful inside a car but only for special uses cases such as appointments or
emails. Its primary goal is to prevent delivery at the wrong time, not to enable delivery
at the right time. The need for information is triggered by an external source, e.g.,
an email or a meeting, with the push of a message. For many use cases relevant for
drivers (e.g., gas stations or parking lots), the system needs to decide on the need for
information and has to retrieve relevant information if necessary.

3.1.2. Preference-based

Web Pages

Office assistance tries to help the users to be more efficient in their task. The reason for
the trigger of recommendations can also be user’s interest in information. For example,
the basic idea in case of web browsing is to watch user behavior while browsing and
generating implicit queries based on the content of a web page or previous web pages.
Lieberman’s Letizia [Lie97] is a widget-based recommender of web pages that continu-
ously changes its content depending on the web page in the browser. WebWatcher by
Joachims et al. [JFM97] asks the user in the beginning to state current goals and inter-
ests. This information influences the retrieval. Budzik and Hammond [BH99] extract
meaningful keywords from Microsoft Word documents and web pages to generate queries.
In contrast to the first two approaches, this approach takes semantics of terms, e.g.,
addresses, company names or images, into regard to select the right search engine. It
shows the titles of the web pages in a widget. The users choose whether they want to
see the whole item. A system called SUITOR by Maglio et al. [MBCS00] also regards
semantics and suggests stock information in case of companies are recognized and tips
in case of Microsoft Word is started. The system is an independent widget that builds
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short-term profiles based on the applications used by the user. Miettinen et al. [MTM05]
extend these approaches. They analyze behavior patterns by monitoring navigation and
scrolling to distinguish between reading and browsing. The eye movements of the users
additionally determine the relevance of keywords. Implicit ratings are derived from these
keywords. Henzinger et al. [HCMB05] apply these ideas to TV broadcasts. News TV
broadcasts are regarded as text stream which is analyzed in real time to feed a news
information source with implicit queries. Different approaches are compared by the ac-
curacy of relevant results. Their results show that it is worth improving postfiltering
of the information rather than extracting more accurate queries.

Billsus et al. [BHMA05] analyze a recommender called FXPAL for web pages. FXPAL is
integrated in the web browser as toolbar. The authors realized that previous approaches
lack a good interface. They made three suggestions to improve the interface. In their
solution, a translucent recommendation window notifies the user about highly relevant
recommendations. It should be non-intrusive but also not too subtle to be realized
by the user. Highlighting of terms in the web page should provide transparency about
why specific items were recommended. Finally, a recommendation digest function allows
retrieving formerly delivered recommendations. If the users do not have enough resources
to process recommendations at the time of delivery, they are able to recall them later.

Proactive preference-based retrieval is comparable to task-based retrieval. The interac-
tion of the user with the system determines the need of information, e.g., documents or
web sites. The described approaches are not applicable inside a car for the same reason
as office assistance. News recommendations are an applicable use case for in-car recom-
mender systems. However, they are triggered from external sources (news provider) like
reminder.

Asynchronous Delivery

In e-commerce, a common technique to provide proactive recommendations is to send
out emails (Ben Schafer et al. [SKR01]). Online retailers such as Amazon.com or
Ebay.com create long-term preference models by analyzing user’s purchasing and
browsing history. A set of current offers that might be of interest for the users is sent
via email. The recommendations are explained by ”Because you recently searched for
...” or ”Maybe your are still interested in ...”. Another approach in e-commerce is to
integrate widgets into the area where results are shown. For instance, Amazon.com
shows other items with the explanation ”Customers who bought this item also bought
...”. As the users do not requested the recommendations themselves, the approaches
correspond to an automatic delivery. However, the recommender is fully integrated in
the search results and it is driven by the search query of the user. Therefore, we do
not regard this approach to be proactive as the recommendations are part of the search
engine. The job recommender of Lee and Brusilovsky [LB07] shows the distinction more
clearly. The authors refer to automatic (recommending jobs) and manual (searching for
jobs) recommendations. As the user does not ask for recommendations, the delivery is
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automatic. Though, recommendations are generated automatically, the delivery itself is
not triggered automatically. Therefore, these approaches are not proactive because the
system does not decide when to recommend.

Asynchronous delivery via emails is not applicable for proactive recommendations inside
a car. The drivers consume proactively delivered information while driving. If recom-
mendations would be delivered via email, driving will be frequently interfered or the
drivers miss important information. Providing explicit explanations with recommenda-
tions has proven to be useful in commercial system, especially in e-commerce. Transfer-
ring explanation approaches to automotive scenarios is not straightforward because of
information overload.

3.2. Proactive Mobile Recommender Systems

The main difference between context in mobile and desktop systems is that environmen-
tal context has more relevance for mobile information access. However, environmental
context has to be captured by sensors first. This requires additional hardware in mobile
devices which only offer limited space for extensions. Besides task-based and preference-
based triggers, also environment-based triggers are applied in mobile scenarios.

3.2.1. Environment-based

Location-based Delivery

Location is one of the most used context information for delivering recommendations.
The common idea is to deliver relevant information if the user is near a location. Rhodes
[Rho03] uses the location in a system called Jimminy which is a mobile version of a JITIR
(see Rhodes [Rho00]). Jimminy is a wearable computer with a head-up display which
automatically displays old notes that are relevant at the current location and with the
current accompaniment of the user. Notes are saved previously with their context. For
instance, by entering a room, all notes taken in that room are shown. Similar systems
are proposed by Beigl [Bei00] with MemoClip, PersonalServer by Want et al. [WPT02]
for notes in a research lab or by Ryan et al. [RPM98] for archeological purposes. All
scenarios share, that taking notes is inconvenient for the user. Therefore, information is
automatically saved and retrieved if the current context matches the saved context.
Marmasse and Schmandt [MS00] use in ComMotion the same assumption. The difference
is that future information is shown. Instead of old notes, reminders are delivered.
As with CybreMinder (Dey and Abowd [DA00]), the users are able to set up a reminder
in connection to a location. To increase convenience for the users, the system learns
salient locations and gives the users the possibility to tag these locations, e.g., ”home”
or ”work”. As the system is targeted to mobile users who are involved in other tasks
during reminding, a speech interface is added. Context such as the location can be
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used for the trigger of recommendations but also for filtering items like in a context-
aware recommender system. Vijayalakshmi and Kannan [VK09] separate context in
context that triggers the delivery and context that is used for assessment. Basically, all
mobile guides for tourists follow this idea.

Regardless of whether the location is used to store data, to deliver location-based in-
formation or to remind, researchers approach the context information location only as
the position of a user. Their approaches use different granularity, e.g., a room or a GPS
coordinate. However, the location bears more contextual information that determines
user’s need of information. In automotive scenarios, especially the route of a driver is a
rich source of information, e.g., how long it takes to drive to a location or the purpose
of the trip.

Mobile Guides

Many mobile guides were proposed over the years (see Krueger [KBH+07] for a re-
view) but most of them rely on explicit search for information. Research in this area
focuses on how mobile users can interact with the mobile system to retrieve relevant
information of interest. Also technical questions in mobility are addressed, e.g., posi-
tioning sensors. The idea of proactive delivery of tourist attractions comprises a user
who walks around and a mobile system that adapts its information delivery or notifies
the user about interesting spots around. Following this idea, Oppermann et al. [OSJ99]
implemented Hippie, a mobile guide for museums, and Schmidt-Belz et al. [SBNPZ02]
propose CRUMPET, a proactive tourist guide. CRUMPET proactively triggers sight-
seeing spots at specific locations. An unobtrusive delivery with item icons and an audio
notification is used where the user has to retrieve the items manually. Schmidt-Belz et
al. note that proactively delivered items have to be ”better” than pulled items. There-
fore, the threshold for relevance is higher in their proactive scenario. This should help
to make the reason for the recommendation more obvious for the user.

Proactive mobile guides are especially useful for discovering new information (Brown
et al. [BCB+05]). The approach of Brown et al. recommends notes, pictures etc.
which are taken at a location when another user reaches that location. Aras et al.
[ALWM10] describe the same usage scenario for video- and text-based recordings. If a
user enters a region, a prefiltering of notes based on time, location or other context
is applied. A collaborative filter assesses the remaining notes. An icon indicates the
availability of recommendations proactively. The user is able to retrieve desired notes.
In the evaluation, proactive delivery gets higher scores in efficiency and convenience
than searching manually. However, the icon was not recognized often which suggests
using additional notifiers such as sound or vibration. Modsching et al. [MKHG07]
investigate how effective mobile guides with proactive functionality are in discovering
new information. In a user field study, the system guides the tourists along a tour and
triggers sight information automatically when it is in vicinity. Results show that the
users with proactive mobile guides explored much more sights than such without.
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Additionally, Beer et al. [BRHF07] carried out a user study to find out for which kind
of tasks mobile users in tourism want to receive push information. For four out of
six services (navigation, risk warning, news and sightseeing) push functionality plays a
significant role for the intention to use the system.

The focus of mobile guide research is on system design. Recommender systems and
proactive assistance may be part of the system but only marginal. Only a few ap-
proaches combine recommender systems and proactive assistance with mobile guides.
The evaluation is focused on the overall user impression of the system.

Events-based Delivery

Besides the location, also events could be the trigger for recommendations. Hinze and
Voisard [HV03] came up with the idea to exploit event-based modeling to deliver
relevant information automatically. Location events trigger information for a sight at
the current position. Scheduled events trigger recommendations based on semantically
related items. For instance, if a church is in focus, then another church around the cor-
ner may be recommended. External events trigger notifications if dynamic information
changes, e.g., a concert is canceled. The event notification system consists of events
and profiles. Events are state transitions at a certain time. They trigger actions and
can be primitive or composite based on an event algebra. Events contain operators like
”atLocation” or ”weatherChangesTo”. Profiles contain conditions that are matched to
an event to decide whether to perform an action. Further characteristics and types of
events are analyzed in Hinze et al. [HSB09].

In a series of publications, Beer et al. [BFH+07], [BRHF07] and [BHZR06] extend
the idea of event-based delivery. The authors let the users configure events. Beer
et al. [BFH+07] describe the architecture and carry out a study about which kind of
information to deliver proactively to a tourist. The main requirement on their system
is ease of use. Especially the configuration of triggers should be easy for the user.
Furthermore, the user should have the possibility to provide user preferences and various
sources of data should be integrated. The rule engine (Beer et al. [BRHF07]) is similar
to the approach of Hinze et al. [HSB09]. It is based on so-called E-C-A rules (Event-
Condition-Action). An event contains one or more operators and their parameters.
Conditions check user situations and tasks, e.g., being outdoor, to decide if an event
should trigger an action. The action is the delivery of recommendations. In contrast to
Hinze et al., the authors explicitly use recommender systems for item assessment. Beer et
al. [BHZR06] present a hybrid recommender containing collaborative, content-based
and knowledge-based filtering to select items.

Delivering recommendations when events occur is a reasonable approach for proactive
recommender systems. Authors such as Hinze et al. [HSB09] and Beer et al. [BRHF07]
show the feasibility of event-based delivery. However, such approaches require the mod-
eling of events. In automotive scenarios there are use cases, e.g., parking or hotel search,
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where information need is not always connected to the occurrence of events. Further-
more, the approaches monitor user activities and analyze events during these activities
comparable to office assistance.

Calculation of Scores

Besides domain-specific approaches like mobile guides, also general approaches for proac-
tivity were proposed in mobile scenarios. The approach of Wörndl et al. [WHBGV11] is
one example of a generic model for proactivity in recommendation systems. The model
separates proactivity and context-aware assessment. A score S1 is calculated and trig-
gers the calculation of a second score S2 for each item. S1 represents the relevance of a
recommendation in user’s situation and S2 the quality of an item. Situational parame-
ters are a weighted combination of a user, temporal, geographic and social context.
The items are assessed based on one or more recommendation approaches including
context-aware approaches. If S1 exceeds a threshold, the calculation of S2 is initiated.
Every item whose score S2 exceeds another threshold will be recommended. The score
S1 has an influence on the second threshold to make recommendations more probable if
necessary.

Like Wörndl et al. [WHBGV11], Cena et al. [CCG+06] also use scores. Cena et al. focus
on different types of adaptation including users, context, contents, devices, interfaces
and the modality of interaction (pull- and push-based). Their system UbiquiTO is a
mobile guide that recommends POIs on a mobile device. To avoid cold start problems,
recommendations are calculated by rules based on user profile information, e.g., age.
For dynamic preferences, user actions are monitored and weights in the user profile are
updated. In the fuzzy rule-based system, the antecedent comprises properties of the
user, e.g., ”age ≥ 45”, or features of an item, e.g., ”hotel category = 4 stars”. The
consequence contains user profile attributes, e.g., ”intention to spend a night = 0.7”.
The result of the user preference inference are defuzzified membership values µ for item
features, e.g., ”intention to spend a night = {µ(High,0.7) = 0.8 ; µ(Low,0.7) = 0.1}”.
This corresponds to situational user preferences. The recommender calculates a score
at run-time for each item based on its features. Additionally, the authors use a second
rule-based system. Rules with the membership to item features in the antecedent and
weights for item features in the consequence are established. A second score describing
the current context of the user, mainly the location, is calculated and summed up with
the first score in a linear model. Another question that is addressed is the amount
of information to provide. This depends on the device, modality of interaction, item
features and the user profile. For instance, if a user is very interested in art, more detailed
descriptions are delivered for museums. Rules determine the amount of information. The
difference to Wörndl et al. [WHBGV11] is that this work does not detail the trigger
for a proactive delivery but the processing of item features and the establishing of user
profiles with rules.
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Score-based approaches share the advantage that the assessment of the system is done
on an abstract level, i.e., it does not depend on the application domain anymore. A
reactive trigger with a threshold has the disadvantage that many recommendations are
delivered in case the threshold is often exceeded. This kind of trigger is often used with
scores. While driving, this would lead to many interruptions. Score-based approaches
also have in common that the aggregation of different information sources is conducted
with a linear model. However, multi-criteria decision making offers far more methods to
derive a single assessment, e.g., AHP or Outranking.

Delivery based on Predicted Information

The approaches discussed so far mainly address the problem of proactive information
delivery for present situations. Especially in the tourist domain, it is valuable to predict
user’s future location to prefetch information or deliver recommendations timely (e.g.,
see Hinze et at. [HSB09]). Many methods to predict destinations or context in general
are proposed (e.g., Ashbrook and Starner [AS02]). In this work, we are not interested
in the prediction itself but how to handle predicted context. Lee and Cho [Lee10]
describe a classical scenario in this case. They use Bayesian networks to predict future
information need. Nodes of the network represent activities, user preferences and profiles,
time, weather and user’s current position. The system infers on the future position of
the user. Locations are described by higher semantic terms like ”law building”. If the
probability of a prediction is high enough, the recommender retrieves relevant items
associated with the location, e.g., the menu of a restaurant. The advantage of this
approach is that information can be delivered in advance of the event. The user has
enough time to consume information, e.g., to look through the menu.

In contrast to task monitoring, prediction of future tasks is better applicable for use
cases of recommender systems in automotive scenarios. Prediction research focuses more
on prediction accuracy than on the delivery of recommendations. Recommendations are
simply assumed to be relevant if a task or event is predicted. They are directly connected
to the event or the task. However, we are not directly interested in the task but which
kind of information is needed for task completion. Hence, predicted information needs
to be interpreted.

3.2.2. Preference-based

Publish-Subscribe Architecture

Environment-based proactive recommendations are triggered by external context, e.g.,
location or weather. The delivery is refined by user preferences. Triggers may also be
primarily user preference-based. If a relevant item is available, it will be pushed and
refined by context information if needed. Podnar et al. [PHJ02] describe a technical
architecture to push information such as weather, traffic or news to a user. A common
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scenario involves a user who might be interested in information and a content provider
who delivers information from time to time. The authors choose a publish-subscribe
mechanism to distribute information. The users subscribe to a service or channel of
interest with their preferences and the content provider publishes information if available.
Information is filtered by a middleware for content dispatching which decides which
subscribed users should receive the information. The dispatcher analyzes the content of
a delivery and matches user preferences to the content.

Based on this mechanism, Choeh and Lee [CL08] describe a proactive information sys-
tem. The authors focus their work on user preferences. They emphasize that push
messages cause interruptions from the current task in general. Therefore, irrelevant
items may lead to dissatisfaction with the service or the content provider. They choose
a recommender system approach to filter items. Their hybrid recommender aims
to avoid cold start problems. Two scores are calculated and aggregated with a lin-
ear weighted model. The first score is content-based and is calculated for each item
individually with user preferences and item attributes. The second score is calculated
collaboratively by clustering user profiles and take into regard what items other users
have consumed in the same cluster. Items with high scores are moved to a push queue
where the user client system is able to retrieve the items. Context-awareness is addressed
by allowing the user to define rules for the delivery, e.g., restricted time periods or
message intervals. In a user acceptance study, the authors found that push messages
may lead to use the service more often. On the other hand, experienced users tend to
be more sensitive to inaccuracies in item selection than beginners.

Lee [LC10] takes a closer look at the content of event notifications. He looks for an
event description that is fast in matching and expressive at the same time. Therefore,
he decides for a graph-based structure as a compromise to describe complex events. A
context-aware collaborative filtering mechanism is proposed for content matching. First,
users who rated the topics of an item in context are searched. Those users who have
similar interests are filtered. The decision whether to deliver a recommendation is made
based on the ratings of similar users.

Like reminders and news, push-based information delivery is triggered by external
sources. Their goal is not to assist the user but to deliver information. Proactive
assistance in this case is focused on postponing or filtering information. Rules for the
delivery are a reasonable method to prevent pushed information from being obtrusive.
Furthermore, the user defines the behavior of the proactive assistant. The more com-
plex the behavior is, the more effort the user has. The complex rule definition might not
always be easy to understand the way it was intended by the engineer of the system. In
automotive scenarios, rule definition is limited due to limitations of interaction inside a
car.
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Mobile Advertising

Mobile advertising is one of the main applications for preference-based delivery. The
content provider is an advertiser in this case. Ranganathan and Campbell [RC02] em-
phasize that for publish-subscribe push services, the user determines the conditions for
delivery and in mobile advertisement it is in the interest of the advertiser to deliver
information. Hence, the advertiser should be allowed to specify conditions by itself.
The user may specify preferences and configure the delivery trigger. Bulander et al.
[BDSK05] describe a platform called Mobile Marketing (MoMa) to enable mobile adver-
tisement. The authors distinguish different kinds of delivery. A broadcast sends out
the information to every mobile user whose system may refine the delivery by context or
user preferences. A point-to-point centralized delivery sends ads to the users as soon
as they are close to a retail store that offers promotions (e.g., Munson and Gupta [MG02]
or Aalto et al. [AGKO04]). The third scenario is an ad-hoc decentralized delivery where
two users share recommendations when they meet. Straub and Heinemann [SH04] detail
this scenario with mobile ad-hoc networks (MANET) as a communication platform.
User A collects information and recommends it in case it is relevant. If user B meets
user A and both have similar preferences, recommendations are delivered automatically
over a spontaneously established communication. Bulterman et al. [BJC+07] propose
a system for a personalized remote control with the same idea of sharing. User A and
user B watch TV (not necessarily co-located) and both users collect information about
the TV show. If they believe that it can be relevant for the other, they are able to push
a recommendation to the other user’s remote control.

Regardless of whether ads are triggered by an advertiser or by friends, external sources
decide what is relevant for a user. In automotive scenarios, it could cause information
overflow, if too much information is pushed to the driver. Therefore, pushed information
should be filtered before delivering to the user.

News

Besides advertisement, recommending news is another popular use case for preference-
based triggering. In this scenario, a news content provider publishes large amounts of
news. To avoid information overload, recommender systems are used to decide which
news should be forwarded to the user. Yeung and Yang [YY10] describe a proactive
mechanism for news based on the MCDM method AHP. The authors notice that most
researchers aggregate several criteria by a simple weighted sum model. Their AHP is
able to evaluate items on several hierarchies and with several recommender approaches.
The user subscribes to a news service with the news category. A content dispatcher
collects current news from the content provider and matches user preferences, current
needs and available content to decide about delivering a push recommendation. The
first hierarchy level of the AHP contains a profile (including a Bayesian network for
user interests), situations (e.g., location, weather), rates (i.e., selection history) and the
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age of an article. Weights for the criteria are either assigned manually or based on
selection history. A combined score is calculated with the AHP method to rank the
items. If the score is high enough, the news item is pushed to the user. To overcome
cold start problems, a static structured Bayesian network predicts the interests of a user
in a specific news category (class variable) by means of demographic data, e.g., gender,
age or work status.

News are only one application for proactive recommendations inside a car. There are
other information sources, e.g., parking or refilling, which have different properties. AHP
is an interesting approach for aggregation. It goes beyond simple linear models. However,
like an environment-based approaches with scores, a reactive trigger with a threshold
has the disadvantages of frequent delivery.

Delivery based on Predicted Events

Thawani et al. [TGSR07] describe a different approach for advertising based on predic-
tion of events by means of state machines. The task of the user is to watch a sports
game, e.g., a soccer game. An ad is pushed by the content provider during a game when
it is most relevant. It is most relevant if the content of the ad matches the current scene
in the game, e.g., a player that is featured in an ad scores a goal. The users subscribe for
the service with basic preferences such as their favorite player. A domain-specific state
chart represents the game. Events like ”Player X scores a goal” cause state changes.
Analyzing the former occurrence of events derives the probability of a state change. If
the probability of an event becomes high enough, the event is predicted to occur in the
near future. This causes the system to retrieve relevant ads for this event from an ad
pool. Ads are provided timely before the event occurs. The approach is only applicable
if the domain can be described as state chart and with events.

Kwon et al. [KKY04] also rely on context prediction. Their system fetches relevant
data and delivers on time. Their approach uses rule mining to build behavior models
with context and recommendation rules as a user profile. If a behavior pattern can be
predicted during run-time for a specific window size, i.e., the number of predictable
patterns, then information for that pattern is prefetched. Items are selected by a rec-
ommendation rule and they are delivered if the user behaves according to a known
pattern, e.g., the next department in a bookstore.

Bohnert et al. [BSZ09] apply a similar idea for museum visitors. They develop a spa-
tial process model that predicts where a museum visitor is probably going next after
viewing a painting. User’s viewing time is regarded as implicit rating for the item.
Recommendations for further exhibits are made based on the predicted path, distances
between the exhibits and inferred ratings (based on the content similarity of items).

Predicting events is a promising approach for proactive recommendations inside a car
because it allows a timely delivery of recommendations. Hence, the driver has enough
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time to consume the recommendations. The focus of current research is on the prediction
itself, less on the quality of items that are delivered.

3.2.3. Task-based

Task-based delivery is the third category of mobile recommender systems. The task of a
user triggers the recommendation. In general, tasks follow an intention or a goal (we do
not distinguish the terms in this thesis). Actions that the users perform lead to achieve
the goal. During the execution of actions, the users have a need of information. A
need is the gap between current information and a goal.

Early Approaches

A general approach for task-based information delivery is monitoring the task and infer-
ring on information need. Lamming and Newman [LN92] explain early ideas of storing
notes along with information about the task of a user, e.g., travel or meeting, as a mobile
automatic diary. Hart and Graham [HG97] propose with FIXIT an automatic manual
recommender for copy machines that is able to retrieve information proactively. The
system is embedded in the copy machine and tracks the state of user’s troubleshooting.
It automatically recommends pages of the user manual with the potential fault of the
machine. The fault of the system is detected by means of a Bayesian network. Every
fault is connected to a topic in the manual. The system displays a small icon indicat-
ing new available recommendations. The user has to retrieve these recommendations
manually.

The approach of Hart and Graham is based on ideas of information retrieval. It is
embedded in a special device and hardly applicable in other domains.

Exercising

The Xpod is a special device developed by Dornbush et al. [DEO+05] which tracks
human activity (e.g., while exercising) to select appropriate music automatically. The
scenario is similar to driving because the users are not willing to interrupt their primary
task of exercising to interact with the system. Hence, the interaction should be as
easy and short as possible. The device is equipped with sensors to monitor context
information that describe the activity, the motion and the physical state of the user. A
discrete set of states of the user is predefined and the system infers on the current
state. The user is able to give ratings for recommended songs. These ratings are stored
in relation to the current state. Ratings for songs are predicted based on previous ratings
for similar songs (content-based) and the current state. As songs are consumed more
often than one time, several ratings are stored. Hence, a rating can be different for
different states. The predicted ratings are used to weigh the probability that the song
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is played. Several machine-learning techniques are examined to calculate the rating
prediction.

Although the model is tightly tailored to the task (like the approach of Hart and Graham
[HG97]), it shows that usage of common machine learning methods are applicable for
many different domains to model the trigger for a recommendation. The domain of
exercising shares some characteristics with driving.

Emergency Workers

Similar to exercising, individuals or teams working in an emergency situation also
need to focus on the primary task in which few or no interruptions are acceptable due
to time pressure. Fan et al. [FYW+04] point out research that shows that teams using
proactive information delivery outperform teams without proactive delivery. However,
irrelevant information that is delivered proactively can have negative effects on the per-
formance. The authors propose an approach to help teams to receive only relevant
information based on complex domain-specific mental models. Agents monitor team
members in their execution of subtasks. Relevant information is filtered with rules. For
instance, information that has a high probability or is observed by the team itself is not
delivered . Information need is modeled as a graph where states of teams are nodes. Hu
[Hu09] proposes an ontology-based approach for the same scenario. A domain specific
ontology supplements a generic task ontology containing the task itself, time, location,
the user and occurring events. Context changes are monitored. If changes occur, a set
of predefined rules that are based on the ontology determine which information (events
in this case) to deliver to the user.

Ontologies are a powerful tool to model complex relations, e.g., in a task model, in a
formal way. In contrast to machine learning methods, uncertainty is not an integral part
of an ontology.

Shopping

A further scenario of proactive recommendations is shopping. The basic idea is to
deliver products inside a store based on the situation of shopping, e.g., which products
are still needed or where the user is. Asthana et al. [ACK94] describe such a mobile
shopping assistant but their research focuses on infrastructure questions. Sae-Ueng
et al. [SUPOK08] published a more recent approach. A camera is used to infer the
state of the user and RFID is used for positioning. Logs of the sensors are used to
set up a model with multiple linear regression to be able to infer on the state of
the shopper, e.g., standing, viewing, touching, carrying or fitting (cloth) (similar to
Dornbush et al. [DEO+05]). A hybrid recommendation approach is proposed for
item selection. The content-based filter uses previous purchases. The collaborative
filter extracts implicit ratings from the current state where interaction with the product
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such as touching leads to higher ratings. The recommender searches similar customers
with similar ratings to make a prediction for the current product. Product items are
prefiltered. For instance, the items can be prefiltered based on the department a user is
in. Automatic recommendations are presented in a display next to the product or on a
mobile robot.

The use case of shopping is different to automotive use cases for proactive recommen-
dations. Shoppers can more easily be monitored during shopping to infer on need of
information. If information is presented, the shoppers are able to interrupt their activ-
ity and focus on the recommendation.

Situation-aware Delivery

The approaches so far aim to assist special groups of users such as shoppers, athletes or
emergency workers. Therefore, the approaches are mostly limited to special character-
istics of the domain. Other approaches focus on an everyday mobile user equipped
with a mobile device. Kwon et al. [KYS05] propose a multi-agent based system
which delivers useful information during the primary task of browsing with a mobile
browser. The assumption is that browsing for information while on the go aims mostly
to cover information need which is based on the situation of the user, e.g., at lunch
time. Ontologies are established to describe users and context. Context is associated
with information sources. The strength of the association depends on user preferences,
context (e.g., location or schedules) and users’ to-do lists (e.g., what the users need to
purchase). Based on the strength of an association, a strong push, i.e., a notification, or
a weak push, i.e., a link to a recommendation, is applied.

Bouzeghoub et al. [BDW09] propose a system that recommends resources such as in-
dividuals or buildings on a university campus. Their focus is on situation awareness
for proactive recommendations. Situation awareness contains location, user profile and
user’s tasks from the daily agenda. Like Kwon et al. [KYS05], a set of ontologies is
used to describe context. A situation is a set of context information in a time interval.
It consists of relations like ”in(Tom,Office)”, constraints to be satisfied, an interval sta-
bilization and a time range. The interval stabilization keeps the situation in a stable
state, i.e., only significant context changes change the situation. Furthermore, a situation
may include special operators for temporal aspects to be able to incorporate context
in the future or the past, e.g., ”soon”. Events are defined as transitions of situations
such as moving from one building to another building. The events contain constraints
that need to be fulfilled to trigger an action. Constraints are logical expressions similar
to rules. Recommendations are triggered in case a situation changes, i.e., if an event
occurs.

The approach of Bouzeghoub et al. [BDW09] uses a knowledge-based approach
that processes rules for recommendations. Rules contain events in the antecedent and a
recommendation action with the type of recommendation and the user in consequence.
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Additionally, constraints based on situations are analyzed. A situation monitor detects
context changes and delivers recommendations to the interface. If too many items are
available, information filtering is applied. The application scenario includes only small
sets of items in general. The system intends to make complex situation inference. For
instance, if the users do not checked their emails for a period of time, the system may
recommend (highlight) buildings with computer terminals. It is questionable whether
the users understand such recommendations. Transparency is handled by using icons
to show the user which type of recommendation is fired. The system is unobtrusive
by only highlighting items such as buildings and it allows the users to retrieve further
information if they are interested. It is a retrieval-based approach where the user needs
to interact with the system but do not have to formulate a query.

Bouzeghoub et al. [BDW09] show how situation awareness can be incorporated into
proactive delivery of recommendations. The model includes important aspects of si-
tuation awareness such as the relationship between users and their situation and the
stabilization of system behavior because of uncertainty. Again, recommendations are
delivered based on the occurrence of events.

Retrieval-based Proactivity

Hanamura et al. [HKT03] also apply retrieval-based proactivity. The users receive
recommendations as soon as they turn on their devices. A model for user intentions
with fuzzy sets based on radial basis networks (RBF) determines the recommenda-
tions. The network connects main intentions, subintentions and situations represented
by nodes. Main intentions are basically tasks or goals of a user and subintentions are
subtasks or actions that need to be fulfilled to achieve the main intention. Tasks are ac-
tivated by situations, i.e., a numeric value of task involvement is calculated. Situations
are recognized by rules that are fired based on context information. Some situations
are modeled fuzzy such as the time to an event (early, on time or late). The network
proactively delivers subintentions ranked by their involvement when the device is turned
on. Recommendations are connected to the subintentions. For instance, walking to a
station leads to the recommendation of the route to the station.

Fukazawa et al. [FLW+06] propose a similar modeling approach based on ontologies.
A task ontology contains distal goals (long-term goals) which correspond to main inten-
tions. Distal goals consist of proximity goals (short-term goals) which are subintentions.
Services which should be recommended are connected to proximity goals, e.g., auto-
matic route planning. A situation ontology enables proactive retrieval of services for
subintentions by sensing context. Context implies situations and the system infers on
proximity goals from situations. High-level situations are represented by keywords like
”Sunday morning”. Crisp context information is mapped to such terms.

In automotive scenarios, retrieval-based approaches have the disadvantage that the
drivers usually do not look up information often (in contrast to mobile users). Mo-
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bile device users are able to turn their attention from time to time to their devices. This
is true only in a few cases for driving (e.g., at a traffic light). The drivers focus on their
primary task of driving during the whole trip. Therefore, the risk of missing relevant
information is high. The approaches show the usefulness of fuzzy modeling for situa-
tions. Fuzzy logic is able to handle uncertain knowledge about situation involvement.
The usage of human understandable terms like ”Sunday morning” adds transparency to
an intelligent black box system.

Activity Prediction

The focus of the approaches for mobile devices so far is to deliver information in the
current situation. The next approach aims to infer on upcoming tasks and to deliver in-
formation for these tasks. In a series of publications ([BPR+08], [PP09] and [DPH+09])
a system called Magitti was proposed to recommend leisure time activities. Informa-
tion sources are POI services such as Yelp, Zagat or Google local search. The assumption
is that information is only relevant if it follows activity patterns. For instance, restaurant
recommendations are relevant if someone wants to have lunch.

Bellotti et al. [BPR+08] describe the system architecture. The approach follows a
separation by design. One component is for recognizing activities (Activity module)
and another one for selecting suitable recommendations (Recommendation module).
Both modules exploit context information to make decisions and they learn to improve
their behavior. The user interface covers the whole screen of a mobile device. It presents
the state of the activity recognition as icon to make clear why something has been
recommended. The users have the possibility to change that prediction. This way, they
are able to adapt provided items. The approach is a retrieval-based approach without
explicit queries. A user study shows that the users discover new places, e.g., to eat,
contrary to their regular pattern of taking a few known places (53% of the places are
new). Inaccuracy or omission of expected items have negative effects on the confidence
in the system (also shown by other researchers such as Cheverst et al. [CDM+00],
Herlocker et al. [HKTR04] or van Setten [vSPK04]). The study shows that users use
the system like a mobile guide. This leads to users’ expectation of close places to be
recommended. The first item in the list influences the view on others significantly.
People spent much time to understand why the system has recommended those specific
items (lack of transparency).

In another work, Partridge et al. [PP09] detail the task inference approach. The engine
predicts tasks and user preferences in these tasks. A horizon for prediction is applied
(2 hours) to lower complexity. The goal is to provide recommendations for upcoming
tasks. A task is defined by single categorical terms such as ”Eat” or ”Shop”. The
prediction results in a probability distribution over the terms. Environmental context
as well as user context is involved. Structured models are applied to make inference
(e.g., based on probabilities) instead of machine learning to be able to use existing data
sets and avoid cold start problems. Models are distinguished between static models
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that are once configured for all users and dynamic models which are updated based
on observations such as interaction or places to go. The predictions of all models are
combined to a probability distribution. Finally, relevant information is selected based
on the final probability distribution.

Ducheneaut et al. [DPH+09] describe the hybrid recommendation system in this
approach. Again a set of models is used, e.g., collaborative filtering, explicit prefer-
ences, implicit learning from interaction or a distance model based on the location of
the POI and the user. The prediction of each model for the preference towards an item
is combined with a linear weighted model where the weights are adapted over time.
Evaluation suggests that collaborative filtering seems to be useful for the users who are
unfamiliar with the area. A mixture of models provides more divers recommendations.

The separation of concerns in a task and a recommendation engine is a promising idea
for proactive in-car recommendations. If the system knows the task which the user
has to fulfill in near future, it is able to derive relevant recommendations for the task
and deliver it. The underlying assumption is that if a type of task occurs, information
is needed. However, this is not necessarily true. If the users always attend the same
restaurant for eating, they are probably not interested in restaurant recommendations
for the task ”eating”. Hence, information need during a task is more significant than
the occurrence of a task for recommendations. Concerning transparency, Partridge et
al. [PP09] go further than other approaches. They show their inference result to the
users and let them to correct the system. This contributes to a better comprehensibility
of the system.

Situation recognition

An important component of proactivity is situation recognition. There are several
approaches available in research for recognition in general. For instance, Goix et al.
[GVCF07] explain how to infer on situations of mobile users with rules based on high
level interpretations of situation states like ”location = home” or ”activity = working”.
Ciaramella et al. [CCLM09] focus on situation recognition for delivering proactive ser-
vice recommendations for tasks. They emphasize the usefulness of fuzzy logic in this
context. Real world events happen approximately, e.g., an approximate time or loca-
tion. Hence, recognition of situations should contain vagueness. Furthermore, sensors
are subject to uncertainty and imprecision. Another reason for fuzzy logic is that systems
with a user interface should deploy human understandable concepts to be intuitive like
natural language terms. Therefore, fuzzy logic is promising as a description language.
The authors propose a structured model with ontologies for context (time, location
and calendar) to infer on situations and for tasks to connect situations to tasks. Situa-
tions are seen as a set of context information that is invariant within a period of time.
They distinguish fuzzy inference and crisp inference. If the resulting certainty is larger
than zero with fuzzy inference, the situation is considered to occur (with uncertainty).
Ciaramella et al. [CCMS10] describe the integration of fuzzy logic into the ontology
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description semantic web rule language (SWRL) in detail. If a situation is inferred,
the task ontology links tasks to services that are needed in that task. The inferred need
for services is delivered to the mobile device. The device selects appropriate resources
such as files based on keywords and context. As soon as the system infers that the user
is involved in a task, it triggers recommendations for required services in that task.

Ciaramella et al. show that fuzzy sets are useful for situation representation. The focus
of their research is situation recognition. Recommendations and proactive assistance are
of minor interest.

Unstructured Models

Many approaches use predefined structured domain models that are built by experts.
However, it is also possible to learn models with data mining tools. Cheng et al.
[CSC+08] use unsupervised learning to determine which information is relevant in
which situation and how user preferences are. To overcome cold start problems, a sta-
tistical model for artificial usage data is generated to build the model. A snapshot of
relevant context information, e.g., time or location, determines situations. Tasks are de-
termined by user interaction and involved applications or web sites. Situations and tasks
that are performed in these situations define a task pattern by means of co-clustering.
The centroid of a cluster determines the recognized situation. At run-time, the system
calculates the similarity between the current situation and the model and ranks tasks
performed in this situation. The ranking is shown to the users in a widget on their
mobile device (retrieval-based). Recognized situations are icons which makes the system
more understandable.

Lei et al. [LZS07] use reinforcement learning to decide what to recommend. Their
situation model is more complex compared to Cheng et al. [CSC+08]. The four-level
model is based on Endsley’s general model for situation awareness. The first level
consists of atomic data elements directly from the source, e.g., row data from sensors
or feeds from a web service. The second level aggregates and interprets the data atoms
as data elements with an interpretation function, e.g., temperature as cold, pleasant
or humid. Data transitions are defined by actions that lead to a state change of data
elements. They consist of the action, a beginning and an ending state. The fourth level
defines situations as an ordered combination of actions. This involves a data transition
and a temporal relationship between the transitions according to Allen and Ferguson
[AF94]. Information delivery is based on an interval-based approach rather than a
point-based approach, i.e., a situation is an interval rather than a snapshot in time. For
instance, the situation ”entering a building” is a state change from outside the building
to inside. The authors use reinforcement learning to analyze relationships between a
recommendation and a situation with unstructured data. The user gives feedback to
delivered messages (cancel, more information or just more) and the system applies a
reward to each type of message in a situation (relative to the level of detail of the
message). Delivery policies determine when a message is triggered. The trigger is
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described by an interval based on the reward of a message and its level of detail. A
dispatcher sends out the messages as SMS, e.g., stock data.

In contrast to a structured model such as fuzzy logic or ontologies, these approaches learn
the relation between context, situations and need for information. The representation of
situations is only an abstract construct of contextual information. Hence, the user is not
able to reconstruct the reason for information delivery out of the black box. Another
disadvantage is that such models need to be trained before application. Training based
on interaction with the user and selection of items is difficult while driving due to limited
interaction possibilities.

3.3. Proactive In-Vehicle Recommender Systems

Improving In-Vehicle Interfaces

In-vehicle information systems (IVIS) aim to make information easily accessible. They
use controller such as BMW’s iDrive controller, interaction techniques such as speech
interfaces or intelligent visualization such as proposed for POIs by Ecker et al. [EBJ09].
The research in this area mainly focuses on the interface. For instance, Krueger et al.
[KBS+04] propose a ”connected interface” between desktop computers at home, the car
while driving and a mobile device outside the car. The so-called BMW Navigator assists
the user in information management such as route planning or parking spot finding.
The separation of information access and connection with a seamless interaction on
homogenous interfaces makes it easy for the user to access each kind of information
through the appropriate interface.

Reduction of Information by Postponing Information Delivery

With recommender systems, we follow a different approach of information access inside
a car. Our main goal is to reduce the amount of information as much as possible
and deliver information at the right time. This goal can be achieved in many ways inside
a car. Alt et al. [AKS+10] propose a system that uses standing times at a traffic light
to deliver information proactively. As information consumption while driving is difficult,
the authors use short standing times where the drivers can focus their full attention to
the system. The authors emphasize that people spend more time at traffic lights in
recent years. This is due to higher volume of traffic in cities. The work describes how
standing times can be learned from GPS traces (position, speed) based on a state chart
model. The length of delivered information is adapted to the standing time in order to
bring the attention of the driver back to the driving task as soon as the traffic light turns
green again.
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Although standing time delivery is far more effortless than while driving, it is restricted
to short periods. These periods can be very short which gives the driver not enough
time to make a decision if necessary. Additionally, automatic inference of waiting times
is difficult because most digital road maps do not have information about traffic lights
nowadays. Finally, traffic lights need to be equipped with additional infrastructure to
allow reliable estimation or a central server needs to know all current waiting times. The
traffic light method is cost-oriented, i.e., it tries to reduce the cost of delivery.

Reduction of Information by Adapting In-Vehicle Interfaces

Another way to reduce information is to adapt information intelligently before presenting
it to the driver. In the work of Bachfischer et al. [BBH+07], an intelligent agent for
in-car POI selection is proposed. Context information is used to filter POIs before
displaying on the digital map of the central information system (CID). This improves
usability as well as utility of the information system. Two Bayesian networks assess
driver load and relevance of POI categories. The driver load indicator is based on speed,
rain, visibility and other context information. It is used to adjust the number of displayed
POIs. The higher the driver load, the less POIs are shown. The second Bayesian network
is used to derive a general interest for POI categories. For instance, if the current gas
level is low, then gas stations are displayed on the map instead of tourist attractions.
Specific POIs are selected by a rule-based system according to POI attributes and a
user profile. If the drivers are interested in one of the displayed POIs, they are able to
retrieve further information by touching the display at the location of the POI. However,
it might not be easy for the drivers to understand why the system shows that category
of POI. As long as the selection is obvious, this should be no problem but unexpected
displaying of POIs could be a problem.

The approach of Bachfischer et al. [BBH+07] resembles research in the area of adaptive
user interfaces for in-car use. Rodriguez Garzon and Poguntke [GP11] explain such
an adaptive user interface for POI recommendations. The user searches and browses
through a specific category of POIs, e.g., super markets, according to a pattern, e.g., at
a specific location along the route. After a learning phase, the interface jumps directly
to the POI when the user starts interacting with the system. The goal is to reduce
interaction steps.

Research in the area of adapting interfaces intelligently focuses on the display and in-
teraction with the user interface. These approaches mainly adapt the interface based on
contextual information. They make the access of information easier. However, the sys-
tems do not make any recommendations proactively. Therefore, the risk to miss relevant
information is high.
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Reduction of Information by Filtering Information Intelligently

The third way of reducing information is intelligent filtering like described by Ablassmeier
et al. [APRR07]. In contrast to Bachfischer et al. [BBH+07], the authors follow a
mixed-initiative approach where the agent can be invoked manually or takes initiative
by itself. They motivate for reactive as well as deliberate software agents based on
environment, user and system context. Two agents are described based on Bayesian
networks. The probabilities in the networks are set up with data from a user study.
The contact agent monitors appointments with contacts from the address book. If an
appointment could not be met, several possible actions such as calling the person are
inferred and pushed to the user. The gas station agent monitors the current gas level, the
consumption and the distance to the destination. If the destination is not reachable, the
driver is asked whether gas stations should be displayed. Gas stations are filtered and
ranked by means of a further Bayesian network and attributes such as brand, price or
distance to the gas station. Both agents learn from user selection. An offline evaluation
shows that the agents select better gas stations after a learning phase. The number of
selection steps for a gas station could also be reduced. The reason why recommendations
were made is transparent because the trigger (reachability of the destination based on
the current gas level) is hard coded and it is the only situation for which the agent
provides information. The focus of the approach is on the assessment of gas stations.

Horvitz et al. [HKS07] discuss time pressure due to an appointment and gas station
selection. In contrast to Ablassmeier et al. [APRR07], these two aspects are combined
to assess items. First, a Bayesian network to estimate the cost of time is constructed
by asking users which costs they would apply to delay. The detour each gas station
causes is also considered by calculating alternative routes to the destination via the
location of the station. The model for cost of time together with the current schedule
of the user is then combined to the cost of divergence of a gas station in dollars. The
more important an appointment is, the higher the costs for a detour. The calculated
costs are added to the total costs of refilling based on the remaining gas level at the gas
station and the price of gas. With the total costs, the gas stations are filtered by means
of a ranking. The top 5 items are displayed to the users on their mobile devices. The
users are able to configure the time of delivery based on the current gas level of the car.
The delivery of information itself plays no important role in the work. Therefore, the
system is not integrated into an in-car information system.

Cho et al. [COYO06] also make use of route planning to improve item selection.
They proactively create routes with POIs from the current position of the car to the
destination. Their idea is to predict context information along the routes to be able
to take upcoming items into regard. These items might be better than surrounding
items. Other location-based systems push items as soon as specific context conditions are
fulfilled without taking into regard upcoming context and items. The authors show the
advantage of using planning mechanisms for item filtering. For instance, the frequency
of recommendations can be reduced over the whole route.
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Only a few approaches explicitly use recommender systems inside a car. The work of
Wörndl et al. [WBE08] uses recommender systems techniques to assess items for in-
car recommendations. Items are prefiltered based on context and user preferences. For
instance, context such as the current gas level filters all gas stations not reachable with
that level. User preferences such as the gas brand exclude all items not matching the
preferences. Then, other cars within vicinity are searched by means of an ad-hoc network.
Thereby, other user ratings and gas prices can be exchanged. A multidimensional
collaborative filter uses this information to assess gas stations. The approach focuses
on rating-based assessment of items. However, in-car use cases such as refilling or parking
may lack enough ratings.

Another use case for the in-vehicle application of recommender systems is music rec-
ommendations. Turlier et al. [THG10] present an interface that allows a driver to set
up a play list easily with multi-criteria fuzzy terms for genre, popularity or mood.
The recommender selects appropriate songs and creates a play list proactively. The
drivers only need to interact with the system if they want to skip a song, to adapt the
play list or to change play list settings. Applying automatic detection of the mood as
Park et al. [PYC06] proposes may further reduce the interaction.

Assessment of items with recommender systems or intelligent filters for vehicle use cases
focus on the filtering mechanism itself. Proactivity is mostly out of scope or a simple
trigger such as in the work of Horvitz et al. [HKS07] is used.

User Acceptance of Proactively Delivered Information Inside a Car

Providing information while driving has an influence on user acceptance of that sys-
tem. Tang et al. [TGC+09] made an interview-based study of mobile ads in a portable
navigation device (PND). Context-aware ads for nearby retail stores were shown while
driving, at the destination and at traffic light stops. Large ads were more disliked and
stated as intrusive compared to small hints. Ads while driving are also disliked by half
of the participants, especially when they were interrupted in tasks such as navigating.
However, this depends on the experience with the device. The results are only partly
transferable to other application scenarios of proactive recommendations inside a car
because advertisement does not support any task of the user. However, user acceptance
is an important issue concerning proactive system behavior (see the Lumiere project of
Horvitz et al. [HBH+98]). As proactive recommendations always interfere with the cur-
rent task of driving, we cannot be sure that the drivers accept such systems. Although
the users tend to accept proactive delivery on mobile devices (e.g., push notifications of
social networks or news), the automotive environment is different.

94



3.4. Summary

3.4. Summary

The focus of automatic in-car information systems is either on adaptive user interfaces
or on the assessment of relevant items based on contextual information. A popular
use case is a gas station information system. To our best knowledge, there is no over-
all investigation of proactive recommender systems inside a car. A common definition
should be given along with general requirements. Bayesian networks are a promising
tool for intelligent behavior in automotive scenarios. They are applied in many research
approaches. Also other domains of proactive information delivery on desktop comput-
ers and mobile devices rely on Bayesian networks. However, Bayesian network models
depend on specific data of a domain. They need to be investigated with available data
sets.

In many approaches, the awareness of user’s situation and context is part of the proac-
tive behavior. Often, only simple models are used to trigger recommendations. For
instance, mobile guides use the location of a user to deliver information. More complex
models rely on machine learning methods such as Bayesian networks. Situations are
often represented by structured models, e.g., ontologies or fuzzy sets. Fuzzy sets have
been proven to be a powerful method for situation representation because they support
comprehensibility and cope with uncertainty. Another way of situation representation
is an unstructured model. However, it is less applicable in automotive scenarios because
complex machine learning is necessary. Situation representation is only one component
of situation awareness. Prediction of future situations and decision making are further
components. Only a few approaches take these aspects into regard. Instead, proactivity
is often modeled in an event-based fashion. If events occur, then information is delivered.
However, many applications of recommendations in automotive scenarios such as park-
ing and refilling do not explicitly depend on events. Additionally, event-based modeling
requires user task monitoring. This is difficult inside a car because recommendations
are not given for the primary task of driving.

Another important element of a proactive recommender is the recommendation approach
itself. The incorporation of context and the usage of several methods in a hybrid ap-
proach are common for proactive recommenders in mobile scenarios. Most of the ap-
proaches use structured models or user data from other domains to avoid cold start and
ramp up problems. The results from these sources are aggregated. For instance, some
approaches use an abstract score or linear models for the aggregation. However, decision
theory offers far more than linear approaches, e.g., AHP, Outranking or dominance-based
filtering.

Research in intelligent systems indicates that transparency in case of intelligent proac-
tive behavior improves user acceptance. Nevertheless, only a few approaches explicitly
investigate additional methods to make proactive recommendations understandable for
the user. Mostly, transparency is handled by design, e.g., with icons or by highlighting
objects. In recommender systems research and in commercial systems, e.g., Amazon.com
or Ebay.com, explicit explanations gained popularity to make recommendations compre-

95



3. Related Work

hensible. To our knowledge, no approach of proactive information systems inside a car
used explicit explanations so far.

Nearly all approaches of proactive delivery emphasize the need of an unobtrusive behav-
ior in system design. However, following design guidelines does not necessarily make the
users accept a proactive system. Evaluation results of user acceptance are in general dif-
ficult to transfer from other domains to automotive environments. Desktop approaches
are different because they require a lot of interaction and do not use physical context.
Mobile assistants for domains such as shopping or exercising allow the users to interrupt
their primary task and focus their full attention to the system. Researchers with similar
approaches in the automotive environment do not present results for user acceptance.
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Proactive recommendations inside a car are not investigated intensively in research yet.
We define our understanding of proactive in-vehicle recommender systems (P-IVRS) in
the context of recommender systems. Several use cases in the area of POI and route
recommendations are potential applications of proactive recommendations. Based on
our review of literature, we set up requirements on a P-IVRS. The discussion of the
automotive environment in Section 2.1 shows that the design of in-vehicle information
systems (IVIS) is limited in information output and input. Driver distraction and in-
formation overload have to be regarded when designing IVIS. Functional requirements
comprise an intelligent behavior of the system, incorporation of situational informa-
tion need, selection of useful items and a comprehensive system behavior. We describe
which components of a P-IVRS are most important and how they cover functional re-
quirements. Besides the processing of knowledge, we also describe the representation
of knowledge inside the system. The central controller of our P-IVRS is the decision
making process. It decides whether to look for suitable items, which items are relevant
and when to recommend them.

4.1. In-Vehicle Application of Recommender Systems

We define proactive recommendations inside a car in relation to similar approaches like
context-aware recommender systems (CARS). There are several use cases of proactive
recommendations within a car. We group them according to the main automotive con-
text that triggers the recommendation: car, environment or driver. Our investigation
follows mostly the use case of a gas station recommender. To narrow the scope of this
thesis, we suppose that relevant information and sensor data is accessible. Information
sources for gas station assessment already exist, e.g., gas prices, and a simple sensor like
a gas station indicator can easily be integrated.

4.1.1. Classification of In-Vehicle Recommendations

Figure 4.1 shows our classification of modes that are relevant in our environment. The
area outside the circles covers other recommender systems (RS) that we know from
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Figure 4.1.: Application modes of recommender systems inside a car

many research approaches or services such as Amazon.com or Netflix.com. A context-
aware recommender system (CARS) incorporates contextual information in the recom-
mender process to improve recommendation quality, e.g., a context-aware movie recom-
mender (e.g., Adomavicius et al. [ASST05]). An in-vehicle recommender system
(IVRS) comprises the application of recommender systems that are integrated in a car.
Note, invoking Amazon.com in the Internet browser of the car or on a mobile device
does not belong to this group. Examples are music recommendations such as proposed
by Turlier et al. [THG10]. Proactive recommender systems (PRS) are recom-
mender systems that provide recommendations in a proactive manner. The intersecting
areas comprise systems that have several properties. A context-aware proactive recom-
mender system uses context to deliver recommendations proactively, e.g., on a mobile
device (e.g., Bouzeghoub et al. [BDW09]) or on a desktop (e.g., Puerta Melguizo et al.
[PBD+07]). Context-aware recommender systems that are used inside a vehicle exploit
context to assess items that are of interest for the driver. For instance, they may provide
recommendations along with a POI search. Recommender systems can also be applied
without using context like an integrated product recommender for Amazon.com. This
thesis focuses on proactive in-vehicle recommender systems (P-IVRS). These systems
automatically provide recommendations to the user and are accessible from inside the
car. They either use context to decide about when and what to recommend or informa-
tion like user preferences. This also applies to PRS. However, PRS do not have to use
context and do not have to be inside a vehicle (e.g., Lee and Brusilovsky [LB07]).

4.1.2. Use Cases

This section contains some possible use cases of P-IVRS. First, we introduce our contin-
uous use case of a proactive gas station recommender. The rest is grouped by the trigger
(context information) that is responsible for the delivery. For each use case, it is assumed
that there is a user need or user preference that trigger recommendations. Item types
and context vary among the use cases. There is also general context information that
influences the proactive delivery in all cases, e.g., time pressure. We do not mention this
information explicitly. Furthermore, user preferences based on ratings are not explicitly
listed but can be utilized in all use cases.
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Gas Station Recommendations

The task of refilling the gas tank concerns every driver of a car with a combustion en-
gine. The drivers have to refill their tank before it is empty. The situations of the
drivers influence the intention to approach a gas station. The current gas level, available
gas stations or the circumstances of a trip determine the situations of the drivers. Fur-
thermore, the drivers have to select a gas station among alternatives. They may either
take the next available station along their route or one that they know from experience.
Content provider like Gasbuddy.com can provide additional information about available
alternatives. Drivers’ choice of a gas station depends on several criteria. The location
of the station determines how much detour they have to take into regard to reach the
gas station. The distance to a gas station is also relevant in the decision. The further
away a gas station is, the less gas remains in the tank at arrival. A low gas tank allows
for large amounts to refill but is also a higher risk of becoming empty before having the
possibility to refill. If gas prices are available, the drivers are able to calculate how much
they save comparing alternatives. A bonus card from a specific chain or gas station may
also have an influence on savings. There might also be other reasons leading the drivers
to prefer specific brands. Finally, additional facilities like ATMs or the possibility to pay
with credit card may also have an influence.

Car Situation Triggers

Triggers utilizing the situation of a car depend on sensors that capture the status of
its components. The user need that is covered is mostly the intention to ensure that
the car is working properly. This involves information about the current gas level, tire
pressure, oil level and control unit failures. Today’s cars deliver a warning embedded in
the instrument cluster of the car with semantic information about what kind of problem
occurred, e.g., in form of an icon or a text (e.g., see Hoffmann [HG09]). Recommender
systems allow providing also a solution to the problem in form of a facility that is able
to fix the problem such as a gas station or a service garage. This can either be done
when the problem occurs or in an anticipatory way. For instance, the car status can be
analyzed to detect a potential break down due to faulty components in near future or
there are not enough gas stations along the route to refill. Items that help to prevent
this potential problem are delivered as a recommendation. User preferences are taken
into regard for features of the items and dynamic information like opening times or gas
prices (e.g., available from sources like Gasbuddy.com, Clever-tanken.de or others).

Environment Situation Triggers

An example of an environment trigger is the incorporation of traffic situations into
the navigational system. This information triggers a recalculation of the route of the
driver because of events or congestion, called dynamic routing. The new route is either
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automatically applied in the system or the driver is asked to confirm it. If we regard
routes as dynamic items, the use case can be extended to deliver several alternative
bypasses. Another example of alternative route delivery is to compare the current route
with a static route (e.g., a scenic route) and suggest the static route as item if it is
suitable in the situation. In general, it is reasonable to incorporate user preferences for
route attributes. These preferences can be learned from formerly selected routes (e.g.,
like Park et al. [PBKB07].

Every car has to be parked when the destination of a trip is reached. If no private
parking opportunities are available, searching for parking places can be annoying and
time consuming. Services such as Parkinfo.com offer information about free parking lots
for some cities. With new ad-hoc communication technologies like C2X, information can
also be exchanged decentralized among the drivers in an area of interest (e.g., with
methods like described by Prinz et al. [PBW10]). The trigger of information delivery is
the availability of free parking spots matched to the need of parking, e.g., if the driver
is close to the destination. User preferences cover the type of parking place, prices and
the distance to the actual destination. Furthermore, context information such as other
passengers in the car and luggage also influences the proactive decision, e.g., to choose
a more expensive but closer spot.

Parking is not the only way to end a trip. After a car is parked, it is sometimes necessary
or convenient to switch the modality of travel to continue. For instance, in large and
congested cities, park and ride offers are usually available. Route planning algorithms
that take different modalities into regard already exist (e.g., Delling et al. [DPW09]).
Information about timetables or pricing is usually offered by local transportation facili-
ties, e.g., MVG in Munich. More recently, some providers offer car-sharing concepts in
large cities, e.g., DriveNow, Zipcar, Flinkster or Car2go. User profiles can be built on
travel history to infer preferred modalities and sequences of travel (e.g., like Zheng et
al. [ZZXM09]). The users may also enter information about themselves, e.g., available
long-term travel discounts. Transportation assessment also incorporates the number
of travelers, traffic events or the luggage of travelers. The items are dynamic with a
complex combination of modalities. A proactive recommender for travel modalities cal-
culates several opportunities to switch the travel modality. The results are presented
to the user along with the next changing point. In contrast to regular items, a travel
modality plan is complex.

Recently, some providers such as Avego.com or Pickuppal.com offer services for people
who do not have a car but want to use the convenience of individual mobility. The
approaches can save money and energy. Their real-time ride sharing service requires a
positioning-enabled mobile device, drivers who offer seats in their cars and a platform
to connect the users. Geisberger et al. [GLN+10]) show how the routes of a user and a
driver can be matched efficiently based on the similarity of the start or the end position
or similar route sections. Supported by a P-IVRS, the drivers can share their route and
offer seats to a community. People looking for a ride indicate their interest. The system
recommends the drivers a set of interested people to take with them. User preferences
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of the drivers are the detour they are willing to take, the gender of the traveler, the
reliability of the traveler in former rides and the price the traveler is willing to pay. The
scenario can also be extended to offer the traveler several drivers.

Driver Situation Triggers

According to Hell [Hel04], 24% of the accidents in Germany are due to low vigilance
caused by drowsiness. Car manufacturers are working on systems to recognize the fatigue
state of the driver by fusing information that is captured by sensors (e.g., like Yang et al.
[YLB05]). Additional sensors inside a car (e.g., camera, lane keeping systems or steering
wheel) capture the state of the driver to measure eyelid closure or reaction time. A
driver model infers the fatigue state from these input data. Today, this information is
used to give the driver a warning. For instance, Ford [For11] suggests coffee breaks with
a coffee cup that appears in the instrument cluster. Recommender systems can be used
to go one step further by providing suitable solutions for the problem. The simplest way
is to retrieve POIs that help the drivers to solve their problems. For instance, resting
places along the route give the drivers the possibility to take a break. Recommendations
can also be combined with other needs. If the drivers also need to refill their tanks, gas
stations can be recommended to cover resting and refilling. Depending on the time of
day, restaurants for eating or hotels for sleeping are also possible. It is important not to
patronize the drivers towards what they should do. Fatigue is a sensible issue on which
attention should be drawn with an unobtrusive suggestion.

A recommender system does not need to wait until the problem occurs to deliver solu-
tions. Monotonic driving conditions contribute to make the drivers feel fatigue and loose
their vigilance because they are underutilized (Chan and Atchley [CA11]). Chan and
Atchley work with concurrent verbal tasks to increase driving performance. A mono-
tonic driving situation can be classified by the steering wheel angle, the accelerator pedal
usage, information about cars in front, the speed or the acceleration. Classification is
not restricted to the current situation. Analyzing the route ahead (e.g., based on street
type, curviness, expected stops, speed limit change) gives us the possibility to estimate
whether driving will become more or less monotonic. Additionally, our circadian rhythm
or body clock (Halberg and Stephens [HS59]) tells us in a 24 hour cycle when our willing-
ness to perform is low and high. Monotonic driving situations and the circadian rhythm
can be used to deliver recommendations before the driver gets fatigue. The system may
recommend alternative routes with diversified driving situations to keep up vigilance,
especially if the circadian rhythm indicates low activity. However, alternative routes
should also incorporate driver preferences and general route planning criteria such as
driving time to avoid irrelevant routes.
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4.2. Requirements on a P-IVRS

Chapter 2 already discussed requirements on information systems from the area of au-
tomotive information systems, proactive assistance and recommender systems. The last
Chapter 3 shows which characteristics of proactive information systems researchers give
high importance. We select the requirements on a P-IVRS from this review of literature.
The discussion comprises non-functional requirements that describe restrictions to an in-
car information system and characteristics of proactive information systems. Functional
requirements involve aspects of a system design covering intelligent behavior, situation
awareness, recommender systems and comprehensibility. Our list of requirements does
not claim to be complete. It covers necessary requirements but leaves out aspects like
privacy or trust.

4.2.1. Non-functional Requirements

Non-functional requirements are the conditions that determine system design in general.
A P-IVRS should avoid driver distraction and information overload. To make a user
accept the system, it should be easy to use and useful.

Information Overload and Driver Distraction

Requirement 1 Information overload: Proactive recommendations should be pro-
cessable with as little as possible cognitive load.

Nowadays, drivers face large amounts of information that might be of interest for them
(e.g., restaurants, gas stations, resting places, opening times, gas prices, etc.). Broad-
band mobile Internet makes this information available during driving. Processing of this
kind of information is a knowledge-based behavior (according to Rasmussen’s model
[Ras83]). It causes more cognitive load than skill-based or rule-based behavior. There-
fore it should be as condensed as possible.

Requirement 2 Visual driver distraction: Displaying of proactive recommenda-
tions should as little as possible turn the glance of the driver away from the street.

Furthermore, processing of such kind of information involves visual interaction of the
driver with an information system. Driving also occupies the visual sense of humans.
According to Wickens [Wic84], the risk of interfering the driving task is higher if the
same human resource is addressed. Hence, such kind of information may lower driving
task performance. The driving task is the primary task, whereas consumption of inter-
esting information is only a tertiary task (Bubb [Bub03]). It is of minor importance.
Such kind of information is usually integrated into the CID. Other output channels like
the instrument cluster and the head-up display are generally not targeted to display in-
formation that involves intensive knowledge-based processing (comparable to planning
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in navigation systems). Other output channels like acoustic or haptic output provide
only low or moderate amount of information (Hoffmann and Gayko [HG09]). Speech
dialogs might be a solution but are out of scope of this work. As the CID is in the center
console of the car, the drivers need to turn their glance from the street to the CID to
consume such kind of information.

Requirement 3 Physical driver distraction: Interaction with a P-IVRS should be
reduced as far as possible.

Consuming information mostly involves interaction of the driver with the system, e.g.,
to browse through presented results or to retrieve additional information. Interaction
causes visual as well as physical distraction.

Ease of Use and Usefulness

Requirement 4 Ease of Use: A P-IVRS should be easy to use for the driver.

Avoiding information overload and driver distraction are conditions for a successful sys-
tem design. However, it does not address if the drivers accept such a system. The
technology acceptance model (TAM) (Davis [Dav89]) provides a common method to
evaluate acceptance of information systems. According to the model, the main indicator
of user acceptance is perceived ease of use and usefulness of a system. Ease of use of a
P-IVRS corresponds to how much effort the driver needs to get the desired items.

Requirement 5 Unobtrusiveness: The behavior of a P-IVRS should be unobtrusive.

Variables for ease of use for proactive recommender systems can be derived from re-
search about the system design of a proactive information system (e.g., Billsus et al.
[BHMA05] and Rhodes [Rho00]). A central requirement is unobtrusive behavior. Un-
obtrusive behavior comprises several aspects inside a car. Because human resources are
differently occupied during driving (dense traffic vs. standing still at a traffic light),
the recommender should not require immediate attention to process the delivery. The
drivers should have the possibility to postpone their reaction on a recommendation and
to choose the right time to process information. When items are delivered, the drivers
should have left enough time to process the alternatives and to make a decision. Time
pressure causes cognitive load and may lead to driver distraction. This also applies to
frequent interruptions by the recommender. These aspects contribute to an unobtrusive
behavior of the system.

Requirement 6 Accessibility: Relevant information should be found easily by the
driver and should be comprehensible.

For their final choice, the users need information to make a decision. In the best case,
required information is delivered right with the recommendation. However, too much
information causes information overload. If for some reasons information is missing,
the driver should know how to retrieve it with little interaction. Furthermore, the
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information that is provided should be comprehensible for the driver. This applies to
text as well as to icons.

Requirement 7 Transparency: The behavior of a P-IVRS should be transparent to
the user in the context of the automotive environment.

In contrast to classical recommender systems, a P-IVRS chooses itself what to deliver to
the driver. The system makes decisions based on information and assumptions that the
user does not know. In case the decision is not obvious, i.e., the user does not know why
the decision has been made, a good recommendation may not be recognized as such. As
the users do not request information themselves, they have to understand the intention
of the system to assess whether the recommended items are useful for them.

Requirement 8 Usefulness: A P-IVRS should be useful for the driver.

The second criterion for user acceptance is the usefulness of the system. The drivers
should perceive the recommender as useful for any reason. The system may assist them
by their tasks or is fun. In case of recommender systems, usefulness comprises to deliver
relevant items in drivers’ situation. It defines the quality of the recommended items.
Rhodes [Rho00] emphasizes the importance of usefulness in case of proactive information
systems.

4.2.2. Functional Requirements

Functional requirements are derived from literature review of related approaches on
the desktop and for mobile devices. They describe what features a mobile proactive
recommender should have to be successful.

Intelligent Proactive Behavior

Requirement 9 Technical competence: A P-IVRS should be able to work out tasks
on its own.

Information overload causing driver distraction is the overall problem we address in
this thesis. We focus on proactive recommender systems as a solution for information
overload. This involves intelligent filtering of information (Second level of the in-car
information flow according to Ablassmeier [Abl09]). The idea of proactivity is to delegate
tasks like filtering to an autonomous system. The driver either supervises the task or
processes the results (Tennehouse [Ten00]).

Requirement 10 Discretionary competence: A P-IVRS should be able to make
decisions proactively towards an action to perform.

To work out tasks, the system has competences. The competences of a P-IVRS might
be the assessment of items, the calculation of trade-offs between alternative items, the
collection of information or the initiation of a dialog with the driver. Knowledge that
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results from the competence of the system corresponds to a better understanding of the
situation of the user. The system processes this knowledge to make a decision about
what action to perform.

Requirement 11 Execution competence: A P-IVRS should be able to execute the
actions it decides for.

In case of proactive information systems, decisions involve which items to select or when
to deliver information. The competence of the system to make decisions relies on context
information, information about the driver and on data provided by content provider,
e.g., gas stations, hotels or traffic information. A decision leads to actions performed
by the system. Actions for an information system are to deliver information and to
communicate with a user.

Requirement 12 Decision making: The decision making of a P-IVRS should take
into account human decision making methods.

Decisions that a system makes are subject to uncertainty because underlying information
sources can be uncertain and incomplete. The decision making of the system is based on
the knowledge that the system has of the situation of the user. To derive this knowledge,
several heterogeneous information sources need to be aggregated. A proactive recom-
mender either makes decisions on its own or they are made collaboratively in a mixed
initiative between the driver and the system. People use non-comprehensive strategies
(heuristics) to cope with complex decisions balancing accuracy and effort (Payne et al.
[PBJ93]). To assist a driver properly, a proactive system should also take human decision
making into regard.

Requirement 13 Choice: A P-IVRS should provide not too much and not too little
choice.

Although a proactive recommender makes decisions on its own, it does not work com-
pletely autonomous. The final decision for an item is still made by the user. To reduce
decision complexity and information overload, only a few items should be provided to the
driver. Too much choice may decrease decision quality and causes information overload
(Iyengar and Lepper [IL00]). However, it is better to provide choice than providing no
choice at all.

Situation-Aware Information Need

Requirement 14 Situation awareness: A P-IVRS should be situation-aware.

To make intelligent decisions for a user, a system should be aware of the situations of
a user. According to Endsley [End00], situation awareness comprises the perception of
elements in the current situation, comprehension of the situation and a projection into
the future. This matches to the behavior of drivers. Drivers preview potential traffic
situations and predict how they have to behave in that situation.
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Requirement 15 Uncertainty: The situation awareness of a P-IVRS should be able
to handle uncertainty.

To enable situation awareness in a system, it needs sensors to perceive context infor-
mation, models to comprehend the situation and models to predict future situations.
Sensors and models are generally subject to uncertainty and have to cope with incom-
plete information.

Requirement 16 Situation-aware benefit: A P-IVRS should pay attention to the
situation of the driver to assess the benefit of a recommendation.

The relevance of information differs, depending on the situation of the user. The user of a
desktop information system needs other information than the driver of a car. Situations
determine which kind of information is beneficial for the drivers and when they need
information.

Requirement 17 Situation-aware user preferences: A P-IVRS should pay atten-
tion to drivers’ situations to be able to assess what they prefer in these situations.

User preferences are a central part of recommender systems. They change slowly over
time in classical recommender systems. However, drivers are embedded in a dynamic
physical world. Not only the information need but also user preferences are influenced
by the situations of the drivers.

Requirement 18 Task awareness: A P-IVRS should have a deep understanding of
the task it provides information for.

Presented information fills the gap between available and required information to perform
a task. The interaction with the recommender itself is a tertiary task but items support
tasks (e.g., parking or refilling) that require physical involvement, e.g., driving to a
POI. Only items that are filtered according to the task of the user are useful for task
completion.

Selection of Useful Items

Requirement 19 Context awareness: A P-IVRS should take the context of the user
into regard when selecting items.

Knowing that information delivery is beneficial for the users does not involve that the
system knows which items are useful. Among all available items, those should be pre-
sented to the users that are most useful in their situations. Items of interest for the
drivers share common features, e.g., location, opening times, price, etc. Situation-aware
user preferences determine what is important for the drivers in their situations. The
context of the user determines which items are not just relevant but also useful for the
users (Rhodes [Rho00]).
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Requirement 20 Cold start: A P-IVRS should avoid cold start problems for new
users.

One challenge of recommender systems is to gather enough information from a user to
make recommendations (new user problem). A P-IVRS appears without explicit user
request. This is always an intrusion to the current task of the user. Learning of user
preferences requires presenting potentially irrelevant items in the beginning of using the
system. However, useless information may confuse the driver. Furthermore, learning
of user preferences by analyzing interaction is difficult in automotive scenarios because
more interaction with the system causes driver distraction. Finally, relevant information
for the drivers requires physical involvement, e.g., driving to a POI. The users are less
tolerant towards irrelevant items in this case.

Requirement 21 Some good items: A P-IVRS should be able to find some good
items.

The recommender is only able to provide a small set of items in an automotive scenario.
Too many items cause information overload. Furthermore, browsing through many items
also causes driver distraction through interaction. Therefore, the purpose of the recom-
mender should be to find some ”good” items. Good items cover useful as well as relevant
items. A proactive recommender should always deliver useful items that could be rele-
vant. Relevant items that are useless should never be delivered proactively. For instance,
restaurants that are located in New York and match user preferences (relevant) should
not be delivered to a driver in Munich (useless). In contrast, a close restaurant that
does not meet user preferences (irrelevant) can be delivered if the user is hungry and it
is the only restaurant available (useful).

Comprehensible System Behavior

Requirement 22 Justification: A P-IVRS should shortly justify its decisions to sup-
port the user in decision making.

Comprehensibility of system behavior is an important characteristic of intelligent proac-
tive systems. We investigate explicit explanations to make system behavior comprehen-
sible. However, the automotive environment is restricted in interaction and information
consumption. Providing too much additional information causes driver distraction. The
driver finally chooses an item out of some alternatives. A choice is based on information
to distinguish alternatives. Furthermore, people want to have reasons to make a deci-
sion, even if it is a gut feeling (Shafir [SST93]). These aspects require short explanations
to justify the behavior of the system.
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4.3. System Design of a P-IVRS

The system design should reflect functional requirements on a P-IVRS and respect non-
functional requirements. We described four groups of functional requirements (intelli-
gent proactive behavior, situation-aware information need, selection of useful items and
comprehensible system behavior). These requirements are mapped to components of a
system. We distinguish two aspects in system design. First, knowledge that is processed
by a P-IVRS needs to be represented in the system. It comprises context, situations,
user preferences, tasks, items and a prediction horizon. Knowledge should be processable
by the components of the system. Second, system components are processing units for
knowledge and they communicate with the user. System components comprise decision
making, evaluating items with a recommender, generating explanations and a human
machine interface (HMI). Decision making is a central part of the system.

4.3.1. Knowledge Representation

The capabilities of the system depend on the knowledge it has about the users and their
situation. We describe what kind of knowledge our proposed P-IVRS uses and how it is
represented inside the system.

Context

Context is required to cover situation-aware information need (Requirements 14, 16 and
17) and context awareness of the recommender system (Requirement 19). For proactive
recommendation systems, we distinguish between context CP influencing the decision
about when and whether to recommend and CI for item assessment. These sets of
context do not have to be disjoint: CP ∩ CI ≥ ∅. There is context information that
is taken into account in both system components. For instance, the time of day may
determine when to recommend a restaurant but it also plays a role in item assessment as
the restaurant may be closed at this time. Context information is determined by a set of
parameters c(timestamp, type, value, unit) ∈ C. The timestamp indicates when context
information is received by the system. This can be the time when a sensor delivers
information, the driver enters data or data is received via digital communication. The
type is an identifier for the affiliation of information to an information group. Context
information with the same type describes the same fact independent from the unit of its
value. The value is actual context information. Its type ranges from simple numbers
or strings to complex objects. The unit indicates what kind of type the value has, e.g.,
kilometer, cent or liter for numbers or complex for an object structure. The type and
the unit determine what kind of value is stored in the context information to allow
applications to process information properly.
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Situations

A situation and its state is a central part of situation-aware benefit (Requirement 16) and
user preferences (Requirement 17) to allow a situation-aware behavior (Requirement 14).
We use fuzzy logic as modeling technique for situations to incorporate uncertainty and
incompleteness (Requirement 15). Smooth transitions between values in a fuzzy set allow
modeling a system without abrupt behavior changes. Abrupt behavior changes should be
avoided in proactive recommendation systems. Fuzzy logic also allows for comprehensible
behavior of a system by using linguistic terms (Requirement 22). Comprehensibility may
increase the acceptance of a proactive recommendation system. Furthermore, people
usually perceive situations fuzzy and describe them in terms with fuzzy transitions.

According to our understanding of situation in Section 2.2, a situation is the interpre-
tation of context information by the users, e.g., people or systems. A relevant set of
context information implies a situation: C∗ ⊆ C ⇒ S. The mapping is associated with
perception uncertainty, i.e., not every user has exactly the same interpretation in mind.
For example, the temperature of 15 ◦C is perceived by some people as cold and by others
as mild. We use fuzzy sets to model perception uncertainty by means of linguistic terms.
A situation is a fuzzy variable S = s1, . . . , sn with n terms called situation states s. An
involvement to a situation results from fuzzification of a crisp value, e.g., a context infor-
mation, or inference on the situation. The same context information can be interpreted
differently in different situations. Furthermore, a degree of involvement determines our
belief in which of the possible situation states the user is. The involvement is represented
by means of the membership function µS(s). To keep the situation description generic
for statistical and fuzzy logic inference models, we impose constraints on the membership
function:

•
∑n

i=1 µS(si) = 1: All observed or inferred memberships to situation states have to
sum up to 1. This implies that situations have to contain a state for no involvement
if necessary.

• ∀s ∈ S ∃µS(s) = 1: Every state has to allow a maximum membership of 1 (normal
fuzzy set) to express that we are absolutely sure about a state.

• ∀si, sj ∈ S ∧ µS(si) ∈ [0, 1] ∃ µS(sj) = 1 − µS(si) if si ∩ sj 6= ∅ : If two states si
and sj are neighbors in S and share involvement, then for every involvement of si
there need to be a complement in sj . This only holds for membership functions
that are not singletons.

A situation has a current state sc that represents the situation of a user with exactly
one term. A change of state from sc to another state sn is defined in Equation 4.1.

sc =

{
sn ∃sn : µS(sc) < α× µS(sn)
sc otherwise

(4.1)
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The current state sc changes to another state sn if its membership is higher in respect to
a situation stability α ∈ [0, 1]. The stability ensures safe transitions between situation
states without jumps at the border where µS(sc) ≈ µS(sn). Stable state changes address
fluctuation problems of fuzzy systems, which can be a problem in proactive systems. It
prevents the system from changing its behavior frequently if a sensor measurement varies
around a value.

Horizon

Models of human situation awareness (Requirement 14) involve anticipation and predic-
tion of future situations. Theoretically, this involves an infinite time range. To make cal-
culation feasible, we limit the time range to a so-called horizon. A perfect decision could
be made if all future situation states are predicable but in practice they are not. Hence,
we define a boundary for proactive decisions. The boundary comprises all items and con-
text information that are taken into consideration. The boundaries of the horizon H(TA)
are determined by time T = [t−m, ..., t0, ..., t+n] and space SP = [sp−m, ..., sp0, ..., sp+n]
with discrete steps. The index of 0 represents the current context s of the user in the
horizon. The definition does not restrict the dimension of the space. It can be 1-, 2-
or 3- dimensional. The range from 0 to n determines the output of a recommendation,
i.e., recommendations are delivered ahead of the current context. The horizon depends
on the task TA. For gas station or parking recommendations, the horizon can be the
route of the driver. A whole day can be suitable for a restaurant recommendation and a
document or a section for article recommendations. The selection of a horizon depends
on the scenario as well as on the capabilities of a system to predict. The users of the
system are assumed to be in each context p of H. They are either in a context currently,
have been in a context recently or will in a context soon.

Tasks and Items

Our requirements on a P-IVRS involve a deep understanding of the task (Requirement
18). The items that the recommender provides should be useful for a specific task. Tasks
TA are user activities we want to deliver recommendations for. A task is determined by
the parameters ta(type, benefit(c), items) ∈ TA. The type is a unique indicator, e.g.,
eating, parking, sleeping, etc. A specific task is only represented once in the system.
Parallel tasks have to have different types. The benefit of a task is a real value in [0, 1]
which indicates whether a recommendation would be beneficial for that task. Similar to
situations, a user can be involved in a task for a period of time. Therefore, we represent
benefits as a function over the horizon with context p. For instance, if it is 12 PM,
recommendations for restaurants may be more beneficial than at 3 AM. To each task,
categories of items are associated. They determine which items are assessed by the
recommender if a recommendation should be delivered. Note, we do not regard the
involvement of a user in a task directly but how beneficial a recommendation is for a
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task, i.e., how much it covers information need. Hence, we do not need to infer on the
involvement in a task. Our recommendations do not support the primary task of a driver
(driving).

User Preferences

To be able to make useful recommendations (Requirement 8), a system has to know
what the drivers prefer and how this changes among different situations (Requirement
17). User preferences are a major component of recommender systems. In our proactive
recommender, there are two user models. They personalize the decisions of the system
about whether and when to recommend and what to recommend. The user model of the
first decision determines the benefit of a recommendation for a task TA. The structure
of the model depends on the underlying inference model to make that decision. For
instance, in a Bayesian network, the user model is represented by probabilities and in
a neural network as weights. For the second decision, the user model is represented
as the knowledge the system has about the interests of a user for item features. To
address the requirement of avoiding cold start problems (Requirement 20), we apply
knowledge-based representation of user preferences. Knowledge-based user preferences
are represented by weights U =< w1, w2, ..., wn > for specific features of an item. We do
not determine how the weights are established for each user, e.g., from past user actions
or explicitly given by the user. They reflect long-term preferences but can be adapted at
run-time (short-term) to the current situation (Requirement 17). Our representation is
not limited to knowledge-based recommendation approaches. Collaborative or content-
based user preferences can be represented as feature of the item.

4.3.2. System Components

A functional requirement on a P-IVRS is intelligent behavior to make decisions. First,
the system should have technical competence (Requirement 9) to work out tasks on its
own. Second, discretionary competence (Requirement 10) is required to be able to make
a decision towards an action. Third, execution competence (Requirement 11) allows
the system to perform the action. Discretionary competence is the central part of the
system. It brings technical and execution competence together.

Our proposed system distributes competences over several system components that pro-
cess knowledge (Figure 4.2). The explainer, the recommender system, the situation
manager and the user profile manager have technical competence. The system assigns
tasks to them. They work on the task until it is finished and return the result. Technical
components are stateless. They either offer interfaces with their competence, e.g., the
recommender system is able to assess items, or they run periodically, e.g., the situation
manager. The decision process has discretionary competence to decide and execution
competence to delegate tasks. It has an internal state and communicates with the si-
tuation and context manager asynchronously, i.e., the components push information to
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P-IVRS

Context Manager

Decision Process
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System

Explainer

User Interface
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Driver

User Profile
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Figure 4.2.: System Components of a P-IVRS

the decision process from time to time. The context manager delivers information, but
it is outside the P-IVRS design. It does not cover any specific competence to contribute
to the recommender. It is rather a generic information distribution competent.

Context Manager

The design of our context management follows the proposal of Dey et al. [DAS01] for a
framework for context-aware applications. It suggests a separation of concerns between
the application, i.e., the user of context, and the context management. It allows an
extendable and flexible management of context by reusing the same semantic notation
of context in several applications or components of the applications. For our application,
we can be sure that each decision is made on the same knowledge base. The context
manager is on the middleware layer (for layer structure see Hong et al. [HSK09]) between
application layer and network infrastructure where the communication to other systems
and sensory systems is located. It is a centralized component inside the car which appears
as singleton. It is common for context management middleware components to operate
according to the publish-subscribe pattern (e.g., Chen and Kotz [CK02]). Consumers
of context subscribe with the type of context and other parameters (e.g., frequency of
delivery) to the middleware. Information components publish their context information
and the middleware notifies all consumers. The middleware operates as broker between
context and consumer (like described by Chen et al. [CFJ03]). The advantage is that
applications do not have to make resource intensive polling but get context information
pushed asynchronously.
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Situation Manager

The technical competence of the situation manager is to supervise situations. The de-
cision process controls the situation manager in case a task (Requirement 18) is active.
The situation manager also includes a situation awareness subcomponent. A timer trig-
gers the processing of data because it might be computational intensive. Comparable
to human situation awareness, we perceive, interpret, predict and resolve information
towards a task (Requirement 14). This information is transferred to the decision process.
Hereby, uncertainty of information is considered (Requirement 15). The result is either
the benefit of a recommendation (Requirement 16) or user preferences (Requirement
17). Situation awareness is only executed if context information changes. The second
subcomponent monitors current situations. It compares the beliefs of the system with
the actual situation state and notifies the decision process if beliefs and the observations
do not match. This way, a wrong decision may be corrected. For instance, if the decision
process believes that there are enough reachable gas stations and the monitor recognizes
that only a few are available, it informs the decision process. The decision process is
also notified in case of situation state changes.

Decision Process

The decision process is the central component that controls the behavior of the system.
It has discretionary competence to make a decision and has execution competence to
delegate tasks to other components. The decision capability is aligned to human decision
making (Requirement 12). It makes decisions about whether a recommendation should
be calculated, what items should be delivered and when to deliver those items. Require-
ments on the selected items are that they should provide choice (Requirement 13) but
only a few should be presented (Requirement 21). This requires to delegate subtasks to
components over interfaces, e.g., to assess items. The decision making processes data
when the situation monitor notifies about the situation of a user. Notifications may
result in changes of internal states. State transitions are either based on system or user
decisions (represented by user input through the user interface).

Figure 4.3 shows the internal states of the process and how they change. The description
follows the Event[Condition]/Action notation. If an event occurs asynchronously, out-
going transitions are examined. If the conditions of a transition are fulfilled, an action
is executed and the system changes its state. As soon as the system is activated for
a task, it goes to the state IDLE. After a period of time, the system checks whether
context changed and if so it starts to ”think” (DECISION MAKING) about what to do
in the situation. If the system decides to deliver a recommendation, then it delegates
subtasks, e.g., assessing items or explaining, to subcomponents and waits for the result
(WAITING). Based on the results, the system decides what items to recommend and
when to deliver the recommendation. After the items and the situations of delivery are
decided, the system waits for the situations to occur (PREPARING). If the prediction
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Figure 4.3.: Internal states of the decision process

of a situation changes while preparing for a delivery, the system ”rethinks” its decision
(DECISION MAKING). Rethinking corresponds to deciding about the delivery and the
items again because predicted assumptions changed. Finally, if the situation that causes
a delivery occurs or the driver invokes the recommender manually, the items are pre-
sented to the driver (RECOMMENDING). During interaction, the driver either selects
an item or postpones the decision. If selection occurs, the system enters the state IDLE
again. Otherwise, it waits until the user invokes the recommender again (PREPARING).
The system can be turned off at any time.

Recommender System

The functional competence of the recommender system is assessing items based on knowl-
edge about the items, context and situational user preferences (Requirement 17). Con-
text (Requirement 19) and user preferences are integrated in the assessment. The rec-
ommender works without cold start problems (Requirement 20) by exploiting different
features of an item. Items are represented by features. User preferences are represented
by weights for these features. The recommender returns a set of relevant items with an
assessment for each item.
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Explainer

Another component with functional competence is the explainer. Its task is to build
explicit explanations for system decisions. This should make the behavior of the system
more transparent. If the decision concerns recommending, the explainer assesses the
situations according to their contribution to the decision. If the decision process selects
a set of items, the explainer determines arguments for the items. Resulting explanations
justify why the system made this decisions (Requirement 22). The component returns
a set of arguments for recommendation decisions as well as items.

User Profile Manager

The functional competence of the user profile manager is to organize user preferences
in the system. The component is required because the system needs to know general
preferences to adapt them to the situation. User preferences are recorded over the user
interface and provided to the situation manager. User preferences are seen as context of
the user. The situation manager uses them for situation adaptation (Requirement 17).
The recommender system needs user preferences to assess items. In depth investigation
of user profile management is out of scope of this thesis.

User Interface

The user interface is the channel to the driver. It has execution competence towards
actions that are performed with the driver in mixed initiative dialogs. This comprises
displaying of information and reacting on input. It plays an important role for user
acceptance by being easy to use (Requirement 4) with an unobtrusive (Requirement 5)
and accessible (Requirement 6) behavior.

4.3.3. Decision Making

Decision making is the central component that controls the behavior of the system. The
first decision it makes is whether recommendations should be searched proactively. If
this is the case, then we need to check which items are available and when they should
be delivered. We use the satisficing (SAT) strategy to make both decisions. This is a
common strategy in human decision making (Requirement 12) for such decisions. The
application of satisficing for a proactive recommendation decision can be motivated by
an example of Goodrich et al. [GSB99]. The authors describe a driver who is behind
another car and waits for a moment that is good enough to pass the slower car. This
behavior represents a trade-off between a solution that is good enough and a possible
solution that follows in the future and is better. In the case of overtaking, additional
lanes may be added to the street later. The additional lanes allow for a more secure
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overtaking. Applied to our problem, a satisficing strategy delivers items if an upcoming
situation is good enough, i.e., the benefit for a recommendation is high enough.

Whether to Recommend

The decision whether recommendations are relevant at all is a binary SAT decision.
The system decides whether a situation is good enough to search for recommendations.
The decision should be stable, i.e., it should not be subject to minor fluctuations in the
model.

D(t) =


recommend B(t) ≥ (1.0 + α)×Bthreshold
not recommend B(t) < (1.0− α)×Bthreshold
D(t−) otherwise

(4.2)

In our safe Equation 4.2, we make a decision D at time t based on the last stable
decision in the past D(t−). A security value α ensures that the system is less susceptible
to minor fluctuations around the threshold Bthreshold. We take the last decision D(t−)
in case only minor changes occur. Otherwise, we decide to recommend in case of benefits
above Bthreshold and not to recommend below.

What and When to Recommend

The second SAT decision involves the selection of items inside the horizon and to decide
when to perform an action with them. In case of recommending, actions comprise to
deliver items to the users or to notify them. The first part of the decision is when to
deliver a recommendation. The decision problem involves the analysis of the situations
of a user and to select exactly one context c ∈ H out of the decision horizon to deliver
the recommendation. Its goal is to make the recommendation useful. The second part
of the decision problem is about what to recommend. The system selects a set of items
se∗ ∈ SE out of all assessed items I∗ and all of their combinations in a set SE. The
goal is to select a set se∗ with useful items. The challenge is to select useful items for a
delivery at context c. Our SAT strategy combines both parts of the decision. We take
the next upcoming context c that has enough benefit B to deliver a recommendation
(good enough). The recommender system optimizes the items with a comprehensive
assessment (usefulness). We try to recommend the most useful (optimized) items in a
situation that is good enough for recommending. We call this an optimizing-satisficing
(OS) strategy.

maximise
a∈A∗

DA∗(a)

subject to f(il, ij) = 1 ∀ f ∈ CON, l = 1, . . . , n ∧ j = 1, . . . ,m ∧ i, j ∈ I.
(4.3)
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More formally, we select the satisficing solution a in all satisficing solutions A∗ which
is a subset of all alternatives A∗ ⊆ A. The result is a optimization problem (Equation
4.3). DA∗(a) is the decision function that specifies the membership of a to the set of
satisficing solutions. A solution a contains exactly one set of items se∗. Each solution
has an expected utility eu for the user (Equation 4.4).

DA∗ =

{
eu a ∈ A∗
0 a 6∈ A∗ (4.4)

If an item i in a satisficing solution a cannot be delivered in a satisficing situation, then
the expected utility eu of a is 0. Otherwise, we optimize a by means of the assessments
of the recommender. Furthermore, the items il and ij in a set of items se are subject
to constraint functions CON . Constraints regulate whether an item is included in an
item set se based on the assessments of the recommender. For instance, two items that
are both useful but very similar should not be in the same set. We set f = 1 if the
constraint is satisfied, otherwise 0. Constraints can be a Pareto dominance condition,
the similarity/diversity of items or the number of items in a set. The expected utility
is calculated with a function g over the items in the set (eu = g(se∗)). Appendix A
describes implementation details of our optimizing-satisficing (OS) strategy for item
and context selection.

4.4. Summary

In this chapter, we gave a definition of proactive in-vehicle recommender systems (P-
IVRS) to distinguish the term from similar terms for recommender systems. As P-IVRS
are a new field of research, we described potential use cases. One of the use cases is a
proactive gas station recommender. We derived non-functional and functional require-
ments from research and related work in recommender systems, automotive, decision
theory and proactive assistance. Non-functional requirements comprise the avoidance
of driver distraction and information overload and to make the system easy to use and
useful. Ease of use is enabled by an unobtrusive and accessible behavior of the system.
Functional requirements are grouped by intelligent proactive behavior, situation-aware
information need, selection of useful items and comprehensibility. The requirements are
mapped to aspects of our proposed P-IVRS system. The system design of this P-IVRS
comprises the representation of knowledge and system components. The decision making
component is the most important one. The system decides whether to recommend based
on the benefit of a recommendation. Then, it takes the results from an item assessment
(recommender system) and the benefit of a recommendation (situation awareness) to
decide which items to deliver and in which situations to deliver them. We use a satis-
ficing strategy to make decisions. It is combined with the optimization of items by the
recommender system. We call the strategy optimizing-satisficing (OS). Our OS strategy
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assumes that the quality of items is more important than the situation in which the
items are delivered to the driver. Furthermore, the final decision of the driver is about
the item not about the context. In the following chapters, we take a deeper look into
the functional components and how they fulfill the requirements.
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A fundamental part of a P-IVRS is the situation manager. Its task is to interpret con-
textual information towards the recommendation task. Generally, context information
is independent from a specific kind of recommendation. A recommendation task con-
tains decision making by the system and the user. Situation awareness bridges the gap
between contextual information and decision making. It fulfills the requirement to pay
attention to the situation of the user in order to enable intelligent proactive behavior.
Human situation awareness models already exist. We describe a computational situation
awareness framework based on the model of Endsley [End00]. Our framework is tailored
to proactive recommendations. The input for the framework comprises user situations.
The output comprises preferences that the user has in these situations and the benefit
of a recommendation for a specific user task, e.g., refilling or eating. We implement the
framework with fuzzy logic and Bayesian networks to investigate its feasibility for the
use case of a gas station recommender.

5.1. A Generic Framework for Situation Awareness

We discussed basic concepts of situation awareness in Section 2.2.2. A lot of work is
already done in human situation awareness and high-level information fusion for com-
putational situation awareness. Our goal is neither to extend this work nor to propose
a new general model for situation awareness. We take previous findings and apply them
to a model tailored to proactively delivered recommendations. Situation awareness is
crucial in the assessment of benefit, costs and dynamic user preferences of a recommen-
dation in the situation of a user. Benefit and costs are used by our optimizing-satisficing
(OS) strategy to find good enough situations to recommend. The recommender sys-
tem needs the situational preferences of the user to select useful items for the user.
We propose a situation awareness model that comprises three basic levels according to
Endsley’s [End00] model and a forth level as an extension by McGuinness [MF00]. We
already published the general idea of mapping Endsley’s model to fuzzy variables and
introducing temporal prediction in [BWP10]. Our abstract model is depicted in Figure
5.1.

Each level in the model is applied to a specific task. Components of the levels, e.g., a
prediction method, can be reused for other tasks as well. However, the levels itself are
task specific, e.g., situations are perceived and comprehended towards a task. The model
does not comprise the relationship to other tasks explicitly. On the lowest level, context
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Level 1:
Perception and Prediction

of Context

Level 2:
Comprehension

of Situations

Level 3:
Prediction

of Situations

Level 4:
Resolution

Task

Figure 5.1.: A four level situation awareness model for proactive recommendations

parameters are captured by sensors or are derived based on captured data. This refers to
lower level information fusion. The context parameters are interpreted as fuzzy situation
variables (see Section 4.3). The next level takes the situations and interprets them
towards the task, i.e., we infer on high-level knowledge about recommendations. Both,
the comprehension of individual situations as well as their relationship is addressed.
On level 3, situations are predicted inside the horizon H. Two ways of prediction are
possible: Either the prediction of context on level 1 or the prediction of situations on
level 2. The resulting predicted situations are again interpreted. Then, we now in
which situations the user is going to be and comprehend what these situations mean
for providing recommendations. On level 4, interpreted and predicted situations are
resolved towards task specific information. In our case, this is the benefit of a proactive
recommendation and situational user preferences.

5.1.1. Perception Level

The first level of situation awareness transfers crisp low-level data to fuzzy variables.
Situations are represented by fuzzy variables (Section 4.3). Hence, we first need to
establish fuzzy variables for all situations that are relevant for a task. This requires
a set of discrete states for each situation. However, some context parameters that we
want to interpret as situation are rather continuous (e.g., the gas level). Entropy-based
discretization (Fayyad et al. [FI93]) is a suitable method for discretization in our case.
It reflects the interpretation of a situation towards high-level knowledge concerning a
task. Hence, it is a perception towards the task. A detailed description of entropy-based
discretization can be found in Appendix B.5.

To illustrate situation perception, we take the current gas level of a car as an example.
In one application, the current gas level could be interpreted with equally distributed
states such as ”empty”, ”low”, ”medium”, ”high” and ”full”. For an application like a
gas station recommender, the interpretation could be different because drivers usually
do not refill if the current gas level is higher than the half. Therefore, we can merge the
states ”medium”, ”high” and ”full” and call it for example ”enough gas”.
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The perception of situations is not finished with discretization. Fuzzy variables consist of
membership functions for each discrete state. Our method to calculate memberships is
described in Appendix B.1 in detail. It incorporates the restrictions on the membership
function that we defined in Section 4.3.

5.1.2. Comprehension Level

Low-Level Situations

Comprehension
Model 1

...

Benefit B

Comprehension
Model n

High-Level Situations

User
Prefs U

Figure 5.2.: Comprehending situations low-level as well as high-level

On level 2 of the framework, we deal with the comprehension of situations towards a
task. Comprehension means to understand which impact perceived situations have on
proactive recommendations for a task. Figure 5.2 shows our two-stage comprehension
approach. The lower stage represents single situations after the situation perception
process on level 1. A comprehension model is responsible for interpreting these situations
according to their influence on the decisions of a user towards recommendations. This
comprises the usefulness of a recommendation (Benefit B) and user preferences U . Costs
can also be modeled the same way but are not scope of this work. To receive B and U ,
low-level situations are transferred to high-level situations with comprehension models.
Relationships between situations are included in the comprehension model. We introduce
specific comprehension models for user preferences and benefit in Section 5.2.

121



5. Situation Awareness in P-IVRS

High-level situations are resolved to B and U . To describe the benefit B of a recom-
mendation, we define a high-level situation variable ”Proactive Recommendation” PR
with the states ”Yes”, ”No”, ”Later” and ”Too Late”. PR describes if a recommenda-
tion should be given in a situation (”Yes”) or not (”No”). We add a time dimension
because situation awareness also contains predicted situations. A recommendation may
also be given later (”Later”) or it is already too late (”Too Late”). Recommendations
are relevant later, if the users already know that they need information but not in their
current situation. For instance, we already know in the morning that we want to have
lunch later. If a recommendation is relevant but the system delivers items after the
user wants to consume them, we call the recommendation too late. For instance, the
system delivers restaurants after lunch. The terms are valid inside a horizon H. Hence,
a recommendation cannot be too late in the beginning of a horizon and not be given
later at the end of the horizon. Comprehension models infer on the membership to the
states of the high-level situation ”Proactive Recommendation” PR and other high-level
situations describing user preferences.
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(a) Three-state fuzzy variable
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true false
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Figure 5.3.: Fuzzy variables to describe benefit B and user preferences U

The benefit B itself is either described by a crisp value in [0, 1] or as fuzzy variable like
in Figure 5.3. High-level user preferences are a vector U = w1, . . . , wn with n weights for
features of items. Each weight is represented by exactly one high-level situation, e.g.,
”gas station price” or ”detour for a gas station”. The weights may also be represented
as fuzzy variables. The representation of benefit and user preferences as fuzzy or crisp
variables depends on the application.

5.1.3. Resolution Level

The goal of a resolution is to transfer high-level situations in information that is dis-
tributed to other components of a P-IVRS. In our case, this is the benefit for recommen-
dation B which is used by the decision process and user preferences U which are used
by the recommender system.

User preferences are simply resolved by taking a subset UTA ⊆ U of relevant preferences
for the task TA. The user preferences which are relevant for TA are determined by the
item categories connected with the task. For instance, the item category ”gas stations”
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is associated with the task TA = refilling. Only preferences which are relevant for TA
are included in UTA. For instance, the quality of service in a restaurant is not relevant
for the task of refilling.

R1: IF TooLate IS true THEN B IS med WITH 1.0
R2: IF Later IS true THEN B IS med WITH 1.0
R3: IF Y es IS true THEN B IS high WITH 1.0
R4: IF Y es IS false THEN B IS low WITH 0.25
R5: IF No IS true THEN B IS low WITH 1.0

(5.1)

The benefit BTA for task TA is resolved from the high-level situation ”Proactive Rec-
ommendation” PR. We reduce the four states of PR to a single variable (numeric or
fuzzy) by using fuzzy rules (Listing 5.1). The benefit B is described by a three state
fuzzy variable with the states ”low”, ”medium” and ”high” (like in Figure 5.3a). The
states of PR are described by two-state fuzzy variables with ”true” and ”false” (like
in Figure 5.3b) with a range of crisp values in [0, 1]. A crisp value of 0 results in the
membership µ(′true′) = 0 and µ(′false′) = 1 and a crisp value of 1 in µ(′true′) = 1 and
µ(′false′) = 0.
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Figure 5.4.: Resolution plane with arbitrary membership to the situation PR

The states ”Yes” and ”No” of PR indicate the relevance of a recommendation. Therefore,
they account for ”high” B or ”low” B respectively. The resolution for the benefit B
relative to these two states can be seen in Figure 5.4. In Figure 5.4a, we assume no
membership to ”Too Late” and ”Later” and in Figure 5.4b a membership of 1. The
Figure 5.4a shows a maximum benefit B for µY es(

′true′) = 1 and µNo(
′true′) = 0 and

lowest for µY es(
′true′) = 0 and µY es(

′true′) = 1. If we have no knowledge about the
primary situations (µY es(

′true′) = µNo(
′true′) = 0), then the benefit is 0 (Figure 5.4a),

unless we know that a recommendation should be given later or it is too late. In case
we have full membership for both ”Later” and ”Too Late”, the benefit B is 0.4 (Figure
5.4b).

The rule R4 seems useless at the first glance because the membership of ”Yes” in
state ”false” seems already be determined by the membership in state ”true” with
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µY es(
′false′) = 1 − µNo(′true′). Hence, we already take this information into account

with rule R3. However, in our case, R4 implies explicit knowledge about the absence
of knowledge of ”Yes”. If we know that a recommendation should be given with a low
degree of belief, then we also assume that it should not be given with high belief. The
second piece of knowledge is much weaker because it is not based on observations. There-
fore, the rule R4 has a lower weight of 0.25. Without R4, the benefit B would be 1 in
the absence of knowledge for the primary situations (µY es(

′true′) = µNo(
′true′) = 0).

Figure 5.4a shows that with rule R4, B is 0. Our intention is to assume no benefit
in case of any knowledge to lower the risk of false recommendations which might be
obtrusive. Note that the situations do not reflect a probability distribution. Hence, we
can be absolutely sure about giving a recommendation and not given one at the same
time. The absence of knowledge about not giving a recommendation does not necessarily
means that a recommendation should be given. Membership µY es(

′true′) = 1 does not
necessarily implies µNo(

′true′) = 1.

5.1.4. Prediction Level

The third level of situation awareness is the prediction of future situations. Prediction
allows reacting on future situations. This may result in fewer recommendations along a
horizon and hence less interruptions of the users in their current task. For prediction,
we distinguish 3 kinds of situations:

• Static situations do not change along the horizon.

• Dynamic situations change along the horizon but the comprehension only depends
on their state at a specific point in time.

• Temporal situations change along the horizon (like dynamic) but their compre-
hension depends on one or more states in the future or the past respectively (in
the boundaries of the horizon).

A static situation is one that does not change over time in the horizon, e.g., friends, the
user is with a whole day. In contrast, dynamic situations change over time. A simple
example is the location where the user is over a day. The most complex situations are
temporal ones. Like in a Markov process, the comprehension of temporal situations not
only depends on the current state but on states before and after. Depending on how
many states are taken into consideration, we can call them 1 − stage, 2 − stage and
so on situations. To make clear what a temporal situation is, we give an example in
Table 5.1. In [BWP10], we used a theoretical example by means of the gas level as
situation to demonstrate how temporal reasoning works. However, gas level corresponds
to a dynamic situation. Therefore, we use a traffic jam as real temporal situation here.

The traffic jam example in Table 5.1 shows temporal connections of situations and
whether they lead to a recommendation. The idea is to deliver recommendations such
as restaurants or gas stations in advance of a traffic jam. If we are in a traffic jam
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Situation Situation Situation Deliver Recommendations
before current soon now?

Traffic jam Traffic jam No traffic jam -

Traffic jam Traffic jam Traffic jam -

Traffic jam No traffic jam No traffic jam -

Traffic jam No traffic jam Traffic jam Yes

No traffic jam Traffic jam No traffic jam Too late

No traffic jam Traffic jam Traffic jam Too late

No traffic jam No traffic jam No traffic jam -

No traffic jam No traffic jam Traffic jam Yes

Table 5.1.: Traffic jam example for temporal situations

currently and this situation stays the same in the next moment or changes to no traffic
jam, then it has no impact on the delivery. The same applies, if there is no traffic jam
at all. If we are going to enter a traffic jam soon, a recommendation is delivered. This
changes if we also look in the past. If we were in a traffic jam before, nothing changes.
However, if we were not in a traffic jam and we are in one now, then recommendations
are too late.

The three situations are predicted and resolved in a high-level prediction. Note that
temporal situations do not refer to a prediction process itself, i.e., the connection between
situation states in time does not describe a model to predict state st+1 from st. This
is part of the underlying low-level context or situation prediction. Low-level prediction
comprises prediction of context information and its interpretation. Context prediction
mechanisms itself are not scope of this thesis. We give details to the implementation of
high-level and low-level prediction in Appendix B.2.

5.1.5. Discussion

Our approach of situation awareness for proactive recommendations aims to infer on the
benefit of a recommendation and situation-aware user preferences. Structured models
(called comprehension models) are used to derive benefit and user preferences from low-
level situations modeled as fuzzy sets. We use structured models where the parameters
are estimated to avoid cold start problems. Unstructured models as proposed by other
researchers need more data to learn in the beginning of usage (e.g., Lei et al. [LZS07]).

Many approaches in literature infer on situations (e.g., Ciaramella et al. [CCLM09]) or
tasks (e.g., Partridge et al. [PP09]) and deliver recommendations associated with the
specific task or situation. Our model infers on information need (benefit) instead. It
resembles the research of Horvitz et al. [HBH+98] who infer on the need for assistance.
This corresponds to the benefit of a recommendation. The main difference to Horvitz
et al. [HBH+98] is that we also take future states of the situation into regard. The
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prediction of information need is different to the prediction of upcoming situations or
tasks (e.g., Lee and Cho [Lee10]). Our approach relies on situation and context prediction
methods to make information need prediction on a higher level.

Our model is different to an event-based approach like proposed by Beer et al. [BFH+07]
or Hinze and Voisard [HV03]. Event-based approaches react on events that lead to a
state change of the context of the user. Events bear semantic information, e.g., ”entering
a room”. In our model, situations have semantic information, e.g., ”inside a room”. In
both cases, the system is triggered to make decisions. Event modeling is useful in
domains in which actions of the user or environmental events can be monitored. Our
application domain does not involve monitoring of the users during their task. Our
approach resembles point-based approaches such as Cheng et al. [CSC+08]. Their
system reacts on a snapshot of context information with a specific value. However, their
approach is an interactional view on context without structured models.

We follow the general model of situation awareness proposed by Endsley (perception,
comprehension, prediction) and apply a resolution on top. Only few approaches for
proactive information delivery take all these levels into regard. Lei et al. [LZS07]
propose a model with data atoms (context) and data elements (situations). In their
case, the system reacts on transitions between data elements (events). Therefore it is
different to our approach.

Some approaches also use fuzzy logic to represent situations. Park et al. [PYC06] infer
on context information that is interpreted by fuzzy variables. Their goal is to derive the
current mood of the user with a fuzzy logic system instead of deriving information need.
Ciaramella et al. [CCLM09] use fuzzy logic in a similar manner. Context information is
fuzzified and used to infer on the situation. Inferred situations correspond to our low-
level situations. Hanamura et al. [HKT03] use fuzzy sets based on radial basis networks
(RBF) to connect tasks, situations and actions that are performed in tasks to reach a
goal. The RBF can be seen as comprehension model in our case. Cena et al. [CCG+06]
propose a fuzzy logic approach that is similar to our user preference model. Context
is fuzzyfied and used in the antecedent for adapting user preferences in that context.
However, context in their approach only comprises characteristics of the users, e.g., age,
and fuzzy reasoning is only used to overcome cold start in user profiling.

5.2. Evaluation

In the previous section, we presented our generic framework for situation awareness in
proactive recommender systems. To evaluate our framework, we investigate its imple-
mentation for a proactive gas station recommender system. First, we collect data for gas
station recommendations by presenting the users situations and asking them whether a
recommendation is useful for them. The data is used to derive situations towards gas
station recommendations. With these situations, we discuss a fuzzy logic comprehension
model for user preferences U and two models for benefit B based on Bayesian networks
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and fuzzy logic. Our main reason of using Bayesian network and fuzzy logic models is
in order to be able to backtrack the inference on high-level situations to low-level situa-
tions. This allows us to explain why a recommendation was given. Fuzzy and Bayesian
representation is symbolic, i.e., its components describe real-world connections. Non-
symbolic systems such as neural networks or support vector machines (SVM) do not
have an explicit declarative knowledge representation. This makes it much more diffi-
cult to extract explanations for the users (Dietrich et al. [Die92]) and to interpret the
model (Nugent et al.[NC05]). Their knowledge is represented by weights which does not
correspond to human causal comprehension.

5.2.1. Study Design

For our evaluation, we need real user data about when a gas station recommendation is
relevant in specific situations. We carry out an offline survey to collect this data. Our
idea is to present the subjects of the study a series of situations related to the task of
refilling. To get a large amount of data, the subjects answer the simply question ”Do
you want to get gas station recommendations in this situation?” several times. The
answers ”Yes”, ”No”, ”Later” and ”Too late” correspond to the states of our high-level
situation ”Proactive Recommendation” PR. The horizon H is the current route of the
user. The simulation of relevant situations is described in Appendix B.3. The situations
are based on context information concerning car, user and environment.

We had a total of 24 subjects with 3 women and 21 men. Each subject finished 50
runs which yields 1200 data instances. In a final questionnaire we asked the subjects
about their user preferences U towards price of gas, detour for the station and what they
perceive as ”well located” and ”inexpensive” gas stations. The preferences were given
on a scale from 1 (”not important”) to 5 (”important”).

5.2.2. Perception of Situations

Based on the collected data, we define the perception of situations for gas station rec-
ommendations, i.e., crisp context information is interpreted as fuzzy situation variables.
The interpretation comprises a discretization and the calculation of fuzzy memberships.
All resulting situations can be found in Appendix B.4.

Discrete Context

Discrete low-level situations are the type of route, e.g., business, home or vacation, and
the modality of refilling, i.e., if refilling is necessary. The subjects behave differently
depending on their type of route. A proactive recommendation is less requested for
routes with appointments that are not private (trips to business appointments or an
event). It is also less requested for short trips like working or shopping. In case of longer
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Figure 5.5.: Discretization and distribution of the low-level situations ”current gas level”
and ”gas level at the destination” with the capacity of the gas tank tmax

trips in the holidays, recommendation delivery is more requested because the destination
is not reachable with the current gas level. Recommendations are in general requested
if the destination is not reachable, i.e., refilling is necessary.

Continuous Context

Most context information is not discrete but continuous. We use the method of entropy-
based discretization (Fayyad et al. [FI93]) for discretization (Appendix B.5). Figure 5.5
shows the distribution for discretized states of two low-level situations. They describe the
car context information ”current gas level” and ”remaining gas level at the destination”.
The values of the interval borders in liter result from the discretization. We add an
interpretation for each interval range by hand, e.g., ”low” for the interval (2.5− 6.6] of
the current gas level. The interpretation is used later as term in the fuzzy variable. As
we would expect, recommendations are not requested, if enough gas level is currently
in the tank or is still in the tank when the destination is reached. The threshold of
13.4 liter or 11.6 liter respectively represents around 25% of the tank capacity (50 liter).
Recommendations usually become relevant below a threshold of around 25%. They are
most relevant in the second interval of Figure 5.5a and also in the third. The first
interval covers very low current gas level with a risk of breaking down. In this interval,
the subjects state recommendations mostly as too late. In Figure 5.5b, we have similar
results for the gas level at the destination. In case of the first interval with very low
gas level at the destination, recommendations are most relevant and can be too late
depending on the current gas level. In the second interval, recommendations are also
relevant and they may be in the third as well but are mostly not.

We also use user and environmental situations in our simulation. User situations describe
aspects concerning users’ route (e.g., the length of user’s route), the current position on
the route and whether the users have some kind of appointment at the arrival. Other
situations describe environmental aspects towards surrounding gas stations. They com-
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prise the reachability of gas stations in general, how many gas stations are well located
along the route and how many of the well located gas stations are also inexpensive.
The length of the route only plays a role if it is long. In this case, the probability of
reaching the destination is lower which is a reason of requested recommendations. The
subjects also prefer to get recommendations in the first part of their route. For routes
with appointments, fewer recommendations are requested. In case of reachability, rec-
ommendations become too late if only a few stations are reachable, more relevant with
some more reachable and less with lot of reachable stations. This is intuitively clear as
the reachability of gas stations correlates with the current gas level in general. This is
also valid for the reachability of well located gas stations. Surprisingly, if no gas stations
are well located, the subjects state recommendations as less relevant. If well located gas
stations are inexpensive at the same time, relevance of recommendations is higher.

5.2.3. User Preference Comprehension Model

Our comprehension model for user preferences is simple. Long-term preferences consist
of weights U =< w1, w2, ..., wn > for n item features (Section 4.3). They are handled like
the context of the user and are interpreted as low-level situations. Low-level situations of
preferences have binary membership functions (Figure 5.3b). This gives the application
the possibility to capture preferences in the range [0, 1]. Fuzzy rules transfer low-level
to high-level preferences U . Depending on the application, they can be defuzzified to
weights u = w1, . . . , wn in [0, 1] with continuous or discrete values, e.g., 0.2, 0.4, 0.6 and
0.8. An example for gas station preferences is in Listing 5.2.

R1: IF PrefsDetour IS true THEN WeightDetour IS high
R2: IF PrefsDetour IS false THEN WeightDetour IS low
R3: IF PrefsBrand IS true THEN WeightBrand IS high
R4: IF PrefsBrand IS false THEN WeightBrand IS low
R5: IF PrefsGaslevel IS true THEN WeightGaslevel IS high
R6: IF PrefsGaslevel IS false THEN WeightGaslevel IS low
R7: IF PrefsPrice IS true THEN WeightPrice IS high
R8: IF PrefsPrice IS false THEN WeightPrice IS low

(5.2)

The antecedent represents long-term preferences with two-state fuzzy variables as low-
level situations. The resolution of the rules leads to memberships to three-state fuzzy
variables in the consequence. The consequence represents high-level preferences. To
incorporate situational changes of preferences, we add further rules containing other
situations. For instance, the user prefers inexpensive restaurants but for a business
dinner higher class restaurants should be recommended. An example for situational gas
stations preferences is in Listing 5.3.
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R9: IF routeType IS business THEN WeightDetour IS high
R10: IF routeType IS business THEN WeightBrand IS low
R11: IF routeType IS business THEN WeightGaslevel IS low
R12: IF routeType IS business THEN WeightPrice IS low

(5.3)

We know that the intention of the driver is a business appointment (antecedent). Hence,
we assume that the driver has time pressure. This circumstance is reflected by the
rules. They increase the long-term preferences for detour and lower the other preferences
(consequence).

5.2.4. Fuzzy Logic Comprehension Model

The first comprehension model for benefit is based on fuzzy logic. The states of the high-
level situation ”Proactive Recommendation” PR are variables in the consequence of the
fuzzy inference rules. The results after defuzzification are memberships in the range
[0, 1]. For technical reasons, states of PR are represented with singleton membership
functions. To set up the rules, we first analyze which impact low-level situations have
on the high-level situation PR with feature selection methods.

Impact of Low-Level Situations

We investigate the influence of low-level situations to PR for gas station recommen-
dations with feature selection methods described Section 2.4.4. Feature selection is a
common technique in data mining to find out the influence of observed attributes on
a class variable. In our case the class variable is the high-level situation ”proactive
recommendation” PR. First, we derive low-level situations as primary decision dimen-
sions for gas station recommendations. These are dimensions that mainly determine the
decision independent from other dimensions. Therefore, each situation is tested inde-
pendently relative to the class variable PR. The results for each situation and method
are summarized in Table 5.2.

We calculate a normalized average (AVG) for all low-level situations SL over all methods
M to build a ranking (Equation 5.4). The value Ri(SL,M) for each method M is
normalized by the maximum value of all situations Rmax(M) for that method. The
result is summed up for all m methods.

AV G(SL) =

m∑
i=1

Ri(SL,M)

Rmax(M)
(5.4)

All feature selection methods select the gas level at the destination as major decision
dimension and the current gas level as second. Not surprisingly, the gas level is the
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Situation MI GR RFF weighted RFF SU CHI AVG

Gas level at the
destination

0.506 0.261 0.370 0.301 0.301 609.675 1.000

Current gas level 0.425 0.222 0.316 0.261 0.255 578.872 0.868

Modality 0.129 0.238 0.072 0.066 0.132 151.933 0.378

Reachability of
gas stations

0.127 0.109 0.043 0.016 0.098 211.540 0.252

Well located gas
stations

0.095 0.063 0.069 0.075 0.065 147.467 0.220

Route length 0.057 0.083 0.032 0.036 0.054 81.111 0.159

Route type 0.048 0.017 0.053 0.079 0.022 67.662 0.125

Position on route 0.035 0.036 0.065 0.055 0.029 50.023 0.124

Well located and
inexpensive gas
stations

0.018 0.029 0.053 0.078 0.018 28.194 0.109

Appointment 0.013 0.015 0.016 0.017 0.012 19.442 0.043

Table 5.2.: Feature selection metrics for low-level situations

strongest indicator for recommendations. The modality correlates with the current gas
level at the destination but is far less important. This is due to the nature of the feature
selection methods. As the driver only has to refill in a few situations, the entropy of the
variable ”modality” is low. Normalizing with the entropy, the variable becomes much
more important (see GR of modality). The same applies to the reachability of well
located and inexpensive gas stations. The result emphasizes the importance of the route
as context information. Without user’s route, the gas level at the destination can only
be estimated. Other attributes than current gas level and gas level at the destination
may play a role as secondary decision dimensions.

To investigate secondary decision dimensions, we look at the influence of situation X
together with the gas level at the destination (GLAD) and the current gas level (GL)
on the class variable PR. The resulting rules follow the implication X = a ∧GL = b⇒
PR = c. We use support and confidence of the rules to assess their quality. Support of
a rule is defined as the occurrence of the antecedent in the set of data instances divided
by the number of all instances I where Y = GL|GLAD (Equation 5.5).

S(X ∪ Y ) =
#(X ∧ Y )

#(I)
(5.5)

Only variable combinations with sufficient support are regarded. We choose S > 0.02,
which corresponds to more than 20 instances in our data set. The confidence of a rule
represents the strength of implication. It is defined as the occurrence of the antecedent
in the data set divided by the occurrence of the consequence C (Equation 5.6).
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C(X ⇒ Y ) =
#(X ∧ Y )

#(C)
(5.6)

The closer the confidence is to 1.0, the more subjects make similar decisions in the
situation. Additionally, we use a method similar to χ2. We compare the joint distri-
bution P (X,GL,PR) and P (X,GLAD,PR) after the observation of X with the joint
distribution P (GL,PR) and P (GLAD,PR) respectively. The increase or decrease of
the probabilities represents the influence of attribute X along with GL or GLAD.

A detailed list of the results is shown in Appendix B.6. They show that route length,
position on route, route type, appointment and the reachability have influence on the
decision for a proactive recommendation. This applies mainly to states of these situations
with a low prior probability of occurrence. Because the states are unlikely, feature
selection methods cannot reveal their influence. Gas station recommendations become
more relevant with a current gas level in (6.59, 13.5] and a long route, a position of
the route in the first half, an appointment and whether a well located and inexpensive
gas station is reachable. An appointment and whether no well located gas stations are
reachable have a negative influence on recommendations, in case the current gas level is
in (2.49, 6.59]. With a gas level at the destination below 1.8 liters, recommendations are
more often assessed as too late in case the position of the driver on the route is in the
last third of the route or the reachability of gas stations is very low.

Dynamic Fuzzy Logic Model

Based on the results from the feature selection, we describe a dynamic fuzzy logic model.
Our fuzzy rules contain low-level situations in the antecedent and high-level situations
in the consequence. The rules with the current gas level are shown in Listing 5.7.

R1: IF GasLevel IS low THEN Y es IS true
R2: IF GasLevel IS NOT low THEN Y es IS false
R3: IF GasLevel IS empty THEN Too late IS true
R4: IF GasLevel IS NOT empty THEN Too late IS false
R5: IF GasLevel IS enough THEN No IS true
R6: IF GasLevel IS full THEN No IS true
R7: IF GasLevel IS NOT enough AND

GasLevel IS NOT low THEN No IS false

(5.7)

The rules R1, R3, R5 and R6 can be derived from the observation that a low current gas
level leads to high benefit and vice versa. The results of applying the prediction on the
third level of our framework (described in in Appendix B.2) only with the rules R1, R3,
R5 and R6 are depicted in Figures 5.6 (a), (c), (e) and (g). Contrary to our expectation,
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defuzzified values for ”Yes”, ”No” and ”Too late” resemble first-order logic inference
instead of smooth fuzzy values. This effect is caused by the normalization in the COG
defuzzification method for singletons. As only one evidence situation is used (”current
gas level”), it does not matter what membership we have for ”Yes” in the consequence.
It is always resolved to a value of 1.0 for memberships µ > 0 and 0 else. Therefore,
we introduce rules R2, R4 and R7 to make clear that the abstinence of membership to
”true” means existence of membership to ”false” explicitly. We call this kind of rules
false-rules in contrast to true-rules without negation. The results with all rules together
with false-rules are depicted in Figures 5.6 (b), (d), (f) and (h).
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Figure 5.6.: Simulation of the benefit with the current gas level

The results with false-rules are the expected smooth transitions from one state to an-
other. However, we have to be careful with the application of false-rules. The more
false-rules we define for each situation that implies the same high-level situation, the
less impact has a true-rule on that high-level situation in the aggregation of rules. For
instance, if we have 10 rules with low-level situations which imply the high-level situation
”Yes” and only one low-level situation has high membership, then one true-rule is fired
against nine false-rules. The knowledge of giving recommendations in a situation does
not necessarily imply the knowledge not to give recommendations. Hence, the knowledge
about not delivering recommendations is defined as a rule separately. Note, a false-rule
does not represent the knowledge about not giving a recommendation in the example.
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To make this circumstance more clear, we give another example with the situation ”well
located and inexpensive gas stations reachable”. We know from our analysis of secondary
decision dimensions that giving a recommendation in this situation is desirable under
certain circumstances and we also know that if no well located and inexpensive gas
stations are reachable does not mean not to give a recommendation. To incorporate
this observation in our rules, we can combine the antecedent of all false-rules for a
specific high-level situation with a conjunction. Thus, the rule only fires fully if there
is no membership to all low-level situations. One example is rule R7 that also covers
an exception. If two adjacent states of a low-level situation imply the same high-level
situation, then they have to be handled together. This leads to ”current gas level is low”
in the rule, which ensures that the false-rule covers the area outside of ”high” and ”full”.

Fuzzy Logic Rules with Secondary Decision Dimensions

So far, we handled primary decision dimensions with simple rules. To incorporate sec-
ondary decision dimensions, we define a general structure for our true-rules in Listing
5.8.

RC IF Dp IS true AND Ds IS true
THEN SH1 IS true

RNC IF Dp IS true AND Ds IS NOT true
THEN SH2 IS true

(5.8)

The rule RC incorporates secondary decision dimensions Ds as condition together with
a specific state of the primary dimension Dp to address a different high-level situation
SH1 in the consequence. In case the condition is not fulfilled, we define the rule RNC
that lets the rule fire for the regular high-level situation SH2 associated with Dp without
the condition. For instance, the reachability of well located and inexpensive gas stations
(Ds) causes a recommendation (SH1 = true) if current gas level (Dp) is enough. If there
are no well located and inexpensive gas stations reachable, the behavior of the system
with enough current gas level would be to deliver no recommendations (SH2 = true).
This would also be the usual behavior of the system with enough current gas level, if
no secondary decision dimension is known. All secondary decision dimensions can be
modeled this way.

Temporal Fuzzy Logic Model

Our data collection does not cover temporal situations. Therefore, we continue our
example in Table 5.1 by formulating traffic jams as conditions. We assume that rec-
ommendations for gas stations become useful in the state ”low” of ”current gas level”
if there is a traffic jam ahead. Furthermore, recommendations are too late if we are
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in a traffic jam, the current gas level is low and there was no traffic jam before. To
incorporate temporal relationships, we measure the distance from the current situation
state sc to another situation state sn along the horizon. The distance is mapped to a
fuzzy variable for a temporal connection of situations. The temporal connections ”after”
and ”before” are described by the fuzzy variable in Figure 5.7. We describe distance in
minutes here. Kilometers would also be possible. The variable represents the distance
to the state sn after the current state sc or before the current state respectively. This
corresponds to Allen’s Interval algebra (Allen and Ferguson [AF94]) used in temporal
reasoning. In fact, every relation of the interval algebra can be described as a fuzzy
variable and used in the comprehension model. distance
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Figure 5.7.: Fuzzy variable for the distance dafter (dbefore is identical) with time: maxi-
mum membership for dafter = true at 10 minutes

The distance has full membership to dafter = true for 10 minutes and ranges from 0
to 20 minutes. Every state of a low-level situation outside this range is not taken into
regard. Every state change is described by the current state sc, the state to change to sn
and the distance. For temporal situations, we look backward and forward at sc within
the range of the fuzzy distance variable. The number of stages n defines how many
changes of situation states we take into regard, i.e., how often a rule is fired. The result
is a vector rp =< r1, . . . , rn > of defuzzified values. To decide how this influences the
system at sc, we define an operator ⊕rp = r which aggregates the results. A possible
operator can be the maximum of all values ⊕ ≡ max. We define the conditions for our
traffic jam example in Table 5.1 in Listing 5.9.

C1: dafter IS true AND trafficnow IS false
AND trafficafter IS true

C2: dbefore IS true AND trafficnow IS true
AND trafficbefore IS false

(5.9)

Condition C1 covers the situation that there is no traffic jam currently but one is follow-
ing. In Condition C2, we are in a traffic jam now but have not been in one before. We
extend our rules for recommendations based on the current gas level with the conditions
in Listing 5.10.
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R1a: IF GasLevel IS low AND C2
THEN Too late IS true

R1b: IF GasLevel IS low AND NOT C2
THEN Y es IS true

R2: IF GasLevel IS NOT low THEN Y es IS false
R3: IF GasLevel IS empty THEN Too late IS true
R4: IF GasLevel IS NOT empty THEN Too late IS false
R5a: IF GasLevel IS enough AND C1

THEN Y es IS true
R5b: IF GasLevel IS enough AND NOT C1

THEN No IS true
R6: IF GasLevel IS full THEN No IS true
R7: IF GasLevel IS NOT enough AND

GasLevel IS NOT low THEN No IS false

(5.10)

Adding the conditions changes the rules R1 and R5. R1a and R5a are fired if the condi-
tions hold and R1b and R5b cover regular behavior without the conditions. With these
rules, we predict again at the second level of our framework with a 1-stage assumption
of the development of traffic jams, i.e., we only regard the first state change. Figure 5.8
shows a simulation of a traffic jam along the route after 40 kilometers. The traffic jam
lasts 60 kilometers. This means that we run low on gas inside the traffic jam.traffic
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Figure 5.8.: Simulation of the benefit with a traffic jam
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The change of the behavior of the system with the incorporation of the traffic jam con-
ditions occurs around 30 and 40 kilometers. The high-level situation state ”Yes” reaches
its maximum before the traffic jam and ”Too late” reaches its maximum in the begin-
ning of the traffic jam. This changes the benefit in these areas. Now a recommendation
becomes highly relevant ahead of the traffic jam. The probability is high that the system
recommends a gas station to refill before getting into the traffic jam.

5.2.5. Bayesian Networks Comprehension Model

Besides fuzzy logic, we also investigate Bayesian networks as a comprehension model
for the benefit of a recommendation. We define a structured Bayesian network for gas
station recommendations. The conditional probability tables (CPT) in the network are
estimated by means of the data from the user survey. We show how the resulting network
can be embedded in our situation awareness framework as comprehension model.

Structure of the Bayesian Network

High-level
Situations

Low-level
Decision

Situations

Low-level
Auxiliary

Situations / Context

Figure 5.9.: Abstract Bayesian network comprehension model

The general structure of our network is depicted in Figure 5.9. High-level situations are
not observable and therefore they are inferred in a diagnostic way (from high-level to
low-level situations). This allows for a supervised learning of the CPTs from data with
high-level situations as class variable. The CPTs for the low-level decision situations
SLi represent decisions towards high-level situations SH (Equation 5.11).

P (SH|SL1, . . . , SLn) =
P (SL1, . . . , SLn|SH)P (SH)

P (SL1, . . . , SLn)
(5.11)

In contrast to the fuzzy logic model, we do not distinguish primary and secondary deci-
sion situations because their influence on high-level situations is covered by the CPTs and
is established during parameter estimation. We distinguish low-level decision situations
that make a contribution to the decision and auxiliary situations or context. Low-level
auxiliary situations contribute to the inference on unobserved decision situations, e.g.,
calendar entries in order to infer on an appointment. In contrast to decision situations,
auxiliary situations do not have to be interpreted towards the task. We even do not
have to interpret auxiliary nodes. These nodes can be raw context information as well.
Furthermore, the observation of a situation node changes the probability distribution
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of its child node and vice versa. Thus, causal as well as diagnostic inference makes it
possible to handle unobserved situations. To represent fuzzy situation variables as nodes
in the Bayesian network, every fuzzy situation variable has a discrete counterpart node
in the network with the same states.

Proactive

Recommendation

Well located and
Inexpensive
gas stations

Well located
gas stations

Reachability of
gas stations

Position on route

Gas level

Modality

Gas level at the
destination

Route length

Route type

Appointment

Environment

Vehicle

Driver

Figure 5.10.: Bayesian network comprehension model for gas station recommendations
with driver, environment and vehicle context

Figure 5.10 shows an example network for the gas station recommender. The high-level
situation is ”Proactive Recommendation” PR. The posterior probability distribution
of this situation corresponds to the membership to the states of PR. Every node in
the network is a low-level decision situation grouped in driver, environment and vehicle
context. Some of the variables also act as auxiliary situations, represented by inter-
situation connections, e.g., the current gas level and the route length influence the gas
level at the destination. The network reflects the dependencies from the data collection.
It is built by hand without structure learning.

Parameter Estimation

With the structure of the Bayesian network comprehension model, we are able to set
up the conditional probability tables (CPT). We use the Maximum Likelihood (ML)
estimator described in Section 2.4.2 with a 10-fold cross validation. Before we run the
estimation, the data set is randomized. To interpret the results, we use common metrics
from machine learning that are also used for recommender systems (see Section 2.5.5).
An instance is classified correctly (true positive tpc) if the class value c∗ ∈ C of the data
instance equals the class value with the maximum posteriori probability c ∈ C.

138



5.2. Evaluation

Our first run of the classification computes the CPTs with an accuracy of 65.667% and
a ”moderate” agreement with κ = 0.461. Looking into the results in Figure 5.3 unveils
that the class ”Later” performs poor. The metrics for the classes show that most of the
values for ”Later” are misclassified (precisionLater = 0.308) and nearly all values are
classified as something else (recallLater = 0.086). The AUC is also ”poor” for that class
value.

Class Precision Recall F-Measure AUC

Yes 0.605 0.668 0.635 0.825

No 0.718 0.852 0.779 0.874

Too late 0.609 0.447 0.515 0.887

Later 0.308 0.086 0.135 0.699

Weighted Avg. 0.622 0.657 0.628 0.840

Table 5.3.: Classification metrics for all high-level situation states

We want to know to which class value the ”Later” values are classified. The confusion
matrix in Figure 5.4 shows that most of the values of ”Later” are classified as ”No”
(64%) and also some as ”Yes” (27%). This is clear as ”Later” means not now but later,
hence a recommendation should not be given now. In the following, we exclude all 139
data instances with the class ”Later” and run the classification again.

Predicted
Yes No Too late Later

Actual

Yes 244 70 34 17
No 62 465 9 10
Too late 59 24 67 0
Later 38 89 0 12

Table 5.4.: Confusion matrix for all high-level situation states

We receive an improved accuracy of 76.2488% and a better but still ”moderate” κ =
0.593. Detailed metrics for each class value are shown in Table 5.5. We have nearly an
”excellent” AUC value and reasonable values for precision, recall and f-measure over all
class values. Especially the classification of ”No” shows good results with an ”excellent”
AUC. The class values ”Yes” and ”Too Late” have a ”good” AUC. Much more values
of ”Too Late” have been classified as something else compared to the other class values
(recallToolate = 0.473).
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Class Precision Recall F-Measure AUC

Yes 0.704 0.685 0.694 0.848

No 0.830 0.894 0.861 0.927

Too late 0.602 0.473 0.530 0.877

Weighted Avg. 0.754 0.762 0.757 0.893

Table 5.5.: Classification metrics without high-level situation state ”Later”

The confusion matrix in Table 5.6 shows that most of the instances with ”Too Late” are
classified as ”Yes” (55). This makes sense as ”Too Late” means that recommendations
should be given but earlier. Critical for proactive recommendations are those values
that make the system to recommend in case the user does not want a recommendation.
These are 50 instances of ”No” misclassified as ”Yes”.

Predicted
Yes No Too Late

Actual
Yes 250 76 39
No 50 488 8
Too Late 55 24 71

Table 5.6.: Confusion matrix without high-level situation state ”Later”

Our final analysis investigates the classification without the situations ”modality” and
”gas level at the destination”. These situations are derived from ”current gas level” and
”route length”. The accuracy of this run is 72.3845%. The confusion matrix in Table 5.7
shows that particularly more instances of ”No” and ”Too Late” are misclassified. The
critical value for proactive recommendation went from 50 to 80 misclassified instances
of ”No” to ”Yes”. The result shows that the derived situations contribute to a better
prediction.

Predicted
Yes No Too Late

Actual
Yes 251 79 3
No 80 457 9
Too Late 65 25 60

Table 5.7.: Confusion matrix without the low-level situations ”modality” and ”gas level
at the destination”

Fuzzy Bayesian Inference

With the Bayesian network comprehension model, we are able to predict the state of
high-level situations with inference in the network. This corresponds to the third level
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of our framework. Our inference task is a belief update. As our network is small, we
use exact inference with observed context called evidence. An evidence e is a function
f(SL) = (0, . . . , e, . . . , 0) with exact states of observed low-level situations SL. With
the evidence, we calculate the update of belief in our high-level situation with Equation
5.12.

P (SH|SL = e) =
P (SH, SL = e)

P (SL = e)
∝ P (SH, SL = e) (5.12)

As we are sure with our observation, the term P (SL = e) is constant. This reduces
the problem to a joint distribution. Unfortunately, the membership of the situation
state µS(e) is lost. If we incorporate the state membership, we get an evidence function
f(SL) = (0, . . . , µS(e1), . . . , µS(ek), . . . , 0) with k states with a membership higher 0.
Memberships fulfill the equation

∑k
j=1 µS(ej) = 1 for each situation S ∈ SL. Based

on Equation 5.12, we use a fuzzy Bayesian inference method similar to Park et al.
[PYC06]. To calculate the posteriori probability P (SH|SL = (e1, . . . , en)), we use the
fuzzy inference in Equation 5.13.

P (SH|SL = (e1, . . . , en)) =
∑
ei

P (SH|SL = ei)
∏
µ(ei)∑∏

µ(ei)
(5.13)

With the constraints which we defined for the membership of situations, the term∑∏
µ(ei) should always equal 1. We demonstrate fuzzy Bayesian inference with a short

example. We use observations for the two situations ”current gas level” and ”reachability
of gas stations”:

Situation Memberships to states

Current gas level µ(′low′) = 0.7 µ(′medium′) = 0.3

Reachability of
gas stations

µ(′few′) = 0.2 µ(′much′) = 0.8

Instead of one evidence e we have four evidences ei:

• e1 = (µ(′low′) = 0.7, µ(′few′) = 0.2)

• e2 = (µ(′low′) = 0.7, µ(′much′) = 0.8)

• e3 = (µ(′medium′) = 0.3, µ(′few′) = 0.2)

• e4 = (µ(′medium′) = 0.3, µ(′much′) = 0.8)
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Hence, we calculate a regular Bayesian belief update with Equation 5.12 four times and
weigh the results with (0.14, 0.56, 0.06, 0.24), e.g., µ(′low′) = 0.7×µ(′few′) = 0.2 = 0.14.
The weights sum up to 1. This would not be the case, if the memberships would violate
the second constraint, e.g., with µ(′low′) = 0.3 and µ(′medium′) = 0.2). The posterior
distribution P (SH|SL = (e1, . . . , en)) is mainly determined by the states ′low′ and
′much′ because together they have a weight of 0.56.

Comprehension and Prediction
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Figure 5.11.: Simulation of the benefit along a route with a gas level of 12 liter in the
beginning

We repeat the simulation from Figure 5.6 with the Bayesian comprehension model and
an observation for current gas level. The result is depicted in Figure 5.11. The course of
the curves is similar but the fuzzy Bayesian result varies less. The main reason is that the
fuzzy inference mechanism does not regard unobserved situations, whereas unobserved
situations play a role in the Bayesian model with their prior probabilities.

To make the difference clear, we compare fuzzy Bayesian and regular Bayesian inference.
Figure 5.12 depicts the evidence of all available low-level situations in the network along
a route. The simulation shows a general route of 50 km and a current gas level of 8 liter
(16%) in the beginning. The driver has no appointment and is driving home. Further-
more, no inexpensive gas stations are well located. The Figure 5.12 shows the difference
between Bayesian inference with Equation 5.12 and fuzzy Bayesian inference with Equa-
tion 5.13. The main difference occurs in the beginning of the route. The membership to
”gas level at the destination = low” is slightly higher than the membership to ”current
gas level = enough”. With a current gas level of 8 liter in the beginning and an assumed
average consumption of 8 liter

100km , we get a gas level of 4 liter at the destination. Resolving
this value with the ”gas level at the destination” fuzzy situation in Figure 5.5b results
to the highest membership in the second interval ((1.8-4.1]). The inferred membership
for the high level situation ”Yes” should become very high because the largest part of
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Figure 5.12.: Simulation of the benefit along a route with Bayesian and fuzzy Bayesian
inference

the second interval is ”Yes”. In contrast to that, Figures 5.12 (b) and (d) show that the
membership for ”Yes” and ”No” are nearly equal in the beginning. The benefit reaches
its peak later on the route. For a proactive recommender it would be likely that gas
stations are recommended in the beginning of the route with Bayesian inference and
later with fuzzy Bayesian inference.

5.2.6. Discussion

We investigated the application of our framework for situation awareness towards the
use case of gas station recommendations. The focus was on the application of intelligent
systems methods to comprehend situations towards the benefit of a recommendation
and user preferences. We showed that both methods, a fuzzy logic model as well as a
Bayesian network, can be integrated into the framework.

Entropy-based discretization and feature selection show that the current gas level and
the gas level at the destination are the primary decision dimensions for gas station rec-
ommendations. However, further investigation unveils that other situations also play a
role. This is the case if primary decision dimensions are in specific states. For instance,
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5. Situation Awareness in P-IVRS

if there is enough current gas level in the tank, refilling is relevant in case an inexpen-
sive gas station is available. An inexpensive gas station plays a no role, if the tank is
completely full.

To resolve situational user preferences, we chose a simple but effective method. Regard-
ing user preferences as situations has the advantage that they can be combined with
other situations easily. The complexity increases if user preferences are correlated in
specific situations. In this case, rules may become complex.

Using fuzzy logic to infer on the benefit of recommendations is a fast method in case
of few situation variables. We showed with the differentiation of true- and false-rules
how this can be done effectively for all states of a situation. The complexity increases
with more situation states. With more situation variables, we have to decide whether
these variables are modeled together in a set of rules or separated. The disadvantage
of modeling variables together is that each state of each variable has to be regarded in
a combination. This may result in many rules. Modeling situations in separate rules
has the disadvantage of estimating rule weights. With many situations, this can be a
challenge. An advantage of fuzzy rules is that temporal situations such as traffic jams
can easily be integrated. We showed this with the introduction of a fuzzy temporal
variable. Another advantage of fuzzy logic is the establishing of knowledge without data
collection.

Compared to the establishing of fuzzy rules, defining the structure for a Bayesian net-
work was easy in our case. The dependency of variables is often clear in the use cases.
Otherwise it can be learned. Estimating parameters is easily possible with common
methods. However, it is more complicated to add new situations to a Bayesian network
model. Another disadvantage is the need of a data set for parameter estimation. Estima-
tion by hand like for rules may become complicated. Hence, we established a user data
set for our Bayesian network. Our network comprehension model shows good results for
proactive recommendation prediction. The subjects could clearly assign situations to
whether they want recommendations (”Yes”) or do not want recommendations (”No”).
The assignment of ”Too Late” in case recommendations are too late in a situation also
shows reasonable results. However, the subjects have problems with assessing situations
where recommendations have to be given later (”Later”). This is either because the
differentiation between ”Yes” and ”Later” is unclear or the assignment of ”Later” is
in general unclear or not necessary. Another result of our investigation with Bayesian
networks is that derived situations like ”gas level at the destination” are able to further
increase accuracy in our case. Although these situations are already described by other
situations in the network, estimated parameters are different.

The difference between fuzzy logic inference and Bayesian inference is that the first does
not handle incomplete data in general, i.e., unobserved situations lead to no rules to
fire. As a possible solution, default situation states would cause the same behavior as if
the situation is observed. Bayesian networks are able to capture prior knowledge about
situation states. Furthermore, conditional dependencies between situations are repre-
sented. This allows for inference on unobserved situations based on observed situations.
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For instance, the route to a destination is often not entered by the drivers because they
know the way from experience. The difference between both methods becomes clear in
the inference. Fuzzy inference results exploit the whole membership range between 0
and 1 of the states of the variable ”Proactive Recommendation” independent how many
situations are observed. A Bayesian inference result only reaches a membership of 1 if
the situation is clear, e.g., if the tank is full, ”No” has a posteriori probability of 1.

Another difference between fuzzy and Bayesian inference is that the membership to
situation states is lost in a classical Bayesian inference. Therefore we extended classical
Bayesian inference to fuzzy Bayesian inference. The difference becomes clear, if the
system behavior for two successive states of a situation is rather different. The result of
a classical Bayesian inference shows no difference between full membership to one of the
states or if the situation is only slightly more in one state than the other. Furthermore, if
the membership slightly changes and the other state becomes higher, the system would
abruptly change its behavior. The decision making is able to make more differentiated
and smoother decisions with fuzzy Bayesian inference.

5.3. Summary

In this chapter, we presented a framework to model situation awareness for proactive
recommender systems and evaluated its components with the use case of gas station
recommendations. The framework consists of four levels derived from human situa-
tion awareness. The first level transfers crisp context information into fuzzy situations
(perception) in regard of the task of a proactive recommendation. These situations are
low-level situations. On the second level, high-level situations are interpreted by low-level
situations with inference models (comprehension). The models fuse situation variables
to high-level knowledge for a specific task. In our case, this is a proactive recommenda-
tion and situational user preferences. On the third level, perception and comprehension
is predicted in a determined horizon, e.g., along a route (prediction). Finally, the fourth
level resolves predicted higher-level situations to knowledge that can be used by the
decision process (resolution). This is the benefit for a proactive recommendation and
situational user preferences in our case.

The evaluation shows that the model can be implemented for recommendations of gas
stations. We investigated fuzzy logic and Bayesian networks as comprehension models.
Fuzzy logic shows better results if decisions are clear based on situations. They can easily
be set up without much data. Also they allow to model special temporal situations easily.
If situations become more and decisions based on situations become more unclear and
interconnected, Bayesian networks show better results. We showed how fuzzy variables
could be incorporated in Bayesian networks. To use the memberships of fuzzy variables,
we extended Bayesian inference to fuzzy Bayesian inference.
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6. Context-Aware Recommendations for
P-IVRS

The core competence of a P-IVRS is to select relevant recommendations for the driver.
The recommendation engine assesses items towards user preferences. The situation of
a user determines which preferences a user has. To make the items useful for the user,
context should be integrated into the assessment. We present a general approach of inte-
grating context into recommender systems following well-known paradigms for context
integration. An important requirement on a P-IVRS is that it should avoid cold start
problems. Therefore, the drivers enter their long-term user preferences in advance. A
recommender based on multi-criteria decision making (MCDM) is responsible for the
assessment of items. It allows integrating context information as additional dimensions.
To make heterogeneous dimensions comparable, item attributes are converted into di-
mensionless scores with utility functions. We investigate relevant criteria for the use
case of a gas station recommender. Among these criteria, we believe that the route is
crucial for POI selection. A user study should reveal how aspects of a route relative to
a POI (e.g., detour) influence the decision of the driver regarding a POI. We use the
utility functions derived from the study to implement our MCDM approach for context
integration. A second user study collects ratings for gas stations. These ratings are
compared to the prediction of our approach. Our focus is to investigate the performance
of several different MCDM methods. We already published the ideas and results of this
chapter in [BNWP11]. This chapter adds further aspects and a more detailed evaluation
to our original publication.

6.1. Filtering Context-Aware Recommendations

The main idea of our approach is to regard the problem of selecting items as multidi-
mensional decision problem and use multi-criteria decision making (MCDM) methods
to calculate scores for each item. The conceptual architecture follows the paradigm of
Adomavicius et al. [AMK11]. We combine the method of contextual prefiltering with
postfiltering.

Figure 6.1 shows our filtering process. The process combines prefiltering and postfiltering
to incorporate context into recommender systems. In between, a MCDM recommender
evaluates items based on context information C2, item features I and user preferences
U in order to estimate the utility R. Prefiltering shrinks the number of items by means
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Figure 6.1.: Context-aware filtering combining prefiltering and postfiltering with a
MCDM recommender

of context C1 which reduces recommendation complexity. Postfiltering is crucial for in-
car recommendations because the number of items that can be presented to a driver in
these scenarios is small. It uses context information C3 to select useful items for the user
out of the set of evaluated items. All together, our filtering process contains three steps.
First, non-compensatory heuristics eliminate a significant amount of items (prefiltering).
Second, items are evaluated in a compensatory way (MCDM recommender). Third, a
candidate set is built by comparing the evaluated items (postfiltering).

6.1.1. Prefiltering with Context

The task of prefiltering is to shrink the size of the set of available items with cut-off
heuristics. This corresponds to an elimination-by-aspect (EBA) heuristic which people
use for decision making facing large sets of available items (see Section 2.3.2). We apply
three sequential prefilters ordered by importance and complexity. Two types of heuristics
exist:

• Cut-off by Threshold: Exclude all items that exceed a predefined threshold (e.g.,
the location is too far away, the waiting time is too long or the facility is closed at
arrival)

• Cut-off by Attribute: The item has to fulfill special properties (e.g., Diesel has to
be offered or the POI needs to have a toilet)

A major attribute of POIs is their location. A cut-off by threshold heuristic for location
may exclude all POIs that are either too far away from the current position or too
far away from the route of the user. The first case is a special case of the second
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with the current position represented by a route that consists of exactly one node.
We describe a method to determine the set of candidate items for the second case with
several filter heuristics. The filter heuristics are arranged in a cascade beginning with the
fastest method that excludes the most items and finishing with the most computational
expensive method.

Filter Heuristics Sequence

First, we apply an in-route nearest neighbor (IRNN) query. This significantly
shrinks the number of items for the following steps. An IRNN is able to determine those
POIs that are nearest to the route of a user given a road network. Such queries are
used with the assumption that the users want to keep their route as much as possible.
Hence, we do not search the POI with the lowest overall detour but the closest POI to
the route. The work of Shekhar and Yoo [SY03] compares four different methods for
IRNN. We apply the IRNN method of spatial distance join-based filtering to find all
interesting items along a route.

(a) Fast POI filtering with the Euclidean distance
between the POIs I and the route

(b) Exact POI filtering with the real shortest path
between the POIs I and the route

Figure 6.2.: Prefiltering POIs in two steps

Our method of spatial distance join-based filtering is shown in Figure 6.2 with an exam-
ple. There is a set of items I that we want to shrink. The route of the user is described
by nodes in a road network which are connected by edges. Edges represent real streets
which a car is able to drive on and nodes are, e.g., crossings. In the first step a spa-
tial distance join operation cuts off all items that do not fulfill the detour constraint in
Equation 6.1.

∃ i ∈ I, rl ∈ R : d(i, rl) < c (6.1)

149



6. Context-Aware Recommendations for P-IVRS

The Euclidean distance d between item i ∈ I and route node rl ∈ R have to be smaller
than a constraint c for at least one pair (i, rl). R is the set of all route nodes. A fast
method to calculate this distances is to index the location of all items I and the route
nodes R with a spatial index tree, e.g., a R∗ tree, and calculate a join between both
sets (comparable to a database). The index of all items I is precomputed because it is
static and does not change often. The route node index is calculated on the fly because
the number of route nodes is small enough to do it efficiently. The Euclidean distance
is not based on the road network but is the lowest distance between the location of a
POI and a route node (the air line distance). It is always less than or equal to the road
network distance. It can be calculated faster than the road network distance. Figure
6.2a shows the result for an example route from start node S to the destination node D.
The Euclidean distance with constraint c results in circular areas with radius c around
the route nodes. Each item i∗ ∈ I that is located in the circle passes the first step (in
this case I5, I6, I7, I10, I11). The join results in a set of route nodes R∗i for each passed
item i∗. The set contains all route nodes that have an Euclidean distance smaller than
c to the POI location.

The application of the second step is simpler. It uses cut-off by attribute heuristics
to eliminate all items in the set I∗ that do not have the required attribute. A set of
attribute constraints C determines which attributes an item has to have. For instance,
an attribute can be a toilet or the business hours of a facility. If a POI has no toilets or
is closed, it is removed from the set I∗.

The third step is the most complex one. Therefore, it is done with an already reduced
set of candidate items I∗. The first step provides a subset of route nodes R∗i ⊆ R for
each item i∗. These are potential departure points on the route for the item i∗. The
third step uses the road distance from items i∗ to the route nodes R∗i . It is the shortest
path in a road network N = (V,E) where V are the nodes of the network and E are the
edges that connect the nodes. Edges are directed because there can be one way streets.
To find the shortest paths between R∗i and i∗, we use Dijkstra’s algorithm [Dij59]. The
set R∗i already corresponds to nodes in the road network N . For each i∗, we have to find
the node vi ∈ V that represents the item in the network. There are several methods
called map matching to do this (e.g., Quddus et al. [QON07]). Their discussion is out
of scope of this work.

The shortest paths between the items I∗ and the route of the user are shown in Figure
6.2b. They connect nodes of the route with the location of the POI. Dijkstra’s algorithm
calculates the shortest paths between node vi representing the location of the item and
the route nodes R∗i (filtered in the first step). As there are one-way streets in a road
network, the calculation has to be done two times. The first calculation determines the
shortest paths from the item i∗ to the route nodes (forward calculation). The second
calculation results in the paths from the route nodes to the item. Instead of calculating
n shortest paths to the same destination i∗ with n nodes in R∗i , Dijkstra’s algorithm can
be executed only one times with flipped directions of the edges (backward calculation).
The results are two sets of shortest paths Si,forward and Si,backward from item i∗ to the
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route nodes (forward) and vice versa (backward). With the lengths of the shortest paths,
we need to evaluate the extended version of Equation 6.1 with Equation 6.2.

∃ si,k ∈ Si,forward, si,l ∈ Si,backward : d(si,k) + d(si,l)− d(vk, vl) < c (6.2)

At least one path over the item (composition of two shortest paths, one from Si,forward
and one from Si,backward, minus the skipped route) has to fulfill the constraint c. The
distance d(vk, vl) is the part of the route that is skipped if driving to the POI. We call
this composition the detour. Note that the constraint c is equal to the first step because
the route to the POI is not necessarily the route from the POI. For instance, in Figure
6.2b, the way to item I10 from the route is not the same as the way from the item to
the route.

Route Context

While prefiltering the items, we calculated shortest paths for all remaining items I∗ after
prefiltering. We use this information to build the route context of an item i∗. The route
context is determined by criteria that the users take into consideration when they choose
a POI concerning the path from the route to the POI and vice versa. Each POI has
its own corresponding route context. The route context consists of criteria that can be
built by the elements in Figure 6.3.

Split 

Point

Join 

Point
Start

Desti-

nation

dSP dS dD

POI

dPOI dJP

Figure 6.3.: Elements of the route context

For all distances d, the unit is determined by the route profile that the users select (e.g.,
fastest or shortest). The split point SP ∈ R∗i is a decision point on the route where the
users leave their route to get to the POI. At the join point JP ∈ R∗i , the users get back
to their original route. Based on the different distances d available in this context, we
define three criteria:

• Detour = (dPOI + dJP )− dS : The overall detour the users have to accept.

• Deviation = dPOI + dJP : The new route the users have to drive additionally to
get to the POI and back to their original route.
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6. Context-Aware Recommendations for P-IVRS

• Skipped route = dS if dS > 0 else 0: The part of the original route the users leave
out when driving to the POI.

The detour stands for minimizing the additional distance that is needed to drive to the
POI. To minimize the deviation means to find POIs closest to the intended route. Many
user groups, e.g., commuters, select a route in advance and may not want to deviate
from it much. Therefore, deviation is important for the drivers who do not want to
use other routes than the originally planned one. Analogously, minimizing the skipped
route corresponds to the intention to drive as much as possible on the path of the original
route. Generally, the larger one of the criterion becomes, the larger are the others. In
Figure 6.2b, there are some examples of different behavior. The skipped route of I5 is
0, but the deviation is larger. Deviation and skipped route of I7 are similar. Hence,
the detour is small, although the drivers have to leave their route. Depending on the
preferences of the driver, each of the presented criteria can be weighted differently in the
system.

6.1.2. Evaluation of Items with a MCDM Recommender

The MCDM recommender brings user preferences, context and item attributes together.
Due to the requirement to avoid cold start problems, we apply a multidimensional
knowledge-based approach. It is flexible to include collaborative or content-based fil-
tering as further dimensions to support hybrid recommendations.

Score Calculation

In contrast to a common multidimensional context integration paradigm (e.g., in Ado-
mavicius and Tuzhilin [ASST05]), our approach uses loose coupling. User preferences U
are not represented relative to context C2. Preferences are either independent from con-
text, e.g., brand of a gas station, or apply to specific context information, e.g., preferences
for the route context. We distinguish between quality and context of an item. Quality
corresponds to the classical approach to calculate ratings for an item (U × I → R). We
do not use ratings explicitly but abstract scores. Scores can be ratings but also utilities.
Hybridization of several recommender methods is supported by regarding the predicted
rating of each method as score. It corresponds to a weighted hybridization method be-
cause of the MCDM approach. Besides quality, the items are also evaluated for context
information (U×C2 → R), i.e., the users have preferences U for context information C2.
The set of context information C2 that is used for the recommender can be different to
the set of context information C1 that is used for prefiltering.

Figure 6.4 shows our three level approach. The attributes ai,j belonging either to the
item I or to the context of the item C2 are reduced to abstract scores si in the range
[0, 1] on level 2. Level 2 scores are described by a predefined hierarchy of attributes such
as the route context, i.e., the attributes ai,j that are reduced to score si are determined
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Figure 6.4.: Integrating context into a recommender system with two types of scores to
assess each item

in advance. For the reduction, we use either general user preferences or specific user
preferences. General user preferences are represented by a predefined utility function for
each attribute, e.g., for each criterion of the route context. Specific user preferences
are used to integrate classical recommendation systems, e.g., predicted ratings in a
collaborative filter, or preferences explicitly stated by the user, e.g., for a specific gas
station brand. The weights WL1 are static during the run-time of the system. They
can be adapted afterwards. e.g., by machine learning mechanisms. We call second level
dimensions item features. There is one score for each item feature. The score is only
valid for a specific item. Therefore it is local. Local scores are aggregated to one global
score sg ∈ [0, 1] for each item by means of MCDM methods (Section 2.3.3). The global
score can be used to compare items with each other or to rank them. The weights WL2

represent long-term user preferences that are given by the users explicitly and may be
adapted depending on the situations of the users.

The selection of item features should be done carefully. Generally, they should cover
decision dimensions towards an item. For instance, all monetary aspects should account
for one score. They should be understandable for the user to make a choice among
alternative items. We assume that decision problems are represented by a few significant
features on level 2 for most application scenarios. Findings in decision theory (Section
2.3) show that people only take a few features into account to lower the effort of decision
making, especially for comprehensive decisions.

The advantage of generic dimensionless scores on level 2 is that well-known MCDM meth-
ods can be used for further calculation and item features become more easily comparable.
Having several scores for one item in different granularity (local and global) allows post-
filtering methods to select a set of items to recommend more accurately. Other selection
methods than ranking the items are possible. Furthermore, explanations can be created
by selecting arguments based on item features because these features represent human
understandable information.
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User Profile

User preference elicitation should be able with low effort for the driver. In case of our
MCDM recommender, the users have the possibility to set long-term preferences for each
task TA manually. This involves evaluating a set of predefined (level 2) item features
for an item category that is associated with a task. The actual items to recommend
only have to provide a subset of these features. Usually, the evaluation should be done
before driving, e.g., while standing still or at home. The drivers do not evaluate at-
tributes on level 1 but experts estimate the weights of the attributes WL1, e.g., based
on questionnaires. The weights for n item features are stored as normalized weights
U(TA) = w1, . . . , wn. They are regarded as low-level situations to be able to adjust
them to the situations of the users. A comprehension model like described in Section 5.1
derives high-level situation weights WL2(TA). For example, if the user prefers a specific
brand of a POI, then the weight for that feature is in general high. If the situation
awareness component recognizes that the user has time pressure, then the comprehen-
sion model may lower the weight for this feature. If there are no preferences for that
feature, then time pressure has no influence. Some of the features are modeled by prede-
fined utility functions that represent how much utility the feature of an item has to the
user. For all other (discrete) features that cannot be predefined as they are user-specific,
e.g., the brand of a POI, the user is able to prefer values of the features. The final user
preferences determine the utility functions that are used by the MCDM recommender.
Defining a default user profile (e.g., based on data mining) and adapting the weights in
the user profile may reduce user interaction for preference input.

Utility Functions

To express the utility of a context item feature for a user, we use utility functions.
Utility functions may also be applied to quality item features in case of utility-based
recommendations. We identified three generic utility functions that allow describing all
the dimensions we need (Figure 6.5).

The utility function for properties has either a utility of 0 if a property is not available or
of 1 if it is available (Figure 6.5a). Note that this is different to the cut-off by attribute
heuristic. The last requires the availability of the property and the utility function
represents only one decision dimension among others, i.e., items may be recommended
which do not have the property. Examples for property utility functions are available
services, the brand of gas stations or the type of a restaurant.

The utility function for interval-based criteria (Figure 6.5b) is used for information that
is not described numerically, e.g., after discretization of numerical values. An order from
”low” to ”high” describes the general occurrence of crisp values for this utility function.
Intermediate steps such as ”very low” may also be used. Outside the regular occurrence
of values, we define the steps ”extra low” and ”extra high” to describe superlatives. For
instance, the service in a restaurant may be ”bad” or ”good” for most of the restaurants
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Figure 6.5.: Generic utility functions

but some are outstanding. Assigning the highest score to these restaurants like for
regular values would underrate the restaurants. If the user strongly prefers service, then
we want restaurants with an extra ordinary service to be recommended. This utility
function covers, among others, waiting time, price, food quality, service or atmosphere
of a restaurant. The specific utility values need to be set up for each feature separately
by experts.

This also applies to numerical utility functions. They map real valued numbers to a
utility (Figure 6.5c). The utility function for money is an example. They can either be
described with a mathematical function or with a set of sample points and associated
utilities. Utility values between the sample points are interpolated. The price of gas, the
detour caused by a POI and the remaining gas level at the gas station can be described
by numeric utility functions.

6.1.3. Postfiltering with Context

After evaluating items with the MCDM recommendation approach, the final step is
to select items that should be delivered to the driver. Two different approaches are
possible for postfiltering. Postfiltering either classifies a recommendation set of k items
or ranks the items. A combination is also possible. For P-IVRS, we want to build
small recommendation sets of items that are recommended to the user. Postfiltering
extends our recommendation approach by being able to find some good items and build
a small recommendation set. We describe three different methods for building these
recommendation sets. The decision process actually uses these methods to build a
recommendation set (Section 4.3.3). It depends on the implementation of the decision
process which methods are used and how they are combined. Our focus in this section
is on the postfiltering methods. They allow the system to evaluate conditions on a
recommendation set, e.g., the maximum number of items.
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Dominance-based Recommendation Set Building

The idea behind dominance-based recommendation set building is to select items by
means of local scores of the filtering hierarchy (Figure 6.4). Items that are dominated
by other items in the recommendation set are eliminated. In Section 2.3.3, we described
different kinds of dominance filter.

Ranking-based Recommendation Set Building

The idea of ranking-based recommendation set building is to process the evaluated items
from the recommendation process in a specific order and to decide if each item should be
included in the recommendation set. The iteration either terminates if the recommen-
dation set reaches its maximum size nmax, no item is available anymore or the items are
too ”bad”, i.e., if their global score sg is smaller than the threshold α. As an alternative,
it is also possible to simply take the first ”top-k” items. However, we believe that this
would lead to items that are more difficult to distinguish by the driver because item
features are more similar. We describe two alternative similarity metrics that determine
whether an item should be included in a recommendation set.

Two items are similar in their structure if they perform similar on item features. For
instance, if both items perform better in gas price than in detour and better in detour
than in brand. We also incorporate the weights WL2 in the calculation. To calculate the
correlation between item x and item y, we regard both items as vector −→x and −→y with
their local scores as values. We assume that weights are normalized:

∑
wi∈WL2 wi = 1.

The weighted mean for x is m(−→x ,WL2) =
∑

xi∈−→x ,wi∈WL2 wixi. The same applies to y.
Equation 6.3 shows the weighted covariance.

COV (−→x ,−→y ,WL2) =
∑

xi∈−→x ,yi∈−→y ,wi∈WL2

wi(xi −m(−→x ,WL2))× (yi −m(−→y ,WL2)) (6.3)

Equation 6.3 leads to the weighted correlation in Equation 6.4.

COR(−→x ,−→y ,WL2) =
COV (−→x ,−→y ,WL2)√

COV (−→x ,−→x ,WL2)× COV (−→y ,−→y ,WL2)
(6.4)

Note that only items that have the same structure have high correlation. For instance,
x = (0.1, 0.2, 0.3, 0.4) and y = (0.7, 0.8, 0.9, 1.0) strongly correlate but x is much better
than y.

Besides the similarity of the structure, we can also use the similarity of the content
of two items to decide whether they should be included into the recommendation set.
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This accounts for real similarity based on the attributes that are relevant in decision
making. The metric is useful if we only use an estimated value of an attribute and if
there is a similar item that has the value of the attribute. Incomplete information is
common in user-generated data or data from Internet sources, especially if the validity
of information is volatile. For instance, prices for restaurants and gas stations are often
not available or outdated. In some cases, we can only estimate the attribute based on
other attributes. If there is an item in the recommendation set that has a price but
is slightly worse, we replace the item with the missing attribute. Thus, more accurate
information can be presented to the user, e.g., for justification.

To calculate content similarity, we use the weighted Euclidean distance in Equation 6.5.
As attributes are not in the same range, they have to be normalized first.

d(−→x ,−→y ,WL2,WL1) =

√ ∑
xi∈−→x ,yi∈−→y ,wi∈WL2

∑
aj∈xi,bj∈yi,wj∈WL1

wi × wj × (aj − aj)2 (6.5)

Score-based Recommendation Set Building

Finally, we can also build recommendation sets by selecting all
(
n
k

)
,
(
n
k−1

)
until

(
n
1

)
permutations of recommendation sets with k = nmax and the number of evaluated items
n. This means that we build all possible recommendation sets with a maximum of k
elements. For all recommendation sets, a score is calculated that determines the quality
of the recommendation set. The recommendation set score can incorporate similarity and
diversity of the items in the recommendation set or the number of items. As calculating
the binomial coefficient can be computational costly (

(
100
3

)
= 161700) heuristics need to

be applied to decrease n.

6.1.4. Discussion

The main difference between our method and context integration methods described
by Adomavicius and Tuzhilin [AT05b] [AT05a] or Baltrunas and Ricci [BR09] is the
representation of items and user profiles. Their approaches are based on a classical
recommender system matrix with user preferences stored as utility (e.g., a rating) for
items (I×U). Context C is added as further dimension and the multidimensional matrix
is solved in different ways, e.g., reduction of dimensions. Our presentation of use cases
for P-IVRS in Section 4.1 indicates that items in most applications are better represented
by item attributes rather than ratings (e.g., gas stations or parking lots). The decision
for these items is based on objective criteria rather than taste. Furthermore, we believe
that sparsity problems would arise because the drivers are probably less willing to give
ratings for such items.
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Another aspect of P-IVRS is cold start. Classical context integration with a multidi-
mensional recommendation matrix would need time to make suitable recommendations.
As proactive recommendations are not requested by the users, they are probably less
tolerant to irrelevant items. Therefore, we use a knowledge-based approach that is flexi-
ble to integrate classical recommender methods. We put initial engineering effort in the
setup of utility functions. The user should have only little interaction effort with the
system in advance. The result is a representational view on context, i.e., we predefine
all relevant context information, in contrast to an interactional view such as described
by Yap et al. [YTP05], Palmisano et al. [PTG08] or Brunato and Battiti [BB03] where
relevant context is learned from data.

Hybrid recommendation approaches are a common technique to solve cold start prob-
lems in proactive recommender systems. Beer et al. [BHZR06] describe how a hybrid
recommender of collaborative filtering, content-based filtering and knowledge-based fil-
tering can be used to gather as much as possible knowledge about the item. A similar
approach can be found in Wörndl et al. [WG07]. Like our prefiltering, the idea is
to shrink the amount of items with context or with one type of recommender and to
apply further recommenders to make the assessment in a sequence. Ducheneaut et al.
[DPH+09] present the idea of using models instead of classic recommenders. Models
may represent a classic recommender but can also comprise context aspects or learned
models. This is similar to the reduction of context from the first to the second level in
our model but we focus on meaningful features on level 2 instead of arbitrary predictive
models.

The users of our system are able to define weight-based preferences for item features.
User preference elicitation for features is common in decision theory. In regard to context,
some approaches such as Agrawal et al. [ART06], Park et al. [PYC06] or Stefanidis and
Pitoura [SP08] use context-aware preferences, i.e., user state their preferences for a
feature in all relevant situations. As proposed by Park et al. [PYC06], this may result in
utility functions. We set up utility functions with collected user data in advance to make
preference elicitation easier. This results in non-personalized functions but the effort of
preference elicitation is much lower. Furthermore, there are decision dimensions with an
obvious tendency of utility, e.g., lower price is in general preferred over higher price.

Another characteristic of our user preferences is that they are adapted to the situation if
necessary. The idea is similar to user splitting by Baltrunas and Amatriain [BA09] where
context-aware profiles are generated at run-time. It is also similar to Park et al. [PYC06]
where the situation (mood) determines which user preferences are applied. Schmitt et
al. [SDB02] cover the complex domain of car buying with advanced mechanisms of user
preference elicitation. The users are able to combine item features with operators such
as OR or AND in their preferences. We believe that our domains can be covered with
simpler preference elicitation.

Using the location for prefiltering is common for mobile guides (Krueger [KBH+07]) or
proactive recommenders (Oppermann et al. [OSJ99], Schmidt-Belz et al. [SBNPZ02],
Brown et al. [BCB+05], Aras et al. [ALWM10] or Modsching et al. [MKHG07]). In
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addition to these approaches, we make use of the route of the user as filtering space. The
probability to find better items in a large space is higher than based solely on location.
The route as context is mainly described by the detour. POI recommenders seldom
regard detour (e.g., Bachfischer et al. [BBH+07] or Ablassmeier et al. [APRR07]).
Horvitz et al. [HKS07] and Cho et al. [COYO06] take the detour for a POI into regard.
They calculate routes via the POI and use the difference to the original route as detour.
We believe that the route context is more complex and also comprises aspects such as
deviation or which kind of streets have to be used to get to the POI. Moreover, our route
context is represented as a dimensionless score with a utility function. It is generic and
can be compared to other item features.

Scoring is a promising approach for context-aware recommendations in a proactive setup.
Other methods described by Wörndl et al. [WHBGV11] and Cena et al. [CCG+06] also
calculate dimensionless scores. Their idea is to calculate scores for aspects such as
context, quality (user preferences) or proactivity and to fuse these scores (mostly by
a linear model). Our approach is slightly different. Although we calculate one global
score for an item, we also calculate local scores for item features and use them for
item selection and for explanations. A global score is reasonable as long as the number
of features is comprehensible for the user. Otherwise, the balance between quality and
context becomes biased towards one of the aspects, e.g., with only one quality dimension
facing many context dimensions. Furthermore, we are able to use aggregation methods
beyond linear weighted models. Weighted models are common for the aggregation of
information in proactive information systems (e.g., in Choeh and Lee [CL08], Ducheneaut
et al. [DPH+09], Bellotti et al. [BPR+08], Wörndl et al. [WHBGV11] or Cena et al.
[CCG+06]).

Besides calculating a global score, we apply dominance-based item selection methods in
postfiltering. Our approach uses dominance filtering with generic context information in
contrast to specialized approaches such as the location-based Skyline filter of Kodama
et al. [KIGI09]. Our model is similar to the AHP proposed by Yeung and Yang [YY10].
Although the authors focus on AHP, their approach could be extended to other MCDM
methods as well. In contrast to our approach, they do not rely on utility functions and
the features in the AHP are fixed for all application scenarios. Our features depend
on the type of application itself. Our approach also resembles Guttmann’s Tate-A-Tate
[Gut98]. Although the system is targeted to desktop users with intensive interaction
and a lot of preferences, the author also establishes general utility functions and exploits
assumptions like that costumers prefer faster and slower delivery time. Like in the
work of Felfernig et al. [FMS+10], information is aggregated by means of constraint
satisfaction methods. We use MCDM methods instead. Felfernig et al. [FMS+10] use a
similar idea of few comprehensible features but their approach is targeted to the domain
of complex financial product recommendations.

Our postfiltering approaches focus on building small sets of items to recommend. Only
a few approaches regard the whole set of items as recommendation instead of individ-
ual items. Aguzzoli et al. [AAM01] describe recommendation set building for music
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recommendations. However, music recommendations are rather a different application
domain. Teppan and Felfernig exploit the idea from decision theory that different items
in a recommendation set may change the whole perception of the recommendation set.
They use decoy items to increase sales. However, the domain of e-commerce is differ-
ent to POI recommendations. Finally, small recommendation sets in our solution are
restricted to the few items that should represent the solution as much as possible. If
results are too similar, the users may have to add additional interaction effort to find
other solutions. Price and Messinger [PM05] share this view. The authors calculate the
utility of a recommendation set towards diversity of items.

6.2. Determining Utility Functions

Our goal is to put as much as possible effort into the description of the user model to
lower initial effort for the drivers. Therefore, we derive general utility functions for as
many item features as possible. In Chapter 5, we showed the usefulness of the driver’s
route for situation awareness in our proactive gas station recommender. In case of the
recommendation process, we use the route as context because we think that it has a
primary effect on the assessment of gas stations and other POIs. The location of a
POI relative to the route determines how much effort the user needs to get to the POI.
Intuitively, we think that no driver would drive long distances for a gas station when
there are some close by. Also, a restaurant is probably not of interest if the user is in
Munich and the restaurant is in New York. On the other hand, if many POIs have
similar context relative to the route, it is harder to derive how the users perceive such a
detour. Therefore, we investigate in this section how much detour a user would take into
account for a POI. Gas stations are our main focus. As there are many other relevant
types of POIs, we want to draw a comparison to gas stations. We select restaurants,
as a popular kind of POI often applied in recommender systems. Restaurant selection
differs from gas stations as individual taste and social aspects are more influencing in
this case.

6.2.1. Study Design

The study is designed as an online questionnaire (Appendix C.1). The questionnaire
consists of two parts. The first part deals with user perception of detour and the second
with components of the route context. In the first part, three different imaginary routes
are described. The routes consist of a short route to work (20 min or 20 kilometer), a
medium route to friends (90 min or 120 km) and a long route on vacation (200 min or
400 km). To derive the perception of detour, two POIs A and B have to be compared
by the participants of the study. The scale for comparison ranges from 0 to 10:
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0 Does not correspond to my preferences.

3 Corresponds to my preferences partly.

5 Corresponds to my preferences moderately.

8 Corresponds to my preferences broadly.

10 Corresponds to my preferences fully.

Preferences are an abstract measurement for criteria that the user puts importance on
by selecting POI. At the end of the assessment for each POI type, the participants are
asked about their preferences. They see POI A that is located on the route and does not
cause any detour. POI A rather does not correspond to their preferences (assessment
of 1). The participants should give a rating on the presented scale for POI B. POI B is
located off the route and causes a detour. It is presented with several different detours
in the range of 1 to 15 minutes (or kilometer). The questionnaire includes gas stations
as well as restaurants.

In the second part, we ask the participants how they assess the location of a POI relative
to the route. They have to give a rating on a 10-point differential scale from ”important”
to ”not important” or ”don’t know”. Detour, deviation, skipped route as well as the
street type have to be assessed.

We had 42 participants of which 39 are men and 3 are women. Most of them are between
18 and 30 years old (35), 6 are between 30 and 40 and 1 is between 40 and 50. 16 of the
participants use their cars at least once a week and 11 even every day. 10 use it at least
once a month and 5 less than that.

6.2.2. Results

Detour

The perception of detour for a gas station depends on the preferences for criteria de-
scribing the quality of the gas station itself, e.g., price of gas or facilities. Figure 6.6
shows how the assessment for quality varies depending on the detour. 33 user data sets
out of 42 are used for the figure because 9 are incomplete, inconsistent or faulty. The
box plots show the median, the lower 25% quartile and the upper 75% quartile along
with the absolute minimum and maximum for the assessments of the participants of POI
B. Note that POI A has a predefined quality assessment of 1 (”does not correspond to
my preferences”). Hence, an assessment of 3 (”corresponds to my preferences partly”)
for POI B means that POI B should be partly better than POI A. Assessment values
above 10 represent unacceptable detour because it corresponds to the case that POI B
should meet user preferences more than fully. Therefore, we classify the detour with a
median rating of 10 as upper border of acceptance. This is the case for around 11 min-
utes for short routes, 15 minutes for medium routes and more than 15 minutes for long
routes. For short detours of 1 minute, gas station B only has to be slightly better for
short, medium and long routes (median rating of 2 or 3 respectively). The acceptance
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(b) Route length: 90min or 90km
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(c) Route length: 200min or 200km

Figure 6.6.: Detour assessment of POI B representing a gas station

for longer detours varies much more. This can be seen by the range between the borders
of the upper and lower quartiles. The longer the route is, the more participants are in
agreement for short detours. This applies for up to 2 minutes for short routes until 6
minutes for long routes.

Our results of detour for restaurants are depicted in Figure 6.7. In this case, 12 user data
sets are excluded from the analysis which leads to 30 used for the figure. It is striking
that in all cases the median has a maximum of 10. This means that all kind of detour
might be acceptable. The variance is lower for restaurants than for gas stations and the
median of all values is also below the ones for gas stations. In contrast to gas stations,
the difference between the route lengths is lower.

Decision Criteria

For the perception of detour, we use abstract assessments. However, we want to know
which criteria are behind the assessments. For each type of POI, the participants could
state their decision criteria in a free text form. This allows us to estimate if other
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(c) Route length: 200min or 200km

Figure 6.7.: Detour assessment of POI B representing a restaurant

dimensions except detour have to be regarded for POI selection. 83% of the participants
incorporate the price of the gas station in their decision. Available services (bistro,
toilets or an ATM), the location of the gas station relative to the route and the brand
are important for around 31% of the participants. The remaining gas level at the gas
station that refers to the amount of gas that can be refilled at the gas station is of
importance for 12%, the waiting time at the gas pump for 10% and the opening hours
for 7%. For restaurants, there are three decision criteria that are mentioned by at least
50% of the participants (food quality, type of food, e.g., Italian, and price) and one which
is close to 50% (service). In case of detour, 33% of the participants confirm that detour
is important for gas stations. However, no participant mentions detour for restaurants.

Route Context Elements

In the previous section, we defined the elements of the route context. Here, we want
to know how the participants assess the elements (Figure 6.8). The overall detour is
the most important aspect with a median of 2 and 80% of the ratings in 1 to 4. The
deviation of the route has a median of 4, hence it is rather important. The length of the
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route skipped for a POI is with a median of 8 rather unimportant. The participants are
mostly not indifferent about the elements with around 10% in 5 and 6 for every element.
The street type is with a median of 3 another important or at least rather important
element of the route context.
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Figure 6.8.: Assessments of route context elements

6.2.3. Discussion

Our results show that the longer a route, the more detour is accepted. Especially in
the transition from acceptable to unacceptable detours, the ratings vary among the
users. The characteristics of the curves resemble slightly exponential or linear curves.
This indicates that detours up to a threshold (the longer the route, the higher is the
threshold) are perceived similar and above the threshold detour acceptability decreases
faster. Compared to gas stations, more detour is acceptable for restaurants. Even more
than 15 minutes is acceptable for all lengths of routes. In contrast to gas stations, driving
to a restaurant nearly does not depend on the route length. Note that our example of
a restaurant that does not correspond to user preferences is just a seldom case. Only if
the users are hungry and it is the only place to eat, they may take it. The difference to
a perfectly fitting restaurant is much higher than between a gas station that does not
match preferences of the user and one that strongly match the preferences.

The decision criteria for each POI type have to be interpreted carefully. In general, the
participants differently give answers in free text form. First, the participants who tend to
write more also state more criteria. Second, mostly criteria that come to the mind of the
participant are listed. Depending on how much they think about the question, different
numbers of criteria are stated. Third, the participants tend to give obvious criteria and
do not think about other criteria that unconsciously affect their decisions. Thus, criteria
that are mentioned more often should be considered in any case by a recommender
system. Other criteria that are mentioned sometimes need further research.
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For gas stations, only two participants mentioned that they always use one particular
gas station. That means that selecting a gas station is mostly a decision that is made
ad hoc, not predetermined. Therefore, recommendations for gas stations can help to
optimize this decision. The criteria also show that mostly hard facts such as price and
detour are taken into regard. Regarding criteria for gas stations, the price is next to
the detour a predominant dimension. Other criteria such as services, location, brand,
remaining gas level at the gas station and waiting times may be of importance as well.
Some of them are situation specific. For instance, an ATM is not always required when
a gas station is approached. Decision making for restaurants seems to be more versatile.
Next to type and price, also soft criteria, e.g., quality of food or service, play a role. As
no user mentioned detour as a criterion, we assume that it plays less a role compared to
gas station selection.

For the interpretation of the results for the elements of the route context, we should
take into consideration that information such as the overall detour or the street type are
much easier to imagine than other elements of the route context. The most participants
state detour as important element. Street type is important as well. However, it is
not clear how it is influencing participants’ decisions because it cannot be measured
with a numeric value. The deviation is only of minor importance but it can be used to
differentiate routes with similar overall detour. A detour with lower deviation should
be preferred. The skipped route can either be omitted or also be used to differentiate
routes with similar overall detour and deviation.

6.2.4. Utility Functions Setup

Based on the user study, we derive four decision criteria that we want to use in our
gas station recommender. The criteria need a representation as utility function to be
integrated as an item feature on level 2 in our context integration model. The study
shows that gas price and detour are mandatory criteria for gas station selection. Services
are highly dynamic and divers. Therefore, we do not include them in our prototype. The
same applies to the location of the gas station. Further investigation is needed to clarify
which criteria define user preferences for the location, e.g., in town or out of town. This
investigation is out of scope of this thesis. Brand and remaining gas level at the gas
station are also integrated. The waiting time at the station is complicated to measure
and opening times are used in prefiltering. Our utility functions can be seen in Figure
6.9.

Route

The user study shows the importance of the different route context elements. To derive
a utility function for detour we use the formula in Equation 6.6.
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Figure 6.9.: Utility functions

The weight w of each element e in the route context where E = detour|deviation|skipped
is calculated with the frequency of responses for scores si ∈ [1, 10]. It is normalized to
receive weights in [0, 1]. The score si is squared to favor higher scores. We derive the
weights wdetour = 0, 55, wdeviation = 0, 32 and wskipped = 0, 13 with Equation 6.6. These
weights belong to the set WL1. They are grouped to the feature ”route”.

we =

∑n
i=1 frequency(si, e)× s2

i∑
ej∈E

∑n
i=1 frequency(si, ej)× s2

i

(6.6)

For detour that is the most influencing part of the route context, we derive a numeric
utility function Ud(detour, trip) from the study (Figure 6.9a). It depends on the detour
and the kind of trip (short, medium and long). As the aspects deviation and skipped
route are of minor importance, a linear utility function is assumed for them. The values
for Ud are the medians of the assessments of the participants. The median is less suscep-
tible to outlier than the average. The longer the detour, the more the utility diverges.
The average (AVG) of all kind of trips resembles a medium trip.
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Remaining Gas Level at the Gas Station

The utility function for the gas level at the gas station Ug(gaslevel, tank) is also numeric
and depends on the remaining gas level at a gas station and the size of the tank (Figure
6.9b). These are the attributes on level 1 of our context integration model. The x-
values are a percentage of the gas tank gaslevel

tanksize . This corresponds to the display of the
current gas level on a car display. The drivers do not see the exact remaining amount in
liter but the proportion of their tank. We derived the curve from the data collection in
Section 5.2. The assumption is that the utility of a gas station regarding the remaining
gas level at the gas station corresponds to the time of recommendation regarding the
current gas level. It means that at the moment when the drivers need gas station
recommendations most urgently, the utility of a gas station that is just around the corner
would be the highest. Therefore, we take frequencies of subject responses with ”Yes”
(recommendation is useful) relative to the current gas level. The values are smoothed
and supporting points for the utility function are extracted. For the curve in Figure 6.9b
the supporting points (0%, 0.0), (5%, 0.74), (10%, 1.0), (15%, 0.63), (25%, 0.25), (50%, 0.0)
and (100%, 0.0) are selected. A gas station with 50% and above and no remaining gas in
the tank have no utility for the user. We receive the highest utility for 10% of the tank.

Brand

The utility of the brand Ub(brand) is simply the availability of the property (Figure
6.9d). Either the users prefer large chains in general or a specific set of brands. For
instance, the users have discount at a specific brand or they believe that the quality of
gas is higher at large industry brands. The users are able to select one or more specific
gas stations as their favorites. Favorite brands get the highest utility and all others no
utility.

Gas Price

Gas prices are not generally available but several services on the Internet offer gas prices,
e.g., Clever-tanken.de, Oeamtc.at or Gasbuddy.com. As these kinds of services collect gas
prices in a community, we have to cope with outdated, missing or even wrong gas prices.
Outdated and wrong values are handled by mapping gas prices in an interval with values
”very low”, ”low”, ”middle”, ”high” and ”very high”. For missing values, an estimate
is inferred from other attributes of the gas station, e.g., brand or location. This allows
calculating with complete data. An interval is advantageous for estimated prices because
a range can be estimated more accurate than a specific value. The interval-based utility
function for gas price Up(price, gastype) maps the interval values to a linear increase
of utility the lower the price is (Figure 6.9c). As the interval only covers the regular
range of prices, we add ”null” and ”one” to react more appropriate on prices outside the
interval range.
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6.3. Evaluation

The evaluation comprises a performance analysis of our MCDM recommender in pre-
dicting the interest of a user in items. To collect test data, we carry out a user study.
The participants have to assess gas stations in an online survey. We calculate scores on
level 2 and 3 of our framework based on the utility functions we derived in the previous
section. With common evaluation metrics described in Section 2.5.5, we compare our
predictions with the ratings of the participants for the POIs.

6.3.1. Study Design

Because there is no test data freely available for our use case of a gas station recom-
mender, we have to create our own test set. For this, we carry out an online user
questionnaire in which the participants rate gas stations. We use real data for the setup
to create a decision task as realistic as possible. The questionnaire presents four test
sets with 10 gas stations each. The stations are characterized by the features detour
(minutes), gas price per liter (Euro), the brand and distance to the gas station (kilo-
meter). The distance to the gas station corresponds to the remaining gas level at the
gas station. Some of the gas stations have no price information. The stations differ in
these features. In all four scenarios, the current gas level is 6 liter (75 km remaining
driving distance). The ratings are given on a scale from 1 to 5 (1=very bad, 5= very
good). The participants are also asked to select one of the 10 gas stations that they
would use to refill. Furthermore, they should rate on scale from 1 to 5 how complex this
decision was. To get a user profile, we asked the participants for their preferences for
the applied features of gas stations in the survey (gas price, brand, detour, gas level at
the gas station).

35 participated in our study of which 32 are men and 3 women. 89% of the participants
are between 23 and 34 years old, resulting in an average age of 28. 50% of them drive
between 5.000 and 15.000 km a year, 30% between 15.000 km and 25.000 km and 20%
drive more than 25.000 km. Most of the participants have experience with navigation
systems (89%) and some of them also with driver information systems, e.g., a head-up
display (37%). The preferences of the participants are similar compared to our previous
study for detour assessment in Section 6.2.

6.3.2. Results

6.3.2.1. Example

The example in Table 6.1 with POI test set 3 gives an overview of the outcome of our
approach. We use one of the user profiles with the normalized level 2 feature weights
0.33 for gas price, 0.0 for brand, 0.44 for route context and 0.23 for gas level at the
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Gas stations Calculated Scores Sky-
Brand Price Detour Distance Brand Price Route Gas Global line

Free 03:20 7.9 0 0.25 0.46 0.7 0.38 -
OMV 1.14 09:22 63.5 1 0.25 0.06 0.08 0.11 -
JET 05:07 8.2 1 0.25 0.3 0.7 0.29 -

ARAL 1.14 01:54 19.7 1 0.25 0.47 0.43 0.36 -
Free 04:18 8.3 0 0.25 0.35 0.7 0.32 -
Free 09:07 36.9 0 0.25 0.1 0.24 0.13 -
Free 1.09 06:40 50.2 0 1 0.15 0.14 0.45 ×

ARAL 1.14 00:00 6.2 1 0.25 1 1 0.63 ×
AGIP 09:00 63.3 1 0.08 0.06 0.08 0.01 -
AGIP 17:24 61.9 1 0.08 0.05 0.08 0.00 -

Table 6.1.: Example recommendation

gas station. This is a common user profile among the participants. We predict local
scores with the MCDM method AHP on level 1 and global scores with TOPSIS without
normalization on level 2. The Skyline filter has a fuzziness of 10%, k = 3 and no ω. As
this user prefers gas stations without detour, we expect that the user chooses the one
with zero detour. Regarding the global scores, this station would be exactly number one
in a ranking with the highest value of 0.63. The Skyline contains two items. Besides
this item with the highest global score, the Skyline also contains an alternative with low
gas price because this user has preferences for price.

6.3.2.2. Prefiltering

We take a constraint c of 15 minutes for the detour in the prefilter. The value is derived
from the utility functions study in the previous section. It is the maximum detour the
drivers would accept for medium length routes.

Figure 6.10a shows the resulting number of POIs (gas stations) as a function of the route
length. We generate 81 random routes around Munich. Routes through rural areas
provide fewer gas stations as such through cities. Therefore, the number of prefiltered
POIs varies across similar route lengths. For instance, there is a route that results in
fewer than 40 prefiltered POIs and another route with more than 140 POIs at around
90 kilometers. The example in Figure 6.10b shows the difference between a rural and a
city area. The northern part of Munich has a higher density of gas stations than rural
area outside Munich. The prefilter around the route in the figure guarantees that only
stations within a detour of a maximum of 15 minutes are shown.
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Figure 6.10.: Resulting number of items after prefiltering relative to the length of a route
for 81 different random routes (a) and one example for a route of 15 minutes
[shown on OpenStreetMap.org maps] (b)

6.3.2.3. MCDM Recommender

To compare available MCDM methods (described in Section 2.3.3) for our approach,
we calculate a global score sg with several combinations of the methods on the two
levels (see Figure 6.4). We test the methods with and without normalization, i.e., to
stretch the scores on the whole range [0, 1] with a best score of 1. AHP only works with
normalization because it uses comparison during calculation. WPM is not reasonable on
level 1 because utility functions of 0 would lead to a score 0, even if there are other item
features with higher weight (unless the weight for this feature is also 0). On the other
hand, WPM can be useful on level 2 to cut off bad performing items for one feature.
Overall, 27 combinations of methods on level 1 and 2 are tested. We discuss major
evaluation metrics. Detailed numbers can be found in Appendix C.3.

Mean Absolut Error (MAE)

First, we calculate the mean absolute error (MAE) (Equ. 2.35). MAE is not the most
important metric in our domain. We do not need to predict an accurate rating for all
items due to the reduced information delivery in case of proactive recommendations,
especially inside a car. Finding some good items is more important than to show the
users how much they would like the item. On the other hand, predicted ratings could be
valuable to make system decisions more comprehensible (see Chapter 7). In our test, the
MAE values do not vary much over the POI test sets and also over the methods. For all
tests, they are between 0.2 and 0.33 and most of the methods are below 0.27. It is striking
that in the range 0.26 to 0.33 all nine methods use normalization on level 2. Methods
on level 2 are TOPSIS, WPM and WSM. AHP is more accurate with the worst MAE of
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0.22 on level 2, although its scores are normalized. Note that user ratings are discrete
values in {0.0, 0.25, 0.5, 0.75, 1.0} and the methods calculate continuous scores in [0, 1].
The MAE corresponds to a difference of one preference value (0.25) in average, i.e., if a
user rates an item with 4, the system would probably calculate a 5. Furthermore, most
of the methods calculate scores that are higher than user ratings. Especially normalized
methods on the second level are always higher than user ratings.

Precision

The precision (Equation 2.37) is more important for our domain. Rhodes [Rho00] shows
that a high precision should be preferred over high recall in the area of proactive in-
formation retrieval. Our relevance threshold is 0.65 including only good and very good
rated items by the participants and in the prediction. That means that the true posi-
tives number tp counts items that have ratings larger than 0.65. In several tests, this
threshold performed best for predicted scores, i.e., it results in the highest precision.
This threshold also guarantees that only good (4) or very good (5) rated items are taken
into regard because they correspond to 0.75 or 1.0 respectively in the range [0, 1].

In the results, it is noticeable that normalized and regular TOPSIS performs completely
equal on level 1. This is due to the structure of the attributes on level 1. Three out of
four decision dimensions (price, brand and gas level at the gas station) only consist of one
attribute on level 1. Hence, level 2 scores result only from the utility function for WSM,
WPM and TOPSIS. AHP applies pairwise comparison for each attribute and therefore
it acts different. Only detour consists of three attributes (overall detour, deviation and
skipped route).

To build a bottom line for precision, we calculate 1000 times random scores for the
features of the POIs. The calculation results in an average precision of the POIs with
random scores of 0.25. Methods that have a lower precision than 0.25 are worse than
taking random items. On level 2, normalized TOPSIS and AHP tend to vary less than
the other methods with a variance lower or equal 0.008. Although the range of precision
is high from 0.2 to 0.66, the methods perform differently depending on the combination.
AHP on level 1 and 2 performs best with a precision of 0.66. AHP on level 1 and WPM
without normalization on level 2 perform poorest with a precision of 0.20. In general,
AHP performs best on level 2 with the worst precision of 0.60. Also WSM performs well
with the worst precision of 0.53.

Mean Recommendation Error

In our application scenario of refilling, the users finally select one item because they
need exactly one gas station to fill up. Therefore, we also ask the participants to select
exactly one item out of the 10 available POIs in each test set. The participants are free
to select any POI independent from the rating they gave to the POI. To assess how the
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selection fits to our prediction, we calculate a mean recommendation error (MRE)
metric (Equation 6.7).

MRE =

∑N
i=1Rsi −Rpi

N
(6.7)

The metric is similar to the MAE, except that only participant ratings are involved.
The sum of the ratings for the item that is selected by the participant Rs and the item
that we predict to be selected Rp (the item with the highest global score) is divided
by the number of participants N . We receive MRE values in [0, 1] because ratings of
participants are normalized between 0 and 1. A MRE value of 0 means that a user
selects an item with the same rating our predicted item has, even if our predicted item is
not selected (Rsi = Rpi). Our assumption is that identically rated items have the same
value for the user (independent from the actual selection of the user). A MRE value of
1 means that we predict an item to be selected that the participants rated the worst
(Rpi = 0). At the same time, there is at least one item that is rated best (Rsi = 1). We
exclude inconsistent selections from the investigation. Our assumption is that it makes
no sense that the participants select an item that they have not rated highest. Hence,
Rs is always larger than or equal to Rp.

All methods have a MRE between 0.13 and 0.17. This means that the predicted item
either receives the same rating as the selected one in approximately 50% of the cases or
a rating that is next best in the remaining cases. TOPSIS performs best on level 2 and
all other methods are distributed across the ranking. The MRE is in average lower for
POI test set 3 and higher for POI test set 4.

Irrelevant Items

We are also interested in how many of the items predicted by our method to be selected
are rated as irrelevant (normalized participant scores of 0 or 0.25). That means we
calculate the highest score for a POI that the participant rated as irrelevant. The
amount of irrelevant items is between 6% and 10% over all methods. AHP performs
worse than the other methods on level 2. The result for each POI test set correlates
with the MRE.

Hit Rate

Regarding the hit rates, i.e., the probability to find the item the participant selects, there
is a clear distribution of the methods on level 2. Normalized and regular TOPSIS perform
best with a probability of 0.47 to 0.49 to find the item selected by the participant. AHP
is average with 0.41 to 0.44. WPM and WSM are the worst with a probability between
0.36 and 0.41. The only exception is WPM with AHP on level 1. This method has a hit
rate of 0.46.
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6.3.2.4. Postfilterig

For postfiltering, we test how well different settings of the Skyline filter perform in select-
ing items. This is comparable to the analysis of precision which we run for the MCDM
recommender. The global score recommendation set, i.e., all items above the relevance
threshold, can also be regarded as a postfiltering step of building recommendation sets
based on a ranking. The Skyline filters vary in fuzziness, k and ω. k = 2 is combined
with ω from 0.1 to 0.9. During testing, a k Skyline without weighting showed only
reasonable results with profiles of equal weights for every item feature. Because in our
application this case is seldom, we do not test it in detail. k = 3 is a regular Skyline
and is tested with fuzziness from 0% to 50%. As a Skyline depends on the number of
features, we fuse gas price and brand to one feature named quality. Hence, we only have
one dimension that describes the quality of a gas station. The feature scores for price
and brand are aggregated by their WL2 weights and the weight for the resulting feature
quality is the maximum of both weights. On level 1, MCDM methods are used with
normalization for AHP and TOPSIS and not for WSM.

Skyline Recommendation Set Size
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(b) Regular Sykline on AHP

Figure 6.11.: Comparison between the number of items for different types of Skyline
filters relative to the amount of items prefiltered

For proactive recommendations, the amount of items in a recommendation set is crucial.
We compare WSM without normalization and AHP with normalization as these methods
use different kind of item scoring (single and pairwise) and differ in normalization. All
methods with fuzziness 50% select too few items with either 0 or 1. The same applies
to ω < 0.7. A ω of 0.9 behaves like a regular Skyline. Figure 6.11 shows two examples
and detailed results can be found in Appendix C.3.

We run the tests with the same 81 routes as for the prefilter in Figure 6.10a. The results
show that AHP tends to select more items in the Skyline. Normalization cannot be
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the reason as scaling the score range does not affect the dominance condition. Like
prefiltered items, Skyline recommendation sets also have a wide range. In Figure 6.11b,
the Skyline selects two items in one case and in another case 18 at around 100 km. The
amount of filtered items also depends on the prefilter. Generally, the fewer items are
available after prefiltering, the smaller is the Skyline recommendation set. The size of
the Skyline recommendation set again varies across different sized prefiltered candidate
sets. It seems that the size of the Skyline recommendation set also depends on the
structure of the items.

Loosening of the dominance condition significantly reduces the Skyline recommendation
set. The size of the Skyline for WSM with a fuzziness of 10% is mostly below eight and
for AHP below 11. In seven cases, the Skyline for WSM only selects one item. Regarding
user preferences, ω = 0.7 and k = 2 reduces the size of the Skyline recommendation set
to mostly a maximum of five items for both AHP and WSM. The settings also more
seldom select only one item for WSM. ω = 0.7 and k = 2 seem to be a reasonable choice
concerning user preferences. In the user study, for 31 participants out of 35, the weight
of one feature is below 0.3 which makes this feature the less important one. Hence,
two features remain with a summed weight higher 0.7. In 19 cases the gas level at the
gas station, in seven cases the price or brand and in five cases the detour is the less
important feature.

Skyline Recommendation Set Precision

We calculate the precision for the Skyline also with Equation 2.37. In this case, true
positives tp are items in the Skyline recommendation set and rated as relevant by the
participants (above the relevance threshold of 0.65). False positives fp are those items
in the Skyline recommendation set that are not rated as relevant by the participants
(below the relevance threshold of 0.65). Detailed results can be found in Appendix C.3.

The tested Skyline settings behave different across the POI test sets and have higher
variance compared to the precision of the MCDM recommender. This underlines the
dependency of the Skyline to the structure of the items. The precision for POI test set
3 fluctuates around 0.72 without difference across the methods and for POI test set 1
the range is from 0.0 to 0.571. The precision of the Skyline recommendation set is in
average about 15% lower than for global score recommendation sets. The Skyline with
k = 2 and ω = 0.7 performs overall better (precision from 0.47 to 0.53) than the other
Skylines. A ω below 0.3 shows bad results (precision below 0.43). This is related to the
fact that either zero or one item is selected in this case. A fuzziness of 10% performs best
(precision = 0.54) with AHP on the first level but performs also bad with normalized
TOPSIS on level 1 (precision = 0.37). A fuzziness of up to 20% shows mostly reasonable
results, whereas a fuzziness of 50% is already too high and shows bad results. The best
performing regular Skyline has an average precision of 0.428. This is because the number
of elements in a regular Skyline is high including medium performing items. Overall,
the precision does not depend on the MCDM method on level 1.
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It is surprising that ω = 0.9 performs better than a regular Skyline. Due to the structure
of the user profiles, all feature weights are taken into regard in this case. Hence, the
number of items in the Skyline recommendation set is nearly the same as for the regular
Skyline. The difference can be explained with the dominance condition with ω. It
includes all features in the sum of weights with equal and better scores. However, with
k = 2 it is enough that two features dominate and one is equal.

Recommendation Set Building

Finally, we investigate the performance of recommendation sets instead of single items.
We compare between the global score recommendation set and a Skyline recommendation
set with a relevance threshold of 0.65. For this, we create a recommendation set and
test if the item that the participant selects is in the recommendation set. It corresponds
to the probability that the selection of the user is included in the recommendation set.

Normalized methods on the second level perform better. WPM is an exception. It
performs generally bad. AHP performs worse on the second level with an average prob-
ability between 0.71 and 0.79. Normalized TOPSIS and WSM show better results with
probabilities between 0.83 and 0.95. For a Skyline recommendation set, a Skyline filter
that tends to select more items (e.g., with high ω or a regular Skyline) performs best.
The highest probability has a Skyline setting with k = 2 and ω = 0.9 (0.857). Every
other Skyline setting is in average below a probability of 0.58. Hence, the performance
of a Skyline recommendation set is only comparable to a global score recommendation
set with Skyline settings close to a regular Skyline. At the beginning of this section we
showed that in this case the size of the Skyline recommendation set might become large.
Other Skyline settings perform worse than global score recommendation sets in general.

6.3.3. Discussion

We are able to derive from the results of our analysis how drivers rate gas stations. The
MAE indicates a difference of approximately one rating step in the score. Our system
is mostly higher, especially for methods with normalization. Thus, the users seem to
use highest scores less than the system. Furthermore, the users seem to act more in
a comparative way because AHP is the most precise method. A comparative rating
behavior means that a station that is rated good in one scenario may be rated bad in
another scenario because more good stations are available in the last. Differences of
precision values over the POI test sets underline our assumption as well.

Over all tests, AHP has the best performance on level 2. Especially in precision where
AHP is also more constant over the POI test sets. Although the probability of recom-
mending an irrelevant item is highest for AHP, the probabilities are in general still low.
TOPSIS also performs better than WSM and WPM. It has the best MRE and hit rate.
WSM is average and WPM shows the poorest results on level 2 in all tests. Results for
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the methods on level 1 vary across the analysis. Their evaluation is limited because there
is only one feature with more than one attribute (route context). Further investigations
may lead to clearer results.

The results show that it is unlikely that the users rate the highest ranked item (according
to the global score on level 3) as irrelevant. It has either the highest rating that the
participants used or the next best (according to the MRE), even if the hit rate is generally
lower 50%. This means that it is possible to build reasonable recommendation sets of
POIs in postfiltering with the global score. In addition, the probability to recommend
an irrelevant item decreases with more items. An open question is whether one relevant
item is enough to make the recommendation perceived as good. Maybe, the existence
of irrelevant items has negative influence.

Recommendation set building with Skyline filters shows that only methods that loosen
the dominance constraint produce reasonable amounts of items and good precision. On
the other hand, these methods tend to shrink the recommendation set to one item in
some cases. This is undesirable because the user has no choice any more. Skyline filters
also tend to perform differently across different POI test sets. It is possible that the
precision for a specific POI set is low, i.e., there are relevant items but we cannot find
them. Among the loosening techniques, k and ω perform best. This is probably due to
the incorporation of user preferences. For instance, if there are two important features
d1 and d2, we can use k = 2 and ω = WL2(d1) +WL2(d2). Furthermore, Skyline is more
unstable than a ranking, e.g., with AHP. It also depends on the structure of data. This
is shown by the variance across POI test set 1 and the number of items in a Skyline
relative to the number of items prefiltered. Finally, it is difficult to predefine the number
of items solely with Skyline (e.g., a recommendation set of two or three items). Skyline
techniques with loosening heuristics produce fewer items but also only one item in some
cases. A regular Skyline needs more refinement of the Skyline recommendation set before
it is presented to the user.

6.4. Summary

This chapter described our approach for context integration into recommender systems,
a deeper investigation of the route as context and a final evaluation of different MCDM
methods. Our context integration method is a combination of the well-known paradigms
in context-aware recommender systems (CARS), prefiltering and postfiltering. Prefilter-
ing uses simple cut-off heuristics in combination with filtering along the route to remove
irrelevant items. Our knowledge-based recommendation approach is based on multi-
criteria decision making (MCDM). It combines qualitative dimensions with contextual
dimensions. The approach uses utility functions to assess items based on their attributes.
These attributes either describe qualitative aspects such as the brand of a gas station
or contextual aspects such as the detour that a gas station causes. To make heteroge-
neous attributes comparable, they are transformed into dimensionless score-based item
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features. Item features are decision dimensions of the users to select an item. User
preferences are represented by a list of user weights for each decision dimension. Finally,
postfiltering takes all assessed items and builds small recommendation sets that can be
presented to the driver. In case of our P-IVRS, postfiltering is part of the decision
making process. It combines assessed items with the situation awareness of the system.
A recommendation set is not just built according to the performance of the items but
involves the situations of the users, i.e., whether the item is useful for the users in their
situations.

Our investigation involved a detailed analysis of the route as context. A user study shows
how the drivers perceive detour towards gas station and restaurant recommendations.
We define the route context as one important context parameter in our system. It
contains the detour to a POI, the deviation from the route and the skipped route. The
users assess deviation as important factor but less important than detour. The skipped
route is of minor importance. Based on the results from the user study, we derive a
utility function for detour depending on the length of the route. We also derive utility
functions for further decision dimensions: the price of gas at a station, the brand and
the remaining gas level at the gas station.

The main focus of this chapter was to evaluate different MCDM methods. We imple-
mented our context integration approach with different MCDM methods and utility
functions. A final user study collected ratings for gas stations which are compared to
the prediction of the methods. We showed that comparative models such as AHP or
TOPSIS mostly outperform the simple weighted model. The global score calculated by
MCDM methods can be used to build small recommendation sets in prefiltering because
the users seldom rate higher ranked items as bad. Besides calculating a global score, we
applied dominance-based item selection methods in postfiltering (Skyline filter). Their
results vary depending on the specific decision problem. We conclude that building
recommendation sets with a global score is more suitable than with dominance-based
filtering.
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7. Recommendation Justification in P-IVRS
with Explanations

Besides the competence to select good items, a P-IVRS also requires functional compe-
tence to make system decisions comprehensible for the driver. The challenge is to justify
the decisions of the system because the system makes decisions automatically without
user request. We apply explicit explanations to support comprehensibility. In this chap-
ter, we present our approach to generate justifications for recommended items and for
the reason why a recommendation is delivered. We use our gas station recommender
to implement and evaluate our methods. As we do not know which arguments are rel-
evant in our use case, a preliminary study is carried out. Justification is not the only
explanation goal in context of P-IVRS. We classify several possibilities of explanations
towards the user interface of a P-IVRS. However, the main focus of this chapter is to
analyze explanations that justify system decisions. We describe our method for item
explanations and carry out a second user study with an implementation of a proactive
explanation interface. Finally, we describe our method for situation explanations and
show example results.

7.1. Preliminary Study

The preliminary study should reveal the main requirements on generating arguments in
our application scenario of a gas station recommender. Detailed numbers of the results
are listed in Appendix D.1. In the following, we explain the most important results. An
extract of the preliminary study was already published in [BKWL11].

7.1.1. Study Design

The user survey is carried out as online questionnaire. The participants have to rate
different kinds of arguments and explanations on a 5-point Likert scale. We focus on
properties of explanations which we described in Section 2.5.4. The questionnaire con-
sists of 14 closed and one open question. In most of the cases, the participants receive
different kinds of arguments and they have to rate them.

The first part of the survey tries to find out which arguments should be used in an
explanation. First, the content of a single argument is investigated. The four item
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features that we already used in our context-aware gas station recommender are reused
here: gas price, detour, brand and remaining gas level at the gas station. Also further
information such as a present the participant gets for each refill, opening times or waiting
times are used. We also investigate the usefulness of negative arguments in terms of bad
item features in combination with positive arguments. Finally, negative arguments for
gas stations that are not in the recommendation set are investigated.

The next part of the questionnaire is about the structure of an explanation, i.e., how
many arguments should be in the explanation and in which structure. Few arguments
may not be enough to understand the advantage of the item and too many arguments
may provide useless information and cause information overload. Arguments can either
be structured individually without reference to other items or comparative to other types
of information or to other items of a set.

The third part investigates additional information as arguments. Besides explanations
of the recommended items, the system may also deliver additional information to make
its behavior more transparent. This can be the situation causing a recommendation, the
current status of the system or additional information related to the source of informa-
tion used in the recommendation process. Furthermore, we interview the users about
additional arguments that contain the reliability of the data, the intelligence of the sys-
tem and the context of the items. All of these sources bear more or less uncertainty.
The uncertainty can be presented in form of likelihoods as degree of belief.

The rest of the questions deal with general aspects of recommendations in a proactive
manner. We ask the participants how many gas stations should be recommended in
different traffic situations. The situations range from challenging maneuvers in dense
traffic to long-term standing still. The idea behind the question is to find out the expec-
tations of the users concerning the amount of information they can handle in situations
with different workload. We also ask the participants about other kinds of POIs for
proactive recommendations in a car. Possible domains are classical item categories, e.g.,
restaurants or hotels.

Altogether, 89 participated in the online survey. Of these, eight questionnaires have
been incomplete resulting in 81 data sets we use in our analysis. 70% of the participants
needed 8 to 18 minutes to fill out the questionnaire with a peak around 11 minutes.
The group of participants consists of 64 males and 17 females. 90% of the participants
are between 18 and 38 years old. After excluding outlier outside this range, it results
in an average age of 26 years. 80% of the participants have at least average experience
with portable navigation devices, 63% with embedded in-car navigation systems, 37%
with driver assistance systems such as head-up displays and 23% with additional in-car
information systems such as BMW Assist. More than a half (51%) of the participants
drives more than 10.000 kilometers a year.
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7.1.2. Results

Supporting Arguments

The first question that we ask the participants is about information to use as supporting
argument for a specific gas station. Supporting arguments underline the decision of the
system for an item. The Likert scale for the answer ranges from not useful (1) to useful
(5). Arguments consisting of information based on detour, gas level at the gas station
and gas price are rated as useful with a median of 5. A low variance indicates that
the participants are in broad agreement. Slightly worse but still useful are arguments
with the reachability of gas stations in general, i.e., how many stations are reachable
with the current gas level. The waiting time at the station has a median of 3 but
the participants are divided with this assessment. This is indicated by a variance of
1.16. Arguments containing the brand of the station receive low ratings with a median
of 2. The participants rather agree in their assessment with a variance around 1 but
approximately 66% give a rating of 1 or 2. Large uncertainty (variance = 1.42) can also
be found in the assessment of a free drink for every refill. The median is 2. This makes
the argument rather useless but 42% also rate the argument at least as medium useful.

A user who does not prefer a specific item feature would probably assess an argument
with this feature as useless. Therefore, we investigate the correlation between user pref-
erences and argument assessments. The highest positive correlation exists for arguments
based on preference elements and the preference element itself. This means that partici-
pants who rate an item feature high also tend to rate the argument with that information
high and vice versa. A low positive correlation also exists between price preferences and
the free drink for every refill (both refer to a monetary aspect). High negative correlation
exists between preferences for brand and arguments based on gas price and vice versa.
A low negative correlation exists between preferences for gas level at the gas station and
arguments with gas price.

Counterarguments

The next question aims to find out whether negative arguments are helpful. First,
we investigate counterarguments. In each explanation for an item, a positive argument
(supporting argument) is shown together with a counterargument. Only the combination
of a positive argument with detour and a negative argument of brand is rated as useful
(88% of the participants give a 4 or 5). However, the median of the argument with
detour decreases to 4 compared to its individual use as single argument in the previous
question. This even applies more to the combination of a positive argument for gas price
and a negative for detour. The explanation receives a median rating of 3, whereas the gas
price individually receives 5. Although the participants are not strongly in agreement
(variance = 0.96), 70% give a rating of 3 or worse. The same applies to the combination
of a positive argument for gas level at the gas station and a negative argument for gas
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price. The ratings are slightly higher, but overall the median decreases from 5 to 3. The
ratings for a positive argument with brand and a negative argument with detour stay
low compared to the brand individually.

Although the ratings for the explanations with a counterargument decrease compared to
the individual use, the correlation between the positive argument and the user preference
with this information remains nearly equal. Between the negative argument and its
corresponding user preference, there is nearly no correlation.

Arguments for Items that were not Recommended

The second types of negative arguments are arguments for items that were not recom-
mended. The participants are told in the description of the question that they have the
possibility to retrieve explanations about gas stations that were not recommended by
the system. High ratings (median = 5) with strong agreement (variance <= 0.4) are
given to arguments with hard constraints. Items that were not recommended due to the
opening times and due to the reachability with the current gas level is useful information
for arguments. This does not apply to the availability of the type of gas ”Super 98”. We
pretend that ”Super 98” is the only type of gas which is possible for the car of the user
in our study. The ratings for ”Super 98” have a median of 3 but a high variance of 1.72
indicates that the participants are not in agreement. 75% of the participants rate the
argument with 3 or lower. The argument with gas price again receives mostly positive
ratings (75% of the participants give 4 or 5).

Following the question about arguments for items that were not recommended, we ask
the participants whether they think that this kind of explanation is useful in general and
should be provided on request. The explanations are perceived as rather useful (median
= 4) but the participants are not strongly in agreement (variance = 1.16). 86% of the
participants believe that the explanations are at least medium useful (rating of 3) or
more useful.

Number of Arguments

Besides the content of arguments, we also want to know how many arguments are ap-
propriate in an explanation for gas station recommendations and whether it makes a
difference what kind of information is used. Therefore, we present the participants ex-
planations with a different amount of arguments which they should rate on a scale from
”too few information” (1) to ”too much information” (5). The results are depicted in
Figure 7.1.

A rating of 3 represents not too much and not too less information (i.e., exactly the right
amount). Explanations consisting of one argument comprise arguments with gas price
or detour. The median is a rating of 2, i.e., rather too few arguments are presented.
66% of the participants rate one argument with 2 or worse. There is a low correlation of
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Figure 7.1.: Assessement of the number of arguments

0.26 between preferences for gas price and the rating for the explanation with gas price
and no correlation between preferences for detour and the corresponding explanation.
Explanations containing two arguments are either a combination of gas price and brand
or gas price and detour. 69% of the participants rate these combinations as exactly
right. The remaining 31% are distributed over ”too few” and ”too much”. Explanations
with more than two arguments have a median rating of ”too much”. Four arguments
are slightly more ”too much” but already three arguments are rather ”too much”.

Combination of Arguments

For the investigation of the most appropriate type of combination of arguments, we
present three different types of combinations each with the same type of arguments
(price, detour and brand). Comparative combinations are able to contain more informa-
tion than individual combinations because they can make a statement about the domain
in general, e.g., ”This gas station has the lowest price in the area”. The results show
that the participants are not in agreement in their ratings and that there is no combi-
nation that is clearly better. All combinations receive a medium rating of 3. Individual
combination is rated slightly higher with 85% of the ratings above 3. A comparative
combination to an average has 72% and comparative to the set has 67%.

Regarding the correlation between the combinations, each correlation is positive but not
high. Individual combination and comparative to an average have a correlation of 0.28,
individual and comparative to the set a correlation of 0.11 and the two comparative
combinations 0.26. This means that the participants who rate one combination high do
no necessarily rate the other combinations low.

Situation-aware Explanations

We investigate the delivery of additional explanations concerning the situation in which
a user is and how this affects the recommendations. For that, the participants should
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imagine a situation consisting of a trip to an urgent meeting where the destination cannot
be reached without refilling the tank. Situation
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Figure 7.2.: Assessment of situation-aware explanations: Adaptation of user preferences
and reduction of workload

In Figure 7.2, the ratings for the three explanations are shown. The explanation con-
cerning user preferences comprises the adaptation of preferences to avoid loss of time
due to an urgent meeting. The other two explanations describe the delivery of recom-
mendations because of a situation with workload. Workload I refers to low workload
while standing still at a traffic light. In Workload II, the driver faces high workload while
handling a complex traffic situation. Situation explanations are overall rated at least as
rather useful with a median of 4 for the workload and 5 for the user preferences. The
situation with the complex traffic situation is slightly rated more useful as the traffic
light. The participants are in agreement that explanations of the adaptation of user
preferences are useful in this situation. 91% gave a rating of 4 or higher.

Status Explanations

Status explanations describe actions of the system and its decisions. Explanations con-
taining the decision and its resulting action receive the best ratings in this question with
a median of 4. Although the assessments of the combination of gas level at the gas sta-
tion and the retrieval of gas stations vary (variance = 1.12), most of them gave at least
a rating of 4 (80%). The agreement to the reachability of gas stations and their retrieval
is slightly lower but still positive. 64% of the participants give a rating of at least 4.
On the other hand, status information without the reason of the decision receives much
lower ratings. The explanation that describes the retrieval of gas stations itself is rated
as not useful (median = 1) and the explanation about a positive search result receives a
median rating of 2. The agreement with the last explanation is low (variance = 1.75) but
only 30% of the participants rate this information as rather useful or better. The rest
of the status explanations including the up-to-dateness of the gas prices and no search
results are rated with a median of 3 but the agreement is low (variance>= 1.75).
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Reliability of Data

Besides additional explanations including the situations of a user and the status of the
system, we also ask the participants about the reliability in the completeness of the
data, the matching between user preferences and the results and context information
used for reasoning. To make the participants clear what is meant with the arguments,
we give some examples. The example for completeness of data refers to the number of
gas stations known by the system. For context information, the reliability of gas prices
known by the system is the example. The assessment of the participants depends on
the source of reliability. Completeness of data is rated as rather useless and context
information is rated as rather useful. User profile matching is in between with a median
of 3 but the variance is high.

Degree of Proactivity

Additional explanations can either be delivered automatically, e.g., with the recommen-
dation, or requested by the user on demand. We ask the participants to give their
opinion towards proactively delivered explanations of situations, status information and
reliability on a scale from ”automatic” (1) to ”on demand” (5). The median of ratings
for situation specific explanations is 3 but the variance is very high (2.05). 88% of the
users are not indifferent between automatic and on demand. The same applies to other
types of additional information. 91% of the participants are not indifferent concerning
status information and 85% concerning reliability. Status information is requested to be
rather automatic with a median of 2 and the reliability is requested to be on demand
with a median of 4.

Further Results

The question about how many items should be delivered proactively shows that for
most traffic situations three items are reasonable. In standing still situations, up to
five items can be delivered. In complex situations, the participants request one or two
items. Finally, some participants mention that information overload is annoying and
explanations should not lead to more irrelevant information.

7.1.3. Discussion

The results concerning the content of an argument suggest that the perception of argu-
ments depends on the perceived utility of the item. An item that is perceived as useful
receives in general a better rating for the arguments. This aspect can also be seen in
the assessment of counterarguments. Even if both arguments are relevant considering
user preferences, negative explanations receive a much worse rating compared to the
individual use of the positive argument. The more important the negative argument is,
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the worse the rating becomes. Actually the explanation should help to make a decision,
even if the decision is against the recommended item. Because the participants probably
do not like the expected item behind the explanation, the explanation is rated worse.
However, it can be confirmed that the content of an explanation strongly depends on
user preferences. The correlation between user preferences and supporting arguments
is high, especially in case of user preferences for the brand of the station. These pref-
erences are in general low but an argument with brand is useful if the users prefer a
specific brand.

The usefulness of counterarguments itself could not be derived. The availability of a
counterargument leads to worse ratings of the explanation. It may help the participants
to make a decision. It is also notable, that the user preferences only correlate with the
positive argument. This may indicate that decisions are made based on the first argu-
ment. Counterarguments only influence the decision. Furthermore, negative arguments
for items that were not recommended are overall desirable. They are more popular if
they are easy to understand (e.g., hard constraints such as opening times).

Concerning the structure of an explanation, we believe that two arguments are the
perfect size for an explanation. This coincides with the two major item features that
the most participants use to select a gas station: price and detour. It is also notable
that the second argument in the explanation does not necessarily need to be a high
rated item feature in the user profile. Note that this number of arguments does not
need to be valid for explanations during driving because the workload is different there.
The combination of arguments in an explanation does not seem to play a role in the
construction of explanations. The participants rate all kinds of combinations mostly
indifferent and slightly as useful. High ratings for one kind of combination do not imply
low ratings for the other. This can be seen in the positive correlation. The simplest
structure receives slightly better ratings than more complex ones. It indicates that the
participants would prefer less and simpler information over more information. Overall,
it seems that the selection of the structure is less crucial than other aspects.

In case of incorporating users’ situations in an explanation, the arguments that deliver
the most benefit to the task are rated best. The explanation for the situation with
the user preference adaptation also covers another aspect. It explains the decision why
the system carries out an action (in this case, the action ”user preference adaptation”).
Arguments concerning situations with the workload of the driver can also be useful in
an explanation. The usefulness of situation-aware explanations can also be seen in the
ratings for status information. Related explanations that do not contain the reason for
the action are rated much worse than an explanation that describes the reason for the
action. We also observe that status explanations have a positive correlation between
their content and user preferences. Furthermore, the participants are not interested in
general status information such as gas prices (e.g., downloading of current gas prices).
This also applies to reliability. Overall, the usefulness of reliability information cannot
be derived uniquely. The ratings are distributed over the whole range. We believe that
the usefulness of this kind of information can only be tested with a prototype system.
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Finally, our findings concerning pushing or pulling additional information are clearer
than other results. As only a few participants are indifferent at this topic, we suggest
making pushing and pulling configurable. Situation explanations can be pushed by
default and status information can also be shown by default but the reliability should
be retrievable on demand.

7.2. Explanation User Interface(UI)

The different types of explanations we investigated in the preliminary study should be
provided to the driver in an appropriate way. These explanations need to be delivered
by an in-car user interface.

7.2.1. Ramping Strategy

We use a ramping strategy like Rhodes [Rho00] to explain proactive recommendations,
i.e., explanations are distributed over several levels of detail. Rhodes shows that ramping
interfaces are an effective way to deliver pushed information. We particularly agree to
Rhodes’s view that information overload should be kept low in the beginning of the
recommendation process. Additionally, it should be controllable by the users. If the
users are not interested in recommendations for any reasons, they should have the option
to ignore a recommendation. Furthermore, a proactively delivered recommendation can
contain false positives. This should be anticipated when using an intelligent system. In
an automotive scenario, false positives can cause additional workload which has to be
kept at a minimum. A ramping strategy is able to cope with these circumstances. If the
users are interested in explanations, then they should have the possibility to retrieve as
many information as needed to make a decision. The more important a further detail
is, the easier it should be to retrieve it.

7.2.2. Stages of an In-Vehicle Ramping Interface

Table 7.1 shows the stages of our ramping interface for explaining in-vehicle proactive
recommendations. Note that not all explanations are necessarily delivered proactively.
The proactive behavior of the system depends on the implementation. We classify the
stages by cognitive effort to consume the explanations, their explanation goal and the
amount of user involvement. Cognitive effort becomes higher with more information and
if the user has to make a choice.

The first stage only indicates that the system has no recommendations, e.g., with an
icon or if the system stays inactive. The cognitive effort to consume this information
is very low because the user does not have to make a decision or think about provided
information. The second stage allows the system to provide status information to make
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Stage Explanations Cognitive effort Goal Involvement

1 No recommendations very low Transparency No

2 Status information very low Transparency No,Once

3 Why something was
recommended

low Justification No

4 Benefits of items medium Justification No,Once

5 Recommendation si-
tuation

high Transparency Once

6 Item details high Effectivity Once

7 Explained items high Transparency Once

8 All items very high Scrutability Steady

Table 7.1.: Stages of a ramping interface for proactive recommendations

clear why the system is behaving that way (Transparency), e.g., why it has no recom-
mendations or what it is doing right now. Low cognitive effort is imposed by this stage
because no decision has to be made.

In the stages 3 to 8, a recommendation is presented to the driver. Stage 3 aims to
provide a justification for the decision of the system concerning the recommendation,
e.g., it describes why a situation caused the recommendation. This explanation has low
cognitive effort because it should only help the driver to decide if the recommendation
is relevant. It is important to keep this stage with low effort to minimize negative effects
of false positives in an early phase of the recommendation process. In the next stage,
the recommended items are presented with their benefits. The presentation comprises
explanations with a set of arguments. It should persuade the users with a justification
that the items are useful for them. Cognitive effort is classified as medium because the
driver has to make a trade-off based on the features of the items. Again, the risk of
false positives has to be kept to a minimum because the user has not shown interest
for the items yet, only for the recommendation in general. Therefore, not all details
but only necessary information is provided. In stage 6, more details about the items
are presented to give the user the possibility to make an effective decision. This is the
first stage that contains the whole details of the items. A lot of information may be
involved in this stage. The information has to be compared among the recommended
items. Therefore, this stage is classified with high cognitive effort. The same applies to
stage 7 which supports stage 6. It supports the choice of the system for an item with
additional explanations.

Finally, the system may deliver irrelevant items but the users are still interested in an
item. Hence, the users should have the opportunity to access all available items in stage
8. This is classified with high cognitive effort because not only a small set of items is
compared but a large one. Depending on the implementation, this stage may contain a
detailed list of items or only descriptions, e.g., the benefits of other items.
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Another characteristic of the ramping strategy is the amount of user involvement. The
more user involvement it needs, the more interruption is caused. We believe that stages
1 to 4 can be realized without any involvement of the user, i.e., the user does not have to
interact with the system by means of an input device. The involvement in stages 2 and 4
depends on the application. Status information and a short explanation of item benefits
may be requested on demand. All further stages should only be accessible on demand
because of their higher cognitive effort and the risk of false positives. The retrieval
of information requires user interaction only once, e.g., details of an item. Browsing
through a large set of items requires steady interaction (stage 8).

7.3. Item Explanations

Although all stages of the explanation interface for proactive recommendations are able
to deliver useful information to make the behavior of the system more transparent, we
focus on explanations for the reason of a recommendation (stage 3) and the benefits of
the items (stage 4). Within these stages, we focus on item explanations. The design
of the corresponding user interface is the topic of the next chapter. In this section, we
describe our method for item explanations. It is designed for a small set of recommended
items because the preliminary study showed that only a few items should be delivered
proactively. Our argument selection method makes use of the output of the context-
aware recommender described in Chapter 6. However, it is designed independently
from an underlying recommendation method. According to Vig and Riedl [VSR08], this
aspect classifies our explanations as justifications in contrast to make the system more
transparent. Our approach requires a user profile with weights for item features, a global
score for the overall performance of an item and local scores for the performance of each
item feature as input. The output is one or two arguments for the set of items to be
explained with the supporting argument in the first place. We already published the
following method in [BKWL11].

7.3.1. Argument Selection

The arguments for the items are structured independently, i.e., no comparative expla-
nations are used. The preliminary study shows that it makes no difference for the user
but an independent structure enables shorter explanations. We use preference- as well
as context-based arguments, starting with a supporting argument in the first place and
adding a second one if necessary. The idea is that if an item is recommended, there
has to be one significant feature that causes the selection of the system. This should be
at the first place. If items in the set cannot be distinguished by the first argument, a
second argument is provided.
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Argument Strength

We generate arguments for items based on the context-aware recommender system for gas
stations presented in Chapter 6. The recommender uses multi-criteria decision making
methods (MCDM) to assess items I on multiple item feature dimensions D by means
of utility functions. For example, these are price or detour of a gas station. First,
the context-aware recommender aggregates all item attributes and context (level 1)
belonging together to local scores LSI,D in the range [0, 1] (level 2). Each score represents
an item feature D. On level 3, all features are aggregated to a global score GSI . The
users are able to set their preferences for the item features explicitly which results in a
weight wD for every feature D. Note, with the performance of an item as global and
local score as output, it can be any recommendation approach to produce these scores.

Our argument assessment uses two additional scores. The explanation score ESI,D de-
scribes the explaining performance of an item feature and the information score ISD
measures the amount of information of an item feature. The explanation score is calcu-
lated by multiplying the weight of a feature wD with the performance of the item I in
that feature (Equation 7.1).

ESI,D = LSI,D × wD (7.1)

With this score, bad performing features as well as aspects not important for the user
are neglected. The score corresponds to the product of user interest in a feature with
the contribution of an argument to that feature described by Felfernig et al. [FGL+08].
Instead of a predefined argument phrase, we measure the performance of the feature.
The problem of only using this score is that if every item performs well on a feature
and this feature is important for the user, every item would be explained by the same
argument. This decreases the opportunity of the user to make an effective decision
because items are not distinguishable. Therefore, our information score measures the
amount of information of a feature relative to the item set it belongs to (Equation 7.2).

ISD =
R+ IN

2
(7.2)

The value R = max(x)−min(x) is the range of the feature value x in the set for feature
D. IN can either be Shannon’s entropy (Equation 2.26) or simply IN = n−h

n−1 where n
is the number of items in the set and h is the frequency of the most frequent feature
value x in the set. Taking the feature value x = LSI,D is a good choice if local scores
have a small value range, otherwise a utility interpretation of LSI,D would be better.
A utility interpretation transforms the crisp score value into an interpreted value such
as ”low”. The information score is low if either all x are similar (R is low) or same x
appear frequently (IN is low), e.g., all gas stations are average priced.
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Interpretation

Information for arguments in an explanation can either be interpreted feature values,
e.g., current gas level is low, or facts, e.g., current gas level is 32 liter. Hereby, every
feature is described by one attribute from level 1. For instance, the route context is
described by the detour because it is the most important attribute in that feature. An
interpretation is a mapping from a specific value to a discrete interval. We use a generic
discrete interval with {One, V ery High,High,Medium,Low, V ery Low,Null} to map
values to a discrete value. Two kinds of values can be mapped. A utility interpretation
maps the utility of an item. For instance, a current gas level of 32 liter at a gas station
can be mapped to Null, because most people do not refill at this level. Therefore, the
utility is 0 for that feature. The assessment of the utility is the task of the recommender
system. The utility is represented as local score. Interpreting the attribute and context
values leads to different results, e.g., a current gas level of 32 liter is Medium if the tank
has a capacity of 65 liters. This is called attribute interpretation.

7.3.2. Explanation Process

The scores from the recommendation process as well as the additional scores for argument
strengths are used in the explanation process to build the final explanation. Figure
7.3 shows the process to select arguments. It follows the framework for generating
explanations described by Carenini et al. [CM06] (see Section 2.5.4). The framework
divides the process in the selection and organization of the explanation content and the
transformation in a human understandable output.

Content Selection

In the content selection, our argumentation strategy selects arguments for every item I
separately. A positive argument is selected first to help the user to instantly recognize
why this item is relevant. For this, the best performing feature D based on the explana-
tion score ESI,D is compared to the threshold α (1). A value larger than α means that
the dimension is good enough as a first argument. The threshold α should be chosen
so that the first argument is positive. If no feature is larger than α and thus no first
argument can be selected, we look at the global score GSI (2). If this score is larger than
β, then the item is a good average, otherwise we suppose that the recommender could
not find better alternatives. With a first argument, we look at the information score
ISD of the corresponding feature (3). A small information score (lower than γ) means
that this feature provides low information. Therefore, a second argument is selected by
means of the explanation score. The explanation score ESI,D of the second argument
has to be larger than µ to make sure that the second argument is meaningful enough
(4). In general, the threshold for the second argument is lower than the threshold for
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Figure 7.3.: A process to generate explanations by analyzing scores (content selection)
and building the explanation (surface generation)

the first argument (µ < α) because the requirements on the second argument are lower.
With the thresholds µ and γ, the amount of information can be controlled.

Surface Generation

The result of the content selection is an abstract explanation that needs to be resolved
to something the user understands. This is done by the surface generation. We map a
key value pair, e.g., (gaslevel, low), to human understandable information, e.g., textual
phrases or icons (5). Either facts or attribute interpretations can be used as values.
Human understandable explanation information is uniquely stored in a database, e.g.,
in XML format. Also the structure of an explanation (icon, independent phrase, com-
parative phrase etc.) can be defined here.

7.3.3. Discussion

Argumentation theory as described in the guidelines of Carenini and Moore [CM06] and
Toulmin’s [Tou03] model suggests a specific order of arguments in an explanation to
support the claim effectively. We ignore this order in our explanations for items because
we are only able to use one or two arguments for each item due to information overload.
With this exception, our approach follows the guidelines by delivering a strong argument
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at the first place, supporting this argument with a second argument if necessary and
including negative arguments only optionally.

Our method for item explanations is based on the framework for generating explanations
of Carenini and Moore [CM06]. The strength of an argument is the most important
aspect in the framework. Carenini and Moore call the strength compellingness. We
measure the strength with the utility of an item feature and user preferences for that
feature. Our approach resembles the work of Felfernig et al. [FB08]. Felfernig et
al. use weights for predefined explanations and user preferences towards item features.
Their method orders arguments according to assumptions from argumentation theory.
In contrast, we measure the argumentation strength of an item feature at the run-time
and retrieve a predefined phrase for that feature.

Another difference between our approach and approaches like that of Felfernig et al.
[FB08] is that our explanations are targeted to the users of a proactive mobile system
and do not want to persuade the user to buy products. Product explanations should
be comprehensive enough to persuade the user, whereas item explanations for proactive
systems should be short enough to avoid information overload. In contrast to products,
the use cases for automotive scenarios impose high physical involvement instead of high
financial involvement and the time to make a decision is short.

We agree with Baltrunas et al. [BLPR11] that explanations in a mobile scenario have
to be very short and easy to grasp. We share the same goal to justify system decisions
with short explanations. However, our preliminary study shows that one argument as
proposed by Baltrunas et al. [BLPR11] is not enough to make a satisfying decision for
an item in our use case. Note, the use case of Baltrunas et al. and our use case are
different. Tourists consume a series of attractions in contrast to drivers who only need
one gas station at a time.

Finally, it could be useful to make comprehensive explanations available for the users who
want to get a deeper understanding such as described by DeCarolis et al. [dCNPG09].
However, this kind of explanations cannot be presented to a driver while driving because
of information overload.

7.4. Evaluation of Item Explanations

We evaluate the presented method for item explanations with a PC prototype in an
offline setup. The subjects of our experiment are shown different scenarios of gas station
recommendations. They have to assess the explanations that are provided along with
the recommended items. We published an abstract of the evaluation with the major
results in [BKWL11].
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7.4.1. Evaluation UI and Deployment

We carry out the evaluation with a prototype of a gas station recommender on a PC.
The subjects have the possibility to interact with the system with regular input devices
(mouse and keyboard). They sit in front of a 19′′ monitor. The PC interface is shown
in Appendix D.2.

The evaluation interface implements our explanation UI concept (Table 7.1) in three
levels of detail. The users can assess each of the levels separately. Stages 1 and 2
are omitted here. Stage 3 is represented with artificial information and stage 5 is also
omitted. The first level represents a pop-up view that is shown to the user without
request as soon as the system delivers its recommendations. A map is shown next to the
pop-up. The pop-up comprises situational explanations in the header (stage 3), the list
of items with explanations (stage 4) and buttons to enter the other levels or to zoom to
the POI on the map. The map view shows the active route and the recommended items
that can be matched to the items in the list by colors. It is based on a street map from
OpenStreetMap.org. We implemented a route planer to be able to calculate real routes.
In general, the whole route of the driver is shown. Zooming to a POI changes the view
area to the selected POI and the detour from the route to the POI. The mouse can be
used to browse in the map or to change the zoom level.

The second level represents the detail view. It gives the user the option to retrieve more
details (stage 6) for the recommended items and all explanations (stage 7). This can be
useful if a decision for a gas station cannot be made based on information in the first
level. Besides the address and the name of the gas station, information about the item
features is listed and the facilities that the gas station offers.

The third level represents the list view of all available gas stations along the route (stage
8). If the recommended items do not fit to users’ expectations, they are able to retrieve
a list of all stations along the route and order them by their feature or their names.

7.4.2. Study Design

We define six scenarios that are handed to the subjects along with a description. The
scenarios cover in the area of Munich different lengths of routes with different intentions,
e.g., work, vacation or visiting friends. The order of presenting the scenarios to the
subjects is random. The scenarios are listed in Table 7.2. A detailed description of the
scenarios can be found in Appendix D.2.

In all scenarios, the users are told that they cannot reach the destination without refilling
and therefore a gas station recommender pops up proactively. The task of the subjects is
to select a gas station. The pop-up shows a list of items with interpreted item features in
the explanation. If more information is needed for a decision, the subjects are allowed to
enter another level after selecting an item and indicating how satisfied they are with the
decision. The satisfaction is given on a Likert scale from 1 (satisfied) to 5 (unsatisfied).
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Scenario Description Route Duration Length

A, B Ride to work Gauting -
Munich, Rosenheimer
Strasse

30 min 21 km

C Visiting friends Gauting -
Dingolfing

75 min 122 km

D, E Visiting friends Gauting -
Bad Grönenbach

75 min 119 km

F Vacation trip Königsbronn -
Chieming am Chiemsee

180 min 260 km

Table 7.2.: Routes used in the scenarios

Additionally, the subjects have to answer questions. We ask them questions about
relevant, irrelevant and missing information in the view, the reason and satisfaction of
their decision and why they want to enter another level. In the beginning of the study,
they are introduced to the system and its interaction possibilities. After completing all
six scenarios, a follow-up questionnaire is carried out including the number of items and
arguments and whether interpreted or fact explanations are preferred.

We measure whether the system successfully justifies the items by interviewing the sub-
jects about their satisfaction with their item selection in the first level and whether they
need more information. If the subjects enter more detailed levels, explanations are not
effective. If level 3 is entered, the items themselves are not relevant.

The interpretability of the study is limited by the offline setup. This does not take
workload while driving into account. As described by Tintarev and Masthoff [TM11],
the underlying recommendation approach and the recommendations that are delivered
significantly influence the perception of the explanations. Furthermore, the map is a
crucial element for POI selection and therefore it also has an influence on the assessments
towards the explanations of the items. The study is based on a database with all available
gas stations but only for one third of them gas prices are available. Hence, explanations
without price do not necessarily mean that the system has classified the price as irrelevant
but that the price is not available.

We had 20 participants with an average age of 27 in the range of 22 and 33 with two older
subjects (38 and 45). The group comprises 17 males and three females. The participants
were recruited from our research lab. 10 of them drive more than 10.000 kilometers a
year, five between 5.000 and 10.000 and the rest less than 5.000. Three of them do not
have a car. The participants have the possibility to set up a user profile at the beginning
of the survey. The importance of the item features price, brand, detour and gas level at
the gas station can be given (like in the studies we carried out in the previous chapters).
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7.4.3. Results

We discuss the results for each scenario separately. Detailed values of the survey can be
found in Appendix D.2.

Scenario A: An Additional Need

The subjects are rather satisfied with their selection in the first level (median of 2) but
most of them wanted to know whether the station offers an ATM (due to the situation).
15 out of 20 subjects state that the situation influences their decision. Hence, 16 out of
20 subjects enter level 2 to look for the ATM. Their satisfaction increases significantly
after the second level to a median of 1. None of the subjects needs to see the list of all
stations. Arguments with price and detour are assessed as relevant in 14 cases for price
and in 13 cases for detour. The brand is assessed by six subjects as relevant which is
more than the subjects who state that this is an important feature. Additionally, also
five subjects miss the brand. The gas level at the gas station is seldom used in the
explanation and also not missed by the subjects. As an ATM is needed in this scenario,
14 subjects miss it on the first level.

Scenario B: An Urgent Appointment

In scenario B, the satisfaction with the items is generally high with a median of 2
(rather satisfied) and 40% of the subjects are satisfied. One subject needs to enter the
second level and one the third level. Both subjects are at least rather satisfied after
selection on these levels. The detour is stated in 17 cases as relevant information. All
other arguments, also the price, are stated mostly as irrelevant in case it is used in
the explanation at all. The results reflect the adaptation of the user profile where the
importance of detour is set to highest and for all other features to lowest. Asking the
subjects if this behavior of the system (adaptation of user preferences) is desirable, all
affirmed.

Scenario C: A Regular Trip

In the next scenario, the satisfaction with the selection is in general low with a median of
3 and 80% of the assessments equal to or worse than 3. 11 subjects enter the second level
and their satisfaction slightly increases but still has a median of 3. The three subjects
who enter level 3 are significantly more satisfied. The detour is in this scenario relevant
for most of the users. In seven cases, the price is missed. Brand and gas level at the
gas station play a minor role in this scenario. In most of the cases, three gas stations
are recommended that are closely located to each other but differ in detour. Missing
differentiation in the item set is stated by most of the subjects as the reason for entering
further levels.
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Scenario D: A Regular Trip (Without Explanations)

In Scenario D, no interpreted explanations are used but all four item features are listed
as facts. The results show that the main features (price and detour) are classified as
relevant information by more than 50% of the subjects. The gas level at the gas station
is stated as irrelevant by more than 50%. Only six subjects believe that it is relevant. In
two of the four cases where the brand is stated as relevant, the preferences for the brand
are high. Hence, also two subjects who do not prefer a brand state this information as
relevant. Furthermore, the brand is not irrelevant for the most of the subjects. Note
that the brand is presented as a brand logo in this case. Further text explanations
such as ”brand gas station” or ”favorite brand” are not used. Due to the delivery of all
information in the first level, no subject enters the second level and only one enters the
third level. The subjects are rather satisfied with their decisions in the first level with
a median of 2. As all necessary information is delivered in the first level, the results for
satisfaction rather reflect the satisfaction with the recommended items than with the
explanations.

Scenario E: A Regular Trip with Inverted User Profile

In the next scenario, the profile is inverted with U(D)∗ = Umax − U(D). D is the
item feature, U(D) is the assessments of the users towards this feature and Umax is the
highest possible preference for this feature. Note, the closer the preferences are to Umax

2 ,
the less their weight is changed. Thus, mainly the subjects who state a dimension as
very important or very unimportant should recognize a change. The statements towards
relevance show that six subjects missed the price and eight subjects rated the brand
explanations as irrelevant. This corresponds to the user preferences where price is often
important and brand not important. In contrast to scenario D, the brand is explained
directly with the text ”brand gas station”. Eight subjects enter level 2 of which five say
that the explanations are irrelevant. Furthermore, five subjects also enter level 3 because
of irrelevant recommendations. The median of the satisfaction is 2.5 in the first level.
However, the subjects are indifferent because ca. 50% are rather satisfied or satisfied
and 35% are rather unsatisfied or unsatisfied. Satisfaction increases to a median of 2
with more information in level 2 and further increases (with the same median) in level
3. When asked, 12 subjects say that they expected different explanations.

Scenario F: A Vacation Trip

In the last scenario, an irregular trip to a vacation destination is presented to the users.
The satisfaction has a median of 3 but it varies strongly along the range of assessments.
12 subjects enter level 2 and justify their decisions in nine cases with missing information
about resting opportunities (WC,Bistro) or no recommendation is recognized as relevant,
mainly because of the location. If asked, 10 subjects say that they desire an appropriate
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option to make a break. For this reason, five subjects also enter level 3. The satisfaction
between level 1 and 2 only slightly increases but with level 3 significantly. All subjects
who switch to level 3 are at least rather satisfied. It is particularly noticeable that
besides price that is missed six times and brand that is irrelevant six times, the gas level
at the gas station is missed by six subjects and stated as relevant by three.

Further Results

Besides the investigation of specific scenarios, there are some more findings worth notic-
ing. We ask the subjects in a follow-up questionnaire if they would prefer that the
feature that is most important for them (e.g., price) should always be integrated in an
explanation. 13 of 20 subjects affirm this question.

Based on the results in the preliminary study, we want to know if the number of items
with a maximum of 3 and the number of arguments with 2 is confirmed in this ex-
periment. The system recommends in most cases three items and sometimes two. 14
subjects confirm that the amount is neither too less nor too much. Eight subjects state
the amount of arguments as rather too less or too less and nine subjects as enough. This
is due to the settings of our method. Sometimes one and sometimes two arguments are
calculated omitting negative arguments.

When interacting with the system, the subjects always have the possibility to interact
with the street map or at least see the locations of the gas stations relative to the route.
When asked, the subjects assess the map as a relevant source of information for their
decision. For some of the scenarios (D,E,F) the map is more useful than for others (B).
In B, the predominant argument is the detour. In general, the location of the stations
in the map does not contribute to the decision much. However, for a vacation trip, the
location is one of the most important factors. In their comments during the survey, the
subjects seem to prefer to get gas outside the city area, probably because gas stations
in dense city areas are more difficult to access.

Except of scenario D, we use interpreted explanations throughout the scenarios. In the
follow-up questionnaire, we ask the subjects if they prefer to have clear facts instead.
Although some subjects would strongly prefer interpreted arguments (3) and some rather
prefer them (4), the majority of 11 subjects strongly or rather strongly prefer facts.
During the study, the subjects often complain about the interpreted wordings. The
most complains are directed to the fuzziness of interpreted wordings and a patronizing
interpretation of information. For instance, not all users have the same understanding
of an inexpensive gas station. The subjects who prefer interpreted wordings state the
possibility of a faster decision with less cognitive effort as reason.
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7.4.4. Discussion

Explanations can be classified as useless in case the users enter the second level and are
not satisfied in the first level. This means that the items are not well explained and the
users hope to find more relevant information in the next level. If the user is satisfied in
the first level but enters the second level, then information that is not expected to be
part of the explanation is missed. If the user is still not satisfied in the second level,
then it indicates that the recommendations are not relevant. Entering level 3 because
of dissatisfaction indicates that the user does not believe in more relevant information
in the second level. Hence, recommendations are irrelevant. We see the negative effect
of irrelevant recommendations in the scenarios E and F where satisfaction goes up after
entering level 3. In scenario C, both explanations and recommendations are perceived
as irrelevant.

Overall, our method provides mostly relevant explanations but sometimes information to
differentiate is missed. The subjects perceive the number of arguments as exactly right
or rather too less. A comparison between scenario B and C shows that although detour
is stated as relevant information in both scenarios, in one scenario it is enough to make
a satisfying decision in the other scenario it isn’t. Especially the missing differentiation
to other features leads to negative assessments. We conclude that explanations should
be distinguishable. Incorporating counterarguments is one possibility. Also a dominance
filter can be used (Pu and Chen [PC06]). It guarantees that arguments are not presented
in a way that one dominates the other in the explanation.

The availability of user preferences does not mean that arguments can be selected only
based on them. Looking at the preference order in the user profile indicates that the
price is the most important feature, then the detour follows close behind. The gas level
at the gas station is barely important. The brand is only important for some of the
users. Regarding the assessment of relevant and irrelevant data (especially in scenario
D) unveils that detour seems to have a higher influence on the decision because it is
mostly relevant and seldom irrelevant. The Price follows and the gas level at the gas
station does not have any influence. Brand only sometimes has an influence which is
correctly reflected by the user profile. We conclude that the user profile is an important
source for generating explanations but it is not the only one.

Taking the amount of information into account (information score) is a promising method
to generate explanations. The assessments of the gas level at the gas station confirm the
usage of the information score. The gas level at the gas station is irrelevant in most of
the scenarios. In scenario D where it is shown every time, most of the users classify it as
irrelevant additionally. The users do not want to get recommendations when their tank
is still full or already empty. In between this range, the gas level at the gas station varies
only slightly for short routes, i.e., it has a low information score. Although the users
expect the system to incorporate this information in the calculation, it is not a feature
for the final decision. This does not hold for scenario F. In this case, the gas level at the
gas station is stated as relevant or is even missed. In this scenario, the gas level at the
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gas station varies much stronger because of a long route, i.e., it has a higher information
score. Hence, the gas level at the gas station becomes relevant for the decision making.

Other features such as an ATM also have an influence on the decision of the user but
do not lead to unsatisfied choices in scenario A. The subjects seem to understand and
expect that the system is only hardly able to infer on the need for money. They accept
that in this case accessing details on other levels is necessary. Hence, details should be
made accessible very easily. But there are also situations in which the system is expected
to handle additional needs. In scenario F, we have a long route in the vacations. This is
comparable to the additional need of an ATM in scenario A. In this case, the subjects
seem to expect that this circumstance is incorporated by the system. Hence, they are
more unsatisfied. Especially the location of the gas station relative to the route and
facilities such as a toilet play an important role.

Scenario B shows that we can confirm our finding in the preliminary study. The users
like the intelligent incorporation of context information, e.g., appointments. It gives the
system an unexpected intelligence in comparison to regular scenarios and it increases
the benefit of such a system. We assume that there are more special situations that are
suitable for such kind of intelligent filtering, e.g., the overall reachability of gas stations
in not densely populated areas.

7.5. Situation Explanations

The second kind of explanations on which we focus in this thesis are situation expla-
nations. These are explanations to justify the decision of the system to deliver recom-
mendations based on the situations of a user. For instance, a low current gas level is
an obvious situation for a gas station recommendation but there are some more situa-
tions that may lead to a recommendation. These situations can be a rather good gas
station along the route (e.g., very low priced), a deserted area with few gas stations
or an important appointment that leads to a recommendation only with gas stations
on the route. Without an explanation, a proactive recommendation in these situations
may result in confusion. In this section, we investigate how arguments can be extracted
from the comprehension model described in Section 5.2. The goal of these models is to
enable intelligent behavior of an advisor that decides what to do in a specific situation to
assist the users in their tasks. A justification by means of explanations should reveal the
reasons of the advisor for its decision. Reasons are situations that lead to the decision.
We focus on the Bayesian network comprehension model in this section.

7.5.1. Explanation Goals

The goal of a situation explanation is to make the decision of the system comprehensible
for the user. In contrast to our item explanation method, the reasoning instead of the
resulting output should be explained. Hence, the explanation method depends on the
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applied method in the comprehension model. Our method explains the states of the high-
level situation for the proactive recommendation (”Yes”, ”No”, ”Too late” and ”Later”)
because the decision of the system is made upon these states. In general, we explain a
binary decision of the system. Either it decides not to recommend in a situation or to
deliver recommendations (notifying is regarded as delivery).

Our preliminary study shows that proactively delivered recommendations should rather
contain less than more information. Therefore, our method extracts one or at most two
significant situations that account for the decision of the system. The method delivers
these arguments automatically. Additionally, our method extracts all situations that
contribute to the decision, ranks them and makes them accessible for the user. We
explain why recommendations are delivered by generating arguments for the decision of
a system. This corresponds to a positive decision in case the system decides to deliver
recommendations. A negative decision occurs if the system decides against delivery (see
Section 4.3.3).

7.5.2. Explanation Task

All situations S

Explanandum EXExplanatory
Situations H

Explanation EAuxiliary
Situations SA

High-Level Situations SHLow-Level Situations SL

Observations O

Figure 7.4.: Building an explanation E for those situations that should be explained
(explanandum EX)

Our explanation task for the comprehension model is to select a set of situations for an
explanation E out of the set of possible explanatory situations H (Figure 7.4). Explana-
tory situations H explain the situations in the explanandum EX. They correspond to
criteria that the users incorporate in their decision towards items. Explanatory situa-
tions H are always observed situations O because of uncertainty of unobserved variables.
Explaining with unobserved situations may confuse the user. For instance, if the believe
of the system does not correspond to the experience of the user. Auxiliary situations
SA are not taken as explanatory situations because decisions are not based on these
situations. These situations can be observed and unobserved. The explanandum EX
is a subset of the high-level situations SH that are not observable but inferred with
comprehension models. Thus, we explain the reasoning on EX based on observations
O. The explanation E is a set of situations and their states. This information is used as
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arguments. For instance, ”current gas level is low” can be an argument with ”current
gas level” as situation and ”low” as state.

7.5.3. Argument Selection

Argument Strength

Our idea is to measure the impact of an observation of a low-level situation on the
posterior probability of a high-level situation. The impact is measured for each high-
level situation SH separately. It describes the strength of an argument that is built on
the low-level situation.

dy = P (SH|SL1, . . . , SLn, SA1, . . . , SAm)− P (SH) (7.3)

For the impact, we define the increase difference dy in Equation 7.3. It is the difference
between the posterior probability after observation of low-level situations SL and aux-
iliary situations SA and the prior probability. This corresponds to the change of the
high-level situation after all observations.

dxi,k = P (SH|SLi,k, SA1, . . . , SAm)− P (SH) (7.4)

To receive the impact of every single situation, we calculate the conditional probability
of every state SLi,k and the high-level situation SH under all observations SA. The
result is again compared with the prior probability of SH (Equation 7.4).

impacti,j,k = |dxi,j,k| × (1.0− |dxi,j,k − dyj |) (7.5)

The final impact on each state SHj is then defined as the product of the differences with
Equation 7.5. The first term of the equation corresponds to the absolute difference that
the k-th state of the low-level situation SLi has on the j-th state of the high-level situa-
tion SHj . As the change can either be negative or positive, we also need to incorporate
the tendency of dy. The closer dx and dy are, the more impact the low-level situa-
tion has. For instance, ”gas level = low” implies a high positive change to ”Proactive
Recommendation = Yes”, i.e., the prior probability P (′′Recommendation = Y es′′) is
smaller than the posterior probability P (′′Recommendation = Y es′′|′′gaslevel = low′′).
If for any reasons, e.g., other influencing situations, we infer that the prior prob-
ability Pprior(

′′Recommendation = Y es′′) is higher than the posterior probability
Pposterior(

′′Recommendation = Y es′′) and we make the observation ”current gas level
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= low”, then the impact should be low because another situation causes the inference
result.

scoreSLi =

h∑
j=1

(

l∑
k=1

µSL(SLi,k)× impacti,j,k)× P (SHj |SL1, . . . , SLn, SA1, . . . , SAm)(7.6)

Additionally, we want to incorporate the membership µSL of the states of SL because
they are fuzzy. We aggregate the impact over all states of SH to a final score in Equation
7.6. The score for each low-level situation SLi is calculated over l states of the situation
and its memberships µSL. It is weighted with the posterior probability of SH for h
states. Weighting is important because we are more interested in the impact of more
likely states of SH. These states contribute to the decision of the system. To determine
the state k of the low-level situation SLi that is taken as argument, we simply take the
one with the highest membership in Equation 7.7.

SLi,k = argmaxµ(SLi,k)SLi (7.7)

Negative and Positive Arguments

For our final explanation, we have to distinguish positive and negative arguments. For
instance, it makes no sense to present just a negative argument in case a recommendation
is delivered. We determine a set of states of the high-level situation SH. The set corre-
sponds to the action that the system performs. These are the two actions ”recommend”
or ”don’t recommend”. We derive from the estimated benefit B that one is performed.
The higher the benefit, the more likely a recommendation is given. Hence, rules that
contribute to a positive benefit are positive and vice versa. The state ”Yes” accounts for
high benefit and the state ”No” for low benefit. The state ”Too late” is intermediate.
Therefore, it can be disregarded. Finally, we simply have to compare dxi,′′Y es′′ with
dxi,′′No′′ of situation SLi for its state i with the highest membership (Equation 7.8).

positive(SLi) =

{
true dxi,′′Y es′′ > dxi,′′No′′

false otherwise
(7.8)

7.5.4. Explanation Process

Prefiltering

The situation states are processed in order of their importance for the user. The im-
portance can be represented by the order of primary decision dimensions defined in the
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fuzzy logic comprehension model in Section 5.2. Situations that are more important in a
decision are regarded earlier. With the importance and the impact, we select arguments
for the explanation. If the observed situation has a larger impact than α, it is good
enough to be included in the explanation. If its impact is even larger than β (β > α),
then we have a significant argument and can terminate the search for more arguments.
Terminating can only be done in case there is already at least one argument that sup-
ports the decision. We also terminate the process if a maximum of nmax arguments are
found. As the observations are processed in order of their importance, there can be a
significant argument together with a more important argument in the explanation. In
case the impact of no argument that supports the decision is larger than α, we search
for the first argument in the observation set that supports the decision regardless of its
impact. Only if one argument supports the decision, the search ends successfully. Oth-
erwise, we suppose that something went wrong during the inference because it should
be impossible that we recommend and no observation indicates that we should do so.

Finally, the observations are used to build an explanation. Different combinations are
possible. For instance, they can be ordered by their impact or importance or the con-
tribution can also be regarded. Supporting arguments can be given first, then the rest.
The implementation of prefiltering of arguments is described in Appendix D.3.

Ranking

Depending on the value of α, explanations can become large. Especially in automobile
and proactive scenarios, explanations should be brief and concise. Thus, we further
reduce our explanation by considering more properties of an argument. To achieve this,
we rank all the arguments and select the first k.

One further property of an observation is its obviousness. It expresses whether the
user expects an argument. The more an argument is expected the less useful it is for
argumentation. We measure the obviousness with the prior probability distribution. We
assume that if the state of a situation is very likely, it is obvious for the user. However,
taking only the probability of single states disregards the number of possible states a
situation has. For instance, consider a situation with two and a situation with eight
states. An observation o with P (o) = 0.5 is much more obvious in case of an eight state
situation as the remaining probability P (!o) = 1.0−P (o) = 0.5 is distributed over seven
states in contrast to a one state situation. Hence, we need to regard the number of states
in our assessment. We transfer the probability to a score with a function f(x) where
f(0) = 0, f(1) = 1 and f(0.5) = 1− 1

k with k states. The function ensures that equally
distributed observations are always mapped to an obviousness of 0.5. The memberships
of the observations do not have to be considered for obviousness because only states with
the maximum membership are presented to the user.

Another criterion that is taken into regard for ranking, is the prior knowledge of the user
about the observation. Information that is already known by the user is less valuable
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than information that less known because it is determined or retrieved by the system
itself. For instance, the current gas level is information that the most of the cars display
clearly visible for the driver, whereas the estimated gas level at the destination is more
valuable because it is calculated by the system. An argument based on information
with strong prior knowledge can be more easily omitted in the explanation than an
argument without prior knowledge. Automatic detection of prior knowledge is often
unfeasible or involves high costs. On the other hand, experts can often easily estimate
prior knowledge in many domains such as gas station recommendations. Therefore, we
use a static mapping of situations and prior knowledge where we assign a value in [0, 1]
to each low-level situation in a profile.

Our final ranking task is to select a maximum of k observations out of a set of n prefiltered
observations. Each observation is described by the importance IM , the impact IP ,
the obviousness OB and the prior knowledge PK. Hence, we have a multi-criteria
decision making (MCDM) problem. We use an analytic hierarchy process (AHP) with
pairwise comparison to rank the arguments. More details about our AHP can be found
in Appendix D.3.

Select k-best 
Arguments

Importance Impact Obviousness Knowledge

Argument 1 ... Argument n

Criteria

Alternatives

Goal

Figure 7.5.: Analytic hierarchy process (AHP) to select k-best arguments

Figure 7.5 shows our AHP hierarchy. Our goal is to rank the alternatives by a single
numeric value and select k-best alternatives. On the criteria level, the weights of each
criterion are determined by a manual pairwise comparison by experts. It resulted in a
weight of 0.39 for importance, 0.39 for impact, 0.15 for obviousness and 0.07 for prior
knowledge. On the alternative level of the hierarchy, every alternative is compared with
each other on each criterion separately. As we do not want to do this manually, a
mapping function from the difference of criteria 4c = Ai(c) − Aj(c) of alternative Ai
and Aj to Saaty’s Rating Scale is needed.

ri,j(c) = 1 + 8f(
Ai(c)−Aj(c)

crange
) (7.9)
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We use the function in Equation 7.9 to calculate the i, j-th rating value r in the pairwise
comparison matrix for criterion c. The difference of the criteria is scaled with the range
of the values crange to make sure all values are in [0, 1]. The result is evaluated with
a function f(x) depending on the distribution of the values over the range of criterion
c. Finally, we calculate the Eigen vector for each criterion but it does not need to be
normalized. The ranking value is calculated with the linear function in Equation 7.10.

ranking(Ai) =
∑
c∈C

Eigen(c)× Eigen(Ai(c)) (7.10)

Explanation Sets

In the final step, we create two explanations sets. A comprehensive explanation contains
enough arguments m out of n prefiltered arguments to explain the situation in detail.
However, in an automotive scenario we need a more condensed explanation as well. The
second explanation called justification explanation contains k out of n arguments of the
ranking where k is usually much smaller than m (one or two). The arguments in a jus-
tification explanation are also included in a comprehensive explanation. If no argument
supports the decision in a justification explanation, e.g., the argument is negative in
case a recommendation was given and vice versa, we simple take the next supporting
argument in the rank. The prefiltering guarantees that there is at least one. With this
information, we apply a surface generation described in the previous section for item
explanations.

7.5.5. Discussion

Our argument strength is inspired by work of Suermondt [Sue92] and Jeffreys [Jef61] who
measure the impact of a node in a Bayesian network to another node by the difference of
posterior and prior probabilities. Our method also incorporates ideas of Shimony [Shi91]
towards irrelevance of variables and their prior distributions by de Campos [dCGM01]
to extract only relevant arguments. In contrast to Flores [FGM05] and Nielsen et al.
[NPE08], we do not allow explanations with unobserved variables because we believe
that this would confuse the user in our application domain, especially if the prediction
is not correct. Additionally, our method incorporates the fuzzy nature of nodes in the
Bayesian network. Compared to complex explanation domains such as medical diagnosis,
our explanation process is much simpler because we do not have to follow the whole
reasoning thread.

We choose AHP to rank arguments according to their properties. In general, argument
selection can be done by determining optimal solutions, e.g., with a variant of the Skyline
filter, or by building a ranking and selecting the top-k alternatives. The last method is
more suitable with a constraint of a maximum of k elements. Many MCDM methods
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exist to build rankings. Multi-attribute utility theory (MAUT) requires assessments of
alternatives in the same value range for each dimension. Otherwise, it would compare
the incomparable. Although our criteria values are in [0, 1], each of the criterion uses the
range in a different way. Importance and impact usually take on small values, whereas
obviousness and prior knowledge often take a value of 1. MAUT calculation is biased
privileging the criteria with high values. Therefore, we use pairwise comparison which
is not restricted to the range of the values. Pairwise comparison calculates assessments
for every dimension by comparing each alternative on a dimension based on a uniform
scale that makes dimensions comparable.

It could be useful to make comprehensive explanations available for the users who want
to get a deeper understanding of the situation such as described by DeCarolis et al.
[dCNPG09]. Their approach could be an extension of our comprehensive situation ex-
planations. We simply list the situations that lead to a recommendation in order of their
impact. DeCarolis et al. use comparative explanation structures and formulate whole
sentences.

7.6. Evaluation of Situation Explanations

We run our method of selecting arguments for situation explanations in preselected
situations to investigate the plausibility of generated explanations. We take β = 0.15 for
significant arguments and α = 0.05 for arguments that are good enough. The maximum
number of arguments nmax is 5. For the justification explanation, we select k = 2
arguments. Table 7.3 shows the results. The first row of each example depicts the
raw value of the context information that is used for the situations in the Bayesian
comprehension model. The second row gives a possible comprehensive explanation and
the third row a reduced justification explanation. The arguments are ordered by their
impact IP . Arguments that support the decision are listed first. The decision threshold
is t = 0.55, i.e., benefits B above the threshold lead to recommendations and values below
the threshold are against recommending. The explanation text is created according to
the state of the situation with the maximum membership. The table shows text examples
that we created by hand because no surface generation is implemented. Decisions that
support arguments in the beginning are separated by ”but” or ”however” from arguments
against the decision. The examples do not claim to be sophisticated sentences because
this is not the scope of the thesis.

7.6.1. Examples

The first example mainly explains the reason for a recommendation with ”current gas
level” and ”gas level at the destination” because both are low. However, the reduced
explanation contains ”gas level at the destination” and ”reachability of good located and
low priced stations” because ”current gas level” is a more obvious observation.
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Sit. B GL GAD M RL RT POR A REA REL REP

Unit [0,1] L L 0—1 m [0,7] % 0—1 # # #

1 0.78 5.72 3.80 1 40 7 0.40 0 31 4 1

Your gas level is low at destination [0.15] and now [0.13]. There are some
well located and inexpensive gas stations [0.12], but only a few well located
stations are reachable [0.05].

Your gas level is low at destination and there are some inexpensive gas. stations.

2 0.58 8.92 7.40 1 20 7 0.05 0 38 2 1

There are some inexpensive and well located stations [0.15], only few well located
gas stations are reachable [0.09] and you are in the beginning of the trip [0.07].
However it’s a regular route [0.06] and many gas stations can be reached [0.06].

There are some inexpensive and well located gas stations.

3 0.38 8.84 7.40 1 20 7 0.10 0 37 2 0

There are many stations reachable [0.08], you have enough gas at destination [0.07]
and you are on a regular route [0.07]. However, there are only few gas stations well
located [0.06] and you are in the beginning of the trip [0.05].

There is enough gas at the destination, but there are only few well located stations.

4 0.27 14.04 12.60 1 30 7 0.40 0 31 1 0

There is a lot of gas at the destination [0.27].

There is a lot of gas at the destination.

5 0.45 13.56 8.60 1 80 7 0.23 0 34 2 0

You have much gas now [0.18] and enough at destination [0.09].

You have much gas now and enough at destination.

6 0.80 3.12 -2.40 0 80 7 0.14 0 36 2 0

You are out of gas at the destination [0.22].

You are out of gas at the destination.

7 0.89 3.92 3.60 1 5 7 0.20 0 35 2 0

Your gas level is low at the destination [0.15] and now [0.15], there are only few
well located gas stations [0.06].

Your gas level is low at destination and currently.

8 0.36 7.08 3.80 1 65 2 0.37 1 31 5 0

You are on a business trip [0.15], you can reach many well located stations [0.10],
you have enough gas [0.10] and you are also on a regular route [0.09].
However, you are low on gas at the destination [0.15].

You are on a business trip, but you are low on gas at destination.

Table 7.3.: Generated example explanations with task benefit (B) and situations:
current gas level (GL), gas at the destination (GLAD), modality (M), route
length (RL), route type (RT), position on route (POR), appointment (A),
reachability of gas stations (REA), well located gas stations (REL) and well
located and inexpensive gas stations (REP); [argument strength]
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In the second example, the system decided to recommend. The explanation shows
that the reasons do not include primary decision dimensions. Both ”current gas level”
and ”gas level at the destination” are in state ”enough” which generally leads to no
recommendation. However, in this situation there are some well located and inexpensive
gas stations along the route.

In Example 3, no recommendation is given. Many reasons such as enough reachable gas
stations or enough gas at the destination confirm this decision. Just a few well located
gas stations that are reachable do not lead to a recommendation in this case. Together
with ”gas at the destination” it forms the reduced explanation because the knowledge
of many reachable gas stations is much more obvious than their location relative to the
route.

In the examples 4, 5 and 6, primary decision dimensions clearly dominate the reasoning.
No recommendation is given in Example 4 because of much gas at the destination (the
impact exceeds α). Example 5 shows that ”gas at the destination = enough” does not
explain solely that no recommendation is given because there might be other reasons.
On the other hand, the situation ”current gas level = much” explains the decision (it also
exceeds α). Note, although ”current gas level” exceeds α, ”gas level at the destination” is
also included in the explanation because it is more important in the decision for refilling.
In Example 6, an empty gas tank at the destination exceeds α but this time in favor of
a decision for recommending.

In the seventh example, the decision to recommend is mainly based on ”current gas level”
and ”gas at the destination”. The decision is underlined by only a few well located gas
stations that are reachable.

In the last example, a low gas level at the destination would usually account for delivering
a recommendation. However, in case of a business trip, the system makes the opposite
decision. This is the case because there is enough gas in the tank.

7.6.2. Discussion

The examples show that our method generates reasonable justification explanations
which should be easy to understand for the driver. The explanations are dominated
by primary decision dimensions such as current gas level and gas level at the destina-
tion in most cases. However, other situations such as well located and inexpensive gas
stations or a business trip with an appointment are also sometimes the main argument.
The results for the longer comprehension explanations are often complicated sentences.
Simply listing the arguments by their rank and contribution to the decision often does
not generate clear explanations. Guidelines from the argumentation theory concerning
the position of an argument may help to improve the results. For justification expla-
nations, most guidelines are not necessary because the explanation is too short. Based
on the examples that we discussed, it is not clear if comprehension explanations provide
more useful information than justification explanations.
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Our method strongly depends on the quality of data for parameter estimation in the
Bayesian network. The values for the strength of an argument are low for all situations,
even if the situation is clear, e.g., the current gas level and the gas level at the destination.
Noise in data may have an influence on the ranking of arguments. As a result, arguments
may change frequently along a route.

Obviousness and prior knowledge are relevant criteria to generate useful arguments.
However, their value is static and only an estimate. Different users of the system may
perceive these criteria differently, especially with experience with the system.

7.7. Summary

To justify system decisions, we presented methods to generate explanations for recom-
mended items and for the reason why a recommendation was given. The evaluation is
carried out for a gas station recommender. For this use case, we do not know which kind
of information should be used to generate arguments for the explanation. A prelimi-
nary study investigated arguments, counterarguments, arguments for items that were
not recommended, number of arguments and the structure of the arguments for item
explanations. The results show that only a few arguments (one or two) should be used
for each item and the arguments should be selected according to the user preferences.
The study also indicates that the users like explanations with situations that are a reason
for a recommendation.

Several different kinds of explanations are imaginable in a P-IVRS. They follow dif-
ferent explanations goals, impose different amounts of cognitive load and may require
involvement of the user to be retrieved. We classified relevant explanations for a P-IVRS
towards the user interface. The approach corresponds to several stages of a recommen-
dation process in a mixed initiative with the driver. Our focus is explanations justifying
system decisions, i.e., why something was recommended and why exactly these items.

We presented a score-based method for item explanations that uses the output of our
context-aware recommender. The method adds two scores for strength of an argument
and its amount of information. The strength is based on the performance of the item
features and user preferences. Amount of information comprises how obvious an argu-
ment might be. Our explanation process selects suitable arguments (content selection)
and builds the final explanation from its selection (surface generation). First, a major
argument is selected. A second argument is necessary for item explanations in case not
enough information is in the first argument. In a second user study, we implemented
parts of the explanation user interface and let the participants assess generated explana-
tions in various scenarios. In most cases, our method generated relevant explanations.
However, only one argument was often not enough for an item. Although user prefer-
ences have a major influence on the relevance of arguments, also further aspects seem
to be important. In general, the quality of the explanations depends on the items that
are recommended by the system.
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Our explanation method for situations focuses on our Bayesian network comprehension
model. In contrast to the item explanation method, the situation explanation method
is tailored to the method of inference. In case of items, the scores contain all neces-
sary information for an explanation. There, we do not need to explain the method to
generate scores. In contrast to that, the posterior setting of the comprehension model
defines the reasons for inference, i.e., which probabilities are propagated. The goal of
the situation explanation process is to select observed situations that have an impact
(cause change of probability) on the output of the comprehension model. This corre-
sponds to the argument strength. The process also involves further dimensions such as
obviousness of information and prior knowledge about the information. It ranks poten-
tial situations for an explanation. Finally, a justification explanation is built with one
or two arguments and a comprehension explanation with more arguments. Examples
for justification explanations show reasonable results. The usefulness of comprehension
explanations should be regarded in a further analysis.
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8. User Acceptance of a P-IVRS

The previous chapters dealt with functional aspects of P-IVRS. We described how
situation-aware behavior is enabled, context-aware recommendations are selected and
explanations are generated. The evaluation of the presented methods was carried out
offline or on a desktop system. However, a car offers a restrictive environment for recom-
mender systems where interaction and information delivery is limited due to information
overload and driver distraction. Hence, we cannot tell solely based on its functionality
whether a P-IVRS would be accepted while driving. In this chapter, we implement an
integrated P-IVRS for gas station recommendations. Our main focus of investigation
is the usefulness of the system. As the prototype is in an early stage of development,
ease of use plays also an important role. Therefore, we first design the user interface
of the P-IVRS according to requirements on proactive recommender system. To adjust
the recommender to the requirements of an automotive environment, we ask automotive
experts in interviews with our prototype. With the final user interface, we carry out a
user study using the method of ”think aloud”. We published our expert study, the user
interface design and an abstract of the evaluation of usefulness in [BSW11].

8.1. Ease of Use

The technology acceptance model (TAM) that was introduced in Section 2.5.5 is used
as theoretical framework for our investigation. Our focus in this chapter is to derive
perceived usefulness (U) of a proactive recommender system inside a car. In TAM,
perceived ease of use (EOU) is the other important factor influencing user acceptance
and usefulness (U). As our prototype is in an early stage, EOU is a crucial aspect when
the users interact with the prototype. Therefore, we design an in-vehicle interface for
proactive recommendations in this section.

8.1.1. Design Guidelines

We carry out expert interviews with BMW engineers to incorporate their experience in
our interface design. We show the experts an early version of our prototype and ask
them about their opinion. The experts are selected based on their expertise. One is a
specialist for HMI aspects in cars, the other for POIs in the navigation system of the
car, the next for driver assistance systems and the last for customer marketing. Some
example statements of the experts are listed in Table 8.1. They are grouped according
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Guideline Description Examples of expert state-
ments

Minimal Information Too much information as
well as complex information
should be avoided

The display of a detour route
provides no information while
driving

Scanability The information should be
comprehensible by as few
glances as possible

Long-term action sequences
on the map, e.g., animated
zooming, should be avoided

Consistency The effect of actions, icons
and colors should be consis-
tent during the interaction

A push to the left should lead
to more details; Unfamiliar in-
formation presentation, e.g.,
gas level in liter, and icons
known in other context should
be avoided

Expectation The system should be control-
lable and structured the way a
driver expect it to be or is fa-
miliar with

Pressing the controller is al-
ways coupled with an action

Metaphors Information delivery and in-
teraction should be mapped
to known metaphors

A checkered flag should indi-
cate that the item can be in-
tegrated in the current route

Controllability The driver should have full
control over the system at all
times

Every action should deliver
feedback, e.g., a confirmation
for a selected item

Input As less input from the driver
as possible should be required
while driving

The pop-up should easily be
escapable

Understandability Text and graphics should be
understandable by laymen

Usage of colors for assessment
should be transparent; Icons
should be easy to understand
or familiar; The current po-
sition should always be dis-
played

Table 8.1.: Design guidelines derived from expert interviews
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to common guidelines for in-vehicle information systems (IVIS) that are described by
Green [GLPS95]. Green’s work comprises visual, speech, haptic and acoustic in- and
output guidelines for in-car information displays.

We also incorporate assessment criteria for driver assistance systems summarized by
Breuer [Bre09] . First, the adaptation phase should be as short as possible. Second, the
system should react like the driver expects it does and it should be consistent in similar
situations. Third, information systems should have a clear human machine interface
(HMI) and should be easy to control, e.g., turning off and on. These guidelines are based
on conditions that the automotive environment imposes (see Section 2.1). In general,
the less cognitive effort and distraction an information system causes, the better.

To achieve the collected design goals without comprehensive user studies, we design our
interface as closely as possible according to the current HMI concept of current BMW
cars in 2011.

8.1.2. User Interface Design

Our recommender is integrated in the central information display (CID). The driver is
able to control the recommender with the iDrive controller. Other interfaces such as
the instrument cluster or the head-up display are out of scope of this thesis. The same
applies to other channels of output such as speech or haptic. The iDrive controller can
be pressed, turned and pushed to the right, left, top or bottom. The recommender is
mainly designed according to the three main requirements on P-IVRS concerning ease
of use (unobtrusiveness, accessibility, transparency). It takes requirements on IVIS into
account which are derived from literature and our expert interviews. The stages of
interaction correspond to our theoretical concept of an explanation user interface for a
P-IVRS described in Section 7.2.

Unobtrusiveness

If a recommendation system has information for the drivers, they should notice this
while driving. On the other hand, distraction from the primary task of driving with
information overload should be avoided. For this reason, we use a two-phase proactivity
approach. A small icon in the right lower corner of the screen represents the recommender
(Figure 8.1). It can either be inactive (Figure 8.1a) or active without (Figure 8.1b) or
with recommendations (Figure 8.1c).

(a) Inactive (b) Idle (c) Notify

Figure 8.1.: Recommender icon with different states
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In the first phase, the driver is notified about available recommendations by a change
of color (Figure 8.1c). This gives the driver the option to look up the recommendations
in advance without time pressure. The driver is able to use a less workload intensive
situation such as a traffic jam or standing still at a traffic light to review available
recommendations by pressing the recommender icon. The second phase covers the pop-
up view (Figure 8.2). It is either shown automatically by the system itself or is invoked
by the driver manually by pressing the recommender icon.

Figure 8.2.: Navigation mode: Pop-up view of the proactive recommender next to the
navigation map

The pop-up captures one third of the map view to leave enough space in the viewing
area to navigate or to orientate on the map. It is placed on the right side to cover the
area that is farther away from the driver. This is less distracting as on the left side
which is closer to the driver. After the pop-up appears, the map stays in the same mode
as it was before (navigation mode). No interaction is required from the driver at this
moment. After a certain amount of time (e.g., 30 seconds), the pop-up starts to fade out
and finally disappears. We assume that the driver is not interested in recommendations
in this case. Any kind of interaction, except the closing action, changes the map to
exploration mode where the location of items and the current position is shown.

Accessibility

Proactive recommendations appear without request of a user. For efficient decision
making, relevant information should easily be accessible. Therefore, interaction patterns
from the BMW HMI are used. The drivers are already used to these patterns. The pop-
up in Figure 8.2 is designed as list which matches the turn movement of the iDrive
controller. Also, pushing and pressing of the controller behaves as the drivers would
expect. A push to the left leads to less details or to close the recommender on the lowest
detail level. A push to the right reveals more details if available. A small arrow depicts
allowed directions of pushing for novice users (e.g., in Figure 8.2). The users are able
to escape the pop-up whenever they want with an extra button. Pressing the controller
on a list entry leads to a change of view. For instance, pressing the list entry of an item
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adds the item to the route and automatically plans a route via the item. Important
details of an item and a list of more recommendations can easily be accessed. Figure
8.3 shows the detail view for items. It contains item attributes (e.g., facilities of the gas
station) and features with explanations (e.g., a detour of 11 min is a ”long detour”).

Figure 8.3.: Item detail view with features and explanations for the features

The drivers may also dislike the items because they are interested in recommendations
for another task. Other tasks can be accessed by a left push on the header of the
pop-up view. Figure 8.4 shows a list of tasks for which a driver is able to receive
recommendations. The list may be ordered by the benefit of a recommendation for a
task. For instance, the task ”refueling” can be on top of the list in case the gas level is
low and the task ”parking” is on top in case the drivers are close to their destinations.

Figure 8.4.: Task view that shows all possible tasks

Transparency

IVIS should be understandable for the users in general. This also applies to proactive
recommendations as information is delivered without the request of a user. The decisions
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of the system are justified by means of explanations for the reason of a recommendation
and the strength of each recommended item. We use our method from Chapter 7 to
extract such explanations automatically. On the first level of the pop-up, the most
influencing reason of a recommendation is explained in the header of the pop-up view (the
justification explanation). If more detailed information about the situation is needed, it
can be accessed with a push to the right on the header. This results in a comprehensive
explanation (Figure 8.5) that lists the arguments of the situation explanation. The order
is chosen according to the impact that a situation has to the recommendation decision.

Figure 8.5.: Situation explanation view with a detailed explanation

Recommended items are explained on the first level of the interface with facts, e.g.,
”Price 1,34 Euro”, or interpreted information, e.g., ”extra low priced”. On the second
level, further details can be accessed with a right push (Figure 8.3). We only use minimal
sentences like ”current gas level low” in the surface generation and avoid additional ex-
planations like ”These items are recommended to you because ...” to reduce information
overload while driving. An icon in the header indicates the type of a recommendation.

Figure 8.6.: Exploration mode: map view with the item location and the current position
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Because the offline study in the last chapter showed that the map view provides a rich
information source for quick orientation, the items in the list of the pop-up can be
matched to the POIs on the map by the brand of the item and a unique color. For
a better orientation in the exploration mode, the zoom level of the map is adjusted
automatically if an item is selected. The new zoom level shows the current position of
the car and the location of the item (Figure 8.6). This makes it easier for the users to
estimate the location of the item relative to their routes. Every further item is displayed
as a colored icon on the map like in Figure 8.7a. If further information is needed, a list
of all items (Figure 8.7b) can be accessed as a third level of the interface by pressing the
controller after the last item in the list (”more recommendations” in Figure 8.6).

(a) More recommendations as small icons on the map

(b) List view with item features: price for gas (e.g., 1.34 EUR), distance to the
station (e.g., 9.8 km), remaining distance to drive when arriving at the station
(e.g., 79 km) and detour (e.g., 11 min)

Figure 8.7.: More recommendations shown on the map (a) and as list view (b)

8.2. Usefulness

The previous section addressed ease of use (EOU) of the prototype based on expert
interviews and requirements from literature. We carry out a second study with potential
users to investigate perceived usefulness (U) in more detail.
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8.2.1. User Study

We set up a prototype-based approach for evaluation instead of a scenario-based ap-
proach with paper prototypes. Van der Heijden et al. [vdHKK05] suggest using the
prototype-based approach for mobile recommender systems. To limit costs and time,
we combine the prototype-based approach with predefined scenarios. Our subjects use
the system in these scenarios. The prototype is deployed in a BMW 550i GT. The CID
of the car is connected with our prototype which is installed on a regular PC that is
located in the trunk. The drivers control the prototype with the iDrive Controller. A
common street map is used with about 15.000 gas stations. We update the gas prices
in advance of the study by means of an online service. All routes are calculated by the
route planner which we already implemented for the study in the last chapter. As we
neither use artificial data nor mock-up functionality, the setup is close to a real world
system.

Metrics for Perceived Usefulness

We determine four external variables to measure perceived usefulness (U) based on
findings in literature. The expectations of the users are an important criterion because
the prototype is an early stage where the participants of the study do not know the
functionality in advance. The more a system meets the expectations of the users, the
more valuable it is perceived (derived from expectation confirmation theory by Oliver
[Oli80]). In case of proactive recommendations, transparency also influences U. The
better the system explains its reasoning, the stronger relevance and utility are perceived.
It was already shown by Cramer et al. [CER+08] that transparency has a positive effect
on how the users perceive the competence of a system. Relevance of items is in general an
important factor for recommender systems. Additionally to the relevance of information,
Rhodes [Rho00] suggests measuring the utility in case of proactive information systems.
Utility comprises context-awareness as well as accuracy.

Predefined Scenarios

In the first scenario the subjects are asked to imagine that they picked up their new
BMW recently and now they want to explore the functionality of a new feature, the
proactive recommender for gas stations. We follow an explorative strategy where the
subjects become familiar with the system by themselves. If features are not discovered
or icons and words are not comprehensible, the interviewer explains everything that is
not clear.

For the second scenario, we choose a route from the north of Munich to Herrsching with a
current gas level of six out of 80 liters where refilling the tank is necessary. The subjects
should imagine that they are on a trip in their leisure time. In most of the cases, the
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recommender pops up right after the beginning of the ride because there are many gas
stations in this area and the current gas level is low.

In the third scenario, the current gas level is set to 13 liters where refilling is not necessary
but the drivers may perform it on occasion. The subjects should imagine that they drive
home from the city after a shopping tour. It is a half an hour ride from the north of
Munich to Dachau. On the way to Dachau, there is an inexpensive gas station along
the route and all other available gas stations are much more expensive. Depending
on the settings for price in the user profile, some subjects are notified that there is a
recommendation. Only this item is recommended.

In the fourth scenario, the current gas level is set back to six liter and time pressure due
to an appointment is added. User preferences are adapted proactively. For instance, if
price is preferred, it becomes less important in the assessment.

Study Design

Each subject is interviewed individually within our test vehicle in a standing still si-
tuation and while driving. After a socio-demographic questionnaire, we interview the
subjects about their expectations of a proactive recommender in general and especially
of a gas station recommender. They also have to enter their preferences for gas price,
detour, brand and remaining gas level at the gas station. Then, we successively give
them descriptions of the predefined scenarios. After they finished reading a description,
the users are allowed to drive off. The method of ”think aloud” is used while selecting
a gas station to analyze the decision making process. For each of the scenarios, the
current gas level of the car is adjusted accordingly. In the first scenario, the car is in a
parking position to make the subjects familiar with the prototype. In all other scenarios,
the subjects drive the car and follow guidance instructions to a specific destination. To
shorten each run, the scenarios are interrupted after item selection.

ID Statements

Q1a The recommendation fits my given profile

Q1b The recommendation fits my current situation

Q2 The number of items is enough

Q3 I can make a decision for a gas station
based on the given information

Q4 I understand why I got these items

Q5 I am satisfied with the recommendation

Table 8.2.: statements for measuring usefulness (U)

To measure the usefulness of the recommendations, the subjects have to assess five
statements (Table 8.2) on a 5-point Likert scale after the pop-up view appears and
before they are allowed to interact with the system. The scale ranges from ”strong

221



8. User Acceptance of a P-IVRS

disagreement” (-2) to ”strong agreement” (2). The preferences in the second scenario do
not depend on the situation. Therefore, we use Q1a here. The study is completed by a
final survey. The subjects assess statements (Table 8.3) about how easy it was to use the
system and if it is useful in general. Additionally, a semantic differential is established.

ID Statements TAM

S1 It is simple to use this system EOU

S2 The information is presented clearly U

S3 It is difficult to learn to use the system EOU

S4 The system helps me to find a suitable U
gas station

S5 The system does not bother me while driving EOU

S6 The system has all functions and capabilities U
I expected

S7 Overall, I am not satisfied with this system U

S8 I trust the information the system presented T

S9 I do not feel restricted by the system in EOU
my agency

S10 The recommendations match my user profile U

S11 I would use this system in my car A

Table 8.3.: statements for ease of use (EOU) and overall usefulness (U) and attitude to
use (A) and trust (T)

Finally, we ask the subjects to assess the combinations of wordings for item explanations
with paper prototypes of the variants. We use two kinds of wordings in the study. Fuzzy
wording maps a subjective assessment of crisp values to vague statements such as ”low
price” and crisp wording shows the facts.

After the first five subjects it was clear that the system provides too few recommen-
dations and all subjects prefer crisp wording instead of fuzzy wording. Therefore, we
slightly adjusted our settings after the fifth subject to address this observation.

The study involves 15 subjects, five females and 10 males. Five are between 20 and
39 years old, six between 40 and 49 and four over 50. All of them own a car and 12
even a BMW, hence they are familiar with BMW interaction logic. Six of the subjects
have much driving experience (25.000 to 50.000 kilometer a year) and 9 have average
experience (5.000 to 15.000 kilometer a year). Only one subject has no experience with
navigational systems. The others use it daily (6), several times a week (4), once a week
(2) or less than once a week (2). They usually use it for guidance to a destination or
for orientation on the road map. Five of the subjects already used POI selection and
guidance to a selected POI.
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Overview of the Results

The resulting average assessments of the subjects are shown in Figures 8.8, 8.9 and 8.10.
We discuss them in detail in the following. A detailed view of user assessments can be
found in Appendix E. Alle Scenarios
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Figure 8.8.: Assessments of scenarios 2 to 4 for the statements in Table 8.2
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Figure 8.9.: Assessments of statements in the follow-up survey in Table 8.3

8.2.2. Results for Usefulness

Figure 8.9 shows that subjects perceive the system as useful in general because their
assessment of satisfaction is between agreement and strong agreement (S7). In this sec-
tion, we investigate how satisfaction is distributed over our determined external variables
for U. These attributes are the relevance of items, the utility, the transparency and the
expectations of the users.
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Figure 8.10.: Semantic differential

Expectations

The initial question in our study is about the expectations of the users for a proactive
in-vehicle recommender system. The most frequent expectations are the quality of data
(completeness, correctness, up-to-dateness) (7 out of 15 subjects) and easy interaction
(5 out of 15). More than three subjects also expect personalization, situation awareness
(e.g., the pressure of the tires) and clarity of information. In the second question, we
interview the subjects about their expectations for a gas station recommender. The sub-
jects mention the incorporation of several data sources as the most expected property.
This includes static (location, brand, facilities, type of gas) as well as dynamic sources
(gas price, detour, opening times). Price and detour are mentioned by more than two
thirds of the subjects. A proactive gas station recommender is also expected to be sensi-
tive to situations (primarily current gas level and current route) and to make intelligent
calculations, e.g., an economic optimum of gas price and detour. The subjects agree
that the system altogether meets their expectations (S6 in Figure 8.9).
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Transparency

Transparency comprises the quality of item and situation explanations and their com-
prehensibility based on the wording.

At the end of the study, we showed the subjects paper prototypes of the pop-up view
(Figure 8.2) with four different variants of wordings (fuzzy price and detour (A), fuzzy
price and crisp detour (B), crisp price and fuzzy detour (C), crisp price and detour
(D)). 10 subjects prefer D and eight subjects say that A is the worst. Less amount of
information and ambiguous understanding of fuzzy interpretations are the most serious
complaints about fuzzy wording. Most subjects mention that just in case of the same
amount of information, e.g., ”on the route”, they prefer fuzzy wording. We used A in
the beginning of the study and switched to D after interviewing five subjects because
the tendency of preferences became quickly clear.

The quality of explanations is investigated with statements Q4 and Q3 (Figure 8.8) in
each scenario. The subjects agree that they understand why items are recommended to
them (Q4). On the other hand, they less agree with the overall clarity of information
delivery (S2 in Figure 8.9). The subjects mention that they prefer a fixed order of
arguments to be able to scan the attributes of an item quickly. Our method orders the
arguments dynamically. Overall, the transparency is the highest in scenario 2. The
subjects strongly agree in that scenario that they can make a decision with provided
information (Q3) and agree less to that statement in the more advanced scenario 4.

Although the subjects are neither satisfied nor dissatisfied with the recommendation
(Q5) in scenario 3, they understand why these items are recommended (Q4). Hence,
it is transparent for the subjects why they received a recommendation. Note that the
reason of the recommendation delivery is chosen to be obvious in all scenarios except
the third scenario. There, all subjects see the explanation ”Inexpensive gas stations
along the route”. The assessment of Q1b (Figure 8.8) for that scenario shows that this
short explanation helps the subjects to understand the reason, although they are not
satisfied with the recommendation itself (Q5). However, the subjects never used the
detail view (Figure 8.5) for comprehension explanations. The subjects preferred to ask
the interviewer for details about the reason or they are not interested in further details
for the reason.

Relevance

Relevance is measured by regarding subjective assessments towards the perceived quality
of items and by analyzing selection behavior of the subjects. First, we regard the position
of items that are selected in case of more than one item in a recommendation. In 52%
of the cases, the first item is selected. The second item is selected in 35% and the third
in 13%. Most of the subjects associate a ranking with the list of recommendations. In
this ranking, the first item is perceived as the best item. In 95% of the cases, an item
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out of the recommendation set is selected. Overall, the system is considered as effective
in the semantic differential (Figure 8.10) and the subjects agree that recommendations
match their user profile (S10 in Figure 8.9) in general.

Utility

Besides relevance, we also investigate whether the recommendations are useful in the
situations. In the semantic differential (Figure 8.10), the subjects strongly agree that
the system is useful and assisting. The system also helps them to find a suitable gas
station (S4 in Figure 8.9).

In the second scenario, the subjects assess the number of items as too few because in
three cases only one item was recommended before we changed the settings after the
fifth subject. The assessment changes after at least two items are recommended in
the following runs. Independent from the number of items, the subjects state that the
recommendations match their user profile (Q1a). Seven out of 15 subjects use the detail
view and six even use the list view. 11 subjects select a gas station based on provided
information, two subjects confirm their selection in the list view and two subjects cannot
make a decision at all. All in all, the subjects are more satisfied with the results (Q5).
Those who are less satisfied, interact most with the system.

All subjects are noticeably confused that only one item is recommended in the third
scenario. The assessment of Q2 reflects that more items are expected. The subjects
also expect more items because there have been more items in the second scenario. 12
subjects use the list view to check if there are other recommendations. In the list view,
most of the subjects realize that only one item makes sense to be recommended in this
scenario. As reason for their confusion, they mention missing trust in the system in this
early phase of usage. Only five subjects can make a selection without more information,
five subjects confirm the recommended item in the list view and five subjects do not
select a gas station under these circumstances. The subjects are neither satisfied nor
dissatisfied with the recommendation (Q5) and can neither decide nor not decide for
an item (Q3). However, the recommendation rather matches their user profile in that
situation (Q1b).

In scenario 4, the first five subjects only receive one item before we changed the set-
tings. All other subjects receive more recommendations. The effect can be seen in their
assessment. The first five subjects are neither satisfied nor dissatisfied with the recom-
mendation and with the number of items. Four of them use the list view and just two
select an item. The other 10 subjects behave differently. Just one of them uses the list
view to compare the selection. All 10 subjects select an item out of the recommenda-
tions. They state that the items rather match their user profile in that situation (Q1b).
They are rather satisfied (Q5) with the recommendation and they can rather make a
decision for an item (Q3). None of the subjects complained about the change of their
user profile due to the situation. Most of the subjects expect this to happen.
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8.2.3. Other Results

Choice

In the study, we observed that not giving the driver a choice by recommending only one
item confuses them. When asked about the reason, most of them mention missing trust
in the functionality of the system in this early phase of usage. The assessment of the
statements relative to the number of items (see Appendix E) underlines the observation.
It shows that in case of one item the satisfaction with the system (Q5) is much lower
than for two or three items and the subjects state that one item is not enough (Q2).
Thus, decision making becomes harder (Q3) even though the subjects understand why
they receive the recommendation (Q4). In 70% of the cases, it also leads to the usage of
the list view. On the other hand, the subjects rather trust the data source (S8 in Figure
8.9).

Perceived Ease of Use (EOU)

Ease of use (EOU) is not explicitly part of the study but we check if the subjects also
perceive the interaction as easy as we attempt it to be with our design. Overall, the
subjects do not seem to have trouble with the usability of the system (Figure 8.9). It is
easy to learn system functionality (S3) and to use it (S1). Also, they are not distracted
from driving (S5). Similar results can be found in the semantic differential (Figure 8.10).
Strong agreement exists for tractability, pleasantness and convenience.

Attitude to Use

The subjects strongly agree (S11 in 8.9) that they have the intention to use our recom-
mender in their own cars. In the semantic differential (Figure 8.10), the subjects strongly
agree to adjectives such as good, desirable and innovative. It reflects a positive attitude
towards the system. They also rather agree that the implementation is professional.

8.2.4. Discussion

We derive from the results of our study that a positive attitude towards using proactive
in-vehicle recommendations is available. All external variables for the usefulness (U)
(relevance, utility, transparency and expectation) are rated mostly positive. The subjects
also confirmed ease of use (EOU) of the system. Because the subjects are confused by
recommendations with one item, we believe that trust is an important indicator for
long-term usage of the system. Results from the area of mobile services confirm our
assumption (Kaasinen [Kaa05]). The investigation of trust is out of scope in this thesis.
The position of the selected item in the recommendation list and the reaction of the
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users to one item show that it makes sense to recommend more than one item, i.e., to
provide choice. Only half of the selected items are the first one in the list and most
subjects mention that they associate a ranking with the list. Overall, our system is less
seen as a feature that raises alertness but as useful and assisting.

The justification explanations for the reason of a recommendation seem to be enough to
make the system comprehensible as the detail view for comprehension explanations is
never used and the subjects mostly understand why they receive the recommendation.
Information in this view may become useful in long-term usage where the subjects are on
their own. A clearer and more precise information delivery may improve our proactive
recommender, which may also contribute to more trust. The follow-up questionnaire
shows that almost all subjects would prefer clear facts instead of fuzzy interpretations.
Moreover, some subjects feel patronized by assessment such as ”short detour” or ”low
priced”. The results confirm our observation towards interpreted arguments in the offline
study in Chapter 7. Additionally, showing only the most significant argument at the
first place seems to be too dynamic for the subjects. They prefer a fixed order of the
arguments to be able to scan the attributes of an item quickly. This is only observable
in the driving study and was not clear in our offline study in Chapter 7.

It is interesting to see that the interaction with the map changed significantly compared
to the user study in Chapter 7. In general, users are familiar with map interaction with
online services such as Google Maps. Therefore, our subjects browsed the map during our
offline study frequently. While driving, browsing of the map was never carried out. No
user asked for the functionality to browse the map. On the other hand, information on
the map is probably relevant because it shows the location of the items. Our automatic
adjustment of the map area seems to provide enough information towards the map.

We confirm the observation from the user surveys in the previous chapter that gas station
decisions are made by comparing the price and detour of a gas station. It becomes clear
by interviewing the subjects about their expectations of a gas station recommender and
also during the scenarios. Even those subjects with low preferences for the price also look
for the price during decision making. The gas level at the gas station is also important
in the preferences but is no primary decision dimension. The subjects expect the system
to consider this information in the assessment but they do not need the information
to make a decision. The same accounts for an economic optimum between price and
detour. It is expected to be calculated by the system but is not missed in the decision
making.

We are able to confirm the results of Iyengar and Lepper [IL00] towards choice in the
context of proactive recommendations. The preliminary study in Section 7.1 shows that
only a few items are desired by the users to be recommended. However, our observation
in the user study reveals that only one item is not enough. Providing two or three items
shows better results than only one item. The difference in the assessment between two
and three items is not significant. Therefore, we think that more than three items are
not needed.

228



8.3. Summary

8.3. Summary

To investigate user acceptance of P-IVRS, we used the common technology acceptance
model (TAM) and adapted it to the conditions of P-IVRS. The model describes user
acceptance by the aspects perceived ease of use (EOU) and usefulness (U). Our main
focus of investigation was the usefulness of the system. We implemented our concept of
an explanation user interface in a real user interface that is located in the CID of the
car. The use case was a gas station recommender system. The user interface is designed
according to the three major requirements on an interface for proactive recommender
systems: unobtrusiveness, accessibility and transparency. As our prototype is in an early
stage of development it is crucial to take ease of use into regard. Otherwise, it may has
negative influence on usefulness. Therefore, we carried out an expert study towards the
design of the interface.

In a user study, the drivers used the prototype inside our test vehicle. We gave the
drivers different refilling scenarios and let them choose a gas station while driving as
soon as the recommender pops up. The method of ”think aloud” was used along with
statements the drivers had to assess. We determined relevance of items, utility of items,
expectations for the system and transparency as external variables for usefulness. The
results show that the drivers have a positive attitude towards using such a system. They
confirm that the system is easy to use and useful. However, information should be
delivered more clearly and providing choice is an important issue. We observed that
it is better to provide choice among two or three items instead of no choice with one
recommended item.

229





9. Conclusions and Outlook

In the final chapter, we summarize the major findings in this thesis. Based on these
findings, we give an outlook to future research that could not be solved in this thesis
but is worth to regard.

9.1. Summary and Conclusions

Our research is targeted to drivers in an automotive environment. The primary task
of the drivers is driving. In general, they should be as little as possible be distracted
from this task. Therefore, consuming information inside a car is challenging. Interaction
with in-vehicle information systems (IVIS) is restricted in contrast to desktop systems.
Additionally, information overload can also be another reason for driver distraction in
case of IVIS. Making use of context information contributes to more intelligent behavior
inside a car. Intelligent behavior is able to lower information overload and driver distrac-
tion. Context information describes situations of the drivers that mainly influence how
relevant information for the drivers is. Filtering information according to situational
knowledge is a promising way to reduce the amount of information. On the other hand,
the users should be given a choice between alternatives.

Besides context, the preferences of the users are another indicator for the relevance of
information. Recommender systems bring together user preferences and context with
the items of interest. They distinguish useful and useless items for the users. Classi-
cal approaches are collaborative filtering, content-based filtering and knowledge-based
filtering. Exploiting context in recommender systems became popular in recent years.

Although recommender systems are able to lower information load, the interaction inside
a car still stays a challenge. Enabling recommender systems to act proactively is able to
contribute to less driver distraction through interaction. Proactivity turns recommender
systems into assistants that show initiative by themselves to help the users, e.g., by
recommending something useful that the user has not anticipated. However, making
systems proactive is a challenge. A proactive system should be unobtrusive, useful and
accessible. To accomplish these requirements, the research on intelligent systems delivers
some well-approved methods, e.g., Bayesian networks and fuzzy logic. Though, acting
proactively bears the risk that the users do not understand the behavior of the system
anymore. Hence, they may become dissatisfied. Adding more transparency to the system
may improve the comprehensibility of the system. Additional explanations are a popular
method to add transparency.
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The goal of this thesis was to investigate recommender systems that behave proactively to
assist the driver and lower information load and driver distraction. We analyzed related
approaches from the area of IVIS, proactive desktop and proactive mobile recommender
systems to see if there are already solutions that can be applied to our problem. The
result of the literature review is that available solutions only cover our problem to some
extent. Especially the automotive environment restricts the application of available
solutions. The focus of proactive systems in the area of IVIS is either on the user interface
itself or on information filtering. Proactive desktop recommender systems mostly try to
monitor the users. This requires a lot of interaction with the system. If machine learning
is used, ramp up and cold start problems arise. Proactive mobile recommender systems
are less interaction intensive and use context but mobile users are different to drivers.
Mobile users are able to focus their full attention to the mobile device, whereas the drivers
are not able to interrupt driving. Transparency is either out of scope of the proposed
proactive recommenders, implicitly solved by design or targeted to special groups such
as shoppers to persuade them to buy, e.g., Amazon.com. Finally, only a few approaches
are investigated towards user acceptance. We believe that it is important to address all
of these issues to design a proactive recommender system inside a car.

We approached the problem more formally by giving a definition of the scope of proactive
in-vehicle recommender systems (P-IVRS) and by describing use cases and requirements.
The use case of a gas station recommender was followed throughout our investigation. We
distributed functional requirements on different parts of a software system to be able to
investigate them separately. These components are for situation awareness, calculation of
recommendations and generating explanations. A central part of our system is decision
making. It combines the proactivity of the system with the recommendation engine. We
proposed a combination of a satisficing method with optimizing items. The idea is to
recommend optimal items in a situation that is good enough to recommend. This lays
more importance to the quality of the items than on the situation.

In the first part of our research, we investigated the software component for situation
awareness. Situation awareness represents the knowledge base upon which the system
makes decisions and selects items. It provides information about the benefit of a recom-
mendation in a situation and how user preferences are in this situation. We proposed a
four-level framework based on human situation awareness. It comprises the perception
of context information that determines a situation, the comprehension of the influence
of a situation, the prediction of the development of this situation and the resolution
of information that can be used by other parts of the system. Our framework differs
from other approaches by the goal of the inference. Some approaches are task-oriented,
i.e., they monitor the user while performing a task and infer on the need of informa-
tion based on user’s actions. Other approaches infer on the current or upcoming task
of a user and deliver information associated with that task. Our framework aims to
infer on information need directly. We proved that our framework is applicable to our
problem by implementing the framework with models based on fuzzy logic and Bayesian
networks. Many approaches in this research area use Bayesian networks to model the
intelligent behavior of the system. Fuzzy logic is often used to represent context or sit-
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uations. With few situations and a clear understanding of the behavior of the system,
fuzzy logic showed good results. With more situations and dependencies between the
situations, rules became more complex. Bayesian networks showed better results in this
case. Although our situations are modeled as fuzzy variables, they can easily be applied
within a Bayesian network. We showed that inference in the network based on fuzzy
variables is a promising combination.

Our second system component is the recommender system. The main requirements
on the recommender are that it should avoid cold start problems and should be able
process context information. Our literature review showed that proposed approaches
of context integration are either tailored to a specific recommendation method such as
collaborative filtering or they use simple linear models. Our approach combines the well-
known paradigms of prefiltering and postfiltering for context integration. This shrinks
the set of available items and is then able to incorporate different multi-criteria decision
making (MCDM) methods. The knowledge of the usefulness of an item for a user is
stored in utility functions. These utility functions are used to calculate scores for the
evaluation of items. Predefined utility functions help us to avoid ramp up and cold start
problems. For most use cases of a P-IVRS in the automotive area, the route of the
driver is important context information. By means of a user study, we investigated the
most important elements of the route as context in the perception of the users. The
results reveal that the detour to drive to a POI is the most important element. The
implementation of our context integration model for gas station recommendations made
it possible to evaluate our approach and to assess different MCDM methods. Our results
show that comparative models such as AHP and TOPSIS predict user preferences more
accurate than linear models such as WSM or WPM. Comparative models also outperform
variants of a dominance-based Skyline filter.

The third component of our proactive recommender tries to make the system more com-
prehensible for the users by means of explicit explanations. We designed two methods
to generate explanations. One method was designed for the selected items and one
method for the situation awareness of the system. A preliminary study reveals that
the explanations should be short and based on user preferences and the situation. We
presented a score-based method to generate item explanations. This ties in with our
score-based recommendation approach. An offline user study with an implementation of
our method showed that not enough arguments in an explanation make it difficult for
the user to make a decision. It also reveals the dependency of the quality of explana-
tions to user preferences and the items that are recommended. In contrast to our item
explanation method, situations awareness is explained depending on the method that
is used to model proactive behavior. We proposed a method to explain the reasoning
of our Bayesian network. Our method results in situations that significantly influence
the decision of the system towards the delivery of a recommendation. Hence, it justi-
fies the decision of the system. With different examples, we showed that the generated
justification explanations are reasonable.
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After all necessary components have been investigated separately, we carried out an
infield user acceptance study with a complete system based on the technology acceptance
model (TAM). For that, we implemented all system components and added an in-car
user interface. The system was deployed inside a test car. The user interface was
evaluated with an expert study to ensure easy of use for the drivers. Though, our main
focus was on the usefulness of the system. We found that the drivers have a positive
attitude to use such a system. Furthermore, choice between more than one item and
the presentation of information in a clear manner are important factors to make the
system useful. Although our proactive recommender contains several complex models,
the drivers are only able to recognize a small amount of this complexity during usage.
Especially situation awareness was mostly hidden to the users. The drivers mainly
noticed the items that are recommended to them. Therefore, we conclude that our
optimizing-satisficing (OS) strategy correctly gives more importance to the items when
making a decision about what and when to recommend. Furthermore, as the users
tend to accept such a system, we believe that our system design is adequate to provide
proactive recommendations in automotive environments.

This thesis presents an integrated investigation with all components that we think are
important for a proactive recommender inside a car. These components are applied
in the automotive area where proactivity is able to make a contribution to less driver
distraction. The presented results are promising and we hope that they motivate further
research in this area.

9.2. Outlook

Looking at current developments in automotive industry and consumer electronics, we
anticipate that the amount of information inside a car will further increase. Car man-
ufacturers have to react on future needs of users. This needs change rapidly with more
powerful mobile devices such as tablets or smartphones. A major challenge is to inte-
grate such devices seamlessly into the automotive environment. With cloud computing,
the users are already used to have their information at any time and any place. This
thesis regards itself as contribution to make relevant information better accessible for
the drivers.

We chose a simple and obvious example to explain our approaches. Some of the ap-
proaches such as the four-level situation awareness framework might be too complex
for a simple gas station recommender. We want to motivate for further research based
on our system design with the discussion of a more complex example from Chapter 4.
The use case of recommending solutions if drowsiness was detected became a popular
research area in recent years. Compared to the gas level indicator it is not simple to
derive an indicator for drowsiness. Some approaches use Bayesian Networks (e.g., Yang
et al. [YMT+09]) to describe the level of drowsiness with one value. This value can
be represented as a fuzzy situation variable with the states ”very drowsy”, ”slightly
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drowsy”, etc. However, there are more situations that determine the need of informa-
tion in this case. These are the length of the route, the time and distance that a driver
already drove in one, the time of day and drivers’ intention at the destination. In case of
drowsiness, several POI categories might be relevant, e.g. restaurants, hotels or resting
places. Hence, the challenge is to derive a model that brings together the situations and
the POI categories towards need of information. This is similar to the Lumiere Project
of Horvitz et al. [HBH+98] where user actions are connected with help topics. Further-
more, fatigue develops itself slowly over a long period of time and a recommendation
before the driver becomes seriously drowsy increases the security. Information like the
circadian rhythm or body clock allows to predict how drowsiness might develop and can
be described as a fuzzy situation variable.

Just like gas stations, the utility of resting places, hotels or restaurants also depends
on context. Our approach with multiple scores has some advantages in case of several
categories. With local scores, items within a category can be assessed. The global score
allows an overall assessment which is able to compare items with different categories.
Finally, a recommendation with several categories based on drowsiness is complex and
might not be easy to understand for the users without explanation. Drivers who need
to refill their tanks look automatically for gas stations. However, a tired driver does not
necessarily expect recommendations. An explanation like ”You received these recom-
mendations because you are driving since five hours without stop” remembers the driver
why a break is important.

Findings in this thesis provide a first tendency of the application of proactive recom-
mender systems inside a car. Proactive recommender systems are one possible method
to make information accessible for the drivers. Our field survey covered a time period
of one hour for each test driver. For this, we created artificial situations in which we
interviewed the drivers. Our test drivers accepted our proposed system in general and
confirmed its usefulness. Therefore, we believe that is its worth to carry out further
investigations to get a profound assessment of such systems. The drivers should use the
system in their everyday life for a longer period. This will show whether the users keep
using the system after the first impression. The challenge is to derive meaningful results
because a survey without a guide contains more noise.

We think that the user interaction with the system has a major influence on the long-
term acceptance of the system. Experts confirmed that our presented in-vehicle user
interface was suitable for our investigation. As our investigation showed, the drivers
would accept a P-IVRS in general. For a long-term acceptance, we think that further
improvements on the user interface should be made. Especially the presentation of
information seems to be a key factor. This was often noted by the participants of our
survey. However, it is also possible to take other mediums inside a car into regard
to display information. The instrument cluster and the head-up display are common
output devices in the car that are able to support information delivery in the CID.
Furthermore, an up-to-date research topic in car industry is to improve route guidance
with augmented reality (e.g., Akaho et al. [ANY+12]). BMW [BMW11] presented at its
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in-house event ”Innovationstage ConnectedDrive 2011” ideas for a ”contact analogous”
head-up display that should be able to place guidance markings into the environment.
Also app developers from iOnRoad [iL12] show a similar approach. Recommendations
for POIs can be placed into the environment on the location where the facility actually
is.

Besides the display of information, alternative ways for the input of data should also
be investigated. Our system design focused on the intelligence to find suitable items
and a suitable situation to recommend. Input was possible with the iDrive Controller.
However, unknown influence factors to the system may lead to different user needs as
anticipated. The opportunities of our system to correct its decisions are very limited
currently. A speech-based dialog between the user and the system would improve our
system and help the users to find a suitable item in case of wrong recommendations.

The best interface becomes useless, if the recommendations are not suitable. We showed
the applicability of MCDM methods to calculate suitable items. It would be interesting
to compare our MCDM-based recommender with other context integration methods
based on collaborative filtering or content-based filtering. For this, different use cases
that also involve taste, e.g., restaurants, should be used. In case of our use case of a gas
station recommender, statements from the participants of our surveys indicate that the
experience of the user with the task and the items has an influence on the selection of
items. The incorporation of users’ experience by means of a content-based recommender
may improve our recommendation results.

The accuracy of a recommender also depends on the quality of the underlying data.
In the use cases that we presented, several sources of content can be community-based
and are subject to inaccuracy, incompleteness or are outdated. For instance, gas prices
or free parking lots are very dynamic. It should be investigated how much the quality
influences the acceptance of a P-IVRS. After all, the users already have experience with
such content nowadays and use them anyhow, e.g., on their smartphones. Another infor-
mation source that drives the suitability of recommendations is user data. It would be
interesting to see how much information the drivers are willing to give about themselves
to improve the accuracy of the system. There is probably a limit where the system may
become scary because it acts proactively in a very accurate way. This may happen in
combination with information from social networks or sensitive user information such as
drowsiness. Finally, there is more than one information source that is of interest for the
users at a time. A mixture of several proactive recommenders that all have information
for the driver separately, e.g., restaurants, parking lots and gas stations, is difficult. The
challenge is to aggregate the goals of each proactive assistant to avoid disturbing and
interrupting the driver several times.

We think that comprehensibility is an important factor for the acceptance of a P-IVRS.
Our field and offline studies showed the usefulness of item explanations. However, it was
not possible to investigate the usefulness of situation explanations with our simulated
situations. The explanations were to obvious to be recognized as useful. However, we
think that such explanations are useful. Therefore, further explicit investigations of
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situation explanations should be carried out. These explanations may become useful
in a long-term survey where the users are on their own. The explanations can also
be improved by incorporating temporal aspects. Furthermore, the display of text is
very restricted inside a car. Therefore, we focused on short explanations. A more
sophisticated explanation such as ”Recommendations are given later because you have
enough gas now” may improve the comprehensibility of the system further. However,
the challenge is to present such explanations without distraction.

If proactive recommender systems are offered commercially inside a car, they may alter
the behavior of the drivers in regard of the consumption of items. The ADAC [ADA12]
carried out a user questionnaire in Germany towards the behavior of drivers when they
refill their car. The questionnaire reveals that 41% of the drivers never or only seldom
compare gas prices, 43% refill only when the tank is empty and 40% always use the same
gas station. The usage of a gas station recommender may change such behavior. The
benefit would be to save money without much effort. Especially, in the last couple of
years, gas prices increased dramatically. We think that there is already enough content
to cover user’s information need in many cases. However, today it needs too much effort
to access this content while driving. Leshed et al. [LVR+08] emphasize that behavior
change occurred with in-vehicle navigation systems. People differently interpret their
environment and navigate through it. This may also be possible with the consumption
of items. A tendency can already be seen with commercial offers of recommender systems
such as Amazon.com, Last.fm or Yelp.com.
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A. Satisficing-Optimizing (OS) Strategy

The procedure in Listing 1 shows our optimizing-satisficing (OS) strategy. The method
builds item sets SE out of all assessed items I∗ by trying to add a new item i to a set
recursively. When the set size reaches the maximum number of items num or an item
does not fulfill any other constraints relative to other items in the set, it is not added.
The same applies if the item cannot be delivered in a satisficing situation. Resulting
sets are pushed in a priority queue Q that is sorted according to the expected utility eu.
The expected utility is calculated over all items in the set. The procedure returns the
set SEmax with the highest expected utility which is the first element of Q.

The satisficing procedure in Listing 2 analyzes the horizon H∗ between the current
context oCurrent of the user and the delivery context of the item pConsumption. The
delivery context is the last chance in the horizon H to deliver an item. For instance, the
delivery context of a restaurant depends on its location or opening times. The delivery
context represents the time period before the restaurant is passed or before it closes
plus an additional time to eat. To check if the item is satisficing, the task benefit b
and the delivery costs c for each context in H∗ are calculated by means of the situation
awareness model. Costs and benefits are calculated at context o relative to the current
context oCurrent. This allows for a decay inside the time frame. As soon as the maximum
benefit bmax regarded so far is good enough (≥ tR) and higher than the minimum cost of
delivery > αc regarded so far, the procedure stops with a positive result. The cost-benefit
analysis can be regulated by α ∈ [0,∞). For α < 1, the delivery mainly depends on the
benefit and for α > 1 recommendations are less delivered if the costs, e.g., annoyance or
safety risks, are too high. Costs c and benefits b have to be in the same value range.

The actual delivery context od is in the horizon H∗∗. It lies between the current context
oCurrent and omin = mini∈SE consumptionContext(i) where the minimum is the closest
context in space or time to the current context. This guarantees that a recommendation
is not delivered too late, i.e., no item in the set is irrelevant because it is closed or
passed. The exact context of delivery depends on the recommendation strategy. A
possible strategy is to take oCurrent if it exceeds a threshold in benefit (b(od) > t), is
not higher than a threshold for the costs (c(od) < t) or both conditions are fulfilled.
Otherwise, the next o that exceeds these thresholds can be taken. Depending on the
threshold, there is a risk that no od is found. Alternatively, the maximum benefit bmax,
minimum cost cmin or a combination of both (bcmax = max f(b(o), c(o))) in H∗∗ can be
taken. A third possibility is to take another context than oCurrent if it is better. Again,
the difference can be calculated by regarding the costs (c(oCurrent) − c(o) > tb) or the
benefit (b(o)− b(oCurrent) > tc). Both terms have a maximum of max(c) or max(b) and
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Procedure 1 optimizeItemSet

Input: I := Items ∧ SE := Current item set ∧ numc := Number of items in SE ∧
nummax = Maximum number of items

Output: SEmax := resulting item set with a maximum of nummaxitems
1: Q := Priority queue of item sets SE
2: for all i ∈ I∗ do
3: add = true
4: SE∗ = SE ∩ i
5: if SE∗ ∈ Q then
6: add = false
7: else if satisficeBenefitCost(i) 6= true then
8: add = false
9: else

10: for all j ∈ SE do
11: for all constraint ∈ CON do
12: if constraint(i, j) 6= 1 then
13: add = false
14: end if
15: end for
16: end for
17: end if
18: if add = true then
19: if expectedUtility(SE∗) > expectedUtility(SE) then
20: Q = Q ∪ SE∗
21: numc = numc + 1
22: if numc < nummax then
23: optimizeItemSet(I, SE∗, numc)
24: end if
25: end if
26: end if
27: end for
28: return Q[0]
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Procedure 2 satisficeBenefitCost

Input: H := Prediciton horizon ∧ i := Index of position in H ∧ oCurrent =
Context in H ∧ tB = Threshold for benefit

Output: true/false
1: oConsumption = consumptionContext(i)
2: H∗ := subHorzion(pCurrent, pConsumption, H)
3: bmax := Maximum benefit
4: cmin := Minimal cost
5: for all p ∈ H∗ do
6: b = benefit(o, oCurrent)
7: if b > bmax then
8: bmax = b
9: end if

10: c = cost(o, oCurrent))
11: if c > cmin then
12: cmin = c
13: end if
14: if bmax ≥ tB and bmax > αcmin then
15: return true
16: end if
17: end for
18: return false
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a minimum of min(b) or min(c). Hence, to incorporate costs and benefit, we can use
Equation A.1. The thresholds tb, tc and tbc need to be larger than 0 as we do not want
to be worse than oCurrent. For instance, with threshold tc it is possible to guarantee
that recommendations are only given in standing still situations in automotive scenarios
(Equation A.1).

(c(pCurrent)− c(p)) + (b(p)− b(pCurrent))
max(c) + max(b)

> tbc (A.1)

If more than one output channel is used for delivering recommendations, the output at
delivery context od can be evaluated for all displays. For instance, in a car the head-up
display, the instrument cluster and the CID could be used. For each display the threshold
tbc is set separately. The costs for a head-up display are much higher than for a central
display. Therefore, the recommendation must provide more benefit to be shown in the
head-up display, e.g., in case the recommendation is urgent.
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B.1. Fuzzy Membership Calculation for Situations

With the procedure in Listing 3, we derive fuzzy boundaries for membership functions.
It calculates the membership for each situation S separately. If the situation is already
discrete, we take a singleton membership function. Otherwise, we calculate the bound-
aries of the membership functions for each state st taking into regard the constraints in
Section 4.3. The result is either a trapezoid membership function or a triangle member-
ship function depending on the range of a state. The procedure iterates over the borders
of the discretized intervals and determines the x-value of the membership function. A
left side with start and end x-value and a right side represents a state st. Each iteration
step considers the right side of one interval together with the left side of the following
interval. Constraints R1 and R3 for the memberships of situation states are fulfilled by
setting the x-value of the start of the right boundary equal to the x-value to the start
of the left boundary of the next state (Lines 21-27). The corresponding y-value is 1 for
the right boundary and 0 for the left. Line 21 ensures that R2 is fulfilled because the
boundaries are adjusted to the mean value of the next state.
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Procedure 3 calculateMembership

Input: SL := Set of lower-level situations
Output: MSL := map of membership functions for all situations in SL

1: for all S ∈ SL do
2: m := Memberships
3: p← p+ dp
4: if distribution(S) = discrete then
5: m = memberships(singleton)
6: MSE ←< S,m >
7: else
8: SD = discretize(S)
9: for i = 1→ nStates do

10: i← i+ 1
11: st1 = SD(i), st2 = SD(i+ 1)
12: if i = 1 then
13: x−1,start = x−1,end = x1,right,start = min(st1)
14: else
15: x1,right,start = (max(st1)−min(st1))/2
16: end if
17: if st2 6= ∅ then
18: x1,right,end = max(st1) + (max(st1)− x1,right,start)
19: x2,left,end = (max(st2)−min(st2))/2
20: x2,left,start = min(st2)− (max(st2)− x2,left,end)
21: if x1,right,end ≤ x2,left,end then
22: x2,left,start = x1,right,start

23: x2,left,end = x1,right,end

24: else
25: x1,right,start = x2,left,start

26: x1,right,end = x2,left,end

27: end if
28: m1 = membership(trapezoid,< x−1,start, 0 >,< x−1,end, 1 >,<

x1,right,start, 1 >,< x1,right,end, 0 >)
29: m← m1

30: x−1,start = x2,left,start

31: x−1,end = x2,left,end

32: else
33: m1 = membership(trapezoid,< x−1,start, 0 >,< x−1,end, 1 >,<

max(st1), 1 >,< max(st1), 0 >)
34: m← m1

35: end if
36: end for
37: MSL←< S,m >
38: end if
39: end for
40: return MSL
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B.2. High-level and Low-level Prediction

Low-level Prediction Process

Procedure 4 predictLowLevel

Input: SL := Set of low-level situations
Output: SLP := Set of low-level situation predictions

1: H∗ = subHorzion(pCurrent, pEnd, H)
2: for all S ∈ SL do
3: dcS = samplingRateOfSituation(S)
4: SLPS := Set of situation predictions for S
5: for p = pCurrent → pEnd do
6: c← c+ dcS
7: sP = predict(S, p)
8: SLPS = SLPS ∪ sP
9: end for

10: SLP = SLP ∪ SLPS
11: end for
12: return SLP

Based on the three types of situations in Section 5.1, the prediction procedure is listed
in Listing 4. The sampling rate depends on the situation itself and its type. Static
situations have a sample rate equal to the horizon because they do not change. The
more dynamic a situation is, the more often it has to be sampled to get a precise picture
of its development. The sampling rate also accounts for computational complexity and
imprecision. The rate can be increased for less complexity with a tolerance of error. If
the prediction is unreliable, only a few samples with high confidence are enough. For
instance, the route that the drivers take is uncertain, if they do not enter it into the
system. However, the current as well as the destination position can be predicted with
more confidence. The underlying prediction method for context itself is not determined
here. Prediction uncertainty is handled by fuzzy situation variables. As the memberships
to situations are subject to constraints, it is possible to reflect probabilities as measure
for uncertainty in the prediction process. The procedure returns the developments of all
situations S ∈ SL where SL is the set of low-level situations relevant for the task TA.

High-level Prediction Process

With low-level predicted situations, it is possible to infer on high-level situations and
resolve benefit B and the user preferences U . The procedure for high-level prediction
in Listing 5 works similar to the procedure for lower-level prediction. Again, we regard
the sub horizon H∗ from the current context in the horizon cCurrent to the end cEnd.
Each low-level situation prediction SLPS is then sampled with the same rate dp. For
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Procedure 5 predictHighLevelandResolve

Input: SLP := Set of lower-level situation predictions ∧ CM :=
Set of Comprehension models ∧ DM := Set of Resolution models ∧ SH :=
Set of high-level situations

Output: BP := Set of benefit predictions ∧ UP := Set of user preferences predictions
1: dc = samplingRateOfBenefit()
2: H∗ = subHorzion(pCurrent, pEnd, H)
3: / ∗High level Prediction PHigh ∗ /
4: for c = cCurrent → cEnd do
5: c← c+ dc
6: for all SLPS ∈ SLP do
7: if type(S) = TEMPORAL then
8: n := number of stages
9: for q = −n× dc→ n× dc do

10: q ← q + dc
11: stLow = state(SLPS , q, p)
12: setEvidence(stLow, CM)
13: end for
14: else
15: stLow = interpolate(SLPS , c)
16: setEvidence(stLow, CM)
17: end if
18: end for
19: / ∗ Resolution PD ∗ /
20: for all SH ∈ SH do
21: stHigh = evaluate(SH , CM)
22: setEvidence(stHigh, DM)
23: end for
24: b = benefit(DM)
25: BP = BP ∪ b
26: u = userPreferences(DM)
27: UP = UP ∪ u
28: end for
29: return SB ∧ UP
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some situations, their states have be be interpolated. If all dcS are equal to dc, low-level
and high-level prediction could be computed in one procedure. We set each state at a
prediction step c as evidence for our comprehension models. Temporal situations are
specially handled. For every state of a temporal situation, we also set n states behind
and after as evidence in the comprehension model. Finally, the comprehension models
infers on each high-level situation SH. This is the input for the resolution model which
results in the benefit b and user preferences u for each c.

c
Current

c
end

dc
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dc
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dc
S2

dc
H

Horizon H

Levels
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S2
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U
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Figure B.1.: Situation awareness based on three situations (S1,S2,S3) along a horizon H
with different sampling rates dc

In summary, the whole process is depicted in Figure B.1. Low-level prediction for three
situations with different sampling rate is shown in the figure. Situations S1 and S2
are comprehended towards S5 and S2 and S3 are comprehended towards S4 . The
situation S3 is a temporal situation that is evaluated with its states before and after
in the high-level situation S4. For the temporal situation, the comprehension model
needs to incorporate multiple evaluation states of the same situation. Note that n steps
in the past and in the future for temporal situations are limited by the boundaries of
the horizon H. In the outer areas of the horizon, only ≤ n steps are taken into regard.
Hence, the method does not incorporate historical information outside the horizon. For
instance, we are not interested in the traffic jam the day before.
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B.3. Simulation for Data Collection

Figure B.2.: Data collection user study interface with simulated situations

Figure B.2 shows the screen in the user study to collect data. The situations are grouped
in situations related to the route of the user, situations depending on the gas level and
situations resulting from available gas stations. The group ”Route” comprises the length
and travel time of the route, the distance from the destination and the type of route.
Additionally, the users may have an appointment at their destination. The distance
from the destination, i.e., the current position on the route, is equally distributed in the
simulation. The appointment time is normally distributed with a mean value of 0 and
a variance of 20 minutes. The absolute value is taken from negative appointment times
to have always values higher 0. The idea is to simulate urgency. The route type and its
distribution is chosen based on a mobility study by De la Fuente Layos et al. [de 07].
The type of route influences the length of the route. In average, drivers perform 3 rides
a day with a length of 30 to 40 km. In Germany, people spend 17% of this time for work,
6% for education, 11% for shopping, 13% for business trips, 40% for activities in leisure
time and 17% for other trips. The study also shows that the longest trips are made in
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leisure time and the shorter ones for the rest. We defined seven common route types
with a Gaussian probability distribution around a mean length. The simulated data for
the group ”Route” is shown in Table B.1.

Route Type Description Mean Length Appointment Probability

Home Trip home short no 0.20

Vacation Vacation trip long no 0.14

Event Trip to an event medium yes 0.11

Friends Visiting friends short yes 0.11

Leisure Trip in leisure time medium no 0.11

Business Business trip short yes 0.10

Shopping Going for shopping very short no 0.10

Work Trip to work short no 0.13

Table B.1.: Route types in the simulated situations

We split up the leisure trips in leisure time, to friends, events and in other leisure
activities. The type ”home” is added because most of the trips involve coming home
again. The main part of other trips is mapped to vacation trips. The trips for business
reasons, to an event and to friends involve some kind of appointment with different
urgency. The corresponding length to the types of route is simulated around a mean
value with a minimum and maximum value.

In the group ”Tank”, the gas level is the most important context value. It is simulated
with a minimum of 1 liter and a maximum of 50 liter around a mean value of 1 and a
variance of 12. Values lower 1 are flipped around 1. Hence, most of the values are in
the lower area of 25% of the gas tank where the drivers usually refill their cars. The
remaining range and the gas level at the destination can then be calculated with the rest
of the tank and the length of the route respectively.

The last group ”Gas stations” reflects average properties of available gas stations. The
reachability of gas stations in general depends on the current gas level. As the coverage
of gas stations is high throughout the area of Germany, the mean value for the Gaussian
distribution is calculated by meanreachability = 80gaslevelcurrent

tankvolume with a minimum of 0.
Thus, mostly more than 10 gas stations are available. Well located gas stations comprise
gas stations that can be reached with a low detour from the current route. The number
of reachable gas stations and the length of the remaining route influence the number
of well located gas stations. We calculate a random number in the distribution around
a mean value of meanlocation = 0.8 × numreachablegasstations and flip all values higher
than meanlocation. The result is adjusted with α = 0.4 + distancefromdestination/200.
Finally, we simulate whether some well located gas stations are inexpensive at the same
time with a probability of 0.2.
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B. Situation Awareness

B.4. Perception of Situations

Perceived situations are represented by histograms that are stacked according to the
assessment of the user for ”Yes”, ”No” and ”Too late”. Figure B.3 shows the histogram of
subject selections for states of the high-level situation ”Proactive Recommendation” PR
over all data instances. We exclude the state ”Later” because it has a bad performance
(see Section 5.2). In Figure B.4, the histograms are depicted for low-level situations.Sheet1
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Figure B.3.: Histogram of the high-level situation ”Proactive Recommendation” PR

250



B.4. Perception of Situations
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(e) Appointment

Sheet1

Page 1

[0-3] [4-9] [9-inf)
no few much

0

100

200

300

400

500

600

700

800

Yes No Too late

number of stations [#]

(f) Reachability of gas stationsSheet1

Page 1

0 [1-4] [5-inf)
no few much

0

100

200

300

400

500

600

Yes No Too late

number of stations [#]

fr
e

q
u

e
n
c
y
 o

f 
a
n

s
w

e
rs

 [
#

]

(g) Well located gas stations

Sheet1

Page 1

0 [1-inf)
no yes

0

200

400

600

800

1000

Yes No Too late

number of stations [#]

(h) Well located and inexpensive gas stations

Figure B.4.: Histograms of low-level situations
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B. Situation Awareness

B.5. Discretization

Fayyad and Irani [FI93] propose an entropy-based discretization method. It combines
a recursive entropy calculation with a minimum description length (MDL) stopping
criterion. In each recursion a cutting point is selected that minimizes the entropy of the
remaining subintervals. The entropy is calculated for the class C over a set of instances
in a subinterval S (Equation B.1).

HC(S) = −
C∑
i=1

p(Ci, S) log(p(Ci, S)) (B.1)

The lower the entropy, the purer is a subinterval. A cutting point T is evaluated by
calculating the weighted average of the two resulting subintervals S1 andd S2 (Equation
B.2).

E(A, T ;S) =
|S1|
|S|

HC(S1) +
|S2|
|S|

HC(S2) (B.2)

The cutting point T for an attribute A lies between the boundaries of the interval S. A
series of cutting points are evaluated in each recursion and the one with the a minimum
value of E(A, T ;S) is selected. The MDL stopping criterion for the recursion corresponds
to the aspect that the ”simplest” theory out of a set of theories should be selected. In
this case, there are two theories: Making a cut or not making a cut. Because we work
with entropy, the MDL criterion only accepts a cutting point T if the cost of encoding
before the cut is bigger than after the cut. Fayyad and Irani capture this by deriving a
gain (Equation B.3).

Gain(A, T ;S) = HC(S)− E(A, T ;S) (B.3)

The gain is compared to a threshold in Equation B.4 where N is the number of values
in S. A threshold T is only accepted if the inequality is fulfilled.

Gain(A, T ;S) >
log2(N − 1)

N
+
4(A, T ;S)

N
(B.4)
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B.6. Feature Selection for Secondary Decision Dimensions

B.6. Feature Selection for Secondary Decision Dimensions

Proactive Situation Value Gas CH S C

Yes routeLength (118.5-inf) (6.6-13.4] 202.0% 0.045 0.774
Too late routeLength (118.5-inf) (2.5-6.6] 172.0% 0.022 0.371
Yes posOnRoute (0.64-inf) (2.5-6.6] 62.9% 0.044 0.353
Yes posOnRoute (0.64-inf) (6.6-13.4] 62.7% 0.029 0.240
Too late posOnRoute (0.64-inf) (2.5-6.6] 160.4% 0.043 0.346
Yes gasAtDest (-inf-1.8] (6.6-13.4] 237.9% 0.029 0.912
Yes gasAtDest (4.1-11.2] (2.5-6.6] 67.0% 0.030 0.376
NO gasAtDest (4.1-11.2] (2.5-6.6] 211.8% 0.038 0.471
NO gasAtDest (11.2-inf) (6.6-13.4] 165.9% 0.024 0.962
Yes routeType vacation (6.6-13.4] 185.6% 0.030 0.711
NO routeType business (6.6-13.4] 146.4% 0.026 0.848
Yes appointment yes (6.6-13.4] 66.4% 0.027 0.254
NO appointment yes (2.5-6.6] 148.5% 0.030 0.330
Yes wellLocated (-inf-0.5] (2.5-6.6] 51.7% 0.024 0.291
NO wellLocated (-inf-0.5] (2.5-6.6] 162.2% 0.029 0.360
Too late wellLocated (-inf-0.5] (2.5-6.6] 161.7% 0.028 0.349
Yes wellInexpensive (0.5-inf) (6.6-13.4] 164.8% 0.034 0.632
Yes modality no (6.6-13.4] 232.0% 0.023 0.889

Table B.2.: Assessment of secondary decision dimensions relative to the gas level (GL)

Proactive Situation Value Gas level CH S C

Yes posOnRoute (0.4-inf) (1.8-4.1] 64.6% 0.025 0.397
Too late posOnRoute (0.4-inf) (-inf-1.8] 156.4% 0.028 0.600
Too late posOnRoute (0.4-inf) (1.8-4.1] 189.8% 0.025 0.397
Yes gaslevel (-inf-2.5] (-inf-1.8] 70.0% 0.047 0.420
Yes gaslevel (6.6-13.4] (-inf-1.8] 152.0% 0.029 0.912
Too late gaslevel (-inf-2.5] (-inf-1.8] 148.9% 0.064 0.571
Too late gaslevel (2.5-6.6] (-inf-1.8] 70.3% 0.023 0.270
Too late wellLocated (-inf-0.5] (-inf-1.805] 186.2% 0.042 0.714
Too late reachability (-inf-3.5] (-inf-1.8] 195.5% 0.028 0.750
Yes wellInexpensive (0.5-inf) (4.1-11.2] 184.7% 0.033 0.593

Table B.3.: Assessment of secondary decision dimensions relative to the gas level at the
destination (GLAD)
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C. Context Awareness

C.1. Utility Function Study Questionnaire

Nutzerstudie zum Thema „Umweg beim Fahren“

1. Nutzerstudie zu Umweg

In den folgenden Aufgaben werden Sie gebeten, sich in verschiedene Situationen hinein zu versetzten und POIs 
(Point-Of-Interest) zu bewerten. Ein POI ist ein Ort, der für Sie beim Fahren eine Bedeutung haben könnte, zum 
Beispiel eine Tankstelle oder ein Restaurant.

Bitte benutzen Sie zum Bewerten eine Skala von 0 bis 10. 
Dabei bedeutet:

0 Erfüllt nicht Ihre Anforderungen

3 Erfüllt Ihre Anforderungen zum Teil

5 Erfüllt Ihre Anforderungen mittelmäßig

8 Erfüllt weitgehend Ihre Anforderungen

10 Erfüllt voll Ihre Anforderungen

In allen Situationen können Sie sich die folgende Strecke als Anhaltspunkt vorstellen. Sie fahren von S nach Z. 
Dabei liegt A genau auf ihrer geplanten Route, während B nur durch einen Umweg zu erreichen ist. 

In allen Aufgaben hat A eine Qualität von 1. Die Bedeutung von Qualität wird bei den jeweiligen Aufgaben erklärt.  
Bitte schreiben Sie in die Tabelle wie gut ein POI ihre Anforderungen erfüllen muss, damit Sie ihn bei dem 
angegebenen Umweg anfahren würden.

S
Z

A

B
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C. Context Awareness

1.1 Umweg bei Tankstellen
Die Qualität einer Tankstelle ergibt sich aus dem Kraftstoffpreis und der Marke .  
Da Tankstelle A eine Qualität von 1 hat, ist sie ziemlich teuer und entspricht nicht der Marke, die Sie bevorzugen. 
Beachten Sie beim Bewerten die oben erklärte Skala von 0 bis 10.

 

Stellen Sie sich vor, dass Sie von der Arbeit nach Hause fahren und tanken müssen.  
Die Strecke beträgt 20 km / 20 Minuten. Wie gut muss B sein, damit Sie dort tanken würden?

Umweg über B in km: Umweg über B in Minuten: Qualität von B:

0,5 km 1 min

1 km 2 min

2 km – 3 km 3 min – 4 min

4 km - 5 km 5 min - 6 min

6 km - 10 km 7 min – 11 min

11 km - 15 km 12 min - 15 min

> 15 km > 15 min

Stellen Sie sich vor, dass Sie auf dem Rückweg von Verwandten sind und tanken müssen.  
Die Strecke beträgt 120 km / 90 Minuten. Wie gut muss B sein, damit Sie dort tanken würden?

Umweg über B in km: Umweg über B in Minuten: Qualität von B:

0,5 km 1 min

1 km 2 min

2 km – 3 km 3 min – 4 min

4 km - 5 km 5 min - 6 min

6 km - 10 km 7 min – 11 min

11 km - 15 km 12 min - 15 min

> 15 km > 15 min

Stellen Sie sich vor, dass Sie auf dem Rückweg aus dem Urlaub sind und tanken müssen.  
Die Strecke beträgt 400 km / 200 Minuten. Wie gut muss B sein, damit Sie dort tanken würden?

Umweg über B in km: Umweg über B in Minuten: Qualität von B:

0,5 km 1 min

1 km 2 min

2 km – 3 km 3 min – 4 min

4 km - 5 km 5 min - 6 min

6 km - 10 km 7 min – 11 min

11 km - 15 km 12 min - 15 min

> 15 km > 15 min

Welche Aspekte und Situationen beeinflussen ihre Wahl einer Tankstelle im Allgemeinen (z.B. Marke, Benzinpreis,  
Wetter, usw.) 
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C.1. Utility Function Study Questionnaire

1.2 Umweg bei Restaurants
Die Qualität eines Restaurants ergibt sich aus der Art der Küche, der Preislage, der Freundlichkeit des Personals, 
dem Ambiente etc. . Da das Restaurant A eine Qualität von 1 hat,  entspricht es nur wenig Ihren Wünschen. 
Beachten Sie beim Bewerten die oben erklärte Skala von 0 bis 10.

Stellen Sie sich vor, dass Sie von der Arbeit nach Hause fahren und haben Hunger.  
Die Strecke beträgt 20 km / 20 Minuten. Wie gut muss B sein, damit Sie dort essen würden?

Umweg über B in km: Umweg über B in Minuten: Qualität von B:

0,5 km 1 min

1 km 2 min

2 km – 3 km 3 min – 4 min

4 km - 5 km 5 min - 6 min

6 km - 10 km 7 min – 11 min

11 km - 15 km 12 min - 15 min

> 15 km > 15 min

Stellen Sie sich vor, dass Sie auf dem Rückweg von Verwandten sind und haben Hunger.  
Die Strecke beträgt 120 km / 90 Minuten. Wie gut muss B sein, damit Sie dort essen würden?

Umweg über B in km: Umweg über B in Minuten: Qualität von B:

0,5 km 1 min

1 km 2 min

2 km – 3 km 3 min – 4 min

4 km - 5 km 5 min - 6 min

6 km - 10 km 7 min – 11 min

11 km - 15 km 12 min - 15 min

> 15 km > 15 min

Stellen Sie sich vor, dass Sie auf dem Rückweg aus dem Urlaub sind und haben Hunger.  
Die Strecke beträgt 400 km / 200 Minuten. Wie gut muss B sein, damit Sie dort essen würden?

Umweg über B in km: Umweg über B in Minuten: Qualität von B:

0,5 km 1 min

1 km 2 min

2 km – 3 km 3 min – 4 min

4 km - 5 km 5 min - 6 min

6 km - 10 km 7 min – 11 min

11 km - 15 km 12 min - 15 min

> 15 km > 15 min

Welche Aspekte und Situationen beeinflussen ihre Wahl eines Restaurants im Allgemeinen (z.B. Service, Typ, 
Wetter, usw.) 
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C. Context Awareness

2. Relevanz bestimmter Angaben für die Entscheidung
Bitte bewerten Sie die Relevanz folgender Angaben für Ihre Entscheidung für einen POI.

Anmerkungen:

POI

POI

POI

Kilometer Minuten

Ist für sie die Angabe der Länge oder der Zeit, die sie mehr für einen POI fahren müssen, bei der Entscheidung 
für einen POI wichtiger?

Sehr wichtig Gar nicht wichtig weiß nicht

Ist für Sie die Länge bzw. die Zeit des gesamtem Umwegs bei der Entscheidung für einen POI wichtig? (Rot 
- Blau)

Sehr wichtig Gar nicht wichtig weiß nicht

Ist für Sie ein Verlassen eines höheren Straßentyps, z.B. einer Autobahn, auf einen niedrigeren Straßentyp, z.B. 
einer Dorfstraße, bei Ihrer Entscheidung für einen POI wichtig?

Ist für Sie die Länge bzw. die Zeit der Abweichung von der Route bei der Entscheidung für einen POI wichtig? 
(Hellrot -> große Abweichung, Rot -> mittlere Abweichung, Dunkelrot -> kleine Abweichung)

Sehr wichtig Gar nicht wichtig weiß nicht

Ist für Sie die Länge bzw. die Zeit des Stückes der ursprünglichen Route, das Sie beim Anfahren eines POIs 
auslassen würden, wichtig? (Hellblau -> großes Stück, Blau -> kleines Stück)

Sehr wichtig Gar nicht wichtig weiß nicht
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C.1. Utility Function Study Questionnaire

3. Demografische Daten

Vielen Dank für Ihre Teilnahme. Senden

MännlichGeschlecht Weiblich

18 - 30Alter 30 - 40 40 - 50

Schüler/ 
Student

Status Doktorand

50 - 60 >60

Berufstätiger Rentner Sonstiges

NieAuto Nutzung 1x pro 
Monat

1x pro 
Woche

Mehrmals 
pro Woche

Täglich
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C. Context Awareness

C.2. Criteria for Item Selection GasstationCriteria2
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Figure C.1.: Criteria for item selection

C.3. Evaluation results

The tables show the results for every POI set and the average over all POI sets. Each
run involves a different combination of MCDM methods on level 1 and level 2.
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C.3. Evaluation results

Level 1 Level 2 Results for POI sets

MCDM Norm MCDM Norm 1 2 3 4 AVG VAR

AHP 1 AHP 1 0.62 0.69 0.74 0.58 0.66 0.005

TOPSIS 0 TOPSIS 0 0.82 0.55 0.63 0.58 0.65 0.014

TOPSIS 1 TOPSIS 0 0.82 0.55 0.63 0.58 0.65 0.014

WSM 0 TOPSIS 0 0.77 0.63 0.60 0.54 0.64 0.010

AHP 1 TOPSIS 1 0.64 0.60 0.71 0.56 0.63 0.004

TOPSIS 1 AHP 1 0.59 0.61 0.73 0.55 0.62 0.006

TOPSIS 0 AHP 1 0.59 0.61 0.73 0.55 0.62 0.006

WSM 0 AHP 1 0.60 0.59 0.72 0.50 0.60 0.008

AHP 1 WPM 1 0.62 0.55 0.68 0.48 0.58 0.008

AHP 1 WSM 1 0.57 0.59 0.74 0.38 0.57 0.022

WSM 0 WSM 0 0.64 0.60 0.57 0.44 0.56 0.007

TOPSIS 0 WSM 0 0.61 0.60 0.58 0.39 0.54 0.011

TOPSIS 1 WSM 0 0.61 0.60 0.58 0.39 0.54 0.011

AHP 1 WSM 0 0.36 0.57 0.71 0.47 0.53 0.023

WSM 0 WPM 0 0.69 0.53 0.58 0.26 0.51 0.033

TOPSIS 0 TOPSIS 1 0.57 0.44 0.51 0.43 0.49 0.004

TOPSIS 1 TOPSIS 1 0.57 0.44 0.51 0.43 0.49 0.004

TOPSIS 0 WPM 1 0.55 0.53 0.53 0.33 0.49 0.011

TOPSIS 1 WPM 1 0.55 0.53 0.53 0.33 0.49 0.011

WSM 0 TOPSIS 1 0.55 0.48 0.52 0.39 0.48 0.005

TOPSIS 0 WPM 0 0.70 0.37 0.57 0.30 0.48 0.033

TOPSIS 1 WPM 0 0.70 0.37 0.57 0.30 0.48 0.033

TOPSIS 0 WSM 1 0.54 0.47 0.52 0.29 0.46 0.013

TOPSIS 1 WSM 1 0.54 0.47 0.52 0.29 0.46 0.013

WSM 0 WPM 1 0.54 0.42 0.52 0.25 0.43 0.018

WSM 0 WSM 1 0.53 0.38 0.51 0.26 0.42 0.015

AHP 1 TOPSIS 0 0.11 0.26 0.20 0.60 0.29 0.045

RANDOM 0.27 0.25 0.32 0.15 0.25 0.005

AHP 1 WPM 0 0.03 0.03 0.43 0.33 0.20 0.043

Table C.1.: Precision of MCDM methods on level 1 and 2
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C. Context Awareness

Level 1 Level 2 MRE for POI sets

MCDM Norm MCDM Norm 1 2 3 4 AVG

AHP 1 WPM 0 0.14 0.13 0.08 0.19 0.13

AHP 1 WPM 1 0.14 0.13 0.08 0.19 0.13

WSM 0 TOPSIS 0 0.14 0.17 0.08 0.18 0.14

WSM 0 TOPSIS 1 0.14 0.17 0.08 0.18 0.14

TOPSIS 0 AHP 1 0.22 0.14 0.07 0.17 0.15

TOPSIS 0 TOPSIS 0 0.14 0.14 0.15 0.18 0.15

TOPSIS 0 TOPSIS 1 0.14 0.14 0.15 0.18 0.15

TOPSIS 1 TOPSIS 0 0.14 0.14 0.15 0.18 0.15

TOPSIS 1 TOPSIS 1 0.14 0.14 0.15 0.18 0.15

TOPSIS 1 AHP 1 0.24 0.14 0.07 0.17 0.15

AHP 1 TOPSIS 0 0.27 0.09 0.12 0.15 0.16

AHP 1 TOPSIS 1 0.27 0.09 0.12 0.15 0.16

WSM 0 AHP 1 0.23 0.14 0.08 0.18 0.16

TOPSIS 0 WSM 0 0.14 0.19 0.07 0.24 0.16

TOPSIS 0 WSM 1 0.14 0.19 0.07 0.24 0.16

TOPSIS 1 WSM 0 0.14 0.19 0.07 0.24 0.16

TOPSIS 1 WSM 1 0.14 0.19 0.07 0.24 0.16

WSM 0 WSM 0 0.14 0.20 0.08 0.25 0.17

WSM 0 WSM 1 0.14 0.20 0.08 0.25 0.17

WSM 0 WPM 0 0.14 0.20 0.08 0.25 0.17

WSM 0 WPM 1 0.14 0.20 0.08 0.25 0.17

TOPSIS 0 WPM 0 0.14 0.23 0.07 0.25 0.17

TOPSIS 0 WPM 1 0.14 0.23 0.07 0.25 0.17

TOPSIS 1 WPM 0 0.14 0.23 0.07 0.25 0.17

TOPSIS 1 WPM 1 0.14 0.23 0.07 0.25 0.17

AHP 1 WSM 0 0.22 0.16 0.08 0.23 0.17

AHP 1 WSM 1 0.22 0.16 0.08 0.23 0.17

AHP 1 AHP 1 0.28 0.17 0.07 0.17 0.17

Table C.2.: Mean Recommendation Error (MRE) of the predicted item with the highest
global score

262



C.3. Evaluation results

Level 1 Level 2 Probability for POI sets

MCDM Norm MCDM Norm 1 2 3 4 AVG

WSM 0 WSM 0 0.03 0.06 0.03 0.17 0.07

WSM 0 WSM 1 0.03 0.06 0.03 0.17 0.07

AHP 1 WPM 0 0.03 0.06 0.03 0.11 0.06

AHP 1 WPM 1 0.03 0.06 0.03 0.11 0.06

WSM 0 TOPSIS 0 0.03 0.11 0.03 0.09 0.06

WSM 0 TOPSIS 1 0.03 0.11 0.03 0.09 0.06

WSM 0 WPM 0 0.03 0.06 0.03 0.17 0.07

WSM 0 WPM 1 0.03 0.06 0.03 0.17 0.07

TOPSIS 0 WSM 0 0.03 0.06 0.03 0.17 0.07

TOPSIS 0 WSM 1 0.03 0.06 0.03 0.17 0.07

TOPSIS 1 WSM 0 0.03 0.06 0.03 0.17 0.07

TOPSIS 1 WSM 1 0.03 0.06 0.03 0.17 0.07

TOPSIS 0 WPM 0 0.03 0.09 0.03 0.17 0.08

TOPSIS 0 WPM 1 0.03 0.09 0.03 0.17 0.08

TOPSIS 0 TOPSIS 0 0.03 0.09 0.11 0.09 0.08

TOPSIS 0 TOPSIS 1 0.03 0.09 0.11 0.09 0.08

TOPSIS 1 WPM 0 0.03 0.09 0.03 0.17 0.08

TOPSIS 1 WPM 1 0.03 0.09 0.03 0.17 0.08

TOPSIS 1 TOPSIS 0 0.03 0.09 0.11 0.09 0.08

TOPSIS 1 TOPSIS 1 0.03 0.09 0.11 0.09 0.08

WSM 0 AHP 1 0.11 0.09 0.03 0.14 0.09

TOPSIS 0 AHP 1 0.11 0.09 0.03 0.14 0.09

TOPSIS 1 AHP 1 0.11 0.09 0.03 0.14 0.09

AHP 1 TOPSIS 0 0.14 0.06 0.09 0.11 0.10

AHP 1 TOPSIS 1 0.14 0.06 0.09 0.11 0.10

AHP 1 WSM 0 0.11 0.09 0.03 0.17 0.10

AHP 1 WSM 1 0.11 0.09 0.03 0.17 0.10

AHP 1 AHP 1 0.14 0.11 0.03 0.14 0.11

Table C.3.: Probability of recommending an irrelevant item considering the global score
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C. Context Awareness

Level 1 Skyline Results

MCDM Norm Fuz k w 1 2 3 4 AVG VAR

AHP 1 10 3 - 0.457 0.561 0.721 0.433 0.543 0.017

AHP 1 0 2 0.9 0.457 0.519 0.629 0.510 0.529 0.005

TOPSIS 1 0 2 0.7 0.30 0.64 0.73 0.43 0.53 0.038

TOPSIS 1 4 3 - 0.571 0.561 0.720 0.207 0.515 0.047

AHP 1 7 3 - 0.298 0.561 0.721 0.433 0.503 0.033

WSM 0 0 2 0.7 0.14 0.64 0.73 0.43 0.49 0.068

TOPSIS 1 2 3 - 0.457 0.559 0.720 0.206 0.486 0.046

AHP 1 2 3 - 0.200 0.561 0.721 0.434 0.479 0.048

WSM 0 20 3 - 0.30 0.49 0.72 0.38 0.47 0.034

AHP 1 0 2 0.7 0.01 0.64 0.73 0.49 0.47 0.104

AHP 1 20 3 - 0.14 0.56 0.72 0.43 0.46 0.060

WSM 0 0 2 0.5 0.14 0.52 0.73 0.40 0.45 0.060

WSM 0 7 3 - 0.30 0.56 0.72 0.21 0.45 0.056

AHP 1 0 2 0.5 0.171 0.524 0.729 0.343 0.442 0.057

AHP 1 4 3 - 0.03 0.56 0.72 0.43 0.44 0.088

AHP 1 0 3 - 0.000 0.559 0.720 0.434 0.428 0.095

WSM 0 10 3 - 0.54 0.21 0.72 0.20 0.42 0.066

TOPSIS 1 50 3 - 0.227 0.491 0.720 0.236 0.419 0.055

WSM 0 0 2 0.3 0.298 0.238 0.729 0.400 0.416 0.048

TOPSIS 1 0 2 0.5 0.01 0.52 0.73 0.40 0.41 0.092

TOPSIS 1 7 3 - 0.143 0.561 0.721 0.207 0.408 0.077

WSM 0 4 3 - 0.143 0.561 0.721 0.206 0.408 0.077

TOPSIS 1 0 3 - 0.143 0.559 0.720 0.206 0.407 0.077

WSM 0 0 2 0.9 0.007 0.519 0.629 0.464 0.405 0.075

TOPSIS 1 0 2 0.9 0.007 0.519 0.629 0.464 0.405 0.075

TOPSIS 1 0 2 0.3 0.298 0.238 0.729 0.286 0.388 0.052

WSM 0 2 3 - 0.029 0.559 0.721 0.206 0.379 0.101

WSM 0 0 3 - 0.029 0.559 0.720 0.206 0.378 0.100

TOPSIS 1 10 3 - 0.007 0.561 0.722 0.204 0.374 0.107

WSM 0 0 2 0.1 0.143 0.210 0.729 0.400 0.370 0.069

AHP 1 0 2 0.3 0.01 0.24 0.73 0.49 0.36 0.097

AHP 1 0 2 0.1 0.000 0.210 0.729 0.486 0.356 0.101

TOPSIS 1 20 3 - 0.000 0.494 0.720 0.205 0.355 0.100

WSM 0 50 3 - 0.029 0.286 0.714 0.386 0.354 0.080

AHP 1 50 3 - 0.007 0.207 0.726 0.464 0.351 0.097

TOPSIS 1 0 2 0.1 0.007 0.210 0.729 0.257 0.301 0.093

Table C.4.: Precision of Skyline sets
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C.3. Evaluation results

Level 1 Level 2 Results for POI sets

MCDM Norm MCDM Norm 1 2 3 4 AVG VAR

TOPSIS 0 TOPSIS 1 0.89 0.97 1.00 0.94 0.95 0.002

TOPSIS 1 TOPSIS 1 0.89 0.97 1.00 0.94 0.95 0.002

WSM 0 WSM 1 0.86 0.97 0.94 1.00 0.94 0.004

TOPSIS 0 WSM 1 0.86 0.97 0.94 1.00 0.94 0.004

TOPSIS 1 WSM 1 0.86 0.97 0.94 1.00 0.94 0.004

WSM 0 TOPSIS 1 0.86 0.97 1.00 0.83 0.91 0.007

AHP 1 WSM 1 0.89 0.80 0.63 1.00 0.83 0.024

AHP 1 TOPSIS 1 0.89 0.80 0.71 0.91 0.83 0.008

WSM 0 AHP 1 0.89 0.74 0.60 0.91 0.79 0.021

AHP 1 WPM 1 0.77 0.94 0.66 0.77 0.79 0.014

TOPSIS 0 AHP 1 0.83 0.69 0.63 0.91 0.76 0.017

TOPSIS 1 AHP 1 0.83 0.69 0.63 0.91 0.76 0.017

TOPSIS 0 WSM 0 0.74 0.69 0.63 0.94 0.75 0.019

TOPSIS 1 WSM 0 0.74 0.69 0.63 0.94 0.75 0.019

WSM 0 WPM 1 0.71 0.89 0.77 0.54 0.73 0.020

AHP 1 AHP 1 0.66 0.63 0.63 0.91 0.71 0.019

TOPSIS 0 WPM 1 0.69 0.54 0.77 0.49 0.62 0.017

TOPSIS 1 WPM 1 0.69 0.54 0.77 0.49 0.62 0.017

WSM 0 TOPSIS 0 0.71 0.51 0.57 0.60 0.60 0.007

TOPSIS 0 TOPSIS 0 0.71 0.43 0.49 0.74 0.59 0.025

TOPSIS 1 TOPSIS 0 0.71 0.43 0.49 0.74 0.59 0.025

WSM 0 WSM 0 0.71 0.63 0.63 0.37 0.59 0.022

AHP 1 WSM 0 0.20 0.31 0.49 0.86 0.46 0.082

WSM 0 WPM 0 0.63 0.34 0.57 0.23 0.44 0.036

TOPSIS 0 WPM 0 0.63 0.17 0.57 0.29 0.41 0.049

TOPSIS 1 WPM 0 0.63 0.17 0.57 0.29 0.41 0.049

AHP 1 TOPSIS 0 0.09 0.17 0.20 0.54 0.25 0.040

AHP 1 WPM 0 0.03 0.00 0.31 0.31 0.16 0.030

Table C.5.: Precision of a set that was selected with the relevance threshold 0.65 and
the global score
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C. Context Awareness

Level 1 Skyline Results

MCDM Norm Fuz k w 1 2 3 4 AVG VAR

WSM 0 0 2 0.9 0.829 0.971 0.686 0.943 0.857 0.017

AHP 1 0 2 0.9 0.829 0.971 0.686 0.943 0.857 0.017

TOPSIS 1 0 2 0.9 0.829 0.971 0.686 0.943 0.857 0.017

WSM 0 0 2 0.7 0.69 0.60 0.63 0.40 0.58 0.015

AHP 1 0 2 0.7 0.69 0.60 0.63 0.40 0.58 0.015

TOPSIS 1 0 2 0.7 0.69 0.60 0.63 0.40 0.58 0.015

AHP 1 0 3 -1 0.429 0.514 0.571 0.514 0.507 0.003

AHP 1 2 3 -1 0.429 0.429 0.571 0.514 0.486 0.005

AHP 1 4 3 -1 0.43 0.43 0.57 0.51 0.49 0.005

WSM 0 0 3 -1 0.429 0.514 0.571 0.371 0.471 0.008

TOPSIS 1 0 3 -1 0.429 0.514 0.571 0.371 0.471 0.008

AHP 1 7 3 -1 0.343 0.429 0.571 0.514 0.464 0.010

AHP 1 10 3 -1 0.343 0.429 0.571 0.514 0.464 0.010

AHP 1 20 3 -1 0.34 0.43 0.57 0.51 0.46 0.010

WSM 0 2 3 -1 0.343 0.514 0.571 0.371 0.450 0.012

TOPSIS 1 2 3 -1 0.343 0.514 0.571 0.371 0.450 0.012

AHP 1 50 3 -1 0.514 0.286 0.571 0.371 0.436 0.017

WSM 0 4 3 -1 0.343 0.429 0.571 0.371 0.429 0.010

WSM 0 7 3 -1 0.34 0.43 0.57 0.37 0.43 0.010

TOPSIS 1 4 3 -1 0.343 0.429 0.571 0.371 0.429 0.010

TOPSIS 1 7 3 -1 0.343 0.429 0.571 0.371 0.429 0.010

TOPSIS 1 10 3 -1 0.343 0.429 0.571 0.371 0.429 0.010

WSM 0 20 3 -1 0.43 0.29 0.57 0.26 0.39 0.021

TOPSIS 1 50 3 -1 0.429 0.286 0.571 0.229 0.379 0.024

WSM 0 10 3 -1 0.23 0.29 0.57 0.37 0.36 0.023

TOPSIS 1 20 3 -1 0.229 0.286 0.571 0.371 0.364 0.023

WSM 0 0 2 0.5 0.14 0.31 0.51 0.26 0.31 0.024

AHP 1 0 2 0.5 0.143 0.314 0.514 0.257 0.307 0.024

TOPSIS 1 0 2 0.5 0.14 0.31 0.51 0.26 0.31 0.024

AHP 1 0 2 0.1 0.143 0.171 0.514 0.371 0.300 0.031

AHP 1 0 2 0.3 0.14 0.17 0.51 0.37 0.30 0.031

WSM 0 50 3 -1 0.114 0.143 0.486 0.257 0.250 0.029

WSM 0 0 2 0.1 0.057 0.171 0.514 0.257 0.250 0.038

WSM 0 0 2 0.3 0.057 0.171 0.514 0.257 0.250 0.038

TOPSIS 1 0 2 0.1 0.057 0.171 0.514 0.229 0.243 0.038

TOPSIS 1 0 2 0.3 0.057 0.171 0.514 0.229 0.243 0.038

Table C.6.: Precision of a set that was selected by a Skyline
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C.3. Evaluation results
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(b) Regular Sykline AHP
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(c) Skyline fuzziness=10% WSM
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(d) Skyline fuzziness=10% AHP
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(e) Skyline ω = 0.7 WSM

AHP
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(f) Skyline ω = 0.7 AHP

Figure C.2.: Comparison between the numbers of items relative to the length of the route
with WSM and AHP on level 1 and different types of Skyline on level 2
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D. Explanations

D.1. Results of the Preliminary Study

Arguments

The cells in the assessment tables refer to the assessments of the subjects. The distribu-
tion corresponds to the percentage of the subjects who gave the respective assessment on
the Likert scale. The average value (AVG), the variance (VAR) and the median (MED)
are listed to estimate the overall usefulness and how the subjects are in agreement. In a
correlation table, Pearson’s correlation between the assessments for the arguments and
the explicit input of user preferences at the end of the survey are calculated.

This gas station was
recommended ...

1 2 3 4 5 AVG VAR MED

... because it is cheap. 0.00% 0.00% 7.41% 30.86% 61.73 % 4.54 0.40 5

... because you get a
free drink for every re-
filling.

23.75% 33.75% 21.25% 15.00% 6.25% 2.46 1.42 2

... because it is the
only brand station.

27.50% 35.00% 26.25% 10.00% 1.25% 2.23 1.01 2

... because only a few
stations are reachable.

3.85% 8.97% 8.97% 37.18% 41.03% 4.03 1.22 4

... because it directly
on the route.

1.28% 2.56% 3.85% 32.05% 60.26% 4.47 0.64 5

... because its the
cheapest station.

1.25% 1.25% 6.25% 17.50% 73.75% 4.61 0.59 5

... because it is open at
arrival.

1.23% 4.94% 4.94% 14.81% 74.07% 4.56 0.80 5

... because your gas
level is nearly empty
now.

1.25% 5.00% 8.75% 20.00% 65.00% 4.43 0.88 5

... because it is a brand
station.

35.00% 36.25% 23.75% 5.00% 0.00% 1.99 0.80 2

... because there you
do not have to reckon
with waiting time.

7.50% 17.50% 30.00% 36.25% 8.75% 3.21 1.16 3

Table D.1.: Assessment Table: Useful and useless arguments
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D. Explanations

Argument - Preference price brand detour gas level

... because it is cheap. 0.523 -0.202 0.123 -0.204

... because you get a free drink for
every refilling.

0.232 0.020 0.092 0.018

... because it is the only grand sta-
tion.

-0.427 0.364 0.087 0.073

... because only a few stations are
reachable.

-0.159 0.032 0.162 0.016

... because it directly on the route. -0.014 0.030 0.347 -0.067

... because its the cheapest station. 0.461 -0.289 -0.151 -0.142

... because it is open at arrival. 0.124 0.076 0.117 -0.076

... because your gas level is nearly
empty now.

-0.064 -0.097 0.109 0.312

... because it is a brand station. -0.333 0.507 -0.047 0.075

... because there you do not have to
reckon with waiting time.

-0.153 0.125 0.028 0.022

Table D.2.: Correlation table: User preferences and arguments

This gas station was
recommended ...

1 2 3 4 5 AVG VAR MED

... because it is cheap.
But you have to take a
big detour.

9.88% 23.46% 37.04% 28.40% 1.23% 2.88 0.96 3

... because the gas level
is very low now. But
the gas price is very
high.

3.70% 22.22% 29.63% 34.57% 9.88% 3.25 1.06 3

... because it directly
on the route. But it is
not a brand station.

2.47% 3.70% 6.17% 44.44% 43.21% 4.22 0.82 4

... because it is a brand
station. But you have
to take a big detour.

41.98% 44.44% 7.41% 6.17% 0.00% 1.78 0.70 2

Table D.3.: Assessment table: Useful and useless counterarguments

Argument - Preference price brand detour gas level

... because it is cheap. But you have
to take a big detour.

0.479 -0.115 -0.058 -0.100

... because the gas level is very low
now. But the gas price is very high.

-0.134 -0.162 0.254 0.213

... because it directly on the route.
But it is not a brand station.

0.112 -0.056 0.345 -0.033

... because it is a brand station. But
you have to take a big detour.

-0.036 0.309 0.161 0.063

Table D.4.: Correlation table: User preferences and counterarguments
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D.1. Results of the Preliminary Study

Argument 1 2 3 4 5 AVG VAR MED

... because their is a
cheaper gas stations in
40 km along the route.

2.47% 4.94% 17.28% 35.80% 39.51% 4.05 1.00 4

... because it closed at
arrival.

0.00% 1.23% 1.23% 9.88% 87.65% 4.84 0.24 5

... because you have to
take into account long
waiting times at this
time.

3.70% 14.81% 34.57% 27.16% 19.75% 3.44 1.18 3

... because it does not
sell Super 98.

24.69% 14.81% 34.57% 13.58% 12.35% 2.74 1.72 3

... because you cannot
reach it with your cur-
rent gas level.

0.00% 2.47% 3.70% 7.41% 86.42% 4.78 0.40 5

Do you like ex-
planations for gas
stations not recom-
mended provided
on demand?

6.41% 7.69% 32.05% 35.90% 17.95% 3.51 1.16 4

Table D.5.: Assessment table: Usefulness of arguments for not recommended items

Explanation 1 2 3 4 5 AVG VAR MED

Since you are running
out of gas, the system
carries out a search for
gas stations.

% 2.47% 12.35% 34.57% 45.68 % 4.14 1.12 4

The system checks
15.000 gas stations.

58.02 % 23.46% 11.11% 6.17% 1.23% 1.68 1.00 1

Downloading current
gas prices.

22.22% 16.05% 23.46% 24.69% 13.58% 2.91 1.85 3

The system found some
gas stations which are
presented later.

29.63% 24.69% 16.05% 22.22% 7.41% 2.53 1.75 2

No recommendation
available currently.

28.40% 13.58% 18.52% 30.86% 8.64% 2.77 1.96 3

Gas prices are up to
date now.

22.22% 12.35% 25.93% 24.69% 14.81% 2.98 1.87 3

Since only a few gas
stations are reachable
anymore, the system
carries out a search for
gas stations.

8.64% 8.64% 18.52% 33.33% 30.86% 3.68 1.62 4

Table D.6.: Assessment table: Different kind of status information
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D. Explanations

Structure and Additional Information
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Figure D.1.: Structures of explanation sets: Individually explained items, comparative
explained to an average (AVG) and comparative explained to the explana-
tion set
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Figure D.2.: Reliability of different information sources: Completeness of available data,
matching between user profile and recommendation, quality of context
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D.1. Results of the Preliminary Study
Category
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Figure D.3.: Further categories of POIs that could be interesting for recommendationsNumberOfItmes
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Figure D.4.: Number of items for different traffic situations: From demanding to relaxed
situations
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Proactivity
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Figure D.5.: Level of proactivity for different kinds of additional explanations: From
automatic to on demand delivery
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D.1. Results of the Preliminary Study

Statements of the Participants

We also asked open questions. Overall, the statements in the open text section show a
positive attitude towards the subject. In summary, 13 comments were made.

Concerning the questionnaire, one subject mentioned:

”Especially on the first questions it was difficult to separate between
displayed information and generated recommendations.”

This is an issue, we also found in analyzing the data. People tended to rate the argument
depending on the gas station they assumed in the recommendation.

One subject warns of information overflow:

”Do not provide too much information. Information overload is annoying.
Sometimes less is more.”

We keep the warning in mind, since explanations are additional information that may
help if relevant but can cause information overload if decisions are made more compli-
cated as necessary. The reason we use recommender systems to deliver POIs in a car is
exactly to reduce information overload.

Another subject likes the idea of making the car more intelligent:

”[The gas station recommender] lets the car in eye of the drivers act a bit
more intelligent and tailored to their needs.”

Especially the use case of recommending gas stations seems to be plausible and easy to
understand for driver. Further types of recommendations can be deployed later.

Finally, one subject made a comment about the reliability of data:

”The customers anticipate that the data behind the service is available in
acceptable quality.”

The statement refers to the deployment of such a kind of service just in case the un-
derlying data is of acceptable quality. Otherwise the service may become useless in
the opinion of customers. Especially providers of premium quality products ensure a
minimum of quality behind their used data.
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D. Explanations

D.2. Results for Item Explanations

Evaluation User Interface

Figure D.6.: Level 1: Proactive View

Figure D.7.: Level 2: Detail View
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D.2. Results for Item Explanations

Figure D.8.: Level 3: List View
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Figure D.9.: User preferences for gas station features
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D. Explanations

Scenarios

Scenario A: An Additional Need

In Scenario A, the subjects drive from home to work. They know that they need money
for lunch and hence an ATM to withdraw some money. We wanted to see how this need
that the system does not know and is not related to the actual task of refilling influences
the assessment.
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Figure D.10.: Results for Scenario A

Scenario B: An Urgent Appointment

Scenario B comprises additionally to the ride to work an urgent appointment at work.
The system adjusts user preferences and recommends only POIs with low or no detour.
We wanted to reassure our findings in the preliminary study that indicates that proactive
adaptation of the user profile is regarded as useful.
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Figure D.11.: Results for Scenario B
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D.2. Results for Item Explanations

Scenario C: A Regular Trip

This scenario represents a regular trip to friends. No further conditions are used here.
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Figure D.12.: Results for Scenario C

Scenario D: A Regular Trip (Without Explanations)

Scenario D also represents a regular trip. In this case, we replaced the explanations by
a list of facts with all four decision dimensions for every item. We wanted to find out
which information is regarded as useless.
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Figure D.13.: Results for Scenario D
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D. Explanations

Scenario E: A Regular Trip with Inverted User Profile

Again, in this scenario a regular trip was used. In contrast to the other scenarios, we
inverted the user profile, i.e., important dimensions become not important and vice versa.
In the preliminary study, we have seen how important the user profile is for generating
explanations. Here, we want to reassure what happens if a completely different profile
is used.

Price Detour Brand Gas level
0

4

8

12

16

20

Relevant Irrelevant Missing

n
u

m
b

e
r 

o
f 
u

s
e
rs

 [
#

]

(a) Argument assessment

1 2 3 4 5
0

20

40

60

80

100

Level 1 Level 2 Level 3

assessment scale

a
s
s
e
s
s
m

e
n
t 

[%
]

(b) Satisfaction

Figure D.14.: Results for Scenario E

Scenario F: A Vacation Trip

Finally, the last scenario comprises a longer trip to a vacation destination. We wanted
to find out whether there are additional decision criteria for non-regular trips.
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Figure D.15.: Results for Scenario F
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Figure D.16.: Perception of the number of arguments and items in the recommendation:
From too much to too few
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Figure D.17.: Relevance of the map view in each scenario
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Fuzzy vs. Fact
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Figure D.18.: User assessments concerning fact or fuzzy explanations
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D.3. Situation Explanations

D.3. Situation Explanations

Prefiltering of Arguments

Procedure 6 selectArgument

Input: O := Set of observations of lower-level situations
Output: E := explanation set containing observations as arguments

1: O∗ = sortByImportance(O)
2: for all o ∈ O∗ do
3: i = impact(o)
4: if i > α then
5: E ← o
6: if (D = P ∧ positive(o)) ∨ (D = N∧ !positive(o)) then
7: atLeastOneSupport = true
8: end if
9: if (i > β) ∧ (atLeastOneSupport = true) then

10: break
11: end if
12: end if
13: if number(o ∈ E) = nmax then
14: break
15: end if
16: end for
17: if atLeastOneSupport = false then
18: for all o ∈ O∗ do
19: if (D = P ∧ positive(o)) ∨ (D = N∧!positive(o)) then
20: E ← o
21: atLeastOneSupport = true
22: break
23: end if
24: end for
25: end if
26: if atLeastOneSupport = true then
27: return E
28: else
29: return Error
30: end if
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D. Explanations

Argument Ranking with AHP

In the second hierarchy level of the AHP the weights of each criterion are determined
by a manual pairwise comparison by experts. The pairwise comparison matrix for the
criteria is:

IM IP OB PK

IM 1.00 1.00 3.00 5.00

IP 1.00 1.00 3.00 5.00

OB 0.33 0.33 1.00 3.00

PK 0.20 0.20 0.33 1.00

Importance and impact are equally important and both are slightly more important than
the obviousness of information. Furthermore, prior knowledge is assessed as much less
important than importance and impact and less important than obviousness. With the
standard method for Eigen vector calculation, we receive a normalized Eigen vector of
(0.39, 0.39, 0.15, 0.6). It corresponds to the weights that we apply for the criteria.

For pairwise comparison of the alternatives, we need a function f(x) depending on the
distribution of the values over the range of criterion c. Example functions can be seen
in Figure D.19.
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f(x)=x f(x)=x^27 f(x)=x^0.037

Figure D.19.: Pairwise comparison functions for equally usage of the range f(x) = x,

mostly lower values usage f(x) = x
1
27 and higher values usage f(x) = x27

If the range is equally used, the identity function f(x) = x can be used. Otherwise,
we increase the difference for lower values with a square root function f(x) = n

√
x for

the usage of lower values and vice versa with f(x) = xn for the usage of higher values.
The value n is selected by means of the usually highest measured value in the range
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D.3. Situation Explanations

xm, e.g., the value with a confidence interval ci of 95%. For the lower case, it holds
n
√
x = ci ⇔ n = logxmci because differences for f(x) ∈ [0, ci] are increased and for

f(x) ∈ [ci, 1] are decreased. This is valid for lower values xm ∈ [0.0, ci]. The opposite
aspect applies to the usage of higher values. For instance, with n = 27, the highest
expected value for lower values should be xm = 0.25.
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E. User Acceptance

Expectations
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Figure E.1.: Expectations of users of an automatic recommendation system
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Figure E.2.: Expectations of users of an automatic gas station recommender
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E. User Acceptance

Scenarios
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Figure E.3.: Assessments for Scenario 2
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Figure E.4.: Assessments for Scenario 3
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Figure E.5.: Assessments for Scenario 4
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Figure E.6.: Position of items in the ranking in recommendation sets with more than 1
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Figure E.7.: Assessments relative to the amount of recommended items
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Figure E.8.: Interaction behavior (detail and list view invocation) relative to the amount
of recommended items
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Wording

(a) Both fuzzy (b) Price fuzzy, detour crisp

(c) Price crisp, detour fuzzy (d) Both crisp

Figure E.9.: Different variants of wordings (fuzzy, crisp and mixed)
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Figure E.10.: Assessments for different wording variants
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List of Abbreviations

A Attitude

ACC Adaptive cruise control

ADAS Advanced driver assistance systems

ADDIF Additive difference

AHP Analytic hierarchy process

AI Artificial intelligence

AUC Area under the ROC curve

BDI Belief desire intention

BI Behavioral intention

C2X Car2X

CARS Context-aware recommender systems

CF Collaborative filtering

CHI Chi square

CID Central information display

COG Center-of-gravity

CPT Conditional probability table

CSP Constraint satisfaction problem

DAG Directed acyclic graph

EBA Elimination-by-aspect

EH Electronic horizon
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E. User Acceptance

EM Expectation maximization

EOU Ease of use

EQW Equal weight

ESP Electronic stability program

FRQ Frequency of good and bad features

GNSS Global navigation satellite system

GPS Geographical positioning system

GR Gain ratio

HMI Human machine interface

IP Interface-proactivity

IR Information retrieval

IRNN In-route nearest neighbor

IVIS In-vehicle information systems

IVRS In-vehicle recommender system

JITIR Just-in-time information retrieval

LBS Location-based services

LEX Lexicographic

MAE Mean absolute error

MANET Mobile ad-hoc networks

MAUT Multi-attribute utility theory

MCD Majority of confirming dimensions

MCDM Multi-criteria decision making

MI Mutual information

ML Maximum likelihood
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MPE Most probable explanation

MRE Mean recommendation error

MSE Mean square error

OS Optimizing-satisficing

P-IVRS Proactive in-vehicle recommender systems

POI Point-of-interest

POMDP Partially observable Markov decision process

PRS Proactive recommender systems

RBF Radial basis networks

RFF ReliefF

ROC Receiver operating characteristic

RS Recommender systems

SAT Satisficing

SVM Support vector machine

SWRL Semantic web rule language

TAM Technology acceptance model

TMC Traffic message channel

TOPSIS Technique for order preference by similarity to ideal solution

U Usefulness

WADD Weighted additive

WPM Weighted product model

WSM Weighted sum model
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