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Abstract

Quantum effects of physics beyond the Standard Model receive strong indirect constraints
from precisely measured collider observables. In the conceptual part of this thesis, we apply
the generic relations between particle interactions in perturbatively unitary theories to cal-
culate one-loop amplitudes for flavor physics. We provide template results applicable for any
model of this class. We also investigate example models that are partly and such that are not
perturbatively unitary: the Littlest Higgs model and Randall-Sundrum models. The latter
have a unique coupling structure, which we cover exhaustively. We find strong constraints on
the Randall-Sundrum models and numerically compare those from flavor, electroweak pre-
cision, and Higgs physics by performing detailed parameter scans. We observe interesting
correlations between flavor observables, and we find that constraints from Higgs production
and decays are already competitive.

Zusammenfassung

Quanteneffekte jenseits des Standardmodells sind indirekt, stark durch präzise gemessene
Beschleunigerobservablen beschränkt. Im konzeptionellen Teil dieser Arbeit verwenden wir
generische Relationen zwischen Teilchenwechselwirkungen perturbativ unitärer Theorien zur
Berechnung von Einschleifenamplituden der Flavor-Physik. Wir geben allgemeine Resultate,
anwendbar auf alle Modelle dieser Klasse. Wir untersuchen auch Beispielmodelle, welche teil-
weise, bzw. nicht perturbativ unitär sind: das Littlest Higgs Modell und Randall-Sundrum
Modelle. Letztere haben eine besondere Kopplungsstruktur, welche wir eingehend besprechen.
Wir finden starke Beschränkungen an Randall-Sundrum Modelle und vergleichen solche aus
Flavor-, elektroschwacher Präzisions- und Higgs-Physik numerisch mittels detaillierter Para-
meterabtastung. Wir finden interessante Korrelationen zwischen Flavor-Observablen und dass
Beschränkungen durch Higgs-Produktion und Zerfälle bereits kompetitiv sind.
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Chapter 1

Introduction

We are to admit no more causes of natural
things than such as are both true and
sufficient to explain their appearances.

Isaac Newton

For many decades now, research has been posing the question of truth and sufficiency of the
Standard Model of elementary particle physics (SM). The answer to this questions depends on
the very energy at which they are posed. The question of truth has been answered positively
in collider experiments through the tremendous success of the virtual quantum corrections to
precisely studied processes as they are predicted by the SM alone. Before the program at the
CERN Large Hadron Collider (LHC), this applied to all scales relevant to the SM content
except its symmetry breaking sector.

Here, we are concerned with theories beyond the SM. The quest for new physics approaches
the question of sufficiency. It is in fact a joint program pursued at the intensity and energy
frontier. The LHC program is now driving it up to unexplored energy scales with its recently
finished run at 7 and 8 TeV center-of-mass energy, and hopefully soon even further. In the
searches for direct productions the previously known resonances of the SM were rediscovered
and it seems that the last missing piece at the heart of electroweak symmetry breaking was
confirmed: a scalar resonance of about 126 GeV mass. Its interactions with other particles are
roughly in agreement with the SM Higgs boson but not yet measured with an accuracy that
would secure this identification. The mass, however, agrees with vacuum stability bounds
and could leave the SM as the self-contained theory of non-gravitational forces almost up to
the Planck scale.

We will start this thesis with introducing the SM as the basic low energy theory in chap-
ter 2. Our later considerations can be considered as perturbations around this setup. We will
also review the mechanism of electroweak symmetry breaking more closely for later purposes
and point out the deficits of the SM, which still lead us to believe that the search for new
physics is promising and ever more pressing.

Each confirmation of the SM as the correct background hypothesis at low — i.e. below
electroweak — energies carries a potential rejection of the hypothesis of physics beyond the
SM. Yet, this depends on the specific model in question, its resonances and the couplings
amongst them. Importantly, most models of new physics carry an intrinsic energy scale (or
a few scales), whose variation enhances or diminishes the non-SM effects induced by the
model. Often, this scale is bounded from above by theoretical arguments such as unitar-
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1. INTRODUCTION

ity, vacuum-stability, triviality, or the more practical assumption of perturbativity. On the
phenomenological side, it is important to identify physical observables that are precisely mea-
sured, as compared to the typical effects of new physics. Here we are concerned with indirect
bounds on new physics, which restrict its virtual contributions through precise measurement
of observables at lower energies. Several observables of three classes have been identified that
typically lead to strong bounds. The classes are flavor physics, electroweak precision observ-
ables, and since recently also Higgs physics. Given that the constraints are strong, we call
them precision constraints in reference to the specific new physics. This can be either due
to indeed precisely measured observables, or due to large typical differences between the SM
and new physics value of the observable, which may have its origin in a symmetry like in the
case of flavor-changing neutral currents (FCNCs).

In order to systematize the study of precision physics for phenomenology beyond the
SM, we divide all models of new physics into two classes: perturbatively unitary theories
and theories that become strongly interacting at a high energy scale. The former theories are
equivalent to the class of spontaneously broken gauge theories. Their perturbative high energy
behavior implies generic relations among the interactions of particles. We review these generic
relations in order to perform the general renormalization of flavor amplitudes in chapter 4.
There, we also give template results that include the unphysical degrees of freedom that are
necessary when working in a renormalizable gauge.

For theories with new strong interactions no such unifying approach exists, and we have
to study the phenomenology model by model. To this end we present in chapter 3 two models
that are not perturbatively unitary but partially composite. We review the Littlest Higgs
model, which is in parts a spontaneously broken gauge theory but has also an explicitly
broken sector. We use it to apply the template flavor results in chapter 4. We investigate
why the result is feasible, even though the model is partly non-unitary. Later, we also use the
model to exemplify the strength of Higgs production and decays in bounding new physics.

We finally present in chapter 3 one interesting model that we scrutinize in chapter 4 with
observables from all three aforementioned sectors and compare the relative impact and quality
of the resulting bounds. This is the Randall-Sundrum (RS) model, which features a compact
extra-dimension with anti de-Sitter geometry. It gives a theoretically appealing explanation
of the gauge-hierarchy problem and the hierarchies observed in the quark sector. The model
is especially interesting from a precision physics perspective as it receives relevant constraints
from electroweak precision physics, flavor-changing decays and most recently also from Higgs
production and decays. In combination with the rather small number of free parameters this
creates a good prospect for the falsifiability of the model.

We introduce the RS model in a minimal setup and a custodially protected version that
lowers the strongest electroweak precision constraints by an enlarged gauge symmetry sector
and a specific fermion embedding. We introduce this model in a very concise notation that
summarizes the results of the minimal and custodial model and is also extensible to other
enlarged fermion embeddings. This facilitates the comparison of the results in the different
versions of the model. In contrast to most of the literature, the Kaluza-Klein decomposition
of 5d fields into 4d states is then done directly in the mass basis. The technique is based on
[1] and particularly useful for deriving analytic expressions for couplings between particles
that allow for a clear understanding. It is also well suited for fast numerical evaluation in
parameter scans. We give the full coupling structure and present also results for the 5d
propagators of gauge bosons and fermions. For fermions we have to carefully treat the issue
of the Higgs localization in the extra dimension. We derive the fermion propagator for the
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regularized version of an infrared (IR)-brane Higgs boson based on our work in [2]. This is
important for the discussion of Higgs physics in the Randall-Sundrum model, where we have
to go into the conceptually demanding question of how to perform loop calculations in the
given geometrical background.

Before doing so, we start the phenomenological discussion in chapter 4 with flavor con-
straints from kaon mixing and direct CP violation in K → ππ. We also study interesting
correlations between different flavor observables in the kaon sector and present predictions
for deviations in the Cabibbo-Kobayashi-Maskawa matrix and for the rare Bs decay into two
muons, which was measured recently for the first time. The analyses are based on our work
in [3]. We update all numerical input from experimental results and SM calculations to the
recent values and improve the discussion of [3] by also taking into account subleading Higgs-
induced FCNCs based on results we derived in [4]. It is important to identify the bounds
that affect as few parameters as possible and therefore have good predictivity. We quantita-
tively assess the dependence of flavor bounds on all model parameters, most prominently the
Yukawa sector. A parameter scan with high statistics allows us to find bounds that are more
robust than the typical ones often quoted in the literature. This improves the comparability
of the bounds to those inferred from electroweak precision observables. We review also the
latter in general in section 4.2 and present updated bounds on the minimal and custodial RS
model taking into account recent theoretical progress in the SM predictions of Z → bb̄. This
section mainly assists to understand the incentive of the custodial RS setup and to benchmark
the bounds from flavor physics and from Higgs processes.

Higgs physics is then discussed in the remainder of this thesis in section 4.3. There,
we investigate how to obtain the correct one-loop result for the RS contribution to Higgs
boson production via gluon–gluon fusion and also for subsequent decays to two photons.
We carefully treat the interplay of the truncation of very heavy Kaluza-Klein modes, the
necessary regularization of the IR-brane Higgs location in the extra dimension, and the UV-
regularization of the theory. We give analytic and exact results for the processes. After that,
we numerically investigate them together with all other relevant Higgs boson production and
decay modes, starting from our work on gluon–gluon fusion in [4]. We find that already now
interesting bounds on the scale of the custodial RS model can be derived from the Higgs
boson decay into two photons.

The appendices finally contain technical summaries: detailed lists of further Slavnov-
Taylor identities not used in the main text, Feynman rules for the Littlest Higgs model, an
instructive analytic summation of Kaluza-Klein mode contributions to gluon–gluon fusion in
a toy RS model, further definitions and numerical input, and a detailed description of the
methods used for the RS parameter scans.
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Chapter 2

The Standard Model of Elementary
Particle Physics

We start with an obligatory and short presentation of the Standard Model of elementary
particle physics (SM). In doing so, we will focus on the aspects that are necessary in the
following work and set the relevant notation. We will present the reasons that lead us to
trust in the SM as the correct theory of matter and fundamental forces up to the electroweak
energy scale, and moreover, which of its shortcomings give us a strong incentive to study
possible extensions at higher energies.

2.1 Preliminaries

The SM is formulated as a consistent quantum field theory, which has formed through a long
history of interplay between experiment and theory. It unifies two theoretical branches, the
Glashow-Weinberg-Salam theory of electroweak interactions [5–7] and Quantum Chromody-
namics (QCD), the theory of strong asymptotically free interactions [8–10].

The theory, as it is formulated today, became widely accepted in the late seventies after
the confirmation of the quark model [11, 12] by the deep inelastic scattering experiments at
SLAC [13], the discovery of weak neutral currents in the Gargamelle experiment at CERN
[14] and the observation of jets, particularly three-jets events [15] in the PETRA experiment
at DESY. Since then, it has lead to many successful predictions that were later confirmed by
discoveries, e.g. the existence of the charm quark [16–18] and a third generation of quarks
implied by CP violation in kaon decays [19–21] through the Glashow-Iliopoulos-Maiani (GIM)
mechanism. The SM has also passed a multitude of experimental verifications at the level of
testing higher order perturbation theory.

Before entering into theoretical details, we want to highlight one of the main features
that the SM exhibits. A fact, most remarkable for the present experimental efforts at the
Large Hadron Collider (LHC), is that the SM can be treated perturbatively beyond the scale
of weak interactions ∼ 100 GeV. This implies that the predictions obtained in perturbation
theory can be reliably tested at the ongoing LHC experiments. Indeed, the latest results
from ATLAS, CMS and LHCb rapidly close in on the SM. The great efforts taken by these
experimental collaborations culminated in the announcement of the observation of a bosonic
resonance of even spin by ATLAS [22] and CMS [29] in July 2012, which is by now established
at a very high confidence level (CL). We expect that the boson is related to the mechanism of
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2. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS

electroweak symmetry breaking found in works by Brout, Englert, Higgs and independently
by Guralnik, Hagen, and Kibble [37–40]1. This mechanism is responsible for the masses of
the W and Z bosons, the carriers of the weak force. In the pre-LHC era, the Higgs sector
remained the only sector of the SM whose dynamics were untested. It was the designated
main goal of the LHC program to investigate this topic. The mass and couplings of the found
particle comply with the simplest incarnation of the mechanism of electroweak symmetry
breaking and it is likely that what is found is indeed the Higgs particle. Further hints in this
direction are given by complementary measurements in the final data set of CDF and D0 at
Tevatron [41]. Increased statistics and more complementary measurements of the particle’s
properties are necessary for a final answer. We will review Higgs physics and the results of
the measurements in more detail in section 4.3.1.

2.1.1 First Principles

The SM and theories beyond it are based on a few, very general first principles. The formal-
ism of fields, particles, and antiparticles is an inevitable consequence of Poincaré invariance,
quantum mechanics, and the cluster decomposition principle [43]. The latter principle states
that sufficiently distant experiments should yield uncorrelated results. It is guaranteed if all
operators in the Hamiltonian are evaluated at the same point in space-time. Furthermore,
physical observables must commute at space-like separations, what is referred to as locality.
This does not necessarily apply to the correlator of the field operators themselves. Causality
is then preserved by the existence of antiparticles. The conservation of probabilities of course
requires a hermitian Hamiltonian and a unitary scattering matrix. This, in turn, guarantees
real and finite eigenvalues of operators that define physical observables. Finally, stability of
matter requires the vacuum state of the theory to be bounded from below.

The Poincaré group admits representations that can be classified according to their trans-
formation property. Since the action itself must be invariant under such transformations, we
require the Lagrangian to transform as a scalar. We know from the Clebsch-Gordan decom-
position of coupled representations which couplings include a contribution that transforms as
a scalar. Thus, we can use those bilinear, trilinear, etc. combinations of field operators and
their derivatives that are found to transform as a scalar.

As we already mentioned, it turns out that the SM Lagrangian relies on additional internal
symmetry principles. It is sufficient to consider such symmetries that are generated continu-
ously out of the identity and can therefore be composed of infinitesimal transformations with
parameters αa as g(α) = 1+iαaT a+O(α2). Those groups are called Lie groups and the space
spanned by the generators T a is the Lie algebra of this group. Only the latter is necessary
for building the Lagrangian. Since we want the symmetries to act on a finite set of fields,
we only need to consider finite dimensional representations of groups with a finite number
of generators and exactly those algebras have been exhaustively classified. After splitting all
contained U(1) factors and dividing the group into its mutually commuting sets, the subsets
are called simple. The classification of Élie Cartan [44] shows that only eight types of such
groups exist. The SM is based on the direct product of the groups SU(2), SU(3) and an
additional U(1) factor

SU(3)c × SU(2)L × U(1)Y (2.1.1)

1In this thesis, we abbreviate it simply as the Higgs mechanism without implying a value judgment.
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2.1. PRELIMINARIES

symmetry, with the first group corresponding to strong interactions and the others to elec-
troweak interactions.

Other global symmetries such as baryon number B, lepton number L, spatial parity P ,
charge conjugation C, and time reversal T may, or may not be conserved. We will discuss
the origin of CP violation in the SM in section 2.2. However, the combined transformation
CPT is conserved in any quantum field theory [45].

2.1.2 The SM as an Effective Field Theory

The aforementioned feature of perturbativity in the SM holds even up to the Planck scale, the
scale where the gravitational coupling becomes strong. More generally, perturbative unitar-
ity, which is the bounded high-energy growth of scattering amplitudes order by order in the
loop expansion, has an intimate one-to-one correspondence with the fact that the theory is
spontaneously broken and renormalizable. A theory is called renormalizable, if all formal di-
vergences stemming from ultraviolet (UV) momenta that appear in intermediate calculations
of correlation functions with virtual intermediate particles can be absorbed into a redefini-
tion of the fundamental parameters of the bare Lagrangian. The latter is the most general
Lagrangian one can conceive under certain space-time and internal symmetry assumptions
and a few other consistency conditions, we mention below. Renormalizability of the SM was
proven by t’Hooft and Veltman [46].

In the modern interpretation of the SM one does not see renormalizability as a necessary
fundamental property, but one rather considers the SM as the effective field theory (EFT)
relevant for energies at least up to the electroweak scale. The effects of the heavy particles
φH in extensions of the SM LNP = LSM(φSM) + LH(φH , φSM) can then be systematically
incorporated in a matching calculation onto the relevant and marginal SM operators, supple-
mented with additional irrelevant operators Leff = LSM(φSM) +Lirr(φSM). The latter encode
the effects of the new physics (NP) beyond the SM at energies of physical processes below the
matching scale µH , i.e. in the region where the new heavy particles are quasi non-dynamical.
We already employed terminology from the classification of operators in the operator prod-
uct expansion (OPE). In the OPE one uses the fact that the products of field operators
A,B, entering Green’s functions, can be expanded in terms of local operators and coefficient
functions

∫
dx e−ik·xA(x)B(0) ≈

k→∞

∑
j
Cj(k)Oj , Cj(k) ∼ k[A]+[B]−[Oj ] , (2.1.2)

where the Wilson coefficients Cj [47] encode the large momentum dependence according
to the sum of mass dimensions of the operators in square brackets. This property holds
under renormalization up to logarithmic corrections [48]. The effective operators need to
comply with the global symmetry properties of the left-hand side. Using such expansions,
one calculates a matching of all one light-particle irreducible Feynman diagrams with external
light particles and requires them to be the same in the full and in the effective theory. This
results in an effective Lagrangian where the operators Oj depend only on light fields. The
coefficient functions are analytic functions in k/µH in the region relevant for the low energy
theory. They can therefore be cast into a series of terms with decreasing importance, where
the matching procedure determines the constant coefficients

Leff(x) =
∑

j

gj

µ
[Qj ]−4
H

Qj
(
φSM(x)

)
. (2.1.3)
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2. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS

The remaining momenta are combined with the fields φSM into gauge invariant operators Qj .
From their mass dimension, one infers the relative importance due to the suppression with
the high mass scale µH . Here, we have written it out explicitly. The expected scaling of the
matrix elements is 〈f |Qj |i〉 ∼ E[Qj ]−4 with the typical energy E of the process i → f . Once
the matter content is defined, all possible operators compatible with the gauge symmetry
group SU(3)c×SU(2)L×U(1)Y and [Qj ] ≤ 4 are indeed included in the SM. They are called
marginal, or relevant depending on whether the equality is fulfilled or not. Integrating out
new heavy degrees of freedom leads to a finite number of operators at any given value of
[Qj ] > 4, which are called irrelevant. Working at a given level of precision corresponds to
neglecting operators in (2.1.3) with dimensionality higher than a fixed value. Supplemented
with the prescription Qj ≡ 0, if [Qj ] > Dmax, an EFT is predictive, and in a sense trivially
renormalizable by definition. On the other hand, increasing the required level of precision
also requires increasing Dmax, and thus further experimental input in the form of additional
Wilson coefficients is necessary. In the use of EFTs for precision calculations in the SM, the
renormalizability of the model allows higher order predictions based on a fixed set of input
values, and is therefore an outstanding property in practical terms.

The general strength of EFTs lies in the possibility to connect physical phenomena at
a high energy scale, e.g. a contribution to an amplitude at the electroweak scale, with the
physics at a low scale, e.g. a meson oscillation, by use of renormalization group equations
(RGE). In the matching of amplitudes from the full and effective theory, the coefficients and
matrix elements of the operators in (2.1.3) in fact depend on the renormalization scale µ,
which should be chosen close to the typical scale of the process, e.g. the mass of the particle
that is integrated out, in order to avoid large logarithms from loop integrals.2 If the process
involves QCD at a low scale µ, one has to resort to a non-perturbative method, like lattice
QCD, in order to calculate the matrix elements 〈f |Qj(µ)|i〉. The connection between the
scales makes use of the observation that matrix elements of observables ultimately do not
depend on the artificial scale µ, i.e.

d

d ln(µ)

∑
j
Cj(µ) 〈f |Qj |i〉(µ) = 0 . (2.1.4)

By expanding the derivatives of all matrix elements in the complete basis of operators one
defines the anomalous dimension matrix γ, which is simply the negative of the corresponding
coefficient matrix. Using (2.1.4) one obtains the RGE

d

d ln(µ)
~C(µ) = γT ~C(µ) . (2.1.5)

It is used to evolve the Wilson coefficients between a high matching scale µH and a lower
scale µ, e.g. of a second matching step or the scale of an operator matrix element calcula-
tion. Thereby, it consistently sums powers of large logarithms to all orders in the expansion
parameter, e.g. (αs ln(µ/µH))n, what is called the summation of leading logarithms (LL).

We remark that the set of operators at a fixed value of the mass dimension can be empty.
This is the case for dimension 5 operators, if lepton number is also conserved by the new
physics; otherwise only a single operator is allowed [51]. A full classification of all possible
operators at mass dimension 6 and compatible with the SM gauge symmetry group has been
carried out in [52, 53]. In total 59 operators arise, plus additional flavor structure for fermions.

2For regularization prescriptions and renormalization in general we refer to the excellent textbooks [48–50].
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2.2. NOMENCLATURE AND THE SYMMETRY BREAKING SECTOR

While model independent studies based on this set are an interesting possibility [54–60], the
number of operators is very large. Furthermore, one cannot expect all coefficients gi to be
of the same order. In most models of new physics they strongly deviate from each other,
depending on the precise dynamical assumptions, for instance if couplings are generated only
at higher loop level, or if they are reduced or forbidden due to symmetries. The thesis at hand
shows consequences of specific dynamical assumptions and ways to facilitate calculations for
a generic set of dynamical assumptions.

We have seen how the SM forms the basis for all studies of models of new physics, which
can be regarded as perturbations around the SM. In the following sections we lay out our
standard nomenclature for the SM and briefly discuss some aspects relevant for this work.

2.2 Nomenclature and the Symmetry Breaking Sector

In the following, we set our nomenclature for the SM content. The formulation of massive
gauge bosons of the electroweak interactions SU(2)L×U(1)Y requires the concept of sponta-
neous symmetry breaking, which we introduce subsequently. The issue of the quantization of
such a theory is then reviewed in the next section. Our conventions agree mostly with [61]3.

The gauge fields of the local SU(3)c×SU(2)L×U(1)Y symmetry are represented by Gaµ,
a = 1, . . . , 8, W i

µ, i = 1, . . . , 3, Bµ, with gauge couplings gs, g, g′, generators T a, τ i, Y , and

structure constants fabc, εijk, 0, respectively. The gauge transformations act as

δW i
µ =

1

g
∂µδθ

i + εijkW j
µδθ

k , (2.2.1)

while the field strengths transform as a tensor of the adjoint

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν , δW i

µν = εijkW j
µνδθ

k , (2.2.2)

and analogous for Gaµν and Bµν . The field strengths are suitable to construct the kinetic
terms for the gauge bosons

LV = −1

4
GaµνG

a,µν − 1

4
W i
µνW

i,µν − 1

4
BµνB

µν . (2.2.3)

The fermion sector consists of nf = 3 generations of multiplets M = (LL, eR, QL, uR, dR),
where the left-handed fermions LL = (νL, eL)T , and QL = (uL, dL)T are eigenstates under
the corresponding projectors PL = 1

2

(
1− γ5), zero under the projection with PR = 1

2

(
1 + γ5),

and vice versa for the right-handed fermions. The first two components of the multiplets, the
leptons, are neutral under SU(3)c and the latter three, the quarks, each form a fundamental
representation. For the SU(2)L transformation, we only need the two dimensional fundamen-
tal representation (chiral) for the left-handed fermions, while the right-handed fermions are
singlets

δfL = i(Y δθY + τ iδθi)fL , δfR = i Y δθY fR . (2.2.4)

The electroweak charges are summarized in table 2.1. Anomaly freedom of the SM is an
important consistency condition, i.e. the gauge symmetries also hold at the loop-level [62–
64]. It is remarkable that even though the SM employs a non-safe algebra [65], the specific
charges of the multiplet M lead to a cancellation of the anomalies [66].

3We choose a reversed sign of the gauge coupling g′ in contrast to [61] and Q = Y + τ3.
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2. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS

The fermionic kinetic terms are given by

LF =
3∑

i=1

∑

f∈M
f̄i i /Dfi , /D ≡ γµDµ ,

Dµ = ∂µ + igsT
aW a

µ + igτ iW i
µ + ig′Y Bµ .

(2.2.5)

Right-handed neutrinos would be neutral under all three gauge groups and are thus omit-
ted in the minimal formulation of the SM. They might come useful in order to give sub-eV
masses to left-handed neutrinos, and thus explain neutrino oscillations, via the see-saw mech-
anism. For a review see [67].

Except for the mentioned right-handed neutrino, explicit mass terms are forbidden for all
fields introduced so far, due to the gauge symmetry and the choice of representations. They
are instead generated in the SM by the simplest possible incarnation of the Higgs mechanism
[37–40], which spontaneously breaks the gauge symmetry through a non-vanishing vacuum
expectation value (VEV) of its neutral component. This is realized by a scalar doublet, which
transforms under SU(2)L analogous to (2.2.4). We expand it into VEV and component fields
as

Φ(x) =
1√
2

(
−i
√

2ϕ+(x)
v + h(x) + iϕ3(x)

)
, (2.2.6)

and the complex charged scalar into components ϕ± = 1√
2
(ϕ1 ∓ iϕ2). The non-vanishing

VEV is implied by the specific choice of signs for the general gauge-invariant self-interactions
of the scalar doublet

LH = (DµΦ)† (DµΦ)− V (Φ) , V (Φ) = −µ2Φ†Φ + λ
(
Φ†Φ

)2
, µ2, λ > 0 . (2.2.7)

The classical configuration 〈Φ〉 =
(
0, v/

√
2
)T

that minimizes (2.2.7) is a uniform field with

v = µ/
√
λ. The Lagrangian (2.2.7) with fixed vacuum configuration (broken phase) is still

invariant under U(1)em gauge transformations due to the annihilation of the vacuum by
the charge Q〈Φ〉 = 0. The charge operator is given by the Gell-Mann-Nishijima relation
Q = Y + τ3. Only the neutral scalar obtains a mass Mh =

√
2µ. The Goldstone theorem

implies that the number of broken generatorsNSU(2)−NU(1) = 3 equals the number of massless
scalar degrees of freedom. They are unphysical; this can be easily verified on the classical
level in unitary gauge. More precisely, the would-be Goldstone bosons serve as longitudinal
modes of the gauge bosons, which in turn become massive. Masses of the gauge bosons arise
from the covariant derivatives DµΦ. One obtains the charge and mass eigenstates via

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
,

(
Aµ
Zµ

)
=

(
cw sw
−sw cw

)(
Bµ
W 3
µ

)
, tw ≡

g′

g
, (2.2.8)

νeL e−L e−R uL dL uR dR Φ

Q 0 −1 −1 2
3 −1

3
2
3 −1

3 1 0

T 3 1
2 −1

2 0 1
2 −1

2 0 0 1
2 −1

2

Y −1
2 −1

2 −1 1
6

1
6

2
3 −1

3
1
2

1
2

Table 2.1: Electroweak quantum numbers of the SM matter content.
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2.2. NOMENCLATURE AND THE SYMMETRY BREAKING SECTOR

where here and in the rest of this thesis we abbreviate sw = sin(θw), cw = cos(θw), and
tw = tan(θw) for the trigonometric values of the weak angle θw. The electric charge is given
by e = gsw > 0. After this redefinition one obtains

DµΦ =
1√
2

(
−i
√

2
(
∂µϕ

+ +MW W+
µ

)

∂µh+ i
(
∂µϕ

3 +MZ Zµ
)
)

+ field bilinears , (2.2.9)

where MW = gv/2 = cwMZ is the GWS relation. Remark that also a term linear in h is
generated; the tadpole is proportional to v(µ2 − λv2), i.e. zero at tree-level, but it reappears
at higher loop-orders. Since it alters the VEV structure, it is convenient to set it to zero by a
renormalization condition. This observation is interesting, as it allows to relate the VEV to
the Fermi constant, defined below, by a simple relation.

The masses of the fermions are generated by the most general interactions one can write
down thanks to the scalar being an SU(2)L doublet. Defining also the charge conjugated
scalar doublet Φc ≡ 2iτ2Φ∗, the Yukawa couplings read

LY = −L̄L YeΦ eR − Q̄L YuΦc uR − Q̄L YdΦ dR + h.c. , (2.2.10)

where +h.c. denotes the addition of the hermitian conjugate of the preceding expression. The
matrices Yf are general 3 × 3 matrices in flavor space, and thus break the global SU(nf )5

flavor symmetry present in the kinetic terms. The Yukawa matrices need to be diagonalized
by biunitary transformations in order to obtain mass eigenstates

Yf = UfλfW
†
f , λf =

√
2

v
diag(mfi) ,

f ′L = UffL , (f = u, d, L) , f ′R = WffR , (f = u, d, e) .

(2.2.11)

Since only one Yukawa coupling is included for the lepton sector, the redefinition of left-
handed charged leptons and neutrinos is the same. This results in the conservation of lepton
generation number. Furthermore, the neutrinos remain massless. The singular value decom-
position (2.2.11) is only unique up to an additional global U(1)3 transformation, due to the
identity

Yf = UfλfW
†
f = UfPfλfP

∗
fW

†
f , Pf = diag

(
e
i φfj

)
. (2.2.12)

The transformation of fermions with Pf leaves all terms in the Lagrangian invariant, apart
from the charged current interactions

LF

∣∣
W±

= − g√
2
ū′L /W

+
VCKM d′L + h.c. , VCKM = UuU

†
d . (2.2.13)

The Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM [19, 68] is a unitary matrix, so in
general it is parametrized by 3 real parameters (moduli) and 6 phases. The redefinitions
VCKM → PuVCKMP

∗
d then allow to absorb five of those phases in the phase differences of the

matrices Pu,d, such that a single phase δ remains. In the standard parametrization [69] one
chooses four specific CKM entries to be real

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13


 ,

(2.2.14)
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2. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS

where cij ≡ cos(θij), and sij ≡ sin(θij). In total we are now able to count 9 masses, 3
mixing angles, i.e. 12 moduli, and 1 phase in the Yukawa sector of the SM. This can also be
elegantly inferred from a spurion analysis. Suppose the Yukawa matrix elements are replaced
with flavon fields having NY = 3× (n2

f , n
2
f ) flavon moduli and phases, which break the flavor

symmetry G = SU(nf )5 to the remnant H = U(1)B × U(1)
nf
Li

baryon and lepton generation

number factors4. Then, the Goldstone theorem directly tells us that

NG −NH = 5×
(
nf (nf − 1)

2
,
nf (nf + 1)

2

)
− (nf + 1)× (0, 1) (2.2.15)

flavons remain massless. The Yukawa sector of the generalized SM with nf generations thus
has

NY − (NG −NH) =

(
nf (nf + 5)

2
,
nf (nf − 3)

2
+ 1

)
(2.2.16)

moduli and phases. For nf = 3 we find as expected 12 moduli and 1 phase, and we see that at
least three generations are necessary in order to obtain a phase at all. This phase is the only
source of CP violation in the SM. We see from (2.2.14) that it is in fact always multiplied
with the very small quantity s13 = |Vub|. Even though this implies generally that physical
observable in which CP violation is measurable must contain this small quantity, it does not
not necessarily imply a relative suppression compared to the leading contributions in a specific
process. E.g. B-meson decays generally involve Vub and Vcb, which are both similarly small.

The standard parametrization is recommended for numerical evaluations. When the CKM
matrix is given in a general phase convention, we can transform to standard phase convention
by fulfilling the requirement that the elements Vud, Vus, Vcb and Vtb shall be real and the
remaining two phase parameters correlated by

Im(Vcs) =
VusVcb

V 2
ud + V 2

us

Im(Vub) . (2.2.17)

Another common parametrization clearly reveals the structure of the CKM matrix. When
we define

s12 ≡ λ , s23 = Aλ2 , s13 = Aλ3(ρ− iη) , (2.2.18)

we can expand the CKM matrix in λ to arrive at

VCKM =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) . (2.2.19)

This parametrization is named after Wolfenstein [73]. Since λ = |Vus| + O(λ7) ≈ 0.23,
equation (2.2.19) directly reveals the hierarchies of the CKM matrix. It is interesting to note
that such a hierarchical pattern is not present in the lepton analogue of the CKM matrix, the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [74–76]. Its elements can be measured

4Only the difference of total baryon and total lepton number, and the differences of two lepton generation
numbers are exact conserved quantities. The single U(1) factors of H are anomalous due to electroweak
interactions. This is connected to instanton transitions between different vacuum configurations [70]. They
lead to asymmetries at temperatures above the scale of electroweak symmetry breaking but are exponentially
suppressed below [71, 72].
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2.3. QUANTIZATION AND BRST INVARIANCE

in neutrino oscillation experiments and are usually parametrized similar to the form (2.2.14).
With an unspecified origin of neutrino masses, two additional CP phases are allowed in
principle. In the PMNS matrix, the angles s12 and s23 are of similar size and only s13 is
smaller by approximately a factor of 4. The small but non-zero (1, 3) element of the PMNS
matrix has been established recently [77]. For a global analysis of the leptonic mixing angles
and further references see [78].

2.3 Quantization and BRST Invariance

We will now discuss the quantization of a classical gauge theory, first in general terms, and
then specify it to the SM in the remainder of this section. We will thereby introduce the
generalized concept of gauge invariance at the quantum level. This concept forms the main
ingredient of the discussion in section 3.1 and 4.1.1, where we find practical implications that
are generically applicable to any renormalizable gauge theory beyond the SM.

The quantization can in principle be carried out in terms of canonical commutators of
fields that are promoted to quantum field operators. Alternatively, we can consider the
generating functional. For the relevant case of a spontaneously broken gauge symmetry with
gauge fields A, and scalars Φ that may obtain VEVs, the generating functional is given by
the path integral

Z[JA, JΦ] =

∫
DADΦ ei

(
SV[A]+SH[A,Φ]+

∫
dDx
[
JA,µ(x)Aµ(x)+JΦ(x)Φ(x)

])
. (2.3.1)

Both quantization methods are equivalent in the sense that we can relate correlators, i.e.
expectation values of a product of operators, to functional derivatives of Z with respect to
the sources JA,Φ. It is well known that a quantization by imposing canonical commutation
relations of field operators leads to mathematical difficulties for local gauge theories, since
the two degrees of freedom do not match the four entries of the usual spin-1 representation.
In Lorentz gauge, the method of Gupta and Bleuler [79, 80] is applicable to abelian theories,
but it does not generalize to the non-abelian case. Consequently, the canonical approach
becomes impractical for explicit calculations, where the preservation of full gauge covariance
is a useful property. A direct treatment of (2.3.1) runs into severe problems as well. By
Fourier-transforming the space-time coordinates of the Lagrangian, one can easily show that
the path integral is badly divergent on the subspace of modes that are gauge equivalent
to Aµ = 0. The Faddeev-Popov (FP) method for gauge fixing [81] resolves this issue, by
removing the redundant integration over gauge equivalent subspaces and results in a rigorous
and simple set of calculational rules. This makes functional quantization the standard method
for the derivation of Feynman rules and ultimately to compute Green’s functions and S-matrix
elements.

We shortly present the idea of the FP method. To simplify the notation, we skip the
source terms JA,µ = JΦ = 0; the procedure works analogously in the general case. Let Aα

and Φα denote the gauge transformed fields under some finite-dimensional representation of
a compact Lie group

Aαµ = U(α)

(
i

g
Dµ

)
U(α)† , Φα = U(α)Φ . (2.3.2)
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2. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS

A gauge fixing condition F̃ [A,Φ] = 0 is introduced by the insertion of the identity

1 =

∫
Dα δ(F̃ [Aα,Φα]) det

(
δF̃ [Aα,Φα]

δα

)
. (2.3.3)

Employing any choice of F̃ that is linear in A and Φ implies that the functional derivative of
F̃ with respect to α will be independent of α. This allows to separate the integration over
gauge equivalent subspaces into an infinite constant, which only affects the irrelevant overall
normalization of Z. The constant is proportional to the volume of the gauge group V =

∫
Dα

and the generating functional given by

Z[0] = V
∫
DADΦ ei(SV+SH) δ(F̃ [A,Φ]) det

(
δF̃ [Aα,Φα]

δα

)
. (2.3.4)

A convenient redefinition of F̃ moves the functional determinant into a contribution to the
action. Let F̃ [A,Φ] ≡ F [A,Φ]− ω with a linear functional F and any function ω(x). Subse-
quently we integrate over ω with a Gaussian weight normalized by Nξ

Z̃[0] ≡ Nξ

∫
Dω e−i

∫
d4x

ω(x)2

2ξ Z[0] , (2.3.5)

to obtain a new path integral

Z̃[0] =
(
NξV

) ∫
DADΦ ei(SV+SH+SGF) det

(
δF [Aα,Φα]

δα

)
, (2.3.6)

SGF =

∫
d4x

(
− 1

2ξ

)
F [A,Φ]2 . (2.3.7)

The functional determinant determines the Faddeev-Popov ghost sector, which is an impor-
tant ingredient for the definition of and calculations in renormalizable gauges. We use the
formal identity for integration over a Grassmann valued complex field c and a hermitian
operator O, with

det(O) =

∫
DcDc̄ ei

∫
d4x c̄Oc , (2.3.8)

to rewrite the functional determinant as

det

(
δF [Aα,Φα]

δα

)
=

∫
DcDc̄ e i

∫
d4xLFP , LFP ∝ c̄

δF [Aα,Φα]

δα
c . (2.3.9)

Constant factors can be included into the normalization of c. In general, c, F , and α are
vectors with length equal to the dimension of the representation of the gauge group. We
suppressed the corresponding indices above. c is called a ghost field for its counter-intuitive
physical interpretation: The field is anti-commuting but a Lorentz scalar. Thus, it would
violate the spin-statistics theorem. Just like the longitudinal light-like modes of the gauge
field, or the would-be Goldstone bosons, the ghost field will also not appear in any final
state. This can be formally proved by the introduction of a BRST symmetry, named after
Becchi, Rouet, Stora and Tyutin [82–84]. After fixing the gauge, the usual gauge invariance
of (2.2.1) and (2.2.4) is of course no longer manifest. Instead, the role of gauge transforma-
tions is precisely replaced by the BRST transformations. In order to obtain these non-linear
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transformations, one has to replace the infinitesimal gauge parameter by the ghost field times
an anti-commuting constant δλ, i.e. δθa → δλua. The BRST operator s is then defined as
the left derivative with respect to δλ. The BRST symmetry is therefore a supersymmetry,
since it transforms fields with different spin-statistics properties into each other. It remains to
specify the BRST transformation of the ghost fields. The BRST transformation of anti-ghost
fields is determined by the gauge-fixing function F a, while the transformation of ghost fields
is determined by the structure constants fabc (zero for abelian U(1) factors):

sua = −g
2
fabcubuc , sūa = −1

ξ
F a . (2.3.10)

The BRST operator is nil-potent s2 = 0 except for its action on anti-ghost fields. This can be
enforced by the introduction of auxiliary non-dynamical fields, the Nakanishi-Lautrup fields
[85, 86]. When doing so, the physical states, i.e. the two transverse degrees of freedom for
massless gauge bosons, plus one longitudinal degree of freedom for massive gauge bosons, the
Higgs boson, and the fermions, can be identified in terms of the kernel modulo the image
of a conserved BRST charge defined through s. We do not need these formal aspect in
the following. However, it is important to note that one can define physical components of
asymptotic states, i.e. external states to the processes we want to compute, in such a way
that their BRST transformation vanishes sψph = 0.

We did not yet specify an explicit form for the linear functional F . Most convenient are
’t Hooft Rξ-gauges, for which one usually introduces the gauge-fixing functions in terms of
the mass eigenstates

FW± = ∂µW
±µ ∓ iξWMWϕ

± ,

FZ = ∂µZ
µ − ξZMZϕ

3 ,

FA = ∂µA
µ , FG = ∂µG

µ ,

(2.3.11)

allowing for a bare gauge parameter for each gauge field. The form is chosen such as to remove
two-point mixing between each massive gauge boson and the corresponding Goldstone boson
at tree level. Linearity of the gauge fixing assures that the gauge parameter does not appear
in vertices.5

The ’t Hooft-Feynman gauge sets ξV = 1 for all gauge parameters and is particularly
convenient. In this gauge, the tree-level gauge field propagators obtain a simpler Lorentz
structure and the poles of the Goldstone boson and ghost propagators coincide with the
gauge boson masses

V
µ ν

k →
=

−i
k2 −M2

V

(
gµν − (1− ξV )

kµkν

k2 − ξVM2
V

)
,

ϕ, u

k
=

i

k2 − ξVM2
V

,

(2.3.12)

where u and ϕ are the ghost and Goldstone boson of the gauge boson V .
Taking instead the limit of ξV → ∞, one can in fact decouple the unphysical degrees of

freedom.6 We are then left with the non-renormalizable unitary gauge. Trouble arises in

5Scalar–ghost vertices are an exception.
6Nevertheless, one must take into account scalar–ghost, since they are linear in ξ [87].
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this gauge if we encounter individual loop-diagrams that carry ξ-dependence and diverge in
this limit. Yet, the gauge invariance of matrix elements of ξ-independent operators and the
gauge invariance of the S-matrix tell us that these divergences must cancel in the sum of
all diagrams. Moreover, one cannot refer to power-counting arguments anymore, since the
gauge-boson propagator does not fall off like k−2 in this limit. In total, the evaluation of
loop-integrals in general becomes an involved and error prone task of rearrangements inside
of loop-integrals and is an ill-advised strategy.

2.4 Reasons to Go Beyond

One of the most astonishing things about
the world in which we live is that there
seems to be interesting physics at all scales.
Whenever we look in a previously
unexplored regime of distance, time, or
energy, we find new physical phenomena.

Howard Georgi

Before entering the discussion of physics beyond the SM, we give a brief summary of
the questions left open by the SM and indications of its incompleteness. We begin with the
observational reasons and then turn to aspects of theoretical character.

The attempt to fill the whole gap between the SM and a quantum theory of gravity at once
seems to be a daunting task, given that our observations cover only about half of the energy
scales between van-der-Waals forces and the Planck scale — the scale where gravitational
quantum effects are expected to become important. From the discussion of EFTs we learned
that this is also not absolutely mandatory. For practical reasons, most of the model building
effort may thus concentrate on new phenomena that could be observed at the LHC or a future
linear collider. There are also tangible reasons to expect new physics between the electroweak
and the Planck scale, and some of them indeed point towards new physics at the TeV scale.
However, note that the present value of the top quark and Higgs mass put the SM Higgs
potential in the region between metastability and absolute stability up to the Planck scale
[88]. From a theoretical point of view, in principle this allows the SM to be the final theory
of all non-gravitational forces.

One definite observational fact is already considered as physics beyond the SM: Non-
zero neutrino masses can be inferred from measurements of neutrino oscillations. From the
observed atmospheric neutrino mass squared difference, one derives that one of the neutrinos
must have a mass of at least 4.6 · 10−2 eV [69]. The masses could be accommodated by
introducing right-handed Dirac neutrinos and a Yukawa coupling, either without explaining its
smallness or by a type-I see-saw with a very large right-handed Majorana mass. An alternative
is a non-vanishing Wilson coefficient λij of the lepton-number violating D = 5 operator
mentioned in section 2.1.2, the Weinberg operator (LiΦ)T (LjΦ) [51]. Gravitational effects
in the Weinberg operator induce an insufficient value of only mij = λijv

2/(2MPl) ∼ 10−5 eV
for O(1) Wilson coefficients. Such a mechanism of neutrino mass generation would instead
point towards a scale ΛGUT ∼ 1015 GeV where the Weinberg operator could be sourced by
a UV completion of the SM. This is referred to as the type-II see-saw. For a review of the
see-saw variants, see [67]. The corresponding operators can also obtain contributions from
scalar triplets instead of the doublets, see e.g. [89].
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The most striking arguments for a richer structure of new physics actually stem from as-
trophysical and cosmological observations. The neutral non-baryonic relic matter component
from the early universe makes up about 24% of the energy density of the universe. This can
be inferred from measurements of the cosmic microwave background [90]. Dark matter is also
found through many other astrophysical observations, e.g. the radial dependence of galaxy
rotation curves. For recent reviews, we refer to [91, 92]. The only dark matter component of
the SM are the light neutrinos. They cannot account for the necessary amount of relic density
and are too relativistic to be responsible for structure formation in the early universe [93].

A common scenario for dark matter particles is the existence of weakly interacting massive
particles (WIMPs) that are in thermal and chemical equilibrium with all other particles
in the early universe, due to their self-annihilation into SM particles and vice versa. At
some expansion state of the universe their density becomes too low and they freeze out of
equilibrium. Their relic density can be approximated by ΩXh

2 ≈ 3 · 10−27cm3s−1/〈σv〉 ≈ 0.1
under some simplifying assumptions [91, 94]. This points towards a cross section that is typical
of weak interactions in the SM. The annihilation cross sections depends on the dark matter
particle’s mass and constrains the values of the most common candidates to be in the range of
10 – 105 GeV. The neutralino, as the lightest stable particle in many versions of the minimal
supersymmetric extension of the SM (MSSM), is a prototypical WIMP candidate. Another
widely studied candidate is the lightest Kaluza-Klein particle in theories of flat universal extra
dimensions [95] with KK parity, a remnant of 5d momentum conservation.

Another unsolved aspect in the SM is the observed matter-antimatter asymmetry of
the universe [90]. Even though the SM fulfills all three Sakharov conditions [96], with
Baryon-number violation through anomalies at the non-perturbative level and a thermal
non-equilibrium occurring in an early epoch of the expanding universe, CP violation from
the CKM mechanism is known to be insufficient in order to obtain the necessary amount
of asymmetry [97]. Note that a solution to this problem can also be found in baryogenesis
through leptogenesis, e.g. by a heavy right-handed Majorana neutrino. See [98] for a review.

Besides observational, there exist also unanswered questions from the theoretical point of
view. A suggestive property of the SM is that its running gauge couplings come very close but
slightly miss each other at the aforementioned scale ΛGUT ∼ 1015 GeV. This constitutes more
an intriguing possibility than a shortcoming, as unification of running coupling constants
could happen through modifications of the RGE below this scale. This explains also the
name GUT, which stands for grand unified theory [99]. Simple non-supersymmetric SU(5)
is ruled out by the prediction of too rapid proton decay and an excluded value for weak
mixing angle [100]. In supersymmetric GUTs the unification scale is usually more than an
order of magnitude higher and the models can pass proton decay bounds [101]. In extra-
dimensional extensions of the ADD type (see section 3.3.1), the unification scale can be lower
[102]. The Randall-Sundrum models, which we extensively discuss in section 3.3, allow for
gauge-coupling unification without supersymmetry [103].

The SM is free of relevant operators through the concept of electroweak symmetry break-
ing, which provides enough symmetry in order to forbid explicit mass terms but for a sin-
gle exception: the parameter µ2 of the Higgs boson is necessary for electroweak symmetry
breaking. Radiative corrections to the Higgs two-point vertex function are easily seen to be
quadratically sensitive to a cutoff scale Λ of high loop momenta. The one-loop correction
from a fermion with Yukawa coupling yf to the Higgs boson, mass mf and a repetition factor
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Nf , e.g. a possible color factor, is given by [104] (see also [105, 106])

δM2
H =

Nf y
2
f

8π2

[
− Λ2 + 6m2

f ln
(
Λ/mf

)
− 2m2

f

]
+O

(
Λ−2

)
. (2.4.1)

Furthermore, there are also contributions from the SM gauge bosons and the Higgs boson
itself. For a general scalar with mass mS , trilinear and quadrilinear coupling to one and two
Higgs bosons given by vλS and λS , respectively, one finds

δM2
H =

NS λs
16π2

[
−Λ2 + 6M2

S ln
(
Λ/MS

)]
+
NS λ

2
s

16π2
v2
[
− 1 + 2 ln

(
Λ/MS

)]
+O

(
Λ−2

)
, (2.4.2)

and a similar expression for gauge bosons. In total, the Λ2 divergent term has a one-loop
coefficient of (M2

H + 2M2
W + M2

Z − 4m2
t )/v

2 in the SM. A cancellation between the masses,
once proposed by Veltman [107], does not occur numerically with the recently found value
of Mh ≈ 126 GeV and would anyway not protect the quadratically divergent terms at two
and higher loop levels. For values of the cutoff around the Planck or GUT scale, a very
specific bare Higgs mass and a cancellation with the radiative corrections is required to achieve
a physical Higgs mass near the electroweak scale. This is referred to as the naturalness
or fine-tuning problem [108, 109]. In principle this is not a problem within the SM, since
renormalizability assures that the cancellation occurs in a mathematically consistent way by
choosing the appropriate counterterm that cancels the divergence. Nevertheless, a technical
stability problem of the Higgs mass remains in the presence of a large mass gap to perturbative
new physics far above the electroweak scale due to the explicit mass dependence contained
in (2.4.1) and (2.4.2). To summarize, the natural value of the Higgs mass is driven to the
highest resonance in the theory. This is called the gauge hierarchy problem. According to ’t
Hooft’s naturalness criterion, this calls for a symmetry in a perturbative extension of the SM.
A very elegant way that leads to a cancellation between contributions of the form (2.4.1) and
(2.4.2) is given by supersymmetry: the left and right-handed squark account for NS = 2Nf

and cancel the quadratic divergence of each quark respectively. The remaining contribution
to the Higgs mass is then only sensitive to the splitting of mf and MS and can induce a
little hierarchy, also called µ problem. In sections 3.2 and 3.3 we present the Little-Higgs and
Randall-Sundrum models that are effective theories and impose a limited range of validity of
Λ ∼ 10 TeV, in order to explain the absence of the gauge hierarchy problem.

An open question also related to radiative corrections to the Higgs mass is the following.
As we have seen, M2

h , or equivalently µ2 in the phase of unbroken SU(2)L×U(1)Y symmetry,
is additively renormalized. But for electroweak symmetry breaking necessarily µ2|TeV < 0
holds, and there is no natural distinction between the two signs.

The SM shows further unexplained hierarchical values: The cosmological constant problem
[110] refers to the D = 0 operator of the effective Lagrangian. It is already sourced by the
bare Higgs potential %h = M2

hv
2/8, but unfortunately with a contribution that is 55 orders

of magnitude above the experimental value %vac ∼ meV4 [90]. A very peculiar cancellation
must also take place in the effective angle θQCD. The angle is restricted to be very tiny by
the upper bound on the neutron electric dipole moment [111]. It obtains a priori unrelated
contributions from the non-abelian gauge-group topology of the vacuum [71] and the chiral
fermion transformations (2.2.11) [112]. The reason for the necessary cancellation of these
contributions is unknown and called the strong CP problem.

Finally, the hierarchies of masses and mixing angles in the quark sector and the different
pattern in the lepton sector are left unexplained. In contrast to the quark sector, where mass
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and flavor eigenstates are similar, one of the neutrino mass eigenstates consists mainly of
νe, one to nearly equal parts of νµ and ντ , and the third to similar parts of all three flavor
eigenstates. Unlike for the Higgs mass, the fermion hierarchies do not imply a technical
instability. But it is considered unsatisfying that the SM provides no explanation for the
almost 6 orders of magnitude between the largest quark and lightest charged lepton masses
and at least 6 additional orders of magnitude to the neutrino mass scale.

Apart from hierarchies, the particular structure of the SM is not inherently explained by
the model itself, i.e. the number of fermion generations and why their charges are given as
in the specific anomaly free assignment [64]. Thus, there are plenty of reasons to improve
simplicity and elegance of the SM in a UV completion.

In our phenomenological discussion, we will also come across some experimental tensions
from collider experiments, which are at the 2–3σ level. Here, we emphasize that they are all
inconclusive and might be either due to experimental fluctuation or possible underestimated
systematics from the experimental and/or theoretical side. Apparently it is an interesting fact
that there exist more deviations at processes involving particles of higher mass. However,
this should in fact be expected due to the unsettled experimental situation and the lower
statistics. Yet, this drives model building of new physics into a specific direction, as the
constraints related to quarks of the first two generations are stronger. We will discuss this
in more detail below. We close with emphasizing that all models trying to solve some of the
above issues are very likely to include the SM as the basic building block in the low energy
limit.
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Chapter 3

Theoretical Classification &
Examples of New Physics

3.1 Relations for Perturbatively Unitary Theories

We start the discussion of models beyond the SM with a general summary of properties of
perturbatively unitary theories. To this end, we consider a template Lagrangian, with an
arbitrary number of massive degrees of freedom: gauge bosons, fermions, and scalars. Per-
turbative unitarity imposes important constraints on such generic extensions. The required
cancellation of unbounded high-energy growth of scattering amplitudes leads to specific uni-
versal relations among the couplings, and it enables us to understand and perform the renor-
malization of the observables in a general way. The feasibility of this approach is expected
on general grounds, since the equations implied by perturbative unitarity uniquely reflect the
spontaneously broken gauge structure of renormalizable theories [113–115]. This property,
which we have already discussed for the SM, in fact holds generically. Equalities from pertur-
bative unitarity thus may as well be derived by means of Slavnov-Taylor identities (STIs). In
section 4.1.1 we advocate the practical implementation of those simple relations in the calcula-
tion and renormalization of generic loop amplitudes. This goes beyond the typical application
of perturbative unitarity in which one typically derives upper bounds on yet unobserved mass
spectra [116–118] and combinations of masses and/or couplings [119–122].

3.1.1 The Generic Lagrangian

In the following, we consider an extension of the SM by an arbitrary number of heavy scalar,
fermion, and vector fields, i.e. with masses above the electroweak scale. As our starting point,
we define a generic template Lagrangian, whose interaction terms with massless SM vector
fields – the photon and gluon – are fixed by QED and QCD gauge invariance. In particular,
they are given in terms of the SU(3)c × U(1)em covariant derivative

(Dµ)ij = (∂µ − ieQFAµ)δij − igsGaµT aF,ij , (3.1.1)

by the usual kinetic terms of the massive fields F . Here, T aF,ij and QF generate the action of
the respective gauge group SU(3)c and U(1)em on the field F .
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The interactions of massive fields up to mass-dimension four read

Lint =
∑

s f1f2 σ

yσ,abc
sf̄1f2

has ψ̄
b
f1
Pσψ

c
f2

+
∑

v f1f2 σ

gσ,abc
vf̄1f2

V a
v,µψ̄

b
f1
γµPσψ

c
f2

+ i
6

∑
v1v2v3

gabcv1v2v3

(
V a
v1,µV

b
v2,ν ∂

[µV c,ν]
v3

+ V c
v3,µV

a
v1,ν ∂

[µV b,ν]
v2

+ V b
v2,µV

c
v3,ν ∂

[µV a,ν]
v1

)

+ 1
2

∑
v1v2s

gabcv1v2s V
a
v1,µV

b,µ
v2
hcs − i

2

∑
vs1s2

gabcvs1s2 V
a,µ
v

(
hbs1 ∂µh

c
s2 −

(
∂µh

b
s1

)
hcs2

)

+ 1
6

∑
s1s2s3

gabcs1s2s3 h
a
s1h

b
s2h

c
s3 + 1

24

∑
s1s2s3s4

gabcds1s2s3s4 h
a
s1h

b
s2h

c
s3h

d
s4

− i
2

∑
v1v2

(
e ωA,v1v2F

µνV a
v1,µV

a
v2,ν + gs ω

abc
G,v1v2

Ga,µνV b
v1,µV

c
v2,ν

)
. (3.1.2)

They involve physical scalars hsi , Dirac fermions1 ψfi , and vector fields Vvi , with non-zero
masses Msi , mfi , and Mvi , respectively. These fields are enumerated by the corresponding
indices si, fi, vi. The index σ denotes the two chiralities σ = L,R. Square brackets around
Lorentz indices denote their anti-symmetrization. Furthermore, the kinetic term of Vi and
the couplings to the field strength tensors ω contribute to triple gauge boson vertices with
one photon or gluon. The standard Lorentz structure for these vertices is obtained if and
only if we take

ωA,v1v2 = δ v̄1v2Qv2 , ωabcG,v1v2
= δ v̄1v2T

a
v2,bc . (3.1.3)

We assume that all vector fields obtain their mass by a spontaneous breakdown of a local
symmetry. The Lagrangian Lint comprises only the model-dependent couplings: all remaining
“unphysical” interactions, for instance of the would-be Goldstone bosons associated with
the spontaneous symmetry breaking, can be inferred from the requirement of perturbative
unitarity via the STIs, which we discuss below.

Through SU(3)c × U(1)em gauge invariance, non-vanishing couplings may only exist for
index combinations that allow the fields to form an uncharged singlet. For instance, a non-
vanishing coefficient yσ,abc

s1f̄1f2
implies the charge relation Qs1 +Qf2 = Qf1 , and2

yσ,dbc
sf̄1f2

T es,da + yσ,abd
sf̄1f2

T ef2,dc = T ef1,bd y
σ,adc

sf̄1f2
. (3.1.4)

If one of the fermions – e.g. ψf2 – is uncharged, Schur’s lemma implies that Ts1 = Tf1 .
Hermiticity puts further restrictions on the couplings. For instance, we can express the
couplings of negatively charged Higgs and gauge bosons to fermions by the couplings of the
corresponding positively charged particles. In general, we have

yσsf̄2f1
=
(
yσ̄s̄f̄1f2

)∗
, gσvf̄2f1

=
(
gσv̄f̄1f2

)∗
, gv1v2s =

(
gv̄1v̄2s̄

)∗
,

gvs1s2 = −
(
gv̄s̄1s̄2

)∗
, gv1v2v3 = −

(
gv̄1v̄2v̄3

)∗
.

(3.1.5)

The bars over bosonic indices denote the exchange of indices within a pair of oppositely
charged particles, as in g

W+...
= gW−.... They have no effect for neutral particles. The bar

over a σ denotes the opposite chirality.

1For simplicity, we do not consider Majorana fermions here. A generalization is however straightforward.
2These properties allow for a systematic calculation of QCD corrections to our results in a similar way to

the calculation of radiative decays in [123] and ∆F = 2 processes in [124].
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3.1.2 Slavnov-Taylor Identities for Feynman Rules

The constraints derived from perturbative unitarity reflect a spontaneously broken gauge
symmetry. To exploit these constraints for our generic template Lagrangian, we use the STIs
of an arbitrary spontaneously broken gauge theory. The massive vector fields of (3.1.2) are
the gauge bosons of the fundamental theory, supplemented by a standard Rξ gauge-fixing
term. The outcome of this is twofold: the couplings of Goldstone bosons can be directly
linked to the couplings of the corresponding vectors in the mass-eigenstate basis. This use
of STIs is well known and summarized in the Goldstone-boson-equivalence theorem (GBET)
[115, 116, 125, 126]. Moreover, we obtain certain sum rules, i.e. equations that impose non-
trivial constraints on the couplings of physical fields and encode the full spontaneously broken
gauge structure on the level of Feynman rules3. We will use the sum rules in section 4.1.1 to
demonstrate the generic renormalization of the Z penguin.

From a technical point of view, it is easiest to derive the sum rules from the vanishing
Becchi-Rouet-Stora-Tyutin (BRST) transformation [82–84] of suitable vertex functions. The
derivation of the necessary relations between vertex functions is well summarized in [61].
Below, we also comment on how to obtain sum rules from a tree-level partial wave analysis.
To start, we note that throughout this work the gauge freedom of (3.1.2) is fixed with a
standard linear Rξ Lagrangian [128]

Lfix = −
∑

v

(
2ξv
)−1

Fv̄ Fv , Fv = ∂µV
µ
v − σvξvMvϕv , (3.1.6)

for every vector field V µ
v of mass Mv and corresponding Goldstone boson ϕv, where σv can

be ±i for complex fields and ±1 for real fields. For the SM fields they are given by σW± = ±i
and σZ = 1, and we choose this convention in general for all charged and neutral vector fields.

By applying the BRST operator s to a Green’s function

G ūv̄ (...)ph(x, . . .) ≡
〈
T ūv̄(x) (. . .)ph

〉
, (3.1.7)

which involves an anti-ghost ūv, and using the transformation property sūv = −Fv/ξv, we will
obtain a linear relation between the connected and truncated Green’s functions, schematically

sG ūv̄ (...)ph = 0 −→ Flinear

(
G
Vv (...)ph
c, µ , G

ϕv (...)ph
c

)
= 0 . (3.1.8)

Here, the dots (. . .)ph stand for any combination of physical asymptotic on-shell fields, whose
BRST variations vanish. The underlining of a field indicates that the corresponding external
leg has been amputated. In our convention, labels on vertex functions denote outgoing fields,
whereas their momenta are incoming. The momentum of the first field shall be kµ. The
momentum configuration of the vectors and Goldstone bosons coming from the gauge-fixing
function is not restricted any further.4

The STIs lead to the following relation in momentum space
(

kµ

iσv̄ξvMv

)T
Gv̄(µν)

(〈
T V ν

v (. . .)ph

〉
c〈

T ϕv(. . .)ph

〉
c

)
= 0 . (3.1.9)

3The couplings in (3.1.2) are defined such that the Feynman rules are given after multiplication by a factor
of i and the usual Lorentz structures in the conventions of FeynArts [127].

4In the GBET, one projects on the longitudinal parts of the vector bosons and relates them to the corre-
sponding amplitudes with Goldstone bosons. When doing so, one has to choose a certain momentum config-
uration in order to be able to neglect the transverse components [129]. Our arguments are based on the level
of Green’s functions for the total fields and independent of such considerations.
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The truncation of the physical fields is straightforward and implicitly understood in the fol-
lowing. The first field is truncated by Gv̄(µν), which denotes the matrix of two-point Green’s

functions for a vector boson (to which the Lorentz indices in brackets apply) and its Gold-
stone boson. It is given by the inverse of the two-point vertex function Γv(µν). The explicit
components of this function are given by

Γv(µν)(k,−k) =



∑

P=T,L

gPµνΓVvVv̄P (k2) kµΓVvϕv̄L (k2)

kνΓϕvVv̄L (k2) Γϕvϕv̄(k2)


 , Gv̄(µλ)Γ

v(λν) = i

(
δνµ 0

0 1

)
, (3.1.10)

where gTµν ≡ gµν − kµkν
k2 and gLµν ≡ gµν − gTµν . A short calculation [130] shows that the STIs

are given by

〈
T
(
kµ V

µ
v − iσv̄Mv Av

(
k2
)
ϕv

) (
. . .
)

ph

〉
c

= 0 , Av
(
k2
)

=
ΓVvVv̄L + k2

ξv

Mv

(
Mv − iσvΓVvϕv̄L

) . (3.1.11)

For our purposes, it is sufficient to know that Av
(
k2
)

= 1 at the tree-level. At loop-level,
one would also have to take care of the mixing of different vector bosons.5 The derivation
of (3.1.11) can be straightforwardly generalized to multiple insertions of the gauge fixing
function. To this end, one starts from

〈
T ūv(x)

∏
k Fvk(xk) (. . .)ph

〉
c
. Taking the BRST vari-

ation of this vertex function also leads to terms with derivatives of the gauge-fixing function
sFvk = s2ūvk . Without introduction of Nakanishi-Lautrup fields, the BRST-operator is not
exactly nil-potent; sFvk = 0 holds only on-shell. However, since the latter is exactly the equa-
tion of motion for the anti-ghost field, we can use the equation of motion inside the correlator
to obtain for the additional part in coordinate space

〈
T ūv(x)(sFvj )(xj)

∏

k 6=j
Fvk(xk) (. . .)ph

〉
c

= −i
〈
T

δ

δūvj (xj)
ūv(x)

∏

k 6=j
Fvk(xk) (. . .)ph

〉
c

= 0 .
(3.1.12)

The last equality holds, since the functional derivative only leads to a disconnected part
proportional to δ(x− xj) and consequently vanishes. Equation (3.1.11) thus generalizes to

〈
T
∏

i
Cvi(ki)

(
. . .
)

ph

〉
c

= 0 , Cv(k) ≡ kµ V µ
v − iσv̄Mv Av

(
k2
)
ϕv . (3.1.13)

We will now evaluate this identity at tree level for three- and four-point Green’s functions,
in order to find non-trivial renormalizability constraints between the generic couplings. We
have checked explicitly that the STIs for five-point vertex functions do not imply additional
constraints. The identity (3.1.13) is already sufficient to derive all couplings of Goldstone
bosons from the physical couplings. The three-point couplings involving Goldstone bosons
are related to the couplings of the corresponding gauge bosons via

gv1ϕ2ϕ3 = σv2σv3

M2
v2

+M2
v3
−M2

v1
2Mv2Mv3

gv1v2v3 , gϕ1ϕ2s = −σv1σv2

M2
s

2Mv1Mv2
gv1v2s ,

gv1v2ϕ3 = −iσv3

M2
v1
−M2

v2
Mv3

gv1v2v3 , gϕs1s2 = iσv
M2
s1
−M2

s2
Mv

gvs1s2 ,

gv1ϕ2s = −iσv2
1

2Mv2
gv1v2s , gϕ1ϕ2ϕ3 = 0 ,

yσϕf̄1f2
= −iσv 1

Mv

(
mf1g

σ
vf̄1f2

− gσ̄vf̄1f2
mf2

)
.

(3.1.14)

5In the SM, (3.1.11) still holds at loop-level, since Z–A mixing drops out due to the photon’s Ward identity.
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Here, the subscripts ϕi on couplings correspond to Goldstone bosons as distinguished from to
the subscripts si, which correspond to physical scalars, e.g. Higgs bosons. The valid range for
ϕi is the same as for the vector boson indices vi, and we replace ϕi → vi on the right-hand side
of the equations for denoting indices of masses and couplings. Remark that in (3.1.13), we
have to set only the additional fields (. . .)ph on-shell in order to derive the relations (3.1.14).

The STIs for four-point Green’s functions have two consequences. If a four-point cou-
pling contributes to the given vertex function, the resulting relation allows to express this
coupling in terms of three-point couplings. In this way, the possible four-point couplings of
physical fields with at least one vector boson are derived from

〈
Cv1

(
Vv2Vv3Vv4

)
ph

〉
c

= 0 and〈
Cv1

(
Vv2Ss1Ss2

)
ph

〉
c

= 0. They read

gv1v2v3v4 =
∑
v′

(
gv1v4v′gv2v3v̄′ + gv1v3v′gv2v4v̄′

)
, (3.1.15)

gv1v2s1s2 =
∑
v′
gv1v′s1gv2v̄′s2

1
4m2

v′
−∑

s′
gv1s1s′gv2s2s̄′ + symm(v1, v2) , (3.1.16)

where we have replaced three-point Goldstone-boson couplings by using (3.1.14). A sym-
metrization over the indices, indicated by symm(v1, v2), means one has to sum the preceding
terms over all cyclic permutations of the indices without multiplication by a symmetry factor.
Analogously, all four point couplings with at least one Goldstone bosons can be derived. As
an example, we obtain from

〈
Cv1Cv2Cv3Cv4

〉
c

= 0 the relation

gϕ1ϕ2ϕ3ϕ4 =
−σv1σv2σv3σv4

4mv1mv2mv3mv4

∑
s′
m2
s′
(
gv1v4s′gv2v3s̄′ + symm(v2, v3, v4)

)
. (3.1.17)

All remaining four-point Goldstone-boson couplings are enlisted in appendix A.1. There, we
also give the STIs for the special case when a gauge bosons is a gluon or photon, as this can
be useful for the calculation of QCD and QED corrections to generic new physics amplitudes
like in [123] and [124, 131], and we comment on ghost couplings, which are also simple to
obtain [132, 133].

Some of the four-point STIs involve amplitudes in which no four-point coupling appears; in
particular, this is the case if a fermion current is present. Alternatively, the STIs may involve
additional Lorentz structures to which no four-point coupling is proportional. These cases
lead to sum rules of physical couplings. The simplest variants are the sum rules stemming
from

〈
Cv1

(
Vv2Vv3Vv4

)
ph

〉
1PI

= 0 and
〈
Cv1

(
Vv2ψf1ψ̄f2

)
ph

〉
c

= 0. They reflect the Lie-algebra
structure of the vector and fermion couplings

∑
v′

(
gv1v2v′gv3v4v̄′ + gv2v3v′gv1v4v̄′ + gv3v1v′gv2v4v̄′

)
= 0 , (3.1.18)

∑
v′
gσv′f̄1f2

gv1v2v̄′ =
∑
f ′

(
gσv1f̄1f ′

gσv2f̄ ′f2
− gσv2f̄1f ′

gσv1f̄ ′f2

)
. (3.1.19)

Equation (3.1.18) is simply the Jacobi identity for the structure constants in the mass basis,
and (3.1.19) relates the structure constants of fermion and vector representations.

The interpretation of (3.1.19) for external W -bosons and quarks it is particularly inter-
esting. In the SM we obtain e.g.

(3.1.19)
SM−−→ gW−W+Z gZd̄idj + gW−W+A gAd̄idj = gLW−d̄iug

L
W+ūdj

⇔ −2cw
g
gZd̄idj = (V †V )ij + 2s2

wQdδij ,
(3.1.20)

25



3. THEORETICAL CLASSIFICATION & EXAMPLES OF NEW PHYSICS

and an analogous relation for external up-type quarks. In the second line, we inserted all SM
couplings, except for Z–quark couplings. We observe that the unitarity of the CKM matrix
and the universality and diagonality of the Z–quark couplings are mutually dependent. This
extends trivially to leptons. The introduction of a single additional fermion, which mixes
with any of the SM quarks, implies that the 3× 3 CKM matrix automatically becomes non-
unitary. On the other hand, fixing a unitary CKM structure, the introduction of a heavy Z ′

requires cancellations between modifications of the Z–fermion couplings and the Z ′–fermion
couplings, or the introduction of even more new particles.

Further sum rules provide non-trivial constraints on the unitarization properties of the
given couplings. The remaining purely bosonic sum rules can be derived from

〈
Cv1Cv2Cv3

(
Vv4

)
ph

〉
c

=
〈
Cv1Cv2

(
Vv3Ss

)
ph

〉
c

=
〈
Cv1

(
Vv2Ss1Ss2

)
ph

〉
c

= 0 . (3.1.21)

In the given order, we obtain the sum rules

∑
s′

(
gv1v2s′gv3v4s̄′ − gv1v4s′gv2v3s̄′

)

=
∑
v′

(
gv1v3v′gv2v4v̄′

(
2m2

v′ −m2
v1
−m2

v2
−m2

v3
−m2

v4

)

+ gv1v2v′gv3v4v̄′

(
m2
v′ +

(m2
v1
−m2

v2
)(m2

v3
−m2

v4
)

m2
v′

)

+ gv1v4v′gv2v3v̄′

(
m2
v′ −

(m2
v1
−m2

v4
)(m2

v2
−m2

v3
)

m2
v′

))
,

(3.1.22)

∑
s′

(
gv1v2s′gv3ss̄′ − gv2v3s′gv1ss̄′

)

=
∑
v′

(
gv2v′sgv1v3v̄′ + gv3v′sgv1v2v̄′

1
2

(
1− m2

v1
−m2

v2

m2
v′

)

+ gv1v′sgv2v3v̄′
1
2

(
1 +

m2
v2
−m2

v3

m2
v′

))
,

(3.1.23)

∑
v′
gv1v2v̄′gv′s1s2 =

∑
v′

1
4m2

v′

(
gv1v′s2gv2v̄′s1 − gv1v′s1gv2v̄′s2

)

+
∑
s′

(
gv1s1s′gv2s2s̄′ − gv2s1s′gv1s2s̄′

)
.

(3.1.24)

To obtain the last sum rule, one has to take the part of the amplitude that is proportional to
εv2 · (ks1 − ks2), such that the coupling gv1v2s1s2 drops out. Terms proportional to 1/m2

v′ are
understood to be absent if v′ is a massless gauge boson6.

Even though the three bosonic sum rules imply involved relations between many parame-
ters in models of new physics with many new particles, they are in fact very short in the SM.
Equation (3.1.22) describes the well known unitarization of longitudinal W–W scattering,
which determines the Higgs-boson coupling. Using external states v1 = v̄2 = v3 = v̄4 = W+

and v1 = v2 = Z, v3 = v̄4 = W+, we obtain the Higgs-boson couplings up to a sign convention

(3.1.22)
SM−−→

∣∣gW+W−h

∣∣ = gMW ,
gW+W−h

gZZh
= c2

w . (3.1.25)

6The right-hand side of (3.1.23) has no contribution from massless gauge bosons at all, since the corre-
sponding couplings vanish. See footnote in appendix A.1 for an explanation.
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Given this knowledge, (3.1.23) simply encodes the GWS relation. In the absence of charged
scalars the left-hand side is obviously zero for the choice v1 = v̄3 = W+, v2 = Z, and s = h.
Defining the ρ-parameter, we obtain

ρ0 ≡
M2
W

c2
wM

2
Z

(3.1.23)−−−−→ ρ0,SM =
gW+W−h

c2
w gZZh

(3.1.22)−−−−→ ρ0,SM = 1 . (3.1.26)

A very simple consequence of (3.1.24), which holds for any multi-Higgs extension of the SM,
is that all couplings between a Z boson and two neutral Higgs bosons vanish, gZh0

i h
0
j

= 0.

Finally, there exist two sum rules, which express further unitarization properties of am-
plitudes with a fermion current. From

〈
Cv1Cv2

(
ψf1ψ̄f2

)
ph

〉
c

=
〈
CvSs

(
ψf1ψ̄f2

)
ph

〉
c

= 0 , (3.1.27)

we derive the identities

∑
s′
gv1v2s̄′y

σ
s′f̄1f2

=
∑
v′

M2
v1
−M2

v2

M2
v′

gv1v2v̄′

(
mf1g

σ
v′f̄1f2

− gσv′f̄1f2
mf2

)

+
∑
f ′

(
−mf1

(
gσv2f̄1f ′

gσv1f̄ ′f2
+ gσv1f̄1f ′

gσv2f̄ ′f2

)

−mf2

(
gσv2f̄1f ′

gσv1f̄ ′f2
+ gσv1f̄1f ′

gσv2f̄ ′f2

)

+ 2mf ′
(
gσv2f̄1f ′

gσv1f̄ ′f2
+ gσv1f̄1f ′

gσv2f̄ ′f2

))
,

(3.1.28)

∑
s′
gvss̄′y

σ
s′f̄1f2

= −∑
v′

1
2M2

v′
gvv̄′s

(
mf1g

σ
v′f̄1f2

− gσv′f̄1f2
mf2

)

+
∑
f ′

(
gσvf̄1f ′

yσsf̄ ′f2
− yσsf̄1f ′

gσvf̄ ′f2

)
.

(3.1.29)

Again, the specification to the SM provides an interesting insight. For external Z and Higgs
bosons and given the diagonal Z–fermion couplings gσ

Zf̄f ′
= g

cw

(
T 3f
σ − s2

wQf
)
δff ′ , we obtain

(3.1.28)
SM−−→ gZhh y

σ
hf̄f ′ =

−2g2

c2
w

mf

(
T 3f
σ − T 3f

σ̄

)2
δff ′ , (3.1.30)

(3.1.29)
SM−−→ − mf

2M2
Z

gZZh = yσhf̄f , (3.1.31)

where the second equation is even linear in the couplings, since the expression factorizes. This
implies that flavor-diagonal Higgs–fermion couplings are a consequence of flavor-diagonal
Z–fermion couplings, and that the Yukawa couplings are fixed up to a sign convention as∣∣yσ
hf̄f

∣∣ =
m2
f

M2
W

(
T 3f
L − T

3f
R

)2
. This relation is spoiled in the presence of multiple Higgs bosons;

in particular, (3.1.29) does not factorize and one cannot solve for all Yukawa couplings. In the
case of a CP -conserving multi-Higgs model, there still exists an interesting relation among
the set of CP -even scalars Φe, which follows from the difference of (3.1.28) for σ = L and
σ = R

(3.1.29)
SM + CP c scalars−−−−−−−−−−−→ ∑

s∈Φe

gvv̄s̄
(
yLsf̄f − yRsf̄f

)
= 0 . (3.1.32)

An explicit analysis of these sum rules for multi-Higgs models was given in [121]. One in-
teresting fact is that in such a case, the non-trivial relations from the purely bosonic rules
(3.1.22–3.1.24) always involve Higgs bosons of at least two different charges.
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We re-emphasize that the results given above do not depend on the assumption of a
specific degree of perturbativity of tree-level amplitudes. They were instead derived from
the gauge structure of a general renormalizable theory. Indeed, this is equivalent to the fact
that the theory has bounded high energy growth for amplitudes [113–115], viz. it will not
inevitably violate probability conservation at some high energy. Hence, the same sum rules
can be derived from the requirement of vanishing coefficients for all terms of tree-level 2→ 2
scattering amplitudes that have polynomial growth in the center-of-mass energy

√
S →∞.

We checked this explicitly for all possible 2 → 2 scattering amplitudes, by generating the
amplitudes for polarized particles with FeynArts [127] and FormCalc [134]. In table 3.1,
we summarize how the use of sum rules and quartic couplings for physical particles imply
vanishing coefficients for the terms with polynomial growth in

√
S. To this end, we expanded

the amplitude in S �Msi ,mfi ,Mvi . We already inserted the couplings with Goldstone bosons
and denote the polarization of particles in the subscript, where ± stands for helicity ±1/2
for fermions and ±1 for vector bosons. We observe that some disentanglement between the

process S growth implications

VLVL → VLVL S2 vanishes due to gv1v2v3v4 (3.1.15)

S vanishes due to gv1v2v3v4 (3.1.15)
& Jacobi-Identity (3.1.18)
& sum rule (3.1.22)√

S same coefficient as S1 (×2)

V±V∓ → VLVL S,
√
S

vanish due to gv1v2v3v4 (3.1.15)
& Jacobi-Identity (3.1.18)V±V± → VLVL S,

√
S

V±VL → VLVL
√
S

. . .

VLVL → VLS S vanishes due to sum rule (3.1.23)

VLVL → SS S vanish due to gv1v2s1s2 (3.1.16)
& sum rule (3.1.24)VLS → VLS S

F±F∓ → VLVL S1

vanishes due to sum rule (3.1.19)
F±F∓ → V+VL S1

F±F± → VLVL
√
S vanishes due to sum rule (3.1.19)

& sum rule (3.1.28)

F±F± → VLS
√
S vanishes due to sum rule (3.1.29)

Table 3.1: Scheme of sum rules implying finiteness of amplitudes for 2→ 2 processes.

coefficients of the different processes and their angular dependence still has to be performed,
in order to arrive at the simple and well interpretable form for the sum rules given above.
This is even more so, if one aims to derive the Goldstone boson couplings, as well.

The direct calculation of polarized amplitudes for 2→ 2 processes, however, has another
merit on which we shortly like to comment. The unitarity of the S matrix, i.e. elemen-
tary conservation of total probability, also restricts the finite and non-divergent part of the
amplitude after taking S →∞. We express the interacting part of the S matrix as

S = 1 + iT , 〈p′a, λ′a; p′b, λ′b|T |pa, λa; pb, λb〉 = (2π)2δ(pa + pb − p′a − p′b)M . (3.1.33)

Here, pa,b and λa,b are the initial state momenta and helicities and the primed quantities
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apply to the final state. The best projections of the angular dependence are achieved by
decomposing the amplitude M in a basis of eigenstates of the total angular momentum with
the helicity formalism of Jacob and Wick [135]. Using the Wigner d-functions dJµµ′ [136] with
total angular momentum J and the initial and final state helicity differences µ ≡ λa − λb,
µ′ ≡ λ′a−λ′b and applying the Wigner-Eckart theorem on the scalar operator T , one can cast
the amplitude in the form

M(s, θ) = 32π
∑

J

(
J + 1

2

)
dJµµ′(θ)MJ , (3.1.34)

where θ is the center-of-mass scattering angle and the summation over J runs over all integers
starting from min(µ, µ′). Unitarity of the S matrix implies that eigenvalues of the T operator
have absolute value smaller than 2, i.e. for the amplitude in the center-of-mass frame

|MJ | ≤
√
S

2|~pa|
S→∞−−−−→ 1 . (3.1.35)

One can improve this bound in the case of elastic scattering starting from T − T † = iT †T ,
analogous to the derivation of the optical theorem (e.g. [137]). In the high energy limit it
implies that real and imaginary part of the amplitude lie on a circle with radius 1/2 shifted
along the imaginary axis [138]

(
Im
(
MJ

)
− 1

2

)2
+ Re

(
MJ

)2 ≤
(

1
2

)2
. (3.1.36)

We verified that, in general, interesting bounds can be derived from the s- and p-waves
of the processes VLVL → VLVL, VLVL → VLS, VLVL → SS, VLS → VLS, and the p-wave
of F±F∓ → VLVL. Higher partial waves carry decreasing prefactors and therefore become
less restrictive. The inequalities restrict bilinear sums of couplings with additional factors
up to (mint/mext)

2. They are of interest for light external particles of mass mext, if a very
heavy exchanged particle contributes in the summation with a mass mint � mext. Further in-
equalities that are linear in the masses are obtained from V±V± → VLVL, V±V∓ → VLVL,
F±F̄± → V+VL, and F±F̄∓ → VLS. Interesting inequalities may also be derived from
SS → SS and F±F̄∓ → F∓F̄±, since they contain a quartic Higgs couplings and scalar–
fermion couplings, respectively.

Classically the inequalities have been used to derive upper bounds on the Higgs mass of
the SM. The most stringent bound follows from the s-wave of WLWL → WLWL, where one
obtains M0 = (GFMh)/(4

√
2π) for S � Mh [116]. One can extend this beyond a single

channel and bound the largest eigenvalue of the coupled channel matrix for the in- and out-
going states

(
WLWL,

1√
2
ZLZL,

1√
2
hh, ZLh, WLh, WLZL

)
[139]. Using the improved bound

(3.1.36) leads to Mh < 710 GeV.7 On the other hand M0 = (GFS)/(16
√

2π) follows for
the limit S � Mh. This implies that some new physics had to occur in the TeV range, in
order to restore unitary, if the Higgs boson would not exist below this scale. Another classical
application was to bound the masses of chiral fermions in the SM [117, 118].

Note that these classical applications of tree-level perturbative unitarity assumed pertur-
bativity of the Higgs self-coupling λ = M2

h/(2v
2). However, since it grows with the Higgs

7This tree-level estimate for the breakdown of perturbation theory is indeed close to values found by
calculating two-loop corrections [140, 141], and to non-perturbative lattice calculations [138]
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mass, unitarity might also be restored by large loop corrections, signaling the failure of per-
turbation theory and the loss of predictivity of the SM [142]. At least, this shows that
bounds derived from tree-level perturbative unitarity can have loopholes. An alternative and
presently more relevant criterion of theoretical bounds on the Higgs mass is precisely derived
from the Higgs self-coupling. Finiteness of the running self-coupling up to the Planck scale
leads to Mh . 175 GeV, called the perturbativity bound [138, 143], while positivity implies
Mh > 129.4± 1.8 GeV [88], called the stability bound. The present experimental value of the
Higgs mass is marginally compatible with the latter bound.

In a similar approach to generic new physics that we take here, the sum rules and inequal-
ities from the s- and p-wave of F±F∓ → VLVL have also been derived recently in [122]. The
authors apply the inequality to interpret unitarization properties in simple W ′ models. They
find that an accompanying Z ′ is constrained to have mass below 7–8 TeV if no further scalars
contribute.

We summarize that also the inequalities following from tree-level perturbative unitarity
are in general interesting in order to constrain the spectrum of new physics. Our emphasis
in this thesis is different, however. We will only resort to the sum rule equations, which we
derived in this section. They hold exactly due to gauge invariance. In this way, we will be
able to renormalize and simplify the Z-penguin at a generic level in section 4.1.1.
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3.2 A Little Higgs Model

The main motivation of little Higgs theories [144, 145] is to cure the hierarchy problem of SM.
A common assumption of these models is the existence of an approximate global symmetry
Gf , which is broken into a subgroup H at a scale f ∼ TeV due to new resonances, which
strongly interact at a higher scale ΛS ∼ 10 TeV. Hence, the theory has only a perturbative
window. It may still be interesting from the point of view of the renormalizability constraints
discussed above, due to the mechanism with which the Higgs boson is naturally kept light; a
subgroup Gw of Gf is weakly gauged and spontaneously broken in a second stage by the Higgs
mechanism. One includes the Higgs boson of the second stage breaking in the coordinates of
the coset space Gf/H of the explicit first stage breaking. This provides a realization of the
long existing idea of the Higgs being a pseudo-Nambu-Goldstone boson [146, 147]. The precise
way in which the high scale symmetry breaking is achieved remains unspecified. The EFT of
the resulting Goldstone bosons is described as a non-linear σ-model (NLσM) [145]. A subset of
the Goldstone bosons is “eaten” by the Higgs mechanism, but the remaining ones generically
obtain bare masses of the order Λs times a weak gauge coupling, i.e. masses of O(f). In
addition, the idea of collective symmetry breaking [144] is used to further suppress the bare
mass of the Higgs boson by a second power of the weak gauge coupling. In this way one can
keep the onset of strong interactions well separated from the weak scale, without reintroducing
a fine-tuning in the Higgs mass. In contrast to supersymmetric theories, particles of the
same spin cancel quadratically divergent contributions to the Higgs mass among themselves.
Therefore, yet another ingredient of the model consists in an extended quark sector.

In the following discussion, we adopt the most commonly studied realization, called lit-
tlest Higgs (LH) model. It is based on the coset Gf/H = SU(5)/SO(5). This serves as a
good test-bed for studying the coupling structure that enters loop amplitudes, in particular
for flavor-changing transitions. We present the model with an emphasis on this concep-
tual aspect. Other realizations of the little Higgs idea that have been studied in the litera-
ture include the simplest little Higgs using (SU(3)× U(1))2/(SU(2)× U(1))2 [148], a model
based on SO(9)/(SO(5) × SO(4)) [149], and the minimal composite Higgs model (MCHM)
SO(5)/SO(4) [150].

3.2.1 Gauge Structure and T -Parity

We start to establish our notation by reviewing the full model Lagrangian. The vacuum
coordinates of Gf/H are parametrized by a symmetric tensor Σ, which transforms under the
15 representation of SU(5). For the covariant kinetic term of the effective low energy theory
of Goldstone bosons, we can use the leading order dimension two term of the NLσM [145]

LΣ = f2

8 Tr
[
DµΣ

(
DµΣ

)†]
. (3.2.1)

Remark that a tree-level potential for Σ is forbidden by the global symmetry. Thus, elec-
troweak symmetry breaking is triggered by quadratically divergent contributions to the Coleman-
Weinberg potential, which occur first at one-loop [145]. We use the following parametrization
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of the matrix Π of the 14 Goldstone bosons

Σ = eiΠ/fΣ0e
iΠT/f = e2iΠ/fΣ0 , Σ0 =




0 0 12

0 1 0
12 0 0


 ,

Π = χaXa =




Γ + η 1√
20

Φ −i∆
Φ† −η

√
4
5 ΦT

i∆∗ Φ∗ Γ∗ + η 1√
20


 ,

(3.2.2)

and denote the possible VEVs of the neutral scalars h and φ0 as v and v′. The components
of the doublet Φ, triplet ∆, and Γ are given by8

Γ = −ω0 σ3

2 − iω+ σ+√
2

+ iω− σ
−√
2
,

Φ =
(

1√
2
π+ , 1

2

(
v + h+ iπ0

))T
,

∆ =

(
φ++ 1√

2
φ+

1√
2
φ+ 1√

2

(
v′ + φ0 + iφP

)
)
. (3.2.3)

The broken generators τa ∈ SU(5) can be identified as being odd under the automorphism

τa
T−→ −Σ0(τa)TΣ0 , (3.2.4)

while the unbroken generators are even. The image of the Goldstone boson matrix under this
automorphism is given by

Σ
T−→ Σ̃ = Σ0ΩΣ†ΩΣ0 , Ω ≡ diag(1, 1,−1, 1, 1) . (3.2.5)

Remark that the VEV of Σ can be expressed in short and exact form as

〈Σ〉 =




0 0 0 1 0

0 1
2α+ v′

v β
i√
2

(
β − v′

v α
)

0 1 + α
(

1
2 +

(
v′

v

)2)

0 i√
2

(
β − v′

v α
)

1 + α 0 i√
2

(
β + v′

v α
)

1 0 0 0 0

0 1 + α
(

1
2 +

(
v′

v

)2) i√
2

(
β + v′

v α
)

0 1
2α− v′

v β



,

with α ≡
cos
(

v√
2f

)
− 1

1 +
(
v′

v

)2 , β ≡
sin
(

v√
2f

)
√

1 +
(
v′

v

)2 .

(3.2.6)

It is suitable to choose Gw = (SU(2) × U(1))1 × (SU(2) × U(1))2 as the weakly gauged
subgroup. Since it does not entirely lie in the remnant SO(5), the high scale breaking G→ H
also breaks Gw and the additional gauge bosons obtain TeV-scale masses.

global: SU(5)
〈Σ〉−−−→ SO(5)

∪ (g1,2) ∪ (g = sg1 = cg2)

local:
[
SU(2)× U(1)

]2 〈Σ〉−−−→
[
SU(2)× U(1)

]
diag

8Conventionally, the Goldstone bosons in Φ are denoted by the symbols π, to express the analogy to the
pions from the chiral symmetry of QCD. In this context, they correspond to the usual Goldstone bosons of the
SM Higgs doublet, which we called ϕ in (2.2.6). In particular, they do not obtain mass by symmetry breaking;
instead h becomes the pseudo Goldstone-boson.
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The interesting aspect of this symmetry breaking pattern is that each SU(2)×U(1) ⊂ SU(5)
has a full global SU(3) symmetry in its coset. Each of the two SU(3) symmetries protects
the one-loop scalar potential, which we discuss below, from developing a coefficient for the
Higgs mass Mh. Thus, both couplings g1 and g2 have to be present in a diagram in order
to generate a Higgs mass term, which is then naturally light compared to the cutoff scale
Λs. This is referred to as collective symmetry breaking [144]. The charges and the covariant
derivative of Σ in Gw are given by

Qi1 =

(
σi

2 0
0 03

)
, Qi2 =

(
03 0

0 −σi∗

2

)
,

Y1 = 1
10 diag(3, 3,−2,−2,−2) , Y2 = 1

10 diag(2, 2, 2,−3,−3) ,

(3.2.7)

DµΣ = ∂µΣ− iV(Σ) , V(Σ) = gjW
a
j (QajΣ + Σ(Qaj )

T )− g′jBj(YjΣ + ΣYj) . (3.2.8)

The given direction9 of Gw in Gf ensures that the diagonal subgroup of Gw is unbroken by
Σ0 and can therefore represent the SM-like SU(2)L×U(1)Y . The appropriate rotation fulfills
gjWjQj = g(WQ+W ′Q′) and reads 10

W ′ = cW1 − sW2 , W = sW1 + cW2 ,

Q = Q1 +Q2 , Q′ = c
sQ1 − s

cQ2 , g = sg1 = cg2
(3.2.9)

An analogous rotation is applied for Bj , g
′
jYj , and angles θ′ instead of Wj , gjQj , and θ. The

trigonometric functions are denoted by c(′) = cos(θ(′)), s(′) = sin(θ(′)), and t(′) = tan(θ(′)),
and analogous for further angles, which are defined below.

In the general setup discussed above, the scale f has been found to be pushed to values
beyond 4 TeV, because of large contributions to electroweak precision observables [153–155].
The fact that the corresponding dimension six operators are sourced by tree-level exchanges of
new particles, suggests an obvious way to alleviate the bounds. A simple Z2 symmetry called
T -parity [156], under which only SM-like fields are even, can circumvent the bounds. This
is simply done by promoting the automorphism (3.2.4) to a fundamental symmetry, which
interchanges the two SU(2)×U(1) gauge groups. Thus, it acts on gauge fields as T : A1 ↔ A2

where Ai = W a
i Q

a or BiY . We furthermore define the action on scalars as T : Π → −ΩΠΩ.
This obviously renders all scalars T -odd except those contained in the doublet Φ. Remark
that the invariance of the Lagrangian together with T -parity implies equal gauge couplings

g
(′)
1 = g

(′)
2 =

√
2 g(′). We continue to present the general setup for gauge bosons and comment

on an issue concerning the gauge fixing procedure, necessary for the quantization of the theory.
The T -parity symmetric case (LHT model) can be obtained by the specific choice of some
of the parameters. We will only refer to the latter for the calculation of the flavor-changing
Z-transitions in chapter 3.1, since the T -symmetric case turns out to be phenomenological
more interesting, and has a richer fermion sector.

As stated above, the Coleman-Weinberg-potential triggers electroweak symmetry breaking
at one-loop order. It was recognized in [151] that we obtain essentially three new parameters.

Two of them are the mass Mh for the Higgs boson h and the degenerate masses M2
φ = 2f

2

v2M
2
h

9One assumes the dynamics of the unknown UV completion to choose this direction of Gw relative to Σ0.
10We define W ′ and B′ with an additional sign compared to most of the literature on the LH without T -

Parity [151, 152]. This sign convention is compatible with all the literature on the LH with T -Parity. In order
to agree with most of the literature, we also use a reversed sign for the coupling g′ compared to section 2.2.
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for all scalars contained in the triplet ∆. Furthermore, remark that a positive spectrum
requires

xλ =
λΦ∆Φ

2λΦ4

=
2
√

2v′f
v2

< 1 , (3.2.10)

where (ifλΦ∆Φ) and λΦ4 are the coefficients of the corresponding neutral fields in the sub-
scripts, as being part of the one loop Coleman-Weinberg Higgs potential. The relation (3.2.10)
induces a hierarchy of the VEVs v′ � v, similar to the case of triplet VEVs in the left–right
symmetric model presented in the last section. Requiring T -parity as a symmetry of the
theory completely forbids the triplet VEV v′ = 0.

To obtain the gauge boson mass eigenstates, we simply insert Σ → 〈Σ〉 into (3.2.1) and
expand to O(v/f)2 and O(v′/v)2. Using mw = cwmz = gv

2 the mass eigenstates are

(
W±L
W±H

)
=

(
1 −1

2
v2

f2 csδg

1
2
v2

f2 csδg 1

)(
W±

W ′±

)
,

M2
WL

= m2
w

(
1− v2

f2

(
1
6 +

δg−x2
λ

4

))
,

M2
WH

= f2

v2
m2
w

c2s2

(
1− v2

f2 c
2s2
)
,

(3.2.11)




A
ZL
AH
ZH


 =




cw −sw 0 0

sw cw − v
2

f2 x
B′
Z − v

2

f2 x
W ′
Z

v2

f2 swx
B′
Z

v2

f2 cwx
B′
Z 1

v2

f2 xH

v2

f2 swx
W ′
Z

v2

f2 cwx
W ′
Z − v

2

f2 xH 1







B
W 3

B′

W ′3


 ,

M2
ZL

= m2
z

(
1− v2

f2

(
1
6 +

δg+5δg′−2x2
λ

4

))
,

M2
AH

= f2

v2
m2
wt

2
w

5c′2s′2

(
1− v2

f2 5c′2s′2
)
,

M2
ZH

= m2
WH

,

where we parametrized the mixing of B′ and W ′ 3 into the mass eigenstate ZL and the heavy
mass eigenstates with the quantities xB

′
Z , xW

′
Z and xH . They are given by

xH = 1
4

(
1
tw

c′s′

cs − tw
5

cs
c′s′

)−1(
1 + δgδg′

)
, (3.2.12)

xW
′

Z =
δgsc
2cw

, xB
′

Z =
5δg′s

′c′

2sw
, δg(′) = c(′) 2 − s(′) 2 . (3.2.13)

Requiring T -parity sets all quantities in (3.2.13) identically to 0 and forbids mixing of the
gauge eigenstates B′, and W ′3 into ZL with the consequence that the ρ-parameter, as defined
in (3.1.26), is set to 1. However, the W and Z mass still obtain a universal contribution,
altering the standard relation between v and GF . We summarize for further reference

T -parity:

(
AH
ZH

)
=

(
1

v2

f2 xH

− v
2

f2 xH 1

)(
B′

W ′3

)
,

xH = 1
4

(
1
tw
− tw

5

)−1
,

M2
WL

= c2
wm

2
ZL

= m2
w

(
1− v2

6f2

)
,

M2
AH

= f2

v2m
2
wt

2
w

(
4
5 − v2

f2

)
,

M2
ZH

= m2
WH

= f2

v2m
2
w

(
4− v2

f2

)
.

(3.2.14)

Observe that to leading order in v2

f2 the mass of the heavy neutral gauge boson AH is approx-
imately one fourth of the ZH mass and close to twice the W mass

MAH ≈ 2MWL

f

TeV

(
1− 0.13

f

TeV

)2

. (3.2.15)

If T -parity is also a symmetry of the ultraviolet completion of the LH model, it has been
recognized that AH can be a potential weak scale dark matter candidate and account for the
observed relic density of dark matter in the universe [157].
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Up to now, we brought the bosonic mass terms into canonical form. We also need to
account for standard kinetic terms of the scalars, which are a priori spoiled in the basis of
(3.2.2) because of the NLσM, and consider the mixing terms of scalars with gauge bosons
arising from LΣ of (3.2.1). The former is achieved by a hermitian redefinition of the scalars.
This is due to the fact that, e.g. in the neutral sector, the kinetic terms can be cast into the
form

LΣ ⊃
1

2

∑

φa

∂µφ
a
(
δab + v2

f2Hab

)
∂µφb , (φa = h, φ0, φP , π0, η, ω0) , (3.2.16)

with Hab forming a hermitian matrix. Therefore, we simply redefine φ′a =
(
δab + v2

2f2Hab

)
φb.

Thereafter, we are still allowed to make a unitary redefinition of the scalar fields without
spoiling the canonical kinetic terms. We can finally render the terms

LΣ ⊃ −f2

4 Im Tr
[(
∂µΣ

)
V(Σ)†

]
(3.2.17)

canonical in the mass basis, i.e. of the form −σaMV a(∂µV a
mµ)φam, where the subscript m

denotes fields in the mass basis. A treatment of the charged scalar sector is analogous. The
necessary redefinition is unitary at O(v2/f2, v′2/v2, v′/f) and included in appendix A.2. We
remark, that we found the redefinition to be non-unitary starting at O(vv′/f2) = O(v3/f3).
This indicates the necessity of a non-linear gauge fixing procedure at subleading order in
the expansion in v/f . However, considering the divergence structure of ∆F = 1 amplitudes
discussed in chapter 3.1, it is important to see that the leading contributions can be calculated
reliably in the standard quantization approach.

The bosonic Lagrangian is completed by standard covariant kinetic terms LV of the lin-
early realized gauge bosons of Gw. We give LV for completeness in (A.2.1).

3.2.2 Fermion Sector

Since little Higgs models are constructed as a solution to the hierarchy problem, one also
addresses the one-loop contributions to the Higgs boson mass from the top-Yukawa coupling.
This is done via a contribution of the same order y2

tΛ
2
S/(16π2) ∼ f2 originating from an

additional vector-like heavy fermion. We will discuss the LHT model in the following. It
turns out that the setup without T -parity requires only one new fermion, which also appears
in the model with T -parity and has similar couplings.

As an additional obstacle in the LHT model, one has to assure that the SM fermions
are introduced as T -even states. This is achieved by introducing two doublets ψ1,2 that
each transform linearly under one of the SU(2) groups in Gw. Only the remaining T -odd
linear combination shall get a mass of order f , which is achieved by introducing a full SO(5)
multiplet of T -odd mirror fermions Ψ′ [158]. To this end, a non-linear realization of SU(5)
avoids the introduction of yet another copy of mirror fermions, and completeness of the
multiplet again protects the Higgs mass from a potential two-loop quartic divergence [159].

We first summarize the relevant fermion content of the model. It has been realized in [160]
that in order to accommodate the hypercharge of the Standard Model fermions, one has to
add two U(1) factors to the original setup. For each of these U(1) factors only the diagonal
subgroup with one of the U(1) factors contained in Gw is gauged. Here we summarize only
the resulting charges for the gauged groups in table 3.2.
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q1,i uci dci qHR,i t′1 t′c1 l1,i eci lHR,i
SU(2)1×2 (2, 1) (1, 1) (1, 1) (1, 1) (1, 1) (2, 1) (1, 1)

Y1 1/30 1/3 −1/6 1/3 8/15 8/15 −3/10 −1/2 0
Y2 2/15 1/3 −1/6 1/3 2/15 2/15 −1/5 −1/2 0

T −q2,i + + − −t′2 −t′c2 −l2,i + −

Table 3.2: Charges for the full fermion sector of the LHT model. In the last line, we give
either T eigenvalues or the definition for the fields q2,i, t

′
2, t
′c
2 , l2,i as the T -parity image of

the corresponding fields.

T -parity eigenstates for the fermions are given by

qL,i = 1√
2

(
q1,i − q2,i

)
, qHL,i = 1√

2

(
q1,i + q2,i

)
, t′± = 1√

2

(
t′1 ∓ t′2

)
(3.2.18)

and analogous linear combinations for leptons ln,i and the right-handed top partner fermions
t′cn . Here qn,i = (un,i, dn,i)

T denotes two fundamental quark doublets. The T -even top partner
t′+ now has the same quantum numbers like the SM-like up-type quarks uL,i and may mix
with them. To write down the Lagrangian, we embed the fermion content into incomplete
representations of SU(5)

Ψ1,i =



ψ1,i

0
0


 , Ψ2,i =




0
0
ψ2,i


 , Ψ′i =



ψ̃′i
χ′i
ψ′i


 , (3.2.19)

where ψn,i = −iσ2qn,i and ψ′i = −iσ2qHR,i. ψ̃
′ and χ′ are assumed to obtain very large Dirac

masses from couplings to additional fermions and can be safely decoupled from the theory
[157]. Using ξ = eiΠ/f the mirror mass terms are given by

Lmirror = fκij
(
Ψ2,iξ + Ψ1,iΣ0Ωξ†Ω

)
Ψ′j . (3.2.20)

After a singular value decomposition of κ and rotation of the mirror fermions f = u, d

κ = VH diag
(
mqH,i√

2f

)
U †H , fHL,i = (VH)ijf

(m)
HL,j , fHR,i = (UH)ijf

(m)
HR,j , (3.2.21)

we obtain masses md
H,i = mq

H,i and mu
H,i = mq

H,i

(
1 − v2

8f2

)
. The upper index (m) in (3.2.21)

stands for mass eigenstates. We will skip the index in the following and work with mass
eigenstates only. Mirror masses for leptons can be written down in full analogy.

For the Yukawa interactions of the T -even fermions, it is convenient to define

Qn,i ≡ Ψn,i + δn,3 (0, i t′n, 0)T , Ψ′n,i ≡ (qn,i, 0, 0)T , X = (Σ33)−1/4 . (3.2.22)

Gauge invariant Yukawa interactions and a T -even Dirac mass term for t′n are given by

LY,u = i
2
√

2
f (λU )ij

3∑

i,j,k=1

5∑

x,y=4

εabc εxy

[(
Q̄2,iΣ0

)
a

Σ̃bx Σ̃cy −
(
Q̄1,i

)
a

Σbx Σcy

]
ucj

− fλ+(t̄′1t
′c
1 + t̄′2t

′c
2 ) + h.c. , (3.2.23)

LY,d = i
2
√

2
f (λD)ij

2∑

a,b=1

5∑

x,y,z=3

εab εxyz

[(
Ψ̄′2,i

)
x

Σay ΣbzX −
(
Ψ̄′1,iΣ0

)
x

Σ̃ay Σ̃bz X̃
]
dcj + h.c.
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The Lagrangian implements the idea of collective symmetry breaking. This is due to the
fact that Qn,i is an incomplete representation of the subgroup SU(3)i in SU(5), which is left
invariant when gi = 0, for i = 1 and 2 respectively.11 Remark that for this reason t− does
not couple to the Higgs boson directly and does not participate in the processes discussed in
section 4.3.

We start the diagonalization of the mass terms by going into a basis where λD is diagonal
via two unitary redefinitions in the down sector. t′− does not mix with other fermions. We
denote its mass eigenstate with T− = t′−. Its mass is given by mT− = fλ+. The remaining
mass matrix for the up-quarks U = (u, c, t, t′+) is given by

LY,u ⊃ −ŪLMU UR + h.c. , MU = v

(
λU
(
1− v2

3f2

)
0

(λU )3n

(
1− v2

2f2

)
λ+

f
v

)
, (3.2.24)

where the third row elements of the 3× 3 matrix λU are repeated in the fourth row of MU .
In all of the existing literature we are aware of, the diagonalization of this matrix assumes
vanishing λ31, λ32 and only applies rotations in the t − t′+ sub-block. Explicit treatments
are given e.g. in [151, 163–168]. The first assumption is justified, since we know the general
solution can be written as

V†uMUUu =

(
V̂ † 0
0 1

)
diag(mu,mc,mt,mT+) , (3.2.25)

where V̂ is a CKM-like unitary 3× 3 matrix, and Vu, Uu are perturbations around the unit
matrix. Consequently, (λU )31, (λU )32 are chirally suppressed. However, the t − t′+ rotation
produces off-diagonal terms in the (1, 4) and (2, 4) entries on the right-hand side of (3.2.25),
which are only suppressed by the square of the Cabibbo-angle, λ2, and are not chirally
suppressed. While it is still reasonable from a phenomenological point of view to neglect
those terms, this assumptions is usually not stated explicitly. We take u, c − T+ mixings
into account, in order to keep the coupling structure most general. This is useful for testing
the generic result on flavor-changing Z transitions in chapter 3.1. We will see below that
terms implied by these new rotations can be summarized in a sensible vertex definition of
the CKM matrix. To this end, we derived the exact decomposition of (3.2.25) and neglected
chirally suppressed mu,c/mt only afterwards. The intermediate step of this calculation are
cumbersome but result only in two simple, additional, elementary rotations for the left-handed
up-quarks. The mass eigenstates of the up-quarks are finally given by

UR = Uu (u(m), c(m), t(m), T+)TR , UL = Vu

(
V̂ † 0
0 1

)
(u(m), c(m), t(m), T+)TL , (3.2.26)

with the unitary matrices

Uu =




12 0

0
cR sR
−sR cR


 , Vu =




12 0

0
cL sL
−sL cL







1 0 0 0
0 ccL 0 scL
0 0 1 0
0 −scL 0 ccL






cuL 0 suL
0 12 0
−suL 0 cuL


 .

11For the LH model without T -parity, the authors of [161, 162] showed that the assumption of a common
SU(3) symmetric Yukawa coupling y1 for the components in Qn is unstable against radiative corrections. This
implies a two-loop quadratic divergence to the Higgs mass, which is estimated to be of the same order as
the logarithmically divergent one-loop contribution, and requires a certain amount of hidden fine-tuning or an
intricate UV completion.
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We choose phases for the entries of V̂ in a non-standard convention, with positive entries in

the third row. This renders the given angles c
(u,c)
L,R free of phases and particularly simple

sR =
√
xL

(
1− v2

f2

(
1
2 −

xL
V̂ 2

33

)
(1− xL)

)
, cR =

√
1− xL

(
1 + v2

f2

(
1
2 −

xL
V̂ 2

33

)
xL

))
,

sL = v
f xL

(
1 + d2

v2

f2

)
, cL = 1− v2

f2

x2
L
2 ,

scL = v
f xL

(
1 + v2

f2

(
d2 +

x2
L
2

))
V̂32

V̂33
, ccL = 1− v2

f2

x2
L
2
V̂ 2

32

V̂ 2
33

,

suL = v
f xL

(
1 + v2

f2

(
d2 +

x2
L
2

1−V̂ 2
31

V̂ 2
33

))
V̂31

V̂33
, cuL = 1− v2

f2

x2
L
2
V̂ 2

31

V̂ 2
33

,

(3.2.27)

d2 = −5
6 + xL − x2

L
2 + xL(1−xL)

V̂ 2
33

, (3.2.28)

where xL = λ2
U,33/(λ

2
U,33 + λ2

+), the unitary CKM entries V̂ij , and the SM quark masses are
now used as the model input parameters. The value of xL is constrained by electroweak pre-
cision data [169], but the exact constraint strongly depends on the realization and parameters
of the T -odd sector and possible UV dependent terms. Remark that our definition of V̂ is
different from the usual definition in the literature in two ways. There, higher orders in the
Cabibbo angle are implicitly neglected, which amounts to setting suL = scL = 0. Furthermore,
Vu is effectively defined as being commuted with the unitary CKM when compared to our
definition. We checked that the redefinition V̂ij → cL(V̂literature)ij for (i = 3) 6= (j = 3)
reproduces the results for charged currents at O

(
v2/f2 · λ0

)
. As anticipated above, we define

the CKM matrix via the W -vertex to light fermions

W+

dj

ūi

= i
g√
2
Vij , Vij ≡ V̂ij −

v2

f2

x2
L

2V̂ 2
33

(
V̂ij V̂3j + 2

j−1∑

k=1

V̂ikV̂3k

)
V̂3j . (3.2.29)

The usage of V , instead of V̂ , in the Feynman rules, which we enlist in appendix A.2, encodes
all higher order corrections in the Cabibbo angle as compared to the literature. Furthermore,
it simplifies the expressions derived in section 3.1 significantly. We note in passing, that the
3× 3 CKM matrix V is non-unitary. This is expected if the sum-rule (3.1.19) holds, like we
discussed it in the text below this equation. The only additional contribution to this sum
rule is given by a T+ quark exchange, using the Feynman rules of appendix A.2 we expect

(
V †V

)
ij
− δij =

v2

f2

g2x2
L

2V 2
33

V3iV3j , (3.2.30)

if the sum rule holds. Indeed, this is the case as we can easily check from the definition
(3.2.29) and the unitarity of V̂ . From the O(v2/f2 · λ6) suppression in (3.2.30), it is already
clear that non-unitarity of the first column, ∆non

col1 ≡ 1−∑i |V1i|2 < 0, is tiny and way below
the observable limits, which are of the order of 10−2 [170]. Non-unitarity of the first row is
better constrained by approximately one order of magnitude. However, in the LHT model,
the sum rules imply that in a unitarized version of the model

(
V V †

)
ij
− δij ∝ δi3δj3, i.e. no

first row non-unitarity would be present at all, while the definition (3.2.29) again gives a result
∆non

row1 = O(v2/f2 · λ6). Consequently, non-unitarity is unobservable in all cases. However, a
full analysis of non-unitarity aspects would furthermore require the calculation of corrections
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to charged current mediated processes that enter the extraction of the CKM matrix elements
from experiment and appear at one loop in the model at hand. The mass eigenvalues of the
heavy top-quark partners mT± are fixed by the relations

m2
t

m2
T−

=
v2

f2

xL
V 2

33

,
m2
T+

m2
T−

(1− xL) = 1 +
v2

f2
xL

(
xL
V 2

33

− 1

)
. (3.2.31)

Since 0 < xL ≤ 1, we see that the minimal mass for the T -even top partner is given by

mT+ ≥
4f

v
mt V33 ≈ 2.8 f . (3.2.32)

Yukawa interactions for leptons can be written down analogously to LY,d. We refrain from
introducing right-handed neutrinos.

Kinetic terms for the linearly transforming fermion multiplets are straightforward to write

down [157, 171]. Remark that Ψ′2 transforms as a 5̄ and g
(′)
1 = g

(′)
2 =

√
2 g(′), such that we

obtain

LF,lin =
∑

i=1,2

Ψ̄′ii /D
(i)

Ψ′i +
∑

f=uc,dc,
t′i,t
′c
i

f̄ i /Df ,

D(1)
µ = Dµ − i

√
2g
(
Qa1W

a
1µ +Qa2W

a
2µ

)
,

D(2)
µ = Dµ + i

√
2g
(
(Qa1)TW a

1µ + (Qa2)TW a
2µ

)
,

Dµ = ∂µ + i
√

2g′
(
Y1B1µ + Y2B2µ

)
. (3.2.33)

Furthermore, we also need a kinetic term for the right-handed mirror fermions. It is con-
structed by following the approach of Callan, Coleman, Wess and Zumino [172, 173]. An
explicit construction of the necessary Maurer-Cartan one form was first given in [158, 159]

LF,mir = 1
2Ψ̄′
[
ξ†i /D(1)

ξ + ξΣ0i /D
(1) ∗

Σ0ξ
†]Ψ′ . (3.2.34)

The hypercharge in /D
(1)

must be adapted to account for the insertion of ξ, i.e. explicitly

Y = Y
(ξΨ′)
i = Y

(Σ)
i + Y

(Ψ′)
i . It is useful to note that in terms of T -parity eigenstates

Σ0 /D
(1) ∗

Σ0 = ∂µ − ig(QaW a
µ −Q′aW ′aµ ) + ig′(Y Bµ − Y ′B′µ) (3.2.35)

Remark that one has to take special care when deriving the interactions of mirror fermions
from (3.2.34), since their couplings to ZL and WL are not vector-like at O(v2/f2) after
electroweak symmetry breaking [160]. This has implications on perturbativity of the theory
and the calculations performed in chapter 3.1. Furthermore, heavy gauge bosons mediate
currents between a SM fermion and a mirror fermion. Those interaction are all proportional
to a combination of heavy and light mixing matrices, for which it is useful to introduce
abbreviations

VHd ≡ V †H , VHu ≡ VHd V † . (3.2.36)

The matrix VH was defined in (3.2.21). It introduces three new mixing angles and three
CP -violating phases [174]. In the context of flavor observables they allow for interesting
departures from the minimally flavor violating patterns. Since we are only interested in the
coupling structure of the model and do not study the precise numerical consequences of the
model, we end the discussion at this point and refer to the given references for further details.
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3.3 Randall-Sundrum Models

As a last example of physics beyond the SM we present models with a warped extra dimension.
They belong to the class of theories for which non-perturbativity at a given new energy scale,
is directly implied by construction. The models become strongly interacting due to lowering
the effective scale of gravity for heavy fermions and, most prominently, for the Higgs boson.
However, they do not aim to reduce the little hierarchy problem in contrast to the little Higgs
models presented in the last section.

The first scenario of this type was first proposed by Randall and Sundrum [175]. It
provides a natural explanation for the absence of the gauge-hierarchy problem, and also a
very compelling theory of the hierarchies in the flavor sector. Therefore, such models are
especially interesting from a precision physics perspective as they receive relevant constraints
from electroweak precision physics, flavor-changing decays and most recently also from Higgs
production and decays. In combination with the rather small number of free parameters this
creates a good prospect for their falsifiability.

We give a short introduction into the necessary geometric structure of the extra dimension
and discuss a minimal realization of the Randall-Sundrum (RS) model. As for the theories
discussed in the previous section, we also present an extension of the RS model that ac-
counts for the strongest electroweak precision constraints by implementing an enlarged gauge
symmetry sector and a specific fermion embedding, the custodial RS model.

3.3.1 Basic Geometry of the Setup

Quantum field theories with extra dimensions offer an interesting candidate as a fundamental
theory since they provide a framework that naturally connects the electroweak scale with a
higher fundamental scale. The geometry of the extra dimension is explicitly adapted to serve
this purpose. Length scales rc orthogonal to our usual 3+1 space-time are usually compactified
and resolvable with energies not too far above the electroweak scale 1/rc ∼ ΛIR & Mweak.
The higher scale ΛUV can be implemented in various ways and is mostly used to establish a
geometric connection to gravity. The first viable scenarios with large and flat extra dimensions
were proposed in the late ’90s by Arkani-Hamed, Dimopoulos and Dvali (ADD) [176] which
can be regarded as the root of this branch of model building. In these theories it is illustrative
to compare Newton’s law at distances much smaller than rc which has a fundamental Planck

scale M
(4+n)
Pl , with Newton’s law relevant to a macroscopic observer at distances much larger

than rc. The latter shows an effective Planck scale
(
M

(4,eff)
PL

)2 ≈
(
M

(4+n)
PL

)2+n
rnc , when

using n extra dimensions of equal size. For large enough rc or n we obtain a potentially
large separation between the fundamental and the effective scale. Colloquially one says that
the propagation of gravity in the bulk of the extra dimensions dilutes its force compared to
other forces whose quantum fluctuations can be localized to a specific position in the extra
dimension. As in every model, the fundamental Planck scale also serves as the UV cutoff of
the theory, since one expects the onset of a quantum theory of gravity at this scale. Choosing

a low scale M
(4+n)
Pl = ΛIR ∼ 1 TeV and the effective scale M

(4,eff)
Pl = MPL ∼ 1016 TeV gives a

natural explanation for the absence of the gauge-hierarchy problem in this effective theory due
to gravity. This is analogous to the onset of QCD-like strong interaction in composite Higgs
models. However, to obtain the numerical values given above, n < 3 dimensions are excluded
by direct measurements of the inverse square law [177] and astrophysical measurements of
the release of gravitational binding energy in type-II supernovae [178]. The latter takes place
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through nucleon-nucleon scattering processes, where the light Kaluza Klein (KK)-graviton
states are produced in the final state. KK states are the Fourier-modes of a quantum field
that extends into a compactified extra dimension, like the graviton does in the ADD model.
Besides the strong direct bounds, the ADD model has the theoretical drawback that the
separation of Planck and electroweak scale is achieved only by the introduction of yet another
scale parameter rc without explaining its size. One way to overcome this was proposed by
Randall and Sundrum [175] through the use of a non-trivial geometry in a 5d anti-de Sitter
space AdS5. For their setup a single extra dimension is sufficient, given the non-factorizable
metric

ds2 = e−2σ(φ) ηµν dx
µdxν − r2 dφ2 ; σ(φ) = kr|φ| . (3.3.1)

Here, xµ denote the coordinates on the 4d hyper-surfaces of constant φ with metric ηµν =
diag(1,−1,−1,−1). Length and energy scales are modified by the exponential warp factor
σ(φ) depending on the extra coordinate φ ∈ [−π, π]. For the localization of fields and to
make the geometry a solution to 5d Einstein equations, is reasonable to introduce topological
defects, so-called branes, in the form of an orbifold.12 Here, the S1/Z2 orbifold compactifi-
cation leaves two 3-branes that are located at the orbifold fixed points at φ = 0 (UV brane)
and φ = π (IR brane). The curvature parameter k and the inverse radius r−1 of the extra
dimension are assumed to be of the size of the only fundamental mass parameter MPl. As
mentioned above the fundamental energy scale is position-dependent and in fact MPl e

−σ(φ)

sets the effective Planck scale at a given point along the extra dimension. It serves as a natu-
ral UV cutoff, since quantum gravity becomes relevant above this scale. Higher-dimensional
spaces with warp factors arise naturally in flux compactifications of string theory [181–184],
which could provide a UV completion of this effective model. Like in the ADD model, one
assumes that the effective cutoff scale on the IR brane ΛTeV = MPl e

−σ(π) ≡ MPl ε is in
roughly around 20 TeV in order to solve the (big) hierarchy problem. In contrast to the
ADD model the exponential hierarchy of energy scales is generated by the AdS5 background
itself. This requires L ≡ krπ = − ln ε ≈ 34 to be only moderately large, leaving a little
hierarchy problem: The fact that the Higgs mass is two orders of magnitude smaller than
the cutoff scale, is not addressed in the minimal RS framework. The warped curvature scale,
MKK ≡ ke−σ(π) = kε, is assumed to lie somewhat lower, in the range of a few TeV. This
allows for predictive phenomenology since MKK sets the mass scale for the low-lying KK
excitations of the SM fields. The first KK photon and gluon states in fact obtain masses of
2.45MKK, the first KK graviton a mass of 3.83MKK, and fermion masses are in a similar
range [185]. Another conceptual difference to the ADD model is that the effective Planck

scale
(
M

(4,eff)
Pl

)2
=
(
M

(5)
Pl

)3(
1 − e−2πkr

)
/k ∼ M2

Pl is of the same size as all the introduced
fundamental mass parameters [175].

It will be convenient to introduce a conformal coordinate for the extra dimension. Here,
we use it in the way of reference [186] with mass dimension zero as t = ε eσ(φ) as this renders
the results especially compact: t equals ε on the UV brane and 1 on the IR brane. Integrals
over the orbifold are obtained using

π∫

−π

dφ→ 2π

L

1∫

ε

dt

t
,

π∫

−π

dφ eσ(φ) → 2π

Lε

1∫

ε

dt . (3.3.2)

12Another possibility of confining fields to regions of finite width (“fat branes”) uses domain wall solutions
of additional scalar fields [179] and has been used e.g. in [180] to separate the positions of fermions in large
extra dimensions. The branes in the RS model are not of this kind, so we will not further elaborate on this.
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The form z = t/MKK includes the appropriate mass scale to write the metric conformally
[187]

ds2 =

(
R

z

)2(
ηµν dx

µdxν − dz2
)
, (3.3.3)

and is also often used in the literature. To facilitate comparison we note that z ∈ [R,R′], where
R = 1/k and R′ = 1/MKK denote the positions of the UV and IR branes, and L = ln(R′/R).

It has been noted by Goldberger and Wise [188] that the geometric setup of the given
distance between the two branes described above can be stabilized. The radion is the scalar
quantum fluctuation along the coordinate φ. Its potential has to be modeled such that the
radion VEV determines the size of the extra dimension L. Additionally, the radion must
be massive, which is necessary because of the equivalence principle [175]. All this can be
achieved with the introduction of an additional scalar field and only moderate fine-tuning
in its corresponding coupling parameters. Remark that in principle one may introduce a
mixing parameter for the Higgs boson with the radion. For definiteness we will assume it to
be negligible, or equivalently assume a large mass of the radion. We refer to [189–191] for a
closer discussion.

We close the discussion of the geometry with a short comment on the actual size of L.
From a purely phenomenological point of view, it is possible to lower the UV cutoff from
the Planck scale to a value only few orders of magnitude above the TeV scale. This less
ambitious bottom-up approach is akin to the Little Higgs models discussed in 3.2 and called
little Randall-Sundrum model (LRS) [192]. The possibility of lowering L leads to interesting
phenomenological consequences since many contributions to observables are proportional to
L. We keep this possibility in mind and apply it in our analysis.

3.3.2 The Role of Compactification and Boundary Conditions

In the last section, we already anticipated that the RS model is based on an orbifold back-
ground which introduces lower dimensional branes that are distinguished hypersurfaces. They
are topologically disconnected from the surrounding bulk of the extra dimension and allow to
write down part of the fundamental fields localized to the brane as 4 instead of 5 dimensional.
In the original formulation of the RS model, this simple possibility was used for all SM fields,
which were located at the IR brane. Though not necessary, it is still a reasonable choice
for Higgs boson in order to eliminate the gauge-hierarchy problem. To the remaining fields
this reasoning does not apply and it was soon realized that allowing gauge [185, 193, 194]
and matter fields [186, 195] to spread in the AdS5 bulk does indeed have certain advantages.
Importantly, bulk fermions significantly lower the RS corrections to the Peskin-Takeuchi S
parameter, which arise through delocalized W± and Z bosons [195–198]. The remaining cor-
rections to the T parameter will be reviewed in section 4.2.2. Furthermore, it also lowers
constraints from dimension-six four-fermion operators, like those mediating proton decay or
flavor-changing neutral currents (FCNCs), which are otherwise suppressed only by powers of
ΛIR. Those operators will receive a larger suppression scale for bulk fermions. Moreover, the
variation of the localization of the fermion zero modes, which are the 4d SM-fields, accounts
for additional suppression factors whose size are intimately connected to one of the main
theoretical advantages of bulk fermions: The different localization automatically arises in the
model without further assumptions and can explain the flavor structure and hierarchies of
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fermions masses and mixings [199, 200] by order one parameters13, which we will define and
examine below. In other words, the assumption of the warp factor as the solution of the
gauge-hierarchy problem implies split fermions and realizes the idea of geometrical seques-
tering [180]. The entanglement of hierarchies in the fermion spectrum and the additional
suppression of dangerous FCNCs [195], is referred to as the RS-GIM mechanism [201, 202].

After this short digression into the necessity of bulk fields we shall review the possible
boundary conditions (BCs) for bulk fields. To this end it is necessary to understand the
compactification and orbifolding procedure. In principle, there exist ordinary and Scherk-
Schwarz compactifications [203] and to furthermore introduce topological defects also the
orbifold compactification. In the case relevant for us the compactification is done by a discrete
group of translations acting on a real line G 3 τn : R → R : φ → φ + n 2π. The quotient
space S1 = R/G built by using all operators τn as projections is compact and obtains the
topological defect only after acting non-freely with another discrete group on S1. Here, they
are given by the reflections at φ = π given by Z2 3 ζ : S1 → S1 : φ → 2π − φ, which have a
fixed point precisely at 0 and π. After the projection we obtain the orbifold O = S1/Z2, which
looks mainly like an interval and is the only one-dimensional orbifold [204]. It is important to
realize that, while G and Z2 must be symmetries of the 5d Lagrangian, the fields, collectively
denoted by Φ, can have additional transformation behavior

Φ(xµ, τk(φ)) = T kΦ(xµ, φ) , Φ(xµ, ζk(φ)) = ZΦ(xµ, φ) , (3.3.4)

with the consistency condition Z2 = 1 and TZT = Z. In principle, the reflection behavior
Z at the origin can be a matrix with eigenvalues ±1 for fields of higher spin, but we will
only need the simple case where Z = ±1. It implies Dirichlet boundary conditions for even
fields Φ(xµ, π) = 0 and Neumann boundary conditions for odd fields ∂φΦ(xµ, π) = 0. This
transformation behavior is mostly referred to as the parity, while parity under translations
T is called (anti-)periodicity or Scherk-Schwarz twist for T = −1. Using T = −1 fields is
sometimes also expressed as working on the manifold S1/(Z2×Z′2). In the KK decomposition
of 5d fields, we will denote (anti-)periodicity by a superscript, e.g.

Φ(xµ, φ) = N

∞∑

n=0

Φ(n)(xµ)χ(±)
n (φ) . (3.3.5)

Usually N is a universal normalization factor, Φ(n) are 4d fields called KK modes and χ
(±)
n

form the corresponding basis of Fourier modes called profile functions. We indicate the parity
at the origin by using different symbols for χ. E.g. , for fermions we use C for even and
S for odd modes. For comparison with the literature, we remark that another common
nomenclature carries the boundary conditions at UV and IR brane as upper indices. An odd

twisted function, in our nomenclature e.g. S
(−)
n , would correspond to the notation f

[+,−]
n .

The role of parity will become clear in the explicit decompositions of KK fermions and
gauge bosons. As a general principle only the 5d fields with periodic, even modes will obtain
so-called zero modes that remain massless in the gauge-symmetric phase. The counting for
odd KK modes starts accordingly at one. Those higher KK modes will obtain an explicit
mass of order MKK in the 4d picture. For gauge fields there is a Stückelberg-like mechanism

13In fact from a probabilistic point of view the converse is true as well. The fermion hierarchies imply
peaked distributions of all but one localization parameters [3] when assuming a flat prior e.g. the left-handed
top quark.
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[205] at work that involves the fifth component of the gauge fields as the corresponding scalar
mode. The zero modes in turn obtain mass only after electroweak symmetry breaking through
insertions of the Higgs VEV and further mixings with other KK modes that are also generated
by electroweak symmetry breaking. This resolves a great obstacle in the implementation of
chiral low-mass 4d fermions. In principle, chirality projections do not exist for fields in odd
space-time dimensions, the reason being that the Clifford algebra relation {γM , γN} = 2ηMN1
in n = 2ν and n = 2ν + 1 dimensions can be fulfilled by n matrices of size 2ν × 2ν [206]. The
graduating automorphism γ5 that distinguishes the two chiral representations in 4d is part
of the Clifford algebra in 5d and part of the 5d representation of the Lorentz-group for Dirac
fermions to generate translations in φ-direction. However, we can resemble chiral fermions by
assigning an odd parity to the wrong chirality of fermions, i.e. to right-handed doublets and
left-handed singlets. Remark that the spectrum of heavy fermion modes will thus contain at
least twice as many degrees of freedom per KK modes compared to the SM-fermion spectrum.

Much like periodic, odd modes, also anti-periodic modes of both parity do not possess a
zero mode and all modes obtain mass of order MKK. This combination of boundary conditions
turns out to be useful to give exotic fermions a heavy KK spectrum and to break additional
gauge symmetries by a combination of periodic and anti-periodic boundary conditions as we
will discuss in section 3.3.5.

We shortly come back to the remaining Higgs sector, which is confined to the IR brane with
a function δ(φ−π) in the setup we consider below. The 5d Yukawa coupling of the Higgs boson
presents a localized source in the 5d equations of motion (EOMs) for fermions and distorts
the fermion profiles. The presence of a δ-function seemingly leads to jump conditions well
known from simple quantum mechanics problems. This is referred to as modified boundary
conditions for the fermions. To clarify this terminology a comment is in order. We will show
in section 3.3.8.1 that a proper regularization of the δ-function used to regularize the Higgs
boson, is essential to obtain correct 4d Yukawa couplings [4, 207]. This is done with the usual
weak limit of smooth kernel functions, extending infinitesimally into the bulk, which define the
δ-distribution in the limit of a regularization parameter η approaching 0. In the regularized
theory, only smooth functions are involved and thus the boundary conditions remain exactly
Neumann or Dirichlet. Only in the limit of η → 0, odd profile functions may develop a value
limε→0 S(π − ε) 6= 0 whilst S(π) = 0 remains true. We denote the limiting value also with
S(π−), as it enters many relevant quantities.

3.3.3 Fermions in a Curved Background

In order to treat fermions in a curved background we give a short digression into the formal
treatment of their general action. Spinor formalism in a general curved background can
be conveniently expressed in the vielbein formalism. Roughly spoken, the inverse vielbein
e A
a = diag(eσ(φ), . . . , eσ(φ), 1) represents the local coordinate system. Analogous to the Levi-

Civita-connection ΓNMP for the treatment of gravity in the framework of general relativity, we
also need its generalization, the so-called spin connection ωbcA. Geometrically it is a mixed
object from Lie

(
SO(1, 4)

)
⊗ Λ1M , where M is our 5d manifold. It represents the induced

unique, metric, and torsion-free Levi-Civita-connection of M inside the spinor bundle. That
said the action of a single Dirac spinor ψ is given by

SF =

∫
dΩ

[
e A
a

(
i

2
ψ̄γa

↔
∂Aψ +

1

8
ωbcAψ̄ {γa, σbc}ψ

)
−m sgn(φ) ψ̄ψ

]
. (3.3.6)
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We have used the general measure of a curved space dΩ = d4x r dφ
√
G, where in the RS

background G = e−8σ is the determinant of the metric. Observe that for the mass term to
be non-vanishing, we have to assign an odd parity to it, so an additional sign function was
included. A thorough discussion of the action can be found in [208]. We indicate that the
spin connection can easily be calculated with the non-zero Christoffel symbols

Γµ5ν = Γµν5 = −σ′(φ)δµν , Γ5
µν = −e−2σ(φ)σ′(φ)ηµν (3.3.7)

as

ωM =
1

4
ωabMγaγb =

1

4
ηbc
{(
∂Me

N
c

)
e a
N + e a

N ΓNMP e
P
c

}
γaγb

= (1− δM5)
σ′(φ)e−σ(φ)

2
δaMγaγ5

(3.3.8)

It gives in fact no contribution to the action [186] since

e A
a {γa, ωA} ∝ δAa {γa, δbAγbγ5} = 0 . (3.3.9)

We postpone the further treatment of (3.3.6) to the discussion of the model-specific imple-
mentations given below.

3.3.4 Minimal Randall-Sundrum Model

In the following, we consider the gauge and fermion sector of the minimal realization of a
RS model that reproduces the SM field content as zero modes. We will discuss the KK
decomposition for the electroweak and fermion sector. The extension to the QCD sector is
straightforward.

3.3.4.1 Gauge-Boson Sector

In the simplest version, we consider a SU(2)L×U(1)Y gauge theory, coupled to a scalar sector
on the IR brane. As explained in the last section, the vector components W a

µ and Bµ have to
be even under the Z2 orbifold symmetry and in order to remove the scalar components W a

φ

and Bφ from the low energy spectrum they are chosen to be odd. The action can be split up
as

SG =

∫
d4x r

π∫

−π

dφ
(
LV + LH + LGF + LFP

)
, (3.3.10)

where

LV =

√
G

r
GKMGLN

(
−1

4
W a
KLW

a
MN −

1

4
BKLBMN

)
, (3.3.11)

LH =
δ(|φ| − π)

r

[
(DµΦ)† (DµΦ)− V (Φ)

]
, V (Φ) = −µ2Φ†Φ + λ

(
Φ†Φ

)2
(3.3.12)

are the Lagrangian for the 5d gauge theory and brane-localized Higgs sector. We replace four-
component indices with five-component capital indices and denote the 5d metric as GMN .
We use the same notation as in the SM (2.2.6) for the components of the Higgs doublet after
electroweak symmetry breaking and we apply the usual rotation with a weak mixing angle,
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defined here via the 5d gauge couplings as tan(θw) ≡ g′5/g5, to arrive at the fields AM and ZM .
The kinetic terms for the Higgs field give rise to 5d mass terms MW 5 = vg5/2 = MZ5cw of
mass dimension 1/2, and bilinear terms involving the gauge and would-be Goldstone bosons.
Moreover, the kinetic terms for the gauge fields in (3.3.11) also contain bilinear terms of the
gauge bosons and their scalar components W±φ , Zφ, and Aφ. All of these mixed terms can be
removed with a suitable choice of the gauge-fixing Lagrangian [1]

LGF = − 1

2ξ

(
∂µAµ − ξ

[
∂φ e

−2σ(φ)Aφ
r2

])2

− 1

2ξ

(
∂µZµ − ξ

[
δ(|φ| − π)

r
MZ5 ϕ

3 +
∂φ e

−2σ(φ)Zφ
r2

])2

− 1

ξ

(
∂µW+

µ − ξ
[
δ(|φ| − π)

r
MW 5 ϕ

+ +
∂φ e

−2σ(φ)W+
φ

r2

])

×
(
∂µW−µ − ξ

[
δ(|φ| − π)

r
MW 5 ϕ

− +
∂φ e

−2σ(φ)W−φ
r2

])
.

(3.3.13)

Note that there is no problem in squaring the δ-functions. We will see below that the deriva-
tives of the scalar components of the gauge fields W±φ and Zφ also contain a δ-function
contribution, which precisely cancels the δ-functions from the Higgs sector. As a result, con-
trary to the treatment in [209], we do not need to introduce separate gauge-fixing Lagrangians
in the bulk and on the IR brane. Such a separate treatment is useful when considering the
5d propagator of gauge bosons as discussed in section 3.3.7 in general Rξ gauge [210]. The
bilinear terms in the action now read

SG,2 =

∫
d4x r

π∫

−π

dφ

{
− 1

4
FµνF

µν − 1

2ξ
(∂µAµ)2

+
e−2σ(φ)

2r2
[∂µAφ∂

µAφ + ∂φAµ∂φA
µ]− ξ

2

[
∂φ e

−2σ(φ)Aφ
r2

]2

− 1

4
ZµνZ

µν − 1

2ξ
(∂µZµ)2 +

e−2σ(φ)

2r2
[∂µZφ∂

µZφ + ∂φZµ∂φZ
µ]

− 1

2
W+
µνW

−µν − 1

ξ
∂µW+

µ ∂µW−µ +
e−2σ(φ)

r2

[
∂µW

+
φ ∂

µW−φ + ∂φW
+
µ ∂φW

−µ
]

(3.3.14)

+
δ(|φ| − π)

r

[
1

2
∂µh∂

µh− λv2h2 + ∂µϕ
+∂µϕ− +

1

2
∂µϕ

3∂µϕ3 +
M2
Z5

2
ZµZ

µ +M2
W 5W

+
µ W

−µ
]

− ξ

2

[
δ(|φ| − π)

r
MZ5 ϕ

3 +
∂φ e

−2σ(φ)Zφ
r2

]2

− ξ
[
δ(|φ| − π)

r
MW 5 ϕ

+ +
∂φ e

−2σ(φ)W+
φ

r2

][
δ(|φ| − π)

r
MW 5 ϕ

− +
∂φ e

−2σ(φ)W−φ
r2

]
+ LFP

}
.

The form of the Faddeev-Popov ghost Lagrangian is analogous to that of the SM, with the
only generalization that a ghost field is required for every KK mode.
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The KK decompositions of the 5d fields has the general form

Vµ(x, φ) =
1√
r

∑

n

V (n)
µ (x)χ

(+)
V,n(φ) , Vφ(x, φ) =

1√
r

∑

n

aVn ϕ
(n)
V (x) ∂φ χ

(+)
V,n(φ) , (3.3.15)

where V = A,Z,W±. V
(n)
µ are the 4d mass eigenstates, the various χ

(+)
V,n profiles form

complete sets of even functions on the orbifold, which obey orthonormality conditions on S1

with respect to the measure dφ. The superscript (+) indicates untwisted, i.e. periodic modes,
and aVn are coefficients, which we determine below. The choice of ∂φ χ

V
n as modes for the

scalar fifth components is a viable ansatz since it automatically reverses the BCs. It is in fact
also necessary as one can easily show. The 5d scalar fields also have to be expanded in the
basis of 4d mass eigenstates. To associate a scalar Goldstone mode with each KK level we
write

ϕ±(x) =
∑

n

bWn ϕ
±(n)
W (x) , ϕ3(x) =

∑

n

bZn ϕ
(n)
Z (x) , (3.3.16)

and determine the coefficients bVn below. We will denote the masses of 4d vector fields by

mV
n ≥ 0. As usual the masses of scalar fields ϕ

(n)
V will be related to these by gauge invariance.

Inserting these decompositions into the action, one finds that the profiles χan obey the 5d
equation of motion [185, 193]

− 1

r2
∂φ e

−2σ(φ) ∂φ χ
(+)
V,n(φ) = (mV

n )2 χ
(+)
V,n(φ)− δ(|φ| − π)

r
M2
V 5 χ

(+)
V,n(φ) . (3.3.17)

In summary we have to find the spectrum of the differential operator − 1
r2 ∂φ e

−2σ(φ)∂φ on
[0, π] subject to the boundary conditions

∂φ χ
(+)
V,n(0) = 0 , ∂φ χ

(+)
V,n(π−) = −rM

2
V 5

2ε2
χ

(+)
V,n(π) . (3.3.18)

The superscript notation π− signifies the left limiting value of the function at the IR brane.

Note that the derivative of χ
(+)
V,n becomes discontinuous at π due to (3.3.17). The appro-

priate IR BCs for the profiles have been obtained by integrating the EOM (3.3.17) over an
infinitesimal interval around |φ| = π and carrying out the regulating limit involved in the

definition of the δ-function. Remark that the IR BCs force the profile to be χ
(+)
V,n to be non-

smooth at φ = π. Since the profiles of the scalar components are taken to be proportional
the φ-derivative of the vector profiles, they develop discontinuities at the IR brane.

We find that the action takes the desired form

SG,2 =
∑

n

∫
d4x

{
− 1

4
F (n)
µν F

µν(n) − 1

2ξ

(
∂µA(n)

µ

)2
+

(mA
n )2

2
A(n)
µ Aµ(n)

− 1

4
Z(n)
µν Z

µν(n) − 1

2ξ

(
∂µZ(n)

µ

)2
+

(mZ
n )2

2
Z(n)
µ Zµ(n)

− 1

2
W+(n)
µν W−µν(n) − 1

ξ
∂µW+(n)

µ ∂µW−(n)
µ + (mW

n )2W+(n)
µ W−µ(n)

+
1

2
∂µϕ

(n)
A ∂µϕ

(n)
A −

ξ(mA
n )2

2
ϕ

(n)
A ϕ

(n)
A +

1

2
∂µϕ

(n)
Z ∂µϕ

(n)
Z −

ξ(mZ
n )2

2
ϕ

(n)
Z ϕ

(n)
Z

+ ∂µϕ
+(n)
W ∂µϕ

−(n)
W − ξ(mW

n )2 ϕ
+(n)
W ϕ

−(n)
W

}

+

∫
d4x

(
1

2
∂µh∂

µh− λv2h2

)
+
∑

n

∫
d4xL(n)

FP ,

(3.3.19)
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if and only if

aVn = − 1

mV
n

, bVn =
MV 5√
r

χ
(+)
V,n(π−)

mV
n

. (3.3.20)

The resulting theory contains a tower of massive gauge bosons with masses mV
n , accompanied

by a tower of massive scalars with masses
√
ξ mV

n , as well as the Higgs field h with mass√
2λv. Note that with (3.3.20) the 4d gauge-fixing Lagrangian derived from (3.3.13) takes

the simple form

r

π∫

−π

dφLGF =
∑

n

L(n)
GF , (3.3.21)

with

L(n)
GF = − 1

2ξ

(
∂µA(n)

µ − ξmA
nϕ

(n)
A

)2
− 1

2ξ

(
∂µZ(n)

µ − ξmZ
nϕ

(n)
Z

)2

− 1

ξ

(
∂µW+(n)

µ − ξmW
n ϕ

+(n)
W

)(
∂µW−(n)

µ − ξmW
n ϕ
−(n)
W

)
.

(3.3.22)

For each KK mode these expressions are identical to those of the SM. It follows that the form

of the Faddeev-Popov ghost Lagrangians L(n)
FP in (3.3.19) is analogous to that of the SM, with

the only generalization that a ghost field is required for every KK mode.

3.3.4.2 Fermion Sector

For the minimal embedding of fermions we consider the SM gauge-representations and quan-
tum numbers, however using Dirac fermions because of the absence of the chiral represen-
tation of the Lorentz group in 5d as discussed in section 3.3.2. Instead we give appropriate
Z2-parities to the formally defined chiral projections PL,R = (1−γ5)/2 of the vector-like Dirac
fermions, i.e. for the SU(2)L doublets we give even parity to the left-handed and odd parity
to the right-handed chirality and vice versa for the fermion singlets.

We denote the components of SU(2)L doublets by u, d and singlets by u c, d c and consider
only quarks for the moment. We generalize the fermion action (3.3.6) and add Yukawa
interactions with the IR-brane Higgs boson that have the same form like in the SM. The
bilinear part of the fermion action can then be written as [186, 195]

SF,2 =

∫
d4x r

π∫

−π

dφ

{ ∑

q=U,u,D,d

(
e−3σ(φ) ~̄q i/∂ ~q − e−4σ(φ) sgn(φ) ~̄qM~q ~q

− 1

2r

[
~̄qL e

−2σ(φ)
↔
∂φ e

−2σ(φ) ~qR + h.c.
])

− δ(|φ| − π) e−3σ(φ) v√
2r

∑

(Q,q)=
(U,u),(D,d)

[
~̄QL Y

(5d)
~q ~qR + ~̄QR Y

(5d)
o ~q ~qL + h.c.

]}
,

(3.3.23)

with
↔
∂φ ≡

→
∂φ −

←
∂φ and we used a generalized notation that will facilitate the transition to

more complicated fermion embeddings. For the minimal model the notation reduces trivially
to

~U ≡ u , ~D ≡ d , M~U = M ~D ≡MQ ,

~q ≡ qc , M~q = Mq , Y
(5d)

(o)~q ≡ Y
(5d)

(o)q , (q = u, d) .
(3.3.24)
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Canonical kinetic terms and flavor-diagonal and real masses in (3.3.23) have been achieved
by appropriate unitary transformations of the quark fields, so the given form stands without
loss of generality. In contrast to the SM where fermion masses solely come from the Yukawa
interactions, we cannot exclude negative diagonal entries in the mass matrices. Indeed, phe-
nomenologically it turns out that the definitions

cQ ≡
1

k
MQ , cq ≡ −

1

k
Mq (3.3.25)

are useful, since all quarks except the top quark will be clustered around cQ,q ≈ 1/2.

In principle, there are two different types of Yukawa matrices either for two Z2-even or
Z2-odd fermions. The latter has been neglected in [1] and all the literature before since it
does naively not contribute because of the Dirichlet BCs at the IR brane. Indeed, the correct
spectrum can be inferred by neglecting this type of Yukawa matrices. However, in [207] it was
recognized that they are essential to derive the correct Higgs–fermion couplings. Considering
the brane-localized Higgs sector as the limit of a bulk Higgs boson, 5d Lorentz invariance

renders both types of Yukawa matrices identical Y
(5d)

(o) ~q = Y
(5d)
~q . We will adopt this choice

in the following. In the decomposition it will be useful to furthermore define dimensionless
Yukawa matrices

Y~q ≡
k

2
Y

(5d)
~q , (q = u, d) . (3.3.26)

The entries of this matrix shall take naturally non-hierarchical, complex values of O(1).
The hierarchies of the Yukawa matrices of the SM quarks in the effective 4d theory are
explained in terms of a geometrical realization of the Froggatt-Nielsen mechanism in RS
models [1, 200, 211, 212].

Of course, we can also shed light on the remaining leptons by localization in the bulk. For
instance one of the first ideas in considering fermionic fields in the RS bulk was how to obtain
small and phenomenologically viable neutrino masses. This can be done by introducing
two right-handed sterile neutrinos that live in the bulk [186] and additionally suppressing
contributions from higher dimensional operators, by very small brane values of the modes
[195].

For the KK decomposition we use a compact notation [2], in which the profile functions
of the left-handed (right-handed) interaction eigenstates that can mix into the left-handed

(right-handed) components of the 4d mass eigenstates are collected in vectors Q(n)
A (t). They

are defined in terms of the KK decompositions

√
r

(
ε

t

)2( ~QL(x, t)
~qL(x, t)

)
=
∑

n

(
CQ
n (t)~aQn
Sqn(t)~aqn

)
q

(n)
L (x) ≡

√
Lε

2π

∑

n

Q(n)
L (t) q

(n)
L (x) ,

√
r

(
ε

t

)2( ~QR(x, t)
~qR(x, t)

)
=
∑

n

(
SQn (t)~aQn
Cq
n(t)~aqn

)
q

(n)
R (x) ≡

√
Lε

2π

∑

n

Q(n)
R (t) q

(n)
R (x) .

(3.3.27)

In this formula Q, q, and Q are assumed to take the values U , u, and U for the up-sector, or D,
d, and D for the down sector, etc. . In the minimal model, the generalized vectors with capital
letters contain SU(2)L-doublet components and those with small letters the singlets. Thus,
the combined notation expresses mixing between KK modes and singlet–doublet mixing due
to electroweak symmetry breaking, both in the same compact form. We anticipate that the
vectors will be extended even further in the custodial model, where additional 5d quarks with
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twisted BCs are introduced, yet, the notation of (3.3.27) is general enough to accommodate
also this extended case. In (3.3.27), we directly switched to t-coordinate notation (see (3.3.2)
and text before) and extracted normalization factors that simplify the following expressions.
CQ,q
n (t) and SQ,qn (t) are diagonal matrices of even and odd profile functions and ~aQ,qn are

decomposition vectors that parametrize the full mixing implied by electroweak symmetry
breaking. The symbols Q, q are understood to take either the values U, u or D, d here. In the
minimal RS model, this general notation again breaks down to equivalent values for the 3× 3
matrices of the profile functions of the doublet fermions

CU
n (t) = CD

n (t) ≡ CQ(+)
n (t) , SUn (t) = SDn (t) ≡ SQ(+)

n (t) , (3.3.28)

where the superscript (+) indicates untwisted profiles. There are three zero modes in the
up and down sector that represent the SM-like fermions. Each higher KK level contains
six modes with O(v) mass splittings, while the different levels are split by an amount of
O(MKK). We choose the index n to enumerate all these modes subsequently, i.e. 1 − 3 for
the zero modes 4 − 9 for the KK modes of the first level, etc. Remark that ~QL,R(x, φ) can

be expanded in terms of the same vector ~aQn . With this choice, the even and odd profiles
CQ
n (φ) and SQn (φ) will be normalized in the same way. The same holds for Q → q. The

orthonormality conditions for the new vectors read

1∫

ε

dtQ(m)†
σ (t)Q(n)

σ (t) = δmn , (3.3.29)

∑

n

Q(n)
σ (t)Q(n)†

σ (t′) = δ(t− t′) , (3.3.30)

where σ = L,R. A thorough discussion of the individual normalization of the profiles CQ
n (φ)

and SQn (φ) can be found in [4], but we refrain from repeating it here. However, note that it is
important to realize that the individual profiles CQ,q

n ~aQ,qn do not satisfy relations analogous
to (3.3.29) and (3.3.30). This non-orthogonality is intuitive since the modes of different
chiralities are mixed in the mass eigenstate basis, however it is not uniquely distributed on
the profiles CQ,q

n and eigenvectors ~aQ,qn . The split into these two quantities is in fact only
necessary in order to derive analytic expressions for the profiles and to clearly separate the
mixing into ~aQ,qn = ~en/

√
2 +O(v2/M2

KK), with unit vectors ~en. The choice to normalize the
mixing vectors as (

~aQn
)†
~aQn +

(
~a qn
)†
~a qn = 1 , (3.3.31)

fixes the analytic form of the profiles, which we give below in section 3.3.6.
The 5d variational principle requires all the variations of the action (3.3.23) to vanish

for arbitrary infinitesimal changes of the fermionic fields. It is straightforward to see that
the EOMs for 5d Dirac fermions lead to the following EOMs for the profiles after the KK
decomposition [4]

δSf

δ( ~Qσ, ~qσ)T
:

(
(−1)δσR ∂t +Mq(t)

)
Q(n)
σ (t) = xnQ(n)

σ (t) , (σ = L,R) . (3.3.32)

Here, xn = mqn/MKK are the mass eigenvalues, σ denotes the opposite chirality and

Mq(t) =
1

t

(
c ~Q 0

0 −c~q

)
+ δη(t− 1)

v√
2MKK

(
0 Y~q
Y †~q 0

)
, (3.3.33)
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is the generalized mass matrix. Remark that we have added the regularization parameter η
to the notation of the δ-function. It has been emphasized in [207] that in order to properly
evaluate the Yukawa couplings this careful treatment is essential. The reason is that with a
brane-localized Higgs sector the odd fermion profiles SQ,qn (t) are discontinuous at t = 1 [213],
and hence the overlap integral of a product of two such functions with the naive Higgs profile
δ(t− 1) is in fact ill defined. In the following, we will therefore consider the δ-function as the
weak limit of a sequence of normalized, regularized functions δη with support on the interval
x ∈ [−η, 0] as

lim
η→0+

+∞∫

−∞

dx δη(x)f(x) = f(0) , (3.3.34)

for all test functions f(x), i.e. smooth functions of compact support. The precise shape of
this function will be irrelevant.

Due to the regularization of the Higgs profile the simple Dirichlet boundary conditions
hold like in the case of a bulk Higgs boson

(
0 1

)
Q(n)
L (t) = 0 =

(
1 0

)
Q(n)
R (t) for t = {ε, 1} . (3.3.35)

Within the bulk and away from the support of the Higgs profile, i.e. , for t < 1 − η, the
general solutions [186, 195] to the EOMs (3.3.32) can be written as linear combinations of
Bessel functions, which we discuss below in section 3.3.6. The appearance of the regularized
Higgs profile δη(t− 1) as a source in (3.3.32) however renders the solutions for t > 1− η, i.e.
close to the brane, completely different. In the following we derive the solution for η � 1.
In this case the Higgs profile source terms in the EOM (3.3.32) are dominant δη ∼ 1/η and
as a result the behavior of the profiles CQ,q

n (φ) and SQ,qn (φ) become independent of the mass
terms. Then, the integral version of the 1/η components of the EOM reads

Q(n)
σ (t)−Q(n)

σ (1) = (−1)δσL
v√

2MKK

(
0 Y~q
Y †~q 0

) 1∫

t

dt′ δη(t′ − 1)Q(n)
σ (t′) . (3.3.36)

In order to solve (3.3.36), we first introduce the regularized Heaviside function

θ̄η(x) ≡ 1−
x∫

−∞

dy δη(y) , (3.3.37)

which obeys ∂x θ̄
η(x) = −δη(x) and has the values θ̄η(0) = 0, and θ̄η(−η) = 1. Using the

latter properties it is readily shown that

1∫

t

dt′ δη(t′ − 1) θ̄η(t′ − 1)n =
1

n+ 1
θ̄η(t− 1)n+1 . (3.3.38)

Thus for any arbitrary invertible matrix A one has

1∫

t

dt′ δη(t′ − 1) sinh
(
θ̄η(t′ − 1)A

)
=
(

cosh
(
θ̄η(t− 1)A

)
− 1
)
A−1 ,

1∫

t

dt′ δη(t′ − 1) cosh
(
θ̄η(t′ − 1)A

)
= sinh

(
θ̄η(t− 1)A

)
A−1 ,

(3.3.39)
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where the hyperbolic sine and cosine are defined via their power expansions. These relations
directly show the solution to the Peano-iteration of (3.3.36)

Q(n)
L (t) =

√
2π

Lε




cosh

(
θ̄η(t− 1) v√

2MKK

√
Y~qY

†
~q

)
CQ
n (1)~aQn

−Y †~q
(√

Y~qY
†
~q

)−1

sinh

(
θ̄η(t− 1) v√

2MKK

√
Y~qY

†
~q

)
CQ
n (1)~aQn


 ,

Q(n)
R (t) =

√
2π

Lε




Y †~q

(√
Y~qY

†
~q

)−1

sinh

(
θ̄η(t− 1) v√

2MKK

√
Y~qY

†
~q

)
Cq
n(1)~aqn

cosh

(
θ̄η(t− 1) v√

2MKK

√
Y~qY

†
~q

)
Cq
n(1)~aqn


 .

(3.3.40)

The six components of Q(n)
L are both determined by the three boundary values CQ

n (1)~aQn . This
implies a relation between the components. In this sense (3.3.40) represents the regularized
analoga to the IR BC for gauge bosons (3.3.18). In the latter case, we were able to directly
work with the naive description of the δ-function. Here, we will see effectively a similar result.
The correct treatment of the δ-function finally only amounts to a redefinition of the Yukawa
matrix as far as the KK spectrum is concerned. This is seen as follows. The non-trivial
connecting condition between the usual form of the solution and the one derived here is now
located at t = 1 − η. At this point we evaluate (3.3.40) and eliminate the on-brane values
CQ,q
n (1). Introducing the rescaled Yukawa matrices

Ỹ~q ≡ X̃~qX
−1
~q Y~q , X~q ≡

v√
2MKK

√
Y~q Y

†
~q , X̃~q = tanh(X~q) , (3.3.41)

which coincide at leading order with the original ones, i.e. Ỹ~q = Y~q +O(v2/M2
KK), we obtain

the IR BCs

(
v√

2MKK

Ỹ †q 1

)
Q(n)
L (1− η) = 0 ,

(
1 − v√

2MKK

Ỹq

)
Q(n)
R (1− η) = 0 , (3.3.42)

Hence, they take precisely the same form as in [1], with the original Yukawa couplings replaced
by the rescaled ones as defined in (3.3.41). Since in practice the Yukawa matrices (together
with the quark profiles) are chosen such that the zero-mode masses as well as the quark
mixing angles match the ones determined by experiment, such a rescaling has no observable
effect on the mass spectrum and the mixing pattern. However, as we will explain in more
detail below, the inclusion of the Yukawa coupling involving Z2-odd fermions alters the form
of the tree-level interactions of the Higgs boson with fermions.

Finally, the mass eigenvalues mn follow from the solutions to the equation

det

(
1 +

v2

2M2
KK

Ỹ~qC
q
n(π−)

[
S qn(π−)

]−1
Ỹ †~q C

Q
n (π−)

[
SQn (π−)

]−1
)

= 0 . (3.3.43)

Once they are known, the eigenvectors ~aQ,qn can be determined from (3.3.42). Note that, while
it is always possible to work with real and diagonal profiles CQ,q

n (φ) and SQ,qn (φ), the vectors
~aQ,qn are, in general, complex-valued objects.
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3.3.5 Custodial Randall-Sundrum Model

3.3.5.1 Gauge-Boson Sector

As an extension to the discussion in 3.3.4.1, we also consider the RS model as proposed in
[214, 215] with the custodial symmetry of the SM Higgs sector as a full bulk gauge symmetry
O(4)×U(1)X ∼ SU(2)L×SU(2)R×U(1)X×PLR. The rationale for the left-right parity PLR
will be explained below when discussing fermions. However, we will allow for explicit sources
of PLR violation in the following and comment on them. The action reads

SG =

∫
d4x r

π∫

−π

dφ
(
LL,R,X + LH + LGF

)
, (3.3.44)

with the gauge-kinetic terms

LL,R,X =

√
G

r
GKMGLN

(
−1

4
LaKLL

a
MN −

1

4
RaKLR

a
MN −

1

4
XKLXMN

)
. (3.3.45)

The 5d gauge couplings are denoted by gL,R,X5. We furthermore define the dimensionless

4d gauge couplings as ga = ga5/
√

2πr. The choice of Z2-parity, for vector and scalar fifth
component are again even and odd respectively. The Higgs Lagrangian is given by

LH =
δ(|φ| − π)

r

(
1

2
Tr
∣∣(DµΦb)

∣∣2 − V (Φb)

)
(3.3.46)

We employ the symmetry-breaking pattern SU(2)L × SU(2)R → SU(2)V to the diagonal
subgroup by using a Higgs bidoublet in the real representation (2, 2)0. This scheme provides
a custodial symmetry, which protects the T parameter. Additionally PLR symmetry prevents
the left-handed Zbb̄ coupling from receiving excessively large corrections [216]. On the UV
brane, the symmetry breaking SU(2)R × U(1)X → U(1)Y is achieved by a mixture of UV
and IR BCs. Remark that in contrast to left-right symmetric models that employ a breaking
pattern to a diagonal SU(2) subgroup [217–221], where this step is taken at a scale u� v in
addition to the usual Higgs mechanism, the breaking pattern here is fundamentally different.
It rather resembles the pattern of composite Higgs models [222], e.g. the Little Higgs models
discussed in section 3.2, where the Higgs sector LH is SM-like, the only difference being the
gauged custodial symmetry. In particular the same number of degrees of freedom are used
by rewriting the complex representation Φ ∼ (1, 2)Y=1/2, used by the SM Higgs mechanism,

to a real bifundamental Φb = (Φc,Φ) ∼ (2, 2)0 with approximately14 the same diagonal VEV〈
Φb
〉

= v/
√

2 1. Accordingly, SU(2)L transformations act from the left on the bidoublet,
while the SU(2)R transformations act from the right. Using T iL,R = σi/2, the covariant
derivative in the Higgs sector reads

DµΦb = ∂µΦb − igL5 L
i
µ T

i
L Φb + igR5 ΦbRiµ T

i
R

=
1√
2

(
∂µ
(
h− iϕ3

)
− i v2

(
gL5 L

3
µ − gR5R

3
µ

)
−∂µi

√
2ϕ+ − i v2

(
gL5 L

+
µ − gR5R

+
µ

)

−∂µi
√

2ϕ− − i v2
(
gL5 L

−
µ − gR5R

−
µ

)
∂µ
(
h+ iϕ3

)
+ i v2

(
gL5 L

3
µ − gR5R

3
µ

)
)

+ terms bilinear in fields , (3.3.47)

14We will see below that a tree-level contribution to the W -mass slightly shifts the VEV.
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The structure of (3.3.47) shows that the mass matrix is diagonalized by defining the new
fields [223] (

ÃiM
V i
M

)
=

(
cW −sW
sW cW

)(
RiM
LiM

)
≡ RW

(
RiM
LiM

)
, tW =

gR
gL

. (3.3.48)

Afterwards, the 5d mass term adopts the form

LG,mass =
δ(|φ| − π)

r

(
g2
L5 + g2

R5

)
v2

8
ÃiµÃ

µ i ≡ δ(|φ| − π)

r

1

2
M2
Ã5
ÃiµÃ

µ i . (3.3.49)

This explicitly shows the IR brane induced breaking pattern SU(2)L × SU(2)R → SU(2)V .
The mixing angle θW introduced in (3.3.48) is the only rotation we need in the 5d charged
sector. The zero mode of the coupled system ~W±M = (Ã±M , V

±
M )T will resemble the SM-like

W±. The rotations in the neural sector are more intricate as we discuss in the following.
We mentioned above that appropriate BCs on the UV brane break the extended elec-

troweak gauge group down to the SM gauge group SU(2)R × U(1)X → U(1)Y . Explicitly,
this is done as follows. We introduce the new fields

(
BM
Z ′M

)
=

1√
g2
R + g2

X

(
gR gX
−gX gR

)(
XM

R3
M

)
, (3.3.50)

and give Dirichlet BCs to Z ′µ and R1,2
µ on the UV brane. The SM-like neutral electroweak

gauge bosons are defined in the standard way with the U(1)Y hypercharge coupling given by
g−2
Y = g−2

R + g−2
X , such that

(
AM
ZM

)
=

(
cw sw
−sw cw

)(
BM
L3
M

)
, tw =

gY
gL

, (3.3.51)

and we give Neumann BCs to Zµ, Aµ and L1,2
µ on the UV brane. The different choice of BCs

explicitly breaks the mentioned symmetry and makes the necessity of Scherk-Schwarz twisted
KK modes apparent.

Finally, the fields V 3
M and XM can be rotated to the photon field AM and a state ZHM via

(
AM
ZHM

)
=

1

g2
LRX


 gL gR gX

√
g2
L + g2

R

−gX
√
g2
L + g2

R gL gR



(
XM

V 3
M

)
, (3.3.52)

where g4
LRX = g2

L g
2
R + g2

L g
2
X + g2

R g
2
X . We also write Z̃M ≡ Ã3

M , as it is already the correct
linear combination of ZM and Z ′M , which is orthogonal to ZHM . The necessary rotation in the
5d neutral sector for the Z boson is in summary given by

(
Z̃M
ZHM

)
=

(
cZ −sZ
sZ cZ

)(
ZM
Z ′M

)
≡ RZ

(
ZM
Z ′M

)
, tZ =

g2
R

g2
LRX

. (3.3.53)

The zero mode of the coupled system ~ZM = (Z̃M , Z
H
M )T will resemble the SM-like Z. Remark

that the three introduced angles cw, cW , cZ parametrize the weak mixing angle defined by the
usual rotation of the U(1)Y in the U(1)em boson, the relative size of the two SU(2) gauge
couplings comparable to what is usually called cβ in multi-Higgs doublet models and e.g. the
left–right-symmetric model, and the third angle is dependent, c2

Z = c2
W /c

2
w.
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SU(2)R × U(1)X → U(1)Y SU(2)L × SU(2)R → SU(2)V

∂φL
±
µ (x, 0) = 0 ∂φÃ

±
µ (x, π−) = − r

2ε2
M2
Ã5
Ã±µ (x, π)

R±µ (x, 0) = 0 ∂φV
±
µ (x, π) = 0

∂φZµ(x, 0) = 0 ∂φZ̃µ(x, π−) = − r
2ε2

M2
Ã5
Z̃µ(x, π)

Z ′µ(x, 0) = 0 ∂φZ
H
µ (x, π) = 0

∂φAµ(x, 0) = 0 ∂φAµ(x, π) = 0

Table 3.3: UV and IR BCs in the gauge sector of the custodial RS model.

In table 3.3 we summarize the BCs at the two different branes that we choose for the
fields in order to obtain the correct mass spectrum for the SM gauge bosons. We refer to
these sets of fields as the UV and IR basis, respectively. The BCs can easily be transformed
between these two bases with the matrices RW,Z at the expense of obtaining expressions that
mix different fields. Remark that enforcing the PLR symmetry uniquely determines these
rotations with cW = 1/

√
2 and cZ = 1/

(√
2cw
)
. The photon Aµ has individual and source-

free Neumann BCs at both branes, and therefore its zero mode remains massless. Note that
there is just one mass parameter MÃ entering the IR BCs, in contrast to the two parameters
MZ and MW appearing in the minimal model. This is crucial for the custodial protection
of the T parameter. The different masses for the lightest electroweak gauge bosons are here
accomplished through the mixed UV BCs of the gauge fields in the IR basis. As the Higgs
sector is localized on the IR brane, it is natural to work in the IR basis for that purpose.

The action of the theory still contains mixing terms between gauge fields and scalars,
which can be removed by an appropriate gauge-fixing Lagrangian. It turns out that

LGF = − 1

2ξ

(
∂µAµ − ξ

[
∂φ e

−2σ(φ)

r2
Aφ

])2

− 1

2ξ

(
∂µ ~Zµ − ξ

[
δ(|φ| − π)

r
MÃ5

~ϕ 3 +
∂φ e

−2σ(φ)

r2
~Zφ

])2

− 1

ξ

(
∂µ ~W+

µ − ξ
[
δ(|φ| − π)

r
MÃ5

~ϕ+ +
∂φ e

−2σ(φ)

r2
~W+
φ

])T

×
(
∂µ ~W−µ − ξ

[
δ(|φ| − π)

r
MÃ5

~ϕ− +
∂φ e

−2σ(φ)

r2
~W−φ

])
,

(3.3.54)

is an appropriate choice.
To perform the KK decomposition of the 5d fields, it is convenient to work with profiles

that obey definite Neumann (+) or Dirichlet (−) BCs at the UV brane, and parametrize the
mixing between the components of ~W±M (x, φ) and ~ZM (x, φ) that is induced by the IR BCs.
Both advantages are elegantly combined by writing the KK decomposition as

~Vµ(x, φ) =
RV√
r

∑

n

χ+
V,n(φ) ~AV

n V (n)
µ (x) , ~Vφ(x, φ) =

RV√
r

∑

n

∂φχ
+
V,n(φ) ~AV

n a
V
n ϕ

(n)
V (x) ,

(3.3.55)
where V = Z,W±, A. In fact, the decomposition of the photon A is the same as in (3.3.15)

and we account for this by setting RA = 1 and ~AA
n = (1, 0)T . Note that V

(n)
µ (x) are 4d mass
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eigenstates and the lightest, zero modes are identified with the SM gauge bosons just like in
the structurally simpler decomposition of the minimal model (3.3.15). Mixing between the
KK modes of V = W±, Z is encoded in the two-component vectors ~AVn , which are normalized

according to ( ~Aan)
T ~Aan = 1. Furthermore, we have introduced the diagonal matrix

χ+
V,n(φ) =

(
χ

(+)
V,n(φ) 0

0 χ
(−)
V,n(φ)

)
, (3.3.56)

The superscripts (+) and (−) label the type of BC we impose on the profiles at the UV brane.
Remind from table 3.3 that both profiles satisfy an even BC at the IR brane, which we do not
indicate explicitly to simplify the notation. The superscript therefore also indicates Scherk-
Schwarz untwisted and twisted even functions. We also introduce the shorthand notations

~χVn (φ) =
(
χLV,n(φ), χRV,n(φ)

)T
= χ+

V,n(φ) ~AV
n , (3.3.57)

The profiles χ+
V,n(φ) do not separately obey orthonormality conditions. This fact is related to

the decomposition of fields with Neumann and Dirichlet BCs into the same 4d gauge-boson
basis and the implied mixing. This is analogous to the fermion decomposition of the minimal
model discussed above. It is only the complete vectors ~χVn (φ) that are orthonormal and
complete,

π∫

−π

dφ ~χVm(φ)T ~χVn (φ) = δmn , (3.3.58)

∑

n

~χVn (φ) ~χVn (φ)T =
1

2

(
δ(φ− φ′) + δ(φ+ φ′)

)
1 . (3.3.59)

Note that the photon still obeys a standard orthonormality condition. To associate a scalar
Goldstone mode with each KK level, again we expand the 5d Goldstone bosons in the basis

of 4d mass eigenstates ϕ
(n)
V (x) by [4]

~ϕ 3(x) =
∑

n

~bZn ϕ
(n)
Z (x) , ~ϕ±(x) =

∑

n

~bWn ϕ
±(n)
W (x) . (3.3.60)

We insert the decomposition (3.3.55) into the action (3.3.44) and derive the following
EOMs [1, 185, 193] for the two component vectors of (3.3.57)

− 1

r2
∂φ e

−2σ(φ)RV ∂φ ~χ
V
n (φ) = (mV

n )2RV ~χ
V
n (φ)− δ(|φ| − π)

r
M2
V 5P(+)RV ~χ

V
n (φ) , (3.3.61)

where V = Z,W,A the 5d masses are MZ5 = MW 5 = MÃ5
, MA5 = 0, and we defined

the projectors P(+) = diag(1, 0) and P(−) = diag(0, 1). After an integration of (3.3.61)
an infinitesimal region around the IR brane we obtain as the generalization of (3.3.18) the
condition

mV
n

MKK
RV χ

−
V,n(π−) ~AV

n = −X2 LP(+)RV χ
+
V,n(π) ~AV

n , (3.3.62)

where

χ−V,n(φ) ≡ 1

mV
n r

e−σ(φ)∂φχ
+
V,n(φ) , X2 ≡ (g2

L + g2
R) v2

4M2
KK

. (3.3.63)
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Notice that for the photon the right-hand side in (3.3.62) is equal to zero.

After applying the EOMs and the orthonormality condition, we observe that the 4d action
takes the desired canonical form, if and only if

aVn = − 1

mV
n

, ~bVn =
MV 5√
rmV

n

P(+)RV ~χ
V
n (π−) . (3.3.64)

The spectrum of the theory is determined by the IR BCs (3.3.62). Therefore, the numerical
determination of the eigenvalues xVn ≡ mV

n /MKK is done by finding the solutions to the
characteristic equation

det
[
xVn χ

−
V,n(π−) + LX2DV χ

+
V,n(π)

]
= 0 ,

DV ≡ R−1
V P(+)RV =

(
c2
V −sV cV

−sV cV s2
V

)
.

(3.3.65)

Once the eigenvalues are known, the eigenvectors ~AV
n are determined by (3.3.62).

3.3.5.2 Fermion Sector

The extended RS model shall also implement a custodial protection of the ZbLb̄L vertex [216]
to comply with precision constraints from Z-pole observables in addition to the constraints
from the oblique T -parameter (see section 4.2.2). The fermion embedding shall therefore
adhere to a discrete PLR symmetry that interchanges the two SU(2) groups and the left-
handed bottom quark has to be part of a SU(2)L × SU(2)R bidoublet with isospin quantum
numbers15 T 3

L = −T 3
R = −1/2. This fixes the quantum numbers of the other fields and implies

the following, most economical multiplet structure for the quark fields with even Z2-parity:

QL ≡


 u

(+)
L 2

3
λ

(−)
L 5

3

d
(+)
L − 1

3
u
′ (−)
L 2

3




2
3

, ucR ≡
(
u
c (+)
R 2

3

)
2
3

,

TR ≡ T1R ⊕ T2R ≡




Λ
′ (−)
R 5

3

U
′ (−)
R 2

3

D
′ (−)
R − 1

3




2
3

⊕
(
D

(+)
R − 1

3
U

(−)
R 2

3
Λ

(−)
R 5

3

)
2
3

.

(3.3.66)

Again the superscript (−) denotes a Scherk-Schwarz twist. The inner and outer subscripts cor-
respond to the electromagnetic and U(1)X charges, respectively, which are connected through
the relations Y = −T 3

R +QX and Q = T 3
L + Y . In addition to (3.3.66), we have a second set

of multiplets, belonging to the components of opposite chirality. The corresponding states
have opposite BCs. In particular, they all obey Dirichlet BCs at the IR brane. The SU(2)L,R
transformations act vertically and horizontally on the multiplets. We summarize the quantum
numbers of the quark fields in table 3.4. Note that we have chosen the same SU(2)L×SU(2)R
representations for all three generations, which is necessary if one wants to consistently incor-
porate quark mixing in the fully anarchic approach to flavor in warped extra dimensions. The

15Remark that we have adapted the sign convention of [4] for T 3
R. Compared with typical conventions in the

LR symmetric model the sign is reversed.

57



3. THEORETICAL CLASSIFICATION & EXAMPLES OF NEW PHYSICS

u
(+)
L d

(+)
L λ

(−)
L u

′ (−)
L u

c (+)
R Λ

′ (−)
R U

′ (−)
R D

′ (−)
R D

(+)
R U

(−)
R Λ

(−)
R

Q 2/3 −1/3 5/3 2/3 2/3 5/3 2/3 −1/3 −1/3 2/3 5/3
QX 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3
Y 1/6 1/6 7/6 7/6 2/3 2/3 2/3 2/3 −1/3 2/3 5/3
T 3
L 1/2 −1/2 1/2 −1/2 0 1 0 −1 0 0 0
T 3
R 1/2 1/2 −1/2 −1/2 0 0 0 0 1 0 −1

Table 3.4: Charge assignments of the quark fields in the custodial RS model.

chosen representations also play a crucial role in the suppression of flavor-changing left-handed
Z-boson couplings which we discuss in section 4.1.2.

Altogether we obtain 15 different quark fields in the up-type and nine in the down-type
sector. Due to the BCs, there will be three light modes in each sector to be identified with
the SM quarks. These are accompanied by KK towers which consist of groups of 15 and nine
modes of similar masses in the up- and down-type quark sector, respectively. Moreover the
embedding implies interesting exotic fermion fields of electric charge 5/3, which exhibits nine
excitations with small mass splitting in each level.

A comment on the uniqueness of the given embedding is in order. The right-handed quarks
have to be embedded in SU(2)R triplets or singlets in order to arrive at a U(1)X -invariant
Yukawa coupling. The U(1)X -charge of the bidoublet implies the triplet for the down-type
quarks, whereas up-type quarks can be embedded in a singlet or triplet. Since the latter
choice implies also another SU(2)L triplet like in the down sector we restrict our discussion
to the more economical choice of a singlet.

The given setup of fermions can be embedded into SO(5) × U(1)X multiplets if PLR is
exact in the gauge sector, too. The given representation can arise from a 5 ∼ (2, 2)⊕(1, 1) and
from a 10 ∼ (2, 2) ⊕ (3, 1) ⊕ (1, 3) of SO(5) ⊗ U(1)X in various possible combinations [224].
Therefore, the given representation is suitable for comparison with models of gauge-Higgs
unification, where a bulk Higgs boson can arise from the scalar fifth component of gauge
fields in SO(5)/(SU(2)L × SU(2)R).

The only structurally new ingredient of the fermionic action, compared to the minimal
RS Lagrangian, are the Yukawa couplings between the bidoublet and the singlet or triplet,
respectively. To denote the Lagrangian, it is most convenient to write the SU(2)L triplet
components in the basis of Pauli-matrices

T1 =




1√
2
U ′ (−)

2
3

Λ′ (−)
5
3

D′ (−)
− 1

3

1√
2
U ′ (−)

2
3


 =

σ3√
2
U ′ (−)

2
3

+ σ−D′ (−)
− 1

3
+ σ+ Λ′ (−)

5
3
, (3.3.67)

and analogous for the SU(2)R triplet T2 with the unprimed component fields Λ(−)
5
3
, U (−)

2
3
,

and D(+)
− 1

3
. The possible gauge-invariant Yukawa couplings are found to be [225].

Syuk = −
∫
d4x r

π∫

−π

dφ δ(|φ| − π)
e−3σ(φ)

r
Tr

[
Φb
(
Q̄LY

(5d)
u ucR + Q̄RY

(5d)
ou uc jL

)T

+
1√
2

(
Q̄iL
)T
Y

(5d)
d

(
T1RΦb + ΦbT2R

)
+

1√
2

(
Q̄iR
)T
Y

(5d)
o d

(
T1LΦb + ΦbT2L

)]
.

(3.3.68)
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Like for the minimal RS model, we will choose the brane-localized Higgs sector as the limit
of a bulk Higgs boson, which forces the Yukawa matrix for the coupling of both chirality

structures to be equal Y
(5d)

o q = Y
(5d)
q . A generalization to different Yukawa matrices, which

would in general be allowed for a perfectly brane-localized Higgs boson, is straightforward.

Like for gauge bosons, we will later directly decompose into the KK basis of 4d mass
eigenstates for the quark fields. After electroweak symmetry breaking, the Yukawa couplings
(3.3.68) give rise to mass terms which mix different 5d fields with the same electromagnetic
charge. Therefore, it is possible and reasonable to cast the bilinear part of the fermion action
in the generic form introduced already for the minimal RS model (3.3.23). The vectors of
fermions, which were trivial in the latter case, now contain fields of same charge and chirality
for even parity, and the sums over quark fields in (3.3.23) now also extend over the exotic
fermions Λ, λ. The corresponding vectors, mass, and Yukawa matrices are given by

~U ≡
(
u
u′

)
, ~D ≡ d , ~Λ ≡ λ , M~U ≡

(
MQ 0

0 MQ

)
, M ~D = M~Λ ≡MQ ,

~u ≡



uc

U ′

U


 , ~d ≡

(
D
D′

)
, ~λ ≡

(
Λ′

Λ

)
, M~u ≡



Muc 0 0

0 MT1 0
0 0 MT2


 ,

M~d
≡
(
MT2 0

0 MT1

)
, M~λ

≡
(
MT1 0

0 MT2

)
,

Y~u ≡
(
Yu

1√
2
Yd

1√
2
Yd

Yu − 1√
2
Yd − 1√

2
Yd

)
, Y~d = Y~λ ≡

(
Yd Yd

)
.

(3.3.69)

where MA are the 3× 3 bulk-mass matrices of the corresponding multiplets A = Q, uc, T1, T2

and we have defined the dimensionless order one Yukawa matrices like in section 3.3.4.2.

Also the KK decomposition works with the generic formulas presented in section 3.3.4.2.
The derivation of the form of profiles close to the IR brane (3.3.40), and consequently the IR

BCs (3.3.42), did not rely on the UV BC and thus holds for both types. The vectors Q(n)
L,R(t)

have to be built by using the following form of the generalized profile matrices

CU
n ≡ diag

(
CQ(+)
n ,CQ(−)

n

)
, Cu

n ≡ diag
(
Cuc(+)
n ,CT1(−)

n ,CT2(−)
n

)
,

CD
n ≡ CQ(+)

n , Cd
n ≡ diag

(
CT2(+)
n ,CT1(−)

n

)
,

CΛ
n ≡ CQ(−)

n , Cλ
n ≡ diag

(
CT1(−)
n ,CT2(−)

n ) ,

(3.3.70)

the same relation for C → S, and the decomposition vectors

~aUn ≡
(
aun
au
′
n

)
, ~aun ≡



au

c

n

aU
′

n

aUn


 , ~aDn ≡ adn , ~adn ≡

(
aDn
aD
′

n

)
, ~aΛ

n ≡ aλn , ~aλn ≡
(
aΛ′
n

aΛ
n

)
. (3.3.71)

In order to derive the fermion couplings to gauge bosons below, we need the form of the
covariant derivative determined by the fermionic representations. While this is a straightfor-
ward generalization of the SM in the case of the minimal model, the custodial embedding
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might be unfamiliar to the reader. In the UV basis of gauge bosons, we have

Dµ = ∂µ − i
∑

V=L,R; s=±

gV 5√
2
V s
µ T

s
V − i

∑

V=Z,Z′

gV 5QV Vµ − i e5QAµ . (3.3.72)

With Z couplings and charges defined by

gZ =
√
g2
L + g2

Y , gZ ′ =
√
g2
R + g2

X ,

QZ = T 3
L −

g2
Y

g2
Z

Q , QZ ′ = −T 3
R −

g2
X

g2
Z ′
Y .

(3.3.73)

As usual, we define the generators T±L,R = T 1
L,R ± i T 2

L,R and T iL,R are given by the 1/2 times
Pauli matrices in standard convention times when acting on bidoublets

T+
L,R =

(
0
√

2 0
0 0

√
2

0 0 0

)
, T−L,R =

(
T+
L,R

)†
, T 3

L,R = diag(1, 0,−1) (3.3.74)

The traces over gauge group indices in the fermion kinetic term e.g. lead to the following
charged currents coupling to

(
L±µ , R±µ

)

~J µ±WQ
=

1√
2

(
gL Tr

[
Q̄ γµ T±Q

]

gR Tr
[
Q̄ γµQT±

]
)
, ~J µ±WT =

1√
2

(
gL T̄1 γ

µ T± T1

gR Tr
[
T̄2 γ

µ T2 T
±]
)
. (3.3.75)

3.3.6 Bulk Profiles and Zero-Mode Spectrum

We start with the explicit form of the bulk gauge profiles χ
(+)
V,n(t). Here, we use the dimen-

sionless parameter t = εe−krφ as introduced at the end of section 3.3.2. The explicit form of
the profiles χn was first obtained in [185, 193] for the case of an unbroken gauge symmetry.
Rewriting the profile functions that fulfill Neumann (+) and Dirichlet (−) IR BCs in the form

χ
(±)
V,n(t) = N (±)

n

√
L

π
t c(±)+
n (t) , (3.3.76)

it is directly seen that the EOMs (3.3.17) and (3.3.61) have the form of ordinary Bessel
differential equations of order 1 inside the bulk t ∈ (ε, 1). For brevity, we skip the index V in

the following expressions. The UV boundary conditions dictate the form of c
(±)+
n (t) as

c(+)+
n (t) = Y0(xnε)J1(xnt)− J0(xnε)Y1(xnt) ,

c(−)+
n (t) = Y1(xnε)J1(xnt)− J1(xnε)Y1(xnt) .

(3.3.77)

We furthermore define the following derivatives

c(+)−
n (t) =

1

xnt

d

dt

(
t c(+)+
n (t)

)
= Y0(xnε) J0(xnt)− J0(xnε)Y0(xnt) ,

c(−)−
n (t) =

1

xnt

d

dt

(
t c(−)+
n (t)

)
= Y1(xnε) J0(xnt)− J1(xnε)Y0(xnt) .

(3.3.78)
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The masses of the KK states normalized to the KK scale xn are determined by the IR BCs as

explained above. The normalization constants N
(±)
n are determined from the orthonormality

condition

(
N (±)
n

)−2
=c(±)+

n (1)2 + c(±)−
n (1−)2 − 2

xn

(
c(±)+
n (1) c(±)−

n (1−)− ε c(±)+
n (ε) c(±)−

n (ε+)
)

− ε2
(
c(±)+
n (ε)2 + c(±)−

n (ε+)2
)
. (3.3.79)

This formula contains terms due to the different UV BCs. Depending on the type of the UV

BCs, some of the terms in (3.3.79) vanish identically since c
(+)−
n (ε) = c

(−)+
n (ε) = 0.

Remark that for the photon and gluon that do not participate in electroweak symmetry

breaking the EOM is remarkably simpler and reads N
(+)
n c

(+)−
n (1) = 0. In this case the

spectrum contains a massless zero mode, which has a flat profile χ
(+)
0 (t) = 1/

√
2π. Since

Y0(xnε) � J0(xnε) the higher KK modes correspond to a good approximation to zeros of
the Bessel function J0. This implies x1 ≈ 2.45 and subsequent modes in approximately
equidistant spacings of π. The latter is in fact also true for all other bosons and fermions in
the limit of large n.

The flatness of the profile of the photon and gluon have to be kept in mind for the
calculation of couplings to bulk fermions. Using an orthonormality condition for the fermions,
we will see that this implies exactly the form of couplings as in the SM.

It is useful for the following discussion to have expressions for the massive zero-modes
profiles of the W and Z expanded in x2

0 ∼ v2/M2
KK

χ
(+)
0 (t) =

1√
2π

[
1 +

x2
0

4

(
1− 1

L
+ t2

(
1− 2L− 2 ln t

))
+O

(
x4

0

)]
,

χ
(−)
0 (t) =

√
L

2π
t2
[
− 2 +

x2
0

4

(
t2 − 2

3

)
+O

(
x4

0

)]
,

(3.3.80)

The corresponding decomposition vector and mass-eigenvalues follow from an expansion of
the characteristic equation (3.3.65). They read

M2
W ≡

(
mW

0

)2
=
g2v2

4

[
1− g2v2

4

1

2M2
KK

(
L

c2
W

− 1 +
1

2L

)
+O

(
v4

M4
KK

)]
,

M2
Z ≡

(
mZ

0

)2
=
g2v2

4c2
w

[
1− g2v2

4c2
w

1

2M2
KK

(
L

c2
Z

− 1 +
1

2L

)
+O

(
v4

M4
KK

)]
.

(3.3.81)

For the minimal RS model one has to set the additional mixing angles cW = sW = 1. For
the custodial RS model we make the identification g ≡ gL, and g′ ≡ gY . We discuss in
section 4.2.2 how the specific values of the additional mixing angles cW , and sW , given in
(3.3.48), and (3.3.53), protect the oblique T -parameter. However, notice that (3.3.80) contains
also t-dependent contributions that will in general lead to flavor non-universal corrections of
the vertices with SM fermions with the W and Z bosons. This non-universality turns out to
be negligibly small for light fermions, i.e. the first two generations. Therefore, additionally
to the oblique corrections we also have to consider corrections to the vertex Zbb̄. In this
discussion, it is illuminating to have the analytic expression for the decomposition vector in
the custodial RS model

~AV
0 =

(
1

−sV cV X2
√
L/4

)
. (3.3.82)
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The second component parametrizes the admixture of χ
(−)
0 (t) in the zero mode, which is

responsible for the custodial protection mechanism of the ZbLb̄L vertex and also its flavor-
changing counterparts. The second component is simply zero in the minimal RS model.

Next, we give the explicit form of the solutions of the fermion profiles [186, 195] in the
bulk and outside of the support of the Higgs profile. There is an implicit bulk -mass de-

pendence encoded in the position of the profile on the diagonal matrix, e.g. C
Q(±)
n (t) =

diag
(
C
Q(±)
n (t, cQi)

)
and analogous for Q→ q and C → S. We will drop the label Q and the

index i for the purposes of most of the discussion, since they should be clear from the context.
One finds for t ∈ [ε, 1− η]

C(±)
n (t, c) = N (±)

n (c)

√
Lεt

π
f (±)+
n (t, c) ,

S(±)
n (t, c) = ±N (±)

n (c) sgn(φ)

√
Lεt

π
f (±)−
n (t, c) ,

(3.3.83)

where the overall “+” sign entering the Z2-odd profiles holds if c = cQ ≡ +MQ/k refers to the
bidoublet, while the “−” sign applies in the case of c = cq ≡ −Mq/k, with q = uc, dc, T1, T2.

The functions f
(±)±
n (t, c) are given by

f (+)±
n (t, c) = J− 1

2
−c(xnε) J∓ 1

2
+c(xnt)± J+ 1

2
+c(xnε) J± 1

2
−c(xnt) ,

f (−)±
n (t, c) = J+ 1

2
−c(xnε) J∓ 1

2
+c(xnt)∓ J− 1

2
+c(xnε) J± 1

2
−c(xnt) .

(3.3.84)

They satisfy the equalities

f (+)+
n (t, c) = f (−)−

n (t,−c) , f (+)−
n (t, c) = −f (−)+

n (t,−c) . (3.3.85)

The orthonormality relations (3.3.29) imply the normalization conditions

2

1∫

ε

dt t
[
f (a)±
n (t, c)

]2
=

1
[
N (a)
n (c)

]2 ±
f

(a)+
n (1, c) f

(a)−
n (1−, c)

xn
, (3.3.86)

where a = ±. From these relations, we derive the following expressions for the normalization

[
N (a)
n (c)

]−2
=
[
f (a)+
n (1, c)

]2
+
[
f (a)−
n (1−, c)

]2

− 2c

xn
f (a)+
n (1, c) f (a)−

n (1−, c)− ε2
([
f (a)+
n (ε, c)

]2
+
[
f (a)−
n (ε+, c)

]2
)
.

(3.3.87)

For the special cases where c+1/2 is an integer, the profiles must be obtained from the above
relations by a limiting procedure, where the definition of the Bessel Y -function can be used.

For the SM fermions, it is a very good approximation to expand the profiles in the limit
xn � 1, since even the top-quark mass is much lighter than the KK scale. We will refer
to such an expansion as the zero-mode approximation (ZMA). A detailed derivation of this
approximation starting from the full expressions (3.3.84) and (3.3.87) can be found in [226].
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We obtain

C(+)
n (φ) ≈

√
Lε

π
F (c) tc , S(+)

n (φ) ≈ ± sgn(φ)

√
Lε

π
xnF (c)

t1+c − ε1+2c t−c

1 + 2c
,

C(−)
n (φ) ≈ −

√
Lε

π
xnF (−c) t

1−c − ε1−2c tc

1− 2c
, S(−)

n (φ) ≈ ± sgn(φ)

√
Lε

π
F (−c) t−c ,

(3.3.88)

where we have introduced the zero-mode profile [186, 195]

F (c) ≡ sgn
[
cos(πc)

]√ 1 + 2c

1− ε1+2c
. (3.3.89)

The sign factor in (3.3.89) is chosen such that the signs in (3.3.88) agree with those derived
from the exact profiles (3.3.76). The quantity F (c) depends strongly on the value of c. One
obtains

F (c) ≈





−
√
−1− 2c ε−c−

1
2 , −3/2 < c < −1/2 ,

√
1 + 2c , −1/2 < c < 1/2 ,

(3.3.90)

which implies that for UV-localized fermions the corresponding zero-mode profile is exponen-
tially small, while it is of O(1) for IR-localized fields. The hierarchy in the values of F (c) is
central for the approach to hierarchical fermion masses and mixing in the RS model.

This is seen by the fermion mass matrix for the three lightest quarks in the ZMA, which
can be written with the effective Yukawa matrix

Y eff
q = F (cQ)YqF (cq) (3.3.91)

In the custodial model, the bulk mass matrix cT2 takes the role of cq. The matrix (3.3.91) is
diagonalized in RS similar to the SM with a singular value decomposition with two unitary
matrices U †qY eff

q Wq =
√

2 diag(mqi/v), where the first three components of the decomposi-

tion vectors
(
~aQ
)

1−3
/
√

2 form the columns of Uq and
(
~a q
)

1−3
/
√

2 of Wq. The hierarchical
structure of quark masses and mixing angles can be explained by the hierarchy in the profile
values. It is determined by the Cabibbo angle λ = sin(θc), since VCKM = U †uUd in the given
approximation. This fixes the ratios

∣∣∣∣
F (cQ1)

F (cQ2)

∣∣∣∣ ∼ λ ,
∣∣∣∣
F (cQ2)

F (cQ3)

∣∣∣∣ ∼ λ2 ,

∣∣∣∣
F (cQ1)

F (cQ3)

∣∣∣∣ ∼ λ3 , (3.3.92)

while the ratios of the singlet profiles involve chiral suppression factors ∼ mqi/mt and inverse
factors of λ. We refer to [1, 212, 226], where this has been formally derived in a Froggatt-
Nielsen [227] like analysis16 and very useful approximation formulas for the quark masses,
mixing, and phases of the CKM in terms of ratios of fundamental Yukawa matrices and
the profiles F (c) were given. The case of aligned singlet down-quark bulk masses, where all
down-quark hierarchies are generated in the doublet sector, has been worked out in [226].
Even though the combinations are involved and lengthy, they have a very practical value:
they are still much more efficient to evaluate, compared to the eigenvalue problem (3.3.43)

16The Froggatt-Nielsen factors εai+aj with ε� 1 and group-structure motivated charges ai are replaced by
powers of λ in the given context.
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that determines the exact spectrum and compared to the numerical integrations necessary to
obtain the exact CKM matrix. The approximate and the exact method allow for a two step
procedure to realize efficient, yet precise numerical scans over the parameter space, which we
describe closer below. Let us emphasize here that the RS model does not explain the size of
the CKM phase δ.

Finally, we remark that in the custodial model the profiles C
(+)
n (φ) and S

(−)
n (φ) are of

O(1), while C
(−)
n (φ) and S

(+)
n (φ) are of O(v/MKK) for zero modes. The fact that the twisted

profiles are non-vanishing parametrizes the admixture from fermions of twisted BCs due
to electroweak symmetry breaking. This implies an extra contribution, not present in the
minimal model, which allows to partially shield the ZbLb̄L and ZdiLd̄

j
L vertices from corrections

due to mixing of zero-mode quarks with their KK excitations. This setup does not influence
fermion masses and mixing angles at the level of the Froggatt-Nielsen analysis we described
above, but it has relevant effects in all corrections to gauge boson–fermion and Higgs boson–
fermion couplings.

3.3.7 Two Paths to 5d Propagators

The benefit of 5d propagators for the calculation of tree and loop amplitudes is twofold, so we
start in summarizing the main motivation and techniques for calculations in the 5d picture.

First of all, it turns out that the multiplicity of heavy KK particles from the infinite tower
of states can lead to tedious summations when working in the 4d decomposed version of the
theory. This is not a conceptual problem for tree-level processes. When we work in a scheme,
or a specific amplitude where the decoupling theorem [228] holds, the separation of KK levels
by mass spacings of order πMKK tells us that we can truncate the evaluation above a KK level
that fits our required precision. However, the use of a 5d propagator leads to compact, and
easily interpretable results [1] and can be just more convenient. Moreover, in the LRS model
we found that a high multiplicity of KK modes of the gluon gives a relevant contribution to
FCNC processes [229]. It arises from the UV region of the extra dimension and is therefore
strong for light fermions that need to be localized the stronger in the UV, the lower the volume
L is. The contributions to FCNCs can become very large for L . 10 for order anarchic, order
one Yukawa matrices. This effect is missed in the decomposed calculation with only a first
few gluon KK modes.

A consistent 5d framework becomes of even greater importance for the calculation of
processes that arise only at loop-level. Since the given framework is non-renormalizable,
naive sums over 4d convergent diagrams can in fact circumvent the decoupling theorem due
to their multiplicity and diverge or give UV dominated finite contributions as the superficial
degree of divergence increases in going from a 4d to a 5d theory. We will show an example for
of this effect in a process that involves an IR-brane Higgs boson in section 4.3.3. The correct
regularization of the Higgs localization and the properties of a sensible regularization scheme
will be important in this discussion. At this point, we have to comment on the current status
of topic. Large efforts have been taken to carry out the first full fledged 5d calculation by two
independent groups [230, 231] only very recently. These works are aimed at the contribution
of dipole operators to the anomalous magnetic moment of the muon aµ = (g − 2)/2 and the
flavor changing processes µ → eγ [230] and have also been applied to the process b → sγ
[232]. The processes all turn out to be finite in the RS model, despite the fact that a naive
logarithmic divergence would occur for a non-compact fifth dimension, so the calculations
are carried out without a 5d specific regularization of large 4d momenta. Unfortunately, as
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also recognized in [231], a precise regularization scheme, required to be able to calculate finite
renormalizations in the warped 5d background, has not yet been developed. In [103] a general
outline has been given on how to implement the 5d position dependent range of validity of
the EFT in terms of a cutoff of 4d momenta. As a general rule, the cut-off Λ(t) should be
close to the corresponding warped Planck scale so Λ(t = 1) = ΛIR & TeV.17

In the following, we derive certain limits of the 5d propagators in the mixed representation
using 4d momenta and bulk position coordinates. For the purpose of this work we only need
the limits of these propagators for zero momentum. This drastically simplifies the calculations.
We use these expressions in the presence of electroweak symmetry breaking. This resums mass
insertions, which would otherwise have to be treated as perturbation in the sense that the
effective action in the gauge symmetric phase ΓΦ and the broken phase Γh are schematically
related via

Γf1,...,fn
h (p1, . . . , pn) =

∑

k

vk
(√

2
)k
k!

Γf1,...,fn,Φk

Φ (p1, . . . , pn, 0, . . . , 0) . (3.3.93)

where the sum on the right-hand side goes over all configurations corresponding to gauge
invariant combinations of the external fields fj and Φ [52] and has to be approximated in
the ratio of v over a mass scale of the heavy particles. Since the Higgs profile needs to be
properly regularized in order to study tree-level Higgs-boson-exchange interactions and the
loop processes for Higgs production and decay, it is more convenient to calculate in the broken
phase. This also allows us to relate a 4d decomposed calculation of the latter processes in a
simple manner to the 5d propagator and study general properties of the UV, and brane Higgs
regularization.

Expressions for 5d propagators with the full momentum dependence and arbitrary spin,
but in the absence of electroweak symmetry breaking were first derived in [103]. These
expression were extended including brane kinetic terms of fermions in [233], and explicit
expression have also been summarized in [230, 231], again for the case without electroweak
symmetry breaking. In [210] the author derived the involved expression for 5d fermion and
gauge boson propagators with electroweak symmetry breaking in the minimal RS model but
without finite brane Higgs regularization. We derived the 5d fermion propagator for the
minimal RS model including a finite brane Higgs regularization η > 0 and zero momentum
in [2]. In the thesis at hand, we go further and extend the latter result to arbitrary fermion
embeddings.

3.3.7.1 Summation over KK Modes

In this section we consider the 5d propagator for gauge bosons in the generalized notation of
the custodial RS model

DV
µν(q, ξ; t, t′) =

∫
d4x eip·x 〈 0|T ~Vµ(x, t) ~V T

ν (0, t′) |0 〉

= DV⊥
µν (q; t, t′)

(
ηµν − pµpν

p2

)
+DV ‖

µν (q, ξ; t, t′)
pµpν

p2
.

(3.3.94)

17 The authors of [103] suggest a modification of the bulk length, which is implemented by a momentum
dependent position of the IR brane, i.e. t < ΛIR/q with 4d momentum q. They achieved to show logarithmic
running of non-abelian gauge coupling constants using this prescription. Another possibility would be the
removal of high momenta in the dual conformal field theory, which would cut off IR distances in the extra-
dimensional direction, i.e. . q < ΛIR/|t− t′|, or q < ΛIR min(t, t′)/max(t, t′).
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Remark that the gauge fixing condition as given by the Lagrangian (3.3.54) complicates the
approach via 5d EOMs. Even though the form of LGF is especially simple, it relies on the
possibility to decompose the scalar fifth components of the gauge bosons and the Goldstone
bosons in the same basis of KK modes. We refer to [210], where separate gauge fixing terms
on the IR brane and in the bulk are used, as it was suggested in [209]. Here, we only need the
propagator for tree-level diagrams, thus it is sufficient to go to unitary gauge. We demonstrate
the technique developed in [234] and used in [229] and [4], which relies on an expansion in q2

rDV,⊥
µν (q; t, t′) =

∑

n

(−i) ~χ
V
n (t) ~χVn (t)T

q2 −
(
mV
n

)2 =

∞∑

k=1

i q2(k−1)

M2k
KK

Σ
(k)
V (t, t′) , (3.3.95)

Σ
(k)
V (t, t′) ≡

∑

n

~χVn (t) ~χVn (t)T
(
xVn
)2k .

We obtain sums over gauge-boson profiles ~χVn (t) weighted by inverse powers of the normalized

KK mode masses
(
xan
)2

. The infinite sums can be calculated by first integrating the EOMs
(3.3.61) twice, accounting for the BCs on both the UV and IR brane. This yields

~χVn (t)

(xVn )2
= ~I Vn (t)−

(
t2 − ε2

)
XV

~I Vn (1) +
[
1−

(
t2 − ε2

)
XV

]
P(+)

~χVn (ε)
(
xVn
)2 , (3.3.96)

where we have defined

~I Vn (t) ≡
t∫

ε

dt′ t′
1−∫

t′

dt′′

t′′
~χVn (t′′) , XV ≡ X̃2DV ≡

LX2

2 + LX2 (1− ε2)
DV . (3.3.97)

Using the completeness relation (3.3.59), in t-notation

∑

n

1

t
~χVn (t) ~χVn (t′)T =

L

2π
δ(t− t′) 1 , (3.3.98)

for the gauge-boson profiles, it is then easy to prove that

∑

n

~I Vn (t) ~χVn (t′)T =
L

4π

(
t2< − ε2

)
1 , (3.3.99)

where t< ≡ min(t, t′). We insert (3.3.96) twice into (3.3.95) and use (3.3.99) several times to
arrive at

Σ
(1)
V (t, t′) =

L

4π

[(
t2< − ε2

)
1 +

(
t2 − ε2

)(
t′ 2 − ε2

)
XV

]

+
[

1−
(
t2 − ε2

)
XV

]
P(+) Σ

(1)
V (ε, ε)P(+)

[
1−

(
t′ 2 − ε2

)
XV

]T
.

(3.3.100)

This relation is exact to all orders in v2/M2
KK. With the help of the orthonormality relation

(3.3.58), the remaining sum over gauge profiles evaluated at the UV brane can be brought
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into the form

P(+) Σ
(1)
V (ε, ε)P(+) =

L

2π(xV0 )2

(
~χV0 (ε)

)
1

( 1∫

ε

dt

t

[(
1− c2

V X̃
2
(
t2 − ε2

)) (
~χV0 (t)

)
1

(3.3.101)

+ sV cV X̃
2
(
t2 − ε2

)(
~χV0 (t)

)
2

])−1

P(+) ,

=

(
1

2π(xV0 )2
+

1

4π

[
1− 1

2L
− ε2

(
L− 1

2L

)]
+O

(
xV0
)2
)
P(+) .

where
(
~χ a0 (t)

)
i

denotes the ith component of the corresponding zero-mode vector. In the last
line, we expanded in powers of v2/M2

KK by using (3.3.80) and (3.3.82). Keeping in mind that
X2 = (xV0 /cv)

2 +O(xV0 )4 and dropping phenomenologically irrelevant terms of second order
in ε ≈ 10−15, we finally arrive at

Σ
(1)
V (t, t′) =

L

4π

[
t2< 1−t2PV −t′ 2P T

V

]
+

[
1

2π(xV0 )2
+

1

4π

(
1− 1

2L

)]
P(+)+O

(
xV0
)2
, (3.3.102)

where we defined additionally

PV =

(
1 0
− sV
cV

0

)
. (3.3.103)

The method presented here can be iterated to derive the higher coefficients Σ
(k>1)
V . In [229]

we presented the sum for k = 2 in the minimal RS model.
It is also useful to have the corresponding analytic expression for the zero-mode contribu-

tion alone at hand. A straightforward application of (3.3.80) and (3.3.82) leads to

Π
(1)
V (t, t′) ≡ ~χV0 (t) ~χV T0 (t′)

(xV0 )2
= − L

4π

[
PV t

2 + P T
V t
′ 2
]

(3.3.104)

+

[
1

2π(xV0 )2
+

1

4π

(
1− 1

L
+ t2

(1

2
− ln(t)

)
+ t′ 2

(1

2
− ln(t′)

))]
P(+) +O

(
xV0
)2
.

Comparing (3.3.102) to (3.3.104) we see that all terms enhanced by the factor L ≈ 34 in

Σ
(1)
V (t, t′), apart from the non-factorizable term proportional to t2<, arise from the zero-mode

contribution ΠV (t, t′). Factorizable contributions due to the SM-like ground-state W and Z
bosons are therefore enhanced by the logarithm of the warp factor with respect to contri-
butions from the tower of KK excitations [1]. We recall that the t2< dependence reflects the
full 5d structure of the RS model, which is lost when one considers only a few low-lying KK
modes. Then, the term indeed factorizes but the approximation can break down for very low
values of L used in LRS models [229].

The analytic results presented here allow for a clear understanding of the cancellation of
certain terms in FCNC interactions. In particular, the exact form of the matrix PV and its
interplay with the terms proportional to the 2 × 2 unit matrix are key ingredients for the
custodial protection of the flavor-conserving ZbLb̄L coupling as well as of the flavor-violating
ZdiLd̄

j
L vertices. We will return to this aspect in section 3.3.8.2.

The results for the minimal model are already contained in the upper left entries of
(3.3.102) and (3.3.104). The same applies to the KK sums of massless gauge bosons, i.e. the
photon and gluon, since they do not participate in electroweak symmetry breaking. For that
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case we should consider only the sums over higher KK modes. They can be readily extracted
from the following difference

(
Σ

(1)
V (t, t′)

)
11
−
(
Π

(1)
V (t, t′)

)
11

=
1

4π

[
L t2< − t2

(1

2
− ln t

)
− t′ 2

(1

2
− ln t′

)
+

1

2L

]
. (3.3.105)

Remark that in this expressions the terms proportional to t2 and t′2 are not enhanced by L

like it is the case for Σ
(1)
V (t, t′). We anticipate that couplings of the 5d propagator to external

fermion currents are both additionally suppressed by the RS-GIM mechanism and potentially
flavor violating exactly for the terms that show non-trivial t-dependence. The t2< term is
therefore responsible for ∆F = 2 FCNC processes whereas the t2 and t′ 2 terms generate
contributions to ∆F = 1 FCNCs.

3.3.7.2 Solution to the 5d EOMs

We study the propagator functions of fermions built by using spinors in the compact notation
defined in (3.3.27)

Qσ(t, x) =
∑

n

Q(n)
σ (t) q(n)

σ (x) =

√
2πr

Lε

(
ε

t

)2( ~Qσ(x, t)
~qσ(x, t)

)
. (3.3.106)

The grand propagator in the mixed momentum/position representation [233, 235] is given by

iSq(t, t′; p) =

∫
d4x eip·x 〈 0|T

(
QL(t, x) +QR(t, x)

)(
Q̄L(t′, 0) + Q̄R(t′, 0)

)
|0 〉 (3.3.107)

=
∑

n

[
Q(n)
L (t)

1− γ5

2
+Q(n)

R (t)
1 + γ5

2

]
i

/p−mq
n

[
Q(n)†
L (t′)

1 + γ5

2
+Q(n)†

R (t′)
1− γ5

2

]
,

where we wrote the propagator in the second line in terms of the KK modes and canonical 4d
propagators. The matrix Sq(t, t′; p) describes mixing of chiralities and singlet doublet mixing
during propagation. Using the generalized mass matrix defined in (3.3.33) the Dirac operator
and equation take the form

D = /p−MKK

(
γ5 ∂t −Mq(t)

)
, DSq(t, t′; p) = δ(t− t′) . (3.3.108)

Remark that we will use matrix notation to indicate the doublet and singlet components and
denote chiralities via projectors separately. This is in contrast to most of the literature where
propagators are derived in the absence of electroweak symmetry breaking, and where the
EOM of doublet and singlet components can be treated separately. Like in the case of gauge
bosons, equations (3.3.107) and (3.3.108) suggest two ways to derive the full expression. We
can either resum the second line of (3.3.107) using the completeness relations (3.3.30), EOMs
(3.3.32) and derived result (3.3.84) for the decomposed fermion profiles, or we can directly
solve the 5d EOM (3.3.108). While both methods are applicable for gauge boson propagators
at low momenta, the direct solution turns out to be much more feasible in the case of fermions.
The usefulness of (3.3.107) is therefore not in the retrieval of a direct solution but rather in
the derivation of a sum-rule for 4d fermion triangle diagrams [236] that relates them to a part
of the 5d propagator. We will present and examine the validity of this method in section 4.3.3.
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With our exact treatment of Yukawa interactions, there are no massless zero modes of the
fermion fields and the propagator does not exhibit a singularity at p2 = 0. We can therefore
study the limit pµ → 0 without complications. We obtain

Sq(t, t′; 0) = −
[
∆q
RL(t, t′)

1 + γ5

2
+ ∆q

LR(t, t′)
1− γ5

2

]
, (3.3.109)

where

∆q
RL(t, t′) =

∑

n

1

mqn

Q(n)
R (t)Q†(n)

L (t′) , ∆q
LR(t, t′) = ∆q †

RL(t′, t) . (3.3.110)

The Dirac equation (3.3.108) for the 5d propagator implies the differential equation
[
∂t +Mq(t)

]
∆q
RL(t, t′) =

1

MKK
δ(t− t′) , (3.3.111)

We will construct solutions to this equation assuming first that t 6= t′, distinguishing the cases
where t > t′ and t < t′. In general, for t 6= t′ a solution is given by the t-ordered exponential.

∆q
RL(t, t′)

∣∣
t>t′

= T exp


−

t∫

1

dsMq(s)


 ∆q

RL(1, t′) , (3.3.112)

The time ordering symbol is required since the matrices

t∫

1

dsMq(s) = ln(t)

(
c ~Q 0

0 −c~q

)
− v√

2MKK

θ̄η(t− 1)

(
0 Y~q
Y †~q 0

)
, (3.3.113)

do not commute at different t values. To solve the equation, we split into the regions t > 1−η
or t < 1 − η, and analogous for t′, such that either the Yukawa interactions are absent or
dominant, respectively. The most general solution to (3.3.111) is then given by

∆q
RL(t, t′) =





t− diag(c~Q,−c~q)
[
θ(t− t′)A(t′) + θ(t′ − t)B(t′)

]
, t < 1− η(

Cq(t) y~q S~q(t)

y†~q S~q(t) C~q(t)

)
[
θ(t− t′)α(t′) + θ(t′ − t)β(t′)

]
, t > 1− η (3.3.114)

=





[
θ(t− t′)Ã(t′) + θ(t′ − t)B̃(t′)

]
t′ diag(c~Q,−c~q) , t′ < 1− η(

C~q(t′) −y~q S~q(t
′)

−y†~q S~q(t
′) C~q(t′)

)
[
θ(t− t′)α̃(t′) + θ(t′ − t)β̃(t′)

]
, t′ > 1− η ,

where used abbreviations for the hyperbolic functions, and the combination of Yukawa ma-
trices known from (3.3.40) and (3.3.41), as

C~q(t) = cosh

(
θ̄η(t− 1)X~q

)
, C~q(t) = C~q(t)

∣∣
y~q↔y†~q

S~q(t) = X−1
~q sinh

(
θ̄η(t− 1)X~q

)
, S~q(t) = S~q(t)

∣∣
y~q↔y†~q

y~q =
v√

2MKK

Y~q , X~q =
√
y~q y

†
~q .

(3.3.115)
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Note that the following identities hold:

y~q Cq(t) = Cq(t)y~q , y†~q Cq(t) = Cq(t)y†~q . (3.3.116)

Up to this point the discussion is valid for any fermion embedding. We illustrate the general
procedure to arrive at a solution first for the minimal RS model where the BCs are simpler
and generalize the result subsequently.

In the following, we determine the coefficient functions in (3.3.114). First, we use the cusp
condition that follows from the integration of (3.3.111)

lim
δ→0

[
∆q
RL(t+ δ, t′)−∆q

RL(t− δ, t′)
]

=
1

MKK
. (3.3.117)

Furthermore, we apply the BCs on the UV and IR branes. Since we have regularized the
Higgs profile, they take the simple form

(
13 03

)
∆q
RL(t, t′) =

(
03 03

)
, if t ∈ {ε, 1} . (3.3.118)

This follows, since the Z2-odd profile functions S
(Q,q)
n (t), which sit in the upper components of

the right-handed spinors in (3.3.27), vanish on the branes. For a general fermion embedding,
which we discussed below, the projection matrix in (3.3.118) has to be generalized. In total,
we have three equations, and analogous equations with reversed arguments t and t′. They
determine the matrix function ∆q

RL(t, t′) to be of the form

∆q
RL(t, t′) = 1

MKK





(
(t′/t)cQθ(t−t′) 0

tcq aq t
′ cQ −(t/t′)cq θ(t′−t)

)
, t, t′ < 1− η

(
Sq(t)yq bq t′ cQ 0

Cq(t) bq t′ cQ 0

)
, t > 1− η > t′

(
0 0

tcq dq Cq(t′) −tcq dq Sq(t′)yq

)
, t < 1− η < t′

( −κq(t,t′)+Sq(t)yq eq Cq(t′) Sq(t>)Cq(t<)yq−yq Sq(t) eq Sq(t′)yq
−y†q Cq(t>)Sq(t<)+Cq(t) eq Cq(t′) κq(t′,t)−Cq(t) eq yq Sq(t′)

)
, else

κq(t, t
′) = Cq(t)Cq(t′)θ(t′ − t)− yqy†q Sq(t)Sq(t

′)θ(t− t′) . (3.3.119)

The coefficients aq, bq, dq, eq are still general 3 × 3 matrices in generation space, to be
determined by continuity at t = 1 − η or t′ = 1 − η. In the minimal RS model, it is easy to
see that

aq = eq = bq C(1− η) = bq cosh(Xq) ,

bq = dq = y−1
q S(1− η)−1 = y−1

q Xq sinh−1(Xq) .
(3.3.120)

For the analysis of Higgs boson production and decays, we will see in section 4.3.3 that the
off-diagonal blocks of the propagator at p = 0 and t, t′ > 1− η are important. Therefore, we
summarize their final form again explicitly

∆q
RL(t > 1− η, t′ > 1− η) (3.3.121)

=




. . .

[
sinh

(
θ̄η(t> − 1)Xq

)
cosh

(
θ̄η(t< − 1)Xq

)

− sinh
(
θ̄η(t> − 1)Xq

)
sinh

(
θ̄η(t< − 1)Xq

)
coth

(
Xq

)]
Xq

(
v√
2
Y †q
)−1

(
v√
2
Yq

)−1
Xq

[
− cosh

(
θ̄η(t> − 1)Xq

)
sinh

(
θ̄η(t< − 1)Xq

)

+ cosh
(
θ̄η(t> − 1)Xq

)
cosh

(
θ̄η(t< − 1)Xq

)
coth

(
Xq

)]
. . .



.
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In the following, we generalize the last result by including general 5d fermions with mixed
BCs. As explained in section 3.3.5.2, superscripts (+) and (−) indicate Neumann or Dirichlet
BC on the UV brane respectively and even and odd parity is assigned to the two different
chirality projections. We parametrize the number of light fermion generations that emerge

of type Q
(+)
L and q

(+)
R with n+

Q = n+
q = nf , and the number of additional partner fermions

Q
′ (−)
L and q

′ (−)
R as n−Q and n−q respectively. We also set nQ,q = nf + n−Q,q and the number of

KK modes per KK level nF = nQ + nq. The additional bulk-mass parameters compared to
the minimal model are called c−Q,q. Remark that Y~q is a complex nQ × nq matrix which we
decompose into its sub-matrices according to the BCs of the fermions, i.e.

y~q =
xv√

2
Y~q =

(
y(++)
q y(+−)

q

y(−+)
q y(−−)

q

)
∈ CnQ×nq . (3.3.122)

The (+,+) sub-block is always of size nf × nf . We start with the general form (3.3.114), use
the cusp condition (3.3.117) and implement the generalized BCs

(
1nQ 0nQ×nq

)
∆RL(1, t′) = 0nQ×nF , ∆RL(t, 1)

(
0nQ×nq

1nq

)
= 0nF×nq , (3.3.123)

(
1nf 0 0nf 0

0 0n−q ×n−Q
0 1n−q

)
∆RL(ε, t′) = 0nq×nF , ∆RL(t, ε)




0nf 0

0 1n−Q
1nf 0

0 0n−q ×n−Q


 = 0nF×nQ .

The general solution reads

∆q
RL(t, t′) =

1

MKK
× (3.3.124)

×








(
t′

t

)cQθ(t− t′) 0 0 0

t−c
−
Q aq11 t

′ cQ −
(
t′

t

)c−Qθ(t′ − t) 0 t−c
−
Q aq12 t

′ −c−q

tcq aq21 t
′ cQ 0 −

(
t
t′

)cqθ(t′ − t) tcq aq22 t
′ −c−q

0 0 0
(
t′

t

)c−q θ(t− t′)



, t, t′ < 1− η

(
Sq(t)y~q bq1 t

′ cQ 0nQ×nQ Sq(t)y~q bq2 t
′ −c−q

Cq(t) bq1 t′ cQ 0nq×nQ Cq(t) bq2 t′ −c
−
q

)
, t > 1− η > t′




0nf×nQ 0nf×nq
t−c

−
Q dq1 Cq(t′) −t′ −c

−
Q dq1 Sq(t

′)yq
tcq dq2 Cq(t′) −tcq dq2 Sq(t

′)yq
0n−q ×nQ 0n−q ×nq



, t < 1− η < t′

(
−κq(t, t′) Sq(t>)Cq(t<)y~q

−y†~q Cq(t>)Sq(t<) κq(t
′, t)

)
+

(
y~q Sq(t)

Cq(t)

)
eq

(
Cq(t′) − Sq(t

′)y~q
)
, else
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Again we derive the coefficient matrices by continuity at 1− η and obtain

aq =

(
aq11 aq12

aq21 aq22

)
=

(
−C(+−)

q ys(++)
q

−C(−−)
q ys(−+)

q

)−1
(
C(++)
q −ys(+−)

q

C(+−) †
q −ys(−−)

q

)
,

bq =
(
bq1 bq2

)
=

(
ys(++)
q ys(+−)

q

C(+−) †
q C(++)

q

)−1

,

dq =

(
dq1
dq2

)
=

(
−C(+−) †

q ys(++)
q

−C(−−)
q ys(−+)

q

)−1

,

eq =

(
ys(++)
q ys(+−)

q

C(+−) †
q C(−−)

q

)−1(
C(++)
q C(+−)

q

ys(+−) †
q ys(−−) †

q

)
,

(3.3.125)

where we set

Sq(1− η)y~q =

(
ys(++)
q ys(+−)

q

ys(−+)
q ys(−−)

q

)
, Cq(1− η) =

(
C(++)
q C(+−)

q

C(+−) †
q C(−−)

q

)
. (3.3.126)

The result (3.3.125) with the submatrices inserted is very lengthy, even when expanded to
second order in v/MKK using the sub-block notation of (3.3.122). We will see in the analysis
of Higgs boson production and decays in section 4.3.3 that the matrix eq is of special interest.
We will only give the expansion in v/MKK for the specific result in that analysis, as it turns
out to be simple and illuminating.

The structure of the Yukawa matrices for the given custodial embedding of section 3.3.5.2,
which involves only two 3× 3 matrices Yu,d, results in simple expressions for the propagator.

By working out the matrix exponentials of y~qy
†
~q and y†~qy~q for the Yukawa matrices (3.3.69)

of the three sectors of equal charge, we obtain

eu =




1
2y
−1
u s

−1
2u

(
c2u + c−1

2d

)
1
2y
−1
u s

−1
2u

(
c2u − c−1

2d

)

1√
2
y†d s2d c

−1
2d − 1√

2
y†d s2d c

−1
2d

1√
2
y†d s2d c

−1
2d − 1√

2
y†d s2d c

−1
2d


 ,

ed =

(
y−1
d s

−1
2d

(
1
2c2d + 1

)

y−1
d s

−1
2d

(
1
2c2d − 1

)
)
, eλ =

(
y†d s2d c

−1
2d

y†d s2d c
−1
2d

)
.

(3.3.127)

Here, we observe that the larger representations of the custodial compared to the minimal
fermion embedding imply the general feature that the arguments in the involved trigonometric
functions are rescaled by a factor of

√
2. We included this in the abbreviations

c2q = cosh
(√

2Xq

)
, s2q = sinh

(√
2Xq

)(√
2Xq

)−1
. (3.3.128)

The remaining coefficients are now straightforward to work out explicitly. We end the dis-
cussion of propagators and move on to examine the relevant coupling structure of the model.
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3.3.8 Complete Coupling Structure

In contrast to the discussion of renormalizable, or partly renormalizable models presented
above, RS models have a conceptually different coupling structure. First of all, the models
are of course non-renormalizable and therefore loop-order calculations are not expected to be
constrained in their general coupling structure. One has to check process by process if non-UV
sensitive statements can be made. Below, we will show the fortunate example of loop processes
for Higgs physics where this is the case. For this purpose, we need a good understanding of
Higgs–fermion couplings, for which we give the relevant results here. Concerning electroweak
precision tests and constraints from FCNC, statements can be made due to the fact that the
most relevant processes are influenced already at tree-level. In the following, we will give
all relevant couplings for the case of a minimal as well as the custodial RS model and use a
notation that facilitates comparison between them.

3.3.8.1 Higgs–Fermion Couplings

For the derivation of Higgs-boson couplings to fermion currents, we have to compute overlap
integrals of fermion profiles with the δ-profile function of the IR localized Higgs boson. The
coupling is therefore given by

gRhq̄mqn =
1√
2

1∫

ε

dt δη(t− 1)Q†(m)
L (t)

(
0 Y~q
Y †~q 0

)
Q(n)
R (t) . (3.3.129)

The correct procedure is to start from a regularized Higgs profile, insert the profile form
(3.3.40), compute the relevant overlap integrals, and then take η to zero [207].

lim
η→0

gRhq̄mqn =

√
2π

Lε

1∫

ε

dt δη(t− 1)~aQ†m CQ
m(1− η)

1

cosh2X~q

×
[

cosh2
(
θ̄η(t− 1)X~q

)
− sinh2

(
θ̄η(t− 1)X~q

) ]
Y~qC

q
n(1− η)~aqn

=

√
2π

Lε
~aQ†m CQ

m(1−)
1

cosh2X~q

Y~qC
q
n(1−)~aqn .

(3.3.130)

In this equation there is of course the implicit assumption that the fermion mass xqn is fixed,
while the limit on η is performed. It is useful to consider the expression also for finite η and
very large KK masses. One can derive that the form of the couplings changes drastically in
the region xqn ≈Mweak/η. We illustrate this behavior in a simple toy model with one fermion
generation and vanishing bulk masses in appendix A.3. Here, we only summarize that the
qualitative difference in the case of one generation is that inside a given KK level the two KK
fermions of that level show a diagonal Higgs-boson coupling of opposite sign if xqn �Mweak/η.
Close to the threshold Mweak/η, one of the couplings vanishes approximately, while the other
stays finite.

Remark that (3.3.130) involves a combination of Yukawa matrices that is different from
Ỹ~q defined in (3.3.41), which determines the spectrum. This has relevant consequences for the
flavor off-diagonal transitions, which receive a contribution that is not chirally suppressed,
i.e. not proportional to one of the external quark masses.
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For a clear separation of effects, it is also useful to rewrite the Higgs–fermion couplings
(3.3.130) in the form of a leading SM-like contribution and correction terms

lim
η→0

gRhq̄mqn ≡ δmn
mq
m

v
− (∆gqh)mn ,

(∆gqh)mn =
mq
m

v
(Φq)mn + (ΦQ)mn

mq
n

v
+ (∆g̃qh)mn .

(3.3.131)

We split the correction terms into the chirally suppressed terms, whose coefficients Φq,Q are
given by

(Φq,Q)mn =
2π

Lε

1∫

ε

dt~aQ,q†m SQ,qm (t)SQ,qn (t)~aQ,qn (3.3.132)

In [1], we have shown that these quantities, which parametrize the non-orthogonality of
fermion modes, are given by

(Φq,Q)mn = δmn ∓
2

r

mq
mC

(Q,q)
m (π)S

(Q,q)
n (π−)−mq

nC
(Q,q)
n (π)S

(Q,q)
m (π−)

(mq
m)2 − (mq

n)2
. (3.3.133)

The additional chiral suppression for light quarks, which we mentioned above, becomes obvi-
ous in the ZMA. We will give the expression for both the minimal and the custodial model
in a common notation that facilitates the comparison. For the custodial model, we make

use of O(v2/M2
KK) expressions for the eigenvectors of the twisted fermions ~aD

′,u′,U ′,U
n . First

note that these eigenvectors contribute to the normalization of the combined vectors ~aQ,qn

as explained in (3.3.31), so it is expected that there are relations between the three-block
sub-components of the combined vectors. We find that in the ZMA

aD
′

n = xqn F
−1(cT2)F−1(−cT1) aDn , au

′
n = xqn F

−1(−cQ)F−1(cQ) aun , (3.3.134)

aU
′

n = F (−cT2)F−1(−cT1) aUn , aUn =
xqn√

2
F−1(−cT2)Y †d

(
Y †u
)−1

F−1(cuc) a
uc

n .

With these relation it is straightforward to show that

Φq = xqU
†
q diag

[
1

1− 2 cQi

(
1

F 2(cQi)

[
1 + ωqih

]
− 1 +

F 2(cQi)

3 + 2 cQi

)]
Uq xq , (3.3.135)

ΦQ = xqW
†
q

(
diag

[
1

1− 2 cqi

(
1

F 2(cqi)

[
1 + ωQih

]
− 1 +

F 2(cqi)

3 + 2 cqi

)]
+ ω̃Qih

)
Wq xq ,

with xu = diag(mu,mc,mt)/MKK. Uq and Wq are the left- and right-handed rotation ma-
trices diagonalizing the effective Yukawa couplings. As described in section 3.3.6 the vectors
aQn /
√

2 and aqn/
√

2 form the columns of these matrices. The correction terms ωQi,qih are all
zero in the minimal model. Their purpose is to summarize the non-universal changes in going
to the custodial embedding, which are given by

cdi → cT2i , ωdih = ωUih = ω̃Dih = 0 , ωuih =
1− 2 cQi
F 2(−cQi)

, ωDih =
1− 2 cT2i
F 2(−cT1i)

,

ω̃Uih =
1

2
F−1(cuci )Y

−1
u Yd

(
F−2(−cT2i) + F−2(−cT1i)

)
Y †d
[
Y †u
]−1

F−1(cuci ) .

(3.3.136)
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The correction terms involve the zero-mode profiles F (−cT1i), F (−cT2i), and F (−cQi), which

arise from the admixture of the S
T1(−)
n (t), S

T2(−)
n (t), and S

Q(−)
n (t) profiles in the corresponding

zero-mode profile. In each case, the suppression by v/MKK due to the admixture is offset
by the O(MKK/v) enhancement of the Z2-odd (−) profile relative to its (+) counterpart.
For cQi < 1/2, the leading contribution in Φu is thus numerically enhanced by a factor of

approximately 2 with respect to the minimal model. If the ZdiLd̄
j
L vertices are protected from

fermion mixing by cT1 = cT2 and cT2i < 1/2, then the same holds true for ΦD. Depending on
the structure of the Yukawa matrices and bulk masses, also an enhancement in ΦU is possible.

The second type of corrections to the Higgs–fermion couplings (3.3.131) is given by

∆g̃qh = −
√

2
2π

Lε

1∫

ε

dt δ(t− 1)
(
~a q †m S q

m(t)Y †~q S
Q
n (t)~aQn

)
mn

=

√
2v2

3M2
KK

π

Lε

(
~aQ †m CQ

m(1−) Ỹ~q Ȳ
†
~q Ỹ~q C

q
n(1−)~a qn

)
mn

,

(3.3.137)

with

Ȳ †~q ≡ Ỹ
†
~q

3

2

[
X̃−2
q + atanh

(
X̃q

)
X̃−1
q

(
1− X̃−2

q

)]
. (3.3.138)

The result in the ZMA becomes simply

∆g̃qh =
v2

3
√

2M2
KK

U †q F (cQi)Yq Y
†
q Yq F (cqi)Wq ·

{
1 , minimal RS,

2 , custodial RS.
(3.3.139)

Notice that this kind of correction is not parametrically suppressed by light quark masses
for the first two up and all down type generations. The chirally unsuppressed contributions
∆g̃d,uh arise from the Z2-odd Yukawa couplings, and present the dominant sources of flavor
violation in the Higgs sector [207]. They are potentially comparable to Z boson mediated

FCNCs. Compared to the minimal RS model, the corrections ∆g̃d,uh are again bigger by a
factor of 2 in the extended scenario.

Note that for the diagonal entries we can write the ZMA result (3.3.139) also as

(∆g̃qh)nn =
4m2

t

3vM2
KK

3∑

j=1

mq
j

(
U †q F

−2(cQ)Uu

)
jn

(
W †

u F
−2(cq)Wu

)
nj
·
{

1
2

}
. (3.3.140)

The term with j = n is obviously positive semi-definite. Since terms with j = 1, 2 have a
chiral suppression compared to the term with j = 3, we find that (∆g̃uh)33 is real and positive
to a good approximation, while the phase of all other entries of (∆g̃uh)nn can take in principle
any value. Since also (∆ΦQ,q)nn are absolute squares, we conclude with the important result
that htt̄ and hbb̄ couplings are predicted to be suppressed relative to their SM values in all RS
models discussed here. A similar conclusion has been drawn in the context of models where
the Higgs arises as a pseudo Nambu-Goldstone boson [236, 237].

Let us finally mention that a model-independent analysis of the flavor misalignment of the
SM fermion masses and the Yukawa couplings has been presented in [238]. There, it has been
shown that at the level of dimension six, chirally unsuppressed contributions to flavor-changing
Higgs boson vertices will generically arise from dimension 6 operators like q̄ iL Φ qjR (Φ†Φ) in
models where the Higgs boson is a bound state of a new strongly interacting theory. If
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present, the latter terms will dominate over the chirally suppressed contributions originating
from operators of the form q̄ iL /Dq

j
L (Φ†Φ). This is due to the possibly large couplings yq∗ of the

composite Higgs boson to the other strongly interacting states, which results in y2
q∗/(16π2)�

mq/v. Considering all relevant dimension-six operators in the given RS models to lowest
order of the mass insertion approximation, allows to recover the ZMA results (3.3.135) and
(3.3.139) quantifying the misalignment between the Yukawa couplings and the zero-mode
masses (see [207] for a illuminating discussion). We emphasize that our exact solution given
above resums all new-physics effects induced by the mass insertions, corresponding to both
the non-derivative and derivative dimension-six operators. The interplay of both in fact leads
to the chirally unsuppressed terms in (3.3.131).

3.3.8.2 Gauge-Boson–Fermion Couplings

We turn to the phenomenologically relevant expressions for weak gauge interactions of quark
currents and identify the RS contribution at order v2/M2

KK. For the Z-boson couplings to
quarks, we extract a universal prefactor and write the couplings in (infinite-dimensional)
matrix form as

gσZq̄mqn =
g

cw

[
1 +

M2
Z

4M2
KK

(
1− 1

L

)](
gqZ,σ

)
mn

, (3.3.141)

with

gqZ,L =
(
T 3 qL
L − s2

wQq
)[

1− M2
Z

2M2
KK

(
ωqLZ L∆Q −∆′Q

)]
− δQ +

M2
Z

2M2
KK

(
L εQ − ε′Q

)
,

gqZ,R = −s2
wQq

[
1− M2

Z

2M2
KK

(
ωqRZ L∆q −∆′q

)]
+ δq −

M2
Z

2M2
KK

(
L εq − ε′q

)
. (3.3.142)

The charges are either SM-like for the minimal RS model, or as summarized in table 3.4 for
the custodial RS model. For the latter, we define T 3 qL

σ for σ = L,R as the quantum numbers
of the quark in the uppermost component of ~Q and T 3 qR

σ via the uppermost component of ~q
in the notation of (3.3.23). Like in the case of Higgs-fermion couplings there is an embedding
dependent factor in the leading contribution, which comes linear in L ≈ 34. Analogous to
before, we encode this in a factor ωqZ . However, here the factor is universal for all generations.
It is given by ωqZ in the minimal RS model and for a general LR-symmetric embedding as

ωqZ = 1− sZ
cZ

gZ′ Q
q
Z ′

gZ Q
q
Z

=
c2
w

2g2
L

(g2
L + g2

R)(T 3 q
L + T 3 q

R ) + (g2
L − g2

R)(T 3 q
L − T

3 q
R )

T 3 q
L − s2

wQq
. (3.3.143)

This allows one to read off that the two possible choices

PC symmetry: T 3 q
L = T 3 q

R = 0 ,

PLR symmetry: gL = gR , T 3 q
L = −T 3 q

R ,
(3.3.144)

are suitable to protect the Z-boson vertices from receiving L-enhanced corrections. Since the
custodial representation (3.3.66) features T 3 dL

L = −T 3 dL
R , T 3λL

L = −T 3λL
R and T 3uR

L,R = 0, we

observe that the ZdiLd̄
j
L, ZλiLλ̄

j
L, and ZuiRū

j
R vertices are protected to leading order in L by

the PLR and PC symmetries, respectively. On the other hand, the L-enhanced corrections
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of the vertices with opposite fermion chiralities are raised by ωdRZ ≈ 10.0, ωλRZ ≈ 2.0, and
ωuLZ ≈ 2.2.

In (3.3.142), we have furthermore split the corrections to the Z-boson couplings into

leading contributions, denoted by ∆
(′)
Q,q, and subleading ones, parametrized by ε

(′)
Q,q. The

elements of the leading contributions are defined as

{(
∆Q

)
mn(

∆′Q
)
mn

}
=

2π

Lε

1∫

ε

dt

{
t2

t2
(

1
2 − ln(t)

)
} [

~aQ†m CQ
m(t)CQ

n (t)~aQn + ~a q†m S
q
m(t)Sqn(t)~a qn

]
,

(3.3.145)

and the same formulas with Q↔ q. In the minimal model, the subleading contributions ε
(′)
Q,q

are obtained from the same equations without the contribution from the even profiles CQ,q
m .

Furthermore, the matrices δQ,q, which arise from of the non-orthonormality of the quark pro-
files and describe mixings between the different multiplets, are given by the same expressions
ΦQ,q that were defined in (3.3.132). They inherently contain a O(v2/M2

KK) suppression and
are formally of the same order as the ∆Q,q, for which this suppression is factored out in
(3.3.142). Employing the ZMA and neglecting O(1) factors, one can show that all the leading

quantities (∆
(′)
Q,q)ij and (δQ,q)ij have an inherent suppression with two factors of the profile

brane values F (cQi,qi)F (cQj ,qj ) of the corresponding fermions [1]. Light mass values and the
smallness of non-standard contributions to gauge-boson couplings are therefore correlated.
This is the RS-GIM mechanism [201, 202]. In the custodial model, the general order of mag-
nitude of the expressions is unchanged, however the expression become more involved. We
summarize

• minimal :

ε
(′)
Q,q = T 3 q

L ∆
(′)
Q,q

∣∣
CQ,qn →0

, δQ,q = T 3 q
L ΦQ,q . (3.3.146)

• custodial :

{(
εQ
)
mn(

ε′Q
)
mn

}
=

2π

Lε

1∫

ε

dt

{
c2
wt

2

t2
(

1
2 − ln(t)

)
}
× (3.3.147)

×
[
~aQ†m CQ

m(t)
(
T 3 qL
L 1− T 3Q

L +
{
t2W
0

}(
T 3 qL
R 1− T 3Q

R

))
CQ
n (t)~aQn

+ ~a q†m S
q
m(t)

(
T 3 qL
L 1− T 3 q

L +
{
t2W
0

}(
T 3 qL
R 1− T 3 q

R

))
Sqn(t)~a qn

]
,

{(
εq
)
mn(

ε′q
)
mn

}
=

2π

Lε

1∫

ε

dt

{
c2
wt

2

t2
(

1
2 − ln(t)

)
}
×

×
[
~a q†m C

q
m(t)

(
T 3 q
L −

{
t2W
0

} (
T 3 qR
R 1− T 3 q

R

))
Cq
n(t)~a qn

+ ~aQ†m SQm(t)
(
T 3Q
L −

{
t2W
0

} (
T 3 qR
R 1− T 3Q

R

))
SQn (t)~aQn

]
,

(
δQ
)
mn

=
2π

Lε

1∫

ε

dt
[
~aQ†m CQ

m(t)
(
T 3 qL
L 1− T 3Q

L

)
CQ
n (t)~aQn (3.3.148)

+ ~a q†m S
q
m(t)

(
T 3 qL
L 1− T 3 q

L

)
Sqn(t)~a qn

]
,
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(
δq
)
mn

=
2π

Lε

1∫

ε

dt
[
~a q†m C

q
m(t)T 3 q

L Cq
n(t)~a qn + ~aQ†m SQm(t)T 3Q

L S Q
n (t)~aQn

]
.

In the expressions above, we abbreviated the diagonal charge matrices as T 3Q,q
σ=L,R :

T 3U
σ = diag

(
T 3u
σ 1nf , T

3u′
σ 1nf

)
, T 3u

σ = diag
(
T 3uc

σ 1nf , T
3U ′
σ 1nf , T

3U
σ 1nf

)
,

T 3D
σ = T 3 d

σ 1nf , T 3 d
σ = diag

(
T 3D
σ 1nf , T

3D′
σ 1nf

)
, (3.3.149)

T 3 Λ
σ = T 3λ

σ 1nf , T 3λ
σ = diag

(
T 3 Λ′
σ 1nf , T

3 Λ
σ 1nf

)
.

Note that with the embedding (3.3.66), the matrices T 3u
σ vanish identically. ZMA results

have been given in [1] and [4] and we do not repeat them here, except for one case below.
The second ingredient for the protection of the ZbiLb̄

j
L vertex in the custodial model can

now be derived from (3.3.148). Inserting quantum numbers we see that18

δD = −1

2

2π

Lε

1∫

ε

dt
(
aD†m ST2(+)

m (t)ST2(+)
n (t) aDn − aD

′†
m ST1(−)

m (t)ST1(−)
n (t) aD

′
n

)
mn

= −1

2
xdW

†
d diag

[
1

1− 2cT2i

(
1

F 2(cT2i)

[
1− ωqih

]
− 1 +

F 2(cT2i)
3 + 2cT2i

)]
Wd xd ,

(3.3.150)

where the second line in the approximation in the ZMA. The quantity ωqih has been defined in
(3.3.136). In fact it enters ΦD in (3.3.135) with the opposite sign. The rest of the expression
is unchanged compared to (3.3.150). We have seen there that ωqih is one to a very good
approximation if cT1i = cT2i < 1/2. The equality of bulk masses is of course enforced by the
PLR symmetry acting on the down-type quarks as PLR(D′) = D. In consequence, effects due
to quark mixing entering the Z-boson couplings are generically suppressed in the custodial
RS model relative to the minimal scenario as long as the Z2-odd quark fields are not too far
localized in the UV. It remains a viable option to break this symmetry softly by choosing
different bulk masses, since the zero mode masses are not affected by cT1i in an appreciable
way, as long as they stay UV localized. The protection mechanism discussed here has also
been studied in [239] employing a perturbative approach to electroweak symmetry breaking.
Compared to the perturbative approach, the exact treatment of the EOMs used here has the
salient advantage that the dependence of the ZdiLd̄

j
L vertices on quark mixing, i.e. on the

bulk masses MT1,2 in (3.3.150), can be clearly deciphered.

It is interesting to observe that only the leading terms in L and F−2(cT2) of the ZdiLd̄
j
L

vertex can be protected. There is no such mechanism available for the subleading terms, since
they arise from the fact that the twisted and untwisted orbifold representations obey different
UV BCs. These effects hence represent an irreducible source of PLR symmetry breaking.

3.3.8.3 Purely Bosonic Couplings

Finally, we will also evaluate the RS corrections to the W+W−h, ZZh, and W+W−Z tree-
level vertices, where the gauge bosons are the SM-like zero-modes. They will be important for
our discussion of Higgs processes. Due to the unbroken U(1)EM gauge group, the W+W−γ

18The second line of (3.3.150) also holds in the minimal model with cT2i → cdi and ωqih = 0.
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coupling is unchanged with respect to the SM to all orders in v2/M2
KK. Furthermore, the

calculation of the W+W−Z vertex is greatly simplified by the following two observations.
First, one has

2π

L

1∫

ε

dt

t
χ

(+)
0 (t) =

√
2π +O

(
v4

M4
KK

)
, (3.3.151)

and second
(
( ~Aa0)2 χ

(−)
0 (t)

)2
= O(v4/M4

KK). In combination, these two relations imply that
the W+W−Z vertex does not receive corrections at O(v2/M2

KK) in the RS model, regardless of
the specific gauge group. By the same line of reasoning, it is also readily seen that all quartic
gauge-boson vertices first differ at order v4/M4

KK from the corresponding SM expressions.
We express the W+W−h, ZZh vertices relative to their SM expressions. To expand the

zero-mode profiles in M2
V /M

2
KK we use (3.3.80) evaluated at the IR brane and (3.3.82). We

obtain

κV =
gV V ∗h|RS

gV V ∗h|SM
= 1− M2

V

M2
KK

(
L

c2
V

− 1 +
1

2L

)
+O

(
v4

M4
KK

)
. (3.3.152)

In the case of the PLR symmetry in the custodial model, one has c−2
W = 2 and c−2

Z = 2 c2
w,

which implies that the leading absolute correction to gW+W−h and gW+W−h takes the form
−2M2

V /M
2
KK L. For MKK = 2 TeV (MKK = 3 TeV) these terms lead to a suppression of

the WWh and ZZh couplings by about −10% (−5%) compared to the SM. In the minimal
RS model, expression (3.3.152) holds with cV → 1, and consequently the corrections to the
couplings of the Higgs boson to massive gauge bosons are smaller by about a factor of 2. Our
finding that the couplings WWh and ZZh experience a reduction from their SM expectations
confirms the model-independent statements made in [237].

3.3.8.4 Four Fermion Couplings

It this final section on the fundamentals of the RS coupling structure, we discuss four-fermion
interactions induced by the exchange of the 5d propagator at low momentum using the results
of section 3.3.7. The resulting effective Hamiltonian encodes the effects obtained by integrat-
ing out all new physics and is valid below the matching scale µKK = O(MKK). We start with
the case of charged currents with leptons and quarks. They are relevant for the extraction of
the CKM matrix. Again, we extract a universal prefactor of the Wilson coefficients

H(W )
eff =

2πα

s2
wM

2
W

[
1 +

M2
W

4M2
KK

(
1− 1

L

)]∑

l

[
ūLγ

µVL dL + ūRγ
µVR dR

]
(l̄Lγµνl L) + h.c. .

(3.3.153)
The total prefactor defines the modified expression of GF , as we discuss in section 4.2.2. The
CKM matrices as extracted from experiment are given by

VL = ∆+Q +
√

2 ε+ q − M2
W

2M2
KK

L
(
∆̄+Q +

√
2 ε̄+ q

)
,

VR =
√

2 ∆+ q + ε+Q − M2
W

2M2
KK

L
(√

2 ∆̄+ q + ε̄+Q
)
,

(3.3.154)

with {
∆+Q,q
mn

∆̄+Q,q
mn

}
=

2π

Lε

1∫

ε

dt ~aU,u†m CU,u
m (t)

{
ΩQ,q

t2 Ω̄Q,q

}
CD,d
n (t)~aD,dn , (3.3.155)
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and ε+Q,q
mn , ε̄+Q,q

mn defined by analogous formulas with the even profiles CQ,q
i replaced by odd

profiles SQ,qi . The involved kernel-matrices are given by ΩQ = Ω̄Q = 1 and Ωq = Ω̄q = 0 in
the minimal RS model, and

ΩQ =

(
1

0

)
, Ωq =




0 0
0 1
0 0


 , Ω̄Q =




1

−g2
R

g2
L

1


 , Ω̄q =




0 0
0 1

−g2
R

g2
L

1 0


 ,

(3.3.156)
in the model with custodial protection.

Notice that this definition of VL,R includes the exchange of the entire tower of W bosons
and their KK excitations and therefore differs from the definition of the CKM matrix employed
in [1, 239], which is based on the WuiLd

j
L and WuiRd

j
R vertices.

Of particular interest for the discussion of constraints from FCNCs in section 4.1.2 are
the effective dimension six operators arising from the tree-level exchange of KK photons and
gluons and of Z bosons. Again, the relevant sums over KK modes are evaluated with the
techniques presented in section 3.3.7. In the case of KK-photon exchange, we find that the
effective Hamiltonian is given by

H(γ)
eff =

2πα

M2
KK

∑

f,f ′

Qf Qf ′

{
1

2L

(
f̄γµf

)(
f̄ ′γµf ′

)
− 2
(
f̄Lγ

µ∆′F fL + f̄Rγ
µ∆′ffR

)(
f̄ ′γµf ′

)

+ 2L
(
f̄Lγ

µ∆̃F fL + f̄Rγ
µ∆̃ffR

)
⊗
(
f̄ ′Lγµ∆̃F ′f

′
L + f̄ ′Rγµ∆̃f ′f

′
R

)}
. (3.3.157)

The matrices ∆′A have been defined in (3.3.145). In addition, we encounter non-factorizable
overlap integrals that are the relevant sources of ∆F = 2 transitions

(
∆̃F

)
mn
⊗
(
∆̃f ′
)
m′n′

=
2π2

L2ε2

1∫

ε

dt

1∫

ε

dt′ t2< (3.3.158)

×
[
~a(F )†
m C(Q)

m (φ)C(Q)
n (φ)~a(F )

n + ~a(f)†
m S(f)

m (φ)S(f)
n (φ)~a(f)

n

]

×
[
~a

(f ′)†
m′ C

(f ′)
m′ (φ′)C(f ′)

n′ (φ′)~a(f ′)
n′ + ~a

(F ′)†
m′ S

(Q)
m′ (φ′)S(Q)

n′ (φ′)~a(F ′)
n′

]
.

The result (3.3.157) is exact, i.e. no expansion in powers of v2/M2
KK has been performed.

The effective interactions arising from KK-gluon exchange have an analogous structure. We
only need to restrict the sum over fermions in (3.3.157) to quarks and replace αQf Qf ′ by
αs T

a ⊗ T a, where the color matrices ta must be inserted inside the quark bilinears. The
expressions for the flavor matrices defined in (3.3.158) are tensor products, which a priori do
not factorize in the form of simple matrix products. In the ZMA, we obtain [229]

(
∆̃F

)
mn
⊗
(
∆̃f ′
)
m′n′
≈
∑

i,j

(
U †f
)
mi

(
Uf
)
in

(∆̃Ff )ij
(
W †f
)
m′j

(
Wf

)
jn′
,

(∆̃Ff )ij =
F 2(cFi)

3 + 2cFi

3 + cFi + cfj
2(2 + cFi + cfj )

F 2(cfj )

3 + 2cfj
.

(3.3.159)

Analogous expressions hold for the remaining combinations of indices F and f . Using the
fact that all ci parameters except cu3 are very close to −1/2, it is a reasonable approximation
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to replace (3 + cFi + cfj )/(2 + cFi + cfj ) by 2, in which case we obtain rough approximation

∆̃A ⊗ ∆̃B ≈∆A ∆B , (3.3.160)

In the same approximation, there is no need to distinguish between the ∆′A and ∆A matrices.
We found that this approximate factorization receives significant corrections in setups where
the volume of the extra dimension in reduced to L . 10 [229], and (3.3.159) obtains relevant
subleading contributions if the down-type singlet bulk masses cdi are aligned [3]. We discuss
these cases closer in section 4.1.2.

The interactions arising from the exchange of the Z boson and its KK excitations have a
richer structure. We have given the full and exact effective Hamiltonian in [1]. Here, we only
repeat the contributions at O(v2/M2

KK) which renders the result compact

H(Z)
eff =

4πα

s2
wc

2
wm

2
Z

[
1 +

m2
Z

2M2
KK

(
1− 1

2L

)]
JµZ JZµ (3.3.161)

− 8πα

s2
wc

2
wm

2
Z

∑

f

[
f̄Lγ

µT f3 δF fL − f̄RγµT f3 δffR
]
JZµ

− 4παL

s2
wc

2
wM

2
KK

∑

f

ωfZ

[ (
T f3 − s2

wQf

)
f̄Lγ

µ∆F fL − s2
wQf f̄Rγ

µ∆ffR

]
JZµ

+
4παL

s2
wc

2
wM

2
KK

∑

f,f ′

Ωf f ′

Z

[ (
T f3 − s2

wQf

)
f̄Lγ

µ∆̃F fL − s2
wQf f̄Rγ

µ∆̃ffR

]

⊗
[ (
T f
′

3 − s2
wQf ′

)
f̄ ′Lγµ∆̃F ′f

′
L − s2

wQf ′ f̄
′
Rγµ∆̃f ′f

′
R

]
.

Here, JµZ is the familiar SM expression for the neutral current

JµZ ≡
∑

f

[(
T f3 − s2

wQf
)
f̄Lγ

µfL − s2
wQf f̄Rγ

µfR

]
. (3.3.162)

The differences between the minimal and custodial RS model are again encoded in the fac-
tors ωfZ as defined in (3.3.143) and another universal factor for the non-factorizable overlap
integrals given by

Ωff ′

Z = 1 +
g2
Z′ Q

f
Z′ Q

f ′

Z′

g2
Z Q

f
Z Q

f ′

Z

= 1 +
c2
w

(
1− ωfZ

)(
1− ωf ′Z

)

1−
(

1 +
g2
L

g2
R

)
s2
w

. (3.3.163)

In order to abbreviate the notation in (3.3.161), the factors ωfZ and Ωff ′

Z are meant to act
as operators on the fermion bilinears in the sense that f and f ′ depend on the chiralities of
the corresponding fermions. Remark the reversed sign in (3.3.163) and the absent factor of
sZ/cZ compared to (3.3.143), which directly come from the corresponding factors of the t2<
and t2 terms in (3.3.102). The numerical values

ΩdLdL
Z = 2.5 , ΩdLdR

Z = −10.9 , ΩdRdR
Z = 94.6 , (3.3.164)

are necessary to explain differences in down type ∆F = 2 FCNCs in the different fermion
embeddings. To this end, one needs of course to compare the overall size of the Z-boson
and KK-gluon contributions to the latter processes. We will review this more closely in
section 4.1.2.
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Chapter 4

Aspects of Precision Physics

4.1 Flavor Physics

It is well known that precision flavor observables put strong constraints on generic new physics.
In most models, the constraints are complementary to bounds derived from collider searches
for direct production of resonances and to astrophysical bounds. This is due to the inherent
dependence of flavor off-diagonal observables on the Yukawa sector and its deviations from
the SM prediction. Hence, while models of new physics typically predict new particles, whose
existence will be scrutinized by LHC experiments, it is important to examine their effects on
precision flavor observables as well, in order to check the consistency of the models.

The objective of our discussion is twofold. First, we shall study amplitudes necessary for
flavor physics on a conceptual level for any theory with perturbatively unitary high energy
behavior. Secondly, we shall also present a numerical analysis of bounds and correlations
from flavor observables in a specific example that does not fall into the latter class, the RS
model.

In the conceptual part, our intention can be summarized as follows: A repeatedly emerging
task is the calculation of amplitudes for fermion transitions between different generations,
induced by a massive neutral gauge boson at one-loop — the so-called penguin amplitude.
An example is the FCNC s → d transition with the emission of a virtual Z boson, leading
to processes like the rare K → πνν̄ decays. Just like the SM, many models of new physics
generate this transition first at the one-loop level. This property drastically improves the
potential agreement of a model with experimental flavor constraints, especially from ∆S = 2
observables. In the absence of a tree-level coupling for this process, we expect UV-finiteness
of the penguin amplitude. However, the practical verification in models with many new gauge
and Goldstone bosons in a renormalizable gauge can be tedious. We perform this calculation
for any spontaneously broken gauge theory, using the generic Lagrangian supplemented with
the implied STIs as presented in section 3.1. We demonstrate and advocate the practical
use of the STIs to perform renormalization and simplifications of this generic process. We
give the full template result for the finite Z penguin and also for box-type diagrams, thereby
specializing to down-type quarks for notational convenience. Yet, the result can also be
applied to up-type and lepton-flavor-violating processes. The generic result is useful, since
the flavor amplitudes for any model of new physics can now be quickly implemented by
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the simple specification of its couplings of physical particles.1 We check that the full result
indeed reproduces the well known SM-result and the result of the LHT model introduced
in section 3.2. For the latter model we provide a deeper understanding why the Z penguin
turns out be free of UV-sensitivity and investigate whether this is due to the partly gauged
structure of the model. As a byproduct, we also simplify the result for the Z penguin and
boxes considerably as compared to the literature.

In the numerical analysis, we study the bounds and correlations in the RS model. We
focus on kaon mixing and direct CP violation in K → ππ, since measurements of these
processes provide the strongest bounds on the scale of the model. The RS model possesses
tree-level FCNCs but explains the smallness of the corresponding observables by the RS-
GIM mechanism (see section 3.3.8.2). It is well known that this suppression is typically
insufficient to explain the smallness of observed FCNCs. We find that the dependence on the
Yukawa sector introduces a significant spread in the distribution of the RS predictions. We
quantitatively assess the implications on the scale bounds and find a strong dependence, even
in the case of non-fine-tuned RS scenarios. The bounds inferred from flavor processes thus
depend strongly on the required amount of viable parameter space. We derive new bounds
from the lower edge of these distributions, which are more robust than the typical bounds
often quoted in the literature. This makes the scale bounds more comparable to bounds from
electroweak precision observables. We also discuss two scenarios that are specifically designed
to alleviate the flavor bounds, a model with active flavor-symmetry SU(3)d for singlet down-
type quarks and a model with a reduced volume of the extra dimension.

Beyond the scale bounds, we find that the restriction of the Yukawa structure also leads
to complementary predictions, i.e. correlations between different flavor observables. To this
end, we study leptonic and semileptonic kaon decays. The phenomenological discussion is
rounded off with a discussion of CKM non-unitarity and predictions for the rare B decays
into two muons, where measurements recently start to probe the RS parameter space.

4.1.1 Structure of ∆F = 1 Processes in Perturbative Models

4.1.1.1 Renormalization of the Generic Z Penguin

In the following we present the derivation of the generic result for the Z penguin. To this
end the renormalization by using the STIs of section 3.1.2 is described in some detail. We
give the results in (4.1.9) – (4.1.10). It is self-contained and can be used as it stands. The
reader who is interested in the result only might skip this discussion, which serves to clarify
the structure of the result and shows how our method can be extended to include tree-level
dj → di transitions.

Generally, in order to determine the Wilson coefficients of an effective theory, it is sufficient
to match the effective actions in both the full and the effective theory. This entails that
we have to compute one-light-particle irreducible diagrams only. In particular, diagrams
with self-energy insertions on external light particle legs should not be included. However,
in certain models containing tree-level transitions between down-type quarks of the same
generation, diagrams with a heavy particle reducible line exist on the full theory side of the
matching. Typically, this reducible line might be due to a down-type vector-like fermion.

1 A potential application is to link the template to the output of a computer algebra package such as
FeynRules [240], creating an automated yet simple tool for the generation of analytic flavor results without
the need to invoke a full amplitude generator.
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An example of this is found in models where the flavor symmetry SU(3)3 is considered
non-accidental and gauged [241, 242], thereby extending the idea of minimal flavor violation
(MFV) and explaining quark-hierarchies with a see-saw mechanism. This concept received
renewed interest in the last years as a consequence of the persistent failure to find new physics
in flavor violating transitions. Since the flavor group is anomalous, new heavy fermions have
to be added to the theory. Another example are effective models that extend the SM by a
vector-like fermionic sector in order to explain the hierarchy of SM Yukawa couplings through
small mixing angles between the SM and heavy fermions [56, 243, 244]. Such a setup can
be used to effectively parametrize the fermionic contributions that arise in the RS model of
section 3.3, where these effects are, however, subleading in all relevant cases. Furthermore,
such models generically induce flavor-violating Z couplings to light quarks, which we exclude
from the discussion here.

The fermion one-loop self-energies in the full theory lead to mixing among the fermions
beyond tree level. We perform an off-diagonal field renormalization for both heavy and light
fermions, with finite terms chosen to restore diagonal and canonically normalized kinetic
and mass terms [245]. In consequence, diagrams of the form shown in figure 4.1 are exactly
canceled by corresponding counterterm diagrams. However, we have to carefully treat the

Z

d′dj di Figure 4.1: One-heavy-particle
reducible contribution to the Z
penguin.

renormalization constants that the self-energy sub-diagram in figure 4.1 induces in the vertex
renormalization.

We first calculate the one-loop corrections to the renormalized fermion two-point function.
They can be written as

δΓ
fjfi
σ =

[(
Σψ,σ

V,f̄ifj
+ δZψ,σ

H,f̄ifj

)
/p+ Σψ,σ

S,f̄ifj
− 1

2

(
mfiδZ

ψ,σ

f̄ifj
+ δZψ,σ †

f̄ifj
mfj

)
− δijδmfi

]
Pσ , (4.1.1)

where the fermion-field-renormalization constant is written as a sum of a Hermitian and an
anti-Hermitian part. δmfi is an additive mass renormalization. The divergent parts of the
Hermitian field-renormalization constants have the simple structure

δZψ,σ
H,f̄ifj

∣∣
div
≡ 1

2

(
δZψ,σ

f̄ifj
+ δZψ,σ †

f̄ifj

)∣∣
div

= −Σψ,σ

V,f̄ifj

∣∣
div

= − ∆

16π2

[
1

2

∑
s′,f ′

yσs′f̄if ′ y
σ
s̄′f̄ ′fj

(4.1.2)

+
∑
v′,f ′

{
gσv′f̄if ′ g

σ
v̄′f̄ ′fj

+
m2
f ′

2m2
v′

(
gσv′f̄if ′ −

mfi
mf ′

gσv′f̄if ′

)(
gσv̄′f̄ ′fj −

mfj
mf ′

gσv̄′f̄ ′fj

)}]
.

Here ∆ = 1/ε− γE + ln(4π) includes also the finite MS subtractions, d = 4− 2ε is the space-
time dimension in dimensional regularization, and γE is Euler’s constant. The finite parts of
the field-renormalization constants for i 6= j are given by

δZψ,σ
f̄ifj

∣∣
fin

=
1

m2
fi
−m2

fj

(
m2
fj

Σψ,σ

V,f̄ifj
+mfimfjΣ

ψ,σ

V,f̄ifj
+mfiΣ

ψ,σ

S,f̄ifj
+mfjΣ

ψ,σ

S,f̄ifj

)∣∣
fin
, (4.1.3)

δZψ,σ †
f̄ifj

∣∣
fin

= − 1

m2
fi
−m2

fj

(
m2
fi

Σψ,σ

V,f̄ifj
+mfimfjΣ

ψ,σ

V,f̄ifj
+mfiΣ

ψ,σ

S,f̄ifj
+mfjΣ

ψ,σ

S,f̄ifj

)∣∣
fin
.

85



4. ASPECTS OF PRECISION PHYSICS

They enter our generic result after having been expanded in small mass ratios. The diagonal
field-renormalization constants are not necessary in our case. For a full generalization to tree-
level dj → di transitions, or an analogous treatment of charged current couplings, one would
have to fix these constants by renormalization conditions. The best practice here depends on
the context and we will not go into further details. As a non-trivial example we mention the
renormalization of the SM CKM matrix in non-minimal schemes that preserve decoupling,
where it turns out that STIs allow to renormalize the CKM-matrix gauge-independently but
restrict the diagonal field renormalization constants [246].

In the following section we present the general result for models (or parts thereof) where
tree-level FCNCs for the dj → di transition are absent; in this case the contributions of
the vertex and gauge-boson field-renormalization constants vanish. Here, we will show that
all divergences in our generic result completely cancel against the divergent terms in the
field rotation, without the necessity of additional counterterms. This is due to the absence
of tree-level contributions to the Z penguin, to which these counterterms would be propor-
tional. In order to make this cancellation manifest, it is necessary to use the consequences
of tree-level perturbative unitarity derived in section 3.1.1 in form of the STIs. They yield
relations between various couplings, and allow for the automatic inclusion of the effects of
the would-be Goldstone bosons. This step is independent of the specification of a model and
can be applied without detailed knowledge about the sector responsible for the spontaneous
symmetry breaking. Note that the following treatment is valid also in the general case of
non-flavor-diagonal tree-level couplings.

We are now ready to study the general expression for the one-loop contributions to the
renormalized Vvaψ̄f̄jψfk three-point function. They are given by

δΓ
fjfiva
µσ = Γ

fjfiva,(1)
µσ +

[
δZg,σ

vaf̄ifj
+

1

2

∑
f ′

(
gσvaf̄if ′ δZ

ψ,σ

f̄ ′fj
+ δZψ,σ †

f̄if ′
gσvaf̄ ′fj

)

+
1

2

∑
v′
δZVvav′ g

σ
v̄′f̄ifj

]
Pσ .

(4.1.4)

Here, Γ
vafjfi,(1)
µσ denotes the sum of all contributing one-loop diagrams, and the rest are

the vertex, fermion field, and gauge-boson field-renormalization constants, respectively. We
use the STIs (3.1.19), (3.1.28) and (3.1.29) to show that the fermion-field-renormalization
constants are sufficient to cancel all divergences in (4.1.4). In principle, the procedure is
straightforward. It is instructive to start with considering the divergence of the diagram that
contains three internal particles of different spin, one scalar s′, one fermion f ′, and one vector
v′, and is thus proportional to the couplings gvav′s′ g

σ
v′f̄jf ′

gσ
s′f̄ ′fi

. It turns out that the sum

over all such possible diagrams can be rewritten by using (3.1.28) and (3.1.29). In figure 4.2
we illustrate how the sum rules have to be combined with couplings, which are separated by
the dotted cut line, in order to match the divergence of one of the mixed diagrams. After
subtracting the sum of these two contributions from the total divergence and inserting the
explicit expressions of the fermion-field-renormalization constants (4.1.2), the reformulated
expression can be grouped into parts that involve either internal scalars or internal vectors.
In fact, the contributions with two internal scalars are already finite now. The remaining
contributions are treated analogously. E.g. from the diagram with two internal vectors, we
infer that (3.1.19) must be combined with gvav′v′′ and summed over v′ and v′′ in order to
reformulate the remaining part of the divergence with two internal vectors. Finally, the
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fj fi

s′ v′

va

f ′

fj fi

s′ v′

va

f ′

−→
(
mfig

σ̄
v′f̄if ′

− gσv′f̄if ′mf ′
)
/Mv′

×Pσ ×
−→ (3.1.28) with chirality σ

−→ yσs′f̄ ′fj

×Pσ ×
−→ (3.1.29) with chirality σ̄

Figure 4.2: First
step of the explicit
elimination of the
Z-penguin divergence
by sum rules as
inferred by the mixed
diagrams.

remaining expression can be shown to be zero by combining

(3.1.19)× 1

2

(
gσv′f̄if ′ −

mf ′

4M2
v′

[
mfig

σ̄
v′f̄if ′

− gσv′f̄if ′ff ′
])
,

(3.1.19)|σ→σ̄ ×
mfj

8M2
v′

[
mfig

σ̄
v′f̄if ′

− gσv′f̄if ′ff ′
]
,

(4.1.5)

and analogously for contributions in which the Vv′ψ̄f̄ ′ψfj coupling is combined with (3.1.19).
Note that if the couplings gvav′s′ are absent from the beginning, both the diagrams with
internal vectors and diagrams with internal scalars renormalize separately in the same way.

More generally, if also the tree-level dj → di transition is non-vanishing, the result of the
refinement we just described needs further treatment. The simplified result reads in general

δΓ
fjfiva
µσ

∣∣
div

=
[
δZg,σ

vaf̄ifj
+

1

2

∑
f ′

(
gσvaf̄if ′ δZ

ψ,σ

A,f̄ ′fj
− δZψ,σ

A,f̄if ′
gσvaf̄ ′fj

)
(4.1.6)

+
∑
v′

(
1

2
δZVvav̄′ −

∆

16π2

∑
v2,v3

gvav2v3 gv̄2v̄3v̄′

)
gσv′f̄ifj

]
div

Pσ .

The terms in the first line cancel by an appropriate definition of the vertex renormalization
δZg,σ. In analogy to the CKM renormalization in the SM [246, 247] this can be interpreted as
a redefinition of the unitary rotations in fermion generation space, with the redefinitions gen-
erated by the anti-Hermitian parts of the fermion-field renormalization δZψ,σA , the divergent
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parts of which read explicitly

δZψ,σ
A,f̄ifj

=





1
2mfi

[
Σψ,σ

S,f̄ifi
− Σψ,σ

S,f̄ifi

]
div

, j = k

2
m2
fi
−m2

fj

[m2
fi

+m2
fj

2 Σψ,σ

V,f̄ifj
+mfimfjΣ

ψ,σ

V,f̄ifj
+mfiΣ

ψ,σ

S,f̄ifj
+ Σψ,σ

S,f̄ifj
mfj

]
div
, j 6= k

=
∆

16π2

( ∑
s′,f ′

{
1−δij

m2
fi
−m2

fj

(m2
fi

+m2
fj

2 yσs′f̄if ′y
σ
s̄′f̄ ′fj

+mfimfj y
σ
s′f̄if ′

yσs̄′f̄ ′fj

+ 2mf ′

(
mfi y

σ
s′f̄if ′

yσs̄′f̄ ′fj +mfj y
σ
s′f̄if ′

yσs̄′f̄ ′fj

))

+ δij
mf ′
2mfi

(
yσs′f̄if ′y

σ
s̄′f̄ ′i − yσs′f̄if ′y

σ
s̄′f̄ ′fi

)}
(4.1.7)

+
∑
v′,f ′

{
1−δij

m2
fi
−m2

fj

(
gσv′f̄if ′g

σ
v̄′f̄ ′fj

(
(m2

fi
+m2

fj
)
(

1− 3m2
f ′

2m2
v′

)
+

m2
fi
m2
fj

m2
v′

)

+ gσv′f̄if ′g
σ
v̄′f̄ ′fj

mfimfj

(
2 +

m2
fi

+m2
fj
−6m2

f ′

2m2
v′

)

+ gσv′f̄if ′g
σ
v̄′f̄ ′fj

mf ′mfj

(
− 8 +

m2
fi
−m2

fj
+4m2

f ′

2m2
v′

)

+ gσv′f̄if ′g
σ
v̄′f̄ ′fj

mfimf ′

(
− 8 +

m2
fj
−m2

fi
+4m2

f ′

2m2
v′

))

+ δij
mf ′
mfi

(
2 +

m2
fi
−m2

f ′

2m2
v′

)(
gσv′f̄if ′g

σ
v̄′f̄ ′fi

− gσv′f̄if ′g
σ
v̄′f̄ ′di

)})
.

The terms in the second line of (4.1.6) vanish after an explicit Z-boson field renormalization.
To see this, one would have to use the STIs for ghost couplings and additional sum rules
which we included in the appendix (see (A.1.2)). In fact, one can read off the result for the
Z-boson field renormalization from the fact that the second line in (4.1.6) has to vanish. The
finite part of the renormalization will lead to a shift which is universal for all flavors and can
be absorbed in the corresponding gauge-coupling constant.

4.1.1.2 Result for the Generic Z Penguin and Box Diagrams

We present our result for the renormalized Z penguin in the form of an effective vertex, in
the spirit of [248]. The penguin function CσdjdiZ is defined in terms of the amputated vertex
function as

Γ
djdiZ
µσ = γµPσ

GF√
2

e

π2
M2
Z

cw
sw
CσdjdiZ , (4.1.8)

and depends on all masses which appear. σ = L,R stands for the chiral projection. Setting
the external momenta and light fermion masses to zero in our results, we obtain in the
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’t Hooft-Feynman gauge

Γ
djdiZ
µσ =

γµPσ
(4π)2

{

∑

f1v1

∑

f2 /∈ SM

[
κσf1f2v1

B0

(
mf1 ,mv1

)
+ κ′σf1f2v1

]
+
∑

f1s1

∑

f2 /∈ SM

κσf1f2s1B0

(
mf1 ,ms1

)

+
∑

f1f2v1

[
k̃σf1f2v1

(
C̃0

(
mf1 ,mf2 ,Mv1

)
− 1

2

)
+ kσf1f2v1

C0

(
mf1 ,mf2 ,Mv1

)
+ k′σf1f2v1

]

+
∑

f1v1v2

[
k̃σf1v1v2

(
C̃0

(
mf1 ,Mv1 ,Mv2

)
+ 1

2

)
+ kσf1v1v2

C0

(
mf1 ,Mv1 ,Mv2

)
+ k′σf1v1v2

]

+
∑

f1v1s1

[
k̃σf1v1s1

(
C̃0

(
Ms1 ,mf1 ,Mv1

)
+ 1

2

)
+ kσf1v1s1C0

(
Ms1 ,mf1 ,Mv1

)]

+
∑

f1f2s1

[
k̃σf1f2s1

(
C̃0

(
Ms1 ,mf1 ,mf2

)
− 1

2

)
+ kσf1f2s1C0

(
Ms1 ,mf1 ,mf2

)]

+
∑

f1s1s2

k̃σf1s1s2

(
C̃0

(
Ms1 ,Ms2 ,mf1

)
+ 1

2

)}
,

(4.1.9)

where all indices run over all particles contained in the theory, with the exception of f2 in
the second line. This index only runs over heavy, i.e. non-SM, fermions. The corresponding
contributions originate in the finite wave-function renormalizations of heavy fermions, which
are necessary to achieve a canonical mass term at one loop. They are only present if Z
couplings between light and heavy fermions exist at tree-level. The loop functions used in
(4.1.9) and below are summarized in appendix B.1. There, one can skip the divergence in
the expressions for the loop functions, since we have explicitly shown in the last chapter that
they vanish due to the STIs. We find for the coefficients of (4.1.9)

κσf1f2v1
= −mf1

mf2

(
gσZd̄if2

[(
4−

m2
f1

M2
v1

)
gσv1f̄2f1

+
mf1mf2

M2
v1

gσv1f̄2f1

]
gσv̄1f̄1dj

(4.1.10)

+ gσv̄1d̄if1

[(
4−

m2
f1

M2
v1

)
gσv1f̄1f2

+
mf1mf2

M2
v1

gσv1f̄1f2

]
gσZf̄2dj

)
,

κ′σf1f2v1
=

2mf1

mf2

(
gσZd̄if2

gσv1f̄2f1
gσv̄1f̄1dj

+ gσv1d̄if1
gσv̄1f̄1f2

gσZf̄2dj

)
,

κσf1f2s1 =
mf1

mf2

(
gσZd̄if2

yσs1f̄2f1
yσs̄1f̄1dj

+ yσs1d̄if1
yσs̄1f̄1f2

gσZf̄2dj

)
,

k̃σf1f2v1
=

(
gσZf̄2f1

+
mf1mf2

2M2
v1

gσZf̄2f1

)
gσv̄1d̄if2

gσv1f̄1dj
,

kσf1f2v1
= −mf1mf2

M2
v1

(
mf1mf2g

σ
Zf̄2f1

+ 2M2
v1
gσZf̄2f1

)
gσv̄1d̄if2

gσv1f̄1dj
,

k′σf1f2v1
= −gσZf̄2f1

gσv̄1d̄if2
gσv1f̄1dj

+
1

2

(
gσZd̄idig

σ
v1d̄if1

gσv̄1f̄1dj
+ gσv̄1d̄if1

gσv1f̄1dj
gσZd̄jdj

)
δf1f2 ,
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k̃σf1v1v2
= −

m2
f1

(M2
v1

+M2
v2
−M2

Z) + 12M2
v1
M2
v2

4M2
v1
M2
v2

gZv1v̄2g
σ
v̄1d̄if1

gσv2f̄1dj

− 1

2

(
1 +

m2
f1

2M2
v1

)(
gσZd̄idig

σ
v1d̄if1

gσv̄1f̄1dj
+ gσv̄1d̄if1

gσv1f̄1dj
gσZd̄jdj

)
δv1v2 ,

kσf1v1v2
=
m2
f1

(
M4
v1

+M4
v2
−M2

Z(M2
v1

+M2
v2

)
)

M2
v1
M2
v2

gZv1v̄2g
σ
v̄1d̄if1

gσv2f̄1dj
,

k′σf1v1v2
= 2 gZv1v̄2g

σ
v̄1d̄if1

gσv2f̄1dj
,

k̃σf1v1s1 = −
kσf1v1s1

4M2
v1

, kσf1v1s1 = mf1

(
gZv̄1s1y

σ
s̄1d̄if1

gσv1f̄1dj
+ gZv1s̄1y

σ
s1f̄1dj

gσv̄1d̄if1

)
,

k̃σf1f2s1 =
1

2
gσZf̄2f1

yσs̄1d̄if2
yσs1f̄1dj

, kσf1f2s1 = −mf1mf2g
σ
Zf̄2f1

yσs̄1d̄if2
yσs1f̄1dj

,

k̃σf1s1s2 =
1

2
gZs̄1s2y

σ
s̄2d̄if1

yσs1f̄1dj
− 1

4

(
gσZd̄idiy

σ
s1d̄if1

yσs̄1f̄1dj
+ yσs1d̄if1

yσs̄1f̄1dj
gσZd̄jdj

)
δs1s2 .

We have suppressed the color indices. Recall that the scalar-index sums in (4.1.9) run only
over physical fields; contributions of would-be Goldstone bosons have already been taken
into account implicitly in these equations. The dependence on the external light-fermion
masses has been neglected in (4.1.10). For the coefficients k̃, k, and k′, it can easily be
reconstructed by replacing all instances of gσ

vf̄dj
mf/Mv by

(
mfg

σ
vf̄dj
− mdjg

σ̄
vf̄dj

)
/Mv and

similarly gσ
vd̄if

mf/Mv by
(
mfg

σ
vd̄if
− mdig

σ̄
vd̄if2

)
/Mv. Neglecting light-fermion masses also

implies that the off-diagonal field renormalizations (4.1.3) entering (4.1.10) proportional to
the flavor-universal Zdid̄i couplings are determined by the vectorial part of the self-energies.
non-universal couplings would induce further contributions.

Note that the contribution of the Z penguin to processes like rare K and B decays is
not separately gauge-invariant without including the contributions from box diagrams. The
box-diagram contribution to the effective Hamiltonian for dj → dilk l̄l transitions reads

H∆F=1 Box
eff =

4GF√
2

α

2πs2
w

{∑

σ1σ2

(
BSσ1σ2
djdilllk

(d̄iPσ1dj)(l̄kPσ2 ll) +BV σ1σ2
djdilllk

(d̄iγ
µPσ1dj)(l̄kγµPσ2 ll)

)

+
∑

σ

BTσ
djdilllk

(d̄iσ
µνPσdj)(l̄kσµνPσll)

}
, (4.1.11)

with σµν = i[γµ, γν ]/2. The use of chiral Fierz identities (see e.g. [249]) shows that the tensor
structures with mixed chirality (d̄iσ

µνPσdj)(l̄kσµνPσ̄ ll) vanish identically. Hence, they are
omitted from (4.1.11). We decompose the box functions BMσ1σ2

djdilllk
as

BMσ1σ2
djdilllk

=

√
2

GF

s2
w

α

1

32π
×
{

(4.1.12)

∑
f1f2v1v2

(
c̃Mσ1σ2
f1f2v1v2

D̃0

(
mf1 ,mf2 ,Mv1 ,Mv2

)
+ cMσ1σ2

f1f2v1v2
D0

(
mf1 ,mf2 ,Mv1 ,Mv2

))

+
∑

f1f2v1s1

(
c̃Mσ1σ2
f1f2v1s1

D̃0

(
Ms1 ,mf1 ,mf2 ,Mv1

)
+ cMσ1σ2

f1f2v1s1
D0

(
Ms1 ,mf1 ,mf2 ,Mv1

))

+
∑

f1f2s1s2

(
c̃Mσ1σ2
f1f2s1s2

D̃0

(
Ms1 ,Ms2 ,mf1 ,mf2

)
+ cMσ1σ2

f1f2s1s2
D0

(
Ms1 ,Ms2 ,mf1 ,mf2

))}
,
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where the superscript takes the values M = S, V, T . The coefficients for the vector projection
are given by

cV σ1σ2
f1f2v1v2

= m2
f1
m2
f2

(
1

M2
v1

+
1

M2
v2

)
gσ1

v̄2d̄if1
gσ1

v1f̄1dj

(
gσ2

v̄1 l̄kf2
gσ2

v2f̄2ll
− flipVf2

)
,

c̃V σ1σ2
f1f2v1v2

= − 1

4(M2
v1

+M2
v2

)
cV σ1σ2
f1f2v1v2

+

(
gσ2

v̄1 l̄kf2
gσ2

v2f̄2ll
− 4 flipVf2

)
×




−gσ1

v̄2d̄if1
gσ1

v1f̄1dj
, σ1 = σ2

gσ1

v̄1d̄if1
gσ1

v2f̄1dj
, σ1 6= σ2

,

cV σ1σ2
f1f2v1s1

= mf1mf2

(
gσ1

v̄1d̄if1
yσ1

s1f̄1dj
+ flipVf1

)(
yσ̄2

s̄1 l̄kf2
gσ2

v1f̄2ll
+ flipVf2

)
, (4.1.13)

c̃V σ1σ2
f1f2v1s1

= − 1

4M2
v1

cV σ1σ2
f1f2v1s1

, cV σ1σ2
f1f2s1s2

= 0 ,

c̃V σ1σ2
f1f2s1s2

= −1

4
yσ̄1

s̄2d̄if1
yσ1

s1f̄1dj

(
yσ̄2

s̄1 l̄kf2
yσ2

s2f̄2ll
− flipVf2

)
.

Here, flipVf1
represents contributions for which we interchange the coupling constants via

gσ
... d̄if1

↔ gσ
... f̄1dj

and yσ
... d̄if1

↔ yσ̄
... f̄1dj

, and flipVf2
acts analogously on ll,k and f2. For the

scalar projections we obtain the coefficients

c̃Sσ1σ2
f1f2v1v2

= mf1mf2

(
1

M2
v1

+
1

M2
v2

)
gσ̄1

v̄2d̄if1
gσ1

v1f̄1dj

{
gσ̄2

v̄1 l̄kf2
gσ2

v2f̄2ll
+ flipSf2

}
,

cSσ1σ2
f1f2v1v2

= −
4M2

v1
M2
v2

+m2
f1
m2
f2

M2
v1

+M2
v2

c̃Sσ1σ2
f1f2v1v2

,

c̃Sσ1σ2
f1f2v1s1

=
(
yσ1

s̄1d̄if1
gσ1

v1f̄1dj
− flipSf1

)(
gσ̄2

v̄1 l̄′kf2
yσ2

s1f̄2l
− flipSf2

)
, (4.1.14)

cSσ1σ2
f1f2v1s1

= −
m2
f1
m2
f2

M2
v1

c̃Sσ1σ2
f1f2v1s1

, c̃Sσ1σ2
f1f2s1s2

= 0 ,

cSσ1σ2
f1f2s1s2

= −mf1mf2 y
σ1

s̄2d̄if1
yσ1

s1f̄1dj

(
yσ2

s̄1 l̄kf2
yσ2

s2f̄2ll
+ flipSf2

)
,

and finally the tensor coefficients read

cTσf1f2v1v2
= −mf1mf2g

σ̄
v̄2d̄if1

gσv1f̄1dj

(
gσ̄v̄1 l̄kf2

gσv2f̄2ll
− flipSf2

)
,

c̃Tσf1f2v1v2
= −1

4

(
1

M2
v1

+
1

M2
v2

)
cTσf1f2v1v2

, (4.1.15)

c̃Tσf1f2v1s1 =
1

4

(
yσs̄1d̄if1

gσv1f̄1dj
+ flipSf1

)(
gσ̄v̄1 l̄kf2

yσs1f̄2ll
+ flipSf2

)
,

cTσf1f2v1s1 = cTσf1f2s1s2 = c̃Tσf1f2s1s2 = 0 .

Similar to above flipSf1
stands for additional contributions, here with the coupling constants

yσ· d̄if1
↔ yσ· f̄1dj

and gσ· d̄if1
↔ gσ̄· f̄1dj

interchanged, and flipSf2
acts analogously on ll,k and f2.

It is possible to extract the generic effective Hamiltonian for the |∆F | = 2 boxes from
the above results, if one keeps in mind that the external particle – antiparticle pairs allow for
additional Wick contractions of the transition amplitude and that the conventional normal-
ization of the effective Hamiltonian is different. We use Fierz identities to cast the result in
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the operator basis of [250] where

H∆F=2 Box
eff =

G2
F

4π2
M2
W

(∑

σ

SV σσ1,djdi
QV σσ1,didj

+
∑

n=1,2

(
SLRn,djdi Q

LR
n,didj

+
∑

σ

SSσσn,djdi
QSσσn,didj

))
,

QV σσ1 = (d̄jγµPσdi)(d̄jγ
µPσdi) ,

QLR1 = (d̄jγµPLdi)(d̄jγ
µPRdi) , QLR2 = (d̄jPLdi)(d̄jPRdi) ,

QSσσ1 = (d̄jPσdi)(d̄jPσdi) , QSσσ2 = (d̄αj Pσd
β
i )(d̄βj Pσd

α
i ) .

(4.1.16)

A summation over color indices α, β is understood. In order to obtain the coefficients S from
(4.1.13)–(4.1.15), the following prescription holds:

SV σσ1,djdi
= 4BV σσ

djdilllk
|lk,l→ di,j ,

SLR1,djdi
= 8BV LR

djdilllk
|lk,l→ di,j , SRL1,djdi

= 8BSLR
djdilllk

|lk,l→ di,j ,

SSσσ1,djdi
=
(
4BSσσ

djdilllk
− 16BTσσ

djdilllk

)
|lk,l→ di,j , SSσσ1,djdi

= −32BTσσ
djdilllk

|lk,l→ di,j .

(4.1.17)

As a check of the normalization and general structure of the result, we insert the SM cou-
plings in (4.1.9) and (4.1.10). All necessary couplings were already mentioned in section 3.1.2.
As usual, we set xq ≡ m2

q/M
2
W and rewrite the loop-functions in terms of xuk and M2

W . Terms
independent of xuk drop in the result due to the CKM unitarity. This is the well known GIM
mechanism [16]. We recover the result of Inami and Lim [251]

C
L (SM)
djdiZ

= λ
(djdi)
t C(xt) , C(x) =

x

8

(
x− 6

x− 1
+

3x+ 2

(x− 1)2
ln(x)

)
, (4.1.18)

for the top-quark contribution to the dj → diZ vertex. The relevant CKM-factors are abbre-

viated as λ
(djdi)
q = VqdjV

∗
qdi

. Similarly we recover from (4.1.12) the result of the box diagrams

for the vertices dj → di e
+e− and dj → di ν̄ ν

B
V LL (SM)
djdiee

= −1

4
B
V LL (SM)
djdiνν

= λ
(d′d)
t B(xt) , B(x) =

x

4

(
1

1− x +
ln(x)

(x− 1)2

)
, (4.1.19)

and for the ∆F = 2 transition dj → di d̄jdi

S
V LL (SM)
djdidjdi

=
(
λ

(djdi)
t

)2
S(xt) +

(
λ

(djdi)
c

)2
S(xc) + 2λ

(djdi)
t λ

(djdi)
c S(xc, xt) , (4.1.20)

S(x) = S(x, x) , S(x, y) =
xS′(y)− yS′(x)

x− y ,

S′(x) = −x
4

(
3

x− 1
+

4− 8x+ x2

(x− 1)2
ln(x)

)
.

Here we kept the finite contribution from the charm-quark mass mc, which is important due
to the CKM factor Re(λc) = O(λ), whereas λt = O(λ5) = Im(λc). The unusual definition of
S in terms of S′ turns out to be useful for the result in the LHT model, which we give in the
following section.
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4.1.1.3 Results for the Littlest Higgs Model with T -parity

In the following we apply our results to the partly renormalizable LHT model of section 3.2.
This provides the insight why the Z penguin is UV finite in the given model. As a byproduct,
we reproduce the result in the literature and simplify it considerably.

We obtain the analytic expressions for quark-flavor violating Z penguin and box diagrams,
by inserting the couplings of appendix A.2 into the generic results (4.1.9), (4.1.12), and
(4.1.17). Using this specified expression, we can check if the divergence of the penguin diagram
vanishes. We find that this is indeed the case. It is only expected on general grounds, if
the sum rules (3.1.19), (3.1.28), and (3.1.29) hold in all possible combinations of external
particles that can appear in the penguin diagram after applying the cuts demonstrated in
section 4.1.1.1. In other words, if we can verify that the relevant parts entering the process in
question all fulfill the constraints from tree-level perturbativity, we are allowed to safely use
(4.1.9) also for models with sectors of explicitly broken symmetry. This is the case for the
partly gauged LHT model. We created all possible combinations of tree-subdiagrams for the
off-diagonal down-type Z penguin and found that the STIs (3.1.19) are indeed fulfilled. The
STIs (3.1.28) and (3.1.29) are not exactly fulfilled for subdiagrams with an external down-
type mirror-quark. However, the difference of left- and right-hand side of these STIs is always
suppressed with a light quark mass mdi or mdj

2. Furthermore, the differences are proportional

to the mirror-mixing matrix VHd (or V †Hd). The remaining coupling, necessary to form the

penguin diagram always contributes another factor of V †Hd (or VHd). After a summation over
the “cut” particle line, the unitarity of VHd implies that even the differences proportional to
the light quark masses mdi,j vanish in the penguin diagram3. It is interesting to note that
even though the complete divergence in the down-type Z penguin vanishes identically, there
are parts of the divergence (proportional to light quark masses), which do not vanish due
perturbative unitarity, but only accidentally. This provides a deeper understanding why the
Z penguin turns out be free of UV-sensitivity in the LHT model.

We also reproduce the finite part for the Z penguin and box diagrams as known in the
literature [160, 163, 165, 253]. We summarize it here in a shorter form. To this end we define

xT = m2
T+/m

2
W , zk = mu 2

H,k/m
2
WH

, yn = mν 2
H,n/m

2
WH

,

λq =
(
V
)
qdj

(
V
)∗
qdi
, ξk =

(
VHd

)
kdj

(
VHd

)∗
kdi

, λHln =
(
VHl
)
nll

(
VHl
)∗
nlk

,
(4.1.21)

and arrive at the result

C
L (LHT)
djdiZ

=
v2

4f2

{
λt

x2
L

2V 2
tb

(
− 5− xt

[
1− 2xL
1− xL

+ 2 ln(xt)

]
+ (3 + 2xt) ln(xT )

)
(4.1.22)

+
∑

k=2,3

ξk
[
C(zk)− C(z1)

]
}
,

2The quark-mass suppression comes in addition to the v2/f2 suppression of the new physics contribution
to the penguin diagram. Hence, the terms are only conceptually interesting.

3There are similar mb terms in the relevant subdiagrams for the calculation of Z → bb̄. Only a full
calculation can show if these contributions also vanish accidentally. Neglecting the mb terms, the finiteness of
the Z → bb̄ amplitude has been explicitly confirmed in [252]
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B
V LL (LHT)
djdilllk

=
v2

4f2

{
3± 5

2
λt
x2
L

V 2
tb

δl′l (4.1.23)

± 1

16

3∑

n=1

∑

k=2,3

λHln ξk

[
B′±(zk, yn)−B′±(z1, yn) +B′±(zk)−B′±(z1)

]}
,

S
V LL (LHT)
1,djdi

=
v2

4f2

{
λt
x2
L

V 2
tb

(
λt

xt xL
1− xL

+
∑

q=c,t

λq

[
8S′(xq) + 2xq ln(xT )

])
(4.1.24)

− 1

4

∑

j,k=2,3

ξj ξk

[
B′−(zj , zk)−B′−(zj , z1)−B′−(z1, zk) +B′−(z1, z1)

]}
.

In (4.1.23) the upper (lower) sign is valid for l = ν (l = e). The second row of each equation
contains the contribution originating from T -odd particles. There, we also used the GIM
mechanism for the matrix VHd, which generates the subtracted terms with z1. For the T -odd
box contributions we introduced the following additional loop functions

B′±(z, y) =
−(3± 9)zy

(z − 1)(y − 1)
+

{
z
(
z3 − 8z2 + (10± 9)z − 6 t2w

25 (z − 1)
)

(z − 1)2(z − y)
ln(z) + . . . |z→y

}
,

B′±(z) = z

(
10± 9

z − 1
+ (z − 8)

z ln(z)

(z − 1)2

)
. (4.1.25)

Remark that the results given here completely reproduce the full results of [160, 253], but we
summarized it in a much shorter form. This is achieved by using the vertex definition of the
CKM-matrix V given in (3.2.29). This renders the input parameters also closer to physical
observables. Furthermore, we have expanded in the mass ratio m2

AH
/m2

ZH
= t2w (1−v2/f2)/5.

In the latter ratio we neglect higher order terms; they are of the same numerical size that one
expects from the likewise neglected contribution at order v4/f4.

4.1.2 Constraints and Correlations in the Randall-Sundrum Model

In the following, we discuss numerical results for potentially restrictive FCNC processes in the
RS model. In doing so, we focus on kaon mixing, direct CP violation in K → ππ, Bs → µµ,
and CKM non-unitarity. Very strong bounds on the RS scale have been inferred from CP
violation in kaon mixing in the past [211, 212, 229, 254, 255]. We emphasize the well known
complementarity of those constraints to direct searches and assess the influence of the Yukawa
sector. Instead of calculating bounds from “typical” predictions of the RS model, whose
interpretation remains ambiguous, we scan the full parameter space in a detailed numerical
analysis. Having access to the full distributions allows us to investigate two directions. On
the one hand, we can attach a pseudo-statistical significance to the notion of a bound on the
RS scale. We will see that bounds derived in a rigorous sense are much weaker than what
could be expected generically and that they are at most of similar importance compared
to electroweak precision constraints. On the other hand, we find that the restriction of the
Yukawa structure can in fact lead to more interesting and complementary predictions, namely
the correlation between different flavor observables. We study leptonic and semileptonic kaon
decays and find that relevant restrictions on the potential deviations in these processes can
be inferred from the aforementioned bounds.
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A generalization of this discussion to B-physics and the lepton sector is conceptually trivial
(apart from the issue of Neutrino mass terms [256–259]). As mentioned, we also present the
results for Bs → µµ, since it has been measured recently for the first time by LHCb [260].
We refer the reader to our extensive analysis [3], where we also presented results for Bd,s–B̄d,s
mixing, semileptonic B decays, the hadronic decays B → ππ, and B → Kπ in the minimal
RS model. In [212, 261] extensive corresponding analyses were presented for the custodial
RS model. For relevant constraints on the Yukawa structure of the lepton sector that arise
from lepton flavor violating processes such as µ → eγ, µ → 3e, and µ–e conversion in nuclei
we refer to [230, 262–265].

4.1.2.1 A Comment on Bounds from Direct Collider Searches

In order to have a reference value for direct bounds on the KK scale MKK, we refer to the
most recent search for resonances in the tt̄ mass spectrum4. This final state is suitable to
search for the first KK gluon excitation, whose mass MG(1) ≈ 2.45MKK is a robust prediction
of the RS model with bulk gauge bosons. The top quark and G(1) are IR localized, thus their
coupling is enhanced compared to gs. The precise value depends on the bulk-masses. For
UV-localized light fermions, the couplings to G(1) have a suppression of approximately 1/

√
L

compared to the SM coupling. This explains why G(1) → tt̄ is the main decay channel for
the first KK gluon excitation. The typical branching ratio of this decay was estimated to be
92.5% in [266] and 95% in [267]. Using the former and the latter value, respectively, a bound
of MG(1) > 1.5 TeV was found by ATLAS [268] and MG(1) > 1.8 TeV by CMS [269], both at
95% CL.

4.1.2.2 Theoretical Framework and Relevant Formulas

Kaon Mixing

Here we adopt the effective Hamiltonian for K–K̄ mixing [270–272]

H∆S=2
eff =

5∑

i=1

CiQ
sd
i +

3∑

i=1

C̃i Q̃
sd
i , (4.1.26)

in the basis where

Qsd1 = (d̄Lγ
µsL) (d̄LγµsL) , Q̃sd1 = (d̄Rγ

µsR) (d̄RγµsR) ,

Qsd2 = (d̄RsL) (d̄RsL) , Q̃sd2 = (d̄LsR) (d̄LsR) ,

Qsd3 = (d̄αRs
β
L) (d̄βRs

α
L) , Q̃sd3 = (d̄αLs

β
R) (d̄βLs

α
R) ,

Qsd4 = (d̄RsL) (d̄LsR) ,

Qsd5 = (d̄αRs
β
L) (d̄βLs

α
R) .

(4.1.27)

This corresponds to the basis (4.1.16) after a single Fierz transformation QLR1 = −2Qsd3 and
renaming the operators in order to agree with literature that we use below. We write the
Wilson coefficients as a sum of a SM and a new-physics contribution, Ci ≡ CSM

i +CRS
i , where

4Bounds on the first KK Graviton from γγ and lepton mass spectra are only relevant for the RS model
with IR-brane matter, which we do not consider for reasons explained in section 3.3.1.
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in the SM only CSM
1 is non-zero. Using the general results from section 3.3.8 along with

standard Fierz identities, we obtain for the contributions in the RS model5

CRS,V
1 =

2πL

M2
KK

(
∆̃D

)
12
⊗
(
∆̃D

)
12

[
αs
2

(
1− 1

Nc

)
+Q2

d α+ ΩdLdL
Z

(T d3 − s2
wQd)

2 α

s2
wc

2
w

]
,

C̃RS,V
1 =

2πL

M2
KK

(
∆̃d

)
12
⊗
(
∆̃d

)
12

[
αs
2

(
1− 1

Nc

)
+Q2

d α+ ΩdRdR
Z

(s2
wQd)

2 α

s2
wc

2
w

]
,

CRS,V
4 =

2πL

M2
KK

(
∆̃D

)
12
⊗
(
∆̃d

)
12

[
− 2αs

]
,

CRS,V
5 =

2πL

M2
KK

(
∆̃D

)
12
⊗
(
∆̃d

)
12

[
2αs
Nc
− 4Q2

d α+ ΩdLdR
Z

4s2
wQd (T d3 − s2

wQd)α

s2
wc

2
w

]
,

CRS,h
2 =

1

2M2
h

(
gdh
)2

12
, C̃RS,h

2 =
1

2M2
h

(
gdh
)∗ 2

21
, CRS,h

4 =
1

2M2
h

(
gdh
)

12

(
gdh
)∗

21
,

(4.1.28)

where the factors Ωdd′
Z are equal to one in the minimal RS model and were given for the custo-

dial model in (3.3.163). The expressions in square brackets in CRS,V
i refer, in an obvious way,

to the contributions from KK gluons, KK photons, and from the Z boson and its KK exci-
tations. It was recognized in [273] that the chirally unsuppressed Higgs FCNCs, as discussed
in section 3.3.8.1, are mostly subleading, even for a Higgs mass as low as 126 GeV. We take
them nevertheless into account here as CRS,h

i , since they can be relevant when compared with
the small allowed range for contributions of new physics. The Wilson coefficients C3 and C̃3

do not receive tree-level contributions in the RS model, as they can arise from charged scalar
or tensor exchange only. Notice that in the minimal RS model, the QCD contributions are in
all cases larger by more than a factor of 3 than the combined QED and electroweak effects,
and that the numerically largest contribution proportional to CRS,V

4 is solely a QCD effect.
For the relevant observables we quantify this more precisely below. KK-gluon exchange thus
dominates all mixing amplitudes in the original RS scenario with SM bulk gauge symmetry.
Due to the large coefficients ΩdLdR

Z and ΩdRdR
Z , this can be different in the custodial RS model.

Indeed, the contributions from KK-gluon and KK-Z exchange become indeed of comparable
size and the coefficients of C1, C̃1, and C5 are enhanced by factors of approximately 1.3,
1.8, and 2.4. For K–K̄ mixing, which we discuss below, the pure QCD operator C4 is by
far dominant. This observation is important, as it implies that these mixing phenomena
mainly probe the extra-dimensional aspects of the strong interactions, but they are to first
approximation insensitive to the precise embedding of the electroweak gauge symmetry in
the higher-dimensional geometry. Thus, we will only show results for the minimal model
below. However, for Bd–B̄d and Bs–B̄s mixing the KK-Z exchanges becomes important, too,
as recognized in [212].

The tree-level expressions for the Wilson coefficients CRS,V
i given above refer to a renor-

malization scale µKK = O(MKK) and CRS,h
i to the scale µh = Mh. They must be evolved

down to a scale µ ≈ 2 GeV, where the hadronic matrix elements of the four-quark operators
can be evaluated using lattice QCD. The evolution is accomplished with the help of formulas
compiled in [271]. The hadronic matrix elements of the various operators are customarily

5We correct our result in [3] by a symmetry factor 1/2, which was missed in this work.
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expressed in terms of parameters Bi. For the operators relevant to our analysis, one defines

〈
K0
∣∣Q1(µ)

∣∣K̄0
〉

=
〈
K0| Q̃1(µ) |K̄0

〉
=

(
1 +

1

Nc

)
MKf

2
K

4
B1(µ) ,

〈
K0
∣∣Q4(µ)

∣∣K̄0
〉

=

[
MK

ms(µ) +md(µ)

]2MKf
2
K

4
B4(µ) ,

〈
K0
∣∣Q5(µ)

∣∣K̄0
〉

=
1

Nc

[
MK

ms(µ) +md(µ)

]2MKf
2
K

4
B5(µ) ,

(4.1.29)

where the meson states are normalized to one, 〈K0|K0〉 = 〈K̄0|K̄0〉 = 1. These definitions
are such that in the vacuum-insertion approximation (VIA)

[
B1(µ)

]
VIA

= 1 ,

[
B4(µ)

]
VIA

= 1 +
1

2Nc

[
ms(µ) +md(µ)

MK

]2

,

[
B5(µ)

]
VIA

= 1 +
Nc

2

[
ms(µ) +md(µ)

MK

]2

.

(4.1.30)

In our numerical analysis we employ the Bi parameters from [274]. We collect the set of input
values entering our calculations in appendix B.2.

The KL–KS mass difference ∆MK and the CP -violating quantity εK are given by

∆MK = 2 Re
〈
K0
∣∣H∆S=2

eff,full

∣∣K̄0
〉
, εK =

κε e
iϕε

√
2 (∆MK)exp

Im
〈
K0
∣∣H∆S=2

eff,full

∣∣K̄0
〉
, (4.1.31)

where ϕε = (43.52 ± 0.05)◦ [69] and κε = 0.94 ± 0.02 [275]. The suppression factor κε
parametrizes the effects due to the imaginary part of the isospin-zero amplitude in K → ππ
decays [276–278]. The best prediction of the SM including NNLO charm quark contributions
[279] reads

|εK |SM = (1.81± 0.28) · 10−3 . (4.1.32)

The dominant theoretical uncertainties arise from ηcc, ηct, the lattice QCD prediction of
B1 and the error on κε. The largest parametric uncertainty stems from the value of |Vcb|.
Within errors the SM prediction agrees fairly well with the experimental value |εK |exp =
(2.228± 0.011) · 10−3 [69]. We do not consider ∆MK numerically, as is plagued by very large
hadronic uncertainties.

In order to understand quantitatively which Wilson coefficient generically gives the dom-
inant contribution in the presence of new physics, we derive the approximate relation

〈
K0
∣∣H∆S=2

eff,RS

∣∣K̄0
〉
∝ CRS

1 + C̃RS
1 + 114.8

(
1 + 0.14 ln

(
µKK

3 TeV

))(
CRS

4 +
CRS

5

3.1

)
, (4.1.33)

where the large scale-independent coefficient consists of a factor of about 15 arising from
the chiral enhancement of the hadronic matrix elements [280, 281], and a factor of about 8
due to the RG evolution [270, 271] from 3 TeV down to 2 GeV. We neglected the different
evolution for the Higgs boson contributions for the illustration here. Assuming that all Wilson
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coefficients are of similar size, this relation implies that CRS
4 gives the dominant new physics

contribution to both ∆MK and |εK | in the RS framework.6

Direct CP Violation in K → ππ

We write the new-physics contributions to these decays using the usual operator basis Q1−10

augmented with chirality-flipped operators Q̃1−10 that are obtained from the original ones by
exchanging left- by right-handed fields. Explicitly, we use

H∆S=1
eff =

GF√
2

∑

q=u,c

λ(sb)
q

(
C1Q

q
1 + C2Q

q
2 +

10∑

i=3

CiQi + Cγ7 Q
γ
7 + Cg8 Q

g
8

)

+

10∑

i=3

(
CRS
i Qi + C̃RS

i Q̃i

)
,

(4.1.34)

where λ
(pr)
q ≡ V ∗qpVqr and Qq1,2 are the left-handed current-current operators arising from W±-

boson exchange, Q3−6 and Q7−10 are QCD and electroweak penguin operators, and Qγ7 and
Qg8 are the electromagnetic and chromomagnetic dipole operators. The operators relevant to
our discussion are defined as

Q3 = 4 (d̄Lγ
µsL)

∑
q

(q̄LγµqL) , Q4 = 4 (d̄αLγ
µsβL)

∑
q

(q̄βLγµq
α
L) ,

Q5 = 4 (d̄Lγ
µsL)

∑
q

(q̄RγµqR) , Q6 = 4 (d̄αLγ
µsβL)

∑
q

(q̄βRγµq
α
R) ,

Q7 = 6 (d̄Lγ
µsL)

∑
q
Qq (q̄RγµqR) , Q8 = 6 (d̄αLγ

µsβL)
∑

q
Qq (q̄βRγµq

α
R) ,

Q9 = 6 (d̄Lγ
µsL)

∑
q
Qq (q̄LγµqL) , Q10 = 6 (d̄αLγ

µsβL)
∑

q
Qq (q̄βLγµq

α
L) .

(4.1.35)

A summation over color indices α, β and flavors q = u, d, s, c, b is implied. To leading order
in small parameters, we obtain

CRS
3 =

παs
M2

KK

(∆′D)12

2Nc
− πα

6s2
wc

2
wM

2
KK

(ΣD)12 , C̃RS
3 =

παs
M2

KK

(∆′d)12

2Nc
, (4.1.36)

CRS
4 = CRS

6 = − παs
2M2

KK

(∆′D)12 , C̃RS
4 = C̃RS

6 = − παs
2M2

KK

(∆′d)12 ,

CRS
5 =

παs
M2

KK

(∆′D)12

2Nc
, C̃RS

5 =
παs
M2

KK

(∆′d)12

2Nc
+

πα

6s2
wc

2
wM

2
KK

(Σ′d)12 ,

CRS
7 =

2πα

9M2
KK

(∆′D)12 −
2πα

3c2
wM

2
KK

(ΣD)12 , C̃RS
7 =

2πα

9M2
KK

(∆′d)12 −
2πα

3s2
wM

2
KK

(Σ′d)12 ,

CRS
8 = CRS

10 = 0 , C̃RS
8 = C̃RS

10 = 0 ,

CRS
9 =

2πα

9M2
KK

(∆′D)12 +
2πα

3s2
wM

2
KK

(ΣD)12 , C̃RS
9 =

2πα

9M2
KK

(∆′d)12 +
2πα

3c2
wM

2
KK

(Σ′d)12 ,

6The chiral enhancement of the mixed-chirality matrix elements is much less pronounced for Bd,s–B̄d,s and
D–D̄ mixing and amounts to at most a factor of two. Furthermore, the Wilson coefficients are only evolved
down to the mass scale of bottom and charm mesons. We gave the resulting factors in [3], and we confirmed

that in this case the contribution from CRS
1 and C̃RS

1 can compete with the one arising from CRS
4 and CRS

5 .
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where

ΣA ≡ L
(

1

2
− s2

w

3

)
ωdLZ ∆A +

M2
KK

M2
Z

δA , Σ′A ≡ L
s2
w

3
ωdRZ ∆A +

M2
KK

M2
Z

δA . (4.1.37)

It is an interesting fact that, for ∆F = 1 transitions in general, the QCD contributions from
KK-gluon exchange no longer give the dominant contributions to the Wilson coefficients.
The effects due to Z-boson exchange are enhanced by an extra factor of L in (4.1.37), which
compensates for the smaller gauge couplings. Numerically, one finds in the minimal RS model
that, relative to CRS

4,6 , the Wilson coefficients CRS
3 , CRS

5 , CRS
7 , and CRS

9 are typically a factor

of about 2, 1/3, 3, and 9 different in magnitude. The chirality-flipped coefficients C̃3−10 are
generically very small in the model at hand, since they involve right-handed fermion profiles

that are naturally more UV-localized than their left-handed counterparts. The factors ω
dL,R
Z

in (4.1.37) were defined in (3.3.143). They switch off the main left-handed contribution and
enhance the right-handed contribution by a factor of 10 in the custodial model, while they
both equal one in the minimal model.

The Wilson coefficients (4.1.36) enter the prediction for ε′K/εK , which measures the ratio
of the direct and indirect CP -violating contributions to K → ππ. One extracts it from

∣∣∣∣
η00

η+−

∣∣∣∣
2

≈ 1− 6 Re

(
ε′K
εK

)
≈ 1− 6

ε′K
εK

, ηij ≡
A(KL → πiπj)

A(KS → πiπj)
, (4.1.38)

where the first approximation holds, since direct CP violation is very small. The second
approximation neglects the tiny phase difference of a few tenths of a degree, which can be
inferred from a chiral perturbation theory analysis [282]. Experimental evidence shows that
the parameter ε′K/εK is non-vanishing. The current average is given by (ε′K/εK)exp = (16.6±
2.3) · 10−4 [69].

Unfortunately, unlike the rare K decays with leptons in the final state, the observable
ε′K/εK is affected by large hadronic uncertainties. In spite of the large theory errors, a study
of ε′K/εK can provide useful information on the flavor structure of the underlying theory,
since this ratio depends very sensitively on the relative size of contributions from the QCD
penguin Q6 and electroweak penguin Q8, which cancel to a large extent in the SM. The strong
sensitivity of ε′K/εK to the electroweak penguin sector can lead to interesting correlations with
the rare K → πνν̄ and KL → π0l+l− decays. We investigate below to which extent such
correlations exist in the RS scenario.

In the presence of new-physics contributions to the Wilson coefficients of the operators
Q3−10 and their chirality-flipped partners Q̃3−10, the ratio ε′K/εK can be approximated by

ε′K
εK

= − Im
(
λ

(ds)
t FSM + FRS

) |εK |exp

|εK |
, (4.1.39)

where

FSM = −1.4 + 13.6R6 − 6.4R8 ,

FRS = 27.1K3 − 56.1K4 + 8.7K5 + 36.0K6 − 544.4K7 − 1663.5K8

+ 141.0K9 + 56.1K10 −
(
11.4K3 + 61.5K4 − 177.1K5 − 479.1K6

+ 6.0K7 + 27.5K8 − 18.7K9 + 16.4K10

)
R6 −

(
17.6K3 − 45.0K4

+ 90.8K5 + 218.6K6 − 8976.4K7 − 28190.5K8 + 102.4K9 + 23.8K10

)
R8 .

(4.1.40)
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We derived this formula in [3] following the approach outlined in detail in [283, 284]. The
function FSM comprises the information on the SM contributions to the Wilson coefficients
of the ∆S = 1 weak effective Hamiltonian at the next-to-leading order [285–290]. The given
expression corresponds to a charm-quark renormalization scale of µc = 1.3 GeV, and we have
employed two-loop formulas to calculate αs(µ) from αs(MZ) and to convert the top-quark
mass from the pole into the MS scheme. For the coefficients Ki entering the new-physics
contribution FRS, we obtain

Ki =
2 s2

wc
2
wM

2
Z

πα

(
CRS
i − C̃RS

i

)
, i = 3, . . . , 10 . (4.1.41)

The minus sign is a consequence of the odd parity 〈ππ|Q̃i|K〉 = −〈ππ|Qi|K〉. The electro-
magnetic coupling constant α as well as the Wilson coefficients CRS

i and C̃RS
i are taken to

be renormalized at the scale MW . In our numerical analysis, we determine CRS
i and C̃RS

i

from the initial conditions in (4.1.36) using the leading order RG equations for the evolution
from MKK down to MW . Notice that the inclusion of running effects is necessary to obtain
the correct result in this case, because a non-zero value of K8, having the largest numeri-
cal coefficient in (4.1.40), is only generated through operator mixing. We find to excellent
approximation

C3(MW ) =
(
0.416 η2 − 0.962 η + 1.570

)
C3(MKK)−

(
0.002 η2 − 0.242 η + 0.263

)
C6(MKK) ,

C4(MW ) = −
(
0.505 η2 − 1.465 η + 1.017

)
C3(MKK)−

(
0.416 η2 − 1.190 η − 0.189

)
C6(MKK) ,

C5(MW ) = −
(
0.034 η2 − 0.036 η − 0.001

)
C3(MKK) +

(
0.192 η2 − 0.592 η + 0.090

)
C6(MKK) ,

C6(MW ) =
(
0.002 η2 + 0.093 η − 0.102

)
C3(MKK) +

(
1.376 η2 − 3.005 η + 2.703

)
C6(MKK) ,

C7(MW ) = 0.987 η0.143C7(MKK) ,

C8(MW ) =
(
0.371 η−1.143 − 0.329 η0.143

)
C7(MKK) , (4.1.42)

C9(MW ) =
(
0.528 η−0.571 + 0.487 η0.286

)
C9(MKK) ,

C10(MW ) =
(
−0.528 η−0.571 + 0.487 η0.286

)
C9(MKK) ,

where η ≡ αs(MKK)/αs(mt). Here, we have omitted the suppressed contributions of C7,9(MKK)
to the QCD penguin coefficients C3−6(MW ) for simplicity. We stress that the coefficients
K3−10, which contain the (1,2) elements of the mixing matrices, have to be calculated in the
standard phase convention for the CKM matrix (2.2.14) in order to obtain correct results.
The same applies to all Wilson coefficients appearing hereafter.

The non-perturbative parameters R6 and R8 are given in terms of the hadronic parameters

B
(1/2)
6 ≡ B(1/2)

6 (mc) and B
(3/2)
8 ≡ B(3/2)

8 (mc) and the strange- and down-quark masses7 as

Ri ≡ B(j)
i

[
112.3 MeV

ms(mc) +md(mc)

]2

. (4.1.43)

The hadronic parameters present the dominant source of theoretical uncertainty in the pre-
diction of the ratio ε′K/εK . The status of the calculation of the 〈ππ|Q6,8|K〉 matrix elements

is reviewed in [291]. While B
(3/2)
8 = 1.0± 0.2 is obtained in various approaches, the situation

with B
(1/2)
6 is far less clear. For instance, in the framework of the 1/Nc expansion, values for

7The normalization is adapted to our updated values of md and ms compared to e.g. [291].
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B
(1/2)
6 notably above unity are obtained [292–295]. For example, the authors of [292, 293]

find B
(1/2)
6 = 2.5± 0.4 and B

(3/2)
8 = 1.1± 0.3. On the other hand, while the quenched calcu-

lations of the values of B
(3/2)
8 are compatible with unity [296, 297], they are lower than 1 for

B
(1/2)
6 [298, 299]. First unquenched determinations of the parameters B

(1/2)
6 and B

(3/2)
8 are

becoming possible very recently. A qualitative understanding of the ∆I = 1/2 rule — the fact
that the final two pion state is about 450 times more likely to have isospin I = 0 than I = 2
— was given in [300]. They find that the two dominant non-perturbative matrix elements
entering the isospin 2 and 0 amplitudes cancel in the former, while they add constructively
in the latter. However, a final result for the isospin 0 amplitude at physical meson masses is
not yet available.

In view of the rather uncertain value of B
(1/2)
6 , we adopt a very conservative point of view

and scan the hadronic parameters and light masses in our SM analysis of ε′K/εK over the
ranges

B
(1/2)
6 ∈ [0.8, 2.0] , B

(3/2)
8 ∈ [0.8, 1.2] , ms(mc) +md(mc) ∈ [107.8, 117.0] MeV , (4.1.44)

requiring in addition B
(1/2)
6 > B

(3/2)
8 , as suggested by studies of the 〈ππ|Q6,8|K〉 matrix

elements in the framework of the 1/Nc expansion [292–295]. The quoted ranges of the light
quark masses at the scale mc correspond to the 2σ ranges of the values given in appendix B.2
for the scale 2 GeV, when including all relevant errors in the renormalization-group evolution.

Our SM prediction reads

(
ε′K
εK

)

SM

=
(

11.3+31.5
− 3.6

)
· 10−4 , (4.1.45)

where the quoted central value has been obtained from (4.1.39) by setting FRS = 0 and
R6,8 = 1. In particular, it includes the normalization factor |εK |exp/|εK |SM with |εK |SM taken
from (4.1.32). Rather than corresponding to a 68% CL, the given uncertainties represent the
ranges in which we believe that the true value of (ε′K/εK)SM lies with a high probability. Note
that within errors the SM prediction is in agreement with the experimental value given above,
as well as other SM predictions [284, 291, 301]. In our numerical analysis of ε′K/εK in the RS

scenario, we scan independently over the ranges given in (4.1.44) requiring B
(1/2)
6 > B

(3/2)
8 ,

and check whether it is possible to achieve agreement with the measured value. We will see
below that, even with such a conservative treatment of errors, the constraint from ε′K/εK
has a non-negligible effect on the possible new-physics effects in rare K decays within the RS
model.

Rare K and B Decays

In the following, we gather the formulas for the numerical analysis of rare kaon decays.
We begin with the “golden modes” K → πνν̄ and then discuss the theoretically less clean
KL → µ+µ− and KL → π0l+l− channels. We emphasize that the latter modes can add useful
information on the chiral nature of the flavor structure of possible non-standard interactions.
Finally, we summarize also the necessary formulas for an evaluation of Bd,s → µµ.

The effective Hamiltonian describing s→ dνν̄ transitions reads

Hs→dνν̄eff = Cν (d̄Lγ
µsL)

∑
l
(ν̄l Lγµνl L) + C̃ν (d̄Rγ

µsR)
∑

l
(ν̄l Lγµνl L) , (4.1.46)
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where the new-physics contributions arising in the RS model are given by

CRS
ν =

2πα

s2
wc

2
wM

2
KK

(ΣD)12 , C̃RS
ν = − 2πα

s2
wc

2
wM

2
KK

(Σ′d)12 . (4.1.47)

Higgs exchange gives no contribution due to the smallness of neutrino masses.

After summation over the three neutrino flavors, the branching ratios for the K → πνν̄
modes can be written as

Br(KL → π0νν̄) = κL
(
ImX

)2
,

Br(K+ → π+νν̄(γ)) = κ+

(
1 + ∆EM

)
|X|2 ,

(4.1.48)

where κL = (2.231 ± 0.013) · 10−10 (λ/0.225)8 and κ+ = (0.5173 ± 0.0025) · 10−10 (λ/0.225)8

capture isospin-breaking corrections in relating K → πνν̄ to K → πeν, while the factor
∆EM = −0.003 encodes long-distance QED corrections affecting the charged mode [302]. The
SM and RS contributions entering the coefficient X ≡ XSM +XRS take the form

XSM =
λ

(ds)
t

λ5
Xt +

Reλ
(ds)
c

λ
Pc,u , XRS =

s4
wc

2
wM

2
Z

α2λ5

(
CRS
ν + C̃RS

ν

)
. (4.1.49)

The top-quark contribution is Xt = 1.469 ± 0.017 [303–305], and the parameter Pc,u =
(0.41 ± 0.04) (0.225/λ)4 includes dimension-six and -eight charm-quark effects and genuine
long-distance contributions due to up-quark loops [306–309].8

Adding individual errors in quadrature, we find the following SM predictions for the two
K → πνν̄ branching fractions:

Br(KL → π0νν̄)SM = (2.5± 0.4) · 10−11 ,

Br(K+ → π+νν̄(γ))SM = (8.0± 0.9) · 10−11 .
(4.1.50)

The quoted errors are dominated by the uncertainties due to the CKM input. For a more
precise break-up into the various sources of uncertainty, we refer to [305]. In view of the
expected improvement in the extraction of the mixing angles, precise measurements of the
K → πνν̄ branching ratios will provide a unique test of the flavor sector of a variety of
models of new physics, in particular of those where the strong Cabibbo suppression of the
SM amplitude is not present.

The effective Hamiltonian for s → dl+l− transitions contains the following operators in
addition to those entering H∆S=1

eff as given in (4.1.34):

Hs→dl+l−eff = Cl1 (d̄Lγ
µsL)

∑
l
(l̄LγµlL) + Cl2 (d̄Lγ

µsL)
∑

l
(l̄RγµlR)

+ C̃l1 (d̄Rγ
µsR)

∑
l
(l̄RγµlR) + C̃l2 (d̄Rγ

µsR)
∑

l
(l̄LγµlL)

+ Cl3 (d̄LsR)
∑

l
(l̄l) + C̃l3 (d̄RsL)

∑
l
(l̄l) ,

(4.1.51)

8The parameter Pc,u is affected by new-physics contributions of order m2
Z,W /M

2
KK to the neutral- and

charged-current interactions present in the RS scenario. Compared to the SM contribution these corrections
are negligible. The same applies to the charm-quark effects appearing in KL → µ+µ−.
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where in the RS model

CRS
l1 = − 4πα

3M2
KK

(∆′D)12 −
2πα (1− 2s2

w)

s2
wc

2
wM

2
KK

(ΣD)12 ,

CRS
l2 = − 4πα

3M2
KK

(∆′D)12 +
4πα

c2
wM

2
KK

(ΣD)12 ,

C̃RS
l1 = − 4πα

3M2
KK

(∆′d)12 −
4πα

c2
wM

2
KK

(Σ′d)12 ,

C̃RS
l2 = − 4πα

3M2
KK

(∆′d)12 +
2πα (1− 2s2

w)

s2
wc

2
wM

2
KK

(Σ′d)12 ,

CRS
l3 = − 2ml

M2
hv

(∆gdh)12 , C̃RS
l3 = − 2ml

M2
hv

(∆gdh)∗21 . (4.1.52)

Similar to the case of Higgs contributions to εK , the corrections to s → dl+l− arising from
CRS
l3 and C̃RS

l3 turn out to be mostly subleading. We take them into account, in order to
reproduce the correct distribution also for the region with small effects of new physics.

Notice that electromagnetic dipole operators enter the effective Hamiltonian for s→ dl+l−

first at the one-loop level and thus are formally subleading with respect to the contributions
from semileptonic operators. Whether this formal suppression translates into a numerical one
can only be seen by calculating the complete one-loop matching corrections to the Wilson
coefficients of the electromagnetic dipole operators in the RS model. Such a computation
seems worthwhile but is beyond the scope of this thesis. The possibility that the inclusion
of such one-loop effects could have a non-negligible impact on our results should however be
kept in mind.

The branching ratio of the KL → µ+µ− decay can be expressed as [310]

Br(KL → µ+µ−) =
(

6.7 +
[
1.1 Re(Y ′A) + yc ± yγγ

]2
+
[
0.08 Im(Y ′S)

]2) · 10−9 , (4.1.53)

where yc = (−0.20±0.03) and yγγ = 0.4±0.5 encode the charm-quark contribution [311] and
two-photon correction [312], respectively. The sign of the latter contribution depends on the
sign of the KL → γγ amplitude, which in turn depends on the sign of an unknown low-energy
constant. Theoretical arguments suggest that the sign of the KL → γγ amplitude is positive
[313]. Better measurements of KS → π0γγ and K+ → π+γγ could settle this issue. The
error on yγγ reflects only the uncertainty on the dispersive part of the two-photon amplitude,
which at present is the dominant individual source of error.

The coefficients Y ′A,S are given by

Y ′A = yA+
s2
wc

2
wM

2
Z

2πα2λ
(ds)
t

(
CRS
l1 −CRS

l2 + C̃RS
l1 − C̃RS

l2

)
, Y ′S =

s4
wc

4
wM

4
Z

α2mlms

(
CRS
l3 − C̃RS

l3

)
, (4.1.54)

where yA = (−0.68±0.03) is the SM contribution to the Wilson coefficient of the semileptonic
axial-vector operator [314], and the coefficients CRS

l1−3. The coefficient Y ′S describes the cor-
rection due to tree-level Higgs exchange. This correction is scale dependent but numerically
insignificant, so that in practice one can neglect its RG evolution.

In the SM, one finds for the KL → µ+µ− branching ratio

Br(KL → µ+µ−)SM = {7.0± 0.6, 8.5± 1.4} · 10−9 , (4.1.55)
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in the case of positive/negative sign of the two-photon amplitude. The shown uncertainties
have been obtained by adding the individual errors in quadrature. The world average of the
measured value is dominated by the B871 experiment at BNL. It reads Br(KL → µ+µ−)exp =
(6.84±0.11) ·10−9 [69]. We will see below that the KL → µ+µ− decay can lead to interesting
constraints in the RS model, once they are measured precisely.

The branching ratios of the decays KL → π0l+l− are obtained from

Br(KL → π0l+l−) =
(
C ldir ± C lint |aS |+ C lmix |aS |2 + C lγγ + C lS

)
· 10−12 , (4.1.56)

where the chiral-perturbation-theory counterterm |aS | = 1.20 ± 0.20 has been extracted
from the measurements of the KS → π0l+l− branching fraction [315, 316]. The coefficients
C ldir,int,mix,γγ,S read [310]

Cedir = (4.62± 0.24)
[
(ImYA)2 + (ImYV )2

]
,

Ceint = (11.3± 0.3) ImYV , Cemix = 14.5± 0.5 , Ceγγ ≈ CeS ≈ 0 ,

Cµdir = (1.09± 0.05)
[
2.32 (ImYA)2 + (ImYV )2

]
,

Cµint = (2.63± 0.06) ImYV , Cµmix = 3.36± 0.20 , Cµγγ = 5.2± 1.6 ,

CµS = (0.04± 0.01) ReYS + 0.0041 (ReYS)2 .

(4.1.57)

They describe short-distance direct CP violation C ldir, long-distance indirect CP violation
C lmix, which can be determined from the experimental data on KS → π0l+l−, and a long-
distance CP -conserving correction C lγγ , which can be extracted from a measurement of KL →
π0γγ. The direct and indirect CP -violating amplitudes interfere, leading to the term C lint. The
analyses in [317, 318] point towards a constructive interference, i.e. the plus sign in (4.1.56).
Correction due to scalar operators are encoded in C lS . Both C lγγ is helicity suppressed and is
therefore negligible.

The coefficients YA,V,S take the form

YA = yA +
s2
wc

2
wM

2
Z

2πα2λ
(ds)
t

(
CRS
l1 − CRS

l2 − C̃RS
l1 + C̃RS

l2

)
,

YV = yV −
s2
wc

2
wM

2
Z

2πα2λ
(ds)
t

(
CRS
l1 + CRS

l2 + C̃RS
l1 + C̃RS

l2

)
,

YS =
s4
wc

4
wM

4
Z

α2mlms

(
CRS
l3 + C̃RS

l3

)
,

(4.1.58)

where yV = 0.73±0.04 represents the SM contribution to the Wilson coefficient of the semilep-
tonic vector operator [314]. The coefficients CRS

l1−3 and C̃RS
l1−3 entering YV are understood to be

evaluated at a low-energy scale µ ≈ 1 GeV. In the numerical analysis we use leading order RG
running to determine these coefficients from the initial conditions of CRS

3−6,l1−3 and C̃RS
3−6,l1−3

as given in (4.1.36) and (4.1.52). The new-physics contributions affect mainly YA, as the
corresponding contributions in YV cancel each other to a large extent and YS is suppressed.
In consequence, RG effects influence the obtained results only in a minor way.

The SM predictions for the branching ratios of KL → π0l+l− are given by

Br(KL → π0e+e−)SM = {3.5± 0.9, 1.6± 0.6} · 10−11 ,

Br(KL → π0µ+µ−)SM = {1.4± 0.3, 0.9± 0.2} · 10−11 ,
(4.1.59)
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for constructive/destructive interference. Better measurements of the KS → π0l+l− decay
rate would allow to improve the quoted errors, which are currently dominated by the uncer-
tainty due to the chiral-perturbation-theory parameter |aS |.

The integrated forward-backward CP asymmetry for KL → π0µ+µ− is given by [310]

AFB(KL → π0µ+µ−) =
(1.3± 0.1) ImYV ∓ 0.057 |aS | ReYS ± (1.7± 0.2) |aS |

Br(KL → π0µ+µ−)
· 10−12 ,

(4.1.60)
and the corresponding SM predictions read

AFB(KL → π0µ+µ−)SM = {21± 4, −12± 4}% , (4.1.61)

with the upper and lower sign in the case of constructive and destructive interference, re-
spectively. Despite the fact that the predictions of the decays KL → π0l+l− are not fully
under theoretical control, the latter transitions represent promising channels to study new
physics. In particular, the different impact of helicity-suppressed contributions to the muon
and electron modes makes the comparison of KL → π0µ+µ− and KL → π0e+e− a powerful
tool for analyzing the chiral properties of non-standard flavor interactions.

Finally, we also consider the decay channel of Bq mesons to two muons. The branching
ratios for q = d, s can be expressed as

〈
Br(Bq → µ+µ−)

〉
=

1

1− yq
G2
F α

2m3
Bq
f2
Bq
τBq

64π3s4
w

∣∣λ(qb)
t

∣∣2
√

1−
4m2

µ

m2
Bq

×
(

4m2
µ

m2
Bq

∣∣CA − C ′A
∣∣2 +m2

Bq

[
1−

4m2
µ

m2
Bq

]∣∣∣∣
mbCS −mq C

′
S

mb +mq

∣∣∣∣
2)

,

(4.1.62)

where mBq , fBq , and τBq are the mass, decay constant, and lifetime of the Bq meson. The
electromagnetic coupling α entering the branching ratios is to be evaluated at MZ . Here
we consider the time-averaged values over t � τBq . This is indicated by the angle brackets
in (4.1.62). It was found in [319] that the finite lifetime difference of the two Bq mass
eigenstates gives a relevant shift between the experimentally accessible time-averaged value
and the theoretically calculated value at decay time t = 0 in the case of q = s. This is
encoded in the relative deviation of the two Bs mass eigenstates ys = (ΓLs −ΓHs )/(ΓLs +ΓHs ) =
0.088±0.014, whereas the effect is negligible for q = d. This result holds for new physics only
if (pseudo-)scalar contributions are small, which is true in the case at hand.

The coefficients CA,S and C ′A,S read

CA = cA −
s4
wc

2
wM

2
Z

α2λ
(qb)
t

(
CRS
l1 − CRS

l2

)
, C ′A =

s4
wc

2
wM

2
Z

α2λ
(qb)
t

(
C̃RS
l1 − C̃RS
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)
,

CS =
2s4
wc

2
wM

2
Z

α2mbλ
(qb)
t

CRS
l3 , C ′S =

2s4
wc

2
wM

2
Z

α2mqλ
(qb)
t

C̃RS
l3 ,

(4.1.63)

where cA = 0.96 ± 0.02 denotes the SM contribution to the Wilson coefficient of the axial-
vector current [303, 304], and the coefficients CRS

l1−3 and C̃RS
l1−3 now contain the (1,3) or (2,3)

elements of the mixing matrices for q = d, or s. Note that CA and C ′A are scale independent.
The SM branching ratios of the Bq → µ+µ− decay channels evaluate to

〈
Br(Bd → µ+µ−)SM

〉
= (1.05± 0.11) · 10−10 ,

〈
Br(Bs → µ+µ−)SM

〉
= (3.48± 0.32) · 10−9 ,

(4.1.64)
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with our choice of input parameters. This agrees well with values given in [319–321]. Leptonic
B-meson decays belong to the channels that are studied by three out of the four major LHC
experiments, namely ATLAS, CMS, and LHCb. A very recent analysis of LHCb has indeed
found evidence at 3.5σ CL for a branching ratio that is compatible with the SM prediction〈
Br(Bs → µ+µ−)exp

〉
=
(
3.2+1.5
−1.2

)
· 10−9 [260] with an error that is to 95% of statistical

origin, so the measurement is expected to improve significantly in the near future. The latter
reference also includes an upper limit of

〈
Br(Bd → µ+µ−)exp

〉
< 9.4 · 10−10 at 95% CL.

This result strongly constrains new physics contributions, particularly through the scalar
semileptonic operators, which occur e.g. in the MSSM at large tan(β). We will see below that
the constraint also starts to cut into the RS parameter space.

4.1.2.3 Modifications of the CKM Matrix

A physically meaningful definition of the CKM matrix, which can be compared to experimen-
tal results, is based on effective four-fermion interactions. In the RS model, it is induced by
the exchange of the entire tower of W bosons and their KK excitations. In the custodial model
this includes the modes of the charged gauge bosons from the additional SU(2)R. Further-
more, an extraction of a CKM element generally involves a normalization of the semileptonic
amplitude relative to the Fermi constant GF . We accounted for this, such that the individual
factors in the combination GF VL,R are physically observable, and we have given the result
for the corresponding CKM matrices in (3.3.154).

The dominant contribution to the right-handed mixing matrix VR is suppressed both by
a factor v2/M2

KK and a chiral factor mumd/v
2. The latter reflects the fact that VR purely

originates from quark mixing. In consequence, right-handed charged-current interactions are
too small to give rise to any observable effect.

Unlike the CKM matrix in the SM, the left-handed quark mixing matrix VL is not unitary
[1, 200, 239, 322]. However, we found in an explicit numerical analysis of the minimal RS
model [3] that the effect is unobservable. Here, we summarize the general argument why this
is to be expected.

The leading contribution to VL in (3.3.154) stems from ∆+Q
mn , which is unitary to a very

good approximation. Corrections of order v2/M2
KK arise from the non-universality of KK-

gauge bosons encoded in ∆̄+Q
mn . In the custodial RS model also the admixtures from U ′ and

D′ quarks described by ε+ q
mn are relevant, whereas the admixtures of U , D, and u′ quarks are

of order v4/M4
KK and will be neglected in the following. From (3.3.154), it is also evident that

no custodial protection mechanism is at work in the charged-current sector [216].

The most precise measure of CKM unitarity violation is given by the combination of the
first row elements

∆non
row1 ≡

(
1− VLV †L

)
11

= 1−
(
|Vud|2 + |Vus|2 + |Vub|2

)
, (4.1.65)

and determined to be ∆non
row1 = (1 ± 6) · 10−4 [69]. We obtain an approximate expression

for the first row non-unitarity using a Froggatt-Nielsen analysis, i.e. we obtain the leading
contribution in an expansion in the Cabibbo angle λ (see (3.3.92)). Normalizing the result
to the typical value of the bulk-mass parameter cQ1 as given in table B.1, we obtain in the
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custodial RS model

∆non
row1 ≈ 2 · 10−6

(
F (cQ1)

F (−0.63)

TeV

MKK

)2

×
[ ∣∣∣∣ diag
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2

3 + 2cQi

)
~u

∣∣∣∣
2
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∣∣∣∣diag

(√
2

1− 2cT1i

)
Y T
d ~u

∣∣∣∣
2
]
.

(4.1.66)

The vector ~u is given by

~u =

(
1,−(Mu)21

(Mu)11
,
(Mu)31

(Mu)11

)
, (4.1.67)

where Mu denotes the matrix of minors of Yu. In the minimal RS model, only the first
contribution in the square brackets in (4.1.66) is present. It gives a strictly positive contribu-
tion to ∆non

1 , which is typically of O(1) but may vary with the up Yukawa matrix elements
in ~u. The resulting non-unitarity however stays well below the observable limit due to the
very small prefactor in (4.1.66). The contributions from the admixture of U ′ and D′ quarks
feed into second term in the square brackets in (4.1.66). They are typically of O(y2

d/4) and
have negative sign. This can in principle lead to negative values of ∆non

1 , but is again below
observable limits.

A detailed discussion of the breakdown of CKM non-unitarity in the custodial RS model
has also been presented in [239]. Unfortunately, in that work the CKM matrix is defined via
the WuiLd

j
L vertex and not the effective four-fermion interactions induced by the exchange of

the W boson and its KK excitations. Also the modification of GF is not considered there.
These differences prevent us from a straightforward comparison of the results in [239] with
ours.

In [3], we also considered direct extractions of the CKM matrix elements |Vub|, |Vcb|, and
|Vtb|. The value of |Vub/Vcb| can be determined from the relative ratio of charmless over
charmed semileptonic B decays. It enters the expression Ru ≡

∣∣(VudV ∗ub)/(VcdV ∗cb)
∣∣, i.e. the

length of the side of the rescaled unitarity triangle opposite to the angle β. We found that
also the RS contributions to Ru and contributions to the B → τντ branching ratio from the
modification of |Vub| alone stay below the observable level. Particularly it is not possible
to explain the 3σ tension between the inclusive and exclusive determination of Vub [323]. A
direct determination of |Vtb| without assuming unitarity is possible from measurements of the
single top-quark production cross section. This could become interesting at the high energy
LHC run. Simulation studies by ATLAS [324] and CMS [325] suggest that the cross section of
the most promising single-top-production channel, namely pp→ tqb+X, will be measurable
with a total error of 10%, which implies that |Vtb| could be determined with 5% accuracy. It
is straightforward to find an approximation for Vtb in the RS model in the same way as we
arrived at (4.1.66). We obtain in the custodial RS model

Vtb ≈ 1− 3 · 10−2

(
F (cQ3)

F (−0.34)

TeV

MKK

)2
[

2

3 + 2cQ3

− v2

M2
WL

∑

i

2|(Yd)3i|2
1− 2cT1i

]
, (4.1.68)

where the second term in square brackets is again absent in the minimal RS model. Remark
that no further Yukawa entries are present in the strictly negative contribution of the minimal
RS model. This modification cannot be enhanced much further — it leads to a minimal 4%
reduction at cQ3 = 0.5 instead of the typical 3% — such that the modification of Vtb remains
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close to, but below the potentially observable level, even for a KK scale as low as 1 TeV. The
positive contribution in the custodial model typically even cancels this modification.

We conclude that the split fermion structure and the necessarily high scale of the RS
model effectively prevents modifications of the CKM matrix from potential observation, and
that a cancellation of contributions in the custodial model countervails the possible effect of
a lower accessible scale.

4.1.2.4 Numerical Analysis of Flavor Observables

In the following part, we describe our numerical analysis of the flavor processes we introduced
above, based on the minimal RS model of section 3.3.4.2.

We scan the parameter space of the RS model, taking into account also the constraints
from precision measurements of Z → bb̄ decays. A discussion of these constraints follows
in section 4.2.2. Details of the employed algorithm and statistical quality of the parameter
space sample we use here are summarized in appendix B.3. We remark that it is not possible
to associate a rigorous statistical meaning to the calculated fractions of such a frequentistic
Monte-Carlo probe of the parameter space, as it always depends on how the parameters are
generated and fits are performed. Therefore, we lay out the details of our technique in the
appendix.

We introduce a standard scenario, which corresponds to the usual setup of the RS model,
with natural Yukawa matrices that are restricted by the perturbativity bound of [211], and
full warping that connects UV-brane energy scales with the Planck scale. We will quantify
constraints and correlations within this standard scenario (labeled “std” below). We will also
investigate to which extent a scenario with an SU(3)di flavor symmetry in the right-handed
down-quark bulk masses cdi = cd [254] (labeled “SU3d” and abbreviated as aligned scenario)
and a scenario with warping of only three orders of magnitude ε = 10−3, the LRS model [192],
allows us to relax the constraints arising and quark-flavor physics.

Kaon Mixing

The predictions for |εK | in the minimal RS model with standard parameter choices is displayed
in the upper left panel of figure 4.3. The lower two panels shows the predictions for the two
modified scenarios introduced above. All shown points reproduce the correct quark masses
and CKM parameters within errors and are fine-tuned not stronger than one per-mil. These
requirements are imposed on all the numerical data used below and understood implicitly
in the following. We define the fine-tuning measure following Barbieri and Giudice [326]
and describe our Monte-Carlo procedure in detail in appendix B.3. Points marked in blue
are consistent with the bounds from electroweak precision observables (EWPOs) of the Zbb̄
observables at the 3σ CL. The bound corresponds to (4.2.17), and we discuss it in detail
in section 4.2.2. Points marked orange are furthermore consistent with the measurement
of εK at 99% CL after combining theoretical and experimental errors. We observe a slow
decoupling behavior with MKK and a large spread of the RS corrections, which is illustrated
by the middle cyan line, which represents the fit to the median value of |εK |, as obtained
after a fine grained binning in MKK of the data set of gray points. We verified that the
fit to the data set that fulfills the Zbb̄ constraint is essentially unchanged, i.e. there is no
correlation between this constraint and the distribution of |εK |. While the median value of
|εK | becomes consistent with the measurement for MKK & 8 TeV only, the 5% quantile crosses
the experimentally allowed range already at 1.8 TeV. For such low values of MKK one observes
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from all three panels that the values of |εK | are on average a factor of about 100 larger than
the SM prediction [211, 212, 229, 254, 255]. The order-of-magnitude enhancement of |εK | is
explained by the following observations. First, it turns out that even for low KK scales the
magnitude of the RS contribution to ∆MK typically does not exceed the SM contribution
by an unacceptably large amount given the huge SM uncertainties. Second, the ratio of
imaginary to real part of the K–K̄ mixing amplitude is strongly suppressed in the SM due

Figure 4.3: Predictions for |εK | as a function of MKK in the three benchmark scenarios of
the minimal RS model. Blue points fulfill the EWPO bounds of the Zbb̄ vertex at the 3σ
CL. Points that are additionally in agreement with the experimental value of |εK | at 99%
CL (including the theory uncertainty) are colored orange. The three cyan lines illustrate the
decoupling behavior with MKK, as obtained from a fit to the 5%, 50%, and 95% quantile of
the distribution of gray points. The upper right panel shows the percentage of gray scatter
points that are consistent with the experimental values of |εK | as a function of MKK.
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to the smallness of Im
(
V ∗tsVtd

)
. Numerically, one finds

[
ImMK∗

12

ReMK∗
12

]

SM

≈−2A4λ10(1− ρ̄) η̄ ηttS0(xt)/(λ
2 ηcc xc) ≈ −1/150 , (4.1.69)

where S0(xt) originates from the one-loop box diagrams containing a top quark, while ηtt
and ηcc summarize higher-order QCD corrections in the top- and charm-quark sectors [279,
327]. Under the natural assumption that the phase in (MK∗

12 )RS is of O(1), it follows that
|εK |RS/|εK |SM ∼ 100. Large deviations of |εK |RS from this generic value require a certain,
but mild tuning of parameters, for example an adjustment of the phase of the associated
combination of Yukawa couplings, so that ImMK∗

12 becomes comparable to the SM value. We
verified that this tuning is mild by producing the diagrams of figure 4.3 also for fine-tuning
of less than one percent and find that relevant changes in the distribution appear only for
values of |εK | far below the allowed region; in particular, there would be a hard cutoff of
values |εK | . 0.1 |εK |exp, which is irrelevant for the discussion at hand.

One method to protect specifically |εK | is to arrange for common bulk-mass parameters
cd ≡ cdi in the sector of the right-handed down-type quarks [254], e.g. coming from a flavor
symmetry SU(3)dc (labeled “SU3d” here). In this case, certain mixing matrices differ from
the ones present in the RS model with hierarchical values of F (cdi). The phenomenologically

most important change occurs in the case of (∆̃D)mn⊗(∆̃d)mn, which becomes quasi-diagonal.
To derive an expression for the off-diagonal elements, one has to expand the flavor matrices
defined in (3.3.158) up to O(v2/M2

KK). Employing (3.3.88), we find that the relation (3.3.159)
receives the correction

(δ̃D)mn ⊗ (δ̃d)mn =
mdmmdn

M2
KK

∑

i,j

[(
U †d
)
mi

(
Ud
)
in

(δ̃D)ij
(
U †d
)
mj

(
Ud
)
jn

+
(
W †d
)
mi

(
Wd

)
in

(δ̃d)ij
(
W †d
)
mj

(
Wd

)
jn

] (4.1.70)

from the terms in (3.3.158) involving both even C
(A)
m (φ) and odd S

(A)
m (φ) fermion profiles.

Neglecting terms suppressed by F 2(cQi) and F 2(cQi)F
2(cQj ), the elements of (δ̃D)ij take the

form

(δ̃D)ij =
2(3 + cQi − cQj )

(3 + 2cQi)(3− 2cQj )(2 + cQi − cQj )
F 2(cQi)

F 2(cQj )
. (4.1.71)

An analogous expression holds in the case of (δ̃d)ij with cQi replaced by cdi . Using a Froggatt-
Nielsen like analysis, as discussed in section 3.3.6, we find that to leading order in hierarchies

(∆̃D)mn ⊗ (∆̃d)mn ∼





F (cQm)F (cQn)F (cdm)F (cdn) , “standard” ,

F (cQm)F (cQn)F 2(cd)

(
δmn +

Y 2
d v

2

2M2
KK

)
, “aligned” .

(4.1.72)

We have only shown the leading order flavor-off-diagonal contribution. Notice that the
O(v2/M2

KK) correction arising in the aligned case is solely due to the first line in (4.1.70)
involving left-handed rotations Ud. The contribution from the second line in (4.1.70) is fur-
ther suppressed, since the universality of (δ̃d)ij ∼ 1 in combination with the unitarity of the
Wd matrices renders it negligibly small.
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The relation (4.1.72) implies that there is a suppression of the Wilson coefficient CRS
4

in the aligned relative to the standard hierarchical case. We find the following approximate
scaling

(CRS
4 )“aligned”

(CRS
4 )“standard”

∼ y2
dv

2

2M2
KK

md

ms

1

λ
≈ 8 · 10−3

(
TeV

MKK

)2

y2
d , (4.1.73)

where yd is the typical absolute value of entries of the 5d down-type Yukawa matrix. Our
results (4.1.72) and (4.1.73) agree with the findings in [254] derived by means of the mass-
insertion approximation. The equivalence of our exact approach and the mass-insertion
approximation follows from the “IR dominance” of the overlap integrals (3.3.158) and the

boundary conditions in (3.3.42), which connect the odd S
(A)
n (π−) with the even C

(A)
n (π)

fermion profiles. While the suppression factor of O(100) in (4.1.73) appears promising, only a
rigorous numerical analysis including all contributions can tell us to which extent the aligned
scenario allows to relax the stringent constraint from |εK |. The results of such an analysis
are depicted in the lower left panel of figure 4.3, which shows a visible improvement relative
to the standard benchmark scenario.

To quantify the improvement, we calculate the fraction P (|εK |) of points fulfilling the |εK |
constraint by binning the data in MKK in steps of 100 GeV and fitting the binned data to an
appropriate function. In the case at hand, we find that the combination of a Fermi function
and a second-order polynomial is perfectly suited to reproduced the observed behavior. From
the upper right panel in figure 4.3, it is apparent that a significantly larger fraction of pa-
rameter space leads to a consistent description of the experimental data on |εK | compared to
the standard scenario. Numerically, we find that P (|εK |) > 3% is fulfilled for MKK > 1.8 TeV
(MG(1) > 4.4 TeV) in the standard case and already for MKK > 1.2 TeV (MG(1) > 3.0 TeV) in
the aligned case. We have also studied the effect of a slight misalignment of the bulk-mass
parameters cd, which effectively simulates the presence of flavor non-universal brane kinetic
terms. In agreement with [254], we find that the obtained results depend very sensitively on
the exact amount of non-universality and that already small deviations from cdi = cd can
spoil the O(v2/M2

KK) suppression in (4.1.73). A drawback of the aligned RS framework is
the impaired consistency with the EWPOs from Z → bb̄. This comes from the fact that
the singlet bR has to be localized further away from the IR brane compared to the original
hierarchical case. Typically one has cbR = cd ≈ −0.60 instead of cbR ≈ −0.58 (c.f. table B.1).
In order to obtain the correct value of the bottom-quark mass, the doublet (tL, bL) thus needs
to be localized more closely to the IR brane, which is disfavored by the resulting contribu-
tions to the ZbLb̄L coupling in the minimal RS model. Hence, it is even more favorable to
combine the aligned scenario with the custodial bulk symmetry, where the ZbLb̄L corrections
are essentially absent.

The presence of the “volume factor” L in (4.1.28) suggests another cure for the “flavor
problem” in the ∆S = 2 sector by reducing the UV cutoff sufficiently below the Planck scale.
Indeed, the alleviation of the |εK | constraint has been mentioned as one of the attractive fea-
tures of the LRS scenario [192]. However, a careful analysis reveals that the naive conjecture
of a reduction of terms proportional to L is flawed in the case of |εK | [229]. This feature
is illustrated in the lower right panel and the blue (lower) curve in the upper right panel of
figure 4.3. We see that in the LRS scenario with L = ln(103), the value of P (|εK |) is strictly
smaller than in the standard scenario for all values of MKK. Comparing to the values given
above, we find P (|εK |) > 3% for MKK > 4.7 TeV (MG(1) > 11.4 TeV) only. The origin of
the enhancement of flavor-changing ∆S = 2 effects is the phenomenon of “UV dominance”,
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which arises whenever the bulk-mass parameters determining the strange-quark mass satisfy
the critical condition cQ2 + cd2 < −2 [229]. The relevant overlap integrals (3.3.158) are then
dominated by the region near the UV brane, thereby partially evading the RS-GIM mech-
anism. new physics contributions to |εK | are then exponentially enhanced with respect to
the standard scenario with L = ln(1016). While in the LRS scenarios thus no improvement
concerning |εK | is achieved unless the UV cutoff is raised above several 103 TeV, this class
of models still helps to relax the constraint from Z → bb̄. We discuss this in more detail in
section 4.2.2. Further details on variants of the RS model with volume-truncated background
can be found in [229].

It should have become clear from the above discussion and explanations that the “flavor
problem” in the ∆S = 2 sector in the framework of warped extra dimensions [211, 212,
229, 254, 255] depends highly on the required amount of allowed parameter space, even for
natural parameters. We showed that the huge spread caused by the RS parameter space
combined with the slow decoupling creates difficulties on what is to be considered as a bound
on the scale of the RS model. For this reason, we warn the reader that simple statements
on strong bounds from |εK | found in the literature can be misleading. Instead, we quantified
the decoupling behavior, which allows for a detailed comparison of the standard minimal RS
model to modified versions of the model with an SU(3)dc flavor-symmetry or with volume-
truncated background. Being very conservative, we find in the standard scenario of the
minimal RS model

MKK & 0.7 TeV , MG(1) & 1.7 TeV , (4.1.74)

from the total closure of the viable parameter space, i.e. P (|εK |) = 0, in our parameter set
with less than one per mil fine-tuning. This bound is similar to the one inferred from direct
searches for resonances in the tt̄ channel, which we discussed in section 4.1.2.1. A very natural
solution with only one percent fine-tuning and P (|εK |) = 1% is obtained for

MKK & 1.5 TeV , MG(1) & 3.6 TeV . (4.1.75)

Deriving bounds from stricter requirements on the tuning are unsubstantiated in the light of
the unsolved little hierarchy problem of the Higgs-mass value.

Rare Kaon Decays

We continue our numerical investigations with the rare decays K → πνν̄, KL → π0l+l−, and
KL → µ+µ−. In the former case, the special role of the K → πνν̄ and KL → π0l+l− modes
is emphasized, which is due to their theoretical cleanliness and their enhanced sensitivity
to non-standard flavor and CP violation. They are unique tools to potentially set severe
constraints on the RS parameter space, or find clean deviations, once they are measured.

In the lower left panel of figure 4.4, we display the predictions for the branching ratio of
the neutral mode versus that of the charged one for the standard scenario of the minimal
RS model. The blue points correspond to parameter values that satisfy the constraints from
Z → bb̄ and |εK | as discussed in the last section. For comparison, the central value and the
68% CL range Br(K+ → π+νν̄(γ))exp =

(
1.73+1.15

−1.05

)
·10−10 based on seven events in the E949

experiment [328] is indicated by the vertical dashed black line and the yellow band. The
experimental 90% CL upper limit Br(KL → π0νν̄)exp < 2.6 · 10−8 [329] is not displayed in
the figure. The central values of the SM predictions (4.1.50) are indicated by the green cross.
The branching fractions of both K → πνν̄ channels can be significantly enhanced compared
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Figure 4.4: upper left panel: Predictions for Br(KL → π0νν̄) as a function of MKK. The
solid green line represents the SM prediction. Grey points fulfill the constraint from Z → bb̄
at the 3σ CL. Blue points additionally reproduce the value of |εK | at 99% CL. The two cyan
lines are obtained from a fit to the 5% and 95% quantile of the distribution of gray points.
upper right panel: Predictions for Br(K+ → π+νν̄(γ)) versus εK . Color coding and con-
straints are the same as in the upper left panel. Additionally the median curve is displayed.
lower panels: Results for Br(K+ → π+νν̄(γ)) versus Br(KL → π0νν̄) in the standard
benchmark scenario (left) and the aligned scenario (right). Color coding and constraints are
the same as in the upper panels. The gray shaded area shows the GN bound. The vertical
dashed black line and the yellow band display the experimental central value and 68% CL
range. Points marked red are compatible with ε′K/εK as discussed below.
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to the SM prediction. For a very small fraction of parameter space, it is even possible to
saturate the model-independent Grossman-Nir (GN) bound [330]

Br(KL → π0νν̄) ≤ κL
κ+(1 + ∆EM)

Br(K+ → π+νν̄(γ)) ≈ 4.3 Br(K+ → π+νν̄(γ)) , (4.1.76)

The inequality (4.1.76) is indicated by the straight dotted black line in the figure, and the
inaccessible area is colored gray. Because the weak phase entering the s → dνν̄ transition
can take essentially any value in the standard scenario, the predictions for the charged and
neutral mode are mostly uncorrelated.

From the plots in the upper two panels of figure 4.4, we observe that very large deviations of
more than a factor of two are yet disfavored by the bound on |εK |, due to a weak correlation
of |εK | to both decay modes. This is displayed by the gray points, which only fulfill the
Z → bb̄ constraint and populate a much larger region for both decay modes. We illustrate the
decoupling behavior of the neutral decay mode by fits to the 5% and 95% quantile, obtained
after a fine grained binning in MKK. In principle, the result indicates a strong sensitivity of
the neutral mode to RS corrections even at high KK scales. However, as we will show below,
the possible deviations are very restricted by the constraint following from ε′K/εK . Large
shifts in the CP -violating neutral decay mode typically appear together with an unacceptable
amount of direct CP violation in K → ππ. The correlation is more pronounced than the
one with εK , as shown by the red points in the lower panels of figure 4.4. We discuss this
in more detail below. Concerning the charged mode, the correlation with |εK | imposes in
fact the most relevant constraint on possible deviations. We illustrate in the upper right
panel of figure 4.4 how this constraint excludes a large fraction of the parameter space, where
otherwise order-of-magnitude deviations would be possible. As can be seen from the cyan
lines, which are spline interpolations of the 5%, 50%, and 95% quantiles after binning in |εK |,
very large values of |εK | would allow for a large fraction of parameter space that has large
deviations in the charged decay mode. On the other hand, one should keep in mind that the
correlation disfavors, but does not exclude certainly, large deviations in the charged mode.

While the pattern of deviations found in the LRS scenario follows that observed in the
standard case, a considerably different picture emerges in the aligned scenario, with common
bulk-mass parameters cdi = cd. This is illustrated in the lower right panel of figure 4.4. To
understand the observed pattern, we recall that in the aligned scenario right-handed currents
entering |εK | in form of the Wilson coefficients C̃RS

1 , CRS
4 , and CRS

5 (see (4.1.72)) as well
as K → πνν̄ in form of C̃RS

ν are parametrically suppressed by factors of v2/M2
KK and thus

numerically subleading compared to the left-handed corrections CRS
1 and CRS

ν . The latter are
to leading order in L proportional to (∆D)12 ⊗ (∆D)12 and (∆D)12. Furthermore, the fact
that the left-handed contribution (∆D)12⊗(∆D)12 factorizes as (∆D)12⊗(∆D)12 ≈ (∆D)2

12 =∣∣(∆D)12

∣∣2e2 i ϕ12 implies that |εK | as well as K → πνν̄ are governed by the same weak phase
ϕ12. The requirement |εK |RS ∝ Im

(
(∆D)12 ⊗ (∆D)12

)
≈ 0 then forces ϕ12 in the standard

CKM phase convention (2.2.14) to be a multiple of π/2. One can show model-independently
that in such a situation only two branches of solutions in the Br(K+ → π+νν̄(γ)) – Br(KL →
π0νν̄) plane are allowed [331]. The first branch features Br(KL → π0νν̄) ≈ Br(KL →
π0νν̄)SM, while the second runs through the SM point (4.1.50) with a slope approximately
equal to the slope of the GN bound (4.1.76). The second branch of solutions is absent in the
case at hand, as we show now. To leading order in CKM hierarchies, the (1, 2) elements of
the charged-current matrix VL and the mixing matrix ∆D take the following form in the case
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of alignment

(VL)12 =

[
(MdM

†
d)21

(MdM
†
d)11

− (Mu)21

(Mu)11

]
F (cQ1)

F (cQ2)
,

(∆D)12 = −1

2

[
(MdM

†
d)21

(MdM
†
d)11

+
(YdY

†
d )∗23

(YdY
†
d )33

(MdM
†
d)31

(MdM
†
d)11

]
F (cQ1)F (cQ2) ,

(4.1.77)

where Md denotes the matrix of minors of Yd. This result is derived from a Froggatt-Nielsen
analysis for the SU(3)dc symmetric case.

Sizable corrections inK → πνν̄ necessarily correspond to large values of |(∆D)12|. |(∆D)12|
grows with decreasing (YdY

†
d )33 and decreasing (MdM

†
d)11. Furthermore, in the anarchic

setup (YdY
†
d )33 has a natural size close to the square of the maximally allowed Yukawa en-

try, i.e. O(y2
max). Barring accidental cancellations, we need to consider the conditions for

a vanishing product of minors. In the limit (MdM
†
d)11 → 0, the expressions (4.1.77) are

approximated by

(VL)12 ≈
(MdM

†
d)21

(MdM
†
d)11

F (cQ1)

F (cQ2)
,

(∆D)12 ≈ −
1

2

[
1 +

(YdY
†
d )22

(YdY
†
d )33

]
(MdM

†
d)21

(MdM
†
d)11

F (cQ1)F (cQ2) ,

so that in the standard CKM phase convention (2.2.14), i.e. after rotating away the phase of
(VL)12, one ends up with

(∆D)12 e
−i arg(VL)12 ≈ −1

2

[
1 +

(YdY
†
d )22

(YdY
†
d )33

]∣∣(MdM
†
d)21

∣∣
(MdM

†
d)11

F (cQ1)F (cQ2) < 0 . (4.1.78)

Using (4.1.37) and (4.1.47), we find that this inequality implies that Re (XRS) < 0 and
Im (XRS) ≈ 0 for the quantity XRS defined in (4.1.49). Recalling that in the SM one has
Re (XSM) ≈ −1.2 and Im (XSM) ≈ 0.3, we then deduce from (4.1.48) that in the limit (4.1.78)
the aligned scenario predicts constructive interference in the branching ratio of K+ → π+νν̄,
while the KL → π0νν̄ rate is expected to take approximately its SM value. Invoking the
|εK | constraint further drives the solutions toward (4.1.78), as it singles out solutions with
ϕ12 ≈ π, so that Re (XRS) < 0 and Im (XRS) ≈ 0 turn out to hold in the aligned case even
when |(∆D)12| is small. We conclude that in the aligned scenario, the allowed points in the
Br(K+ → π+νν̄(γ)) – Br(KL → π0νν̄) all lie close to a horizontal line to the right of the SM
point (4.1.50), what is clearly observed in the lower right panel of figure 4.4.

The discussion above highlights that the K → πνν̄ decays offer a unique tool to study the
fermion geography in the down-type quark sector of models with warped extra dimensions,
since they provide, in combination with |εK |, a powerful way to test the universality of new-
physics contributions in ∆S = 1 and ∆S = 2 transitions. Precision measurements of the
KL → π0νν̄ and K+ → π+νν̄ branching fractions feasible at high-intensity proton-beam
facilities such as NA62, J-PARC, and Project X should therefore be primary goals of the
future flavor-physics program.

While theoretically not as clean as K → πνν̄, the KL → π0l+l− channels offer the
opportunity to constraint additional ∆S = 1 effective operators that are inaccessible to
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Figure 4.5: Prediction for Br(KL → π0l+l−), l = e, µ (upper left), Br(KL → π0νν̄) –
Br(KL → π0l+l−) (upper right), and Br(KL → π0νν̄)–AFB(KL → π0µ+µ−) (lower panel).
The green crosses indicate the SM point, while the blue scatter points fulfill the constraint
for Z → bb̄ and |εK | as discussed in the text.

the neutrino modes. In figure 4.5, we show predictions for KL → π0l+l− with l = e, µ
and their correlation with the KL → π0νν̄ mode. All plots correspond to our standard
scenario including the constraint from Z → bb̄ and |εK |. The predictions in the remaining
benchmark scenarios are essentially indistinguishable from the ones displayed. In the case of
the KL → π0l+l− observables we have assumed constructive interference between the direct
and indirect CP -violating amplitudes as favored by the analyses [317, 318]. We observe that
enhancements of the branching ratio of both KL → π0l+l− modes by a factor of about 5
are possible without violating any constraints. On the other hand, the RS predictions for
AFB(KL → π0µ+µ−) can be smaller than the SM value by almost a factor of 10. Notice
that modifications in Br(KL → π0µ+µ−) and AFB(KL → π0l+l−) are anti-correlated, since
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the branching ratio enters (4.1.60) in the denominator. The pattern of the correlations seen
in the upper left panel of figure 4.5 arises because the coefficient YV of the semileptonic
vector operator is suppressed with respect to the coefficient YA of the axial-vector operator
by a factor of about (1 − 4s2

w) ≈ 0.08, and scalar interactions play essentially no role. The
suppression factor stems from the coupling of the Z boson and its KK excitations to the
charged lepton pair. The ratio YV /YA determines the angle between the two possible branches
in the Br(KL → π0µ+µ−) – Br(KL → π0e+e−) plane. Since YV /YA is generically small in the
RS model, the two branches are very close to each other. The correlations observed in the
upper right and lower panel of figure 4.5 have a similar origin. In this case, they are a result
of the interplay of the coupling of the Z boson and its KK excitations to a pair of charged
and neutral leptons. While the former is mostly axial-vector like, the latter is purely left-
handed. The observed correlations between KL → π0νν̄ and KL → π0l+l− should therefore
be considered a generic feature of models where the couplings of heavy neutral gauge bosons
to leptons are SM-like, rather than a specific characteristic of the RS framework.

Interesting complementary information can be obtained from the KL → µ+µ− decay
mode, which has been measured precisely. The predictions for Br(KL → µ+µ−) as a function
of Br(K+ → π+νν̄(γ)) in the parameter standard hierarchical and the aligned scenario are
displayed in figure 4.6 including the constraint from Z → bb̄ and |εK |. We have assumed that

Figure 4.6: Prediction for Br(K+ → π+νν̄(γ)) versus Br(KL → µ+µ−) in the standard and
aligned scenario. The green crosses indicate the SM point, while the blue scatter points
fulfill the constraint for Z → bb̄ and |εK | as discussed in the text. The experimental central
value and 68% CL range for Br(K+ → π+νν̄(γ)) (vertical dashed line and yellow vertical
band) as well as the 68% and 95% CL regions for Br(KL → µ+µ−) (yellow and orange
horizontal band) including both experimental and theoretical errors are shown.

the two-photon amplitude in KL → µ+µ− has positive sign, which is supported by theoretical
arguments [313]. In the case of the KL → µ+µ− branching ratio the error band includes the
theory error, which by far dominates the total uncertainty. We observe that the branching
ratio of KL → µ+µ− can reach experimentally disfavored values with an enhancement of
about 20% relative to both the SM prediction and the measured value. A mostly positive
linear correlation between K+ → π+νν̄ and KL → µ+µ− is visible. This correlation originates
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from the fact that K+ → π+νν̄ measures the vector, while KL → µ+µ− measures the axial-
vector component of the Zds̄ vertex. Since the SM flavor-changing Z penguin is purely
left-handed and the RS contribution is dominated in our case by the very same component,
the SM and new-physics contributions enter both decay modes with the same sign. Notice
that the correlation is more pronounced in the aligned scenario, because the right-handed
contributions to the Zds̄ vertex are further suppressed in this benchmark scenario. In a RS
variant with custodial protection, the correlation between K+ → π+νν̄ and KL → µ+µ− has
expected to be inverse to the minimal model shown here, since the given quark embedding
(3.3.66) implies a simultaneous protection of all Zdid̄j couplings. This has been confirmed in
[261]. Hence, precision measurements of K+ → π+νν̄ accompanied by theoretical progress
in the prediction of KL → µ+µ− would allow one to identify the chiral structure of the Zds̄
vertex and in this way could select between different models of non-standard interactions.

We close this section with a comparison to the expected results in the RS model with
custodial protection. Employing the quark embedding (3.3.66), we found in (3.3.142) that
the ratios of the corrections to the flavor-changing Z-boson couplings in the minimal and
custodial model are given by

(δgdL)custo
ij

(δgdL)minimal
ij

= − (1/2− s2
w/3) (∆′D)ij

(1/2− s2
w/3) (L (∆D)ij − (∆′D)ij)

≈ − 1

L
,

(δgdR)custo
ij

(δgdR)minimal
ij

= −c
2
w L (∆d)ij − s2

w/3 (∆′d)ij
s2
w/3 (L (∆d)ij − (∆′d)ij)

≈ −3c2
w

s2
w

, (4.1.79)

where we use (∆D,d)ij ≈ (∆′D,d)ij . A suppression factor for the left-handed couplings of
roughly 100 has been claimed in [212, 261] using the diagonalization of large mass matrices.
We observe that the origin of this suppression is very clear in our analytic approach. On the
other hand, we find that the Z0di Rd̄j R vertices in the model with custodial protection are
enhanced in magnitude by a factor of about 10 relative to the original RS formulation, which
is in accordance with [212, 261]. From (4.1.79), we also observe that

(gdR)custo
ij

(gdL)minimal
ij

≈ − c2
w

1/2− s2
w/3

(∆d)ij
(∆D)ij

≈ −2
(∆d)ij
(∆D)ij

≈ −2
F (cdi)F (cdj )

F (cQi)F (cQj )
. (4.1.80)

To arrive at this relation, we used that the bulk masses do not depend on whether one
considers the custodially protected or the original RS model, since the cAi parameters are
determined by the quark masses and mixings. In order to have effects in rare kaon decays
of similar magnitude in the custodially protected and the original RS model requires the
products F (cd1)F (cd2) and F (cQ1)F (cQ2) to be of similar size. Yet the locations of the zero-
modes are not unique solutions [200], a feature that manifests itself in the invariance under
a set of reparametrization transformations [1]. In particular, a simultaneous rescaling of the
fermion profiles for SU(2)L doublet and singlet fields by opposite factors, while leaving the
5D Yukawa couplings invariant, allows one to redistributes effects between the left- and right-
handed sectors. This freedom can be used to express (F (cd1)F (cd2))/(F (cQ1)F (cQ2)) through
the quark masses, Wolfenstein parameters, and F (cu3). To leading power in hierarchies we
find the scaling relations

∣∣∣∣
(gdR)custo

12

(gdL)minimal
12

∣∣∣∣ ∼
mdms y

4
uv

2

2A4 λ10m4
t y

2
d

F (cu3)4 ≈ 0.08
y4
u

y2
d

F (cu3)4 , (4.1.81)
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which implies that the ratio of right- to left-handed Zds̄ couplings can be enhanced by lo-
calizing the right-handed top quark closer to the IR brane. We observe that the degree of
compositeness of the top quark thus plays a crucial role in this context. For comparison we
give the numerical values 0.08F (1)4 = 0.7 and 0.08F (2)4 = 2.0. Analogous formulas hold in
the case of the Z → bd̄ and bs̄ transitions with (mdms)/(A

4λ10) replaced by (mdmb)/(A
2λ6)(

(msmb)/(A
2λ4)

)
. The corresponding numerical factors (4.1.81) are 0.006 and 0.005 instead

of 0.08. Hence, barring accidental cancellations and given bulk that do not exceed the curva-
ture scale by far, we expect a relative suppression in the custodial setup as compared to the
minimal setup of at least an order of magnitude for rare B decays.

Analysis of Bq → µ+µ−

The predictions for Br(Bs → µ+µ−) versus Br(Bd → µ+µ−) as obtained from a parameter
scan in the standard scenario are displayed in figure 4.7. The two other benchmark scenarios
show a similar distribution. We observe that even after imposing of the Z → bb̄ constraints

Figure 4.7: Prediction for Br(Bq → µ+µ−), q = d, s in the standard scenario of the minimal
RS model. The green crosses indicates the SM point. The blue scatter points fulfill the
Z → bb̄ constraints as discussed in the text. The experimental and 95% CL exclusion region
for the Bd and the 68% and 95% CL for the Bs mode from LHCb are marked with red,
yellow, and orange, respectively. The gray dashed line represents the correlation found in
CMFV models.

large uncorrelated enhancements by a factor of 3–4 are possible in both the Bd and Bs decay
modes without violating existing constraints. The uncorrelated distribution implies that large
deviations from the relation [332]

Br(Bs → µ+µ−)

Br(Bd → µ+µ−)
=
f2
Bs
mBsτBs |Vts|2

f2
Bd
mBdτBd |Vtd|2

≈ 32.8 , (4.1.82)

which is valid in models with constrained MFV (CMFV) [333], are possible in the RS model.
The measurement of the Bs mode by LHCb [260] already constrains a small part of the RS
parameter space in the minimal model. We have mentioned in section 4.1.2.2 that the error of
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the measurement has small systematic errors and still exceeds the uncertainty of the theory
prediction by a factor of 5, such that this mode will unfold a strong constraining power in
the near future, given the central value remains compatible with the SM. The existing limit
in the case of Bd → µ+µ− is much weaker and not expected to become very relevant soon,
and has to await further investigations at a super flavor factory.

We refer to the previous paragraph for a comparison of the expected changes in going to
the custodial setup presented in section 3.3.5.2, where we found a suppression of at least one
order of magnitude for the RS contributions. A similar result was found in [261].

Analysis of ε′K/εK and its Effect on Rare Kaon Decays

Within the SM the smallness of direct CP violation in K → ππ is the result of a destruc-
tive interference between the positive contribution due to QCD penguins and the negative
contribution arising from electroweak penguin diagrams. In new-physics models in which the
∆I = 1/2 and ∆I = 3/2 contributions to s → dqq̄ processes are affected differently from
each other, this partial cancellation is usually much less pronounced or even absent. A qual-
itative understanding of the situation in the minimal RS model can be obtained from the
approximate relation

(
ε′K
εK

)

RS

∝ 1 + [−0.1, 0.1]B
(1/2)
6 − 12B

(3/2)
8 , (4.1.83)

which has been obtained from the second expression in (4.1.40) by inserting typical values
of the Wilson coefficients CRS

3−10 and C̃RS
3−10. The smallness of the coefficient multiplying the

hadronic parameter B
(1/2)
6 compared to the coefficient of B

(3/2)
8 is easily explained by the

structure of ε′K/εK within the SM. While both the QCD and electroweak penguin contribu-
tions are strongly enhanced by RG effects, the QCD correction results mainly from the mixing
of Q6 with Q1,2. Thus, it is essentially unaffected by new physics. On the other hand, mixing
with the current-current operators plays only a minor role in the case of the electroweak
penguins, so that any new-physics contribution to the initial conditions in this sector directly
feeds through into ε′K/εK . This implies that electroweak penguin operators give the dominant
RS correction to direct CP violation in the kaon sector. Our numerical analysis confirms this
model-independent conclusion. Notice that the sign of (ε′K/εK)RS in (4.1.83) is not fixed, so
the prediction for the total ratio ε′K/εK can be both positive or negative. An enhancement
occurs in the case of an electroweak penguin contribution that has opposite sign with respect
to the SM Z-penguin amplitude, and vice versa.

The observables ε′K/εK and |εK | are not independent from each other, if ε′K/εK is calcu-
lated fully in theory. Since the central value of the theory prediction for ε′K/εK (4.1.45) is
below the experimental world average, models with new positive contributions to |εK | and
negative contributions to ε′K are disfavored. The correlation between ε′K/εK and |εK | in the
standard scenario is shown in the left panel of figure 4.8. Like before, points that are consis-
tent with the constraints from Z → bb̄ at the 3σ CL are colored blue. Points marked orange
are furthermore compatible with |εK | at the 99% CL after combining theory and experimen-
tal uncertainty, and they can be brought into agreement with the experimental 95% CL of
ε′K/εK when scanning over the conservative ranges in (4.1.44) for the non-perturbative input
parameters R6,8 and light masses. The abscissa value of each point is obtained by setting the
non-perturbative parameters R6,8 equal to 1 and light quark masses to their central values.
It is evident from the distribution of points that solutions featuring excluded values of |εK |
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Figure 4.8: left panel: Correlation between ε′K/εK and |εK | in the standard scenario of the
minimal RS model. The blue points fulfill the constraints from Z → bb̄ as discussed in
the text. Points in agreement with the experimental values of both ε′K/εK and |εK |, after
accounting for theoretical errors as described in the text, are marked orange.
right panel: Percentage of points that are consistent with ε′K/εK as a function of MKK in
the three benchmark scenarios. The underlying data fulfill the Z → bb̄ constraint. The solid
lines include the experimental and theory uncertainties as described in the text, whereas the
dashed lines are obtained by setting the SM and experimental central value equal to each
other and considering the experimental uncertainty only.

are typically also in conflict with ε′K/εK , since they predict too low values for the latter ob-
servable. For points in line with |εK |, it is however still possible to obtain values for ε′K/εK
in the range [−1, 1] · 10−1. The wide spread of viable results suggests that the data on ε′K/εK
impose non-trivial constraints on the allowed model parameters even if the |εK | constraint is
satisfied.

The right plot in figure 4.8 illustrates the severity of the ε′K/εK constraint in each of
the three benchmark scenarios. The shown curves for P (ε′K/εK) are obtained in the same
way as described for P (εK) in figure 4.3. For a qualitative explanation of the curves, we
recall the pattern of enhancements and depletions of ∆F = 2 and ∆F = 1 contributions in
the different benchmark scenarios. Compared to the default scenario, corrections to |εK | are
typically less pronounced in the aligned scenario, because this scenario is specifically designed
to suppress |εK | by eliminating flavor mixing that arises from the non-universality of the
right-handed down-type quark profiles. On the other hand the corrections to Zds̄ entering
ε′K/εK are only indirectly affected. They tend to be smaller as well, since the aligned scenario
shows a preference for a stronger localization of the first two SM-like doublets towards the
UV, which is necessary in order to obtain the correct values of the quark masses. In the
LRS scenario the situation is reversed. Numerically, we find that for MKK = 1 TeV still
P (ε′K/εK) = 7.9% of the parameter space fulfills the constraint on ε′K/εK after imposing the
Z → bb̄, but without the |εK | constraint. In the aligned and LRS scenario the corresponding
values are P (ε′K/εK) = 10.3% and P (ε′K/εK) = 1.4%

The given numbers imply that — at least with our conservative treatment of errors —
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we are not able to derive a precision constraint from ε′K/εK . This is in contrast to the
situation for |εK |, due to the very precise measurement of the latter parameter and a much
better control over theory uncertainties. We also show by the dashed lines in the plot for
P (|εK |) in figure 4.8 that even a major improvement in the theoretical understanding of the
non-perturbative input will not render ε′K/εK a precision test of the RS scale MKK. These
lines are obtained for the hypothetical scenario that the SM and experimental central values
are equal and assuming a 20% theory uncertainty, which we combine quadratically with the
experimental error. Instead, the bound from ε′K/εK is very interesting and relevant because of
its impact on the Yukawa structure and the restrictions it imposes on other flavor observables,
namely CP -violating rare K decays, as we will see below.

Before that, we must mention that potentially large corrections to ε′K/εK could arise from
the presence of the chromomagnetic dipole operator Qg8 and its chirality-flipped partner Q̃g8.
In the context of scenarios with hierarchical fermion profiles, this issue has been analyzed
in a model-independent way in [334]. Interestingly, the contributions to ε′K/εK from Cg8
and C̃g8 and to εK from CRS

4 depend in an opposite way on the absolute size of the Yukawa
couplings. This makes it difficult to decouple flavor-violating effects in εK by using large
Yukawa couplings, and it will lead to a tension between tree- and loop-level effects, similar
to what happens in the case of B → Xsγ and εK [255]. A study of this anti-correlation
including the first KK level of the quarks and the zero-mode of a bulk Higgs field has been
presented recently in [335]. There, it has been pointed out that the NDA estimate for the
typical size of the the chromomagnetic dipole-operator contribution leads to a value of ε′K/εK
that, when combined with the NDA estimate for |εK |, becomes compatible with the measured
value only for MG(1) > 5.5 TeV, if the Higgs boson is maximally spread into the bulk. This
value is raised to 7.5 TeV if one considers the case of the two-site model [255]. It is important
to realize that the quoted numbers are no “bounds” in the strict terminology we use here.
They neglect the full parameter distribution, which is found to be widely spread. Moreover,
the numbers are obtained for typical values of the down-type quark Yukawa couplings (yd =
4.6 and yd = 5.9) that are larger than the value ymax = 3 allowed by perturbativity in
our benchmark scenarios. We estimate the chromomagnetic dipole contribution to ε′K/εK ,
utilizing the formulas presented in [335]. We find that the chromomagnetic contribution to
ε′K/εK is smaller than the electroweak penguin contribution for perturbative Yukawa matrices;
to this end, we express the additional contribution to ε′K/εK arising from Qg8 and Q̃g8 as F gRS,
which has to be added to FRS in (4.1.40). Using the central values for cQ1,2 quoted in table B.1,
we compare F gRS to the largest contribution of in FRS, which arises from the Wilson coefficient
CRS

7 . Applying furthermore a Froggatt-Nielsen analysis to leading order in the Cabibbo angle,
we find approximate typical values of

|F gRS| ≈ 2.5 · 10−3B(1/2)
g fg

(
1 TeV

MKK

)2

, |FRS| ≈ 1.0 · 10−2B
(3/2)
8 f8

(
1 TeV

MKK

)2

, (4.1.84)

where B
(1/2)
g ≈ 1 denotes the hadronic parameter related to the matrix element of Qg8, while

fg, and f8 are functions of ratios of Yukawa couplings and thus naturally of O(1). It follows
that after requiring the correct quark hierarchies, the corrections due to the chromomagnetic
dipole operators are typically an order of magnitude smaller than those arising from the
electroweak penguin sector. This justifies to ignore effective couplings in ε′K/εK generated
first at the one-loop level in the discussion at hand.

The marked sensitivity of ε′K/εK to modifications of the electroweak penguin sector leads
to stringent correlations between ε′K/εK and the s → dνν̄, s → dl+l− observables. This
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feature is illustrated in Figure 4.9, where the left panel shows the predictions for ε′K/εK as
a function of the branching fraction of KL → π0νν̄ in the standard scenario. There, we

Figure 4.9: Correlation between Br(KL → π0νν̄) and ε′K/εK in the standard scenario of the
minimal RS model. All points fulfill constraints from Z → bb̄ and |εK | as described in the
text. The blue points correspond to the central value for ε′K/εK obtained for R6,8 = 1. The
red/green points illustrate the maximal/minimal achievable values of ε′K/εK for the same
set of points, as obtained by varying the hadronic parameters in the ranges (4.1.44). For
comparison, the experimental 95% CL on ε′K/εK is displayed.

show three vertically displaced distributions. They are based on the same set of parameter
points as used above imposing both the constraint from Z → bb̄ and εK . For each point we
plot three values of ε′K/εK , one in blue corresponding to fixed central values of the hadronic
parameters R6,8 = 1 and light quark masses, one in red obtained by maximizing ε′K/εK from
using the range of hadronic parameters and light quark masses given in (4.1.44), and one in
green for the minimal possible value. This is analogous to the scan used in in figure 4.8. The
light gray band represents the experimental 95% CL. We observe that an enhancement of the
CP -violating Br(KL → π0νν̄) tends to be accompanied by a suppression of ε′K/εK , and vice
versa. This implies that large enhancements of the former decay mode are disfavored by the

measured amount of direct CP violation in K → ππ. Notice that values of B
(3/2)
8 near the

upper end of the range shown in (4.1.44) are particularly problematic in this respect, since
they amplify the electroweak penguin contributions to ε′K/εK . Since enhancements of the
branching fractions KL → π0νν̄ and KL → π0l+l− are strongly correlated with each other,
similar statements apply to the rare kaon decay modes with charged leptons in the final
state. The same strong anti-correlation between Br(KL → π0νν̄) and ε′K/εK is also present
in the LRS parameter scenario and it even effectively constrains the correlated distribution
between Br(KL → π0νν̄) and Br(K+ → π+νν̄) found in the aligned model. It arises since
both observables receive the dominant correction from the imaginary part of the left-handed
Zds̄ amplitude, which enters linearly and with opposite sign relative to the SM contribution
in ε′K/εK , whereas it appears quadratically and with the same sign in Br(KL → π0νν̄). We
conclude that even with a conservative treatment of errors, ε′K/εK has a very relevant impact
on the possible new-physics effects in rare K decays within the RS model.
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4.2 Electroweak Precision Measurements

In this section we introduce some of the most important electroweak precision observables
(EWPOs) and discuss the strong constraint they put on deviations from the SM. We review
up-to-date analyses that significantly impact the constraints on models of new physics. Fi-
nally, we present detailed numerical consequences in the RS model. There, an analysis with a
few effective parameters leads to a good understanding of the qualitatively different bounds
on the parameter space and the efficacy of model-building solutions that are used in order to
relax the bounds.

As an outlook, we remark that the observables discussed here are an excellent field of
application for the sum rules presented in section 3.1.2. They can assist in identifying the
constraining properties on different sectors in perturbatively unitary theories and distinguish
them against more general contributions. Such an analysis, analogous to the one for FCNCs
presented in section 4.1, is left for future work.

4.2.1 Common Observables and Effective Parameters

4.2.1.1 General Discussion and Choice of Input Parameters

The most constraining observables in the class of EWPOs are related to properties of the
electroweak gauge bosons, which were precisely measured in large data sets of e+– e− collisions
at LEP and SLC in the early 90s. Later, LEP 2 extended the knowledge of the W boson’s
properties, and the Tevatron experiments improved W and top mass measurements. Very
recently the LHC Higgs-mass measurement added valuable information to the overall picture.

In general, an EWPO can be categorized into one of the three classes: low energy observ-
ables, measurements at the Z pole, and direct mass measurements. The most important low
energy observables stem from results on elastic neutrino–electron scattering, deep-inelastic
neutrino–nucleon scattering, the τ lifetime, atomic parity violation (e.g. in Caesium), and the
anomalous magnetic moment of the muon9. The latter shows a long-standing 3.0σ deviation
from the SM theory calculation, which could be due to statistical fluctuations, underestima-
tion of theory uncertainties, or indeed new physics; but the situation is inconclusive. We will
not go into further detail on the low-energy observables and refer to [337] for a comprehensive
review. Flavor-violating observables are usually not considered in this context. We considered
constraints from off-diagonal flavor transitions separately in section 4.1.

Precision observables at the Z pole can either be constructed from the total and partial
widths ΓZ and Γff ≡ Γ(Z → ff), or from asymmetries. From the former, one obtains the
total resonant cross section with hadronic final states σhad = 12π Γee Γhad/(M

2
Z ΓZ), defines

the width ratios Rq ≡ Γqq/Γhad for identifiable primary quarks in the hadronic final state
(q = c, b), and Rl ≡ Γhad/Γll for l = e, µ, τ . Here, Γhad ≡

∑
q=u,d,s,c,b Γqq is the partial width

for decay into hadrons. The three measured values Γll are consistent with lepton universality.
Additionally one uses the invisible-decay width Γinv ≡ ΓZ −

∑
l Γll − Γhad to determine that

the number of neutrino flavors with mass much less than MZ/2 is 2.984(9) [338].

The standard formulas10 for the asymmetries at the Z pole use the definition of the

9The anomalous magnetic moment of the electron is measured even more precisely, but effects of new
physics are suppressed generically by O(me/mµ) in comparison to the muon anomalous magnetic moment. It
is instead currently used to determine the fine structure constant α [336].

10This discussion hides certain radiative corrections that we take into account below, see e.g. (4.2.14).

124



4.2. ELECTROWEAK PRECISION MEASUREMENTS

asymmetry parameter

Af =

(
gL
Zf̄f

)2 −
(
gR
Zf̄f

)2
(
gL
Zf̄f

)2
+
(
gR
Zf̄f

)2 . (4.2.1)

Using a fully polarized initial e− beam, SLD (at SLC) [339] measured the left–right asymme-
tries which are asymmetries between cross sections for left- and right-handed incident elec-
trons. They are directly equal to Ae. The forward–backward asymmetries for other fermions
are given by

A
(Pe,f)
FB =

3

4
Af

Ae + Pe
1 + PeAe

, (4.2.2)

and were extracted in experiments at LEP (Pe = 0) and SLC (Pe = 1).11 In the SLD
experiment this was extracted from double left–right forward–backward asymmetries

A
(1,f)
FB =

σfLF − σ
f
LB − σ

f
RF + σfRB

σfLF + σfLB + σfRF + σfRB
=

3

4
Af , (4.2.3)

for final states with f = b, c, s, τ, µ. Very precise information was added at LEP by measure-

ments of A
(0,f)
FB for the same final states and also for f = e. The multiplicity of asymmetry

parameters advantageously cancels systematic uncertainties to a large extent in the difference
(e.g. detector asymmetries) and quotient (e.g. overall normalizations). The lepton asymme-
tries are very sensitive to s2

w because of the proximity of s2
w to 1/4. We illustrate this by

inserting the SM SU(2)L charges of the tree-level couplings and expanding

Af =
(T 3f
L − s2

wQf )2 − (s2
wQf )2

(T 3f
L − s2

wQf )2 + (s2
wQf )2

(4.2.4)

=
1− |Qf |

1− |Qf |(1− |Qf |/2)
+

|Qf |2(1− |Qf |/2)

(1− |Qf |(1− |Qf |/2))2
(1− 4s2

w) +O(1− 4s2
w)2 .

The constant term vanishes precisely for |Qf | = 1. Ae,µ,τ thus allow us to determine the
weak angle. The measurement of Af then defines the effective angle sin2(θleff), as opposed
to s2

w, which was defined by the ratio of bare gauge couplings and not directly expressed
by observable quantities. Alternative definitions of the weak mixing angle using input data
induce e.g. the on-shell angle s2

os = 1 −M2
W /M

2
Z or the weak angle given in terms of very

precise electroweak input sin2(2θ0) = (4πα(MZ)/(
√

2GFM
2
Z))1/2. The best definition of the

weak mixing angle in the presence of new physics is often a question of convenience. Using
sl 2eff or s2

0 is favorable, since they present very precise input. Equation (4.2.4) holds true in
models of new physics where the corrections to Z–lepton couplings are at least universal for
both chiralities, and to a large extent also lepton-flavor universal. Then the effective weak
angle is an obvious choice of input. The asymmetries of the down quarks are in comparison
rather insensitive to s2

w, by a factor of almost 100, and provide a good precision constraint in
many models of new physics.

The maximal set of EWPOs considered in standard global fits of the SM parameters
contains approximately 40 observables. To constrain models of new physics, model-adapted
techniques or effective parameters usually reduce the relevant set to a few observables. Before
we discuss this approach in more detail we summarize the fit in the SM.

11Similar measurements were also carried out at Tevatron for e+e− final states [340], however with less
precision due to the difficulty to disentangle qq̄ in the underlying initial pp̄ Drell-Yan process.
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Tools for sophisticated, statistically rigorous analyses are available, like ZFITTER [341],
GAPP [342], and the recently developed modular toolkit GFITTER [343]. GFITTER only
uses the 14 most important observables but is actively developed and updated with state
of the art theoretical input. A recent evaluation from this group [344] takes into account
the Higgs-mass value Mh = 125.7 ± 0.4 GeV reported by ATLAS and CMS in July 2012
(average of [22, 29]). They find a p-value of 0.07 for the SM to describe the 14 observables,
corresponding to 1.8σ. The compatibility of the fit result with the measurements is displayed
in the left panel of figure 4.10 as a pull for each observable. No single observable shows a
deviation of more than 3σ. However, one aspect of the updated analysis attracts interest.
While overall the SM is still fully compatible with experimental data, the inclusion of a recent
calculation of two-loop electroweak corrections to Rb [345] has impaired the fit. It presents

the second largest deviation, close to the tension in A
(0,b)
FB . Deviations of this kind are not

unusual in a large set of observables; however it is remarkable that they are both related to
the couplings of the Z boson to b quarks. We take this as a phenomenological motivation to
discuss b-related EWPOs in more detail below.

The global SM fit also confirms the spectrum of the bosons related to electroweak symme-
try breaking. Leaving the direct Higgs-mass measurement aside, [344] obtains a fit result of
Mh = 94+25

−22 GeV consistent with the direct measurement. Similarly, one can also indirectly
determine the W -boson mass. At first sight, obvious input for that purpose is the weak
mixing angle in order to use the relation M2

W = e2/(4
√

2s2
wGF ). The weak mixing angle has

been measured over a wide range of energy scales. The most precise direct determination
is obtained from polarization asymmetries measured at Z-pole energies, as discussed above,
sl 2eff = 0.23153±0.00016 [338]. Remarkably, this angle can be extracted indirectly from the fit
with a precision that supersedes the direct measurements. Moreover, the indirect determina-
tion of the W -boson mass with the full set of EWPOs, MW = 80.359± 0.011 GeV, is at the
same level of precision as the SM prediction with the minimal set of input parameters that we
describe below. The strong effect of the direct Higgs-mass measurement in over-constraining
the SM is illustrated in the right panel of figure 4.10. We observe a shrinkage by a factor of
approximately 3 in the CL ranges of the W -boson mass, when including the direct Higgs-mass
measurement (blue) compared to ignoring it (gray).

As already mentioned, we must choose a set of input parameters in order to predict the
EWPOs in the model under consideration. Besides the Higgs mass Mh, the fermion masses
mc, mb, mt, and the strong coupling constant αs, a particularly useful choice is given by
the set of Z-boson mass MZ , the fine structure constant α(M2

Z), and the Fermi constant
GF . The Fermi constant is measured with a high precision from the muon decay constant
GF = 1.1663787(6)× 10−5 GeV−2 [69]. We summarize the input values used in the following
in appendix B.2. The SM relation GF = 1/(

√
2v2

SM) fixes the value of the SM VEV vSM.
However, in models of new physics, this relation is not necessarily fulfilled. After having
worked out a theory and its symmetry breaking in terms of fundamental VEVs, one must
carefully relate those VEVs to the muon decay and properly derive the relation to vSM. In
most models of new physics, a SM-like Higgs doublet (or an appropriate linear combination
from a bidoublet in left–right symmetric models) is included and carries a VEV v, such that
it is useful to define the ratio κv ≡ v/vSM.
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Figure 4.10: Results of the global fit including the Higgs-mass measurement taken from
[344]. The left panel shows pull values for all used observables in units of the experimental
uncertainty. The right panel shows contours of the 68% and 95% CLs of indirectly deter-
mined MW and mt. The contours with lighter colors result from the exclusion of the direct
measurement of Mh. The vertical bands indicate the 1σ uncertainty of the directly measured
values.

4.2.1.2 Effective Parameters for New Physics

For some models of new physics an adapted strategy — using additional input parameters
wisely — is the preferable approach to EWPOs. However, in most cases a large fraction of the
constraints follows from oblique corrections, i.e. gauge-boson-self-energy corrections. Under
the assumption of heavy new physics, one integrates out any additional particles that lead to
universal corrections, i.e. corrections that can be absorbed into the correlators of SM gauge
bosons. In this approach one constrains the effective parameters in a model-independent way
through their impact on the full set of EWPOs. The effective parameters then provide a
convenient restricted interface of constraints on universal new physics. This comes at the
price of neglecting some of the constraints (e.g. the anomalous magnetic moment of the muon
[346]). One usually extends this strategy by additionally considering important non-universal
contributions, in many cases and most importantly from corrections to the Zbb̄ vertex that
we discuss below. To define the effective parameters, one expands the two point correlators
in the momentum as

〈JµV (q)JνV (−q)〉 = igµνΠV V (q2) + qµqν . . . ,

ΠV V (q2) = ΠV V (0) + q2Π′V V (q2) +
q4

2
Π′′V V (q2) + . . . ,

(4.2.5)
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where JµV is the current that couples to Vµ in the Lagrangian. We employ the classical
parametrization by Peskin and Takeuchi12 for the terms up to q2 in the basis of mass eigen-
states [348, 349]:

S =
16πs2

wc
2
w

e2

[
Π ′ZZ(0) +

s2
w − c2

w

swcw
Π ′ZA(0)−Π ′AA(0)

]
,

T =
4π

e2c2
wM

2
Z

[
ΠWW (0)− c2

w ΠZZ(0)− 2 swcw ΠZA(0)− s2
w ΠAA(0)

]
,

U =
16πs2

w

e2

[
Π ′WW (0)− c2

w Π ′ZZ(0)− 2 swcw Π ′ZA(0)− s2
w Π ′AA(0)

]
.

(4.2.6)

These parameters are defined relative to a fixed set of SM values, where they are usually set
to zero. Gauge invariance guarantees that ΠAA(0) = 0 to all orders in perturbation theory,
and one furthermore has ΠZA(0) = Π ′ZA(0) = 0 when working at tree level. The parameter
T thus is sensitive to the difference between the corrections to the W - and Z-boson vacuum-
polarization functions and measures isospin violation. Usually, T expresses isospin breaking

in the quotient of W and Z masses via the relation ρ0 ≡ M2
W

c2wM
2
ZρSM

= (1 − αT )−1 ≈ 1 + αT .

This relation holds for instance for the case of an extra, heavy, non-degenerate multiplet
of chiral fermions or scalars. However, universal factors in the fermion couplings are also
absorbed into the definitions (4.2.5) and (4.2.6). In that sense, T is more general and suitable
as an effective parameter. S is related to the difference of contributions to the Z-boson self
energy at p2 = M2

Z and p2 = 0; the sum S + U is related to the analogous difference in the
W -boson self energies. All three parameters are defined with a factor of α removed from the
self energies such that they are expected to be of order unity in the presence of new physics.

The parameter U is only marginally affected in most models of new physics. This is
expected due to the dimensionality of the corresponding effective operator in the operator
product expansion in v/MNP, where MNP is the scale of new resonances. In the SU(2)L ×
U(1)Y symmetric phase, S and T are proportional to the coefficients of the dimension-6

operators
(
Φ†T aΦ

)
W a
µνB

µν and
∣∣Φ†Da

µΦ
∣∣2, whereas U is proportional to the coefficient of the

dimension-8 operator
∣∣Φ†W a

µνΦ
∣∣2.

There exist four further parameters necessary to describe the modifications in (4.2.5) at
fourth order in the momentum. Only two of them receive contributions from dimension-
6 operators, namely (∂ρBµν)2 and (Da

ρWµν)2. In [350], the coefficients are defined in the
electroweak eigenbasis as

Y =
g′M2

W

2

(
s2
wΠ′′ZZ(0)− 2cwswΠ′′ZA(0) + c2

wΠ′′AA(0)
)
,

W =
gM2

W

2

(
c2
wΠ′′ZZ(0) + 2cwswΠ′′ZA(0) + s2

wΠ′′AA(0)
)
.

(4.2.7)

Those two parameters are useful in order to disentangle the information provided by LEP 2
experiments on e+– e− cross sections at center-of-mass energies 189–207 GeV, above the Z
pole [351]. However, the resulting constraints are small in most models of new physics, due
to small contributions to Y and W . In [352], it was recognized that the original S, T , and U
parameters are affected in the presence of W and Y , leading to the effective parameters

Seff = S − 4s2
w

α
(W + Y ) , Teff = T − s2

w

α c2
w

Y , (4.2.8)

12An alternative parametrization by Altarelli and Barbieri [347] can be translated into the one given here.
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which enter the calculations of EWPOs in the same way as S and T do when Y = W = 0.
The experimental 68% CL bounds on the S, T , and U parameters and their correlation

matrix are given in [344]

S = 0.03± 0.10 ,

T = 0.05± 0.12 ,

U = 0.03± 0.10 ,

ρ =




1.00 0.89 −0.54
0.89 1.00 −0.83
−0.54 −0.83 1.00


 , (4.2.9)

and with the constraint U = 0 imposed, as

S|U=0 = 0.05± 0.09 ,

T |U=0 = 0.08± 0.07 ,
ρ|U=0 =

(
1.00 0.91
0.91 1.00

)
. (4.2.10)

The log likelihood for model testing, given the above values, is constructed by

χ2 =
∑

i,j

(Xi,NP −Xi, obs−ref)(σ
2)−1
ij (Xj,NP −Xj, obs−ref) , (4.2.11)

where σ2
ij = σ(Xi, obs−ref) ρij σ(Xj, obs−ref) is the covariance matrix. The Xi, obs−ref are the

values given in (4.2.9) or (4.2.10) with the subtraction of the fixed SM reference point, which
correspond to the input values compiled in appendix B.2. Remark that conventionally one
neglects the top mass uncertainty and considers it separately. The approximate one-loop
contribution is given by [348]

∆S = − 1

6π
ln

(
m2
t

m2
t, ref

)
, ∆T =

3

16πs2
wc

2
w

m2
t −m2

t, ref

m2
Z

, ∆U =
1

2π
ln

(
m2
t

m2
t, ref

)
. (4.2.12)

This does also apply to the numerical values given above. The shift ∆T = ±0.013, obtained
for the 1σ CL of the top mass, is numerically relevant.

It is interesting to evaluate the shifts of the oblique parameters due to a Higgs mass
different from the one measured. Keeping only the leading logarithmic loop effects in the SM,
they are [349]

∆S =
1

12π
ln

(
M2
h

M2
h, ref

)
, ∆T = − 3

16πc2
w

ln

(
M2
h

M2
h, ref

)
, ∆U = 0 . (4.2.13)

while U remains unchanged. Before the direct Higgs-mass measurement, in many models
of new physics it turned out to be an interesting option to cancel contributions to the S
parameter with a larger Higgs mass. E.g. in [1] we speculated that high values of Mh were
possible and natural in the context of the minimal RS model. Similar options were present in
the context of the two-Higgs-doublet model and models with a fourth chiral fermion generation
[353]. This underlines the strong qualitative impact that the discovery of the Higgs boson has
already had on the search for new physics.

4.2.1.3 Precision Observables from Z → bb̄

We often have to consider additional non-universal EWPOs, as mentioned above. Most
importantly Zbb̄ couplings are severely constrained but often affected in models of new physics.
Here, we use the width of the Z-boson decay into bottom quarks and the total hadronic width,
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R0
b , Ab, and A0,b

FB as introduced above. The general dependencies on the left- and right-handed
Zbb̄ couplings are given by [354]

R0
b =


1 +

4
∑

q=u,d

[
(gLZq̄q)

2 + (gRZq̄q)
2
]

ηQCD ηQED η′
[
(1− 6zb)(g

L
Zb̄b
− gR

Zb̄b
)2 + (gL

Zb̄b
+ gR

Zb̄b
)2
]



−1

,

Ab =
2
√

1− 4zb
gL
Zb̄b

+gR
Zb̄b

gL
Zb̄b
−gR

Zb̄b

1− 4zb + (1 + 2zb)

(
gL
Zb̄b

+gR
Zb̄b

gL
Zb̄b
−gR

Zb̄b

)2 , A0,b
FB =

3

4
AeAb .

(4.2.14)

The radiative QCD corrections given in [354] are summarized in the factors ηQCD = 0.9954
and ηQED = 0.9997. The most recent and precise evaluation [345] takes into account fermionic
electroweak two-loop corrections, which are relatively large, by using numerical Mellin-Barnes
integrals. In comparison to [354], higher-order corrections to the final state and gauge-boson
propagators were taken into account. The authors of [345] provide a convenient fit formula
from which we extract the numerical value corresponding to the input of appendix B.2 and
adapt the general functional form (4.2.14) with a correction factor η′ = 0.9939. The asym-
metry parameter Ab is corrected for a non-zero bottom-quark mass via zb ≡ m2

b(MZ)/M2
Z =

0.997 ·10−3. We assume that one can neglect new physics contributions to the left- and right-
handed couplings of the light quarks gL,RZq̄q , and to the asymmetry parameter of the electron
Ae. We fix these quantities to their SM values

(
gLZūu

)
SM

= 0.34674 ,
(
gRZūu

)
SM

= −0.15470 [338] ,
(
gLZd̄d

)
SM

= −0.42434 ,
(
gRZd̄d

)
SM

= 0.077345 [338] ,
(
Ae
)

SM
= 0.1462 [341] .

(4.2.15)

This assumption is well motivated by the very precise determination of these parameters, and
also by the fact that in many models of new physics the magnitude of deviations is controlled
by the fermion masses. We have seen in section 3.3.8.2 that this is the case for tree-level
couplings in the RS-Models due to the RS-GIM mechanism.

We evaluate the relations (4.2.14) using
(
gL
Zb̄b

)
SM

= −0.42114 and
(
gR
Zb̄b

)
SM

= 0.077420

[338], to obtain for the central SM values of the bottom-quark pseudo observables13

(
R0
b

)
SM

= 0.21475 ,
(
Ab
)

SM
= 0.935 ,

(
A0,b

FB

)
SM

= 0.1033 . (4.2.16)

Comparing these numbers with the experimental results [338]

(
R0
b

)
exp

= 0.21629± 0.00066 ,
(
Ab
)

exp
= 0.923± 0.020 ,

(
A0,b

FB

)
exp

= 0.0992± 0.0016 ,

ρ =




1.00 −0.08 −0.10
−0.08 1.00 0.06
−0.10 0.06 1.00


 , (4.2.17)

we find a p-value of only 1.3% for the set of the three b-quark related EWPOs considered
here. The experimental 1, 2 and 3σ CL are shown in figure 4.11 where the SM point is found
at 2.5σ. We also reproduce the pull of AFB obtained in [344] and shown in figure 4.10, where

13Errors of the SM predictions are negligible compared to the experimental values and therefore omitted.
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Figure 4.11: Fit to b-quark related EWPOs. The ellipses show the various confidence levels
of the experimental value. The black dot marks the SM value. The green line illustrates
variations of the Higgs mass, which are now fixed by the direct measurement. The black box
shows the shift of the ellipsis with the state-of-the-art calculation compared to the result in
[354], i.e. the shift induced by including η′.

the central SM value is 2.5σ away from the experimental value. The improved SM calculation
of Rb now yields a value also −2.3σ off the measured value. When considering a large set of
observables in a global fit, such deviations are not very unusual, thus we are far from stating
an inconsistency. At this point, we also have to warn the reader that part of the tension might
be due to an unfortunate statistical fluctuation or experimental systematics, since the values
of Ab extracted at SLD and the experiments at LEP are only compatible at 1.6σ. Note that
considering only the three b-related observables is also no unsubstantiated selection: It has the
physical motivation that deviations from the SM Z–fermion couplings could be suppressed
with an additional mechanism that depends on the mass of the fermion, e.g. the RS-GIM
mechanism or general compositeness of couplings. Yet, we will see below that contributions
in the RS model are rather harmful and cannot alleviate the existing deviations of the SM. In
general, b-related EWPOs tell us at least in which direction of parameter space new physics
is not allowed to move, and beyond, to speculations how it might improve the fit. The best
fit values are given by gL

Zb̄b
= −0.41997 and gR

Zb̄b
= 0.093220. A shift of order +15% in the

right-handed bottom-quark couplings relative to the SM could reach this value. On the other
hand, with constant right-handed coupling, negative shifts in the left-handed coupling of only
less than approximately −0.5% are allowed, but they do not improve the fit significantly.
Similar conclusions have been reached in [355], where also a toy model of mirror fermions is
presented that can reach the minimum χ2 of the fit.
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4.2.2 Constraints on the Randall-Sundrum Model

The leading effects on EWPOs in RS models arise already at tree-level and therefore have
the potential to be highly constraining. Thanks to the RS-GIM mechanism, we have seen
in section 3.3.8.2 that the contributions for light fermions localized near the UV brane are
universal to a large extent. In the following, we quantify the universal and the b-quark related
constraints in turn. We will discuss in detail how the custodial fermion embedding permits
to alleviate the bounds from EWPOs.

4.2.2.1 General Discussion and Input Parameters

We start with reviewing the input parameters. In the last section we have seen that universal
modifications of the couplings of the light fermions cancel in the asymmetries — as defined in
(4.2.4) — making the effective weak angle sl 2eff a natural choice. At tree-level we can therefore
simply work with the value given in the last section for sl 2eff and s2

w. The shift in the on-
shell definition s2

os and s2
0 are simple to work out, but we remark that their expressions are

modified by a term ∼ LM2
W /M

2
KK compared to the usual SM expression. The Fermi-constant

is affected by the universal shift. Extracting it from the charged-current four-fermion coupling
given in (3.3.153) we obtain at O(v2/M2

KK)

GF√
2

=
g2

8M2
W

[
1 +

M2
W

2M2
KK

(
1− 1

2L

)]
. (4.2.18)

It is useful to maintain the definition of vSM in terms of GF and relate it to the Higgs VEV
v that is necessary in the RS model to obtain the correct W -boson mass from (3.3.81). We
express this as [356]

κv ≡
v

vSM
= 1 +

M2
W

4M2
KK

(
L

c2
V

− 1 +
1

2L

)
, (4.2.19)

which holds for the custodial RS model and for the minimal model with cV → 1.
Concerning low energy EWPOs, it is interesting to note that a full 5d one-loop calculation

of the anomalous magnetic moment of the muon [231] finds a very small contribution, well
below the current uncertainty, even for MKK as low as 500 GeV.

4.2.2.2 Oblique and Universal Contributions

We summarize the oblique and universal contributions to the EWPOs with light fermions
with the S, T , and U parameters introduced in section 4.2.1.2. Following [187], we write
these in standard self-energy notation, despite the fact that the 5d contributions arise in fact
at tree level.

We calculated the non-zero tree-level correlators ΠV V (0) and Π′V V (0) with V = W,Z in
two ways. The simplest method is to use the zero-mode masses (3.3.81) and profiles (3.3.80)
in order to calculate the modifications to the pure zero mode exchange. This corresponds to
the original on-shell definition of Peskin and Takeuchi. We obtain at O(v2/M2

KK)

Seff =
2πv2

M2
KK

(
1− 1

L

)
, Teff =

πv2

2 c2
wM

2
KK

([ 1

c2
Z

− c2
w

c2
W

] L
s2
w

− 1

2L

)
, Ueff = 0 . (4.2.20)

As an alternative, yet more lengthy, check of the result we used the full 5d bosonic propagator
to derive S, T , and U in the definition of Barbieri et. al. [350]. This summarizes the full
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contribution from all KK bosons, according to the approach of [350] to summarize all universal

corrections. To this end one c use Σ
(k)
V (t, t′) for k = 1 given in (3.3.102), in order to derive

ΠV V (0), and generalize the method to k = 2, 3 to obtain the derivatives of the vacuum
polarization. Here, we used instead the full gauge boson propagator for the minimal model
from [210]. Taking the version for euclidean momentum p0

E = −ip0 we obtain the vacuum
polarization and its derivatives as

ΠV V (pE) = −
(
L

k
DV⊥
µν (q; ε, ε)

)−1

− p2
E −M2

V = ΠV V (0)− p2
E Π′V V (0) +

p4
E

2
Π′′V V (0) . (4.2.21)

A straightforward calculation leads to

S =
2πv2

M2
KK

, T =
πv2

2c2
wM

2
KK

L , W = Y =
g2 v2

16M2
KK L

, (4.2.22)

in agreement with [214, 357–359]. Relating this to the effective parameters via (4.2.8) we
obtain the same result as before in (4.2.20) with cV = 1.

The result (4.2.20) clearly shows that custodial protection is automatically at work in the
breaking scheme where SU(2)L × SU(2)R is broken to the diagonal subgroup. We have seen
in section 3.3.5.1 that this leads to the relation c2

Z = c2
W /c

2
w, canceling the L-enhanced term

in Teff . This holds irrespective of further details of the model, like e.g. the PLR symmetry.
The minimal model holds with cW,Z → 1 such that Teff is larger by a factor of approximately
2L2 ∼ 103 in the minimal model compared to the custodial model. We derive the following
numerical constraints on the KK scale and first KK gluon excitation at 99.73% (3σ) CL

minimal RS: ε = 10−15, MKK > 4.6 TeV, MG(1) > 11.3 TeV,

custodial RS: ε = 10−15, MKK > 1.7 TeV, MG(1) > 4.1 TeV,

little RS: ε = 10−3, MKK > 1.8 TeV, MG(1) > 4.7 TeV.

(4.2.23)

The full dependence of the lower bound on the KK scale on the volume of the extra dimension
is shown in figure 4.12. There, and in the bounds given in (4.2.23), we take the uncertainty
on mt and Mh into account, allowing it to vary at the same CL like the S and T parameters.
Almost all of the variation stems from the top-mass uncertainty. The full variation of the
lower limit with the uncertainties is shown in the shaded bands in figure 4.12. Using the
mean values for mt and Mh, one would overestimate the bound on the minimal RS model in
(4.2.23) by 13%. We observe that the LRS model [192] with small warp factor poses a viable
alternative to the custodial protection in order to protect the T parameter. Of course one
gives up the idea of connecting the weak scale with the scale of gravity but rather assumes
new phenomena to set in at an intermediate scale.

The limits on the custodial RS model stem almost entirely from the bound on S and are
essentially independent of L. We see that the 68% CL limit on MKK is relatively high due to
the measurement being only compatible with the reference SM point at approximately this CL.
The small negative shift in T from the custodial RS model cannot improve the fit. Rather on
the contrary, there might be harmful negative contributions to the T -parameter at loop-level
for relatively light KK fermions. In [224, 360] the fermion contribution to the T parameter
is found to be finite at one-loop level for a related fermion embedding in the context of an
SO(5) gauge–Higgs-unification model. The presence of bidoublets — as introduced in section
3.3.5.2 to embed the left-handed quark doublet in the extended SU(2)L × SU(2)R × U(1)X
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Figure 4.12: Constraints on the KK scale from S and T . The solid lines show the lower
limit on the KK scale in dependence on the volume of the extra dimension L. The shaded
bands indicate the uncertainty from mt and Mh. We include the uncertainty on mt and
Mh at the same CL like the constraint on S and T . The steep/flat lines are valid for the
minimal/custodial model.

gauge group — is found to typically induce a negative shift in the T parameter. Obtaining
very light KK fermions (called custodians) is impossible with our fermion embedding, since
the necessary bulk mass configuration requires strong PLR breaking. This leads to mixing into
the left-handed b quark, whose couplings to the Z boson are modified, but they are strongly
restricted as we discuss below. Furthermore, the one-loop Higgs-sector contribution to the
T -parameter has been found to be finite as well, but logarithmically UV divergent for the
S parameter [223]. The authors of the latter reference find this result independently of the
model details. This could result in a large and positive S parameter. The numerical details
of the one-loop corrections to S and T remain unquantified and are beyond the scope of this
thesis. Qualitatively, the discussion given here tells us that the bounds in (4.2.23) could be
raised.

When one allows for more elaborate extra-dimensional model building and departures
from the minimal setups we consider here, then there exist of course methods to protect the
T -parameter. One possibility uses large brane-localized kinetic terms for the gauge fields
[357, 361, 362]. Since such terms are needed as counterterms to cancel divergences appearing
at the loop level [363, 364], they are expected on general grounds to be present in an orbifold
theory. The bare contributions to the brane-localized kinetic terms encode the unknown UV
physics at or above the cutoff scale. To retain the predictivity of the model, we assume that
these bare contributions are small. As we concentrate on the leading contributions to the
electroweak precision observables, we furthermore ignore possible effects of brane-localized
kinetic terms appearing at the loop level. Even if these assumptions would be relaxed, the
bound on the KK-gauge-boson masses that derives from the constraints on the S and T
parameters would remain anti-correlated with the mass of the Higgs boson. For example, the
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authors of [362] found that having a light KK spectrum would require a value of the Higgs
mass in the range of several hundred GeV. Another alternative direction of model building,
which we did not discuss here, allows for variations of the 5d metric in the IR region. For the
required model building and details we refer to [365, 366].

4.2.2.3 Bounds from the Zbb̄ Vertex

We continue with an analysis of the most important non-oblique correction, given by the
precision measurements of the Zbb̄ vertex. To this end we derive approximate expressions for
gL
Zb̄b

and gL
Zb̄b

in the ZMA (see section 3.3.6) and furthermore use relations following from a
Froggatt-Nielsen analysis, i.e. corresponding to an expansion in the Cabibbo angle. Starting
from the general expression for the couplings (3.3.142) we find to the order considered

gbZ,L =

(
− 1

2
+
s2
w

3

)[
1− M2

Z

2M2
KK

F 2(cbL)

3 + 2 cbL

(
ωbLZ L−

5 + 2cbL
2(3 + 2 cbL)

)]

+
m2
b

2M2
KK

{
1

1− 2 cbR

(
1

F 2(cbR)

[
1− δc

1− 2 cbR
1− 2 cb′R

]
− 1 +

F 2(cbR)

3 + 2 cbR

)

+

2∑

i=1

|(Yd)3i|2
|(Yd)33|2

1

1− 2 cdi

1

F 2(cbR)

[
1− δc

1− 2 cdi
1− 2 cd′i

]}
, (4.2.24)

gbZ,R =
s2
w

3

[
1− M2

Z

2M2
KK

F 2(cbR)

3 + 2 cbR

(
ωbRZ L− 5 + 2 cbR

2(3 + 2 cbR)

)]

− m2
b

2M2
KK

{
1

1− 2 cbL

(
1

F 2(cbL)
− 1 +

F 2(cbL)

3 + 2 cbL

)
+

2∑

i=1

|(Yd)i3|2
|(Yd)33|2

1

1− 2cQi

1

F 2(cbL)

}
,

where cbL ≡ cQ3 . In order to unify the notation of the custodial with the minimal model,
we also write cdi ≡ cT2,i and cd′i ≡ cT1,i . The coefficient δc ∈ {0, 1} multiplies terms that
are only present in the custodial model. In these terms we assumed cd′i < 1/2, what is also

required for obtaining a sensible quark spectrum. Note that we use the bottom-quark MS
mass mb ≡ mb(MKK) evaluated at the KK scale. On the other hand, the electromagnetic
coupling and the weak mixing angle are running parameters in the low-energy EFT, which is
obtained after decoupling the RS contributions at the scale MKK. We effectively include the
associated large logarithms by replacing s2

w(MKK) with s2
w(mZ) in (4.2.24). We still allow for

cT1,i 6= cT2,i , i.e. PLR symmetry breaking by the triplet bulk masses, and retain the parameters

ωbLZ and ωbRZ . Remind that in the custodial embedding of section 3.3.5.2, we found ωbLZ = 0

and ωbRZ ≈ 10, while both factors are set to one in the minimal model.

From (4.2.24), we observe that the non-universal reduction of gbZ,R is in any case negative
and approximately 10 times more so in the custodial model. This direction of contributions
to gbZ,R is strongly constrained by the bottom-quark pseudo observables, as we have seen in
section 4.2.1. We will see below, that this puts a mild upper bound on the size of cbR in the
custodial model, while the contributions are irrelevant in minimal model. The shift in gbL is
positive in the minimal model and almost absent in the model with custodial protection with
a small negative contribution remaining. If one allows the PLR symmetry to be broken by
cdi 6= cd′i , then the shift in gbL can also be positive in the custodial model as a result of fermion
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Figure 4.13: Anomalous couplings δgbL (left) and δgbR (right) as functions of cbL and cbR .
The red solid and blue dashed lines correspond to the predictions obtained in the minimal
model and custodial RS model. The b-bulk-mass parameters not explicitly shown is set to
−1/2. The elements of the down-type Yukawa matrix are set to equal magnitude. The scale
of ctR on the upper frame axis corresponds to (Yu)33 = 3 and (Yd)33 = 1. The light gray
bands indicate the experimentally allowed 3σ CL ranges.

mixing. Positive contributions to gbZ,L are strongly constrained by the bottom-quark pseudo
observables and imply relevant restrictions on the parameter space of the minimal model.

In order to obtain a quantitative impression of the anomalous couplings, we show in fig-
ure 4.13 our predictions for δgbZ,σ ≡ gbZ,σ−

(
gbZ,σ

)
SM

as functions of the bulk-mass parameters
cbσ for MKK = 1 TeV. Similar plots have been presented in [224]. The shown curves corre-
spond to median bulk-mass parameters for the first two generations, which we obtained in
a parameter scan cQ1 = −0.63, cQ2 = −0.57, cd1 = −0.65, and cd2 = −0.62. Variations of
this choice in the allowed ranges have little impact on the results. We furthermore fix the
ratios of Yukawa entries |(Yd)3i|/|(Yd)33| and |(Yd)i3|/|(Yd)33| with i = 1, 2 to be equal to one.
Compared to the minimal case (red solid line) the prediction for δgbZ,L in the RS model with
extended PLR symmetry (blue dashed line) is, essentially independent of cbL . The predic-
tions for the anomalous coupling δgbZ,L are thus easily within the experimental 99.73% CL
(3σ) bound shown as the light gray band, which gives a strong motivation to protect the
ZbLb̄L vertex through the mechanism employed here. In the case of the minimal RS model,
δgbL can be suppressed by localizing the right-handed top quark very close to the IR brane.
This feature is illustrated by the ticks on the upper border of the frame in the left panel.
The given values of ctR ≡ cuc3 have been obtained by solving the Froggatt-Nielsen relation

mt = v/
√

2 |(Yu)33||F (cbL)F (ctR)| for the bulk-mass parameter ctR , evaluating the top-quark
MS mass at MKK = 1 TeV and setting |(Yu)33| = 3. For smaller values of |(Yu)33| the ticks
are shifted even further to the right.

As anticipated above, the corrections δgbR are negative and always larger in the custodial
RS model than in the minimal formulation. In principle, this puts an upper bound on the size
of cbR in the former case, as we see from the experimental bound indicated again by the light
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gray band. Still, the ZbRb̄R coupling is predicted to be SM-like if we require to reproduce the
large top-quark mass with Yukawa couplings of O(1). This can be inferred from the ticks on
the upper border of the frame in the right panel. They have been obtained by combining the
Froggatt-Nielsen approximation mb = v/

√
2 |(Yd)33||F (cbL)F (cbR)| with the one for mt given

earlier, solving again for ctR . The Yukawa parameters have been fixed to |(Yd)33| = 1 and
|(Yu)33| = 3. For smaller values of |(Yd)33| the ticks move to the right and vice versa for larger
values. Rescaling |(Yu)33| has the opposite effect. With the choice of a bulk-mass parameter
not exceeding the curvature scale14 ctR < 1, we observe that the bound is only relevant for
very low values of |(Yd)33|. This observation leads us to the conclusion that, irrespectively
of the bulk gauge group, naturalness in combination with the requirement to reproduce the
observed top- and bottom-quark masses excludes large corrections to δgbR in models of warped
extra dimensions in which the left-handed bottom and top quark reside in the same multiplet.
This model-independent conclusion should be contrasted with the analysis [367], which finds
sizable corrections in δgbR. The values of the bulk-mass parameters cbL,R and ctR considered
in the latter article lead to bottom- and top-quark masses of mb ≈ 40 GeV and mt ≈ 75 GeV,
which are in conflict with observation. We finally remark that if the left-handed bottom
and top quarks arise as an admixture of the zero-mode fields of two SU(2)L doublets, then
the bottom- and top-quark masses are determined by two independent sets of bulk-mass
parameters, so that it is possible to account simultaneously for the quark masses and mixings
as well as the A0,b

FB anomaly [368].

The full impact of the constraints on the anomalous Zbb̄ couplings on the relevant model
parameters are shown in figure 4.14 for the minimal, and figure 4.15 for the custodial RS
model. The colored contours indicate the magnitude |(Yd)33| necessary to achieve the observed
value of the bottom-quark mass. Requiring in addition a consistent value of the top quark
mass restricts the parameter space further. This is indicated by the cyan, dashed regions,
which enclose the allowed range for allowed hierarchies in the Yukawa matrices between one
for the innermost and four for the outermost region.

In the case of the minimal model we illustrate with bright colors the importance of includ-
ing the m2

b/M
2
KK corrections as opposed to the region with faint colors, where they are set

to zero. They originate from the term (δQ,q)33 in (3.3.142) that parametrizes singlet–doublet
fermion mixing and contribute with a term that is proportional to F (cbL,R)−2. This term is

relevant for δgLZ,b, in which cbR enters. Consequently, the b-related EWPOs, pose a tight con-
straint on the amount of UV localization of the right-handed b-quark. A similar constraint
is also active in the custodial model when we break the PLR symmetry by the bulk-mass
parameters cb′R 6= cbR . In the case of full PLR symmetry the whole faintly colored region
of figure 4.15 is accessible. We demonstrate by the brightly colored region that the choice
cb′R = 0 cuts away a relevant part of the parameter space for low values of MKK. Notice that

the main PLR breaking correction to gbL in (4.2.24) scales like −v2/M2
KK |(Yd)33|2 F 2(cbL)

as seen from the aforementioned Froggatt-Nielsen approximation. This explains why values
|(Yd)33| & 1 are not compatible with the Z → bb̄ data in the case cb′R = 0.

Taking a completely random approach to the fundamental Yukawa and bulk-mass param-
eters, we also did a numerical scan over the parameter space. We generated a large sample
of parameter points with viable quark spectrum and calculated the Zbb̄-couplings without
resorting to the approximations used above. Further details on this parameter scan are de-
scribed in appendix B.3. With the parameter scan, we can quantify the constraining power

14Remark that one also has to require ctR > −1/2 in order to reproduce the large top mass.
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Figure 4.14: 3σ CL in the cbL–cbR plane for the minimal RS model and MKK = 2 TeV and
MKK = 4 TeV. The colored contours indicate the value of |(Yd)33| necessary to reproduce
the value of the bottom-quark mass. The same color code is used in all plots. The bright
colors show the numerical result of the full expressions for gbZ,σ (4.2.24), while faint colors

indicate the result without terms proportional m2
b/M

2
KK. The dashed cyan lines enclose the

regions where top and bottom-quark mass can be reproduced with |ctR | < 1, and all Yukawa
elements and ratios of Yukawa elements in the range [1/n, n], with n = 1, 2, 3, 4 for the four
successively larger regions.
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Figure 4.16: Contours for p-values of the three b-related EWPOs in the minimal RS model,
obtained from a numerical scan of the RS parameters. pqZbb is the q%-quantile for the p-
value, i.e. a fraction of q% of the parameter space (10% and 1% in the left and right panel)
have a probability that is equal or higher than pqZbb. The values are given in percent and
correspond to the 3 . . . 2.6σ level in steps of 0.1 from left to right. The SM value is at
approximately 2.5σ.

of the b-related EWPO under a given assumption of allowed tuning. We illustrate this in
figure 4.16, where we show contours for the minimal probability of the best 10% (left panel),
or 1% (right panel) of the total parameter space of the minimal RS model. The grayed region
in those plots corresponds to the excluded white region of figure 4.14, with the additional
requirement of 10%, or 1% available parameter space. We observe a peculiar dependence on
the size of the maximally allowed values of the fundamental Yukawa matrix elements ymax.
Starting from ymax ≈ 1.5, the required KK scale necessary to suppress the contribution to the
Zbb̄-couplings sharply rises for lower values of ymax. On the other hand, allowing for maximal
perturbatively safe values of ymax = 3, still more than 1% of the parameter space is open for
a KK scale of 1.6 TeV, which is considerably below the bounds imposed on the minimal RS
model by oblique correction.

We conclude that the b-related EWPOs impose tight constraints on the parameter space
of the minimal RS model, whereas they are only relevant in the custodial model with large
PLR-breaking from bulk masses. In contrast to the oblique and universal corrections, the
constraints are weaker in the sense that they do not only affect the KK scale. They rather
constrain the localization of the left and right-handed b-quark beyond the requirement of
reproducing a sensible quark spectrum and can impose a certain amount of hierarchy between
(Yu)33 and (Yd)33 for low values of MKK.
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4.3 Higgs Production and Decays at Hadron Colliders

The remainder of this thesis is devoted to the topic of Higgs production and decays. Since such
processes were only very recently measured for the first time, the subject is in a major upheaval
period from the experimental point of view. This implies that Higgs processes will soon
constitute a third pillar of precision constraints on models beyond the SM. On the theoretical
and phenomenological side, the physics behind these processes is well understood and precise
predictions can be made for the SM. Also beyond the SM, the effects of additional particles
are well understood for perturbatively unitary theories like the minimal supersymmetric SM,
general two-Higgs-doublet models, and left–right symmetric models. For reviews on Higgs
phenomenology in these models see [106, 369, 370] and the references therein. Here, we
investigate the effect of specific composite models. First, we review the SM results, the
experimental status, and contributions from partner fermions in the simple example of the
LHT model. Our main focus is then to determine the analytical and numerical structure of
the effects in the RS model, discuss the subtle issue of convergence of loop integrals, and the
potential to constrain the parameter space.

4.3.1 Results in the SM and Measurements

With the recent discovery of a bosonic resonance [22, 29, 41] that is presumably due to the
Higgs boson15, we entered a new era of particle physics. Since apart from the resonance mass
Mh ≈ 126 GeV also the first bounds on its couplings were obtained, Higgs physics has reached
a turning point in making the transition from discovery to precision physics.

The couplings of the Higgs boson to fermions and gauge bosons have a peculiar structure
in the SM. This originates in the simple mechanism of electroweak symmetry breaking. The
couplings of the Higgs boson to gauge bosons are obtained from covariant derivatives, whilst
fermions couple to the Higgs boson via Yukawa couplings. Since these terms are the only
sources of all particle masses and there is only a single scalar direction that takes a VEV,
the corresponding couplings of the physical Higgs boson are directly proportional the same
mass. Decay widths to heavy particles are consequently enhanced compared to those into
light particles. The same is true for the production of the Higgs boson: Direct Higgs-boson
couplings of the light quarks contained in protons, or of electrons in the initial state contribute
to production to a negligible extent. Thus, the main production channels we must consider
either involve heavy quarks, most importantly the top quark, or heavy gauge bosons.

For hadron colliders, such as the Tevatron and the LHC, the main production process is
due to fusion of two gluons. The leading order (LO) Feynman diagram is depicted in the
upper left panel of figure 4.17. Since this process is particularly interesting in the models
of new physics we discuss below, we will review it in some detail before commenting on the
other production modes.

We take a closer look at the on-shell amplitude for the diagram depicted in the upper left

15Since the discovered particle decays also into two photons it must be a boson. The Landau-Yang theorem
[371, 372] implies that it cannot be of spin 1. Evidence for the decay into Z bosons suggests that it participates
in electroweak symmetry breaking. Recent measurements of ATLAS [27] and CMS [36] already disfavor the
pseudo-scalar and spin two hypothesis roughly at the level of one percent. For simplicity we call the observed
resonance the Higgs boson.
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Figure 4.17: Feynman diagrams for the leading order contributions to the dominant Higgs
production mechanisms in the SM at hadron colliders. For the subleading production with
heavy quarks in the upper right panel there are additional tree-level diagrams with the Higgs
boson attached to other lines, with a trilinear gluon coupling, and with qq̄ initial state.

panel of figure 4.17. After evaluating the fermionic trace it is given by

M
(
gg → h

)
= 2i

g2
s m

2
q

v
δab εµ(p) εν(q)

× µ2ε

∫
dDk

(2π)D

gµν
(
m2
q −M2

h/2− k2
)

+ 4kµkν + qµpν

(
k2 −m2

q

)[(
k + p

)2 −m2
q

][(
k − q

)2 −m2
q

] ,
(4.3.1)

where mq is the mass of the internal fermion. The momentum p, Lorentz-index µ, and color-
index a belong to one gluon and q, ν, b to the other. We have already written the expression
using dimensional regularization in D = 4 − 2ε dimensions, even though we know the loop-
integral must be finite because of renormalizability of the SM. However, a gauge invariant
regulator is necessary to obtain the correct finite result, which fulfills the Ward identities.
They require the amplitude to be proportional to qµpν − gµνM2

h/2. One can indeed observe
a curious cancellation of two specific finite terms. We rewrite the loop-integral in the second
line of (4.3.1) with the conventional three-point functions, defined e.g. in [373], to obtain

i

(4π)2

(
Cρσ(p2, q2;mq,mq,mq)

(
4gµρgνσ − gµνgρσ

)

+ C0(p2, q2;mq,mq,mq)
(
gµν
[
m2
q −M2

h/2
]

+ qµpν
))
.

(4.3.2)

Reducing the tensor function Cρσ with the Passarino-Veltman method [374] one sees that
it contains a contributions from a scalar two point functions gρσB0(p;mq,mq). The 1/ε
divergence in B0 is however multiplied with a Lorentz structure from the fermion trace that
would vanish in D = 4 given by

(
4gµρgνσ − gµνgρσ

)
gρσ = 2εgµν . This leads to a finite,

non-gauge invariant term which cancels against the non-gauge invariant terms in the second
line of (4.3.2). The necessity of a proper regularization is a crucial observation that we also
encounter in the 5-dimensional calculation in the RS model in section 4.3.3. However, the
argument is of different nature in that model. Instead of the breakdown of gauge invariance
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we observe a resonance phenomenon at an artificial physical scale that is inexistent when the
theory is properly UV-regularized.

The amplitude for gg → h can finally be written as [375]

M
(
gg → h

)
=

αs
3πv

δabεµ(p)εν(q)

(
gµν

M2
h

2
− qµpν

)
Ahq (τq) ,

Ahq (τ) = 3

1∫

0

dx

1−x∫

0

dy

(
1− 4xy

1− 4xy/τ

)
, τq =

4m2
q

M2
h

− iε ,
(4.3.3)

where we included a factor 2 to account for the diagram with crossed gluon lines. Up to
prefactors, the result is encoded in the function Ahq (τq) and often called form factor in this
context. The form factors of all processes relevant for our discussion are compiled in appendix
B.1. We observe that in the limit τq � 1 we obtain Ahq (τq) = −3/8τq(ln(4τq) + iπ)2. This
directly shows the marginal relevance of light quarks. The final partonic cross section is given
by

σ̂(gg → h) =
α2
sM

2
h

576πv2

∣∣∣
∑

q

Ahq (τq)
∣∣∣
2
δ(ŝ−M2

h) , (4.3.4)

with the partonic center of mass energy ŝ. To obtain the hadronic cross section it has to be
folded with the gluon luminosity involving appropriate parton distribution functions (PDF).
In the narrow-width approximation, one considers the Higgs boson as a stable particle and
neglects interference effects with background and other channels by employing the δ-function
in (4.3.4). This treatment is appropriate for a light Higgs mass as shown below in figure 4.19.
The luminosity integral thus becomes a simple multiplication at leading order and for all
virtual corrections at higher orders. Consequently, the involved uncertainties drop out to
a large extent, if we consider ratios of processes with different final states [376]. This is
important, for accessing the coupling structure of the Higgs boson. We discuss this in more
detail below.

The largest contribution to the amplitude comes from the triangle diagram with internal
top quarks. It can be described by an effective operator of mass dimension 5 that arises
from integrating out the top quark16. The most general effective Lagrangian, on which this
contribution is to be matched, reads

Leff
ggh = C1(µ)

αs(µ)

12π

h

v
Gaµν G

µν,a − C5(µ)
αs(µ)

8π

h

v
Gaµν G̃

µν,a , (4.3.5)

where Gaµν is the gluon field strength tensor and µ ≤ mt is the scale at which the effective
operators are renormalized. We also included a CP -violating operator that involves the dual
field strength tensor G̃µν,a = −1

2ε
µνρσ Gaρσ (with ε0123 = −1). It could be generated by pseudo-

scalar couplings from new physics but is zero in the SM. The Wilson coefficients are thus given
by C1(µ) = Ahq (mt) and C5(µ) = 0. We discuss the evolution of the Wilson coefficients in the
next section.

We can furthermore approximate the result using the limit of a heavy top mass. With our
normalization Ahq (τ) → 1 for τ → ∞. The resulting effective ggh coupling stays finite even
after decoupling the top quark. This behavior stems from the top Yukawa coupling that is
included in the form factor Ahq ∼ yt/v. In fact, there exists no physical decoupling limit which

16Interestingly this description is even valid for Mh > mt. See [377] for a didactic explanation.
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takes only the quark masses to infinity. The limit v →∞ would uniformly rescale the whole

spectrum, thereby violating the low energy constraint v =
(√

2GµF
)−1/2 ≈ 246GeV.17 This

justifies the non-decoupling of heavy chiral fermions, and the same reasoning also applies
to any possible fermions of new physics that receive their masses purely from electroweak
symmetry breaking.

The large mt approximation is very useful for the derivation of a specific low-energy
theorem [378–380]. This theorem relates the given amplitude with one external Higgs boson
to such amplitudes with no, or more than one Higgs boson in the heavy mt limit. For
amplitudes with more than one Higgs boson this is easily seen by inserting an additional top
propagator and a Yukawa coupling in the diagram, what leads to the replacement

1

/k −mt
−→ 1

/k −mt

mt

v

1

/k −mt
=
mt

v

∂

∂mt

1

/k −mt
. (4.3.6)

The general low-energy theorem is the intuitive generalization of this recipe

lim
ph→0

M(I → F + h) =
∑

q

λhq
mq

v

∂

∂mq
M(I → F) . (4.3.7)

M is the matrix element for any initial state I, a final state F that may already contain Higgs
bosons, and a generalized sum over fermions of bare mass mq in the loop. The vanishing Higgs
momentum on the left-hand side is equivalent to taking the large mq limit, since the mass
inside the loop cannot be resolved by the external momentum. The sum (4.3.7) is already
suitable for more general chiral quarks by including the factor λhq that is equal to one only
in the SM. Already for a Higgs sector with more than one doublet those factors are given
in terms of mixing angles of the extended scalar sector [380]. Apart from the possibility to
calculate multi-Higgs production with (4.3.7), the relation also directly relates the large mt

limit of the ggh amplitude to the QCD β-function. This provides the possibility to calculate
the ggh amplitude at all orders from gluon self energies. On the right-hand side of equation
(4.3.7), one only has to account for the renormalization of the bare masses by dividing by
a factor 1 + γmq , with the mass anomalous dimension γmq . This results in the approximate
next-to-leading order (NLO) result of the SM

Leff
ggh =

αs(µ)

12π

βts
4αs(1 + γm)

h

v
Gaµν G

µν,a

=
αs(µ)

12π

(
1 +

αs(µ)

4π
(5Nc − 3CF ) +O(α2

s)

)
h

v
Gaµν G

µν,a .

(4.3.8)

where βts is the top-quark contribution to the QCD β-function, Nc = 3 the number of colors,
and CF = (N2

c − 1)/(2Nc) the quadratic Casimir operator. Remarkably, the accuracy of the
large mt approximation is very high for Mh < 300 GeV, better than 1% compared to the full
mt dependence even at next-to-next-to-leading order (NNLO) [381]. In [237] the authors have
used (4.3.7) to derive a very general expression for C1 in models of new physics and relate
the sign of the shift in C1 to the cancellation of the quadratic divergence in the Higgs mass
in various scenarios of new physics.

17Infinite quark masses at fixed v require Yukawa couplings to enter the strong coupling regime, in which
perturbative arguments fail to apply.
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Figure 4.18: The two dominant production cross sections at center of mass energies relevant
for the LHC at 10 TeV (left) and the Tevatron at 1.96 TeV (right). The upper red line
shows the gluon–gluon fusion mode. The lower blue line shows weak gauge boson boson
fusion for the LHC and associated production with W for the Tevatron. For uncertainties
see comments in the main text.

Beyond the top quark, also the bottom-quark contribution has to be taken into account.
Numerically, it suffices to very good accuracy to multiply the final cross section σ(gg → h)
without the bottom-quark corrections by a factor

(
1+2 ReAhb

)
. This approximate treatment

decreases the cross section by about 9%, 2%, and less than 1% for Mh = 100 GeV, 300 GeV,
and 600 GeV, in good agreement with the NLO calculation including the exact mass depen-
dence [382–384].

Note that higher-order QCD corrections to the gluon–gluon fusion process are very impor-
tant. At the LHC they increase the LO cross section by about 80-100% at NLO, by about 25%
at NNLO [385–387], and another 6-9% stem from the resummation of soft gluons at NNLL.
The current state of the art, including electroweak corrections, detector acceptances, and cuts
on differential distributions is compiled by the LHC Higgs Cross Section Working Group Col-
laboration in [388, 389]. We should also account for QCD corrections when integrating out
heavy colored particles in models of new physics in the following sections. For extra quarks,
which have the same SU(3)c quantum number as the SM quarks, the QCD corrections are
very similar to those from integrating out the SM top quark. Like for the top quark, the
generalization of (4.3.8) involves only the QCD β-function and mass anomalous dimension,
which solely depend on the SU(3)c representation in a mass independent renormalization
scheme.

We show numerical values for the Higgs-production cross sections at the LHC and Tevatron
for center-of-mass energies

√
s = 10 TeV and

√
s = 1.96 TeV in figure 4.18. There we employ

the calculation of σ(gg → h) given in [390], which combines the next-to-next-to-leading
fixed-order corrections [385–387] with resummation of both threshold logarithms from soft-
gluon emission [391–395] and terms of the form (Ncπαs)

n, which have been identified as
part of the source of large perturbative corrections [396]. The result is depicted in the red
curves of figure 4.18, where the MRST2006NNLO PDFs [397] and the associated normalization
αs(mZ) = 0.1191 for the strong coupling constant are used. The choice of low-energy input in
the form of different sets of PDFs introduces a major theoretical uncertainty. Furthermore,
there is the issue how renormalization and factorization scale choices reflect the uncertainty
related to the truncation of the perturbative series. The total theoretical accuracy [388] is at
the level of 20%, on which the recent experimental precision is already closing in [22, 29].
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Figure 4.19: Total width of the SM-Higgs boson. Both axes have a logarithmic scale.

Besides gluon–gluon fusion there are two main production processes mediated by weak
gauge bosons, whose LO diagrams are depicted in the bottom row of figure 4.17. This is
the associated production with W/Z bosons [116, 398], which is the relevant production
channel for the pp̄ collisions at Tevatron, and the weak vector boson fusion processes [399,
400], which is a subleading contribution at the LHC. Their total cross sections in hadronic
collisions is approximately 10 times lower than the gluon fusion cross section in the relevant
Higgs-mass range, as depicted by the blue curves [401] in figure 4.18. Nevertheless, they
provide an additional hadronic probe that allows to distinguish them from the overall hadronic
background. For weak vector boson fusion the probes can be enhanced collinear forward jets
in a back-to-back geometry [402], which provide a very efficient cut against QCD backgrounds.
Moreover, the QCD uncertainty of the theory prediction is much lower than in gluon–gluon
fusion and the dominant, remnant PDF uncertainty stays below 3% in the relevant Higgs-mass
range [388].

An additional, subleading, but experimentally important production mode is the associ-
ated Higgs production with two heavy top [403, 404] or bottom [405, 406] quarks. Considered
with a subsequent decay h→ bb̄ it will play an important role in later stages of the LHC pro-
gram as it allows to directly measure the top–Higgs coupling and constrain the bottom–Higgs
coupling in supersymmetric models with large tan(β). For the plethora of other suppressed
production processes, e.g. with one or more hard jets in the final state, double-Higgs produc-
tion, diffractive production, etc. , we refer to [142] and references therein.

After production of the Higgs particle we can separately consider its subsequent decay
widths. As mentioned above, it couples to all particles, including itself, proportional to the
particles masses. The total width of the SM-Higgs boson shown in figure 4.19 is therefore
dominated by the decay into the heaviest states allowed by phase space, which is either
bb̄ below, or W+W− above the W+W− threshold. The width increases drastically at this
transition. For the relevant low Higgs mass range we have already discussed that the narrow
width approximation is suitable.

The past successive reduction of the allowed mass region [407–410] shows that a detection
of the Higgs boson at a mass of Mh ≈ 126 GeV has been difficult, particularly compared
to higher values of the Higgs mass, where the golden channel h → Z(∗)Z(∗) → 2l+2l− with
the experimentally clear leptonic final state would have allowed for real intermediate config-
urations of the two Z bosons. The dominant decay into bottom-quark pairs is difficult to
access if originating from gluon–gluon fusion, since the QCD background of bb̄ production is
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Figure 4.20: Variation of the SM branching ratios of the Higgs decay normalized at Mh =
126 GeV and absolute values at the normalization point. The values are obtained using
HDECAY version 5.00 [412] with the standard input parameter set. The total Higgs width
Γh is also normalized at the same Higgs mass. The dark gray band indicates the 3σ CL
of the measured Higgs mass at ATLAS and the faint gray band at CMS. Statistical and
systematical uncertainties are added in quadrature.

at the level of µb compared to the Higgs-production rate, which is at the level of ∼ 10pb for
Mh ≈ 126 GeV.18

Still, as the Higgs boson is detected at the given light mass, nature now turns out to
leave us in a fortunate position with the possibility to reconstruct the Higgs particle in a
large number of decay modes. The variation of the branching ratios over the now relevant
Higgs-mass range and absolute values are given in figure 4.20. In fact all the given final states
except cc̄ and gg should be accessible during the LHC program. Most remarkably, for the
given light Higgs mass, the loop-induced decay to γγ has a branching fraction that is sizable
enough to render it even the main discovery channel. This process receives contributions from
diagrams analogous to those we discussed for gluon–gluon fusion, but also from a W -triangle
diagram that interferes destructively with the top-triangle diagram. At LO the partial width
is [378, 379]

Γ
(
h→ γγ

)
=

α2M3
h

144π3v2

∣∣∣
∑

f

QfNcA
h
q (τf ) +AhW (τW )

∣∣∣
2
, (4.3.9)

where the sum now extends over all fermions, τW = 4M2
W /M

2
h − iε, and the explicit form of

AhW is again given in appendix B.1. The W contribution is always dominant, starting from
light Higgs masses, where AhW (∞) = −21/3, up to relatively heavy Higgs masses. Only above
the tt̄ threshold Mh > 2mt, the partial decay width starts to deviate significantly from the M3

h

behavior and drops to almost full cancellation at Mh ≈ 650 GeV. In the relevant mass region
Mh ≈ 126 GeV we have a ratio of AhW (τW )/(2Ahq (τt)) ≈ 3.0. The decay h → Zγ → l+l−γ
will also become accessible at the LHC at higher luminosity. Much like the decay into two
Z bosons, this channel has little background and the kinematics of the decay can be cleanly
reconstructed. However, it is more rare and suffers the penalty of low branching fraction for
the decay Z → l+l−. The LO decay is calculated from the same diagrams as h → γγ with

18The bb̄ final state is accessible in associated W production in a specific, highly transversally boosted
kinematic region [411], and, more difficult, in weak gauge boson fusion [388].
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one photon replaced by a Z boson. Thus, it is given by
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, (4.3.10)

where λi = 4M2
i /M

2
Z − iε, the charges of the vectorial Z-fermion couplings are v̂f = T 3

f −
2s2
wQf , and the explicit form factors again given in appendix B.1. The size of the W -boson

form factor is similar to the one for the decay into γγ, but the top contribution is reduced by
more than 50%, due to v̂f . The QCD corrections to both processes are purely virtual because
of color conservation and have the expected size: The correction factor to the top-quark-form
factor is given by 1 + αs/π in the heavy mt limit [413]. Also NLO electroweak corrections
have been calculated [414] reducing the remnant uncertainty from higher order corrections to
less than 1%. The remaining relevant decays widths are known to a comparable accuracy of
≈ 1% [388], except for h→ gg. There are relevant parametric uncertainties, which have been
conservatively estimated in [415]. At the given Higgs mass they are driven by bottom-quark
mass uncertainties in the h → bb̄ decay width. It enters the branching ratios of all relevant
final states via the total width and amounts to approximately 5% uncertainty.

Summary of Recent Higgs Measurements

In this paragraph, we shortly repeat the recent results of the LHC Higgs searches. In to-
tal, ATLAS [22] (updates in [23–28]) and CMS [29] (updates in [30–36]) have observed
the Higgs boson with maximal combined local significances of 7.0σ and 6.9σ at the mass
125.2 ± 0.3 (stat) ± 0.6 (sys) GeV and 125.8 ± 0.4 ± 0.4 GeV, respectively. While both mass
measurements are well consistent with each other, their precision should be taken with a grain
of salt; the latest ATLAS analysis [28] found a difference between the mass measurements
in H → γγ and H → ZZ∗ → 4l with a significance of 2.7σ. The mass splitting is lower
and of reversed order in the CMS result [36]. A fact, most interesting for the derivation of
constraints on new physics, is that the experimental collaborations also gave results for the
relative signal strengths µf = σtotal Br(h → f)/[σtotal Br(h → f)]SM in the various channels.
The results are summarized in table 4.1. The measurements of the two boson final states

µWW µZZ µγγ µbb µττ Mh|fix [GeV]

ATLAS [28] 1.5(6) 1.0(4) 1.8(4) -0.4(10) 0.8(7) 125.0

CMS [36] 0.7(2) 0.8(3) 1.6(4) 1.1(6) 0.9(5) 125.8

Table 4.1: Measured relative signal strengths µf for the decays into the various final states
f measured by ATLAS and CMS. The last column contains the fixed Higgs mass hypothesis
for which the values were obtained.

are in principle all in agreement with the SM. A slight upward fluctuation in the γγ channel
exists, but is below the 2σ level. Evidence for the decay h → bb at the LHC has to await
increased statistics; the CMS result has a maximum local significance of 1.8σ in this channel.
The CDF and D0 experiments have reported a broad excess in this channel in their final,
combined data set, seemingly with an upward fluctuation of µbb = 2.0 ± 0.7 [41, 42] in the
mass range measured by the LHC experiments.

The production cross section σ in the results for µf will in general be a combination of
production processes resulting from the particular set of cuts used in the measurement. For
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the comparison with theories of new physics an unfolding of the different production channels
is necessary. The experimental collaborations have partially provided the result for specific
tags of the final state. Interestingly, in the CMS result, the enhanced central value of µγγ is
only present in the channel where a tag for vector boson related production was applied, while
the central value for the combination of gluon–gluon fusion and associated top production
was found to be marginally below one. On the other hand, no enhancement was found for the
the WW and ZZ final state with a vector boson related tag. A precise unfolding procedure
for the production modes is beyond the scope of this thesis. Below we will comment if our
conclusions are limited by this partial knowledge. At present this restriction is not yet very
relevant, but will become so in the future. We refer to the very recent analyses [416, 417]
where the unfolding based on simplifying assumptions was attempted in order to improve
limits on deviations from the SM.

4.3.2 Sensitivity of Higgs Production to New Fermions

In the last section we discussed the effective Lagrangian obtained by integrating out the top
quark (4.3.5). Analogously, also contributions to the amplitude from heavy chiral fermions
beyond the SM have the same non-decoupling behavior. In fact, the constant form factor in
the limit of large fermion masses implies a counting of heavy chiral fermions. This is very
relevant for the model with a simple sequential fourth fermion generation (SM4). This model
was already cornered from bounds of several sources. On the one hand, unitarity of the
partial S-wave amplitude for color-singlet, elastic, same-helicity t′t′ scattering at tree level
leads to a bound of mt′ . 500 GeV [139]. On the other hand, direct searches for decays of
heavy quarks at LHC lead to the bounds mb′ > 495 GeV [418] and mt′ > 656 GeV [419] at
95% CL, and EWPOs also strongly restrict the up–down and lepton–neutrino mass splittings
[420, 421] and further mixing parameters of this simple extension of the SM. The recent
measurements of Higgs decays at the LHC have led to the final exclusion of the SM4 (without
modified Higgs sector) at the level of approximately 5σ [422]. Two main effects in the Higgs
processes can be identified. The Higgs-production cross section via gluon–gluon fusion is
simply enhanced by a factor of approximately 9 due to the additional t′ and b′-quarks in the
loop [420]. Thus, a strong enhancement of τ+τ− events is also expected. On the contrary,
extra loop-contributions of chiral fermions add constructively to the top-contribution in the
amplitude of the decay h→ γγ and thus increase the cancellation of the W -boson loop [423],
which leads to an overcompensation of the enhanced production.

The sensitivity of Higgs processes is of course less dramatic, or even inexistent, in models
where new fermions enter in vector-like form, i.e. with the same gauge-group representations
for both chiralities, as they may obtain a TeV scale mass mainly from an explicit mass term.
This is the case in the LHT model of section 3.2, where one parametrizes the strong dynamics
that leads to the explicit mass by an additional input parameter λ+ (3.2.23). In the RS
model, which we presented in section 3.3, mass terms arise in the form of eigenvalues for the
momenta in the direction of a compact extra dimension.

Before entering the conceptually demanding calculation of loop processes for Higgs physics
in the RS model, it is instructive to reconsider the main aspects in the LHT model. A useful
parametrization became widely used recently. It is particularly suitable to categorize the
typical contributions of models in which the Higgs arises as a pseudo Nambu-Goldstone boson
in the framework of an EFT. The low-energy effective Lagrangian of the leading dimension-six
operators [424] has been used as a basis for a matching of typical little Higgs models in [166].
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They find that in the LHT model, the coefficient of the effective operator |∂µ(Φ†Φ)|2/(2f2)
is given by cH = 1/6. Its only source is the non-linearity of the NLσM, which changes
the standard relation between the W -boson mass and the Higgs VEV and can be read off
(3.2.11).19 For the RS model we expressed the analogous shift with definition of a modified
Higgs VEV (4.2.19).

As we have seen in section 3.2, the vector-like state t′+ then mixes under electroweak
symmetry breaking with the SM-like up-quarks and thus obtains also couplings to the Higgs
boson, while the T -parity odd combination t′− remains unmixed. The effect of the modified
top-coupling and the heavy mass eigenstate T+ can be elegantly calculated from the low-
energy theorem that lead to (4.3.8). This was observed in [237] and the argument goes
as follows. The leading logarithmic contribution to the QCD β-function that stems from
integrating out a heavy particle at the scale µ can in general be written as

1

g2
s,eff(µ,H)

=
1

gs(µ)2
− b tr

4π2
ln

(
m(H)

µ

)
, (4.3.11)

where m(H) is the coupling that determines the particles mass once H = v+h is inserted, tr
is the Dynkin index of the representation and b = 2/3 for Dirac fermions and 1/6 for scalars.
Here we only discuss the example of an additional fermion in the fundamental representation,
tr = 1/2, but the applicability of the strategy is more general. The linearization in v and
application of the low-energy theorem leads to the modified one-loop Wilson coefficient [166]

C1 =
∑

i

∂ ln(mi(v))

∂ ln(v)

∣∣∣
v=vSM

− cH
2

v2
SM

f2

=
v

2

∂

∂v
ln det(M†(v)M(v))

∣∣
v=vSM

− cH
2

v2
SM

f2
,

(4.3.12)

where mi(v) summarizes the masses of the top quark and heavy top partners, like the T+.
Furthermore, all form factors have been set to one, and all particles are integrated out at the
same scale. In this approximation we see that there is no need to diagonalize the mass matrix,
and one only needs the determinant of the squared mass matrix M(v) of the top quark and
top partners in the gauge eigenstate basis. Using the lower-right 2× 2 sub-block of the mass
matrix (3.2.24) one directly finds to O

(
v2/f2

)

v

2

∂

∂v
ln det(M†M)

∣∣
v=vSM

= 1− 2

3

v2
SM

f2
−→ CLHT, even

1 = 1− 3

4

v2
SM

f2
, (4.3.13)

in agreement with [166]. With f & 500 GeV being allowed from limits on ∆F = 2 FCNCs
[163], the reduction could reach approximately −35% in the ratio of cross sections; 11% of
this are due to the modified VEV.

In [166], mirror masses have been realized with a coupling to additional scalar fields X. In
this way the mirror fermions do not couple directly to the Higgs boson and do not contribute
to the Higgs processes at leading order. We abbreviate this model as LHTX. The contributions
from the traditional mirror mass terms, which we presented in (3.2.20), were calculated in
[425]. We find from the couplings in (A.2.8) that

v ghf̄H,ifH,i

mf
H,i

= −v
2
SM

4f2

v ght̄t
mt

, (f = u, ν) , (4.3.14)

19The additional effects from gauge-boson mixing for g 6= g′ and a non-vanishing triplet VEV in the LHT
model can be read off the same mass formula (3.2.11).
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and vanishing Higgs coupling to down-type and lepton mirror quarks. For production via
gluon–gluon fusion this implies a total modification from the T -odd sector, of the same size
like from the T -even sector

CLHT, odd
1 = −3

4

v2
SM

f2
. (4.3.15)

This agrees with the result in [425]. Within the used approximations, there exists no depen-
dence on the mirror mass values. In particular, the mirror-fermion contribution cannot be sep-
arately decoupled due to (4.3.14). Interestingly, precisely the same reductions were found in
minimal composite Higgs models (MCHM), which are similar models based on SO(5)/SO(4)
[426]. With both, the top being part of a full representation 5 or 10 of SO(5), one obtains

the same result CMCHM5
1 = CMCHM10

1 = CLHT,even
1 + CLHT,odd

1 [166]. We summarize that

Rh ≡
σ̂(gg → h)LHT

σ̂(gg → h)SM
≈ 1− v2

SM

f2
·
{

3 , LHT, MCHM5, 10 ,
3
2 , LHTX .

(4.3.16)

We emphasize that for low values of f the correction is very large and one should in fact
compute higher terms in the expansion in v/f , in order to set precise bounds on the scale f .

It is straightforward to continue along the same lines for the Higgs decays. The couplings
of hτ+τ− and hbb̄ are reduced by 1− v2

SM/(6f
2), while gWWh = −gWHWHh are both reduced

by 1−v2
SM/(3f

2) compared to the SM coupling. This is already everything one needs in order
to find a reduction of the total width

RΓ ≡
Γ(h)LHT

Γ(h)SM
= 1 +

∑

f=bb̄,WW,ZZ

BR(h→ f)

(
Γ(h→ f)LHT

Γ(h→ f)SM
− 1

)
+ BR(h→ gg) (Rh − 1)

≈ 1− v2
SM

f2
·
{

0.63 , LHT ,

0.51 , LHTX ,

(4.3.17)

and a similarly small reduction of the partial width of the decay into two photons

Γ(h→ γγ)LHT

Γ(h→ γγ)SM
= 1− v2

SM

3f2

|AhW (τW )|+ 21
4 + 4f2

v2

(
CLHT

1 − 1
)

|AhW (τW )| − 4
3

≈ 1− v2
SM

f2
·
{

0.37 , LHT ,

0.58 , LHTX .

(4.3.18)

The numerator in the v2
SM/f

2 term in the first line contains the reduction of the W -boson
amplitude, the contribution from the heavy charged vector WH , and the combined top-
modification and T+ contribution. The total modification of the partial decay width into
γγ is relatively small, since a large part of the contribution from WH , which interferes de-
structively with the SM-like W -boson contribution, cancels against the reduction of the top
and T+ contribution20. The rate of the combined process

Rγγ ≡
Rh
RΓ

Γ(h→ γγ)LHT

Γ(h→ γγ)SM
≈ 1− v2

SM

f2
·
{

2.99 , LHT ,

1.68 , LHTX ,
(4.3.19)

20Remind that the SM W and top amplitude interfere destructively.
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thus follows very closely the modified production rate. The rate with preceding Higgs pro-
duction from weak gauge boson fusion or associated Higgs production is almost unchanged.
Assuming a bound of −20% maximal deviation from the SM one could derive the bounds
f & 920 GeV (LHT)21, and f & 690 GeV (LHTX). In order to derive precise bounds from the
recent experimental results one needs further knowledge about the experimental efficiencies.
Unfortunately, a combination of CMS and ATLAS bounds on signal strengths does not yet
exist. We will discuss this in more detail below for the RS model. Nevertheless, we conclude
that the simplicity of the contributions and the strict reduction allows to set potentially strong
Higgs physics bounds on models of compositeness in the near future. We will see below that
this statement also holds true for the RS models we introduced in section 3.3. In principle,
the LH model is related to deconstructed versions of specific extra-dimensional theories [428].
However, the detailed outcome of the modifications in Higgs processes has to be verified in
each setup separately, and we will find qualitatively different, and quantitatively very different
results for the standard RS setup compared to those presented above. We remark here that
the authors of [429] used the technique of (4.3.12) to sum up the infinite-dimensional mass
matrix in the weak eigenbasis of the RS model. In principle, this technique appears to be very
convenient, since the exact diagonalization of this matrix is highly non-trivial [430]. We will
comment below on the shortcomings of this approach. Here we only mention that working
with a truncated mass matrix of the RS model and (4.3.12) would give a viable result for Rh
of the same sign like in the LHT model and also potentially a large deviation from one.

We finally discuss one of the approximations made in (4.3.12), on which we did not
explicitly comment yet. The Wilson coefficients CNP

1,5 , which adds to (4.3.5) and is obtained
from integrating out heavy particles, must be evolved from the high scale of new physics to the
Higgs-mass scale according to the renormalization-group equations. If the contributions are
dominated by the corrections of the lightest particle of the new physics model, it is practical
to integrate out all particles at a common scale MNP. The evolution from this scale down
to the Higgs-mass scale is described by the renormalization-group equations of the SM only.
For the QCD evolution of the Wilson coefficient CNP

1 (µ), the result is given by [390, 431]

CNP
1 (µ)

CNP
1 (MNP)

=
β
(
αs(µ)

)
/α2

s(µ)

β
(
αs(MNP)

)
/α2

s(MNP)
= 1 +

13

4

αs(µ)− αs(MNP)

π
+O(α2

s) . (4.3.20)

In practice, the evolution from a new physics scale of several TeV down to µ ≈Mh has only a
small effect of about 1% on the value of CNP

1 , since no leading logarithms appear in this result.
The operator multiplying the coefficient CNP

5 in (4.3.5) is connected by the Adler-Bell-Jackiw
anomaly to current operators with vanishing QCD anomalous dimension, it follows that this
coefficient is scale independent in QCD, i.e. CNP

5 (µ) = CNP
5 (MNP).

4.3.3 Analytic Derivations in the Randall-Sundrum Model

In the following, we discuss warped extra dimensional models as specific realizations of new
physics, where extra fermions contribute to loop mediated processes in Higgs production via
gluon–gluon fusion. Along with those, also new gauge bosons contribute in the subsequent
decays to γγ and γZ. Furthermore, there are also shifts in tree-level couplings that modify the

21During the completion of this thesis, a numerically detailed analysis of the bounds from Higgs physics and
a comparison to EWPO bounds has appeared in [427]. The authors extract the maximal information presently
available from [22, 23, 25–27] and [30–35] to obtain the bound f > 410 GeV (LHT) at 95% CL, while EWPOs
still imply a stronger bound of f > 550 GeV (minimal bound reached for xL = 0.64).
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amplitudes with SM-like particles. The diagrams of all relevant loop and tree contributions
are shown in figure 4.21.
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Figure 4.21: Feynman diagrams at one-loop involving KK excitations (upper row) and
Feynman diagrams involving couplings to zero-mode fields that are modified compared to
the SM. The couplings modified at O(v2/M2

KK) are indicated by a black square.

In general, we expect large effects on Higgs physics in the RS model. The reason is that
the Higgs sector is localized on the IR brane, where also the KK profiles of fermions and
heavy SM-like quarks are peaked, and where gauge boson zero modes are non-constant.

Before quantifying modifications, we will first clarify the subtle questions of convergence
of the infinitely many KK-fermion-triangle diagrams. We choose Higgs production via gluon–
gluon fusion to lay out the general strategy of how to obtain the physically correct result.
To this end, we have to illuminate the relation between brane Higgs regularization and UV
regularization of the theory. This is based on our discussion in [2], where we resolved a
disagreement existing in the previous literature: While we found a significant suppression of
the gluon–gluon fusion cross section relative to the SM by summing contributions from the
first few KK modes [4], the authors of [429] found a significant enhancement by resumming the
full tower of KK modes using completeness relations. Indeed, when applied to the same model,
the two results for the ggh amplitude were of approximately equal strength but opposite sign.
We will clarify that Higgs processes are not plagued by UV sensitivity and derive results for
both the minimal and the custodial fermion embedding, which were introduced in section 3.3.
Beyond that, we also give a recipe how to generalize the result to arbitrary fermion embeddings
within the class of IR-brane-Higgs models.

After this conceptual discussion, we will show numerical results to quantify the constrain-
ing power on RS models that Higgs physics presently has and can further unfold in the future.
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4.3.3.1 General Strategy for Loop Mediated Processes

The general form of the effective low-energy Lagrangian for ggh couplings was given in (4.3.5).
In the following, we integrate out all KK quarks at the energy scale MKK. The corresponding
triangle diagram is depicted in figure 4.22 and the LO results are analogous to the top- and
bottom-quark contribution of the SM discussed in section 4.3.1. Finally we also parametrize
the shifts in the top- and bottom-quark contribution.

q(n)

q(n)

q(n)

g

g

h

Figure 4.22: Virtual KK-quark contribution to the effective ggh couplings.

The unbroken SU(3)c implies gluon couplings to fermions that are diagonal in the mass
basis. Thus, in any case a single KK-quark state q(n) runs in the loop. We gave the relevant
couplings in (3.3.130) and (3.3.131). In the following, we abbreviate gqnn ≡ gRhq̄nqn and need
the diagonal couplings only

Ldiag
hqq = −

∑

q=u,d

∑

n

[
Re(gqnn)h q̄(n)q(n) + Im(gqnn)h q̄(n) iγ5 q

(n)
]
. (4.3.21)

The couplings are in general complex numbers, such that pseudo-scalar currents appear in
the Lagrangian. In principle, these could have interesting implications for phenomenology
[432]. However, the imaginary parts of the Yukawa couplings for SM-like fermions are very
strongly suppressed in the RS model, as we have shown in section 3.3.8.1.

At the matching scale µ = MKK, the Wilson coefficients entering (4.3.5) have the simple
one-loop results

CKK
1 (MKK) =

∑

q

∑

n

′ v Re(gqnn)

mq
n

Ahq (τqn) ,

CKK
5 (MKK) =

∑

q

∑

n

′ v Im(gqnn)

mq
n

Bh
q (τqn) ,

(4.3.22)

where τqn = 4(mq
n)2/m2

h − iε. The prime on the summation symbol indicates that they
extend over all KK-fermion states but exclude the zero modes, i.e. SM fermions n = 1, 2, 3
for q = u, d.

Since the KK quarks are much heavier than the Higgs boson, it is sufficient to use the
asymptotic values Ahq (∞) = Bh

q (∞) = 1 of the form factors. Even for quark masses as light as
1 TeV, the error of this approximation is sub per-mil. This implies that the relevant quantity
we need to compute is given by

CKK
1 (MKK) + i CKK

5 (MKK) =
∑

q

∑

n

′ vgqnn
mq
n
. (4.3.23)

The real part of the sum (4.3.23) determines CKK
1 , while the imaginary part gives CKK

5 .
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We recall at this stage that both the Yukawa couplings and the mass eigenvalues depend on
the regulator η used to smear out the Higgs profile. In addition, one needs to worry about the
convergence of the infinite sum over KK modes. Indeed, since the Yukawa couplings gqnn are of
O(1) and the masses of the KK modes are approximately evenly spaced multiples of the KK
scale, naively one expects the sum in (4.3.23) to diverge logarithmically. Power counting for
an infinite extra dimension would of course also suggest this. Taking into account 4d-gauge
invariance22, we would have in D infinite space-time dimensions, with Ebos = 3 external
bosons, and mass dimension [gV ] of the vertices V , a superficial degree of divergence

ωD(“triangle”) = D − D−2
2 Ebos −

∑

V

[gV ]− 2

= D − D−2
2 × 3− 3× 4−D

2 − 2 = D − 5 .

(4.3.24)

Of course this is not the final answer. The additional momentum integral of an infinite extra
dimension reduces to an infinite sum over the KK resonances, which have a specific structure.
For the given non-trivial background metric, power-counting arguments loose their power
to assess the renormalization structure intuitively. An example of a careful power counting
for the process µ → eγ has been performed in [230], however without taking into account
regularization issues of the brane-Higgs profile. It shows the necessity to account for many
peculiarities of the practical loop calculation. For this reason, we will not dwell on such
arguments, since the additional insight is little, and instead discuss the physics by using the
explicit calculation.

In order to define the sum in (4.3.23) properly, we regularize it by considering the partial
sum up to a given highest KK level

Σq(N, η) =

nf+NnF∑

n=1

vgqnn
mq
n
. (4.3.25)

This sum now includes the nf SM-like quarks plus the first N KK levels, where nF is the
number of KK modes per KK level. The notation is kept general like in section 3.3.118 in
order to apply it to any fermion embedding. It will turn out that the sum over modes is
finite despite naive expectation, because non-trivial cancellations happen among the modes
contained in each KK level. Nevertheless, yet another, third regularization is present in the
calculation, associated with the UV behavior of the theory. We discussed the reasons to
generally regulate the 4d fermion-triangle calculation gauge invariantly in section 4.3.1. We
also discussed in section 3.3.7 that in order to account for the gauge-hierarchy problem in
RS, we must limit the range of validity of the model as an EFT. These two aspects become
important in the following.

Concerning Σq(N, η), practically we are left with a choice of the order of limits η → 0 and
N → ∞. We will see that the limits do not commute. In most of the literature the Yukawa
couplings are evaluated mode by mode, taking the regulator η to zero after computing the
relevant overlap integrals. In [4] we took this approach to discuss the Higgs phenomenology
in the custodial RS model. Here, it corresponds to taking the limit η → 0 first, and hence

Σ(low)
q ≡ lim

N→∞

[
lim
η→0

Σq(N, η)
]

= lim
N→∞

nf+NnF∑

n=1

[
vgqnn
mq
n

]

η→0

. (4.3.26)

225d gauge invariance is broken by BCs and not spontaneously.
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The alternative approach taken e.g. in [429, 433], considers the infinite sum over modes from
the very beginning. This is accomplished by means of completeness relations for the fermion
profiles. The regularization of the Higgs profile is taken to zero at the end of the calculation,
such that this approach corresponds to

Σ(res)
q ≡ lim

η→0

[
lim
N→∞

Σq(N, η)

]
= lim

η→0

∞∑

n=1

vgqnn
mq
n
. (4.3.27)

In the following sections, we will derive closed analytical expressions for the limiting values
in both cases – (4.3.26) and (4.3.27) – and subsequently discuss the physical interpretation
of the results. For the rest of this section, we denote with Σq any of the two limiting orders.

First we return to the Wilson coefficients in (4.3.23). Using the full sum over all KK levels
Σq we have to subtract the contributions from in KK level N = 0, i.e. the SM quarks, each
of which equals 1 up to higher-order corrections in v/MKK. By writing

lim
η→0

Σq(0, η) =
∑

n=1,2,3

lim
η→0

vgqnn
mq
n

= Σ0
q − εq , (4.3.28)

we split the result into a bulk mass independent part Σ0
q , and dependent part εq. The latter

is given by

εq = Tr
[
ΦQ + Φq

]
+O

(
v4

M4
KK

)
≈
(
ΦQ

)
33

+
(
Φq

)
33
. (4.3.29)

In the minimal and custodial RS model of sections 3.3.4.2 and 3.3.5.2, we obtain

•minimal (q = u, d) :

Σ0
q = Tr

[
2Xq

sinh(2Xq)

]
= Tr

[
atanh

(
X̃q

) (
X̃−1
q − X̃q

)]
, (4.3.30)

• custodial (q = u, d) :

Σ0
q = Tr

[
2
√

2Xq

sinh(2
√

2Xq)

]
= Tr

[
atanh

(√
2X̃q

) (
(
√

2X̃q)
−1 −

√
2X̃q

)]
. (4.3.31)

For notational convenience we also set Σ0
λ ≡ ελ ≡ 0 .

The matrices Xq and X̃q were defined in (3.3.41). They depend only on the order one
fundamental Yukawa matrices and the ratio v/MKK. For the bulk mass independent part,
the difference in going from the minimal to the custodial model is given by the additional
factor of

√
2 in front of Xq. This is easily understood from the multiplicity of the enlarged

fermion sector with twisted BCs. In fact (3.3.41) implies that the misalignment between the
fundamental Yukawa matrices Y~q and the ones defining the spectrum Ỹ~q results in

√
2X̃q =

tanh(
√

2Xq) for q = u, d. The bulk mass dependent part εq is a subleading correction in most
of the parameter space. It receives its main contribution from the third-generation terms,
since the quantities

(
ΦQ,q

)
nn

defined in (3.3.132) are chirally suppressed for all light quarks.
The Wilson coefficients for the sectors of common charge are finally obtained as

CKK
q,1 (MKK) + i CKK

q,5 (MKK) = Σq − Σ0
q + εq , CKK

i (MKK) =
∑

q=u,d(,λ)

CKK
q,i (MKK) . (4.3.32)
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Note that, like Σ0
q , we will see below that the full sum Σq also turns out to be real. The pseudo-

scalar Wilson coefficient is therefore given by CKK
5 (MKK) = Im (εu + εd) and receives only

contributions of O(v4/M4
KK), which have been neglected in the expression for εq in (4.3.29).

Nevertheless, we will keep the discussion general in the following and use exact results in the
numerical evaluation of section 4.3.4.

The cross section for Higgs production in gluon–gluon fusion can be written as

Rh =
σ̂(gg → h)RS

σ̂(gg → h)SM
=

∣∣κg
∣∣2 +

∣∣κ5g

∣∣2

κ2
v

. (4.3.33)

The factors κg and κ5g encode the LO ratio of the non-interfering CP -even and CP -odd RS
amplitude, divided by the total SM amplitude

κg =
CKK

1 (Mh) +
∑

i=t,b Re(κi)A
h
q (τi)∑

i=t,b A
h
q (τi)

,

κ5g =
3

2

CKK
5 (Mh) +

∑
i=t,b Im(κi)B

h
q (τi)∑

i=t,b A
h
q (τi)

.

(4.3.34)

Here, the factors κq = vgq33/mq introduce modifications of the Higgs-boson couplings to
top and bottom quarks with respect to their SM values. In the SM cross section (4.3.4),
the dependence on the Higgs VEV was factored out as (vSM)−2, with the rest of the result
depending on input masses only. We proceed similarly with the RS result, using the modified
VEV v of the RS model as calculated in (4.2.19). The factor κv in the denominator of (4.3.33)
accounts for this shift. Consequently, κg and κ5g are linear in the VEV v, which has been
used here for κq and (4.3.22), and no further factors of κv are involved in the corresponding
expressions.

In order to obtain a simple formula for κq, we employ (3.3.131) and the ZMA result
(3.3.139) and furthermore expand in the Cabibbo angle using a Froggatt-Nielsen expansion
as explained in section 3.3.4.2. The result reads

κq ≈ 1− (ΦQ)33 − (Φq)33 −
v2

3M2
KK

(
YqY

†
q Yq

)
33

(Yq)33

·
{

1 , minimal RS

2 , custodial RS
. (4.3.35)

Remark that the bulk-mass dependence in (4.3.35) is the same that also dominates bulk-mass
dependent part of the Wilson-coefficient of heavy KK contributions. As shown in (4.3.29),
it enters the latter with a negative sign. Consequently, the dominant bulk mass dependent
contributions from the top quark enter the final expression (4.3.34) only proportional to the
difference Ahq (τt)− 1 ≈ 4%, i.e. they cancel to a large extent.

4.3.3.2 Evaluation of the Two Regulator Limits

We are now ready to evaluate the two alternative regulator limits leading to the full sums of
(4.3.26) and (4.3.27). We begin with examining the sum in (4.3.27), in which the regulator
of the Higgs profile is removed after the infinite sum over KK modes has been performed.
The authors of [429] succeed to evaluate this sum with the completeness relations (3.3.30) for
the fermion profiles. The analysis relies on a perturbative treatment of Yukawa couplings,
which yields the first non-trivial contribution in the expansion in v2/M2

KK. A subtlety in
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this calculation, worth recalling, is that in the perturbative approach the odd fermion profiles

S
(A)
n (t) vanish on the IR brane. As a result, the contribution of each individual mode, and

hence of any truncated KK sum, vanishes in the limit where the width of the Higgs-boson
profile is taken to zero. A non-zero result for the O(v2/M2

KK) correction to (4.3.27) is obtained
only after summing over the infinite tower of KK states.

An elegant way to derive a closed expression for the sum (4.3.27), valid to all orders
in v/MKK, is to relate it to the 5d fermion propagator of the theory. We proceed similar to
[236], where this method has been applied to a model of 5d gauge-Higgs unification. It follows
from the second relation in (3.3.129) and (3.3.110) that the infinite sum in (4.3.27), for fixed,
non-zero η is given by

lim
N→∞

Σq(N, η) =

1∫

ε

dt δη(t− 1)T qRL(t, t) , (4.3.36)

where

T qRL(t, t′) =
v√
2

Tr

[(
0 Yq
Y †q 0

)
∆q
RL(t, t′)

]
. (4.3.37)

Notice that only the off-diagonal blocks of the propagator for 1 − η < t, t′ < 1 enter in this
result. We find for a general fermion embedding

T qRL(t, t′) = Tr

[
y~q eq cosh

(
X~q

t>∫

t<

ds δη(s− 1)

)
−X~q sinh

(
X~q

t>∫

t<

ds δη(s− 1)

)]
, (4.3.38)

where the normalized Yukawa matrix y~q and the matrix eq have been defined in (3.3.122)
and (3.3.124).

Obviously, for the special case t = t′, the trace in (4.3.38) is independent of both t and η.
Thus the t-integration in (4.3.36) reduces to the normalization of the Higgs profile, which is
independent of its regularized shape and equal to 1. We conclude that the full sum in (4.3.36)
is in fact already independent of η. Remarkably, the infinite sum of KK states converges to
the very simple result

Σ(res)
q = Tr

[
y~q eq

]
, (4.3.39)

despite the fact that it is superficially divergent. This hints to the existence of intricate
cancellations between different contributions to the sum. In the following, we subsequently
evaluate (4.3.39) for the minimal and custodial case. After that, we discuss the structure of
the result for a general fermion embedding in terms of an expansion in v/MKK.

• minimal (q = u, d) :

Σ(res)
q = Tr

[
Xq coth

(
Xq

)]
= nf +

1

3
Tr
[
X2
q

]
+O

(
v4

M4
KK

)
. (4.3.40)

The first non-trivial term in the Taylor expansion agrees with the result derived in [429].
Note that this result is real, and hence it only contributes to the Wilson coefficient CKK

1 .
From (4.3.32) and (4.3.28), we now obtain

CKK
1 (res)(MKK) =

∑

q=u,d

(
Tr
[
Xq tanh(Xq)

]
+ Re(εq)

)

=
∑

q=u,d

Tr
[
X2
q + Re(ΦQ + Φq)

]
+O

(
v4

M4
KK

)
.

(4.3.41)
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The contribution to the coefficient CKK
1 is positive and hence yields an enhancement of

the ggh amplitude compared to the SM.

• custodial :

Σ
(res)
d = Tr

[√
2Xd coth

(√
2Xd

)]
,

Σ(res)
u = Tr

[√
2Xu coth

(√
2Xu

)]
+ Σ

(res)
λ ,

Σ
(res)
λ = Tr

[√
2Xd tanh

(√
2Xd

)]
= 2 Tr

[
X2
d

]
+O

(
v4

M4
KK

)
.

(4.3.42)

We observe that the factor
√

2 — which encompasses the extension of the left-handed
doublet to a bidoublet for the up sector, and the right-handed singlet to triplet extension
for the down sector — leads to a doubling of the new physics contribution compared
to the minimal RS result at leading order in v2/M2

KK. Remark that one would obtain
the same result in the case of an extended fermion sector that is SU(2)L × SU(2)R
symmetric simply by extending both the down and up-type singlets to doublets with
additional fermions of twisted BCs; a setup studied in [429] that is however at odds with
precision measurements of the ZbLb̄L-coupling. In the custodial setup, which we employ,
there exist even more important new contributions from the exotic fermions of charge
5/3 and from new up-type quarks contained in the triplets. Both contributions are

equal and given by Σ
(res)
λ , which involves the triplet Yukawa coupling Yd (see (3.3.69)).

The total contribution proportional to Yd is then approximately six times larger than
the down-type new physics contribution in the minimal RS model. This shows that the
result massively depends on the choice of the fermion sector. As a general rule of thumb,
new fermions with twisted BCs contribute not proportional to their multiplicity, but
the stronger, the higher their multiplet representation is, due to simple combinatorics.
The final Wilson coefficient is given by

CKK
1 (res)(MKK) = Tr

[√
2Xu tanh

(√
2Xu

)]

+ 3 Tr
[√

2Xd tanh
(√

2Xd

)]
+ Re(εu + εd)

= Tr
[
2X2

u + 6X2
d + Re(ΦU + Φu + ΦD + Φd)

]
+O

(
v4

M4
KK

)
.

(4.3.43)

• generic :
In order to understand the model dependence of the contributions in the custodial model
we can also expand the generic result of (3.3.125) in v/MKK. This provides a compact

result for Σ
(res)
q , which illustrates the various sources of the leading order contributions

in terms of the sub blocks of the generalized Yukawa matrix

Y~q =

(
Y (++)
q Y (+−)

q

Y (−+)
q Y (−−)

q

)
. (4.3.44)

Here, the two superscripts indicate the UV BCs of the two fermions that enter the
corresponding Yukawa coupling in the notation of (3.3.23). We obtain

Σ(res)
q = nf +

v2

2M2
KK

{
1

3

(
Tr
[
Y (++)
q Y (++) †

q

]
+ Tr

[
Y (+−)
q Y (+−) †

q

]
+ Tr

[
Y (−+)
q Y (−+) †

q

])

+ Tr

[(
Y (−−)
q − 2

3
Y (−+)
q Y (++)−1

q Y (+−)
q

)
Y (−−) †
q

]}
+O

(
v4

M4
KK

)
.

(4.3.45)
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The enhanced contribution from Yukawa couplings Y (−−)
q between two fermions with

twisted BCs is a generic feature. The relative sign in the last line suggests that it
could be compensated by mixing between all sectors like present in the up-sector of the
custodial model above. However, for a general triplet-bidoublet coupling like in (3.3.68)
the relation Y (+±)

q = ±Y (−±)
q holds, such that the two contributions in the last line both

add constructively to the total result.

Now, we switch to the alternative order of regulator limits (4.3.26), for which the limits
N → ∞ and η → 0 are taken in the opposite order compared to (4.3.27). In this case one
first considers a finite sum over KK modes and derives the relevant Yukawa coupling for each
mode by regularizing the Higgs profile, computing the overlap integral in (3.3.129), and then
taking the limit η → 0. The relevant Yukawa couplings in that limit have been given in
(3.3.130).

Since the sum in (4.3.26) extends over a finite number of KK levels, it is not possible
to use the elegant method of 5d propagators described in the previous section. In order to
obtain a closed expression nonetheless, we adopt the strategy of first finding a solution in the
special case of one generation and vanishing bulk masses. In this case the bulk EOMs and the
eigenvalue equation that determines the masses of the KK modes can be solved analytically.
The relevant spectrum and couplings for this toy model are summarized in appendix A.3. We
will then generalize the result to nf generations and argue that, as in the case (4.3.40), the
general solution is independent of the bulk-mass parameters, too.

Equations (A.3.8) and (A.3.9) imply that in the simplified case we have

lim
η→0

Σq(N, η)
∣∣∣
toy

=
2N∑

n=0

vgqnn
mq
n

∣∣∣∣
η→0

=
Xq

cosh(2Xq)

[
1

x0
+

N∑

k=1

(
1

kπ + x0
− 1

kπ − x0

)]
. (4.3.46)

In the one-generation case, we refer to the zero mode as n = 0, while n ≥ 1 labels the KK
modes. The first term in the bracket on the right-hand side of (4.3.46) arises from the SM-like
quark, while the remaining sum is over pairs of KK modes belonging to the kth KK level.
Note that, for large k the individual terms in the sum fall off like 1/k only, but each pair
combines to a contribution decreasing like 1/k2. Hence, the sum over KK modes is alternating
and convergent, and it is possible to take the limit N → ∞. We obtain for (4.3.26) in the
case of a single fermion generation with vanishing bulk masses

Σ(low)
q

∣∣∣
toy

=
Xq coth(Xq)

cosh(2Xq)
= 1− 5

3
X2
q +O

(
v4

M4
KK

)
. (4.3.47)

This result differs from the finite sum in (4.3.46) only by terms of O(1/N), i.e. it shows
proper decoupling behavior as it is expected for usual vector-like fermions. We have explicitly
confirmed that the result (4.3.47) is stable under variations of the bulk masses. The calculation
is summarized in appendix A.3. We also checked independence of the bulk masses numerically
to very high precision.

Before we generalize the last result to nf generations, we want to illuminate the discrep-
ancy between the results (4.3.40) and (4.3.47). Obviously, the limits η → 0 and N → ∞ in
(4.3.26) and (4.3.27) are non-commutative and will lead to a large difference for the effec-
tive ggh couplings, as we can easily observe in the expansion in v/MKK. We will illuminate
the physical origin of this difference in the following. This will later guide our search for a
selection criterion of the physically correct result.
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n + 1

Figure 4.23: The left panel shows the partial sums Σq(N, η) for different values of n = 2N
and η in the toy model with one generation and vanishing bulk-mass parameters. The
curves refer to η = 10−2 (red), 10−3 (green), 10−4 (blue), and 0 (black). We denote n+1 on
the logarithmic abscissa in order to include the zero mode. The right panel shows Yukawa
couplings gqnn of the KK-fermion states in the toy model for η = 10−3. The dark points are
the Yukawa couplings averaged over a single KK level.

In appendix A.3 we derive the explicit forms of the bulk profiles, masses, and Higgs
couplings for the toy model with one generation, vanishing bulk masses, and a box shaped
Higgs profile with finite η > 0. It turns out that the nature of the solution differs strongly,
depending on the relative size of the KK fermion’s mass in comparison with a new scale.
More precisely, the solution changes significantly if mq

n ≈ vYq/(
√

2η) = Mweak/η. Here we
assume, as usual, that Yq = O(1) are anarchic and light fermion masses are generated by
the zero mode localization. Recall that we can choose Yq real and positive in the case of one
generation. The appearance of the scale Mweak/η, which for very small η lies far above the
TeV scale, is of crucial importance to physically interpret the discrepancy.

Here we demonstrate the emergence of the new scale in the toy model numerically. To
this end, we obtain the masses and Higgs–fermion couplings from the formulas (A.3.4) and
(A.3.6). In the left plot in figure 4.23, we show the numerical results for the regulated sum
Σq(n/2, η) as a function of the number of included KK states n, for four different values of η,
i.e. we do not carry out any of the two limits in question. For the purpose of illustration we
take Xq = 0.5, and depict also the intermediate steps where only one of the KK states of a
KK level is added to the sum. We observe that for low values of n the sum receives alternating
contributions, but quickly converges towards a value close to the result (4.3.47), which equals
0.701 in the present case. Yet, for higher n, there follows an intermediate region, roughly
given by the range 0.1/η < 2n < 10/η, in which the value of the sum changes by an O(1)
amount. After this transition region, the sum converges to the value corresponding to the
result (4.3.40), which equals 1.082 for our choice of Xq. In order to understand the origin of
the three regions — in particular the appearance of the intermediate region, in which the sum
grows by an O(1) amount despite the fact that the corresponding KK masses are extremely
heavy — we show in the right plot of figure 4.23 the values of the Yukawa couplings gqnn in
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our toy model for the choice η = 10−3. For low values of n we derive in (A.3.9) that the Higgs
couplings for each pair of KK-fermion states in the same KK level are of equal magnitude
but opposite sign. In this case, we have seen in (4.3.46), that the contribution from the kth

KK level is
Xq

cosh 2Xq

(
1

kπ + x0
− 1

kπ − x0

)
= − Xq

cosh 2Xq

2x0

k2π2 − x2
0

, (4.3.48)

forming a quadratically convergent instead of the naively expected harmonic series. The
situation changes drastically in the intermediate region. We show in (A.3.11) that the cou-
plings with odd n vanish, and those with even n reach a maximum, coincidentally both at
mq
n ≈
√

2vYq/η = 2Mweak/η for the given choice of parameters. Thus, there exists a range of
logarithmic growth of the sum, over which its contribution can be qualitatively estimated as

N2∑

k=N1

gavg(k)

kπ
≈ 〈gavg〉

π
ln
N2

N1
, (4.3.49)

where 〈gavg〉 denotes the mean value of gavg(k) in the interval k ∈ [N1, N2], in which the
average coupling in each KK level departs from zero. Physically, this intermediate region
arises because, for fixed η, there exists a minimum KK mass mq

n ∼ Mweak/η beyond which
the KK-profile functions begin to significantly penetrate the box modeling the Higgs-boson
profile. When this happens, the cancellation of the Yukawa couplings of KK modes within a
KK level is no longer operative. Consequently, the generic logarithmic growth arises, which
we expected from naive dimensional analysis. Only for yet much higher KK levels, when
the profiles exhibit a large number of oscillations within the box, the couplings decrease
sufficiently fast with k, such that the sum converges to the aforementioned upper limiting
value.

In light of the fact that Σ
(res)
q contains order one contribution from very heavy modes and

is therefore sensitive to UV physics, it is worthwhile to investigate the general result (4.3.47)

for Σ
(low)
q , which excludes this collective, UV resonance effect. In the next section, we will

show that any UV regularization will render the following result for Σ
(low)
q as being physically

correct.
Given the similarity of the result (4.3.47) with equation (4.3.40), we can still profit from

the derivation of Σ
(res)
q . We conjecture that in the case of three generations a general recipe

to obtain Σ
(low)
q is to extend Σ

(res)
q with additional inverse matrices of cosh(2Xq) inside the

trace.

• minimal (q = u, d) :

Σ(low)
q = Tr

[
Xq coth

(
Xq

)

cosh
(
2Xq

)
]

= nf −
5

3
TrX2

q +O
(

v4

M4
KK

)
. (4.3.50)

Like in (4.3.40) the result is real, such that only CKK
1 receives a contribution. Combining

(4.3.32), (4.3.28), and (4.3.50), we find

CKK
1 (low)(MKK) =

∑

q=u,d

(
− Tr

[
Xq tanh

(
Xq

)

cosh
(
2Xq

)
]

+ Re(εq)

)

=
∑

q=u,d

Tr
[
−X2

q + Re
(
ΦQ + Φq

)]
+O

(
v4

M4
KK

)
.

(4.3.51)
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This time the contribution to CKK
1 is negative and thus yields a suppression of the

gg → h amplitude compared with the SM. Incidentally, the first term in the expansion
in powers of X2

q has the opposite sign from the result (4.3.41). For the purpose of the

numerical evaluation we want to express the result also with the Yukawa matrices Ỹq,
which determine the spectrum

CKK
1 (low)(MKK) =

∑

q=u,d

(
− f(X̃q) + Re(εq)

)
, (4.3.52)

f(x) ≡ x atanh(x)
1− x2

1 + x2
. (4.3.53)

• custodial :

Σ
(low)
d = Tr

[√
2Xd

coth
(√

2Xd

)

cosh
(
2
√

2Xq

)
]
,

Σ(low)
u = Tr

[√
2Xu

coth
(√

2Xu

)

cosh
(
2
√

2Xu

)
]

+ Σ
(low)
λ ,

Σ
(low)
λ = −Tr

[√
2Xd

tanh
(√

2Xd

)

cosh
(
2
√

2Xq

)
]

= −2 Tr
[
X2
d

]
+O

(
v4

M4
KK

)
.

(4.3.54)

Observe that also the sector of exotic fermions contributes negatively to CKK
1 this time.

We summarize the contributions to the Wilson coefficients in terms of the function f
introduced in (4.3.53)

CKK
d,1 (low)(MKK) = Tr

[
− f(
√

2X̃d) + Re(εq)
]
,

CKK
u,1 (low)(MKK) = Tr

[
− f(
√

2X̃u)− f(
√

2X̃d) + Re(εq)
]
,

CKK
λ,1 (low)(MKK) = Tr

[
− f(
√

2X̃d)
]
.

(4.3.55)

In total this leads to the very short final result

CKK
1 (low)(MKK) = Tr

[
− f(
√

2X̃u)− 3f(
√

2X̃d) + Re(εu + εd)
]

= −2 Tr
[
X2
u

]
− 6 Tr

[
X2
d

]
+O

(
v4

M4
KK

)
.

(4.3.56)

We compare this again to the alternative SU(2)L×SU(2)R symmetric quark embedding,
which only promotes down- and up-type singlets to doublets, and leads to disfavored
contributions to the ZbLb̄L coupling. In that case, the contribution proportional to the
down-type-Yukawa matrices in (4.3.56) would not be enhanced by a factor 3. Thus, the
alternative embedding would again give approximately twice the result of the minimal
non-custodial embedding.

The formulas given here reproduce the numerical results obtained in [4]. We checked this
with the large sample of more than 104 valid parameter points for 3 fermion generations,
which we generated for the numerical analysis of the minimal and separately also for the
custodial RS model. The numerical data is described in more detail below. We remark here
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that for each parameter point, we calculated the zero modes plus the complete set of the first

4 KK levels and extrapolated the remaining contribution to C
(low)
1,q by assuming equidistant

KK-mass spacing at higher levels. We found that the resulting contributions to all three
sectors of common charge agree with the analytic result (4.3.56) within 1 per-mil.

We did not give a formal proof of (4.3.50) and (4.3.54) for more than one generation,
which would be interesting beyond the numerical verification. Symmetry arguments help us
to constrain at least the form of the answer. The result for the sum (4.3.26), expressed as

a function of the fundamental parameters of the underlying 5d theory is given by Σ
(low)
q =

Σ(Yq, cQ, cq). The EOMs (3.3.32) and boundary conditions (3.3.35) are valid in an arbitrary
basis, in which the bulk-mass matrices cA are not necessarily diagonal. These relations are
invariant under a set of three global symmetries. The first one is a symmetry under the
exchange of SU(2) doublets and singlets along with Yq ↔ Y †q . In addition, there are two
symmetries related to unitary transformations of the Yukawa and bulk-mass matrices. When
combined with the fact that in the one-generation case the result is found to be independent
of the bulk-mass parameters, these symmetries imply that the quadratic term in Xq must
indeed be of the simple form shown in (4.3.50).

4.3.3.3 UV Regulation as a Decision Criterion

We have seen in the last section that KK fermions with masses far above the TeV scale seem-
ingly change the result of Higgs production via gluon–gluon fusion by an O(1) amount. If this
was the final answer, the theory would be plagued by a UV dependence even though the spe-
cific loop processes in question give finite results. Consequently, we would loose predictability
for the given process. In the following, we clarify that this is fortunately not the case. We
recall the importance of using a consistent UV regularization scheme when evaluating the
gluon–gluon fusion amplitude. This is true in the SM, as we explained in section 4.3, and
even more so in its 5d extensions. Here, we will study two different regularization schemes:
dimensional regularization and the use of a hard momentum cutoff. While a dimensional
regulator is particularly convenient in that it preserves gauge and Lorentz invariance, the
second option is also a natural choice in the present case, since the theory presents only an
effective theory below the Planck scale. Incorporating the effects of quantum gravity requires
a UV completion. In section 3.3.7, we have already touched a peculiar feature of warped
extra-dimensional models: Their effective UV cutoff depends on where the theory is probed
along the extra dimension [103], more precisely, where the involved particles are localized.
The physical reason is that due to warping the fundamental length and energy scales change
along the extra dimension. More specifically, the effective cutoff scale at the position t in the
extra dimension is of the order of the warped Planck scale

ΛUV(t) ∼MPl e
−σ(φ) = MPl

ε

t
≡ ΛTeV

t
. (4.3.57)

To preserve predictivity, the cutoff should be sufficiently high, so that at least a small number
of KK modes have masses below ΛTeV, and hence ΛTeV/MKK = O(10). Otherwise incalculable
threshold corrections of order Mn

KK/Λ
n
TeV become important and call for a non-perturbative

treatment of the unspecified UV-completing theory. We stress that imposing a UV cutoff is
crucial in order for the RS model to provide a viable solution to the hierarchy problem. Self-
energy contributions of fermions to the Higgs boson’s mass are estimated by naive dimension
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analysis to be of the order

δm2
h ∼

∑

m
f(n)<ΛTeV

h

f (n)

h

f (n)

∼
∑

m
f(n)<ΛTeV

|Yf (n) |2
32π2

m2
f (n)

M2
KK

. (4.3.58)

Since the Higgs–fermion couplings enter quadratically in this case, there are no possible
cancellations between different chiralities, like we saw in the ggh-loop diagrams of the last
section. Consequently, the divergent behavior is even worse than generically expected by new
physics, due to the multiplicity of the KK spectrum with equidistant masses. Consequently,
it is a necessity to localize the Higgs sector at least very near to the IR brane (in the vicinity
of t = 1) and to choose an effective cutoff ΛUV(t) of the order of only several TeV for values
of t that are on the Higgs profile’s support.

The question of how to introduce such a cutoff in practical one-loop calculations is far from
being trivial and no rigorous scheme exists for how to distribute the cutoffs on the various
momenta at a given vertex [231]23. However, at loop momenta several times larger than
MKK, external momenta can be neglected and hence there remains a single 4d (euclidean)
loop momentum p2

E ≡ −p2 on which the cutoff should be imposed. Employing a t-dependent
cutoff associated with every vertex of a Feynman diagram can be thought of as modeling the
effect of a form factor, which accounts for the impact of quantum gravity on energy scales
above the effective Planck scale at that point. In general, the ti coordinates of the vertices
are integrated over the entire bulk (ε ≤ ti ≤ 1), and hence the cutoff values vary between the
TeV scale and the fundamental Planck scale. It was shown that this prescription allows for
gauge-coupling unification in warped extra-dimensional models [103, 434–437]. The situation
simplifies considerably for one-loop diagrams that contain vertices with Higgs bosons, such
as the relevant diagram in figure 4.22. Denoting the coordinate of the two gluons by t1 and
t2 and that of the Higgs boson by t3, the fact that t3 ≈ 1 ensures that the momentum cutoff
on the 4d loop integral is

pE ≤ min
{

ΛUV(t1),ΛUV(t2),ΛUV(t3)
}

= ΛTeV . (4.3.59)

The same mechanism applied to the 5d calculation of the radiative Higgs mass correction
(4.3.58) guarantees that the hierarchy problem is solved in RS models.

In order to UV regularize the loop integral, our first ansatz is to use standard dimensional
regularization of the four-momentum integration d 4−2εp, with ε > 0. We then find that the
sum in (4.3.25) gets modified to

nf+NnF∑

n=1

vgqnn
mq
n

(
µ2

(mq
n)2

)ε
, (4.3.60)

where µ ∼ ΛTeV is the regularization scale. For very large masses mq
n � µ, the dimensional

regulator gives rise to a suppression, which renders the sum over KK modes convergent even
for arbitrary O(1) Yukawa couplings. The limits N → ∞ and η → 0 can therefore be taken
without encountering any ambiguities. The contribution from the region of very heavy KK
modes with mq

n ∼ Mweak/η, which we illustrated in figure 4.23, and which previously gave
rise to an unsuppressed contribution of the form (4.3.49), now receives an extra suppression

23We enlisted three non-equivalent examples in footnote 17 of section 3.3.7
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factor η2ε, and vanishes when one takes the limit η → 0 (at fixed ε). The infinite sum then
coincides with the result (4.3.26) up to harmless O(ε) corrections.

In the dimensional regularization scheme, gauge invariance is manifest in the 4d theory.
Since the dimensional regulator also regularizes the infinite KK sum, we are guaranteed that
the 5d theory remains gauge invariant, too. On the other hand, dimensional regularization
is perhaps not the most intuitive way in which to introduce a UV cutoff. As an alternative,
we will therefore rephrase the discussion in a regularization scheme based on using the hard
momentum cutoff given in (4.3.59). In order to ensure 4d gauge invariance in this case, we
first extract two powers of the external gluon momenta by taking appropriate derivatives,
after which the remaining loop integral is superficially convergent. Introducing the UV cutoff
on this integral, and neglecting the Higgs mass compared with mq

n, we obtain

nf+NnF∑

n=1

2vgqnn

Λ2
TeV∫

0

dp2
E p

2
E

mq
n(

p2
E + (mq

n)2
)3 =

nf+NnF∑

n=1

vgqnn
mq
n

(
Λ2

TeV

Λ2
TeV + (mq

n)2

)2

. (4.3.61)

For small masses mq
n � ΛTeV this reduces to the simple expression vgqnn/m

q
n used in the sum

(4.3.25). For very large masses mq
n � ΛTeV, on the other hand, the UV cutoff gives rise

to a strong suppression proportional to Λ4
TeV/(m

q
n)4, implying that such heavy KK modes

decouple rapidly. It follows that, due to physical reasons, the sum over KK modes in (4.3.25)
is effectively truncated once the KK masses exceed the scale ΛTeV. In the RS model with a
Higgs sector that is sufficiently brane-localized, e.g. for the IR-brane Higgs discussed here,
the scale Mweak/η at which the very heavy KK modes start to contribute logarithmically
to Σq(N, η) is parametrically much larger than the effective cutoff scale ΛTeV. It is then
appropriate to truncate the sum at a value Nmax

KK ∼ ΛTeV/MKK corresponding to KK masses
much smaller than Mweak/η. It follows that

lim
η→0

Σq(N
max
KK , η) = Σ(low)

q +O
(
Nmax

KK v2

Λ2
TeV

)
, (4.3.62)

where the truncation error has the form of a threshold correction, which is always present in
effective-theory calculations. Even in the case that only a single KK level is perturbative, the
error remains below 2%.

We can summarize the above discussion by emphasizing the subtle fact that, in order
to obtain the correct answer for the gluon–gluon fusion cross section in the RS model, it is
essential to employ a consistent UV regularization scheme when evaluating the loop integral,
despite the fact that the integral is convergent. When this is done, the convergence of the
partial sum in (4.3.25) is improved in such a way that the order in which the two limits
N → ∞ and η → 0 are taken becomes irrelevant. Specifically, in the two regularization
schemes we have considered in our analysis, we find

lim
N→∞
η→0

nf+NnF∑

n=1

vgqnn
mq
n
−→





∞∑

n=1

vgqnn
mq
n

(
µ2

(mq
n)2

)ε∣∣∣∣
η=0

= Σ(low)
q +O(ε) , dim.reg. ,

∞∑

n=1

vgqnn
mq
n

(
Λ2

TeV

Λ2
TeV + (mq

n)2

)2∣∣∣∣
η=0

= Σ(low)
q +O

(
Nmax

KK v2

Λ2
TeV

)
, cutoff .

(4.3.63)
In both schemes the infinite sums are superficially convergent.
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The terms suppressed by a power of the UV cutoff, which appear on the right-hand side

of (4.3.62), parametrize the difference between the asymptotic value Σ
(low)
q of the infinite sum

and the sum over a finite number of KK modes. More generally, such threshold terms may
also arise from the yet unknown effects of the UV completion of the RS model. From a low-
energy perspective, the only requirement on such a completion that is relevant to us is that
it must cure the hierarchy problem by taming loop momenta that exceed the fundamental
scale of quantum gravity. As long as this is the case, the gluon–gluon fusion amplitude will
also be regularized in the way discussed above. In the context of a specific UV completion,
the threshold effects could be modeled at low energies by means of a brane-localized effective
hGaµν G

µν,a operator, suppressed by v/Λ2
TeV. The additional factor Nmax

KK reflects the high
multiplicity of degrees of freedom in the low-energy EFT. For quite generic reasons, the
coefficient of this operator must contain the loop factor αs(µ)/(4π) factored out in (4.3.5),
even in cases where the UV completion of the RS model is strongly coupled. The reason is
that the on-shell external gluons couple proportional to their QCD charges, and that any new
heavy state that couples to the Higgs boson must be color neutral, so it cannot have a tree-
level coupling to gluons. Hence, a generic UV completion will indeed give rise to a threshold

correction of the form shown in (4.3.62). However, the difference between the two sums Σ
(low)
q

(4.3.26) and Σ
(res)
q (4.3.27) cannot be attributed to such a brane-localized threshold term. As

we have shown, it is instead determined by the absence or presence of a physical UV regulator
and a sensible UV completion.

4.3.4 Phenomenology of the Randall-Sundrum Model

In the following, we shall quantify the implications of the RS model for the main channels
of Higgs production and decays at Hadron colliders. To this end, we study the expected
deviations from the SM amplitudes. They are already constrained by the experimental results
on signal strengths as discussed in section 4.3.1. Again, we use a fixed reference mass of
Mh = 126 GeV for the Higgs boson.

4.3.4.1 Production Channels

In the last section, we already laid out the relevant results to study the most important Higgs
boson production channel via gluon–gluon fusion. We gave the relevant formula for the shift
in the production cross section Rh in (4.3.33). For the Wilson coefficient CKK

1 , we use and
verify numerically the analytic result (4.3.52), which we have shown to be physically viable,
and for which the RS contributions decouple with the scale of new physics MKK. We neglect
the sub-percent threshold effects appearing in (4.3.62). This is to be understood implicitly
for the remaining discussion.

We observed two important aspects for the dominant CP -even part of the RS amplitude
parametrized by κg relative to the SM amplitude. First of all, we have seen that the de-
pendence on fermion-bulk masses cancels to a large extent. Neglecting b-quark corrections,
setting the top-form factor to one (approximately 5%, and 3% error respectively), using the
approximation (4.3.29), and the Froggatt-Nielsen approximation (4.3.35) (both less than 1%
error), we obtain

κg ≈ 1− v2

3M2
KK

(
YqY

†
q Yq

)
33

(Yq)33

{
1
2

}
− Tr

[{
f(X̃u) + f(X̃d)

f(
√

2X̃u) + 3f(
√

2X̃d)

}]
, (4.3.64)
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where the upper and lower constants in the curly brackets hold for the minimal and the
custodial RS model. In the following, we will always use the full expression for deriving
numerical results, while making as few approximations as possible. The general behavior and
the suppression of κg can however be well understood from (4.3.64). The second important
insight was that all KK-fermion-triangle contributions can be expressed by the trace of the
analytic function f(X̃q) defined in (4.3.53), with X̃q defined in (3.3.41). This is also true
for KK-fermion contributions to the decay into two gluons and two photons. The trace is
determined by the non-negative, real square roots yiq of the eigenvalues of the hermitian

matrices Ỹq Ỹ
†
q as

Tr f(X̃q) =
∑

i

f

(
v ỹiq√
2MKK

)
, where U Ỹq Ỹ

†
q U† = diag(ỹiq)

2 . (4.3.65)

An additional factor
√

2 enters the arguments in the custodial model. Since the RS model
is able to explain flavor hierarchies by localization in 5d, it is a feature of the model that
the fundamental Yukawa matrices are structureless and of order one. Thus, the above result
is roughly proportional to the rank of the Yukawa matrices, which is equal to the number
of fermion generations. In other words, the KK towers of all six quarks in the minimal RS
model give comparable contributions to the effective ggh vertex, irrespective of the mass
of the corresponding SM fermion. In the custodial model, the sectors of different fermion
charges get the relative weight factors included in (4.3.64), which are constant integers and
still independent of the SM-fermion masses. This property is different from several other
extra-dimensional extensions of the SM. For instance, in models based on universal extra
dimensions, the 5d Yukawa couplings are hierarchical like in the SM, and hence the Higgs
boson couplings to light fermions and their KK excitations are strongly suppressed [438].
Models of gauge–Higgs unification have the peculiar property that their contribution from
KK excitations cancels the dominant effect from corrections to the Yukawa couplings of the
SM quarks in the ggh amplitude. This leaves only chirally suppressed corrections, which are
very small for all quarks except the top quark [236]. Hence, in these new-physics scenarios
only the top quark and its heavy partners contribute to the effective ggh couplings, while
Higgs boson production is independent of the masses and couplings of the KK excitations
of light SM quarks. In this sense, such models are similar to four-dimensional models where
the Higgs boson is realized as a pseudo-Nambu-Goldstone boson. We discussed examples in
section 4.3.2.

We generated large sets of valid parameter points for the two RS variants discussed here.
We have seen above that a strong dependence on the general size of the fundamental Yukawa
elements is to be expected. Thus we generated parameters sets for multiple discrete values
of ymax, where the elements of the Yukawa matrices are constrained by the condition ymax >
(Yq)ij > ymax/10 and follow a uniform random distribution in this range. The lower bounds
are irrelevant in practice, but included here for definiteness. Further details on the parameter
sets, as well as intermediate results for the various values of ymax are included in appendix B.4.

As a first check of the data sets and the results entering (4.3.65), we fit a polynomial of
second order to the median of the distribution for κt + εu in dependence on the scale MKK.
We expect from (4.3.35) roughly a quadratic scaling with ymax. Indeed, we find that the
parametrization 1 + c v2 y2

max/(2M
2
KK) reproduces the behavior very well for MKK > 1.5 TeV

and for all relevant values of ymax. In the minimal and custodial model the coefficient c is
of the expected size, 1.15 and 2.10 respectively, as obtained from a fit for ymax = 3. The
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deviation from the quadratic scaling can be significant for low values of MKK. The fourth
order term induces a relative contribution of approximately +10% for MKK = 1 TeV, when
included in the fit. The Higgs–top coupling is thus somewhat less suppressed than naively
expected for large values of ymax/MKK. Deviations from quadratic scaling are even more
pronounced for the resummed KK-tower contribution. To see this, we also fit the medians of
f(X̃u,d) with the fit-model function

med
(
f(X̃q)

)
= 3

(
1− b v2

2M2
KK

)
f(a x̄) , (4.3.66)

where x̄ = v ymax/(
√

2MKK) in the minimal, and x̄ = v ymax/MKK in the custodial model.
Again, this reproduces the numerical results well for MKK > 1.5 TeV. Leaving a and b in
(4.3.66) as a free fit parameter, we obtain for the custodial and minimal model, values of
ymax = 0.5 . . . 3, and for q = u, d, indeed in every possible combination a value between
a = 0.97–1.03. However, the higher order correction b becomes quite important for low values
of MKK. For instance, for the custodial model, MKK = 1.5 TeV, and ymax = 3, we get a
relative correction of approximately -30% from the non-vanishing value of the coefficient b.
The parametrization (4.3.66) even fails completely for values of MKK below 1.5 TeV. The
function f(x) in fact saturates as x grows and has a maximum at x ≈ 0.7. This behavior
distorts the naively expected parametrization in a very significant way. In the following, we
rather calculate all cross sections and branching ratios separately for each parameter point,
using the full expressions and derive typical values only for the final distribution. This has the
additional advantage that we can access the deviations from the typical values, i.e. quantify
the spread due to the new physics input parameters.

Figure 4.24: Fitted modification factor of the Higgs production rate via gluon–gluon fusion
in the RS model with ymax = 3 compared to the SM. The left plot shows the minimal RS
model, while the right plot shows the custodially protected model. The cyan lines are the
5%, 20%, 50%, 80%, and 95% quantiles. The points of the numerical scan are underlaid in
faint yellow and only visible in regions where many points cluster, in order to qualitatively
check the inclusiveness of the bands.

We show in figure 4.24 the distributions obtained for Rh in the minimal and custodial
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model in the left and right panel for the most natural range, which is restricted by ymax = 3.
The maximal value corresponds to the perturbativity bound derived in [211] by means of
naive dimensional analysis. The plots show the median value and the two-sided 60%, and 90%
quantile of the parameter distribution, after imposing constraints on viable fermion masses
and mixing angles, as a function of the scale MKK. Recall that often also the lightest KK gluon
mass MG(1) ≈ 2.45MKK is used as a reference, as its value is a model-independent prediction
for all RS scenarios with common warp factor ε. We observe a suppression of Higgs production
via gluon–gluon fusion that is large and decouples slowly with MKK. It is predominantly
due the large contribution from KK loops, which can even completely compensate the SM
amplitude for very low values of MKK. This is possible in a broad region around 1.3 TeV
in the minimal model. Since the multiplicity of KK states is higher in the custodial model,
full compensation of the amplitude is already reached in a region around 2.5 TeV. For even
lower values of MKK the RS contribution can overcompensate the SM amplitude by more
than twice its amount, leading to an effective enhancement of Rh for 5% of the parameter
space below MKK = 1.5 TeV and 20% below MKK = 1.2 TeV. Remark that in order to
calculate these numbers reliably, we had to use the exact expressions for the Higgs–fermion
couplings and the resummed expression for the KK-loop contributions, since v ymax/MKK ≈
0.5 (ymax/3) (1.5 TeV/MKK) is not a suitable expansion parameter anymore. A perturbative
ansatz with mass insertions up to order v2 would effectively lead to f(x̄) ≈ x̄2 and massively
overestimate the KK-loop contributions in the low MKK region.

We shortly comment on the quality of the approximation (4.3.64) for Rh, which allows
to easily understand the main contributions of the modified top coupling and includes the
analytic result for the KK loops. We applied the fits in the same way as we did for the exact
expressions used for figure 4.24. As expected, the result agrees well, having a deviation at
MKK = 1.5 TeV of 1% in the minimal, and 3% in the custodial model for the largest quantile
and even much less deviation for the median. This provides an explicit numerical check for
the analytic results of the Wilson-coefficients from KK-loops (4.3.52) and (4.3.56), since we
calculate the exact distribution of Rh by an explicit summation of the loop contributions of
a few KK levels, and extrapolate the resummed result (see appendix B.4).

We also reconstruct the exact behavior for lower values of ymax (see appendix B.4). We
reduce ymax down to 0.5, where the mean entry of a random Yukawa element is 0.1, i.e. one
order of magnitude below the natural size. In the left panels of figure 4.25, we show the
resulting two-dimensional dependence of the median. The right panels quantify the spread
of the parameter distribution by illustrating the distance of the two-sided 90% quantile from
the SM result. Supposing a constraint on Rh of maximally 50% deviation, a SM-like central
value, and ymax = 3, we could read off a constraint of MKK > 2 TeV in the minimal and
MKK /∈ [1.8, 4] TeV in the custodial model. For ymax = 1.5 the numbers would change to
MKK > 1.1 TeV and MKK > 2 TeV. However, inferring such a constraint will be challenging,
even after the full LHC program. This is due to the large theoretical uncertainty affecting the
cross section normalization and the inability to access the partial decay width into gluons24.
In [376], a strategy to consider ratios of processes from gluon and vector boson fusion with
the same final Higgs decay was proposed as an intermediate step. The normalization of
gg → h→ V V to the analogous process from weak gauge boson fusion appears interesting, but
has limited prospect, if the cuts applied for selecting weak gauge boson fusion are permeable to
a significant amount of gg → h+ 2j events (approximately 30% [376]). The main importance

24Rh is also equal to the partial decay width into gluons relative to the SM Γ(h→ gg)RS/Γ(h→ gg)|SM.
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Figure 4.25: Enhancement of the Higgs production rate via gluon–gluon fusion in the RS
model compared to the SM. The upper row (green shading) shows the results for the minimal
model and the lower (red shading) for the custodially protected model. In the left panels we
show the distance of the typical, i.e. median, value from the SM result. In the right panels
we give the distance of the 90% two sided quantile of the RS parameter distribution from
the SM result. The distance is defined to be negative if the quantile band is below one and
to be zero if the band overlaps with one.

of the result given here is the general insight that KK-loops can lead to drastic changes
in the overall production rate, and that this feature is in many cases not compensated by
enhancements of the successive Higgs decays, as we will see below.

In order to better understand the parametric behavior of figure 4.25, we derive a rough
two-parametric estimate for the median value in the region where v ymax/MKK is a suitable
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expansion parameter. We obtain

minimal RS:

Rh ≈ 1− v2

2M2
KK

(
14.3 y2

max + 3.6
)

+
v4

4M4
KK

(
62.6 y4

max + 47.1 y2
max + 4.4

)
,

custodial RS: (4.3.67)

Rh ≈ 1− v2

2M2
KK

(
51.8 y2

max + 7.3
)

+
v4

4M4
KK

(
555.1 y4

max + 930.7 y2
max − 109.4

)
.

The relative error of this parametrization compared to the exact median result is below
10% for MKK > 0.55 ymax in the minimal, and MKK > 1.42 ymax in the custodial model.
The constant term in parenthesis of the second order coefficient is due to the shifted Higgs
VEV κv. The second order ymax dependent coefficient and the fourth order coefficients are
estimated from the exact numerical data. We see that the fourth order coefficients are large
and partly counteract the large suppression of the second order coefficients. Nevertheless, the
sensitivity of Rh to the overall size of the 5d Yukawa couplings is even more pronounced than
the one arising from dipole-operator transitions such as B → Xsγ [255]. While the latter
contributions also scale with y2

max, unlike Rh, they are (at the one-loop level) insensitive
to the multiplicity of states in the KK-fermion sector. The main difference is that overlap
integrals with profiles of the light external fermions are involved. This feature underscores
that precision measurements of the Higgs boson properties provide an extraordinary tool for
illuminating the quantum structure of electroweak interactions in RS scenarios.

Particularly, in the minimal RS model, the constraints from EWPOs related to the Zbb̄
coupling restrict the size of the O(1) Yukawa couplings from below, as shown in figure 4.16.
Oblique corrections to EWPOs constrain the KK excitations of SM particles to have masses
in the 10 TeV range, i.e. MKK & 4 TeV, what puts them outside of the reach for direct
production at the LHC. Figure 4.25 shows that even for such a high KK-scale there can be
significant virtual effects of KK particles in the Higgs-production cross section, provided that
the 5d Yukawa couplings are not too small. We also discussed that the bounds from oblique
correction can be relaxed either by one-loop contributions or by modifications of the model.
An example is the LRS model, in which the size L of the extra dimension is reduced [192].
For Rh, this would only affect the subleading constant term in (4.3.67) and induce a shift of
+4% at MKK = 1.5 TeV.

Suppression effects in gg → h were also reported in [207, 236, 439]. A direct numerical
comparison with our findings is however not possible, since [207] only included zero-mode
corrections, while [236, 439] studied RS variants that differ from the specific set-up considered
here. In [440] the authors studied corrections to gluon–gluon fusion arising from virtual
exchange of one light fermionic KK mode without considering the large multiplicity of KK
fermions, which we found to be important. There, it is claimed that for a heavy bottom-quark
partner with a mass mb′ of a few hundred GeV, the Higgs-production cross section via gg → h
can be significantly enhanced. We would like to point out that in order to achieve mb′ �MKK

with the embedding of quarks as chosen in section 3.3.5.2, the PLR symmetry has to be broken
strongly via the bulk-mass parameters of the T1 multiplets by choosing cT1i rather far away
from cT2i . First of all, such choices of parameters need to be fine-tuned to reproduce the
measured mass spectrum of the SM quarks for anarchic Yukawa couplings. Secondly, we
found that, the bulk mass dependent terms of the top coupling modification cancel to a large
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extent against the bulk mass dependent terms of the resummed KK-loop contribution. This
result depends only on the approximation of a unit form factor for all KK quarks, which
is applicable even for the light KK-quark masses considered in [440]. We furthermore add
that choices of cT1i corresponding to a strong breaking of the PLR symmetry lead, barring an
accidental cancellation, to a sizable negative shift in the ZbLb̄L coupling, which is problematic
in view of the stringent constraints arising from the Z → bb̄ pseudo observables discussed in
section 4.2.2. As discussed in the previous section, also the authors of [429] attempt to resum
all KK-loop contributions. However, their result for the Wilson coefficient is of approximately
opposite sign, since they take into account the unphysical contribution from infinitely heavy
KK resonances, which we have shown to be absent in a properly UV-regulated theory.
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Figure 4.26: Ratios for the subleading Higgs production cross sections in RS over the SM
result. The dashed lines show the result in the minimal, while the dotted lines correspond
to the custodial RS model. The ratio for the vector-boson-fusion mode also applies to
associated production with a W boson. For the associated production with top quarks, the
result for the median value and the two-sided 90% quantile band are shown for ymax = 3.

Compared to gluon–gluon fusion, Higgs boson production through weak gauge-boson fu-
sion, qq(′) → qq(′)V ∗V ∗ → qq(′)h with V = W,Z, receives moderate corrections of around
−8% in the minimal and −16% in the custodial model for MKK = 2 TeV, due to a fast decou-
pling behavior. However, the corrections become very relevant for a lower KK-scale, namely
−14% and −29% or MKK = 1.5TeV. The same reduction also affects associated W -boson
production25, qq̄′ →W ∗ →Wh. We calculate the modification factors of the cross section in
RS compared to the SM RVBF = RWh = κ2

v |κW |2 by the ratio of the leading tree-level results.
Remark that the shifted Higgs VEV slightly reduces this modification. We show the general
result in figure 4.26. There, we also show the modification of the cross section of associated
top-quark-pair production, qq̄ → tt̄∗ → tt̄h, which experiences a reduction, as well. It is given
by Rtth = Re(κt)

2/κ2
v. For values of the KK scale in the ballpark of 2 TeV, this suppression

typically amounts to −20% and −40%.

25The modifications of Z- and W -boson fusion are in principle different in the minimal model, but the total
weak gauge boson fusion rate is dominated by the W due to its larger coupling to quarks.
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4.3.4.2 Decays Channels: General Aspects, ZZ, bb̄

In the following, we quantitatively discuss the modifications of all decay channels that are
relevant and can be observed at the LHC. We have already seen that all production channels
and the tree-level couplings for decays into weak gauge bosons and b-quark pairs are sup-
pressed in most of the parameter space. We will show that the most important decay channel
into γγ is on the contrary enhanced. We will investigate the interesting interplay between
the modifications in production and decay. Finally, we will discuss the decay into the γZ
final state, which could in principle become phenomenologically interesting in the future, but
turns out to be less useful for constraining the RS model.

We start with a general overview of how our intermediate quantities for the Higgs VEV
shift and coupling modifications have to be combined in order to form modification ratios for
the partial decay widths

Γ(h→ V V )RS

Γ(h→ V V )SM
= κ2

v |κV |2 , V = WW, ZZ ,

Γ(h→ A)RS

Γ(h→ A)SM
=
|κA|2
κ2
v

, A = γγ, γZ ,

Γ(h→ ff̄)RS

Γ(h→ ff̄)SM
=

Re(κf )2

κ2
v

, f = b, t ,

(4.3.68)

and the total width of the Higgs

RΓ ≡
Γ(h)RS

Γ(h)SM
= 1 +

∑

f=bb̄,WW,ZZ

BR(h→ f)

(
Γ(h→ f)RS

Γ(h→ f)SM
− 1

)
+ BR(h→ gg) (Rh − 1) ,

(4.3.69)
where we neglect the modification of branching ratios smaller than BR(h → ZZ) and the
modification of BR(h→ τ+τ−). Due to the UV localization of leptons, the latter is expected
to be changed much less than the decay into bb̄, which we discuss below. Finally, we also con-
sider the combined process of production and decay for the restricted case of pure production
from gluon–gluon fusion.

Rf ≡
[
σ(gg → h)BR(h→ f)

]
RS[

σ(gg → h)BR(h→ f)
]
SM

=
Rh
RΓ

Γ(h→ f)RS

Γ(h→ f)SM
. (4.3.70)

We consider this quantity to be a guideline for the decays into the ZZ and γγ final state at
the LHC. For a more precise analysis one should sum all production cross sections

εfggF σ(gg → h) + εVBF σ(qq(′) → qq(′)V ∗V ∗ → qq(′)h) + εVh σ(qq̄′ →W ∗ →Wh) , (4.3.71)

with appropriate weight factors εfX accounting for experimental efficiencies and cuts. The
necessary data for such an analysis is not publicly available at present. A first step was made
by the experimental collaborations, to break the data into two production categories, one
including production from weak gauge boson fusion and the other associated W/Z production
only [24, 36], but the resulting errors on the signal strengths are in most cases roughly
±100%. Meanwhile, for all channels where gluon–gluon fusion dominates, we get a first
estimate of potential constraints from Rf . Moreover, it has been discussed in [376] that a
good intermediate solution is to consider ratios Rf/R

′
f for different final states f, f ′. If both
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final states have similar efficiencies, a large part of the uncertainties from the production
processes and also from the total width drops out. The result with our simple definition of
Rf is the same. For f = bb̄, our definition of Rf is of little interest, since the observation of
this state has to proceed almost exclusively from associated production with a W boson, in
order to suppress the large background.

We begin the numerical discussion with the two largest branching ratios into bb̄ and WW ,
in order to understand the behavior of the main modifications of the total Higgs width.
Equivalently to the WW channel, we consider ZZ here, as it is more important for later
purposes. Both channels receive the exact same modification in the custodial model and are
100% correlated (at tree level) in the minimal model, where the modifications in the WW
channel are suppressed with c2

w compared to the ZZ channel.

The full numerical results for the total width are displayed in figure 4.27, where we also
account for the subleading modifications included in (4.3.69). For natural values of the Yukawa
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Figure 4.27: Modifications of the total Higgs width for a natural value of ymax (left column)
and an order of magnitude lower value (right column). The dashed lines show the median
result in the minimal, while the dotted lines correspond to the custodial RS model. The
shaded regions indicate the two-sided 90% quantile bands corresponding to the median line
of the same color. Detailed views of the single bands are given in figure B.6.

entries, the depletion in RΓ stems mainly from the reduced width into bb̄. For MKK = 1.5 TeV,
it reaches −28% and −41% in the minimal and custodial model, respectively. We observe
that part of this reduction in RΓ does not decouple with ymax. This is obvious for the
WW contribution, due to the suppressed WWh coupling, but also applies partly for the bb̄
contribution, which is affected by the modified Higgs VEV. Even in the limit of vanishing
Yukawa elements (or heavily fine tuned cancellations) a depletion of −7% and −13% remains
in the given example. This has an interesting effect on the branching ratios into the ZZ
compared to the bb̄ state, which we present in figure 4.28. For natural values of the Yukawa
entries, a large part of the reduction in the partial and total width cancels in all cases.
Nevertheless, the reduction in the bb̄ channel is typically larger such that the branching
ratio into bb̄ is typically reduced — and quite severely in the custodial model — while the
branching ratio in ZZ is mostly enhanced. The spread due to the new physics parameter
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Figure 4.28: Modifications of the branching ratios for decays into ZZ and bb̄. The interpre-
tation of the displayed curves and bands is analogous to figure B.6. Detailed views of the
single bands are given in figures B.3 and B.4.

space is of course large in this region such that no definite claims can be made, except that
large enhancements in the bb̄ channel are excluded. The behavior is totally reversed in the
case of an order of magnitude lower Yukawa entries, where the modifications are typically
smaller but less outspread. This is remarkable, since it allows to constrain the RS setup even
in the case of tuned Yukawa matrices.

We illuminate the possible constraint from the gauge structure in figure 4.29, where we
show the combined modification of production and subsequent decay into ZZ. The general
dependence on ymax and MKK follows closely the dependence of Rh, as shown in figure 4.25.
For natural values of ymax above one, the suppression is slightly less than in Rh. For values of
ymax below one, the modification shrinks visibly slower than in Rh, since the rising total width
and the suppressed ZZh coupling sets in. We assume a bound of at most 52% suppression,
i.e. RZZ > 0.48. This value was found in an unfolding of the recent data attempted in [416]
at a CL of 95%. We then derive from the 95% quantile of our parameter distribution of the
custodial model a bound of MKK > 1.1 TeV (first KK-gluon mass MG(1) > 2.8 TeV) for the
case that the Yukawa is an order of magnitude lower than expected, i.e. ymax = 0.5. The
bound becomes higher for natural values of the Yukawa entries, but then one cannot exclude
a region with low KK-scale: we obtain MKK /∈ [2.0, 3.7] TeV (MG(1) /∈ [4.8, 9.1] TeV). In the
minimal model, we derive in the same way a bound below 1 TeV for the order of magnitude
reduced, and MKK > 1.9 TeV (MG(1) > 4.7 TeV) for natural Yukawa entries.

We add that for the given Higgs mass, also the decay into a bottom and a strange quark
is in principle possible, since the Higgs couplings have non-vanishing off-diagonal entries in
the RS model. We find even for the custodial model, a KK-scale MKK = 1 TeV and ymax = 3,
that 95% of the parameter space give a result for the branching ratio below 8 · 10−3, which is
way below the observable levels.
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Figure 4.29: Modification factors RZZ for Higgs production and subsequent decay into two
ZZ bosons. The upper row (green shading) shows the results for the minimal model and
the lower (red shading) for the custodially protected model. In the left panels we show the
distance of the typical, i.e. median, value from the SM result. In the right panels we give
the distance of the two-sided 90% two sided quantile of the RS parameter distribution from
the SM result. The distance is defined to be negative if the quantile band is below one and
to be zero if the band overlaps with one.
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4.3.4.3 The Decay into γγ

We come to the most relevant decay channel into γγ. Similar to (4.3.34) we write the ratio
of leading order one-loop diagrams of the RS model relative to the SM as

κγ =

κWA
h
W (τW ) + CKK

W +
∑
i=t,b

NcQ
2
i Re(κi)A

h
q (τi) +

∑
q=u,d(,λ)

NcQ
2
q C

KK
q,1 +Q2

l C
KK
l,1

AhW (τW ) +
∑
i=t,b

NcQ2
iA

h
q (τi)

.

(4.3.72)
All Wilson coefficients are understood to be evaluated at the scale Mh. We neglect κγ5 here,
since its relative contribution to κγ is expected to be even smaller than κg5 was for Rh,
because of the dominant SM W -boson contribution for a light Higgs mass.

The Wilson coefficient CKK
l,1 in (4.3.72) encodes effects from KK-leptons. However, we do

not examine the different possibilities to realize the lepton sector, and the ways to generate
right-handed neutrino masses [186, 199, 258, 441]. Here, we only assume a minimal realization,
i.e. SM-representations in the minimal model and two SU(2)R doublets that replace the
singlets in the custodial model. Since all KK-fermion contributions add constructively, this
is a conservative way to estimate the minimal effect. Under this assumptions the details of
the precise lepton spectrum can be entirely omitted to a very good approximation with the
following trick [442]. We rewrite the KK-fermion contributions to (4.3.72) by reusing the ggh
Wilson coefficient CKK

1 as

∑

q=u,d,λ

NcQ
2
q C

KK
q,1 +Q2

l C
KK
l,1 =

4Nc

9
CKK

1 +
7Nc

3
CKK
λ,1 +

[
CKK
l,1 −

Nc

3
CKK
d,1

]
, (4.3.73)

where CKK
λ,1 is only non-zero in the custodial model, but obviously has a large impact in the

custodial model, due to the enhancement with the squared charge. We now use that — by
construction of the model — the fundamental Yukawa matrices are random matrices with
elements of similar magnitude. The last two terms in square brackets therefore tend to cancel
each other, especially since (4.3.65) shows that the function f is mostly determined by the

largest eigenvalue of ỸqỸ
†
q . For the scan over the parameter space, which we present below,

a full inclusion of KK-lepton effects would not change average values and only marginally
increase the spread, which is dominated by the dependence on the total width as we shall see.
We can therefore safely neglect the terms in square brackets in (4.3.73). We emphasize that
(4.3.73) relates the most important fermion contribution to κγ , which stems from all fermions
with non-exotic charge Qd,u, to the shift in the ggh amplitude κg. This is an interesting
correlation, which enhances the constraining power of bounds on the γγ signal strength.

For the evaluation of (4.3.72), it is furthermore necessary to take into account all modifi-
cations of the triangle diagram with a weak gauge boson. By working in unitary gauge, it is
also sufficient. Firstly, the WWh-coupling is modified by the factor κW , which was defined in
(3.3.152). Furthermore, we also have to include KK-W-boson loops. We resum them by using
the 5d gauge boson propagator for vanishing momentum, which we derived in section 3.3.7.
Observe, that in the case of gauge bosons, each term in the KK-sum over the 4d diagrams
carries a mass squared in the denominator. Thus, the sum shows absolute convergence and
there arise no subtleties of the kind we encountered for triangle diagrams with very heavy
KK-fermions. In the calculation of the Wilson coefficient CKK

W , we can safely use the decou-
pling limit for the form factors. Since mW

1 ≈ 2.5MKK �Mh, corrections in the relevant mass
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ratio τWn ≡ 4
(
mW
n

)2
/M2

h of order O(τ−1
W (1)) are sub per-mil. Setting ~dW ≡ (cW ,−sW )T , we

obtain for both, the general custodial, and the minimal RS model (cW = 1) the result
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2πM2
W

c2
WM

2
KK

∞∑

n=1

~d TW ~χWn (1) ~χWn (1)T ~dW(
xWn
)2 AhW

(
τW (n)

)

=
2πM2

W

c2
WM

2
KK

~d TW
[
Σ

(1)
W (1, 1)−Π

(1)
W (1, 1)

]
~dW

(
− 21

4
+O

(
τ−1
W (1)

))

= −21

8
(1− κW )

(
1 +O

(
τ−1
W (1)

))
.

(4.3.74)

We observe that the KK-W contribution is related to the modification of the W contribution.
All aspects discussed above are conveniently summarized in a simplified expression for κγ :

κγ = 1 +
1

|AhW (τW )| − 4
3A

h
q (τt)− 1

3A
h
q (τb)

[
− (1− κW )

(
|AhW (τW )| − 21

8

)

+ (1− κg)
4

3

(
Ahq (τt) +Ahq (τb)

)
−
(
1− Re(κb)

)
Ahq (τb) + 7(−CKK

λ,1 )

]
.

(4.3.75)

This simplified result neither relies on any specific quark embedding, nor on the requirement
of PLR symmetry. We observe several cancellations between the various RS contributions.
We already used the information on signs in the relevant Higgs mass range to make the can-
cellations more obvious in (4.3.75). The first term in square brackets comprises the negative
contribution from the reduction of the WWh-coupling, which is in turn canceled to approx-
imately 42% by the contribution from higher KK modes of the W boson. The fermionic RS
contribution comes with a positive sign, i.e. it interferes constructively with the SM ampli-
tude. It is proportional to the modification in the ggh amplitude up to a very small negative
correction factor for the b-quark and, in the custodial model, on additional large positive
contribution from the exotic quarks.

We find an enhancement in the branching ratio BR(h → γγ), which reaches large values
for natural Yukawa entries and low values of MKK. The combined fermionic contributions
dominate over the reduction from the combinedW contribution. In the minimal model, a large
part of the total enhancement of the branching is due to the reduced total width. Together
with the contributions from the exotic quarks, this leads to a massive total enhancement, in the
custodial model. In this case, one can also nicely observe the saturation of the function f for
high argument values, which we already mentioned in the discussion ofRh. We show this in the
left panel of figure 4.30 for ymax = 3. In this case, the spread due to the total width becomes
very large. We observe that the minimal modification, as inferred from the 5% quantile, has
a maximum of BR(h → γγ) = 3.2 at MKK = 1.5 TeV. Somewhat unexpectedly, it decreases
for lower values of MKK. This comes from the exact treatment of Yukawa couplings and the
resummation of KK loops. As we see from (4.3.65), the function f reaches a maximum for
an eigenvalue of ỹiq = 3.4 (MKK/TeV) and decreases for even higher values. The decrease in
BR(h → γγ) can thus be ascribed to the part of the parameter space with large eigenvalues
of the squared Yukawa matrices. In combination with the deviations in the production cross
section from gluon–gluon fusion, this typically leads to strong suppression for MKK & 2 TeV
and strong enhancement for MKK . 2 TeV. However, the huge spread due to the choice of
Yukawa matrices allows for no definite prediction in the latter region. For a lowered value
ymax = 1.5, the region of possible enhancement is already shifted to MKK . 1.1 TeV and it is
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Figure 4.30: Fitted modification factor of the branching ratio (left panel), and preceding pro-
duction from gluon–gluon fusion (right panel), for a decay into two photons in the custodial
RS model with ymax = 3, compared to the SM. See figure 4.24 for further descriptions.

effectively non-existent, when we go to even lower values of ymax, as well as in the minimal
model. Further details on the parametric behavior are deferred to appendix B.4 (figures B.7
and B.8).

A strong suppression of Rγγ prevails even for a low value of ymax = 0.5. We find this
region to be of interest, since for a low value of ymax all relevant production channels are
reduced by approximately the same amount, if we consider the lower tail of the deviations
from the SM. The fact that the central values for the signal strength µγγ of the recent data
from both CMS and ATLAS are above one already allows us to derive a robust bound on the
KK-scale. Weighting the main production mechanisms with the appropriate efficiencies like
in (4.3.71), we obtain

µγγ |RS =

(
1 +

εγγVBF σVBF + εγγVh σVh

εγγggF σggF + εγγVBF σVBF + εγγVh σVh

[
RVBF

Rh
− 1

])
Rγγ |RS . (4.3.76)

As long as the factor in square brackets is negative, or at least small, we can derive a bound
from the comparison of a minimal expected RS suppression factors, with the minimally allowed
experimental value at a given CL qe:

maxCL=qt(µγγ)RS < maxCL=qt(Rγγ)RS < minCL=qe(µγγ) . (4.3.77)

Here, the maximum denotes the largest value of the theory’s qt-quantile, i.e. a fraction qt of
the parameter space has stronger suppression. We choose q = qe = qt = 95% and 98% and use
the bounds of the CMS measurement on the signal strength [29]. The resulting bounds are
given in table 4.2 and are already of an interesting size in the custodial model, comparable to
the bounds that remain from EWPOs (see (4.2.23)). We remark that the bound is of course
not expected to increase strongly in the near future if additional analyzed data would point
towards a more SM-like value of µγγ .

We end the discussion of the γγ-decay channel with a derived observable that could po-
tentially be interesting in the near future. Using the ratio Rγγ/RZZ , in the narrow width
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RS model q MKK|min MG(1) |min RVBF/Rh − 1

custodial 95% 1.6 4.0 -0.09
custodial 98% 1.3 3.1 -0.21

minimal 95% 1.1 2.6 -0.16
minimal 98% 0.8 2.0 -0.30

Table 4.2: Lower bounds on the KK-scale inferred from the signal strength µγγ measured
by CMS [29], for small RS Yukawa matrices 0.05 < |(Yq)ij | < 0.5.

approximation all reference to the production mechanism and total width drops out. Since
they present the main source of spread in the factors Rγγ and RZZ due to the new physics
parameter freedom, we obtain a more definite prediction than for the ratios Rγγ and RZZ
alone. On the experimental side, a similar cancellation also occurs in the full ratio µγγ/µZZ
with properly weighted production cross sections, as long as one production channel is dom-
inant or if the experimental efficiencies for both final states are similar. The former could be
enforced by adding a 0-jet veto to the production mechanisms, which however reintroduces
significant theoretical uncertainties [389, 443] that may not vanish in the ratio.

In the RS model, the ratio is in general enhanced as we show in figure 4.31. The enhance-
ment is very strong in the custodial model and implies that the ratio has a good potential
to bound the model. With the recent experimental data however, an enhancement rather ac-
commodates the central values obtained by both experiments. Naively performing a weighted
average of the ATLAS and CMS results given in table 4.1 without taking into account any
correlations, we obtain µγγ/µZZ = 1.9(6). Such enhancements can be achieved in the cus-
todial model with low KK scale. Conversely hypothesizing a future measurement with 25%
accuracy — according to [376] this should be possible with the final data set of the 2012
LHC run — and a central value of µγγ/µZZ = 1, we can see from the lower right panel in
figure 4.31 that Rγγ/RZZ could indeed constrain the region with natural ymax = 3 to have
MKK > 4.5 TeV (MG(1) > 10.9 TeV), as inferred from the q(= qe = qt) = 95% CL. Presently
however, the region of a KK scale MKK . 2 TeV with natural Yukawa matrices is well suited
to explain the central values of Higgs decays into bosons given by the CMS experiment.

4.3.4.4 The Decay into γZ

In order to compute also the second most interesting loop-induced decay channel, h → γZ,
we use the ratio of RS to SM amplitude

κγZ =
1

AhW (τW , λW ) +
∑
i=t,b

Nc
2Qi v̂i
cw

Ahq (τi, λi)

[
κW AhW (τW , λW ) + CγZ,KK

W (4.3.78)

+
∑

i=t,b

Nc
2Qi v̂i
cw

Re(κi κ
V
Z,i)A

h
q (τi, λi) +

∑

q=u,d(,λ)

Nc
2Qq v̂q
cw

CγZ,KK
q,1 +

2Ql v̂l
cw

CγZ,KK
l,1

]
.

We inserted the vectorial Z-fermion coupling v̂f as defined in (4.3.10). The first term in the
numerator of (4.3.78) encodes the contribution to the h→ γZ transition arising from the W -
boson-triangle graph. In principle, this also contains modifications of the triple gauge-boson
coupling of the zero modes gW+W−Z . As we discussed in section 3.3.8.3, they are suppressed
by O(v4/M4

KK). We set them to their SM values in the evaluation of Higgs boson branching
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Figure 4.31: Ratio of the modification factors Rγγ/RZZ . The upper row (green shading)
shows the results for the minimal model and the lower (red shading) for the custodially
protected model. In the left panels we show the distance of the typical, i.e. median, value
from the SM result. In the right panels we give the distance of the two-sided 90% quantile
of the RS parameter distribution from the SM result. The distance is defined to be negative
if the quantile band is below one and to be zero if the band overlaps with one.
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fractions. In this approximation the effect of virtual W -boson exchange is equivalent to the
effect in the decay to γγ.

The Wilson coefficient CγZ,KK
W in (4.3.78) incorporates triangle diagrams with charged

KK-boson excitations in the loop, displayed in the upper right corner of figure 4.21. This
contribution can be written as

CγZ,KK
W =

2πx2
W

c2
W

∞∑

n=1

~d TW ~χWn (1) ~χWn (1)T ~dW(
xWn
)2 IWWZ

nn0 AhW
(
τW (n) , λW (n)

)
. (4.3.79)

It is again an excellent approximation to evaluate the loop function AhW (τWn , λWn ) in the
infinite mass limit τhW , λ

W
n → ∞. The form factor then becomes 7cw − 11/(6cw) ≈ 4.0. In

(4.3.79) we denoted the overlap integral of KK-W bosons and the Z-boson zero mode by
IWWZ
nn0 . We find

IWWZ
nn0 =

(2π)3/2

L

1∫
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[ (
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1
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=
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}
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(
v2

M2
KK

)
.

(4.3.80)

Since the first term in the sum of (4.3.79) is already suppressed by a factor of v2/M2
KK, the

computation of CγZ,KK
W to this order in principle requires only the knowledge of the overlap

integral to zeroth order. This leads to the very simple result (4.3.80), at which we have arrived
in two steps. In the second line we neglected the modification of the even and odd zero-mode
profile of the Z boson. We then used the fact that also W–W ′ mixing of the two KK-modes
of any given KK-level only starts at O(v2/M2

KK). We find that this approximation is in fact
reasonable in the minimal model, where the universality of IWWZ

nn0 implies that the expression
(4.3.79) can be solved with the same calculation like for CKK

W for the γγ final state in (4.3.74)

minimal RS: CγZ,KK
W =

1

2

(
7 cw −

11

6 cw

)(
1− κW

)
, (4.3.81)

which equals approximately -77% of CKK
W given in (4.3.74). The modification of the SM-like

W+W−h-vertex κW was given in (3.3.152).
We perform the sum in (4.3.79) numerically and without further approximations, includ-

ing four KK-levels of bosons and extrapolate the higher KK-level contribution from the factor
(B.4.3). The extrapolation has the practical effect that it makes the numerical value suitable
for comparison with the approximation (4.3.81), which uses the analytic resummation with
the 5d propagator. We compare values for the exact numerics with the analytic approxi-
mation for selected values of MKK in table 4.3. The absolute values in this table are to be
compared with the SM amplitude of AhW (τW , λW ) = 5.796. The zero mode RS contribution
dominates in all cases and is canceled to approximately one third by the contribution of KK
modes. Both contributions are approximately doubled in the custodial model with PLR sym-
metry compared to the minimal model. We observe a fast decoupling with the KK-scale, but
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MKK [TeV] 1 2 3 4 5 6

m
in

im
al

CγZ,KK
W numerically 0.366 0.105 0.048 0.027 0.017 0.012

rel. dev. to (4.3.81) 19.9% 4.4% 1.9% 1.0% 0.6% 0.4%

(κW − 1)AhW (τW , λW ) -1.257 -0.314 -0.140 -0.079 -0.050 -0.035

cu
sto

d
ial

CγZ,KK
W numerically 0.671 0.234 0.102 0.055 0.034 0.023

rel. dev. to (4.3.80) 42.3% 9.1% 2.2% 0.8% 0.5% 0.3%

(κW − 1)AhW (τW , λW ) -2.550 -0.638 -0.283 -0.159 -0.102 -0.071

Table 4.3: Numerical results for the KK-W-boson Wilson coefficient obtained from a fit to
a large set of valid parameter points in the minimal and the custodial RS model with PLR
symmetry. The third row shows the relative error of the approximate analytic result in
(4.3.81) for the minimal RS model compared to the numerical evaluation. For the custodial
RS model we calculate the deviation of the full result compared to the result when the
overlap integral is approximated by (4.3.80). For comparison we give the RS contribution
to the W zero-mode amplitude.

relevant modifications for low values of MKK. Especially in the range MKK < 2 TeV it is
more appropriate not to use the approximation (4.3.80) of the bosonic overlap integral. The
deviations listed in table 4.3 show that the higher order term neglected in (4.3.80) has a large
coefficient, which we find to be of O(L)26. For this reason, we use a fit to the full numer-
ical data of CγZ,KK

W with a sufficiently high polynomial and use the result in the following
evaluations.

The terms in the second row of (4.3.78) are due to the modification of the zero-mode-
fermion triangle and such diagrams with KK fermions in the loop. This is summarized in the
Wilson coefficients

CγZ,KK
q,1 =

∞∑

n=nf+1

v

mq
n

Re
(
gqnn κ

V
Z,qn

)
Ahq (τqn , λqn) . (4.3.82)

Compared to CKK
q,1 , we must also account for the modified Z–fermion couplings by the factor

κVZ,qn . Analogous factors for the top and bottom quark enter the zero-mode-fermion triangle.
They are generically given by the ratio of the vectorial couplings as

κVZ,qn =

[
1 +

M2
Z

4M2
KK

(
1− 1

L

)] (
gqZ,L

)
nn

+
(
gqZ,R

)
nn

v̂q
, (4.3.83)

where we use the modification factors gqZ,σ defined in (3.3.142) and the universal shift of
(3.3.141). Numerically the top coupling is typically moderately reduced compared to the SM.
The bottom coupling is strictly reduced, but the shift is irrelevant due to the subleading form
factor, and the coupling is even protected in the case of the custodial model.

Due to the modification factors κVZ,qn , an analytic calculation of the KK sum (4.3.82) turns
out to be impractical. Below, we resort to a completely numerical evaluation of the sum along
the same lines described for the previous processes. However, it is instructive to examine the

26This is to be expected from the expansion of the bosonic zero-mode profile one order higher than in
(3.3.80): we find the coefficient of (MW /MKK)4 to be of O(L).
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structure of (4.3.82) more closely, in order to approximate the KK-lepton contributions, like
we did for the calculation of the γγ final state. To estimate the typical size of CγZ,KK

l,1 , we
need an analytic formula for the relative strength of the vector coupling between the Z boson
and fermionic KK modes in (4.3.82). We find

κVZ,fn = 1−
(
δF
)
nn
−
(
δf
)
nn

v̂f
+O

(
m2
Z

M2
KK

)
, (4.3.84)

where the elements of the matrices δF,f are of O(1), since fermion mixing is large in KK-
levels above the zero-modes. In the fermion embedding of the custodial model with active
PLR symmetry, it turns out that for down- and λ-type KK quarks κVZ,fn depends solely on
the electric charge and the third component of the weak isospin of the involved fermions. We
obtain to excellent approximation

κVZ,fn = 1 +
T 3 fL
L

v̂f
, (f = d, λ) , (4.3.85)

in the custodial model, while no such formula can be derived for up-type quark KK modes or
the fermion embedding of the minimal model. Employing the decoupling limit, τ fn , λ

f
n →∞,

i.e. Ahq (τ fn , λ
f
n)→ −1/3, we first derive the expected ratios of

custodial RS: CγZ,KK
d,1 ≈ −0.82CKK

d,1 , CγZ,KK
λ,1 ≈ −0.28CKK

λ,1 , (4.3.86)

and secondly, that a good conservative estimate for the leptonic contribution is given by

Qlv̂lC
γZ,KK
l,1

NcQdv̂dC
γZ,KK
d,1

≈ Ql(v̂l + T 3l
L )

Qd(v̂d + T 3d
L )

=
3− 6s2

w

3− 2s2
w

≈ 0.64 . (4.3.87)

Here, we have again assumed a minimal realization of the leptonic embedding in the custodial
model as described above (4.3.73). We employ the estimate (4.3.87) in the numerical evalua-
tion. Admittedly, we cannot resort to such an elegant argument for the minimal RS model.
However, in that case we expect the leptonic KK contribution to be negligible. This is due to
the fact that no exotic fermions contribute to fermion mixing in the minimal embedding. Pure
fermion singlet–doublet mixing renders the diagonal elements of δF and δf to be of similar
numerical size (close to 0.5) in the down sector, where — in contrast to the up sector — none
of the mass splittings is generated by a very strong IR localization of a zero mode fermion.
Therefore, we expect the splitting (δF )nn − (δf )nn that enters (4.3.84) to be similarly small
for leptons. The modified Z–fermion couplings affect (4.3.82) only little; thus, the size of the
Wilson coefficients (4.3.82) becomes similar for down-quarks and leptons. The small ratio of
v̂l/v̂d ≈ 0.11 finally renders the lepton contribution subleading compared to the down-, and
completely negligible compared to the up-quark contributions.

We show the numerical results for the branching ratio in figure 4.32. There, the EWPO
constraints on the Zbb̄ couplings at 3σ CL are imposed on top of the usual constraints on
fermion masses and mixing angles, since the couplings enter one of the contributing diagrams.
They EWPO bounds reduce the possible enhancement in the minimal model significantly,
from 30% without to 18% after the constraints at MKK = 2.3TeV. In order to obtain a reliable
fit result, we exclude the region MKK < 2.3TeV where less than 10% of the parameter points
survive the EWPO bounds on the Zbb̄-couplings. The typical enhancement is 11% at the
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Figure 4.32: Fitted modification factor of the branching ratio compared to the SM for the
decay h→ γZ in the minimal and custodial RS model with ymax = 3. The EWPO bounds
on the Zbb̄ couplings are imposed and curves in the minimal model are only shown for the
region where more than 10% of the parameter space are available. See figure 4.24 for further
descriptions.

aforementioned scale. For the custodial model, we observe that both, moderate suppression,
and up to large enhancement is possible. However, the typical enhancement is lower than in
the minimal model (only 6% at the aforementioned KK-scale), i.e. typically the contributions
from coupling modifications, KK-contributions and the reduction of the total width cancel
to a large extent in the final combination. Large modifications are possible for lower values
of the KK-scale, e.g. up to 60% for MKK = 1.5 TeV. For lower values of ymax the typical
branching ratios decrease and follow more closely the reduction of the total contribution from
bosonic loops. Detailed plots for this case are deferred to the appendix, see figure B.10. We
conclude that a measurement of this decay channel at later stages of the LHC program could
add valuable information if a pattern of large deviations from the SM should emerge from
the decay channels that we discussed before. Having said that, we must add that we do not
expect a significant impact on bounds on the KK-scale and the size of the Yukawa matrix
elements from a measurement of BR(h→ γZ).

We summarize our extensive discussion on Higgs decay channels with the central insight.
The very efficient method to circumvent bounds on the KK-scale from oblique electroweak
corrections by the imposition of a custodial symmetry on the gauge sector also leads to
larger quark multiplicities, which add constructively to the new physics contribution from
the minimal RS model. Either one realizes fermions in the enlarged gauge symmetry without
protecting the b-quark related EWPOs, in which case also a lower bound on ymax and MKK

is active, or one chooses the specific custodial quark embedding presented in section 3.3.5.2,
which has an even higher multiplicity due to the exotic quarks with charge 5/3. We found
that both ways of bypassing EWPO bounds via custodial protection increase the potential
bounds from Higgs physics.
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Chapter 5

Conclusion

A new scientific truth does not triumph by
convincing its opponents and making them
see the light, but rather because its
opponents eventually die, and a new
generation grows up that is familiar with it.

Max Planck

We conclude this thesis with a summary of its main aspects and results. The common
line of thought was the attempt to improve falsifiability of theories beyond the SM. This is
achieved by using dynamical aspects of the models in order to constrain virtual contribu-
tions to precisely measured collider observables. One derives constraints on the models, most
favorably on a common mass scale that determines the predicted resonances. The indirect
processes we discussed here are known to be usually complementary to astrophysical obser-
vations and to collider searches for direct production, due to their inherent dependence on
additional model parameters. This is subject to the given model dynamics. The dynamics
can either be specified completely in a precise model or restricted by a general principle such
as gauge invariance.

We started out with a brief recapitulation of the SM, its symmetry breaking aspects in
particular, and the deficits and open questions it leaves. During the advent of the SM, theory
was following experimental discoveries relatively close. Today, a plethora of models of new
physics has been conceived. Many are motivated by solving some of the theoretical short-
comings of the SM; some are just possibilities which are not excluded yet. We showed that
it is worthwhile to practically use the general principle of gauge invariance — or equivalently
perturbative unitary — as a first classification step. We introduced a generic template La-
grangian for this purpose and summarized the constraints from Slavnov-Taylor identities on
the level of Feynman rules. This allows to automatically include unphysical degrees of freedom
in a general renormalizable gauge and implies further sum rules between the couplings. As
a proof of concept, we solved the repeatedly emerging task of calculating the flavor changing
one-loop penguin amplitude. An example is the FCNC s→ dZ transition that leads to pro-
cesses like the rare K → πνν̄ decays. We performed the renormalization and simplifications
of the penguin amplitude by using Slavnov-Taylor identities and gave the full template result
also for box-type diagrams. We verified the result with the SM and the LHT model. It is
an interesting aspect that the Z-penguin amplitude in the LHT model is UV-insensitive due
to the partly gauged symmetry structure, apart from chirally suppressed contributions. As a
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byproduct, we simplified results as compared to the literature by introducing a proper vertex
definition of the CKM matrix.

After this more conceptual part, we presented a full numerical analysis of bounds and
correlations from flavor observables, electroweak precision observables, and Higgs processes
in a specific example, the RS model. This model does not fall into the class of perturba-
tively unitary theories. Yet, it shows interesting structure in its couplings that stems from
unique but few assumptions. It provides a theoretically appealing explanation of the gauge-
hierarchy problem and quark hierarchies and thus received great interest in the past decade.
For our purpose, we found the model to be of interest, since it presently is subject to relevant
bounds from observables of all three aforementioned types. Furthermore, there remain un-
solved conceptual questions about a proper regularization scheme for the calculation of virtual
corrections in the five-dimensional warped background. We showed that in the calculation of
Higgs processes, subtle questions of limiting procedures in combination with UV regulariza-
tion are important in order to obtain correct results. After a careful treatment of these issues,
we found that we are not limited by the unsolved questions or remnant UV dependence.

Before performing those calculations, we introduced and discussed in detail the RS model
in a minimal setup with SM-like gauge structure and a setup with custodially protected
gauge symmetry and fermion sector. We did this in a common notation that is extensible
to even more general setups. This was followed by a comprehensive discussion of the KK
decomposition within the mass basis. Paying special attention to Yukawa couplings with
non-standard chirality, the direct treatment in the mass basis allowed to properly account
for the influence of the δ-function regularization of the IR-localized Higgs boson on the 5d
propagator of fermions. Our approach also has the merit that we were able to summarize
the complete relevant coupling structure for three-point vertices and four-fermion operators
in a very compact notation. This facilitates the interpretation of the various sources and size
of contributions when compared to the approach of a 4d decomposition in the electroweak
eigenstate basis followed by a re-diagonalization of large mass matrices. Already at the
coupling level, we were able to summarize the differences between the minimal and custodial
model in terms of a few universal constant factors. We found that, for instance, the left-handed
Zdid̄j couplings are suppressed by approximately the inverse volume of the extra dimension
L−1, and the right-handed couplings enhanced by a factor of 3 c2

ws
−2
w in the custodial compared

to the minimal model. We gave the analogous factors for four fermion couplings, too. The
KK-gluon couplings are the same in both versions of the model and are most important in
kaon mixing.

We then began the numerical analyses of the RS model with a discussion of CP violation
in kaon mixing. It provides the strongest flavor constraints on the mass scale of the model.
Our first main finding was the significant spread in the distribution of the RS predictions,
which stems mainly from the dependence on the Yukawa sector. We quantified this and
derived new bounds from the lower edge of the resulting distribution by carrying out detailed
numerical parameter scans. We found for the first KK-gluon mass — viz. 2.45 times the KK
scale — MG(1) > 4.4 TeV, if we request 3% of allowed and non-fine-tuned parameter space at
the 99% CL region. This bound, derived in a rigorous sense, is much weaker than what could
be expected from the generic order of magnitude enhancement in εK , which is often quoted
in the literature. It would lead to MG(1) ≈ 20 TeV, if we request the median to agree with
experiment at the same CL. We found that the aligned case with an SU(3)d flavor-symmetry
helps to lower the bound, but conversely we found a much stronger limit for the little RS
model due to effects in the UV-region of the bulk. We also considered direct CP violation in
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K → ππ, i.e. ε′K/εK , which gives an interesting constraint but a much weaker bound on MG(1)

due to large theoretical uncertainties. We noticed that even major theoretical progress will not
allow to make this observable a precision constraint on the KK scale. However, ε′K/εK carries
interesting complementary information, as it enforces the branching ratio of KL → π0νν̄ to
be not larger than twice the SM prediction. We also studied further correlations between
rare (semi-)leptonic kaon decays that carry information on the chiral structure of the model
and took into account the bounds imposed from εK and ε′K/εK . Additional aspects of our
discussion were an outlook for a promising future constraint from Bs → µµ̄ and a discourse
of non-standard CKM effects. For the latter, we gave analytical approximate formulas and
showed that effects remain below observable levels. Here, it was necessary to use the four-
fermion definition of the CKM and properly take into account the modification of GF . We
also found a cancellation of contributions in the custodial model, which countervails a possible
enhancement at a lower accessible KK scale. In total, we observed that the severity of the
“flavor problem” in the ∆S = 2 sector of warped extra dimensions depends highly on the
required amount of viable parameter space. The KK-scale bounds we gave are now well
comparable to electroweak precision constraints.

Concerning the EWPOs, we then reviewed up-to-date analyses of the most important
observables that significantly impact the constraints on models of new physics. We discussed
the choice of input, effective parameters, and Z → bb̄ observables. For the RS model, we
reviewed the mechanism of custodial protection in our formalism, which allows to clearly
identify subleading non-protected contributions. In order to compare the different kinds
of bounds in this thesis, we then re-derived the bounds from oblique corrections with the
updated input. We found in the minimal RS model MG(1) > 11.3 TeV, the custodial RS
model MG(1) > 4.1 TeV, and the LRS model MG(1) > 4.7 TeV at the 3σ CL. Compare this
to the strongest bound obtained from direct searches, which is MG(1) > 1.8 TeV at the 2σ
CL (see section 4.1.2.1). We also assessed the parameter dependence of the constraints from
Z → bb̄ on the 5d bulk masses of the b quark.

The final part was then committed to Higgs production and decay modes. After a review
of the SM results, the experimental status, and contributions from additional fermions in the
simple example of the LHT model, our main focus was then to determine the analytical and
numerical structure of the effects in the RS model. Our aim was to discuss the subtle issue
of convergence of loop integrals, and the potential on constraining the parameter space.

We derived the RS one-loop contributions to Higgs-boson production via gluon–gluon
fusion by a resummation of all KK-fermion-triangle diagrams. The calculation had a conver-
gent result. We traced the origin of this non-trivial convergence and observed a cancellation
between contributions of different chiralities for the vector-like KK fermions. We obtained
analytic results for the minimal and custodial RS model and showed how to extend it to more
general fermion embeddings. As an important aspect, we observed the cancellation of almost
all bulk-mass dependence in the result, leading to a simpler prediction. However, we also
recognized that the limits of the δ-function localization of the IR-brane Higgs boson and the
infinite KK summation do not commute. They lead to O(1) different results depending on
the order of limits. We were able to ascribe this behavior to contributions from ultra-heavy
KK modes with masses in a broad region around a new scale Mweak/η. η � 1 determines
the small localization of the regularized Higgs boson near the IR brane, and is eventually
taken to zero at the end of the calculation. At the scale Mweak/η, the cancellation between
different chiralities is suspended. We detected logarithmic growth of the ggh amplitude in
the summation of many KK-modes around this scale. We demonstrated this explicitly for
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the case of a single generation. A solution to this issue was given by the third regularization
that is present in the problem. Any UV regulator, e.g. cut-off, or dimensional regularization,
implies that the ultra-heavy fermion contributions are absent in a full calculation of the 5d
amplitude.

With the finite UV-insensitive result, we were then able to discuss all leading Higgs-boson-
production and decay modes. Besides the KK scale, the most important parameter is given by
the maximal possible values of the 5d Yukawa matrix elements, which are naturally of O(1).
We also considered reduced values of ymax, and showed important results in the plane MKK –
ymax. Concerning the production modes, we found a very strong suppression of gluon–gluon
fusion. A suppression is also present in weak boson fusion, and the associated W , Z, and tt̄
production modes. Concerning the subsequent decays, a strong reduction and spread of the
total width was found to be due to the corrections in h→ bb̄, if ymax is of natural size.

We found an interesting interplay of modifications for lower than natural Yukawa values
in the final branching ratios of h → ZZ and h → bb̄, which maintains a certain constraining
potential in this region of parameter space. For gg → h → ZZ, we were able to derive a
relevant bound at 95% CL. In the custodial model we found MG(1) /∈ [4.8, 9.1] TeV for natural
Yukawa values, while for one order of magnitude reduced values we obtained MG(1) > 2.8 TeV.
In the minimal model we derived MG(1) > 4.7 TeV for natural Yukawa entries.

The modifications in h→ γγ follow from an interplay of a reduced WWh coupling, which
is partially neutralized by positive KK-W contributions, and moreover exceeded by positive
contributions from the top-Yukawa modification and from KK-fermions. In spite of the can-
cellations, we found a large possible enhancement for natural Yukawa values, particularly
for the custodial model as it features exotic fermions of charge 5/3. Conversely, we found a
reduction for the case of Yukawa entries that are reduced one order of magnitude below their
natural size. In combination with the reduced production channels, we derived the bound
MG(1) > 2.6 TeV in the minimal and MG(1) > 4.0 TeV in the custodial model at 95% CL. We
argued that no unfolding is necessary due to similar reductions in the relevant production
channels. In total, we saw that the custodial model with MG(1) . 4.8 TeV and natural Yukawa
values can be compatible even with present central values of the signal strengths.

We then emphasized that the spread of production and width drops in the ratio of signal
strengths of the decay to ZZ and γγ. This ratio could unfold its full constraining potential
of around 11 TeV on MG(1) in the case that the measurements would settle at SM values.

Finally, we also investigated all modifications of the decay into γZ. We derived expressions
that properly take into account the modified Z couplings, as compared to the decay to γγ.
We found that up to 50% enhancement is possible in the custodial model, but less than 20%
in the minimal model. This observable could be useful after the LHC upgrade and at high
integrated luminosity.

We close this thesis with re-emphasizing that Higgs physics has reached the turning point
in making the transition from discovery to precision physics in an astonishingly short amount
of time. Already now, it provides additional bounds on new physics and the RS model in
particular. We found that bypassing the strong EWPO bounds on the KK scale of the minimal
RS model via custodial protection increases the potential bounds from Higgs physics. A small
window of MG(1) ∈ [4.4, 4.8] TeV remains open for natural versions of the custodial setup after
taking into account all the bounds described above. We hope that Higgs physics will soon be
able to close this window.
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Appendix A

Collection of Formal Developments
and Vertices

A.1 Collection of STIs for Feynman Rules

In the following, we summarize remaining STIs from the discussion in section 3.1.2. They are
derived from the STIs

0 =
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Cv1Cv2Cv3Cv4

〉
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=
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)
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(A.1.1)

In the given order they read
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All rules given here and in section 3.1.2 hold in the limiting case of any of the particles
being massless. The couplings of photons or gluons of course simplify considerably and can
be expressed by using the U(1) and SU(3) charges defined in (3.1.1). Moreover, they can be
separated into two classes: Couplings that involve another massive gauge boson and those
without. Couplings of the latter class are either directly included in the covariant kinetic
Lagrangian or zero. This includes1

gAϕ1ϕ2 = gAAϕ1ϕ2 = gAϕ1s1 = gAAϕ1s1 = 0 ,

gAAϕ1ϕ2 = −2i(gAv1v̄1)2δv1v̄2 .
(A.1.3)

The equations also hold with G instead of A. The class of couplings with another massive
gauge boson has to be derived from the STIs. They are given by
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(A.1.4)

We used charge conservation to simplify the right-hand side for the quartic couplings. The
corresponding equations with a gluon are
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(A.1.5)

1To derive the vanishing couplings with physical scalars, one has to note that gAv1s2 = 0. This coupling
has to come from the kinetic term of a multiplet Φ under the full gauge group. Thus, it is proportional to
eQΦAµV

µ
a (Φ†TVaΦ). The Goldstone directions are given by TVa〈Φ〉, so they cannot contain physical scalars.
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A.2. FORMULAS AND VERTICES OF THE LITTLEST HIGGS MODEL

For completeness, we remark that the ghost couplings can be derived by inserting another
off-shell gauge boson in the derivation of (3.1.11). Following the derivations in [132, 133] one
uses the BRST variation sV µ

v1(x) = ∂µVv1(x) + i(gf)v1v2v3V
µ
v2(x)uv3(x), where (gf)v1v2v3 are

the structure constants times corresponding couplings, rotated into the mass basis. Since the
latter are per se unknown in our generic Lagrangian (3.1.2), which is already given in the
mass basis, one removes the contact term again by considering connected Green’s functions
only. In this way, one can derive gsū1u2 = −1

2 gv1v2s and gv3ū1u2 = gv1v2v3 . The index set for
ghosts agrees with the one for gauge bosons, analogous to the indices for Goldstone bosons.
The latter relation for gauge-boson couplings to ghost currents is already clear, since the same
rotations are applied to gauge bosons and ghosts when going to the mass basis. Hence, we
have reconstructed all unphysical couplings that are necessary for one-loop calculations in a
general Rξ gauge.

A.2 Formulas and Vertices of the Littlest Higgs Model

In this appendix we summarize some of the remaining relations for the LH model and the
Feynman rules for the vertices in the model with T -parity.

In the Lagrangian, the kinetic terms for gauge bosons take the standard form. We rewrite
them in terms of the SM-like gauge eigenstates. Using with charge eigenstates and ε+− 3 = 1
we obtain

LV = −1

4

∑

j=1,2

( ∑

a=1,2,3

W a
j µνW

aµν
j +Bj µνB

µν
j

)

= −1

4

( ∑

a=+,−,3

∣∣∂µW a
ν − ∂νW a

µ + igεabc(W b
µW

c
ν +W ′bµW

′c
ν )
∣∣2

+
∑

a=+,−,3

∣∣∂µW ′aν − ∂νW ′aµ + igεabc(W ′bµW
c
ν −W ′bν W c

µ +
δg
csW

′b
µW

′c
ν )
∣∣2

+
∣∣∂µBν − ∂νBµ

∣∣2 +
∣∣∂µB′ν − ∂νB′µ

∣∣2
)
.

(A.2.1)

The full redefinition of scalars, necessary to bring (3.2.16) and (3.2.17) into canonical form
as discussed in the main text, is given by

(
hm
φ0
m

)
=


 1− v

2

f2

x2
λ
4

v
f
xλ√

2

− vf
xλ√
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1− v2

12f2

(
1+3x2

λ

)



(
h
φ0

)
,



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m


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xλ 1− v2

12f2 r22

√
5v

2f δg′
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2f δg√
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3
√
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(
1−3

2 δg′xλ
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−
√

5v
2f δg′ 1− 5v2

24f2

(
1+3δ2

g′

)
−
√

5v2

6f2

(
1−6xHc

′s′

twcs

)
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3
√

2f2

(
1−3

2 δgxλ

)
− v

2f δg −
√

5v2

6f2 r42 1− v2
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(
1+3δ2

g

)







φP

π0

η
ω0


 ,

r22 =
(

1 + 3
2

(
δ2
g + 5δ2

g′
)

+ 3x2
λ

)
, r42 =

(
1 +

3twxH(1−δ2
g)

10cc′ss′

)
,
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

φ±m
π±m
ω±m


 =




1− 1
24

v2

f2 (1+3x2
λ) −1

2
v
f xλ − 1

12
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f2

1
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v
f xλ 1− 1
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f2
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1+
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1−3
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v
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24
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



φ±

π±

ω±


 . (A.2.2)

In the following, we summarize all non-zero three-point couplings of physical particles in the
model with T -parity. We derived them by implementing the full Lagrangian in a computer
algebra system, with which we applied the functional derivatives and the necessary Taylor
expansions in v/f . The triple vector couplings, including v4/f4 corrections, are given by

g
W+W−

(
A
Z

) = g
W+
HW

−
H

(
A
Z

) = g
(−sw
cw

)
, (A.2.3)

g
W+W−H

(
AH
ZH

) = g



v2

f2xH

(
1 + v2

f2

(
1
4 + 2xH

3cwsw

))

1− v4

f4

x2
H
2


 . (A.2.4)

For the couplings of two vectors and one scalar we omit corrections of order v3/f3, if a scalar
rotation beyond the order included in (A.2.2) would contribute. We always keep track of the
maximal reliable order in all vertices we derived. The resulting v2/f2, and parts of the v3/f3

corrections are given by

(
gZZh

gW+W−h

)
= g2v

2
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
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(A.2.5)

For the scalar–scalar–vector couplings there exists a second Lorentz-structure with Feynman
rules proportional to the sum of the scalar momenta p2 + p3 instead of the difference p2− p3,
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whose coupling we denote by g+. The complete set of couplings is given by

gAφ+φ− = gAφ++φ−−/2 = −gsw ,

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(A.2.6)

To denote the couplings of fermions, we use T3,uH ≡ T3,u = 1/2 and T3,dH ≡ T3,d = −1/2. For
the heavy fermions, these are not to be interpreted as charges, but only defined for notational
convenience. The vertex definition of the CKM matrix Vij in terms of the unitary matrix V̂ij ,
which is part of the diagonalization of the fundamental mass matrix, was given in (3.2.29).
We also abbreviate x̄L ≡ xL/V̂33. The couplings of vectors to fermion currents are given by

g
(LR)
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g
(LR)
Zf̄f

= g
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(A.2.7)
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
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The couplings of scalars to fermion currents are given by
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(A.2.8)

We have calculated all the couplings of the Goldstone bosons from the local symmetry π0,
π±, η, ω0, ω± of adjacency three and checked that they fulfill the STIs (3.1.14) to leading
order in v/f . In table A.1 we list whether higher orders also fulfill the STIs.
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f
v 1 v

f
v2

f2
v3

f3

g(A,Z)W+π− + +

g(A,Z)W+
Hω
− , gZHW+ω− + + u

gAHW+ω− , gZH ,W+
H ,π

− + u

gW+W−Hω
0 + + x

gAHW+
Hπ
− + x

gW+W−H η
+ x

g(A,Z)π+π− , gW+π0π− +

gZω+ω− , gW+ω0ω− + +
gW+ηω− +
gZHπ+ω− , gW+

Hπ
0ω− , gW+

H ,π
−,ω0 + +

gAHπ+ω− , gW+
Hπ
−η + x

gZπ0h, gW+π−h + +
gZ(η,ω0)φ0 , gZω+φ− , gW+(η,ω0)φ− , gW+ω+φ−− +

g(AH ,ZH)π0φ0 , g(AH ,ZH)π+φ− , g(AH ,ZH)(η,ω0)h, . . .

. . . gW+
Hπ

0φ− , gW+
Hπ

+φ−− , gW+
Hω
−h

+ +

gW+
Hπ
−φP x

gL,R
π0f̄ifi

(f = u, d, e), gL,R
π+ūidj

, gL,R
π+ν̄iej

, gL
π0T̄+t
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π+T̄+dj

+ +

gR
π0T̄+t

, gR
π+T̄+dj

+ +

gL,R
π0T̄+T+

+ x

gπ0ūH,iuH,i , gπ0ν̄H,iνH,i , gπ+ūH,idH,i , gπ+ν̄H,ieH,i (all = 0) x

gL
(η,ω0)f̄H,ifj

, (f = d, e) + +

gR
(η,ω0)f̄H,ifj

, (f = d, e) + x

gL
(η,ω0)f̄H,ifj

, (f = u, ν) + x

gR(η,ω0)ūH,iuj
, gL(η,ω0)ūH,iT+

+ +

gR(η,ω0)ūH,iT+
+ x

gL
η(ūi,T̄+)T−

+ +

gL
ω0(ūi,T̄+)T−

+

gLω−ūH,i,dj , g
L
ω−,−νH,i,ej + +

gRω−ūH,i,dj , g
R
ω−,−νH,i,ej + +

gL
ω+d̄H,i,uj

, gLω+,−eH,i,νj + x

gR
ω+d̄H,i,uj

, gL
ω+d̄H,i,T+

+ +

gR
ω+d̄H,i,T+

+ x

Table A.1: Check of STIs (3.1.14) for the LHT model and linear gauge fixing. Entries are
only given at the orders that are present in the couplings. A “+” indicates the coupling
fulfills the STI at the given order, an “x” if otherwise, and a “u” if we cannot derive it, e.g.
because of missing scalar rotations at the given order.
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A.3 Analytic Solutions for the RS Model with One Generation

A Toy Model with Vanishing Bulk Masses

In this appendix we consider a toy RS model, which is used for illustrative purposes in
the discussion of Higgs physics in the main text. This simplified setup provides a nice test
case for our general results and conclusions. We use a single fermion generation with BCs
that reproduce a light zero mode and vanishing bulk-mass parameters cQ = cu = cd = 0.
Furthermore, the EOMs (3.3.32) can be solved exactly if we adopt a sufficiently simple,
regularized Higgs profile, so we simply use a box of width η, i.e. δη(t−1) = η−1 for 1−η < t < 1
and zero otherwise.

Without loss of generality, we employ a real and positive Yukawa coupling Yq, and set
ε = 0. The latter simplification is possible in the case of vanishing bulk masses, since the
wave functions are non-singular near the UV brane. The solutions resemble the case of a flat
extra dimension, where the profiles are given by simple trigonometric functions. We have

Q(n)
L (t) = Nn

(
cos(xnt)
∓ sin(xnt)

)
, Q(n)

R (t) = Nn

(
sin(xnt)
± cos(xnt)

)
; t ≤ 1− η , (A.3.1)

where the upper signs hold for even values of n, including the light zero mode n = 0, and the
lower signs holds for odd values. Also in the relevant case for Higgs couplings t > 1 − η, we
obtain simple profiles involving hyperbolic function. The generalized mass matrix of (3.3.33)
is given by

Mq(t) = z

(
0 1
1 0

)
, z =

vYq√
2MKK

1

η
; t ≥ 1− η , (A.3.2)

and the solution the EOMs reads

(
Q(n)
L (t)

Q(n)
R (t)

)
= Nn




r1 cosh
[√

z2 − x2
n (1− t)

]

∓r2 sinh
[√

z2 − x2
n (1− t)

]

r2 sinh
[√

z2 − x2
n (1− t)

]

±r1 cosh
[√

z2 − x2
n (1− t)

]


 ; t ≥ 1− η ,

r1 =
cos
[
xn(1− η)

]

cosh
[√

z2 − x2
n η
] , r2 =

sin
[
xn(1− η)

]

sinh
[√

z2 − x2
n η
] .

(A.3.3)

Remark that this solution immediately shows a certain relevance of the quantity z, which we
defined in (A.3.2). For xn > z, the square-roots develop an imaginary part and the profile
functions change their shape, now being trigonometric again. More explicitly, we can cancel
the resulting imaginary factors, such that the form of (A.3.3) holds with the replacements√
z2 − x2

n →
√
x2
n − z2 and cosh→ cos, sinh→ sin.

We emphasize that this will also imply a different form of the derived couplings for masses
mqn > vYq/(

√
2η) ≈ Mweak/η above a new scale2 Mweak/η. For very small η, this scale lies

far above the TeV scale and is eventually pushed even beyond the Planck scale in the limit
of IR-brane localization.

2Recall that in the anarchic RS model the fundamental Yukawa elements are of order one.
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The mass eigenvalues xn are determined by matching the profile functions at t = 1− η

tan
[
xn(1− η)

]
=
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
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[√

x2
n − z2 η

]
, xn > z .

(A.3.4)

These equations can easily be solved numerically. For the normalization factors we obtain
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z2 − x2
n

[
± 1

2
sin
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2xn(1− η)

]
− η
(
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[
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])]
. (A.3.5)

Using these results, it is not difficult to calculate the relevant overlap integrals with the Higgs
profile. After a series of elementary simplifications we arrive at

gRhq̄nqn =
mn

v
N2
n

z

z2 − x2
n

[
± 1

2
sin
[
2xn(1− η)

]
− η
(
z ∓ z2

xn
cos
[
2xn(1− η)

])]

=
mn

v

[
1−N2

n

(
1∓ ηz

xn
cos
[
2xn(1− η)

])]
,

(A.3.6)

for the coupling of two fermions of equal KK level to the Higgs boson. Again the upper and
lower signs correspond to odd and even KK level. The expression is valid for all regions, both
xn < z and xn > z. To demonstrate how the different form of the profiles is reflected in
the value of the couplings, we approximate the result in three regions, always neglecting the
corresponding small mass ratio and relative O(η) corrections.

1) xn � z : We observe the typical equidistant spacing of masses given by the solutions to

tan2(xn) = tanh2(yq) ; yq =
vYq√
2MKK

, . (A.3.7)

The zero mode has mass x0 = arctan
(

tanh(yq)
)

and the following masses are given by

xn =

{
n
2 π + x0 , n even
n+1

2 π − x0 , n odd
. (A.3.8)

The couplings of the two KK modes in a given KK level are of opposite sign

gRhq̄nqn = ± Yq√
2

1

cosh(2Xq)
. (A.3.9)

2) xn ≈ z : In this region we set xn = z(1 + ζn) and use ζn as an expansion parameter. We observe
from the characteristic equation

tan(xn(1− η)) = −yq




O(ζn) , n even

2 +O(ζn) , n odd
, (A.3.10)

that the spacing between KK levels is approximately equidistant. However, there are
relevant changes in the Higgs–fermion couplings. Over a broad range around xn ≈ z
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they grow with increasing KK level for fermions of both even and odd BCs, i.e. even and
odd n. They both eventually reach individual maxima, where also the odd couplings
have turned positive. We expand the characteristic equation and the odd couplings
linearly in ζn, in order to verify the zero crossing analytically and found that

gRhq̄nqn
∣∣
n odd

≈ 0 , at ζn =
1

4y2
q

+O(y0
q ) . (A.3.11)

Similarly, by expanding to third order in ζn, we found the maximal value for the even
coupling

gRhq̄nqn
∣∣
n even

≈ yq
(

1 + 2
3y

2
q +O(y4

q )
)
, at ζn = 1 +O(y2

q ) . (A.3.12)

Remark that the power series in ζn gives good results even for ζn > 1, since higher
orders in ζn also come with additional powers of yq. The results (A.3.11) and (A.3.12)
thus reproduce the numerical results with a good quality.

3) xn � z : Approximately equidistant spacing is still preserved by the characteristic equation

tan2(xn(1− η)) = tan2(xnη) . (A.3.13)

The couplings of both chirality types stay positive, but undergo a damped oscillation
with increasing KK level. We verify this numerically in section 4.3.3 of the main text.

Stability under Variations of the Bulk Masses

The states with xn � z, called case 1) in the last section, are of physical interest. We argue in
the main text, that the heavy resonances — cases 2) and 3) — will be decoupled automatically
by a proper UV regulation of the theory. Therefore we consider a small variation of the bulk
mass parameters δcQ,q under this condition. It is straightforward to derive the characteristic
equation for η → 0 and to first order in δcQ,q. It reads

tan2(xn) = ỹ2
q + δc

tan(xn)

cos2(xn)
Si(2xn) ; ỹq = tanh(yq) . (A.3.14)

Here, we were allowed to neglect UV brane effects, so again we took the limit ε → 0. Since
the characteristic equation is symmetric in cQ and cq, both variables have the same coefficient
in the linearization, and we set δc ≡ δcQ + δcq. The sine integral in (A.3.14) is defined as
Si(z) =

∫ z
0 dt sin(t)/t. Denoting the solutions (A.3.8) of the case with vanishing bulk masses

as x
(0)
n and using (A.3.6) we obtain

xn = x(0)
n +

δc

2
Si(2xn) ,

∂

∂c

vgRhq̄nqn
mn

∣∣
η→0

= − yq
1 + ỹ2

q

Si
(
2x(0)

n

)[
±
(
1− ỹ2

q

)(
x(0)
n

)−2
+ 2ỹq

(
x(0)
n

)−1
]
.

(A.3.15)

The variation of the total sum of the last line is indeed zero as we show now. We set ξ ≡ x(0)
0 /π

and obtain

∂

∂c

∞∑

n=0

vgRhq̄nqn
mn

= − yq
1 + ỹ2

q

{(
1− ỹ2

q

)[ ∞∑

k=1

(
Si(2π(k + ξ))

π2(k + ξ)2
− Si(2π(k − ξ))

π2(k − ξ)2

)
+

Si(2πξ)
(
πξ
)2
]

+ 2ỹq

[ ∞∑

k=1

(
Si(2π(k + ξ))

π(k + ξ)
+

Si(2π(k − ξ))
π(k − ξ)

)
+

Si(2πξ)

πξ

]}
, (A.3.16)
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where we summed over KK levels k and separated the zero mode contribution that appears as
the last term in each of the square brackets. The expressions inside each square bracket can
be shown to cancel using relations for special functions that can be found e.g. in [444]. We
use the series expansion of the sine integral, the Hurwitz zeta function ζ, and the following
relations for the Bernoulli polynomials Bn

Si(z) =

∞∑

m=0

sm z
2m+1 , sm =

(−1)m

(2m+ 1) (2m+ 1)!
, (A.3.17)

ζ(n, z) =
∞∑

m=0

(m+ z)−n , ζ(−n, z) = −Bn+1(z)

n+ 1
, n ∈ N0

+ , (A.3.18)

Bn(1− z) = (−1)nBn(z) , Bn(1 + z) = Bn(z) + n zn−1 . (A.3.19)

The sum in the first square bracket in (A.3.16) becomes

∞∑

k=1

(
Si(2π(k + ξ))

(k + ξ)2
− Si(2π(k − ξ))

(k − ξ)2

)
=

∞∑

m=0

sm

∞∑

k=1

(
(k + ξ)2m−1 − (k − ξ)2m−1

)

= −
∞∑

m=0

sm ξ
2m−1 = − 1

ξ2
Si(2πξ) ,

(A.3.20)

and the other sum is treated analogously. Consequently, the total variation in (A.3.16) van-
ishes. In summary we have shown that the total sum

∑
n

(
v gRhq̄nqn/mn|η→0

)
is stable under

small variations of any of the two bulk-mass parameters. One can in principle continue along
the same lines for all higher derivatives, where one needs complicated derivatives of the series
expansion of the Bessel function with respect to the order parameter, instead of the simple
relations (A.3.17). Since the total sum has no poles and is built of products and quotients
of Bessel functions that are entire functions in the order parameter, such a calculation would
prove rigorously that the total sum indeed vanishes for all bulk-mass parameters.

201



202



Appendix B

Collection of Numerical and
Technical Details

B.1 Loop Functions

We summarize the loop functions used in section 4.1. Following reference [250] they are
defined with ε = (4−D)/2 as

i

(4π)2
B0

(
m1,m2

)(4π

µ2
e−γE

)ε
=

∫
dDq

(2π)D
1

q2 −m2
1

1

q2 −m2
2

,

i

(4π)2
C0

(
m1,m2,m3

)(4π

µ2
e−γE

)ε
=

∫
dDq

(2π)D
1

q2 −m2
1

1

q2 −m2
2

1

q2 −m2
3

, (B.1.1)

i

(4π)2
D0

(
m1,m2,m3,m4

)(4π

µ2
e−γE

)ε
=

∫
dDq

(2π)D
1

q2 −m2
1

1

q2 −m2
2

1

q2 −m2
3

1

q2 −m2
4

.

These functions read

B0

(
m1,m2

)
=

1

ε
+ 1 +

{m2
1 ln

(
µ2

m2
1

)

m2
1 −m2

2

+ symm(m1,m2)

}
,

C0

(
m1,m2,m3

)
=

m2
1m

2
2 ln

(
m2

2

m2
1

)

(
m2

1 −m2
2

)(
m2

1 −m2
3

)(
m2

2 −m2
3

) + symm(m1,m2,m3) , (B.1.2)

D0

(
m1,m2,m3,m4

)
=

m2
1 lnm2

1(
m2

1 −m2
2

)(
m2

1 −m2
3

)(
m2

4 −m2
1

) + symm(m1,m2,m3,m4) ,

where the symbol symm(. . .) indicates that one has to sum the preceding terms over all cyclic
permutations of the masses without multiplication of a symmetry factor. We furthermore
define the combinations of loop functions

C̃0

(
m1,m2,m3

)
= B0

(
m2,m3

)
+m2

1C0

(
m1,m2,m3

)
,

D̃0(m1,m2,m3,m4) = C0

(
m2,m3,m4

)
+m2

1D0

(
m1,m2,m3,m4

)
,

(B.1.3)

which arise from the loop integrals (B.1.1) with an additional q2 in the numerator.
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The functions that describe the effects of quark and boson loops in the production and
decay of the Higgs boson are proportional to the so called form factors as introduced in
chapter 4.3. The analytic expressions are summarized e.g. in [142]. In our conventions they
are given by

Ahq (τ) =
3 τ

2
[ 1 + (1− τ) f(τ) ] , Bh

q (τ) = τf(τ) ,

AhW (τ) = −3

4
[ 2 + 3τ + 3τ (2− τ) f(τ) ] ,

Ahq (τ, λ) = −I(τ, λ) + J(τ, λ) ,

AhW (τ, λ) = cw

{
4

(
3− s2

w

c2
w

)
I(τ, λ) +

[(
1 +

2

τ

)
s2
w

c2
w

−
(

5 +
2

τ

)]
J(τ, λ)

}
.

(B.1.4)

The function Bh
q for the CP -violating part can be found in [445]. The functions I(τ, λ) and

J(τ, λ), relevant for final states of two different gauge bosons (Zγ), take the form

I(τ, λ) = − τλ

2(τ − λ)

[
f(τ)− f(λ)

]
,

J(τ, λ) =
τλ

2 (τ − λ)
+

τ2λ2

2 (τ − λ)2

[
f(τ)− f(λ)

]
+

τ2λ

(τ − λ)2

[
g(τ)− g(λ)

]
,

(B.1.5)

while the functions f(τ) and g(τ) [446] read

f(τ) = arctan2

(
1√
τ − 1

)
=





−1

4

[
ln

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

]2

, τ ≤ 1 ,

arcsin2

(
1√
τ

)
, τ > 1 ,

(B.1.6)

g(τ) =
√
τ − 1 arctan

(
1√
τ − 1

)
=





1

2

√
1− τ

[
ln

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

]
, τ ≤ 1 ,

√
τ − 1 arcsin

(
1√
τ

)
, τ > 1 .

(B.1.7)

B.2 Numerical Input Parameters

Here we collect the numerical values of input parameters used throughout the numerical
discussion of the RS model. We order them thematically in the following.

Concerning the parameters entering the discussion of EWPOs in section 4.2, we follow
essentially [344]. We use [69] for the strong coupling constant and the most recent Tevatron
average of the top-quark mass [447]

GF = 1.1663787(6) · 10−5 GeV−2 , s2
w = 0.23116(12) ,

αs(MZ) = 0.1184(7) , ∆α
(5)
had(MZ) = 0.02757(10) ,

MW = 80.385(15) GeV , MZ = 91.1875(21) GeV , mt = 173.18(94) GeV .

(B.2.1)
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The numerical value of the fine structure constant at MZ is parametrized by the on-shell
value α(MZ) = α/(1−∆α(MZ)), with the value in the Thomson limit Q2 = 0 being α−1 =
137.035999074(44) [69]. The hadronic contribution to ∆α(MZ) is taken from [448]. Unless
noted otherwise, the reference value for the Higgs-boson mass is Mh = 126 GeV.

In the flavor analyses of section 4.1 we employ the following numerical values:

Parameter Value ± Error Reference

MK 497.614(24) MeV [69]
fK 156.1(11) MeV [449]
Bsd

1 0.52(2) [274]
Bsd

2 0.54(3) [274]
Bsd

3 0.94(8) [274]
Bsd

4 0.82(5) [274]
Bsd

5 0.63(7) [274]
ms(2 GeV) 93.4(11) MeV [449]
md(2 GeV) 3.41(5) MeV [449]

ϕε 43.52(5)◦ [69]
κε 0.94(2) [275]

(∆MK)exp 3.484(6) · meV [69]
|εK |exp 2.228(11) · 10−3 [69]
mt(mt) 163.6(11) GeV [447]
mc(mc) 1.279(1) GeV [450]
ηtt 0.5765(65) [327]
ηcc 1.87(76) [279]
ηct 0.496(47) [451]
|Vus| 0.2252(9) [69]
|Vcb| 0.0409(11) [69]

Parameter Value ± Error Reference

(ε′K/εK)exp 16.6(23) · 10−4 [69]

B
(1/2)
6 [0.8, 2.0] [291]

B
(3/2)
8 [0.8, 1.2] [291]

κL 2.247(13) · 10−10 [302]
κ+ 0.5210(25) · 10−10 [302]

∆EM −0.003 [302]
Xt 1.469(17) [305]
Pc,u 0.41(4) [306–309]

yc −0.20(3) [311]
yγγ 0.4(5) [312]
yA −0.68(3) [314]

|aS | 1.20(20) [315, 316]
yV 0.73(4) [314]

MBd 5.2796(2) GeV [69]
MBs 5.3668(2) GeV [69]
mµ 105.66 MeV [69]
fBd 190.6(47) MeV [449]
fBs 227.6(50) MeV [449]
τBd 1.525(9) ps [452]

τBs
(
1.472+0.024

−0.026

)
ps [452]

cA 0.96± 0.02 [303, 304]

In the numerical analysis of the RS model we generated parameter points and checked
their validity by requiring the fermionic spectrum to comply with the following values of MS
quark masses evaluated at the scale MKK = 1 TeV

mu = (1.5± 1.0) MeV , mc = (560± 40) MeV , mt = (144± 5) GeV ,

md = (3.0± 2.0) MeV , ms = (50± 15) MeV , mb = (2.3± 0.1) GeV .
(B.2.2)

They correspond to the low-energy values as compiled in [453]. The central values and errors
of the Wolfenstein parameters are taken from [454] and read

λ = 0.2255± 0.0009 , A = 0.807± 0.018 , ρ̄ = 0.147+0.029
−0.017 , η̄ = 0.343± 0.016 . (B.2.3)

The requirements on the data sets of RS points are the same as used in [3] and were not
updated here. Small variations (within error ranges) of the values in (B.2.2) and (B.2.3) are
irrelevant, as they affect only the RS contributions and not the leading SM values.
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B.3 Description of the Parameter Scans in RS Models

Here we describe in detail the procedure used for scanning the parameter space of the RS
model. The discussion is mainly aimed at the scan of the parameter space of the minimal RS
model, as used in the discussion of flavor physics in section 4.1.2. The general technique for
the analysis of Higgs physics in section 4.3.3 is essentially the same; the small differences are
summarized in appendix B.4. First, we describe a set of standard parameter ranges, which
we call the standard scenario (labeled std). Below, we introduce variations of the standard
choice and investigate in detail to which extent the different scenarios allow us to relax the
strong constraints arising from EWPOs and quark-flavor physics. We set the volume of the
extra dimension to the maximal value L = ln(1016) ≈ 37 as a standard choice. The parameter
points are generated in a three-step process. First, we determine sets of Yukawa matrices Ỹu,d
that allow to reproduce the observed values of the Wolfenstein parameters ρ̄ and η̄. Since
the latter two quantities are to leading order in hierarchies independent of the values F (cAi)
[1], it turns out to be computationally expensive to find suitable pairs of Yukawa matrices
Ỹu,d by a simple random sampling. To generate proper sets we proceed in the following way.
We randomly pick one element of the Yukawa matrices, keeping its phase φ and modulus
y arbitrary. The remaining elements are then generated from a uniform distribution in the
ranges arg

(
Ỹu,d

)
ij
∈
[
0, 2π

)
and

∣∣(Ỹu,d
)
ij

∣∣ ∈
[
0.1, ymax

]
. The lower limit enforces Yukawa

entries of natural size. For the upper limit we use a standard value of ymax = 3, which
was derived in [211] as a perturbativity bound by means of naive dimensional analysis. It is
the standard choice for ymax employed in several articles on flavor effects in warped extra-
dimension models [211, 212, 229, 254, 255, 261, 455]. We calculate the Wolfenstein parameters
ρ̄ and η̄ by means of the ZMA formula [1]

ρ̄− iη̄ =

(
Ỹd
)

33

(
Mu

)
31
−
(
Ỹd
)

23

(
Mu

)
21

+
(
Ỹd
)

13

(
Mu

)
11

(
Ỹd
)

33

(
Mu

)
11

[(
Ỹd
)

23(
Ỹd
)

33

−
(
Ỹu
)

23(
Ỹu
)

33

][(
Md

)
21(

Md

)
11

−
(
Mu

)
21(

Mu

)
11

] , (B.3.1)

where Mq is the matrix of minors of Ỹq. Using the randomly picked Yukawa element, we
minimize the function

χ2(x) =
∑

n

(
xexp
n − xtheo

n

σexp
n

)2

, x = {ρ̄, η̄} , (B.3.2)

with respect to φ and y, again requiring 0.1 ≤ y ≤ ymax. Here xexp
n and xtheo

n denote the exper-
imental and theoretical value of the nth observable and σexp

n is the standard deviation of the
corresponding measurement. We compile the used values of the observables in appendix B.2.

After the elements of the Yukawa matrices Ỹu,d have been fixed, we choose a random
value from a uniform distribution for the bulk-mass parameter cu3 ∈ (−1/2, cmax

u3
], with

cmax
u3

= 2 being the standard choice1. Then, we calculate the complete set of observables
x = {mu,md,ms,mc,mb,mt, A, λ, ρ̄, η̄} in terms of the zero-mode profiles of the remaining

1The choice of cu3 as a prior is motivated by the fact that this bulk-mass parameter determines the degree
of compositeness of the top quark. While the lower limit of the allowed range of cu3 is motivated by the fact
that the right-handed top quark should be localized near the IR brane, the upper limit is chosen in a somewhat
ad hoc way. Allowing for cmax

u3
� 1 would however take away an attractive feature of the RS model, namely

that it explains the quark hierarchies in terms of fundamental parameters of O(1).
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cAi . To this end we use the Froggatt-Nielsen relations to leading order in the Cabibbo angle
λ ≈ 0.23

mu =
v√
2

|det(Yu)|
|(Mu)11|

|F (cQ1)F (cu1)| , md =
v√
2

| det(Yd)|
|(Md)11|

|F (cQ1)F (cd1)| ,

mc =
v√
2

|(Mu)11|
|(Yu)33|

|F (cQ2)F (cu2)| , ms =
v√
2

|(Md)11|
|(Yd)33|

|F (cQ2)F (cd2)| ,

mt =
v√
2
|(Yu)33| |F (cQ3)F (cu3)| , mb =

v√
2
|(Yd)33| |F (cQ3)F (cd3)| ,

(B.3.3)

λ =
|F (cQ1)|
|F (cQ2)|

∣∣∣∣
(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣ , A =
|F (cQ2)|3

|F (cQ1)|2 |F (cQ3)|

∣∣∣∣∣∣∣∣∣

(Yd)23
(Yd)33

− (Yu)23
(Yu)33[

(Md)21
(Md)11

− (Mu)21
(Mu)11

]2

∣∣∣∣∣∣∣∣∣
.

The values of the zero-mode profiles F (cAi) are then determined from the best fit to the
χ2(x) function, supplemented by the constraints F (cAi) ≤ F (cmax

u3
). Points with χ2(x)/dof >

11.5/10, corresponding to a combined 68% CL, are rejected. As a last step, we recompute
χ2(x) for points that pass the test, now using the exact formulas for the quark masses and
Wolfenstein parameters and remove all points that show a deviation of more than 3σ in at
least one observable.

In order to assure that our algorithm populates the whole parameter space without intro-
ducing spurious correlations, we have inspected the final distributions of parameters. While
the magnitudes and phases of the elements of the Yukawa matrices are all nearly flatly dis-
tributed, the shapes of the distributions of the quark masses and Wolfenstein parameters are
nearly Gaussian with a width of at most twice the corresponding experimental uncertainty.
We consider this as a strong indication that we achieve full coverage of the parameter space
in an unbiased way. These features are basic prerequisites guaranteeing that the spread of
achievable values for observables, and correlations between different observables indeed have
a physical origin and are not artifacts of an imperfect Monte Carlo sampling.

In order to assess the robustness of our predictions for flavor observables, we also investi-
gate how sensitively they depend on the values of the most relevant parameters of the model.
We therefore study three different benchmark scenarios that differ by the allowed maximal
magnitude of the Yukawa couplings, the structure of the bulk-masses matrices, and the value
of the logarithm of the warp factor. The benchmark scenarios are designed specifically to sup-
press harmful contributions to electroweak precision and quark flavor observables without the
necessity of a custodial protection of the gauge group and therefore present particular cases
of viable minimal models of warped extra dimensions with improved prospects for discovery
at the LHC. Our benchmark scenarios are defined as follows:

• “standard” scenario (std)

This scenario uses the standard parameters, which we introduced above.

• “aligned” scenario (SU3d):

In this scenario we impose common bulk masses cdi in the sector of right-handed down-
type quarks. This is feasible, since the mass splittings in the down-type quark sector can
be naturally accommodated by O(1) variations of the Yukawa couplings. The universal
bulk-mass parameters can be achieved by imposing a U(3) flavor symmetry, under which
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standard aligned LRS

cQ1 −0.63± 0.03 −0.66± 0.02 −1.34± 0.16

cQ2 −0.57± 0.05 −0.59± 0.03 −1.04± 0.18

cQ3 −0.34± 0.32 −0.24± 0.43 −0.49± 0.34

cu1 −0.68± 0.04 −0.65± 0.03 −1.58± 0.18

cu2 −0.51± 0.12 −0.50± 0.12 −0.79± 0.26

cu3 ]− 1/2, 2] ]− 1/2, 2] ]− 1/2, 5/2]

cd1 −0.65± 0.03 −0.60± 0.02 −1.44± 0.17

cd2 −0.62± 0.03 −0.60± 0.02 −1.28± 0.17

cd3 −0.58± 0.03 −0.60± 0.02 −1.05± 0.13

Table B.1: Central values and statistical uncertainties of the bulk-mass parameters in the
three benchmark scenarios. The shown errors correspond to 1σ ranges when fitting the
distributions to a Gaussian function, except for cu3

for which a flat prior is chosen in the
given range. See text for details.

the fields that give rise to the right-handed down-type quark zero modes transform
as triplets, and all other fields as singlets [254]. Besides the natural suppression of
corrections to εK [254], this scenario has the appealing feature that it leads to a unique
pattern of deviations in the K → πνν̄ sector.

• little RS scenario (LRS):

From a purely phenomenological point of view, it is possible to lower the UV cutoff
from the Planck scale to a value only few orders of magnitude above the TeV scale,
even though in this case a true solution to the hierarchy problem is postponed to higher
energy. Since many amplitudes in the RS model are enhanced by L, it is worthwhile
to address the question to what extent certain experimental constraints can be avoided
by such a choice [192]. Thus, we consider a “volume-truncated” variant of our first
scenario characterized by L = ln(103) ≈ 7. This affects the amount of splitting between
the bulk-mass parameters, which is necessary to achieve the fermion hierarchies. In
order to cover the full shape of the distributions for the bulk-mass parameters, we allow
for cmax

u3
= 5/2. In this “little” RS scenario [192] the bound from oblique EWPOs is

lowered to a size that is comparable to the custodial model (see figure 4.12). However, no
improvement concerning εK is achieved compared to the standard benchmark scenario
[229].

The statistical approach outlined in the last section provides us with distributions of bulk-
mass parameters rather than with their precise values. The obtained results are different
in the individual benchmark scenarios, and in order to make this work self-contained, we
summarize the central values and standard deviations of the parameters cAi for the three
cases in table B.1. We also illustrate the distribution in the standard scenario in figure B.1.
All distributions are nearly Gaussian, apart from those of cQ3 , which feature a small tail to
higher values, and those of cu3 , which are chosen as flat priors. Notice that while the central
values of the bulk-mass parameters in the standard and aligned benchmark scenarios are very
similar, the splitting between the individual cAi parameters is on average much bigger in the
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Figure B.1: Bulk-mass parameter distribution resulting from the Monte Carlo sampling with
standard parameter choices (std).

LRS scenario due to the smaller “volume factor” L. We have verified that the precise form
of the distributions is essentially independent of the details of the algorithm used to scan the
parameter space. Besides inspecting the coverage of our Monte-Carlo sampling, we also asses
the numerical and perturbative stability of each single parameter point. For this purpose we
use the quantitative measure for fine-tuning

∆BG(O) = max
p∈P

∣∣∂ln(p) ln(O)
∣∣ , (B.3.4)

introduced by Barbieri and Giudice [326]. In our case, the set of model parameters P includes
the Yukawa couplings, their complex conjugates, and the bulk masses.

We identify two different situations, where ∆BG(O) can become large, rendering the results
unstable under small variations of the input parameters. The first case corresponds to large
values of the observable O, where the variation is dominated by a single contribution. In

this case it is sufficient to apply the fine-tuning measure to the matrices ∆
(′)
A and δA, defined

in (3.3.145) and (3.3.148), which constitute the new-physics contributions to all the relevant
couplings (KK photons and gluons, Z boson and its KK excitations) in our analysis. In
practice, we use the analytic form of those matrices from [1], obtained from a Froggatt-

Nielsen analysis to leading order in λ. The contributions to ∆BG(∆
(′)
A , δA) stemming from

variations of the bulk-mass parameters cAi scale either as L or 1 if cAi < −1/2 or cAi > −1/2.
Similarly, variations with respect to the Yukawa entries typically lead to contributions of O(1),
but can also become larger if individual elements (Yu,d)ij appearing in the denominators of

the expressions for ∆
(′)
A and δA cancel each other. However, even in such a case the resulting

contribution to ∆BG(∆
(′)
A , δA) never exceeds 100 for points consistent with the observed quark

masses and mixing, implying no severe fine-tuning.

The situation is different for untypically small values of O. As we show explicitly in
section 4.1.2.4, this situation occurs in the case of |εK |, where the experimental constraint
forces the new-physics contribution to be small compared to the typical values that arise in the
model at hand. In this case we calculate ∆BG(|εK |) taking into account the full expression
for |εK | with all interferences and RG effects, and reject parameter points that show an
excessive fine-tuning stronger than one per mil, i.e. ∆BG(|εK |) > 1000. The resulting data
sets consist of more than 60, 000 valid parameter points in each scenario. We have verified
that (reasonable) variations of the chosen cut on ∆BG(|εK |) neither change the shape of the
distribution of allowed scatter points nor affect any of our conclusions. In contrast, restricting
the amount of allowed fine-tuning to values of around 10 would result in distributions that
show a sharp cutoff of values below the lower end of the experimental allowed region of |εK |.
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B.4 Numerical Scans of Higgs Processes in RS Models

In the following, we summarize the full numerical results for Higgs processes obtained from the
parameter scans in the RS model. To this end we generated one large set of valid parameter
points in the ZMA like described in appendix B.3. Then we adapted the parameters to several
allowed ranges of the fundamental O(1) Yukawa matrices, which are taken to be uniformly
distributed in |

(
Ỹu,d

)
ij
| ∈

[
ymax/10, ymax

]
, by using the reparametrization invariance [1],

which is valid in the ZMA

F (cQi)→ ηF (cQi) , F (cQi)→ ηF (cQi) , Ỹq → 1/η2 Ỹq . (B.4.1)

We choose three discrete values ymax = 3, 1.5, and 0.5 and investigate the minimal and the
custodially protected setup of the RS model, as defined and discussed in sections 3.3.4 and
3.3.5, with a warp factor of ε = 10−15. For each of the six approximate ZMA parameter sets,
we separately check each parameter point with exact expressions and require it to fulfill the
observed zero-mode fermion spectrum and mixing angles. Thereafter, approximately 14,000
valid points remain in each set. Additionally, we impose the constraint on the Zbb̄ couplings
in the case of h→ γZ where this coupling in fact enters. We checked that all other observables
are uncorrelated with this coupling and with other constraints from flavor-physics, such as
CP violation in K–K̄ mixing. This is in fact expected and obvious from the analytic results
of section 4.3.3. Imposing the constraints would only thin out the parameter sets for low
values of MKK and impair the statistical quality of our conclusions in this interesting region
of parameter space. The constraints from oblique corrections to EWPOs, as discussed in
section 4.2.2, are of a different quality, since they restrict mainly the KK scale (see (4.2.23)).
However, we mentioned that loop-effect can potentially lower these bounds. In order to
compare the constraining potential of Higgs processes with EWPO bounds, we show the
results down to a low scale of MKK = 1 TeV.

We calculate the KK-loop contributions by explicitly summing up the contributions of the
first four KK levels of heavy quarks. These are in total 4× (6 + 6) KK quarks in the minimal
and 4×(15+9+9) in the custodial model, where the numbers in brackets are the multiplicities
of up, down and exotic quarks in each KK level.2 In order to determine this spectrum exactly,
one first has to find the solutions to the eigenvalue equation (3.3.43). This is done by the
same method like the determination of the exact zero-mode spectrum, which we used to select
valid parameter points. However, we have to improve the method when applying it to the
KK spectrum. The bracketing of the zeros of (3.3.43) is non-trivial for the KK modes. In the
case of the up-type quark sector in the custodial model we must determine 15 roots of a 9×6
determinant, which in practice turns out to be intricate, because one needs to find suitable
starting points to search for the roots. We obtain these starting values by diagonalizing a
truncated mass matrix obtained in the perturbative approach [200, 430, 456] to the Yukawa
matrices. Then we feed this into an adapted version of a bracketed secant zero algorithm,
using also the information from alternating signs of the determinant between the zeros which
have multiplicity one. Furthermore, we implemented a bisection fallback method for those
cases where a very non-linear behavior of the determinant is detected, in order to approach

2In the absence of soft PLR breaking, cT1i = cT2i , three out of the 15 (9) states in each up-type (λ-type)
quark-KK level will have masses that resemble the ones found in the spectrum for (Yu,d)ij = 0. This feature is
easy to understand, because a unitary transformation U acting on the quarks (U,U ′)T → U (U,U ′)T reshuffles
only the Yukawa interactions, but leaves all other bilinear terms in the action as well as the BCs invariant.
The combinations (U − U ′)/

√
2 and (Λ− Λ′)/

√
2 are thus unaffected by the Higgs mechanism.
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the zero faster. We implemented this in the computational software program Mathematica
with optimized and parallelized code. This allows to generate the large data sets in roughly
one week of single-core CPU time on modern machines.

Having the numerical result at hand, we can verify the analytic results of section 4.3.3 as
an additional check. To achieve a high precision for the numerical results we extrapolate the

sum entering Σ
(low)
q from the first four KK levels to the resummed result, by using

∞∑

n=1

v gqnn
mq
n

=
v

MKK

( nf+nF∑

n=1

gqnn
xqn

+ ρ2,4

nf+4nF∑

n=nf+nF+1

gqnn
xqn

)
. (B.4.2)

The factor ρm,n summarizes the extrapolation of the contribution from all higher KK levels,
starting from the (n + 1)th, based on the numerical result for the mth up to the nth level,
which have to be found numerically. We choose to exclude the 1st KK level from the extrap-
olation. Above that a very regular pattern emerges, such that the factor ρm,n can be derived
analytically. We make use of the knowledge that the summed contributions from the kth

KK level scale approximately with ∼ (((k − 1)π − x̄q1)2 − (x̄q0)2)−1, where we set x̄q0,1 to the
average value of the zero mode and first KK-level masses. Numerically this turns out to be
very accurate for approximating the unknown higher KK-level contributions. The resummed
correction factor is analytically given by

ρm,n =

(
1− ψ0(n+ (x̄q1 + x̄q0)/π)− ψ0(n+ (x̄q1 − x̄q0)/π)

ψ0(m− 1 + (x̄q1 + x̄q0)/π)− ψ0(m− 1 + (x̄q1 − x̄q0)/π)

)−1

=

(
1− ψ′0(n+ x̄q1/π)

ψ′0(m− 1 + x̄q1/π)

)−1

+ O
(

(x̄q0)2

6π2

)
,

(B.4.3)

where ψ0 denotes the digamma function. The extrapolation factor turns out to be independent
of x̄q0 to very good precision, such that we neglect this dependence and use ρ2,4 ≈ 1.209 +
0.237

(
x̄q1/2.5

)
. Remark that this rescales the contributions starting from the second level and

only has a minor impact compared to the contribution from the first KK level. However, it
is reassuring for the check of the analytical result and verifying statements about their bulk
mass independence.

In the figures B.2–B.10 we show all two-dimensional fits to the parameter distribution of
the KK scale versus a given cross-section ratio, width ratio, or ratio of branching ratios, which
we defined in section 4.3.4. The cyan curves correspond to the 5%, 20%, 50%, 80%, and 95%
quantiles. Thus, at a given scale MKK, 60% / 90% of the parameter space is contained in the
light / dark blue bands. The bands are underlaid with the parameter points in faint yellow.
The fits to the quantiles are obtained by first applying a fine grained binning in x-direction,
calculating the quantiles, and then fitting a global model to the resulting distributions. Since
the observables involve absolute values and interfering amplitudes of different parametric
behavior, we choose in each case a fit model that is adapted to the data and check for a
high quality of the fit. By default we try to use a quadratic polynomial3 in (TeV/MKK)2. In
the case of the total Higgs width and ymax = 3, and also for Rγγ/RZZ and ymax = 3 in the
custodial model, it is necessary and sufficient to extend the model to a Pade approximant,
i.e. the ratio of two quadratic polynomials. In all other cases, where an extremum arises

3We use three fit parameters, one being the normalization. We check that the normalization turns out to
be like expected, i.e. one in most cases.
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due to the aforementioned reasons, we resort to a more sophisticated model. This involves
the sum of Fermi-functions, each multiplied by a quadratic polynomial. The Fermi-functions
smoothly connect two regions, where e.g. a sign shift in the amplitude implies a minimum
for the absolute value of the amplitude. This is necessary since the quantile of the resulting
distribution does not exhibit a kink but rather has a smooth minimum.

Remark that, in order to obtain a reliable fit result, we have to exclude the region where
less than 10% of the parameter points survive the bound on the Zbb̄-couplings from the fit to
RγZ . This bound is shown in the left panel of figure 4.16 and discussed in the corresponding
section of the main text.

In the following, we enlist the pseudo-observables in the order in which they are discussed
in the main text of section 4.3.4. A discussion of the results is given there.
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Figure B.2: Fits to the 90%, 60% CLs and median of the parameter distributions of Rh,
the ratio of Higgs production via gluon–gluon fusion in RS divided by the SM result. The
left column shows results in the minimal RS setup, while in the right column shows results
for the custodially protected model. The SM result is marked by the dashed line. Further
details are given in the main text.
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Figure B.3: Fits to the 90%, 60% CLs and median of the parameter distributions of the
branching ratio for h→ bb̄ in the RS model divided by the SM result. The left column shows
results in the minimal RS setup, while in the right column shows results for the custodially
protected model. The SM result is marked by the dashed line. Further details are given in
the main text.
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Figure B.4: Fits to the 90%, 60% CLs and median of the parameter distributions of the
branching ratio for h → ZZ in the RS model divided by the SM result. The left column
shows results in the minimal RS setup, while in the right column shows results for the
custodially protected model. The SM result is marked by the dashed line. Further details
are given in the main text.
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Figure B.5: Fits to the 90%, 60% CLs and median of the parameter distributions of RZZ ,
the predicted signal strength of the process gg → h → ZZ in the RS model. The left
column shows results in the minimal RS setup, while in the right column shows results for
the custodially protected model. The SM result is marked by the dashed line. Further
details are given in the main text.
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Figure B.6: Fits to the 90%, 60% CLs and median of the parameter distributions of RΓ, the
ratio of the total Higgs width in the RS model divided by the SM result. The left column
shows results in the minimal RS setup, while in the right column shows results for the
custodially protected model. The SM result is marked by the dashed line. Further details
are given in the main text.
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Figure B.7: Fits to the 90%, 60% CLs and median of the parameter distributions of the
branching ratio for h→ γγ in the RS model divided by the SM result. The left column shows
results in the minimal RS setup, while in the right column shows results for the custodially
protected model. The SM result is marked by the dashed line. Further details are given in
the main text.
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Figure B.8: Fits to the 90%, 60% CLs and median of the parameter distributions of Rγγ ,
the predicted signal strength of the process gg → h→ γγ in the RS model. The left column
shows results in the minimal RS setup, while in the right column shows results for the
custodially protected model. The SM result is marked by the dashed line. Further details
are given in the main text.
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Figure B.9: Fits to the 90%, 60% CLs and median of the parameter distributions of
Rγγ/RZZ , the ratio of the two corresponding two predicted signal strength in the RS model.
The left column shows results in the minimal RS setup, while in the right column shows
results for the custodially protected model. The SM result is marked by the dashed line.
Further details are given in the main text.
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Figure B.10: Fits to the 90%, 60% CLs and median of the parameter distributions of the
branching ratio for h → γZ in the RS model divided by the SM result. The left column
shows results in the minimal RS setup, while in the right column shows results for the
custodially protected model. The SM result is marked by the dashed line. Further details
are given in the main text.
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