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ABSTRACT

We present a novel approach towards a multimodal analysis of
natural speech and hendwriting input for entering mathemati-
cal expressonsinto acomputer. It utili zes an integrated, multi-
level probabili stic architecture with a joint semantic and two
distinct syntactic models describing speech and script proper-
ties, respectively. Compared to classcal multistage solutions
our single-stage strategy benefits from an implicit transfer of
higher level contextual information into the lower level seg-
mentation and pettern recognition processes involved. For visu-
alization and postprocessing purposes, a transformation into
Adobe® FrameMaker® documents is performed.

Fully spoken or handwritten redi stic formulas were examined,
yielding a structural recognition accuracy of 61.1 % for speech
(spedker independent) and 833 % for handwriting (writer de-
pendent).

1. INTRODUCTION

Electronic acquisition of mathematical formulas via conventio-
nal tods is a time consuming and compli cated task. Therefore
it is esential to exploit the capabiliti es of natural, especially
speech and handwriting interaction, both being the fastest and
most intuitive channels for registering mathematical expressi-
ons [1]. In order to facilit ate future data fusion techniques and
for uniformity reasons, it makes snse to use common semantic
and syntactic representation formalisms for both modaliti es
which may be integrated into a generalized input parsing me-
chanism. Our context free grammar implementation via proba-
bilistic network structures in conjunction with an extended
Earley-type top-down chart parser fulfill s these reguirements.
Fig. 1 shows an overview of the current system components on
the different abstraction levels. The following section gives an
outli ne of the goplied system architecture.

2. SYSTEM OUTLINE

2.1 Grammar

The syntactic-semantic attributes of spoken and handwritten
mathematical formulas are represented by the parameters of a
so-caled Multimodal Probabilistic Grammar. It combines
properties of context freephrase structure grammars with those
of graph grammars by allowing for word-type, symbol-type,
and positi on-type terminals. Formally, it is defined by a Chom-
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skyset G=( Z,V,T,P) including a start symbol %, a set of va-
riables V, aset of terminals T, and a set of context freeproduc-
tion rules P [2]. All the production rules are asciated with
statistical weights obtained from authentic spoken or
handwritten training corpora, respectively.
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Figure 1: System overview. The top-down probabilistic se-
mantic decoder derives a recognized semantic representation S
from a preprocessed observation sequence O. The result is
transformed to a formal mathematical description language to
be fed into a conventional formula editor.

2.2 Semantic Representation

The grammear is implemented into a single stage semantic de-
coder by means of a compact semantic representation called
Semantic Structure S[3]. It is given by an N-fold hierarchi-
caly structured combination out of a predefined inventory of
semuns s (semantic units) with corresponding types t, values
v, and succesr attributes, every unit referring to a certain ma-
thematical operator or operand [1]:

S={s,}, 1<nsN; 5 ={tv.X®)}, X=1, 2

where X(t) denotes the type specific semantic valence, i.e. the
number of successor semuns.

The probabili stic nature of this smantic representation is in-
corporated by threetypes of statistical weights:
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* root probabilities ng=P(s.t) (3
asdgned to every ocaurring roct semun type t

(note: henceforth, the notation a.b identifies a
property b of the entity a),

«  value probabilities &, = P(s,.v | s,.t) (4)

asdgned to every existing semantic value v of a
given semuntypet, and

- successor probabilities n, = P(r(s,)| s,1) (5)

assgned to every al owed combination r of suc-
Cessor semun types.

Further detail s of the semantic formalism may be foundin [4].

2.3 Syntactic Representation

On the syntactic level every semun of a given semantic hypo-
thesis is asdgned to a so-called Syntactic Module SM. It con-
sists of an advanced transition network which enables two dis-
tinct stochastic processes: 1) transitions from one node to ano-
ther and 2 emisdons of elements (i.e. spoken words or hand-
written symbals) or local offsets between associated symbols
or symbol groups. Transitions are responsible for modeling
speding and writing arder, whereas emisgons acoount for va-
rying word, symbol, or position choice, respectively. All the
SMIs belonging to a complete Semantic Structure form an inter-
connected so-called Syntactic Network SN which is constitu-
ted as foll ows:

N={sM,}, 1sn<N;
S\/In :{SnvEnvAnl ----- Aan Bnl ----- BanCn}>

Every SM is opened viaits gart node S and closed via its end
node E. Sucoesor SMs are connected to their parent SM via X
individual A nodes (also called successor nodes), so that the
hierarchy of the corresponding Semantic Structure is mapped to
the SN. These A nodes are dso responsible for emitting pairwi-
se positional offset vectors O between all the handwritten sym-
bols or symbaol groups belonging to the SN subbranches con-
nected to them (see below). Further, there is a type specific
number Y(t) = 0 of B nodes, each emitting ane significant ele-
ment €" of the total input. In case of speech these dements re-
present spoken words, in case of script they correspond to
handwritten symbols. Optionally, a single C node is entered
which emits an insignificant element €. This feaure is especi-
ally used to model expletive spoken plrases, whereas usualy
no insignificant elements are found on the syntactic level of
handwritten inpu.

(6)

The following three types of probabili stic parameters are nee
ded for a statistical rating o the syntactic contribution to an
overall hypothesis sore:

» Different paths through a given SM, are statisti-
caly weighted by means of matrices of transi-
tion probabilities
Ay =[8h=P(i ~ j|siti)], i.jOSMy, @)

where i - j denotes any alowed transition
from node i to j. Additionally, every single SM
node must be passed exactly once — except for
the optional C node — before the end rode is
reeached.

* Thetype specific offset emission probabilities
Ok = P(Aw - {0} si-t), 1sksX ©)
model the statistical weight for the emisgon of
a set of off set vectors covering the positional re-
lations between all the dements emitted inside
the SN sublbranch connected to node An. Since
this procedure is performed recursively every ti-
me asuccesor SM is closed by returning to the
next higher SM’s A node, a complete pairwise
rating o every symbol’s position relative to all
its g/ntactic-semantic predecessor symbols is
guaranteed. The pairwise offset definition for
two consecutive dementsisill ustrated in Fig.2.

* The so-cdled element emission probabilities
B =P(By - " |sit.sv), 1=I<Y ©)

Vo=P(Cy ~ € |51 (10
acourt for a statisticad rating o significant
(type and value spedfic) or insignificant (type
specific) element emissons, respedively. For
consistency reasors, y, is %t to urity if the cor-
respondng C nockis nat passed.

All transition and emisgon probabiliti es as well as emantic
roat, value, and successor probabiliti es were estimated from
training corpora obtained from separate speech and handwri-
ting usabilit y tests (cf. section 2.8). As a summary, a schematic
view of ageneral Syntactic Module with all its attributesis dis-
played in Fig. 3.

5= [ox = A(xa+ g [AX) = AX[O
M =A(yi+ g/ [By) = AFH
0< Oxy<1

offset weighting factors

Figure 2: Offset vector calculation based on surroundng rect-
angles. In this example the position of a single handwritten
symbol belonging to SMn+1 is charged against that of another
single symbol belonging to the predecessor SM,.. The type spe-
cific weighting factors gxy acoount for special constraints due to
handwriti ng conventions.



SMn+l O
A

An ﬁnl

Figure 3: Generalized Syntactic Module. The different types
of nodes, transitions, emissons, and the corresponding proba
bilities are annotated according to section 2.3.

2.4 Morphologic Representation

A phonetic lexicon holds phonetic transcriptions for every spo-
ken word that was foundin the acoustic training corpus; accor-
dingly, every word is represented by a chain of its respective
phoneme models (cf. section 2.5).

Likewise, every handwritten mathematical symbol included in
the graphic training corpus is made up of a varying number of
graphemes which are naturally equivalent to continuous hand-
writing strokes, i.e. sequences of pen movements between a
pen-down and a pen-up event. The according graphemic repre-
sentation is an implicit part of the gplied pattern recognition
technique and the atached handwriting sample database (cf.
section 2.5).

2.5 Signal Representation

On the signal nea levels the preprocessed speed or handwri-
ting inpu sequences are rated wsing 30dimensiona phoreme
based semi-continuots HMMs (Hidden Markov Models) [5]
or 7-dimensional DTW (Dynamic Time Waping) matching
[6], respedively.

Handwritten input is acquired via aWACOM" PL-400" LCD
digitizing tablet. Pen trajectories are sampled at 60 Hz and pre-
processed via length equidistant resampling, smoathing due to
low passfiltering, and size normalization. Euclidian dstance
minimization against al the samples inside areference symbol
database is then performed on the basis of feaure vectors in-
cluding horizontal and vertical positions, their first and second
derivates, and hinary pen-up/down values. The gplied prepro-
cessing and feaure extraction methods were alopted from [7]
and [8].

2.6 Classfication

An extended Earley-type top-down chart parser performs a
MAP (maximum a-posteriori) clasdfication acrossall abstracti-
on levels:

S = argmax max mgx [P(O1®)P(®|2)P(Z|9)P(9)] (11)
s =

The &ove ejuation indicates how an audio-visual observation
sequence O is classfied to a certain Semantic Structure S by
maximizing ower all possble speech/handwriting expressons
= and phoneme/viseme sequences @. In a one pass gach algo-
rithm all posdgble semantic hypotheses are successvely tested
until the best overall semantic representation of a given inpu
is found While P(O|®) and P(®|=) are calculated successi-
vely every time the chart parser sends a request to the
HMM/DTW dassification layer, P(Z|S) and P(S) are
obtained by incrementally multiplying semantic or syntactic
probabiliti es as listed in sections 2.2 or 2.3, respectively, over
all the semuns s, belonging to a given Semantic Structure S.

One of the most prominent advantages of our single-stage top-
down parsing mechanism lies in the fact that — especially for
handwriting — no more isolated symbol segmentation rules or
mechanisms are nealed: In consideration of the local syntactic-
semantic context per examined hypothesis, the optimum com-
bination of handwriting strokes for matching a particular ex-
pected symbol is determined simultaneously with the pattern
recognition processitself.

Due to a breadth-first search strategy, inline first-last proces-
sing is enabled.

2.7 Transformation

In order to achieve auniform semantic representation for post-
processng and future data fusion purposes, our concept relies
on a single, modality independent semantic model. In the cour-
se of generalizing aur syntactic-semantic formalism as well as
the gplied chart parsing mechanism from speech to handwri-
ting needs we worked out such a revised semantic model.

Therefore our transformation module MTrans which transforms
the hierarchically organized data of a recognized semantic
structure into a formal mathematical description syntax [1] had
to be updeted. In addition, we implemented a back transforma-
tion module which will enable the user to switch fredy be-
tween natural and classical inpu modes (e.g. during correcti-
ons or modifications) in the future.

2.8 Training

The current system implementation is based on two detached
parameter sets obtained from separate speech and handwriting
interaction usability studies. A specification of the speech cor-
pusisgivenin[1].

As a next step we aquired a limited handwriting training cor-
pus consisting o 85 redistic full formula samples, each contai-
ning about 50 symbols on average. A writer dependent set of
probabili stic syntactic-semantic parameters (cf. sections 2.2
and 23) as well as a compressed database of DTW reference



patterns were derived from this corpus by means of our inci-
dence based iterative training algarithms. We substantially re-
duced preparative dforts guch as manual symbol segmentation
and syntactic-semantic annotation by implementing a novel
graphical analyzing environment called StrokeTod with a uni-
versal pen gesture based interface.

The positional parameters (eg. (8)) were estimated by calcula
ting type specific two-dimensional Gaussans over all ocaurring
pairwise symbol (or symbol group) offset vectors. Since only
first order dependencies are considered in our approach, any
succesor semun sublbranch was handed as an entity with a
unified surrounding rectangle. However, every individual sym-
bol position isincluded in the resulting parameter set due to re-
cursive processng.

After refining aur present position analysis technique, the
handwriting knowledge bases will be enlarged in order to im-
prove their statistical significance and to achieve writer inde-
pendence.

3. RESULTS & CONCLUSIONS

For evaluation purposes we performed independent test classi-
fications in either modality. The results for fully spoken or
handwritten redi stic formulas are summarized in Table 1. Sin-
ce the positional part of our syntactic model (cf. section 2.8)
has not yet been extended to the full range of supported mathe-
matical functions [1], its contribution was neglected in this gu-
dy. We will present the fina recognition results in a subse-

quent paper.

Reaognition Accuracy
Speed Handwriting

Training Corpus

0, 0,
Redassficaion 762% 87.5%
Independent Test | 4 o, 833 %
Clasdficaion

Table 1: Recognition results. The numbers refer to full formu-
la structural correctnessuncer toleration of mere character con-
fusions.

For the future we wish to support fredy interfering speech and
handwriti ng interactions including mutual coreferencing due to
deictic wording and pen gesturing. To this end, the use of
speech will presumably be focussed to subterm input and error
corrections 9 that we anticipate arobust and approximately
redti me forthcoming system performance.
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