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ABSTRACT

Using the client device of a distributed speech recognizer
usually implies the presence of background noise since most
scenarios for distributed speech recognition (DSR) are sit-
uated in a non-office environment. Thus, the general task
is to choose the most suitable feature extraction method for
the given conditions. We present a hybrid speech recogni-
tion approach implemented for DSR that allows the choice
of arbitrary feature vectors (regarding number and range
of value) without changing the amount of data sent to the
recognition engine. Experiments were carried out using
mel-cepstrum and RASTA-PLP features on the AURORA
database. Results show how the recognition performance
under different noise conditions can be adjusted if the dif-
ferent features are combined, and that our hybrid approach
to DSR has advantages that could not that easily be obtained
with traditional DSR architectures.

1. INTRODUCTION

In a distributed speech recognition system (DSR), the recog-
nition engine with language model, dictionary and acoustic
models is separated from the feature extraction. The con-
nection between the client side where the feature extraction
is located and the server side (with the recognition engine)
is a channel with limited transmission capacity. The advan-
tage of this approach (compared to integrating the recog-
nizer on the client device itself) is the availability of compu-
tation power and memory resources on the server side. The
recognition engine can calculate its results with much more
accuracy and precision than the one running on a client de-
vice. Examples of channels are fixed networks or the air
interface in mobile communication. To deal with the lim-
ited capacity a quantization of the transmitted data is neces-
sary. The maximum channel data rate assumed here is 4.4
kbit/s, this data rate resembles to the one specified in the
ETSI standard [1] for DSR front-ends ( [1] allows 4.8 kbit/s
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inclusive overhead, the raw data rate is 4.4 kbit/s).

This paper’s focus is the acoustic modeling for quantized
data, therefore we assume no information loss during the
transmission over the channel. In a standard® distributed
HMM-based recognition system a vector quantizer (VQ) is
necessary to compress the feature vector [2]. A major dis-
advantage of this standard approach is that the VQ must be
designed for a fixed number and a fixed type of features.
Furthermore, increasing the feature vector’s dimension also
increases the quantization error of the new VQ since the size
of the VQ codebook is determined by the channel’s data
rate. Therefore, we proposed in [3] to adapt our hybrid tied-
posterior algorithm to the DSR task. The hybrid recognizer
can easily include context in the recognition process, it is
trained in a discriminative way and the client side can be
adapted to specific conditions (e.g. by using a neural net
with features especially suited for noisy environments or by
adding delta features) without changing the server side. On
the other hand, the server side can (as well as the standard
HMM systems) make use of context-dependent models (e.g.
triphones) if the task requires it.

In the following section we first present the hybrid archi-
tecture suitable for DSR, then in section 3 we describe the
composition of the different feature vectors and after the ex-
perimental results given in section 4 we draw a conclusion.

2. HYBRID ARCHITECTURE

The main feature of the hybrid architecture that should be
explored here is the neural network’s (NN) ability to esti-
mate posterior probabilities. If the estimated probabilities
are close to the real ones, the models on the server side
are not dependent on a specific NN, the only requirement
is that the models have been trained with the same set of
posterior probabilities. Furthermore, we are using tied pos-
terior probabilities i.e. the NN is connected with the HMMs
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via mixture coefficients. This architecture allows to adapt
the HMM topology to the given task (whole word models,
n-state monophones, triphones. etc.) and to transmit incom-
plete NN outputs from the client to the server and to restore
a valid HMM output on the server side

Figure 1 shows our general set-up for DSR. Denoting
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Fig. 1. Hybrid ASR architecture for distributed recognition

the feature vector of one time frame with fﬂ, the first step
is to introduce some context to the NN’s input layer by
adding feature vectors of past and future time frames: ¥ =
(f(t —m),..., f(t),..., f(t +m))T Asecond step could
be to expand the feature vectors themselves with context by
adding delta and acceleration values. Finally, a second set
of features can be added. Denoting the two feature vectors
with ﬁ and f_; the complete input layer then results in

F=(fit—m), ot —m),..., fit), fo(t),...,
fit +m), fa(t +m))T

The NN’s output layer dimension can be chosen indepen-
dently from the input layer dimension. The network topol-
ogy suitable for speech recognition is a fully-connected
multi-layer perceptron with one hidden layer [4]. The
weights are trained with the back-propagation algorithm op-
timizing the training set’s cross entropy, for the output nodes
we use the softmax function as non-linearity, the hidden
nodes apply the sigmoid function.

To obtain a similar range of value at all input nodes, a nor-
malization process takes place:
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Z; is the global mean value for input node i and o2 is the
global variance for this node.
The NN is normally trained to calculate phoneme probabil-
ities. One output node computes the posterior probability
Pr(N;|Z) that phoneme N; has been observed given the
(normalized) NN input vector Z. The AURORA framework
does not offer a phoneme alignment, but uses whole word
models [2] with 16 HMM states per model. So, pseudo-
phonemes are created by concatenating 4 states of the whole
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Fig. 2. Composing pseudo-phonemes from whole word
HMM “one”
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word models. Adding the HMM states of the silence models
sil and sp the output layer size is 48 (4 nodes from the eleven
digit words each plus 4 silence model nodes). The NN’s out-
put vector  is then quantized using the non-linear quantizer
depicted in figure 3. The characteristic curve of the quan-
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Fig. 3. Non-linear quantizer (n, = 4, by, = 5)

tizer is based on the exponential function? [a - exp(by — c)]
with clipping at the upper range of values. The selectable
parameters a, b and ¢ were adjusted by a trial-and-error
method on the training set.
To meet the bit rate specified in the AURORA framework,
the n, = 4 highest values of i are quantized with b,, = 5
bits each. Additionally, 6 bits are necessary to encode the
value’s index. Assuming a frame shift of 10 ms the resulting
bit rate is
4 - 11 bits
10 ms
On the server side the quantized values are restored to a vec-
tor with zeros filled in where no component was transmit-
ted. The probability density value needed for the output of
HMM state S; is computed according to the tied-posterior
approach in [5]
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2[.] denotes the ceiling function



where Pr(9)(j|Z) is the de-quantized posterior probability
sent over the channel or zero if the index j was not sent
and ¢;; is the mixture coefficient connecting the received
posterior value Pr(@ (j|#) with the HMM state S;. The a-
priori probabilities Pr(3) are known in advance and can be
computed from the training data.

3. FEATURES

As mentioned in the introduction the major goal of this work
is the exploitation of our hybrid DSR-architecture concern-
ing its capability to allow a flexible composition of differ-
ent feature sets in order to make the system more robust
against changing noise conditions. The features that will be
explored in the following paragraphs are all frame based.
Our system creates a frame every 10 ms, the width of one
frame is 32 ms. If the features are combined, it is required
that frame width and frame shift are identical for all extrac-
tion algorithms.

3.1. Mel-frequency cepstrum coefficients

The mel-frequency cepstrum coefficients (MFCC) are com-
puted in a common fashion with a mel filterbank containing
23 filters, then the first 12 cepstrum coefficients are calcu-
lated from the mel-spectrum (excluding ¢g). Finally, the
frame energy is appended, resulting in a base feature vector
with 13 components. In the hybrid framework, delta and
acceleration coefficients can be computed on the client side,
the feature vector dimension has no influence on the NN’s
output dimension. In case of the combination with RASTA-
PLP features we use only 9 cepstrum coefficients ¢y, ...co
and the frame energy.

3.2. RASTA-PLP

RASTA-PLP features are an extension of the PLP features
introduced by [6]. The RASTA filterbank modifies the PLP
features and aims at suppressing slowly varying spectral dis-
tortions. To cope with additive noise components as well,
[7] proposes J-RASTA features, which we used with a fixed
J in our experiments. The whole process of creating the
features is depicted in figure 4. The critical band spectrum
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Fig. 4. Processing steps for RASTA features

filterbank contains 16 filters, the parameter .J in the non-
linear compression is chosen to .J = 106 and we insert the
first 9 linear prediction coefficients in the feature vector.

4. EXPERIMENTS

The AURORA 2 database was presented in [2]. It contains
a sub set of spoken digits and digit chains taken from the TI
digits database added with different noise types at different
signal-to-noise ratios (SNR). For our experiments we use
only the multi-condition training set and compute feature
vectors containing MFCC features, RASTA-PLP features
and a combined feature vector using MFCC and RASTA-
PLP. One HMM and one neural net are trained for each one
of the three feature sets, the recognition is done for all 9 pos-
sible combinations of neural nets and HMMs. This set-up
allows to monitor the change in recognition accuracy, if the
feature set is changed, but the HMM set is kept fix and vice
versa. The HMMs are trained using hon-quantized features,
thus the training uses a non-distributed environment. The
three test sets are also taken from the AURORA database.
Each test set contains speech added with noise from known
and unknown sources at different SNRs. Test A contains the
same noise types that appear in the multi-condition train-
ing set, test B contains unknown noise types and test set C
contains known and unknown noise filtered with the MIRS
channel characteristic (the training set is filtered with the
G.712 characteristic, for more details about the filter char-
acteristics see [2]).

Table 1 shows the results of the 3 feature sets with the cor-
responding neural nets and the HMM set trained on the sys-
tem with MFCC features only. Table 2 includes the same 3
feature sets (again with the corresponding neural nets) and
the HMM set trained on the system with RASTA-PLP fea-
tures only. Finally, table 3 uses a HMM set trained with
the combined feature vector MFCC+RASTA-PLP. The fig-
ures denote the relative loss or improvement compared to
the reference recognition results obtained with a standard
HMM system in [2]. The neural networks use the actual
frame plus 6 context frames, all features are computed with
delta and acceleration coefficients. Comparing the results
we can state the following observations:

o the best result averaged over all three test sets can be
achieved with NN and HMM trained with RASTA-
PLP features

e the NN trained with RASTA-PLP features is best suit-
able for unknown noise conditions or acoustic chan-
nel distortions, the combination RASTA-PLP+MFCC
is best suitable for known noise conditions

o the choice of features used in the HMMSs’ training step
has no significant impact on the recognition result



e apart from the pure MFCC system (that only outper-
forms the standard approach under known noise condi-
tions), an overall gain (through all test sets) compared
to a standard HMM recognizer is noticeable

Summarizing these observations we can stress the suit-
ability of the hybrid framework for DSR. Once a system is
built up, the client and server components can be tuned to
fulfill the task’s requirements without rebuilding the whole
system. The feature extraction method can be adapted to
the expected noise conditions. Using the investigated fea-
ture types we would use a NN with RASTA-PLP features if
the microphone or the environment changes and another one
with MFCC+RASTA-PLP features if the noise and channel
conditions stay the same®. The server side is untouched dur-
ing this adaptation, this would not be possible in a standard
distributed system. As long as the set of posteriors is kept fix
we can also change the server side regarding HMM topol-
ogy this would not be possible in a hybrid system based on
the approach presented in [4].

| NNinputlayer [ TestA | TestB | TestC
MFCC 17.45% -19.35% -30.25%
RASTA-PLP 14.1% 4.52% 29.24%
MFCC+RASTA- | 32.29% 0.59% 2.55%
PLP

Table 1. HMM trained with MFCC features, relative de-
viation to the baseline recognition result (Gaussian HMM
recognizer)

| NN input layer [ Test A | TestB | TestC
MFCC 16.43% -23.61% -31.23%
RASTA-PLP 15.08% 5.44% 30.52%
MFCC+RASTA- | 31.88% -0.4% 1.36%
PLP

Table 2. HMM trained with RASTA-PLP features, relative
deviation to the baseline recognition result (Gaussian HMM
recognizer)

| NN input layer | Test A | TestB | TestC
MFCC 16.63% -26.11% -34.36%
RASTA-PLP 14.97% 3.83% 29.4%
MFCC+RASTA- | 32.09% -1.34% 1.52%
PLP

Table 3. HMM trained with MFCC+RASTA-PLP features,
relative deviation to the baseline recognition result (Gaus-
sian HMM recognizer)

3comparing training and test conditions

5. CONCLUSION

We have explored a distributed hybrid speech recognition
system using different feature extraction algorithms. In par-
ticular, MFCC features, RASTA-PLP features and the com-
bination MFCC+RASTA-PLP have been investigated. We
outlined the advantages of the hybrid approach in a dis-
tributed environment concerning the generalization of the
system design. Our experiments using the AURORA 2
database show that training a NN with RASTA-PLP fea-
tures on the client side outperforms a standard system based
on Gaussian densities under all test conditions. If the
noise conditions are known in advance, the combination
MFCC+RASTA-PLP produces even better results. The hy-
brid DSR system can be adapted in a flexible way to new
environments: New features can be added, others removed
and the amount of context is freely adjustable on the client
side since the interface to the channel does not notice any of
these changes and the server side is kept unchanged.
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