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ABSTRACT 
 
Many different types of silicon fingerprint sweep sensors 
presently enter the biometrics market. Since they provide 
small stripe image sequences instead of full fingerprint 
images, they require new matching algorithms. 

This paper presents a new one-stage, Viterbi-based 
matching approach which can be directly applied to the 
raw sweep sensor output. This is in contrary to the 
conventional two-stage approach where the stripe image 
sequences are combined to area images in a reconstruction 
step and subsequently fed into a recognition system 
appropriate for area images. Simulation results prove that 
the new algorithm is superior to the conventional two-
stage system in terms of recognition performance and 
maximum allowed finger sweeping speed.  
 

1. INTRODUCTION 
 
From all the biometric modalities fingerprints are 
considered to have the highest market potential combining 
a high user acceptance with a good biometric perform-
ance. While fingerprint area sensors are already in the 
field for a long time, presently many different types of so 
called sweep sensors based on silicon technology are 
appearing on the market. Because these sensors are 
covering a small silicon area only, they are cheap enough 
to capture the new mass market of embedded devices [3]. 

Sweep sensors have a sensing area spreading over 
the width of a finger but covering only a small distance 
perpendicular to it. To obtain the full fingerprint 
information, the sensor has to capture images continuously 
while the finger is moving along the sensor area. 

Along with the first sensor of this type, a straight-
forward, two-stage processing principle was established 
[2], [3]: 
1. Reconstruct a geometrically correct area image out of 

consecutive image stripes using the finger sweeping 
speed information. The speed information can 
implicitly be estimated out of the stripe overlap. 

2. Feed the reconstructed image into a conventional 
matching system suitable for area sensors. 

If the sweep sensor is sequentially scanning the image 
lines, an image stripe is distorted due to the finger 
movement. To obtain a geometrically correct area image 
after reconstruction, this distortion has to be corrected. 

The new approach described in this paper establishes 
a one-stage or direct recognition system for sweep 
sensors. This system is able to do a direct match between 
image stripe sequences by defining a (local) distance 
measure between image stripes, applying a Viterbi search 
to find the optimal mapping between two complete stripe 
sequences, and provide a global match score at the same 
time ([6], s. fig. 1). 

The new approach does not require an explicit image 
reconstruction any more which results – together with the 
used Viterbi search – in several advantages compared to 
the conventional two-stage approach: 

 
Figure 1: schematic diagram for direct stripe matching. 
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1. There is no need for an overlap between image stripes 
for reconstruction anymore. This allows higher finger 
speeds with the identical sensor hardware. 

2. The robustness is higher since the mapping of the 
finger stripes is done in a global optimal way so that a 
few corrupted image stripes in a sequence will hardly 
influence the recognition results. In contrast, single 
corrupted frames can totally destroy the geometry of a 
reconstructed image making recognition impossible. 

3. Generally, it can be assumed that the global optimal 
mapping leads to a better system performance than the 
local pair by pair image stripe reconstruction. 

The paper is structured as follows: after a system overview 
explaining the new approach and certain variations in 
more detail (s. sec. 2) the used databases and evaluation 
metrics are described in sec. 3. Simulation results for 
system characterization and comparison are presented in 
sec. 4 leading to the conclusions in sec. 5. 
 

2. SYSTEM OVERVIEW AND ALGORITHMS 
 
2.1 Basic system and algorithms 
 
In its basic form the direct comparison of two image stripe 
sequences can be used for verification as follows: 
(1) Local match: compare all M image stripes of a test 

sequence to all N stripes of a reference sequence using 
a normalized 2-dimensional template correlation [4]. 
Store the individual distances mnmn cd −= 1  derived 
from the correlation coefficients cmn in a MxN 
distance matrix D. 

(2) Viterbi search: iteratively accumulate the local 
distances using the Viterbi algorithm with different 
weights for diagonal and straight transitions resulting 
in the accumulated distance matrix A:  

),,2min( ,,1,1,,1,1, nmnmnmnmnmnmnm dadadaa ++⋅+= −−−−

In parallel, feed the transition matrix B (if needed for 
backtracking) and path length matrix L (for 
subsequent path length normalization) [6]. 

(3) Global match: search minimum accumulated distance 
normalized by path length in first row aM,n/lM,n and 
last column am,N/lm,N  respectively. This defines the 
total match score )/min(1 laS r −= of a test sequence 
matched against the reference sequence r. 

In case of identification steps (1) – (3) are repeated for all 
R reference sequences. The index of the sequence with the 
maximum match Score rmax provides the result. 
 
2.2 Accelerating by reducing redundancy 
 
The 2D correlation is the straightforward way to compare 
image stripes. This method is used to show the principal 

functionality of the direct stripe match system and as a 
basis for algorithm comparisons. 

It can be anticipated that the 2D correlation is 
computational very expensive. For that reason additional 
methods were introduced to reduce the amount of data 
before the image stripes are compared: 
• Vertical average: Since an image stripe F is only a 

few pixels in height (in evaluation constantly 8 pixels, 
s. sec. 3), the image content of consecutive image 
lines normally does not change very much. For that 
reason it can be assumed that the whole stripe F(x,y) 
can be represented by a 1D function 
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vertically. These functions can be compared by a 1D 
correlation which speeds up matching considerably. 

• Fourier features: The correlation step using the 
vertical average function is necessary to compensate 
for horizontal finger displacements. To avoid this step 
new features are built as the magnitude of the discrete 
Fourier transform |)}({DFT| xf  which is invariant to 
translation. The components of the Fourier feature 
vector are normalized to equalize the value range. The 
distance between vectors is defined by the Euclidian 
distance measure. 

It is not claimed that the presented features are the optimal 
ones. But they should be appropriate to show whether a 
feature-based stripe sequence matching is feasible. 
 

3. DATABASES AND EVALUATION METRICS 
 
3.1 Synthetically generated and decomposed images 
 
To study the basic behavior of the new approach 
synthetically generated area images were generated using 
the Sfinge tool ([1], example s. fig. 2). Afterwards, these 
area images are decomposed into stripe sequences using a 
proprietary tool (stripe size 256x8 pixels). This way many 
sensor (e.g. contrast, ridge width, dirt attractiveness, 
internal sensor timings) and usability parameters (e.g. 
finger sweeping speed, shearing, and rotation) can be 
exactly controlled and their effect on the algorithms can be 
studied. The generated database contains 10 users with 
one reference and 4 test fingerprints each.  
 
3.2 Real sweep sensor images 
 
The real image sequences were obtained with a prototype 
silicon sweep sensor (sensor area 256x8 pixels). The 
database contains fingerprints from 3 users taken from 4 
different fingers each (12 virtual users). Each fingerprint 
was taken 5 times. There were no restrictions concerning 
finger sweeping speed and rotation. (example s. fig. 2). 



3.3 Evaluation metrics 
 
The biometric performance is described by the false 
rejection rate (FRR) and false acceptance rate (FAR). 
The FRR is calculated by testing each of the test prints 
against the correct references. For the FAR the tests prints 
are matched against all references except the respective 
correct ones [5]. 

Given a specific system these values depend on the 
score threshold of the decision unit. To visualize the 
behavior of the system FAR and FRR are presented as 
curves over the score threshold. 

The equal error rate (EER) is the failure rate at the 
FAR/FRR crossing point [3]. It is used to roughly 
characterize the performance of a biometric system with 
one number only. For the stability of the system preferably 
a flat gradient of the FAR/FRR curves around the EER 
point is important. The following result section contains 
FAR/FRR curves for comparison only in case their 
gradients differ significantly. 
 

4. SIMULATION RESULTS 
 
4.1 Functionality of the basic system 
 
The basic system as described in sec. 2.1 is using a 2D 
correlation to determine the distance of image stripes. Fig. 
3 shows the FAR/FRR curves (synthetic finger database) 
for an exemplary finger speed of 10cm/s for reference and 
test sequences. The EER is 0% and the gradient of the 
curves around the EER point is quite low which shows a 
good system stability. 

Fig. 4 shows the behavior of the EERs for different 
test speeds given certain reference speeds. As a rule, it can 
be observed that the EER is lowest (between 0% and 3%) 
if test and reference finger speed roughly correspond to 
each other. This is mainly due to the speed dependant 
image distortions. Since the finger speed of a specific user 
normally does not show extreme variations, the 
recognition performance should be about in the optimal 
range for every user (EER < 3%). If a wide range of finger 
speeds is expected, a high reference speed should be 

chosen (e.g. the 25cm/s curve is clearly under 3% EER for 
a test speed range of 5-20cm/s). 

Fig. 5 visualizes the sensitivity of the base approach 
to finger rotation (at a speed of 10cm/s). Since the 
individual image stripes are quite narrow, the overlap area 
of test and reference stripes decreases very fast with 
increasing angles. Additionally, the 2D correlation does 
not compensate for rotation. But obviously the loss in 
recognition rate is less than expected: up to 4 degrees 
rotation the difference in EER remains under 3%. Even 
without further algorithmic improvements this is robust 
enough for practical usage, especially if an appropriate 
finger guidance is applied. 
 
4.2 Comparison to two stage approach 
 
For comparison, the conventional two-stage system was 
evaluated using the synthetic database. The system 
consisted of a sophisticated prototype reconstructor 
together with a commercial state-of-the-art minutiae-based 
area fingerprint recognition software. Since the 
reconstructor compensates for the distortions caused by 
the different finger speeds, fig. 6 does not show a 
characteristical minimum for equal test and reference 
finger speeds. Up to 10cm/s the average EER is about 4% 
which is clearly above the 0-3% of the one-stage 

 

 

Figure 2: 
example of 
synthetic 
fingerprint (left, 
before decompo-
sition) and 
sweep sensor 
image of real 
finger (right, 
reconstructed). 
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Figure 3: FAR/FRR curves for the base system. 
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Figure 4: EER curves of the base system for different finger 

sweeping speeds. 



approach. If the speed exceeds the limit of 13cm/s, 
consecutive image stripes do not overlap any more. For 
that reason the EER of the two-stage system goes up to 
about 29% at 15cm/s whereas the one-stage system 
remains under 4% for up to the tested 25cm/s. 

The comparison demonstrates the superiority of the 
two-stage approach especially but not only for higher 
finger speeds. Taking into account that the two-stage 
system already consists of highly optimized components 
the difference is even more significant. 

 
4.3 Results for redundancy reducing algorithms 
 
Table 1 shows the EERs and execution times for a typical 
match (on a 500MHz PIII CPU) of the redundancy 
reducing algorithms described in sec. 2.2 compared to the 
base approach of sec. 2.1 (synthetic database, 10cm/s). 

As expected, the execution time of 180s for the 2D 
correlation based algorithm is intolerably slow. The 
execution time is reduced considerably down to 8s for the 
1D correlation and even to 2s for the DFT features. On the 
other hand, the EER is increasing up to about 7% for the 
DFT. 

The results demonstrate that the one-stage approach 
is feasible for practical use. Since many other features are 
suitable for image stripe description, there is still much 
potential for further optimization. 
 
4.4 Recognition with real fingers 
 
Fig. 3 also contains the curves for the real fingerprint 
database which implicitly contains all the variations of sec. 

4.1 (plus a certain degree of smear due to finger humidity, 
s. fig. 2). Consequently, the EER moves up to about 4% 
and the steeper gradient of the FAR/FRR curves makes the 
adjustment of  the score threshold slightly more difficult 
(especially on the FAR side). However, the results 
document that the new approach can be successfully 
applied on real fingerprint data. 
 

5. CONCLUSIONS 
 
A new approach for the direct matching of image stripes 
provided by fingerprint sweep sensors was presented. 
Although the system is still in an early prototyping state, it 
could be proven that it has a better performance than the 
conventional two-stage approach based on image 
reconstruction. Especially, the direct matching has no 
inherent restrictions for the finger sweeping speed. 

First results based on simple feature extraction 
methods imply, that there is enough potential to optimize 
the system for the practical deployment in embedded 
systems. 
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Figure 5: EER over finger rotation for the base system. 
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Figure 6: EER over finger speed for two-stage approach. 

 computing time [s] EER [%] 
2D correlation 180 0.0 
1D correlation 8 5.0 
DFT 2 6.7 

Table 1: computing times and EERs for different 
redundancy reducing approaches. 




