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ABSTRACT

In this contribution we introduce a novel approach to the 

combination of acoustic features and language information for a 

most robust automatic recognition of a speaker’s emotion. Seven 

discrete emotional states are classified throughout the work. 

Firstly a model for the recognition of emotion by acoustic 

features is presented. The derived features of the signal-, pitch-, 

energy, and spectral contours are ranked by their quantitative 

contribution to the estimation of an emotion. Several different 

classification methods including linear classifiers, Gaussian 

Mixture Models, Neural Nets, and Support Vector Machines are 

compared by their performance within this task. Secondly an 

approach to emotion recognition by the spoken content is 

introduced applying Belief Network based spotting for 

emotional key-phrases. Finally the two information sources will 

be integrated in a soft decision fusion by using a Neural Net. 

The gain will be evaluated and compared to other advances. 

Two emotional speech corpora used for training and evaluation 

are described in detail and the results achieved applying the 

propagated novel advance to speaker emotion recognition are 

presented and discussed. 

1. INTRODUCTION 

A growing interest in the recognition and integration of users’ 

emotions in the interaction with machines can be observed at the 

time. A large number of applications exists reaching from the 

discipline of information retrieval to medical analysis [1]. In our 

research emotion recognition is applied within automotive 

environments. An in-car board system shall be provided with 

information about the mental state of the driver to initiate safety 

strategies, initiatively provide aid or resolve errors in the 

communication according to the driver’s emotion. Focusing on 

the field of man machine interaction non-invasive advances 

seem more popular in recent works due to a user’s control of the 

emotion shown and a certain comfort provided by the non-

invasive nature. While mimic and speech analysis seem to be 

most promising, we focus on speech as input channel in this 

work. Most of the advances to speech emotion recognition rely 

on acoustic characteristics of an emotional spoken utterance. 

However, in recent approaches more emphasis is also put on the 

spoken content itself [2], and the most reasonable advance seems 

to be the integration of acoustic and linguistic information [3]. In 

the work presented we therefore strive to combine these two 

information sources in a most robust way. Firstly we aim to 

show an optimal feature set and classification method in a 

comparison respecting a high performance and speaker 

independency taking only acoustic features into consideration. 

Secondly we concentrate on the language information. While in 

other works the probability of an emotion is estimated by 

conditional probabilities of single words in an utterance we 

introduce an emotional phrase spotting algorithm based on 

Belief Networks. The idea behind this effort is to include the 

context of a whole utterance as negations of feelings and allow 

for a speaker’s indication of the emotional extent. Consider on 

this the following example: “I do not feel too good at all.” The 

keyword “good” is neglected and furthermore “too” alludes the 

actual extent. After this discussion of acoustic- and language-

based emotion recognition a novel approach to the fusion of 

these shall be presented. While the combination has yet been 

accomplished mostly in a late semantic fusion manner, we 

introduce a soft decision fusion saving available information for 

the final decision process. As still no unity about a general 

classification scheme for emotions in technical applications 

exists, and the use of discrete emotional user states is far spread 

among researches in the field of automatic emotion recognition, 

we consider the emotional states named in the MPEG4 standard: 

anger, joy, disgust, fear, sadness, and surprise. This set is often 

supplemented by a neutral state for a dissociation from a non 

emotional state. In view of international comparability [4][5] we 

decided upon this set of seven emotions in our work. The 

estimation of an emotion shall respect a whole spoken utterance. 

2. EMOTIONAL SPEECH CORPUS 

The emotional speech corpus has been collected in the 

framework of the FERMUS III project [6], dealing with emotion 

recognition in an automotive environment. A dynamic AKG-

1000S MK-II microphone was used in an acoustically isolated 

room to record the emotional utterances. German and English 

sentences of 13 speakers, one female, were assembled. A first 

corpus consists of 2829 acted emotional samples used for the 

training and evaluation in the prosodic and linguistic analysis. 

The samples were recorded over a period of one year to avoid 

anticipation effects of the actors. While these acted emotions 

tend to form a reasonable basis for a first impression of the 

I - 5770-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



obtainable performance, the use of spontaneous emotions seems 

to offer more realistic results, especially in view of the spoken 

content. A second set consists of 700 selected utterances in 

automotive infotainment speech interaction dialogs recorded for 

the evaluation of the fusion. In the project disgust and sadness 

were of minor interest. Therefore these have been provoked in 

additional usability test-setups to ensure equal distribution 

among the emotions in the data set. To obtain a basis for 

comparison the speakers had to reclassify their own samples in a 

random order at the end of the test series. The following table 

shows their average performance. A rather marginal overall 

standard deviation among the human classifiers of 2.11% was 

observed. In the following figures ang abbreviates anger, dis

disgust, fea fear, joy joy, neu neutral, sad sadness, and sur

surprise. 

Emotion ang dis fea joy ntl sad sur 

Error, % 8.0 19.7 18.7 14.7 16.5 23.7 12.5

Figure (1): Human reclassification error rate, mean 16.3% 

3. ACOUSTIC FEATURE SET 

In former works [7] we compared static and dynamic feature sets 

for the prosodic analysis. Due to their higher classification 

performance we focus on derived static features in this work. 

Initially the raw contours of pitch and energy are calculated 

because they rely rather on broad classes of sounds. Spectral 

characteristics on the other hand seem to depend too strongly on 

phonemes and therefore on the phonetic content of an utterance, 

which is a drawback with respect to the premise of 

independency of the spoken content throughout the acoustic 

analysis. Therefore only spectral energy below 250 Hz and 650 

Hz is used considering spectral information. 20 ms frames of the 

speech signal are analyzed every 10ms using a Hamming 

window function. The values of energy resemble the logarithmic 

mean energy within a frame. The pitch contour is computed by 

the average magnitude difference function (AMDF). Calculated 

in first order AMDF provides a faster alternative to the 

autocorrelation function due to a restriction to additions. As all 

pitch estimation methods this technique underlies deviations 

from the original pitch, which could only be measured by glottal 

measurement. AMDF proves robust against noise but susceptible 

to dominant formants. A low-pass filtering applying a 

symmetrical moving average filter of the filter-width three 

smoothens the raw contours prior to the statistical analysis. In a 

next step higher level features are derived out of the contours, 

freed of their mean value and normalized to their standard 

deviation. The temporal aspects of voiced sounds are 

approximated with respect to zero levels in the pitch contour due 

to the inharmonic nature of unvoiced sounds. Silence durations 

are calculated by an energy threshold. As the optimal set of 

global static features is broadly discussed [1][5], we considered 

an initially large set of more than 200 features. The features are 

ranked with aid of a Linear Discriminant Analysis, and the 

following table lists the elements of our final 33 dimensional 

feature-vector in detail. In a direct comparison a combination of 

all pitch related features lead to 69.81% correct recognition rate, 

compared to 36.58% correct recognition rate for the use of all 

energy related features.  

Feature LDA,%

Pitch maximum gradient 31.5

Pitch relative position of maximum 28.4 

Pitch standard deviation 27.6 

Pitch mean value gradient 26.1 

Pitch mean value 25.6 

Pitch relative maximum 25.2 

Pitch range 24.8 

Pitch relative position of minimum 24.4 

Pitch relative absolute area 23.8 

Pitch relative minimum 23.7 

Pitch mean distance between reversal points 23.0 

Pitch standard dev. of dist. between reversal points 23.0 

Energy mean distance between reversal points 19.0 

Energy standard dev. of dist. between reversal points 18.6 

Duration mean value of voiced sounds 18.5 

Spectral energy below 250 Hz 18.5 

Energy standard deviation 18.1 

Energy mean of fall-time  17.8 

Energy median of fall-time 17.8 

Energy mean value 17.7 

Energy mean of rise-time 17.6 

Duration of silences mean value 17.5 

Rate of voiced sounds 17.0 

Signal number of zero-crossings 16.9 

Signal median of sample values 16.8 

Energy median of rise-time 16.7 

Signal mean value 16.7 

Energy relative maximum 16.6 

Spectral energy below 650 Hz 16.3 

Energy relative position of maximum 15.9 

Energy maximum gradient 15.7 

Duration of silences median 15.7 

Duration of voiced sounds standard deviation 15.1 

Figure (2): Ranking of the acoustic features according to a 

Linear Discriminant Analysis 

4. CLASSIFICATION OF THE ACOUSTIC SET 

Various different methods have been taken into consideration for 

the classification on the acoustic layer. In the following the 

results using either linear classifiers, Gaussian Mixture Models, 

Neural Nets or Support Vector Machines are presented and the 

optimal parameter configuration will be discussed.  

4.1. Linear Classifiers 

As a lower end in performance a simple Euclidean Distance 

metric based classifier deciding for the nearest class mean vector 

(kMeans) was used. As a variant a k nearest neighbors classifier 

(kNN) was evaluated in a second advance. A decision is made 

according to the majority vote among the k nearest references to 

the input vector. The maximum performance was observed for k 

resembling one, respectively deciding for the best hit itself. The 

observed results using these classifiers clearly show the non-

linear nature of the problem and demand for more sophisticated 

approaches.  

I - 578

➡ ➡



4.2. Gaussian Mixture Models 

Gaussian Mixture Models (GMM) provide a good 

approximation of the originally observed feature probability 

density functions by a mixture of weighted Gaussians. The 

mixture coefficients were computed by use of an Expectation 

Maximization algorithm. Each emotion is modeled in one 

GMM. The decision is made for the maximum likelihood model. 

A maximum recognition result was observed by use of 16 

mixtures.

4.3. Neural Nets 

Neural Nets are a standard procedure in pattern classification. 

They are renowned for their non-linear transfer functions, their 

self-contained feature weighting capabilities and discriminative 

training. Considering the sparsely available emotion training 

material their good performance on small training sets compared 

to GMMs seems advantageous. A Multi Layer Perceptron with 

33 input neurons equaling the number of input features, a 

sigmoid transfer function in the hidden layer, and 7 output 

neurons for each emotion was used. A performance maximum 

was observed using 100 neurons in the hidden layer. The outputs 

were normalized as posteriors by a softmax function. For the 

training a Backpropagation with 1000 iterations, cross-entropy 

as an error function, and a cross validation set were used.  

4.4. Support Vector Machines 

A great interest in Support Vector Machines (SVM) in 

classification can be observed recently. They tend to show a 

high generalization capability due to their structural risk 

minimization oriented training. Non-linear problems are solved 

by a transformation of the input feature vectors into a generally 

higher dimensional feature space by a mapping function where 

linear separation is possible. Maximum discrimination is 

obtained by an optimal placement of the separation plane 

between the border of two classes. The plane is spanned by the 

support vectors leading to a reduction of references. A number 

of approaches to solving multi-class problems exist. In this 

evaluation we show three different solutions. Once each class is 

trained in its own SVM against all other classes, and the decision 

is made for the class with the highest distance to the other 

classes. In a second variant the distances are fed forward to a 

MLP as described in 4.3. with 7 input and output, and 400 

hidden neurons. In a third advance Multi-Layer SVMs (ML-

SVM) are introduced. The following figure shows the principle. 

ang, ntl, fea, joy / dis, sur, sad

fea / joy dis / sur

ang, ntl / fea, joy

ang / ntl

acoustic feature vector

ang

dis, sur / sad

ntl fea joy dis sur sad

Figure (3): Optimal alignment of the emotions using ML-SVMs 

A layer-wise two class decision is repetitively made until only 

one class remains. The clustering of the emotions and alignment 

on the layers significantly influences recognition performance. 

As a rule throughout the evaluation we found that hardly 

separable classes should be divided at last. This can either be 

modeled by expert knowledge or automatically derived of the 

confusion matrices of the first introduced SVM approach. One 

disadvantage however is that no confidences can be computed 

for each class. This variant is therefore not used in the fusion. A 

radial basis kernel as mapping function showed the best results. 

4.5. Classification Results 

In a test-series the introduced classifiers have been tested 

applying the large speech corpus. Two thirds have each been 

used for training, one third for testing in three cycles. The mean 

error rates are shown in the following table. The standard 

deviations reached from 0.01% to 0.03%. A speaker 

dependent (S DEP) training with only the speaker, and speaker 

independent (S IND) evaluation were considered. 

Classifier S IND,  

Error, % 

S DEP,

Error, % 

kMeans 57.05 27.38 

kNN 30.41 17.39 

GMM 25.17 10.88 

MLP 26.85 9.36 

SVM 23.88 7.05 

SVM – MLP 24.55 11.3 

ML–SVM 18.71 9.05 

Figure (4): Comparison of the acoustic feature classifications 

5. LANGUAGE INFORMATION 

In general only a small amount of user utterances will consist of 

emotional information. Even if an utterance carries information 

of the actual user emotion it will in most cases be only fragments 

of the complete utterance. Therefore a spotting approach seems a 

must in search for emotional keywords or phrases in natural 

language. As a basis we use a standard Hidden-Markov-Model-

based automatic speech recognition (ASR) engine with zero-

grams as language model. It provides the n-best hypotheses 

including single word confidences of its estimation of the spoken 

content. As a mathematical background for the spotting we 

chose Belief Networks for their capability to handle uncertain 

and incomplete information. In this paper we can provide only a 

very brief insight in the theory of Belief Networks, which enjoy 

growing popularity in pattern recognition tasks. Each network 

consists of a set of nodes related to state variables X, consisting 

of a finite set of states. The nodes are connected by directed 

edges expressing quantitatively the conditional probabilities of 

nodes and their parent nodes. A complete representation of the 

network structure and conditional probabilities is provided by 

the joint probability distribution. Let N denote the total of 

random variables, and the distribution can be calculated as: 

N

1 N i i

i 1

P(X ,..., X ) P X | parents(X )
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Methods of interfering the states of some query variables based 

on observations regarding evidence variables are provided by the 

network. Similar to a standard approach to natural speech 

interpretation, the aim is finding the emotion hypothesis that 

maximizes the posterior probability of the word sequence given 

the acoustic observation. Each emotion is modeled in its own 

network. The root probabilities are distributed equally in the 

initialization phase and resemble the priors of each emotion. If 

the emotional language information interpretation is used stand-

alone, a maximum likelihood decision takes place. Otherwise the 

root probability for each emotion is fed forward to a higher-level 

fusion algorithm as with the acoustic confidences. In four lower 

levels a clustering from words to super-words, resembling a 

reduction to 18.9%, phrases, super-phrases, and finally emotions 

takes place as can be seen in the following figure.  

“... I do not feel too good at all ...“

Observation

Word

Super-word

at all

Positive

good . . . super

Negation

not no

Easing

too. . . . . .

Decision Max

Emotion Joy Anger. . .

Super-phrase Positive Negative

Phrase Neg.Pos Negative1 LowPositive1

I do not feel too good . . .

Extent

Figure (5): Principle of Belief network based phrase spotting 

On the word layer the evidences are fed into the net according to 

the word confidences of actually observed words. As we 

integrate the confidences of the ASR hypotheses the 

traditionally certain evidences are extended as uncertain 

evidences. The quantitative contribution P(ej|w) of any word w

to the belief in an emotion ej is calculated in a training phase by 

its frequency of occurrence under the observation of the emotion 

on the basis of the hand-labeled large emotional speech corpus. 

6. SOFT DECISION FUSION 

In this chapter we aim to fuse the acoustic and linguistic 

information obtained. In other works the fusion is suggested as a 

late semantic logical “OR” combiner [3]. Since we strive to 

integrate information of more than two classes, a first approach 

might be to consider a couple-wise mean score for each emotion 

based on the acoustic and language information score followed 

by an adjacent maximum likelihood decision. As an advantage 

soft scores of both aspects are used in the computation prior to 

the final decision. However, this rather simple fusion neglects 

the fact that for each emotion the prior confidences in acoustical 

and language-based estimations differ. Further more a 

discriminative approach helps to integrate the knowledge of all 

accessible emotion confidences in one decision process. We 

therefore suggest the use of a MLP as introduced in 4.3 for the 

fusion. The 14 dimensional input feature vector consists of the 7 

confidences of each the acoustic, and linguistic analysis. 7 

output neurons provide the final emotion probabilities by a 

softmax function. A use of 100 hidden-layer neurons showed the 

maximum performance. The MLP was trained on a second data 

set disjunctive of the initial training sets. For the evaluation of 

the combination a third data set was used. The following table 

shows results achieved using the FERMUS III dialog corpus and 

optimal configurations. 12% of the utterances contained only 

acoustic information of the underlying emotion. 

Model Acoustic 

Information 

Language 

Information 

Fusion 

by means 

Fusion 

by MLP 

Error, % 25.8 40.4 16.9 8.0 

Figure (6): Performance gain means-based and MLP fusion 

7. CONCLUSION 

We believe that this contribution shows important results 

considering the combination of acoustic and linguistic 

information in speech emotion recognition as a solid model was 

introduced and a significant gain was achieved reducing error 

rates up to 8.0%. In the emotion estimation by acoustic 

information a ranked set of features was presented, and different 

classification methods were compared. The use of SVMs 

predominated in robustness on this layer. Additionally a novel 

approach to linguistic information interpretation in view of a 

speaker’s emotion using Belief Network based phrase-spotting 

could be shown. Finally the results of these analyses could be 

integrated in a reasonable MLP soft decision fusion, and lead to 

a significant improvement in overall performance.  
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