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ABSTRACT

Automatic discrimination of musical signal types as speech, 

singing, music, genres or drumbeats within audio streams is of 

great importance e.g. for radio broadcast stream segmentation. Yet, 

feature sets are largely discussed. We therefore suggest a large 

open feature set approach starting with systematical generation of 

7k hi-level features based on MPEG-7 Low-Level-Descriptors and 

further feature contours. A subsequent fast Gain Ratio reduction 

followed by wrapper-based Floating Search leads to a strong basis 

of relevant features. Next, features are added by alteration and 

combination within genetic search. For classification we use 

Support-Vector-Machines proven reliable for this task. Test-runs 

are carried out on two task-specific databases and the public 

Columbia SMD database and show significant improvements for 

each step of the suggested novel concept.  

1. INTRODUCTION 

A great interest exists in the automatic discrimination of audio 

signal types as speech, music, speech overlaid music, acapella 

singing, musical genres or drum-beats. E.g. automatic speech 

recognition applied to soundtracks [1] demands segmentation 

between music and speech parts prior to speech recognition. In 

radio streams parts of the D.J. can likewise be excluded or 

exclusively retrieved [2]. Discrimination of monophonic singing 

and speech can be applied in music retrieval interfaces controlled 

by both interaction forms prior to speech or singing analysis [3]. 

Likewise a user does not need to indicate e.g. manually whether 

singing or speaking at a specific time. Finally, in Query-by-

Singing applications matching to the polyphonic original audio it 

may be useful to retrieve singing locations or such containing 

merely drumbeats, to find reference parts of the key-melody. 

Finally, musical genre type discrimination has many commercially 

interesting applications as automatic equalizer adjustment or 

sorting of musical databases. 

So far several works deal with the discrimination of 

polyphonic music and speech [1, 2, 4], while rather few work on 

the harder challenge of discrimination between speech and 

monophonic singing [5] or singing location [6], in our case even of 

the same person [7]. In these works rather low numbers of features 

have been considered, and selected by single feature relevance 

calculation instead of finding an optimal set which is also ideally 

suited for the target classifier. 

Herein we strive to improve on this task by introduction of 

large open feature sets of 7k+ features. A systematic generation of 

features based on Low-Level-Descriptors found in the MPEG-7 

standard and further ones forms the feature basis. Afterwards a fast 

pre-selection of relevant ones by filter search takes place. Next, we 

optimize a set by floating wrapper search. Finally, we allow for 

feature alterations and cross-feature analysis by use of Genetic 

Algorithm based feature generation. 

As prove of concept extensive test-runs on three partially 

public databases shall demonstrate effectiveness of the suggested 

approach. 

The paper is structured as follows: In section 2 we describe 

applied databases. Sections 3 and 4 deal with extraction, pre-

selection and classification of acoustic features. In section 5 we 

discuss automatic feature generation by evolutionary 

programming. The final two sections discuss results obtained and 

show future directions. 

2. DATABASE DESCRIPTION 

Firstly, we use the public Columbia University Speech Music 

Discrimination (SMD) database introduced and used in [1,8]. This 

database contains among other samples segments from a radio 

broadcast stream. We use the total of 101 samples of music, 80 of 

speech, and 60 of music overlaid with speech contained in this 

database herein. 

Secondly, we extend our previously introduced SHANGRILA 

corpus of speech and monophonic singing samples [9]. It 

comprises of 1,000 samples of speech and 1,114 samples of 

singing of 58 persons in total. These audio samples have been 

recorded in 16bit, 11 kHz by use of an AKG MK 1000S-II 

condenser microphone. They resemble interaction turns with a 

music retrieval interface as introduced in [3]. Polyphonic music 

clips are taken from 200 songs of the MTV-Europe-Top-10 of the 

years 1981-2000. The clips were cut out at five fixed relative 

positions of each song resulting in 1,000 clips in total. The genres 

covered resemble typical mainstream pop-music radio station 

sound. Additionally, we added 1,000 drum beat clips that consist 

of various styles as disco, jazz, rock, and techno music. The whole 

corpus is abbreviated SAB in the ongoing. By this second database 

we can show results on a higher total of samples and for further 

audio signal types. 

Thirdly, we introduce a database for musical genre 

discrimination named GeDi to evaluate effectiveness of the 

proposed method on this task. 6 genres are covered by 602 tracks: 

Classical Music (collection “100 Meisterwerke der klassischen 

Musik”, 6 CDs, 100 tracks), Electronic Dance-Music (collections 

“Future Trance vol. 32”, vol. 33, and vol. 34, 6 CDs, 126 tracks), 

Jazz (collection “Blue Note Jazz History”, 5 CDs, 106 tracks) 

Rock Music (collections “Best of Rock”, 1 CD, “Driving Rock”, 2 
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CDs, “Fetenhits - Rock Classics”, 2 CDs, “Rock Super Stars Vol. 

3”, 1 CD, 99 tracks in total), Live Music (99 Songs randomly 

selected from diverse interprets, albums, songs, no doubles), and 

audio-documents (71 randomly selected pieces from comedians 

and ear-books, no doubles in view of recording) . These genres 

have been selected having a car-stereo or portable MP3-device in 

mind that shall be enabled to automatically adjust equalizer 

settings in accordance with typical equalizer presets or sort 

playlists.  

3. LARGE FEATURE SET CONSTRUCTION 

We use systematic generation of functionals f out of time-series F

by means of descriptive statistics: 

:f F  (1) 

Firstly, selected base-contours, respectively Low-Level-

Descriptors (LLD), are calculated well known to carry 

information about the musical signal type. The original sampling 

frequency and quantization of the databases is kept, and each 10 

ms a 20 ms frame is extracted by weighting with a Hamming 

window-function. Aiming at broad coverage, estimated feature 

contours contain log frame energy, pitch based on autocorrelation 

(ACF) in the time-domain and Dynamic Programming (DP) to 

minimize deviations on a global level, pitch epochs, harmonics-to-

noise ratio based on ACF, formant bandwidth, position and 

amplitude of the first 5 formants based on LPC, polynomial roots 

and DP. Further more jitter and shimmer is calculated. Thereby 

jitter is a measure of pitch- and shimmer one of amplitude-

perturbation on a cycle to cycle basis. For spectral analysis 16 

MFCCs, and spectral flux, spectral centroid, as well as spectral 

roll-off based on linear DFT-spectral coefficients and polynomial 

dB-correction in accordance to human perception, are extracted. 

Dominant harmonics in the spectrum are tracked in 47 chromatic 

semitone intervals within human voice range by summing over 

three successive partials. Finally, 19 Voc19 coefficients are 

obtained by JSRU-style 19-channel filter-bank analysis using two 

second-order section Butterworth band-pass filters. Energy 

smoothing is done at 50Hz. 

The contours are subsequently smoothed by symmetrical 

moving average low-pass filtering with a window size of three. 

Likewise we are less prone to noise throughout the calculation, as 

most feature contours as pitch or formants are prone to errors, 

already. Successively, speed ( ) and acceleration ( ²) are derived 

as further LLDs for each basic contour in order to model temporal 

behavior.

Afterwards a total of 21 clip-wise derived hi-level functionals 

by means of descriptive statistics per contour is computed. One 

exception is the genre discrimination task where hi-level features 

are computed for seconds 0-3, for seconds 25-28, and as global 

statistics over these two parts per song. Afterwards a super-vector 

is constructed per song within this task. This is done having an 

audio buffer of 30 sec in mind and leaving 2 sec prior to song 

change for processing in the intended equalizer adjustment 

scenario. The derived attributes are linear momentums of the first 

four orders, namely mean, centroid, standard deviation, Skewness 

and Kurtosis, as well as quartiles, quartile ranges, extremes, 

extreme positions, range, zero-crossing-rates, 95%-roll-off-points,

25%-down-level-time, and 75% up-level-time. Likewise roughly 

7k acoustic features are obtained in total. The aim here is too 

build a broad feature basis for the subsequent feature selection 

process, throughout which is learned which attributes to prefer in 

which scenario. Thereby almost redundant features are justified at 

this stage. 

4. PRE-SELECTION AND CLASSIFICATION 

Besides lower extraction time-effort, reduction of features also 

often leads to higher classification performance, as the classifier is 

confronted with less complexity, if only redundant information is 

spared. In former works [9] we demonstrated the high 

effectiveness of wrapper-based search which aims at optimization 

of a set as a whole. However, due to the unusually high 

dimensionality in this domain of 7k entries in the original feature 

vector we apply fast Information Gain Ratio based feature 

selection (IGR-FS) herein, firstly. In this filter-reduction single 

highly relevant attributes are found by their entropy [11]. 

Likewise, ranking of attributes is independent of the classifier. 

However, we use a closed feed-back loop in order to find the 

optimal number of the ranked features in accordance with the 

target classifier. 

After such pre-reduction to the optimal feature set size by 

IGR-FS we apply the more powerful Sequential-Forward-Floating-

Search (SFFS) to further reduce feature set size and raise accuracy 

by less complexity for the classifier. SFFS is a Hill-Climbing 

search that starts with an empty feature set and measures feature 

relevance by classification accuracy. Iteratively new features are 

added to the set. Backward steps in a floating manner help to cope 

with nesting effects. 

Dealing with classification, the optimal learning method is 

broadly discussed, similar to the optimal features. In [9] we made 

an extensive comparison on the SHANGRILA database including 

besides Support Vector Machines (SVM), Naïve Bayes, k-Nearest 

Neighbors, Decision Trees, and Neural Nets. Further more we 

investigated construction of more powerful classifiers by means of 

meta-classification as MultiBoosting or Stacking. However, in our 

experiments SVM prevailed as base classifiers. We therefore 

concentrate on these herein. 

SVM - kernel machines - are well known in the machine 

learning community and highly popular at the time due to their 

remarkable performance and generalization capabilities. Generally 

speaking, SVM base on a linear distance-function classification of 

a two-class problem. However, multi-class strategies as one-vs.-

one, layer-wise decision or one-vs.-all exist. Discriminative 

training is achieved by optimal placement of a separation 

hyperplane under the precondition of linear separability which is 

approached by a transformation of the original feature space via a 

kernel function that has to be found empirically. 

In this evaluation we use a couple-wise one-vs.-one decision 

for multi-class discrimination and a polynomial kernel found 

optimal throughout test cycles. For more details on classifiers refer 

to [11]. 

5. EVOLUTIONARY GENERATION 

Besides reduction of the feature space, also its expansion can lead 

to improved accuracy. Consider hereon the Kernel-trick in SVM 

classification. However, while an optimal Kernel has to be selected 

empirically, we aim at a self-learning approach to feature space 

transformation based on random injection. Especially the 

combination of both by a suited search algorithm and the target 

classifier, allows for self-learning optimization of the ideal 
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representation within feature space. In order to expand the feature 

space we generate novel features based on the so far pre-selected 

ones: Firstly, alteration of attributes by mathematical operations 

can be performed to lead to better representations of these. 

Consider hereon the standard use of logarithmic HNR 

representation. So far we only considered features based on single 

contours. By association of these we can secondly obtain a further 

number of new information as inter-band dependencies. As a 

deterministic and systematic generation comes to its limits 

applying exhaustive search, we decided for Genetic Algorithm 

(GA) based search through the possible feature space. The parallel 

selection of most relevant information and reduction is fulfilled 

within one pass by this GA based search. 

GA, a well-known bio-analog method, base on Darwin’s 

survival-of-the-fittest principle of mutation and selection [12]. We 

also include crossing of parental DNA information - in our case 

feature crossing. GA are computationally expensive, but they can 

be parallelized to a high degree. 

The precondition is to have a start-set of effectually different 

individuals that represent possible solutions to the problem. In our 

case these are partitions of the acoustic feature sets reduced to a 

reasonable size by now. The partitions are denoted in binary 

coding, and are called chromosomes in terms of GA literature. 

Each chromosome consists of genes that correspond to single 

features within the partition. A feature’s gene consists of one bit 

for its activity status. The partitioning is done randomly 

throughout initialization and we obtain N=dim(x)/n individuals if x

denotes the feature vector, and n the partition size. 

By an initialization probability, set to 0.5 in our case, it is 

randomly decided which original features are chosen for one step 

of genetic generation. We decided to have a population size of 20 

individuals at a time. Next a fitness function is needed in order to 

decide which individuals survive. Thereby the aimed at classifier 

forms a reasonable basis in view of wrapper based set 

optimization. A cyclic run over multiple generations is afterwards 

executed until an optimal set is found, which resembles a local 

maximum of a problem:  

Firstly, a Selection takes place, based on the fitness of an 

individual. We use common Roulette Wheel selection within this 

step. Thereby the 360° of a roulette wheel are shared proportional 

to the fitness of an individual. Afterwards the “wheel” is turned 

several times, resembling N times selecting out of N individuals. 

Selected individuals are assembled in a Mating Pool. Likewise, 

fitter individuals are selected more probably. We also ensure 

mandatory selection of the best one, known as Elitist Selection.

The oncoming Crossing of pairs is fulfilled by picking N/2

times individuals with the probability 1/N. After selection, 

individuals are put aside. Opposing traditional GA, we use a 

variable chromosome length from hereon, as we aim at generation 

of features. First we have to pick to parents in order to cross their 

chromosomes and thereby obtain new children. Thereby the 

distance between parents and children should reasonably be 

smaller than the one between parents themselves. We therefore 

choose simple Single-Point-Crossing which splits each parent 

chromosome close to its center and pastes the two halves cross-

wise to obtain two children. The fitness thereby also limits the 

total number of children an individual may produce. 

Afterwards, Mutation takes place: the state of a gene, 

respectively of a feature within a partition, is randomly changed by 

a probability of 0.5. Likewise features can be excluded from a set. 

To generate new feature we insert a random selection of an 

alteration method out of reciprocal value, addition, subtraction,

multiplication and division [12]. Depending on the mathematical 

operation the appropriate number of features within an individual 

is selected for alteration, and the operation is performed. Thereby 

new features can be constructed by combination of original ones. 

The obtained new individuals are than appended within the 

chromosome. 

Now the Evaluation of the population is fulfilled, which 

resembles the fitness-test – in our case classification with the 

feature sub-sets. We use SVM on cross-validation set, as we want 

to optimize the feature space for SVM classification. At this point, 

one iteration is finished, and the algorithm starts over with 

Selection. We decided for a maximum of 50 generations, and 40 of 

them without improvement. To conclude the feature extraction, 

selection and classification process so far, figure 1 provides a 

general overview. 

Figure 1: Overview audio signal type discrimination.

6. RESULTS  

Within this section we present results of test runs on the described 

databases within 10-fold stratified cross-validation (SCV). 

The first table shows results for the stepwise optimization of the 

feature space by using all features, subsequent IGR-FS, SVM-

SFFS, and finally addition of genetic generation by GA. 

Table 1: Error signal type discrimination using SVM and stepwise 

feature-space optimization, 10-fold SCV.

Error [%] SMD SAB GeDi 

All features 8.4 9.2 12.8 

-IGR-FS 5.7 5.0 11.6 

-SVM-SFFS 3.7 3.1 7.8 

+GA Generation 3.3 2.1 7.8 

As can be seen, all steps lead to a significant improvement on 

error rates based on a paired Student-T-Test and a significance 

level of =0.05 besides genetic generation on GeDi database. 

Likewise, besides mere reduction of the feature space, also 

generation of novel features based on the original ones may help to 

improve on error rates. We therefore call the feature sets open. For 

the public database SMD the features were reduced starting from 

7k to 197 by IGR-FS, afterwards to 76 by SVM-SFFS. By genetic 

generation 7 new features could be added basing on these. On 

GeDi features were reduced to 500 by IGR-FS and to 92 by SVM-

SFFS. In a similar relation features were reduced and generated for 

SAB.

Within the next table 2 class-wise mean error rates are 

presented for the SMD database. As samples are not evenly 

distributed among classes, we also show each class’s F1-Measure. 

Music is recognized the worst, while music overlaid with speech 

(Mu+Sp) is recognized the best. 
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Table 2: Class-wise error and F1-Measure, database SMD, 

optimal features, SVM, 10-fold SCV. 

[%] Speech Music Mu+Sp 

Error  2.5 4.0 1.7 

F1-Measure 98.1 97.0 95.2 

Table 3 depicts the class-wise mean error-rates for the database 

SAB. As all samples are evenly distributed among classes, F-

Measures are spared. 

Table 3: Class-wise error, database Shangrila+Beat,  

optimal features, SVM, 10-fold SCV. 

SAB Speech Music Singing Beat 

Error [%] 0.3 0.1 1.4 6.8 

Drumbeats (Beat) are detected least best. This is due to 

confusions with polyphonic music. On the other hand side, music 

is practically not confused with beat. 

For the GeDi database 14.5% error are observed omitting global 

features, 20.8% error using exclusively seconds 0-3, 28.1% error 

using exclusively seconds 25-28, and 15.6% using exclusively 

global statistics of the combination of these two clips. Likewise the 

first three seconds seem more important, but the best result is 

obtained by the propagated strategy, namely 7.8% error. Table 4 

depicts class-wise accuracies. 

Table 4: Class-wise error and F1-Measure database GeDi, 

optimal features, SVM, 10-fold SCV. A.doc= Audio Document, 

Class.=Classical Music, Dance= Electronic Dance-Music 

[%] A.doc Class. Dance Jazz Live Rock 

Err. 2.8 0.0 11.1 7.5 2.0 20.8 

F1-M. 97.9 99.5 88.9 91.6 95.6 82.1 

If the classes with highest confusion, i.e. rock vs. electronic 

dance music, are left out, the error rate sinks as low as 0.8% using 

the optimal configuration. The error for mere separation between 

rock music and live rock music resembles 4.0%. 

7. CONCLUSIONS  

Within this contribution we showed a novel approach to audio 

signal type discrimination by large open feature sets. Based on 

Low-Level-Descriptors 7k hi-level-features are derived by means 

of descriptive statistics. In order to cope with this high complexity 

and find task specific relevant ones, feature selection methods 

were applied. Firstly, a fast filter-based pre-selection finds 

generally suited features, next a more compact optimized set is 

found by wrapper selection. The open character is realized by 

evolutionary feature generation based on feature alteration and 

cross-feature attribute construction. Significant improvements 

within every step could be demonstrated on three test-sets. Overall 

achieved error rates are outstandingly low: besides the 

discrimination of speech, music, monophonic singing, and music 

overlaid with speech also drum beats and six musical genres could 

be recognized. 

In future works we aim at integration of these concepts in 

existent Query-by-Singing approaches. Further more the general 

principle may be applied in related audio signal type 

discrimination tasks as musical mood recognition. A further 

refinement of hi-level feature generation may thereby lead to 

improved performance as well as diverse timing-levels. 
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