
Sparse, Hierarchical and Semi-Supervised Base Learning for
Monaural Enhancement of Conversational Speech
Felix Weninger1, Martin Wöllmer and Björn Schuller
Institute for Human-Machine Communication, Technische Universität München, Germany
Email: {weninger,woellmer,schuller}@tum.de
Web: www.mmk.ei.tum.de

Abstract
We address the learning of noise bases in a monaural
speaker-independent speech enhancement framework based
on non-negative matrix factorization. Bases are estimated
from training data in batch processing by means of hierar-
chical and non-hierarchical sparse coding, or determined
during the speech enhancement process based on the diver-
gence of the observed noisy speech signal and the speech
base. In extensive test runs on the Buckeye corpus of
highly spontaneous speech and the CHiME corpus of non-
stationary real-life noise, we observe that semi-supervised
learning of noise bases leads to overall best results while
a-priori learning of noise bases is useful to speed up com-
putation.

1 Introduction
Automatic speech recognition (ASR) in many realistic sce-
narios, including hands-free natural human-computer inter-
action and multimedia retrieval, has to deal with interfering
sources as well as large variability of spontaneous speech.
Furthermore, in many situations, such as analysis of on-line
videos, only one audio channel is available. To enhance
robustness of ASR with a monaural front-end, effective tech-
niques for speech source separation based on non-negative
matrix factorization (NMF) have been proposed, whose ap-
plicability has been demonstrated in cross-talk separation
[1] and noise suppression [2].

Such NMF-based methods for monaural speech and
noise separation use a factorization of the observed spectro-
gram into the product of speech and noise dictionaries with
non-negative activations. Thus, optimizing the process of
learning these dictionaries from training data is crucial for
the separation results. In contrast to the above-mentioned
studies which consider rather artificial tasks, particularly
read and/or small vocabulary speech, noise with limited vari-
ability, and speaker- and noise-dependent dictionaries, we
aim towards realistic use cases by addressing spontaneous
conversational speech from the Buckeye database in highly
variable noise from a domestic environment as featured in
the 2011 PASCAL CHiME Challenge [3]. To cope with the
large variation of speech as well as noise, we adapt the NMF
methodology from our previous study on speaker dependent
small vocabulary speech enhancement in CHiME noise [4]
by considering speaker independent phoneme models, and
investigating various methods to learn dictionaries from
large amounts of variable, non-stationary noise. As a base-
line method corresponding to our previous study [4] we
employ data reduction by random noise subsampling and
NMF. We then extend this method by introducing sparsity
constraints. Further, random subsampling is replaced by a
hierarchical strategy to take into account all available data.
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Finally, adaptive semi-supervised learning for NMF is eval-
uated, which has been introduced in [5] and evaluated in a
study on speech and music separation in [2]. Thus, the main
contribution of this study is to demonstrate the effectiveness
of NMF based speech separation in a challenging task and
to provide a large-scale comparative evaluation of noise
base learning algorithms in a well defined experimental
setup using publicly available databases and NMF imple-
mentations. Details of the experimental setup including
the evaluation database are given in Section 3. Evaluation
of speech enhancement is performed in Section 4 before
concluding in Section 5.

2 Base Learning in NMF-based
Speech Enhancement

NMF-based techniques for monaural speech enhancement
as used in this study are based on the assumption that the
wanted speech signal can be approximated as linear com-
binations of speech and noise dictionaries W(s) and W(n)

with non-negative activation coefficients H(s) and H(n):

V ≈Λ = Λ(s)+Λ(n) := W(s)H(s)+W(n)H(n),

where V is an observed magnitude spectrogram of speech
overlaid by interfering noise, and Λ(s) and Λ(n) denote
approximations of the speech and noise parts, respectively.
In the remainder of this paper, we assume that the speech
basis W(s) is fixed after estimation from training data as
detailed in Section 3.2. Then, the following cost function is
minimized by an iterative multiplicative update algorithm
[6].

c(W(n),H) = cr(W
(n),H)+λ cs(H), (1)

where cr corresponds to the reconstruction error (Kullback-
Leibler divergence) and cs is a sparsity constraint penaliz-
ing the L1 norm of H. Informally, cs enforces that only a
few basis vectors can be active at a given time, which is rea-
sonable if the basis vectors correspond to, e. g., phonemes,
or spectra originating from different noise sources. Depend-
ing on whether the noise basis W(n) is estimated a priori
from training data and subsequently kept constant in the
minimization of (1)—this is called supervised NMF in the
ongoing—, or treated as a free parameter during speech en-
hancement, various base learning algorithms can be derived,
which will be presented in detail below. A fixed number
of NMF iterations K is applied starting from a (Gaussian)
random solution. Generally, more iterations result in more
precise modeling of the noisy original spectrogram in terms
of the cost function, and often improve the noise suppres-
sion, but at the same time may lead to overadaptation (e. g.,
‘mis-use’ of noise bases to model speech and vice versa),
and hence introduce separation artifacts [7]. We will evalu-
ate the influence of K in Section 4.



After the NMF iterations, an estimate of the clean
speech spectrogram, V̂(s), is obtained by filtering the ob-
served spectrogram V:

V̂(s) =
Λ(s)

Λ
⊗V. (2)

All experiments for this paper are based on the NMF imple-
mentations found in our open-source toolkit openBliSSART
[8] to enforce reproducibility of our results.

The remainder of this paper investigates different ap-
proaches to learn W(n) by means of NMF. Thereby the
dictionary size (number of columns in W(n)) is a crucial
factor since the computational complexity of NMF is linear
in the dictionary size. Thus, several studies [1, 9] propose to
build these dictionaries by applying data reduction methods
to a set of spectrograms from training data in batch process-
ing. This data reduction can be carried out by clustering or
NMF itself; the latter was found superior in [10]. If NMF
is used for the data reduction step, it has to be taken into
account that the basic algorithm requires to keep all train-
ing data in memory; hence, it cannot be directly applied to
large amounts of training data. To cope with this, we pro-
pose random subsampling as in [1] as well as a hierarchical
method.

Random Subsampling and NMF

For the CHiME task, we have proposed in [4] to concatenate
a randomly selected subset of the training noise spectro-
grams into a matrix T(n), then reduce it to a noise dictionary
W(n) of fixed size by means of NMF:

T(n) W(n)H(n).

1 000 noise exemplars are extracted and 100 NMF itera-
tions are used for the reduction, minimizing c(W(n),H(n))

(cf. Eqn. 1) by alternating updates of W(n) and H(n) as
proposed in [6]. To provide a baseline in analogy to the
experiments in [4], no sparsity constraint is used therein
(i. e., λ = 0).

Sparse Coding by NMF

If the above-mentioned NMF process is applied without
enforcing a sparsity constraint, we often observe that the
resulting noise bases correspond to ‘building blocks’: Ac-
tual noise events in the signal are modeled by additive
combinations of spectra which often only extend to certain
frequency bands. In contrast, using λ > 0 forces W(n) to
model sparsely occurring events corresponding to actual
noise sources, since modeling by additive combinations of
dictionary atoms is penalized. These observations are in
accordance with the ones made by [11] in the context of im-
age processing. Thus, it can be conjectured that the atoms
in a noise dictionary learnt by sparse coding are harder to
‘mis-use’ for modeling speech; this undesired behavior is
one of the major drawbacks of basic NMF-based monaural
speech separation and leads to separation artifacts: The
part of the speech that is modeled by noise atoms will be
suppressed in the filtering process (see Eqn. 2).

Hierarchical Decomposition

To cope with the computational complexity of reducing
training noise to an incomplete dictionary, the above-
mentioned methods introduce a rather ad-hoc strategy of

random subsampling, thus neglecting large portions of the
training noise. Thus, we now propose a hierarchical learn-
ing algorithm to take into account all available training noise
while keeping the computational complexity low. This algo-
rithm processes the training noise in B blocks and estimates
a basis W(n,b) from the spectrogram of block b, T(n,b),
b= 1, . . . ,B by means of NMF. 100 iterations are performed
as in the above. Then, in a second step, the concatenation
of the block-wise bases, [W(n,1) · · ·W(n,B)] is reduced to
the final base W(n) by means of NMF. The dimensional-
ity of the factorization in the first step is determined by a
reduction factor ρh, which is the ratio of the block size in
signal frames (number of columns of T(n,b)) and the size of
the block-wise dictionaries (number of columns of W(n,b)).
The second step NMF is used to eliminate redundancies in
the dictionaries which could be present if the noise events
in the blocks overlap (as will usually be the case in real-life
recordings taken over a period of time, such as the CHiME
noise corpus).

Adaptive Noise Learning

Finally, we use an adaptive noise learning algorithm that es-
timates a dictionary W(n) during the speech enhancement
process according to (1), starting from a random dictio-
nary. In other words, no a priori information about the
noise characteristics is used, but an optimal dictionary to
model the noise in the utterance is estimated only based
on the mismatch between the fixed speech dictionary and
the observed spectrogram—as measured by the NMF cost
function (Eqn. 1). This is a semi-supervised NMF approach
as proposed, e. g., in [2, 5].

3 Experimental Setup
3.1 Evaluation Database
We used the Buckeye corpus [12] recorded in clean condi-
tions and mixed with the CHiME noise corpus [3] to simu-
late spontaneous speech encountered in a noisy domestic
environment at controlled noise levels. The Buckeye corpus
contains recordings of interviews with 40 speakers. We
subdivided the Buckeye recording sessions, each of which
is approximately 10 min long, into turns by cutting when-
ever the subject’s speech was interrupted by the interviewer,
or by a silence segment of more than 0.5 s length. Only
the subjects’ speech is used, amounting to a total length of
26 hours. We use a speaker-independent subdivision into a
training set (13 557 utterances from 32 speakers), develop-
ment set (1 631 utterances from four speakers), and test set
(1 985 utterances from four speakers), stratified by speaker
age and gender.

The additive noise considered in this study is taken
from the corpus of the 2011 PASCAL CHiME Challenge
[3]. This corpus contains genuine recordings of highly non-
stationary noise from a domestic environment obtained over
a period of several weeks. To create the noisy version of
our evaluation database, we followed the protocol which
was used to create the CHiME Challenge ASR task [3]:
In the development and test set, we employ six signal-to-
noise ratios (SNRs) ranging from 9 dB down to -6 dB in
steps of 3 dB by selecting matching noise segments from
the CHiME development/test noise. As proposed in [3],
the noisy utterances are not constructed by artificial scaling
of the speech or noise amplitudes, but by choosing noise



segments as they were recorded in a real life situation. This
means that noisy utterances at low SNRs co-occur with
noise that naturally has high energy, such as broad band
impact noises. The SNRs are measured on first order dif-
ferences of speech and noise signals. For the experiments
reported in this paper, all signals are down-mixed to mono
by averaging channels.

3.2 NMF Parameterization
To apply NMF, spectrograms of the signals are calculated
by short-time Fourier Transform using Hann windows of
25 ms length at 10 ms frame shift. A shorter window size
and frame shift than in our previous study on the small vo-
cabulary CHiME Challenge ASR task [4] have been chosen
to cope with higher variability of spontaneous conversa-
tional speech. To build speaker-independent speech bases
for NMF, for each phoneme, the corresponding spectro-
grams are extracted from the Buckeye training set accord-
ing to a forced alignment. These concatenated phoneme
spectrograms are reduced to a single dictionary atom by a
1-component NMF, and the column-wise concatenation of
these atoms constitutes the matrix W(s). Thus, the num-
ber of speech components is equivalent to the number of
phonemes (39). The advantage of such phoneme-dependent
speech bases over unsupervisedly learnt ones has been
shown in [1]. Noise bases are estimated from the CHiME
training background noise [3]. The same set of randomly
sampled noise spectrograms is used as in [4]. For hierar-
chical base learning, reduction factors of ρh ∈ {50,500}
are tested, and blocks simply correspond to the noise au-
dio files (each spanning 5 minutes). The sparsity weight
is set to λ = 0.1 in sparse base learning and in all speech
enhancement processes; for the latter, sparsity is used to
guide the NMF algorithm towards a solution where only
few phonemes and noise atoms can be activated at a time.
This weight has been found optimal on the development set.
The size of the noise dictionary is 40 except for adaptive
base learning, where four components were found sufficient
to model the noises actually occurring in the signal, based
on preliminary experiments on the development set. The
most influential parameter for the overall separation quality
turned out to be the number of iterations K; an optimal
value is selected from {1,2,4,8,16,32} based on the devel-
opment set as will be described in the following section.

4 Results
Results are evaluated with the BSS_Eval [13] toolkit
in terms of signal-to-distortion ratio (SDR), signal-to-
interference ratio (SIR), and signal-to-artifact ratio (SAR).

4.1 Development Set
Firstly, we evaluate the influence of the number of itera-
tions K on the development set for the various base learn-
ing algorithms listed in Section 2. In order to reduce the
computational effort for parameter tuning, a subset of the
development set is used for these measurements, consist-
ing of ten randomly selected utterances of each of the four
speakers, with lengths between 5 s and 10 s, at six different
SNRs (240 utterances in total). The average SDR, SIR,
and SAR are computed across SNRs, and the value of K
is optimized on SDR. In terms of average SDR (Figure 1,
top), we observe different optima for different bases. The
overall best quality (SDR = 8.8 dB) is obtained by adaptive

Figure 1: Buckeye development set: Average SDR (top)
and SIR (bottom) with different noise base learning algo-
rithms, across SNRs from -6 to 9 dB. SC = sparse coding
(λ = 0.1).
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base learning, using K = 4. However, 8.5 dB SDR can be
achieved by the supervised NMF method with a sparsely
learnt noise basis and K = 2 iterations updating only the
activations, i. e., at significantly lower computational ef-
fort. It can be seen that the sparsely learnt noise basis helps
to guide the factorization into the ‘right direction’ faster
than the baseline noise basis, which achieves its optimum
SDR for K = 4 iterations, at 8.0 dB. When performing more
iterations, however, it is surprising that the noise bases esti-
mated with sparsity introduce more artifacts (lower SDR)
than the baseline: One would expect lower discrimination
capabilities of the latter due to its genericity, as explained
in Section 2. Generally, the performance of the hierarchical
learning methods is disappointing, as they cannot outper-
form sparse coding from subsampled data except for high
numbers of iterations where a general performance drop
occurs. This might be due to the fact that the number of
distinct noise sources in the CHiME dataset is rather small
and thus spectrograms of most sources can be captured
by subsampling. In contrast, adaptive noise learning by
semi-supervised NMF seems to be most robust against over-
adaptation (as it avoids the large drop in SDR for K > 4),
and provides best interference reduction (SIR, cf. Figure 1,
bottom) for K > 4; particularly, the optimum SIR is 14.0 dB
at K = 16. These observations provide evidence that the
method is able to estimate a noise base ‘on-the-fly’ which
provides good discrimination from speech in the spectral
domain. Again, the subsampling + SC method provides
good interference reduction at much lower computational
complexity (SIR = 13.3 dB at K = 4).

4.2 Test Set
In Table 1, show the performance of the methods on the
test set with the optimal number of iterations K as deter-
mined on the development set, in terms of SDR, SIR, and
SAR. Best results in terms of SDR, SIR, and SAR are



Table 1: Evaluation on the noisy Buckeye test set. 1Without separation, SIR = SDR and SAR→ ∞.

[dB] SNR
Base learning method K -6 -3 0 3 6 9 avg
— (no separation) 0 SDR1 0.7 2.5 4.3 5.7 7.0 8.2 4.7

subsampling 4
SDR 2.8 4.8 6.7 8.4 9.9 11.2 7.3
SIR 3.9 6.1 8.0 9.8 11.5 12.8 8.7
SAR 15.0 15.9 16.9 17.5 18.2 18.9 17.1

subsampling + SC 2
SDR 4.3 6.0 7.5 8.9 10.1 11.1 8.0
SIR 6.2 8.1 9.8 11.5 13.1 14.5 10.5
SAR 12.0 12.8 13.7 14.2 14.8 15.2 13.8

hierarchical, ρh = 500 2
SDR 4.2 5.7 7.0 8.2 9.2 10.1 7.4
SIR 5.9 7.5 8.9 10.4 11.7 12.9 9.5
SAR 11.6 12.5 13.3 13.7 14.2 14.5 13.3

semi-supervised 4
SDR 5.3 6.6 7.8 8.9 10.1 11.0 8.3
SIR 8.1 9.3 10.5 11.8 13.2 14.5 11.2
SAR 11.2 12.6 14.0 14.9 15.5 16.1 14.0

achieved by the semi-supervised method. The SDR differ-
ence to the second best result, achieved by the supervised
method with a sparsely learnt noise basis, is significant
(p� .001, 95 % confidence interval: [0.22,0.30], sample
size 6× 1985 = 11910) according to a two-sided paired
t-test. Conversely, and mirroring the results on the de-
velopment set, sparse coding significantly improves the
performance of supervised NMF in terms of SDR (95 %
confidence interval: [0.67,0.72]) while non-sparse noise
bases seem to introduce less artifacts. Overall, the SDR and
SIR gain by semi-supervised over supervised NMF seems
to be mostly due to improvements on the lower SNR end,
corroborating the hypothesis put forth in [2] in a larger scale
study. While—in our parameterization—semi-supervised
NMF introduces more artifacts on the lower SNR end, in-
terestingly, the speech quality loss at high SNR levels is
lower than for supervised NMF. Finally, we highlight that
the 95 % confidence interval for the SDR improvement in
dB by semi-supervised NMF over the noisy baseline is
[3.4,3.6] while it is [6.4,6.6] for the SIR improvement. We
further note that all the methods are real-time capable in
the sense of a real-time factor (RTF)� 1. For example, the
semi-supervised NMF method, using the openBliSSART
[8] implementation, factorizes the 11910 test utterances
with a total length of 15 hours in roughly two hours on a
standard quad-core PC.

5 Conclusions and Future Work
We have shown effective and efficient methods to reduce
non-stationary background noise in highly spontaneous
speech. In particular, we have demonstrated the applica-
bility of semi-supervised NMF in a challenging speech
separation task and have shown that sparse base learning
from training noise can be used to speed up the separation
process significantly. Future work should address the close
integration into an automatic speech recognition system,
including techniques to mitigate separation artifacts and
parameter tuning towards ASR accuracy, evaluation of the
proposed methods in a truly on-line framework [7], and
semi-supervised speaker adaptation.
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