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Abstract

In this paper, the technique of local linear dynamics assignment is presented, which complements the powerful Interconnection
and Damping Assignment Passivity Based Control (IDA-PBC) methodology. In IDA-PBC, nonlinear state feedback controllers
are designed by matching the system’s dynamics with a desired Port-Hamiltonian (PH) state representation. The latter
consists of an energy function, which serves as the closed-loop Lyapunov function, as well as matrices, describing the virtual
internal exchange and dissipation of the energy. A major difficulty in IDA-PBC is how to determine reasonable values for the
large number of free design parameters. Local linear dynamics assignment offers a solution to this problem with a number
of advantages: (i) Invoking the closed-loop Jacobian linearization to fix the parameter values provides transparency with
respect to the resulting local dynamic behavior. (ii) An appropriate state transformation isolates the coordinates available
for energy shaping. (iii) A related local linear state transformation makes the resulting system of design equations linear. (iv)
Assigning a Hurwitz closed-loop Jacobian and ensuring positive semi-definiteness of the closed-loop dissipation matrix, the
tedious definiteness check of the energy is omitted. The design steps are illustrated with the Ball on Wheel example.
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1 Introduction

Nonlinear control literature, see e. g. Krstić et al. (1995),
Khalil (1996), Sepulchre et al. (1997), provides a wide
range of methods based on Lyapunov theory. While the
nonlinear nature of the state differential equations is
explicitely taken into account in Lyapunov-based tech-
niques, also an estimate of the domain of attraction of
the stabilized equilibrium is provided by the shape of the
Lyapunov function. In passivity based methods like In-
terconnection and Damping Assignment Passivity Based
Control (IDA-PBC), see Ortega et al. (1998), van der
Schaft (2000), Ortega et al. (2002), a Lyapunov function
for the closed-loop system results constructively from the
controller design process. In IDA-PBC this means that
first order PDEs have to be solved under positivity con-
straints. The so-constructed Lyapunov function has the
interpretation as a new energy function for the closed-
loop system. The class of Port-Hamiltonian (PH) sys-
tems, which arises naturally from port-based modeling
and captures the internal and external energy flows and
dissipation of a system, is especially suitable for physi-
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cally inspired controller design, see e. g. Kugi (2001). In
IDA-PBC, the original system representation is matched
with a closed-loop PH system. For a predefined intercon-
nection and dissipation structure the set of assignable
energy functions is identified with the solutions of the
vector-valued so-called matching PDE.

Different aspects of IDA-PBC have been explored in the
last years, some of which shall be mentioned here: A
central question is the solvability of the linear matching
PDE in the case of input-affine systems, for which Cheng
et al. (2005) give necessary and sufficient conditions. To
circumvent the solution of the matching PDE, an alter-
native is proposed in Acosta and Astolfi (2009), based
on solving the PDE for the elements of the gradient al-
gebraically. The latter are integrated to define a map in
state plus error coordinates. Then constructing a Lya-
punov function for the augmented system proves closed-
loop stability. In Höffner (2011) the matching problem is
considered from a coordinate-free viewpoint. The prob-
lem of sampled-data implementation of IDA-PBC con-
trollers is addressed in Tiefensee et al. (2010). An in-
teresting class are underactuated mechanical systems.
When the total energy is shaped, see Viola et al. (2007),
the matching PDE for the kinetic energy becomes non-
linear and inhomogeneous. A procedure how to construct
a solution of this PDE is given in Acosta et al. (2005).
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Another problem is physical dissipation in unactuated
coordinates (Gómez-Estern and van der Schaft, 2004).

Besides the stabilization of an equilibrium and the es-
timation of its domain of attraction, the assignment of
desired transient dynamic behavior is a further impor-
tant issue in nonlinear controller design. The existence
of a passive output of the closed-loop PH system allows
to tune the transient dynamics by damping injection.
However, the effect of a certain output feedback gain
is hardly predictable, nor can closed-loop dynamics be
fixed transparently by choosing the elements of the in-
terconnection and dissipation matrix.

The present contribution gives an answer to the ques-
tion: ”How to determine the design parameters in the
IDA-PBC approach such that the (local) dynamic behav-
ior of the closed-loop system can be specified in advance
and in a quantifiable way?”

The basic idea of local linear dynamics assignment is to
match the linearization of the nonlinear PH dynamics
resulting from IDA-PBC with a predefined asymptot-
ically stable linear system. The latter may result e. g.
from eigenvalue assignment for the linearized original
system. Both a partitioning of the state representation
and a linear state transformation of the linearized sys-
tem render the system of matching equations for lo-
cal linear dynamics assignment linear in the elements
of the interconnection and dissipation matrices in the
equilibrium. Furthermore, the system of linear equations
yields parameter values of the closed-loop energy func-
tion which can be directly realized in the energy shap-
ing step of IDA-PBC. To sum up, local linear dynam-
ics assignment provides parameter values for nonlinear
IDA-PBC which guarantee prespecified local dynamics.
(This neither means linear state feedback nor a feedback
linearizing design.) A major advantage of the approach
is – in contrast to the classical application of IDA-PBC
– that from matching asymptotically stable local linear
dynamics and ensuring a positive semi-definite dissipa-
tion matrix, positive definiteness of the closed-loop en-
ergy Hessian is deduced. As a consequence, the tedious
definiteness check of the latter can be omitted. Local
linear dynamics assignment reduces the number of re-
maining free design parameters in the IDA-PBC match-
ing problem. However, to appropriately tune the non-
linear controller, in order to outperform the correspond-
ing linear one – which is a general issue in the applica-
tion of nonlinear methods – optimization over all free
design parameters is required, including the prespecified
properties of the closed-loop linearization. One possible
criterion to assess the quality of the obtained nonlinear
controllers is the extent of the domain of attraction, es-
timated by the shape of the energy functions.

The present paper generalizes and completes the results
of the conference papers Kotyczka and Lohmann (2009),
Kotyczka et al. (2010b), Kotyczka et al. (2010a), where

local linear dynamics assignment has been presented for
constant design matrices. Here, the technique is derived
for the general case of state-dependent design matrices.
This requires the examination of involutivity properties
of a distribution of vector fields which appear in a part of
the design matrix. Based thereon, important issues like
the shapeability of the energy function, the existence of
a nonlinear transformation, which reveals the structure
of the closed-loop energy and the relation of this diffeo-
morphism to the local linear transformation used for the
main result are discussed.

In Section 2, IDA-PBC for input-affine systems is sum-
marized and the solvability condition for the vector-
valued matching PDE is given. In Section 3, the sha-
peability of the solution of the PDE is discussed in terms
of the number of characteristic coordinates. A coordi-
nate transformation which reveals the structure of the
solution, and a simplified solvability test in the case of
constant coefficients are presented. The considered class
of systems as well as a decomposition of the design pa-
rameters are introduced in Section 4, and the assignabil-
ity of closed-loop local linear dynamics is discussed. Sec-
tion 5 contains a compact derivation of the local linear
dynamics assignment technique and a description of the
design steps. In Section 6, the procedure is illustrated
with the Ball on Wheel example while Section 7 con-
cludes the paper with an outlook to future research.

Notation: ∇H(x) denotes the column vector of partial

derivatives of H(x) (gradient), while ∂H(x)
∂x

is the corre-
sponding row vector (Jacobian). For convenience, defi-
nitions of matrix valued functions like F : Rn → R

n×n

are denoted F (x) ∈ R
n×n. All statements regarding the

local properties of vector fields, distributions, etc., like
regularity or involutivity, are assumed to be valid in a
sufficiently large neighborhood of the equilibrium x∗.

2 IDA-PBC

The IDA-PBC approach is briefly reviewed and the solv-
ability condition for the matching PDE is given.

2.1 General approach

Given an input-affine system

ẋ = f(x) +G(x)u (1)

with x(t) ∈ X ⊆ R
n, u(t) ∈ U ⊆ R

m, the IDA-PBC
problem is to find a state feedback u = β(x) + v to
transform (1) into the Port-Hamiltonian (PH) system

ẋ = (Jd(x)−Rd(x))∇Hd(x) +G(x)v, (2)
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where Hd : R
n → R is a positive definite storage or

energy function for the closed-loop system with

x∗ = argmin
x

Hd(x) (3)

a strict minimum at the desired equilibrium. The inter-
connection and dissipation matrices Jd(x) = −JT

d (x)
and Rd(x) = RT

d (x) ≥ 0 of dimension n × n describe
energy exchange and dissipation in the closed-loop sys-
tem. The collocated passive output y = GT (x)∇Hd(x)
and the new input v obey the energy balance equation

Ḣd(x) = −(∇Hd(x))
TRd(x)∇Hd(x) + yT v ≤ yT v,

showing passivity of the closed-loop PH system. Com-
paring Eqs. (1) and (2) yields amatching equation which
must be met by all design parameters, i. e. the design
matrix Fd(x) := Jd(x) − Rd(x), the energy Hd(x) as
well as the corresponding control law. The fact that the
number m of inputs is in general lower than the number
n of state equations imposes restrictions on the achiev-
able closed-loop dynamics, which are expressed by the
projected matching equation or matching PDE

G⊥(x)Fd(x)∇Hd(x) = G⊥(x)f(x). (4)

Herein, multiplication with the full rank left hand an-
nihilator G⊥(x) ∈ R

(n−m)×n, with G⊥(x)G(x) = 0,
eliminates the inputs u and v from the matching equa-
tion. The vector-valued matching PDE represents a set
of n−m scalar first order linear PDEs. A solution of (4)
– if it exists – can be written as the sum

Hd(x) := Ψ(x) + Φ(ξ(x)).

The particular solution Ψ(x) solves (4) while the homo-
geneous solution Φ(·) is an arbitrary smooth function of
the solutions ξi(x), i = 1, . . . , nξ, of the homogeneous
PDE G⊥(x)Fd(x)∇ξi(x) = 0. In the energy shaping
step, Φ(ξ) is chosen to satisfy the minimum condition
(3). If furthermoreRd(x) ≥ 0 holds in a sufficiently large
neighborhood of x∗, the control law (for v ≡ 0)

u = [GT (x)G(x)]−1GT (x)[Fd(x)∇Hd(x)− f(x)]

renders the equilibrium x∗ stable withHd(x) a Lyapunov

function which satisfies Ḣd(x) ≤ 0 for x 6= x∗. Asymp-
totic stability can be proven using LaSalle’s invariance
principle, see e. g. Khalil (1996). An estimate of the do-
main of attraction of x∗ is the region enclosed by the
largest bounded and connected level set ofHd(x) around
x∗ where Rd(x) ≥ 0 holds. The minimum condition (3)
for the closed-loop energy Hd(x) is commonly verified
examining the gradient and the Hessian matrix in x∗:

∇Hd(x)|x∗ = 0, Qd :=
∂2Hd(x)

∂x2

∣
∣
∣
∣
x∗

> 0. (5)

The first (second) order coefficients of the Taylor series
expansion of the freely adjustable homogeneous solution
Φ(ξ) will be called first (second) order design parameters
of the energy function.

2.2 Solvability of the matching PDE

The vector-valued matching PDE (4) has the form

W (x)∇Hd(x) = s(x), (6)

where the matrix W (x)=[w1(x) . . . wn−m(x)]T contains
the coefficient vectors wi(x) ∈ R

n and the vector s(x)=
[s1(x) . . . sn−m(x)]T the forcing terms si(x) ∈ R, i =
1, . . . , n −m, of each scalar PDE. A necessary and suf-
ficient condition for the solvability of these PDEs has
been given in Cheng et al. (2005):

Theorem 1 The PDE (6) admits a solution Hd(x) if
and only if the involutive closures inv∆(x) and inv∆′(x)
of the regular distributions

∆(x) = span {w1(x), . . . , wn−m(x)} and (7)

∆′(x) = span

{[

w1(x)

s1(x)

]

, . . . ,

[

wn−m(x)

sn−m(x)

]}

have equal dimension d ≤ n.

3 Properties of the matching PDE

In this section, the notion of characteristic coordinates is
explained and their number for a given PDE is discussed.
A coordinate transformation to allocate the effect of en-
ergy shaping is introduced and a simplified solvability
test is presented for PDEs with constant coefficients.

3.1 Characteristic coordinates

Definition 2 Characteristic coordinates ξi(x) are inde-
pendent solutions of the homogeneous PDE

W (x)∇ξi(x) = 0, (8)

summarized in the vector ξ(x) = [ξ1(x), . . . , ξnξ
(x)]T .

Equivalently, ξi(x) are quantities which remain constant
along the solutions of the system of characteristic ODEs
ẋ = wj(x), j = 1, . . . , n−m, associated to (8).

The properties of the distribution spanned by the col-
umn vector fields of WT (x) are essential for the num-
ber of characteristic coordinates, which in IDA-PBC are
available for shaping the closed-loop energy by Φ(·). The
number of independent characteristic coordinates nξ fol-
lows from the application of Frobenius’ Theorem.
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Proposition 3 For a vector-valued PDE (6) there exist
nξ = n − d characteristic coordinates, where d is the
dimension of the involutive closure inv∆ according to (7).

PROOF. Denote w1,...,n−m the vector fields of ∆0 :=
∆ according to (7) and wn−m+1,...,d the Lie-brackets
which are added one after another to construct the dis-
tributions ∆1,...,d−(n−m) where ∆d−(n−m) = inv∆. Ac-
cording to Frobenius’ Theorem, see e. g. Isidori (1995),
the annihilator of the involutive d-dimensional distribu-
tion inv∆ is spanned by exactly n − d differentials, i. e.
there exist n− d functions ξi, i = 1, . . . , n− d, such that

∂ξi(x)

∂x
wj(x) = 0, j = 1, . . . , d.

The functions ξi remain constant along solutions of the
characteristic ODEs ẋ = wj(x), j = 1, . . . , n − m, and
hence are characteristic coordinates. If there were more,
i. e. n−d+k characteristic coordinates, Frobenius’ The-
orem would require ∆d−(n−m)−k to be involutive, which
contradicts the fact that inv∆ = ∆d−(n−m). 2

Consequently, if the distribution (7) is involutive and
the PDE (6) is solvable according to Theorem 1, the
solution can be shaped with the maximum number of m
characteristic coordinates. This maximum shapeability
is favorable in the energy shaping step of IDA-PBC.

3.2 Transformation of the matching PDE

To allocate the effect of energy shaping by the homoge-
neous solution Φ(·) to a subset of coordinates, a trans-
formation of the (matching) PDE of type (6) is useful.

Proposition 4 Given the vector-valued PDE (6), with
W (x) of full rank n−m. Assume the vector fields wj(x),
j = 1, . . . , n −m, span an involutive distribution. Then
(6) can be transformed into

[

0 W̄η(χ)
]

∇H̄d(χ) = s̄(χ) (9)

by a diffeomorphism χ = τ(x) with χ = [ξT ηT ]T ,
ξ ∈ R

m, η ∈ R
n−m, a nonsingular matrix W̄η(χ) ∈

R
(n−m)×(n−m) and s̄(χ) = s ◦ τ−1(χ). The solution of

(9) takes the form

H̄d(ξ, η) = Ψ̄(ξ, η) + Φ̄(ξ),

with a particular solution Ψ̄(ξ, η) and a solution Φ̄(ξ) of
the homogeneous PDE. The requirement ∇H̄d(χ)

∣
∣
χ∗

= 0

can be achieved if s(x∗) = 0.

PROOF. The condition to transform the (transposed)
row vector fields of the principal part in (6) is

[

0m×(n−m)

w̄η,j(χ)

]

=

[
∂ξ(x)
∂x

∂η(x)
∂x

]

wj ◦τ
−1(χ), j = 1, . . . , n−m,

(10)
with w̄η,j(χ) the column vectors of W̄T

η (χ). Under the in-
volutivity assumption, there exist m independent func-
tions ξi(x), i = 1, . . . ,m, such that the first row of (10)

holds with ∂ξ(x)
∂x

of maximum rank m. The functions
ηi(x), i = 1, . . . , n −m, can be defined arbitrarily such

that ∂τ(x)
∂x

is nonsingular and consequently W̄η(χ) is of
full rank. From the Inverse Function Theorem (Isidori,
1995) it follows that τ(x) locally is a diffeomorphism.
The sole dependency of Φ̄(·) on ξ follows from the struc-
ture of the homogeneous PDE (replace s̄(χ) by 0 in (9)).
With s(x∗) = s̄(χ∗) = 0 also ∇ηH̄d(χ)

∣
∣
χ∗

= 0 holds,

and ∇ξH̄d(χ)
∣
∣
χ∗

= 0 can be achieved by the first order

parameters of the free function Φ̄(ξ). 2

3.3 Simplified solvability test

Using the above transformation, solvability of (6) is easy
to verify with respect to the elements of a constant matrix
W (Kotyczka and Lohmann, 2009):

Proposition 5 The PDE (6) with W = const. admits
a solution if and only if for all i, j = 1, . . . , n−m

Lwi
sj(x)− Lwj

si(x) = 0, (11)

where Lwi
sj(x) denotes the Lie-derivative of sj(x) along

the constant vector field wi.

PROOF. The statement can be proven either by appli-
cation of Theorem 1 or by Poincaré’s Lemma, see e. g.
Lévine (2009). First, transform (6) with W = const.
into ∇ηH̄d(ξ, η) = s̄(χ) by the regular linear coordinate
change x = [∗ WT ]χ. Solvability now is equivalent to

the question whether the 1-form ω =
∑n−m

j=1 s̄j(ξ, η)dηj
is exact on the considered subset of Rn−m (ξ here only
plays the role of a parameter). Necessary and sufficient
condition on a star-shaped region is

∂s̄j(ξ, η)

∂ηi
−

∂s̄i(ξ, η)

∂ηj
= 0, i, j = 1, . . . , n−m,

which corresponds to the interchangeability of the sec-
ond order partial derivatives of the solution. The back-
transformation yields (11). 2
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4 Problem structure and assumptions

In order to obtain a systematic procedure for the param-
eter choice in IDA-PBC, only input-affine systems with
a special structure are considered. Correspondingly, the
target dynamics is restricted to a structured represen-
tation. In this section, furthermore, the assignability of
local linear dynamics is briefly discussed, before the as-
sumptions for the main result are formulated.

4.1 Class of systems

In the considered class of systems, ”actuated” coordi-
nates are distinguished from ”unactuated” states:

Definition 6 In input-affine systems of the form

[

ẋα

ẋν

]

=

[

fα(x)

fν(x)

]

+

[

Gα(x)

0

]

u, (12)

where Gα(x) ∈ R
m×m is a nonsingular square matrix on

X , the upper part xα ∈ R
m of the state vector x ∈ X ⊆

R
n contains the actuated coordinates, while xν ∈ R

n−m

denotes the unactuated coordinates.

The IDA-PBC matching equation now turns into

[

fα(x)

fν(x)

]

+

[

Gα(x)

0

]

u
!
=

[

Fα(x)

Fν(x)

]

∇Hd(x), (13)

where the design matrix Fd(x) has been partitioned into
Fα(x) ∈ R

m×n andFν(x) ∈ R
(n−m)×n. The submatrices

Fα(x) =








αT
1 (x)
...

αT
m(x)







, Fν(x) =








νT1 (x)
...

νTn−m(x)








are composed of the row vectors

αT
i (x) =

[

αi1(x) . . . αin(x)
]

, i = 1, . . . ,m,

νTj (x) =
[

νj1(x) . . . νjn(x)
]

, j = 1, . . . , n−m,

containing the scalar design parameters. The simplest
possible left hand annihilator

G⊥ =
[

0(n−m)×m In−m

]

(14)

is used such that the second row of (13)

fν(x) = Fν(x)∇Hd(x) (15)

directly represents a matching PDE, which only depends
on the elements of the lower submatrix Fν(x). When
(3) has been achieved with Rd(x) ≥ 0, the stabilizing
control law follows from the first row of (13):

u = G−1
α (x)[Fα(x)∇Hd(x)− fα(x)].

4.2 Assignable local linear dynamics

The linearization of (12) at an admissible equilibrium
(x∗, u∗) has the form

[

∆ẋα

∆ẋν

]

=

[

Aα

Aν

][

∆xα

∆xν

]

+

[

Bα

0

]

∆u, (16)

with Aα ∈ R
m×n, Aν ∈ R

(n−m)×n, the nonsingular ma-
trix Bα ∈ R

m×m. The ∆-quantities are the deviations
of state and input from the equilibrium. If (16) is con-
trollable, there exists a linear state feedback ∆u = K∆x
such that desired closed-loop linearized dynamics

∆ẋ = Ad∆x ⇔

[

∆ẋα

∆ẋν

]

=

[

Ad,α

Aν

][

∆xα

∆xν

]

, (17)

can be achieved with arbitrary eigenvalues of the Hur-
witz matrix Ad = A+BK. The linear eigenvalue assign-
ment problem will be an intermediate step to determine
the design parameters for nonlinear IDA-PBC.

Remark 7 It is well known that stabilizability of the lin-
earization is only sufficient for stabilizability of (12), see
Nijmeijer and van der Schaft (1990), Bacciotti (1988) for
details. To concentrate on the core question of transpar-
ent dynamics assignment in the nonlinear IDA-PBC de-
sign process, the critical cases (e. g. uncontrollable eigen-
values of A on the imaginary axis) are excluded here.

4.3 Assumptions

Before stating the main result of the paper, the assump-
tions are summarized:

Assumption 8 The state equations of the considered
system have the form (12) with sufficiently smooth vector
fields on the right hand side and the linearization (16) in
the desired equilibrium (x∗, u∗) is controllable.

Note that every input-affine system with input matrix
of full rank m, whose column vector fields span an in-
volutive distribution, can be transformed into the above
representation. The smoothness assumption guarantees
that the solution of the matching PDE (4), if it exists,
is smooth, and hence, the Hessian matrix Qd according
to (5) is defined. This allows to employ the linearization
arguments in the derivation of the main result.
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Assumption 9 The matching PDE (15) is solvable with
a full rank matrix Fν(x), whose smooth (row) vector fields
νTj (x), j = 1, . . . , n−m, span an involutive distribution.

This assumption ensures that a full rank matrix Ad can
be assigned for the linearized closed-loop system and
there exists the maximum number of m characteristic
coordinates for the energy shaping step of IDA-PBC.
The row vectors of every constant matrix Fν span invo-
lutive distributions and solvability of the PDE is easily
tested by condition (11) in this case. To construct a state-
dependent matrix Fν(x) such that Assumption 9 holds,
is complicated in general. However, it can be shown that
the row vector fields of matrices Fν(x), as constructed
in Subsection 5.5, span involutive distributions.

5 Main result

The procedure described in this section provides values
of the IDA-PBC design parameters such that

• desired dynamics of the linearization is achieved while

• the energy Hd(x) serves as a Lyapunov function to
prove stability and determine an estimate for the do-
main of attraction of the closed-loop equilibrium x∗.

5.1 Matching of local linear dynamics

The basic idea is to match the linearization of the closed-
loop system with a desired matrix Ad according to (17):

∆ẋ =
∂

∂x
(Fd(x)∇Hd(x))

∣
∣
∣
∣
x∗

!
= Ad∆x. (18)

Under Assumption 9, the row vector fields of Fν(x) span
an involutive distribution. Proposition 4 then states that
∇Hd(x)|x∗ = 0 can be achieved (by the first order pa-
rameters of the homogeneous solution) if fν(x

∗) = 0,
i. e. x∗ is an admissible equilibrium. Hence (18) leads to

Fd(x
∗)Qd∆x

!
= Ad∆x with (19)

Qd :=
∂2

∂x2
Hd(x)

∣
∣
∣
∣
x=x∗

=
∂2

∂∆x2
∆Hd(∆x)

∣
∣
∣
∣
∆x=0

the Hessian of the closed-loop energy in the desired equi-
librium. ∆Hd(∆x) := Hd(x

∗) + 1
2∆xTQd∆x denotes

the quadratic approximation of Hd(x) at x
∗. If (19) can

be solved for the free IDA-PBC parameters ”hidden” in
Fd(x

∗) and Qd, clearly regularity of both matrices fol-
lows if Ad is Hurwitz.

Proposition 10 If (19) with Ad a Hurwitz matrix is
solved such that

Rd(x
∗) = −

1

2
(Fd(x

∗) + FT
d (x∗)) ≥ 0, (20)

then Qd is positive definite.

PROOF. The solution of (19) implies rank(Qd) = n.
Solving (19) for Fd(x

∗) and substituting in (20), one gets

AdQ
−1
d +Q−1

d AT
d = −2Rd(x

∗),

a Lyapunov equation with at least a solution Q−1
d ≥ 0 if

Rd(x
∗) ≥ 0, see Boyd (2005). Regularity of Qd implies

regularity of Q−1
d . Hence Q−1

d > 0 and finally Qd > 0. 2

When assigning a Hurwitz matrix Ad, it is sufficient
to check Rd(x

∗) ≥ 0 to deduce positive definiteness of
Hd(x). The argumentation is related to Proposition 1 in
Prajna et al. (2002) that for any (asymptotically) stable
linear system a PH representation can be derived.

5.2 Local linear coordinate transformation

The linear transformation of the deviation coordinates

∆x = FT
d (x∗)∆z (21)

turns the local linear matching equation (19) into

Fd(x
∗)QdF

T
d (x∗)

︸ ︷︷ ︸

=:Q̃d

∆z = AdF
T
d (x∗)∆z, (22)

where Q̃d describes the quadratic approximation of the
closed-loop energy in new local deviation coordinates:
∆H̃d(∆z) := Hd(x

∗)+ 1
2∆zT Q̃d∆z. By partitioning Ad

and Fd(x
∗) into their actuated and unactuated parts,

one obtains

[

Q̃αα Q̃αν

Q̃να Q̃νν

]

=

[

Ad,αF
T
α (x∗) Ad,αF

T
ν (x∗)

AνF
T
α (x∗) AνF

T
ν (x∗)

]

, (23)

since (22) has to hold for any ∆z. The submatrices

Q̃ij :=
∂2∆H̃d(∆z)

∂∆zi∆zj
, i, j ∈ {α, ν},

denote the second order partial derivatives of the closed-
loop energy in the directions of the subvectors of

∆z =
[

∆zTα ∆zTν

]T

, ∆zα ∈ R
m, ∆zν ∈ R

n−m,

required to fulfill (22). Now it will be clarified how the
subset ∆zα of local coordinates is related to the charac-
teristic coordinates of the PDE (15). The solution of (15)
using computer algebra provides a set of characteristic
coordinates ξ(x) ∈ R

m. Additional coordinate functions
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η(x) ∈ R
n−m can be defined to complete a diffeomor-

phism χ = τ(x). To assign local linear dynamics, a ma-

trix Q̃d which satisfies (22) must be realized by shaping
the homogeneous solution Φ(ξ). The following proposi-

tion relates the submatrix Q̃αα (defined with respect to
∆zα) to Φ(ξ).

Proposition 11 Given a set of characteristic coordi-
nates ξ ∈ R

m. Then an arbitrary matrix

Q̃αα =
∂2∆H̃d(∆z)

∂∆z2α
(24)

can be achieved by appropriate choice of the homogeneous
solution Φ(ξ) of (15).

PROOF. First, it is shown that the deviation co-
ordinates ∆ξ, expressed through ∆z, only depend
on ∆zα. The characteristic coordinates ξ(x) satisfy
∂ξ(x)
∂x

FT
ν (x) = 0. The local approximation of ξ(x) is

∆ξ = ∂ξ(x)
∂x

∣
∣
∣
x∗

∆x, thus ∂∆ξ
∂∆x

FT
ν (x∗) = 0 holds. With

Fν(x) = [ 0 I ]Fd(x) and (21) it follows that

0 =
∂∆ξ

∂∆x

∂∆x

∂∆zν
=

∂∆ξ

∂∆zν
.

In a similar way, it is shown that ∂∆zα
∂∆η

= 0, i. e. a one-to-

one correspondence Q̄ξξ = CT Q̃ααC, C ∈ R
m×m, can

be established between (24) and

Q̄ξξ :=
∂2∆H̄d(∆ξ,∆η)

∂∆ξ2
,

which can be assigned arbitrarily by Φ(ξ). 2

In the case ∂ξ(x)
∂x

∣
∣
∣
x∗

= ∂∆zα
∂∆x

, the identity Q̃αα = Q̄ξξ

holds. Otherwise, the matrix C has to be determined.

Now the effect of Φ(ξ) is exclusively allocated to the

submatrix Q̃αα. Note that Q̃αα is the sum of the Hessian
matrices with respect to ∆zα of the particular solution
Ψ(·) (fixed) and the homogeneous part Φ(·) (assignable):

Q̃αα = Q̃Ψ
αα + Q̃Φ

αα.

If Hd(x) is indeed a solution of the matching PDE, the
second order partial derivatives interchange. This sym-
metry requirement on Q̃d according to (23) provides nec-
essary conditions for the values of Fd(x) in x∗.

5.3 System of linear equations

Putting the above considerations together, the main the-
orem of the paper can be formulated:

Proposition 12 Given the IDA-PBC problem in (13),
with the simplest left hand annihilator (14) to extract the
matching PDE (15). Let the linearization be controllable
in the desired equilibrium (x∗, u∗) (Assumption 8). As-
sume the matching PDE to be solvable with Fν(x) of full
rank n−m and its row vectors νTj (x), j = 1, . . . , n−m,
to span an involutive distribution (Assumption 9).

Choose the free design parameters Q̃Φ
αα, which can be

arbitrarily assigned by the homogeneous solution Φ(ξ) of
(15), and the values of the elements of Fd(x

∗) from the
solution of the linear system of equations

0 = Ad,αF
T
α (x∗)− Fα(x

∗)AT
d,α (25a)

0 = Ad,αF
T
ν (x∗)− Fα(x

∗)AT
ν (25b)

Q̃Φ
αα = Ad,αF

T
α (x∗)− Q̃Ψ

αα (25c)

for a given Hurwitz matrix Ad such that (20) holds. In
addition, ensure ∇Hd(x)|x∗ = 0 by the choice of first
order parameters of Φ(ξ).

The result is a parametrization of IDA-PBC such that the
linear approximation of the asymptotically stable closed-
loop PH dynamics is (17), and the energy functionHd(x)
has a minimum in the desired equilibrium x∗.

PROOF. The involutivity assumption ensures the ex-
istence of exactly m characteristic coordinates. Conse-
quently, Q̃Φ

αα as required by (25c), which is part of the
northwestern subequation of (23), can be realized by sec-
ond order parameters in Φ(ξ). Equations (25a), (25b)
express the symmetry requirement of the northwestern
and off-diagonal submatrices of Q̃d. Symmetry of the
southeastern submatrix is automatically given when the
matching PDE is solvable. In the SISO case, Eq. (25a)
is trivially true. The solution of the system of equations
(25) is equivalent to solving the matching equation for
local linear dynamics (19) such that Qd is symmetric.
Applying Proposition 10 completes the proof. 2

The proposition provides a method how to determine
the values of the elements αik(x), νjk(x) of the design
matrix in the equilibrium x∗, as well as the first and sec-
ond order parameters of the homogeneous solution Φ(ξ).
The question how these functions have to be like to en-
sure solvability of the matching PDE, maximum sha-
peability of the energy function etc. is, however, not ad-
dressed. The simplest case, which is a reasonable start-
ing point, is to take Fd = const. Then (a) solvability of
the matching PDE (15) is easy to check via condition
(11), (b) the distribution spanned by the constant vec-
tor fields νj , j = 1, . . . , n−m, is always involutive, and
(c) if (25) is solved such that Rd ≥ 0, then this property
holds globally. Note that it depends on the coordinate
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choice if interconnection and dissipation structures are
represented by constant matrices or not (Höffner, 2011).

The matrix equations (25) represent m · n scalar linear
equations, which is the number of free elements in Ad,α.
On the other hand, there are (m2+m)/2 free parameters

in Q̃αα and n2 entries in Fd(x
∗) (under the constraint

Rd(x
∗) ≥ 0). Although the design freedom is reduced

by the solvability condition for the matching PDE, the
system of equations is usually underdetermined, which
allows to use the remaining design freedom e. g. to max-
imize the estimated domain of attraction of x∗, see Ko-
tyczka et al. (2010b).

5.4 Design procedure with constant design matrices

The design steps to apply local linear dynamics assign-
ment with constant design matrices are described below.

Step 1 Define the desired dynamics of the closed-loop
linearization (17).

Step 2 (1st preconditioning of Fd) Establish algebraic
relations between the elements ofFν such that solvability
of the matching PDE is ensured by condition (11).

Step 3 (2nd preconditioning of Fd) Establish relations
between the elements of Fd such that Rd ≥ 0 is pos-
sible. This includes inequalities, but also setting those
off-diagonal elements of Rd zero which correspond to ze-
ros on the diagonal. Furthermore, certain choices of ele-
ments may simplify the definiteness check of Rd.

Step 4 Represent the solution of the matching PDE
(15) with respect to the free parameters.

Step 5 Ensure ∇Hd(x)|x∗ = 0 by the choice of first
order parameters in Φ(ξ).

Step 6 Solve the system of linear equations (25) for the
free parameters. Determine the second order parameters
of Φ(ξ) from Q̃Φ

αα.

Step 7 Fix the remaining free parameters, e. g. to opti-
mize the shape of the resulting closed-loop energyHd(x).

The presented approach in a sense reverts the order of
design steps in the ”classical” application of IDA-PBC,
where energy shaping is followed by damping injection
to adjust the dynamic behavior. Whereas here, closed-
loop (linearized) dynamics is predefined and the shape of
the energy is adjusted at the end of the design process.

5.5 Construction of state-dependent design matrices

A constant design matrix may be insufficient to success-
fully design an IDA-PBC controller, cf. the last example

u

q1

q2

Fig. 1. Sketch of the Ball on Wheel system

in Kotyczka and Lohmann (2009), where the solvability
condition restricts the design parameters in such a way
that it is not possible to achieve Rd ≥ 0 and Qd > 0
at the same time. A state-dependent matrix Fν(x) may
be more suitable for the problem. Such a matrix can be
systematically constructed as follows.

Take thematching PDE (15) andmultiply with a nonsin-
gular matrix D(x) ∈ R

(n−m)×(n−m). This corresponds
to the use of a modified left hand annihilator G⊥(x) =
[0 D(x)]. The equivalent matching PDE is

D(x)fν(x)
︸ ︷︷ ︸

f̂ν(x)

= D(x)Fν(x)
︸ ︷︷ ︸

F̂ν

∇Hd(x). (26)

Parametrize Fν(x) by Fν(x) = D−1(x)F̂ν with F̂ν =

const. and choose D(x) such that f̂ν(x) becomes a less
restrictive forcing term with respect to the (simplified)
solvability condition. It can be easily checked that using
this construction, the involutivity Assumption 9 is satis-
fied. The first preconditioning in Step 2 is carried out for
the elements of F̂ν in the equivalent PDE (26). Conse-
quently, the solution of the matching PDE depends only
on the constant parameters ν̂jk. The second precondi-
tioning in Step 3 and the solution of the system of equa-
tions in Step 6 are based on the state-dependent matrix
Fd(x) of the original problem, evaluated in x∗.

6 Example: Ball on Wheel

To illustrate the design procedure, the Ball on Wheel
system is considered (Fig. 1). The goal is to balance a
ball (hollow sphere with radius rb and mass mb) on top
of a wheel (radius rw and moment of inertia Jw) by
actuating a motor (torque u) in the hub of the wheel. q1
denotes the angle between the rotation axes of wheel and
ball, q2 is the absolute rotation angle of the wheel. The
system could be modeled as 2 DOF mechanical system
in Hamiltonian formulation and controlled by the IDA-
PBC approach for underactuated mechanical systems
(Acosta et al., 2005) to stabilize the desired equilibrium
q∗ = q̇∗ = 0. However, disregarding the wheel angle q2
and defining x1 = q̇1, x2 = q1, and x3 = − 7

2
rw+rb
rw

q̇1+q̇2,
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results in the input-affine state space representation

ẋ =

[

fα(x)

fν(x)

]

+

[

gα

0

]

u =







a sinx2

x1

−b sinx2






+







c

0

0






u,

with a = (5Jw + 2mbr
2
w)g/d, b = 5g/(2rw), c = 2rw/d,

d = (rw + rb)(7Jw + 2mbr
2
w), and g the gravitational

acceleration. The first ansatz for the closed-loop Port-
Hamiltonian dynamics is

ẋ =

[

Fα

Fν

]

∇Hd(x) =







α11 α12 α13

ν11 ν12 ν13

ν21 ν22 ν23






∇Hd(x),

with a constant design matrix Fd and the energy Hd(x)
to be determined such that it takes aminimum in x∗ = 0.

Step 1 A linear state feedback ulin = Kx is designed for
the linearized system, assigning three closed-loop eigen-
values in −10. The matrix Ad takes the form

Ad =







ad,11 ad,12 ad,13

1 0 0

0 −b 0






.

Step 2 The first preconditioning of the design ma-
trix with respect to the solvability of the matching PDE
fν(x) = Fν∇Hd(x) yields

b cosx2ν12 + ν21 = 0 ⇒ ν12 = ν21 = 0.

The parametrized dissipation matrix at this stage is

Rd =







−α11 − 1
2 (α12 + ν11) − 1

2α13

− 1
2 (α12 + ν11) 0 − 1

2 (ν13 + ν22)

− 1
2α13 − 1

2 (ν13 + ν22) −ν23






.

Step 3 To allow Rd to be positive semidefinite, ν22 =
−ν13 and ν11 = −α12 are indispensable. Setting for sim-
plicity α13 = 0 results in Rd = diag{−α11, 0,−ν23},
which is positive semidefinite when at least one of the
inequalities α11 ≤ 0 and ν23 ≤ 0 holds strictly.

Step 4 The matching PDE after this second precondi-
tioning of Fd is

[

x1

−b sinx2

]

=

[

−α12 0 ν13

0 −ν13 ν23

]

∇Hd(x)

-0.5 0 0.5
x2

10

0

-10

x3

-0.5 0 0.5
x2

5

0

-5

x1

Fig. 2. Sections of the contour surfaces of Hd(x) in
x-coordinates for x1 = 0 and x3 = 0

and has the particular solution

Ψ(x) = −
1

2α12
x2
1 −

b

ν13
cosx2.

The freely adjustable homogeneous solution is set up as

Φ(ξ) =
1

2
µ2ξ

2 +
1

4
µ4ξ

4,

with ξ = zα = eT1 F
−T
d x the characteristic coordinate

resulting from the linear coordinate transformation (21),
which holds globally in the case of constant Fd.

Step 5 The given choice of Φ(ξ) ensures∇Hd(x)|x∗ = 0.

Step 6 The system of equations (25) becomes

[

0

0

]

=

[

−α12 0 ν13

0 −ν13 ν23

]







ad,11

ad,12

ad,13






−

[

1 0 0

0 −b 0

]







α11

α12

0






,

µ2 =
∂2Φ̃

∂z2α

∣
∣
∣
∣
∣
z∗

= ad,11α11 + ad,12α12 −
∂2Ψ̃

∂z2α

∣
∣
∣
∣
∣
z∗

,

where
∂2Ψ̃

∂z2α

∣
∣
∣
∣
∣
z∗

= −
α2
11

α12
+ b

α2
12

ν13
,

and can be solved besides for µ2, e. g. for α12 and ν13.
The parameters α11, ν23, as well as µ4 remain free.

Step 7 The values α11 = ν23 = −1 are chosen arbitrar-
ily and the weighting µ4 = 4 is supposed to render the
nonlinear IDA-PBC control law

uIDA =
1

c
(−

α11

α12
x1 − (a−

α12

ν13
b) sinx2+

+ (µ2zα + µ4z
3
α) ◦ zα(x))

more aggressive with respect to larger deviations from
the equilibrium, compared to its purely linear counter-
part ulin = Kx. In Fig. 2, sections of the closed con-
tour surfaces of the energy are displayed. Figure 3 shows
transients of the simulated nonlinear system (with plant
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parameters from Ho et al. (2009)) under both control
laws, as well as the normal force between ball and wheel,
which remains positive along the transients. For µ4 = 0
(not displayed) the plots under uIDA and ulin virtually
coincide. The choice µ4 = 4 does not alter local linear
dynamics, but provides a stronger reaction and faster
transients.

Note that the free parameter values in the example, as
well as the function Φ(·) are chosen arbitrarily in order
to illustrate the design procedure in a compact manner.
The optimization according to Step 7 is omitted and the
reader is referred to Kloiber and Kotyczka (2012) for
recent results on this topic.

7 Conclusions

The technique of local linear dynamics assignment for
the parametrization of IDA-PBC has been described.
By solving a linear system of equations for the design
parameters, predefined dynamic behavior of the closed-
loop linearization can be achieved. Furthermore, the def-
initeness check of the closed-loop energy Hessian matrix
can be omitted. Local linear dynamics assignment is one
way to reduce systematically the extensive freedom in
the choice of the IDA-PBC design parameters.

The method is applicable to set-point control (Kotyczka
et al., 2010a) and also to design passivity based track-
ing controllers (Kotyczka et al., 2010b), where the pe-
culiarities of time-varying systems have to be accounted
for. The idea can also be transferred to the stabilization
of underactuated mechanical systems (Kotyczka, 2011).
The results presented in this paper, together with an
optimization with respect to the domain of attraction
(Kloiber and Kotyczka, 2012), are first steps to enhance
the applicability of IDA-PBC and to use it e. g. for au-
tomated nonlinear controller design. This however, re-
mains a challenging task due to the large number of
available design quantities in IDA-PBC.

An interesting issue, which gives rise to future work in
the context of the presented approach, is dynamics as-
signment when passivity based methods are applied to
systems which have been partially feedback linearized –
this is especially relevant in the control of underactuated
mechanical systems. Furthermore, it could be worth-
while examining how the idea to use the linearization for
dynamics assignment can be exploited for certain classes
of infinite-dimensional (discretized) systems.
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Höffner, K. (2011). Geometric Aspects of Interconnec-
tion and Damping Assignment – Passivity-Based Con-
trol. PhD thesis, Queen’s University, Kingston.

Ho, M.-T., Tu, Y.-W., and Lin, H.-S. (2009). Control-
ling a ball and wheel system using full-state-feedback
linearization. IEEE Control Systems Magazine, pages
93–101.

Isidori, A. (1995). Nonlinear Control Systems. Springer-
Verlag, London.

Khalil, H. K. (1996). Nonlinear Systems. Prentice-Hall.
Kloiber, T. and Kotyczka, P. (2012). Estimating and
enlarging the domain of attraction in IDA-PBC. In
Proceedings of the IEEE Conference on Desision and
Control, Maui.

Kotyczka, P. (2011). Local linear dynamics assignment
in IDA-PBC for underactuated mechanical systems.

10



In Proceedings of the IEEE Conference on Decision
and Control / European Control Conference, Orlando,
pages 6534–6539.

Kotyczka, P., Koch, G., Pellegrini, E., and Lohmann,
B. (2010a). Transparent parametrization of nonlinear
IDA-PBC for a hydraulic actuator. In Proceedings of
the IFAC Symposium on Nonlinear Control Systems,
Bologna, pages 1122–1127.

Kotyczka, P. and Lohmann, B. (2009). Parametrization
of IDA-PBC by assignment of local linear dynamics.
In Proceedings of the European Control Conference,
Budapest, pages 4721–4726.

Kotyczka, P., Volf, A., and Lohmann, B. (2010b). Pas-
sivity based trajectory tracking control with prede-
fined local linear error dynamics. In Proceedings of
the American Control Conference, Baltimore, pages
3429–3434.
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