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Introduction

In atomic molecular and optical (AMO) physics remarkable progress has been made during
the last years. Cooling the motion of atoms down to few nanokelvin has become state
of the art and the regime of ultracold temperatures has attracted a considerable amount
of interest in this field of AMO physics [1-3]. The regime of ultracold temperatures
is governed by quantum mechanical effects, one of the most prominent ones being the
formation of a Bose-Einstein condensate (BEC) [4, 5]. Advances in trapping clouds or
even single atoms in optical or magnetic traps allows precise control and manipulation
of atomic samples [6, 7]. Atom chips enable an accurate positioning of atoms and their
transportation over long distances [6-10].

In solid state physics significant progress has been made in particular in nanophysics
[11, 12]. New microfabrication techniques have been developed and enable a preparation
of mesoscopic structures on the micro- and nanometre scale. This provides a large variety
of nanometre sized structures like nanogratings [13, 14] or structured surfaces [15, 16] as
well as various geometries such as nanowires, nanotubes and nanorods [12, 17] or even
more complex nanostructures [11].

A coupling of an atomic quantum system to a mesoscopic solid-state object constitutes
a so called hybrid quantum system. These hybrid systems combine the high controllability
on a quantum level in AMO physics with the variety of mesoscopic structures available
in solid state or nanophysics [18-21]. A coupling can be provided by optical photons of
a laser field as it is typically used in the context of quantum information theory where a
coherent and controllable system is achieved [22]. However, a direct coupling between the
atomic system and the solid-state object is provided by the quantum mechanical vacuum
fluctuations of the electromagnetic field. The presence of a reflecting and refracting solid-
state surface constrains the electromagnetic field and leads to a position dependent energy
shift of the atom. This gives rise to the so called Casimir-Polder dispersion force acting
between a (neutral) atom and a mesoscopic object [23, 24]. For ground state atoms, the
corresponding interaction potential is typically attractive and depends crucially on the
geometry of the surface, the dielectric properties of the mesoscopic object as well as on
the internal properties of the atomic component of the system. Therefore such hybrid
systems may provide insight into the underlying physics of dispersion forces, shape, size
and properties of the solid-state object as well as of the atom or the atomic ensemble.

One of the first experimental investigations of ultracold atoms interacting with a solid-
state surface via a Casimir-Polder potential goes back to Shimizu who measured the reflec-
tion of ultracold metastable neon atoms from a plane silicon surface [25]. The interaction
potential was first derived by Lennard-Jones in 1932 [26] who proposed a —1/d? behaviour,
where d is the distance of the atom to the surface. Later Casimir and Polder took into
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account retardation effects — originating from the finite time it takes a virtual photon,
mediating the interaction, to travel from the atom to the surface — and observed correc-
tions to the result of Lennard-Jones. At large distances the full potential differs from its
non-retarded counterpart and shows a —1/d* behaviour [23]. A classical reflection process
is forbidden as this interaction potential is purely attractive and the nature of the finite
reflection probability that was observed by Shimizu, is thus purely quantum mechanical.
In particular in the low-energy regime, this quantum reflection becomes dominant and
the reflection probability approaches unity in the limit of small incident velocities. This
first measurement of the extremely non-classical process of quantum reflection stimulated
further research in this field, both theoretically [27-29] and experimentally [15, 16, 30, 31].
However, the atom-plane system can only be tuned by the choice of the projectile atom
or by the surface material which offers only limited possibilities.

Further solid-state components of different geometry and size introduce further param-
eters into the system and can be implemented and used to design more complex hybrid
quantum systems. The interaction between the atomic and the solid-state constituent in
a hybrid system crucially depends on the shape of the solid-state surface in particular if
the size of the solid-state object becomes comparable to the typical length scales of the
coupling potential. For Casimir-Polder interactions, typical length scales of the potential
range from several nanometres up to few micrometres. Benefiting from advanced mi-
crofabrication techniques, solid-state structures of comparable size can be fabricated and
implemented in hybrid systems. Such complex hybrid systems may provide useful tools
in various fields of physics; exploring the behaviour and properties of atomic ensembles or
quantum gases like a BEC, investigating the wave nature of single atoms or large molecules
in diffraction experiments, analysing the shape, size and optical properties of solid-state
objects or studying the behaviour of the Casimir-Polder interaction between atoms and
solid-state surfaces at various regimes of atom-surface distances.

Nanotubes, nanowires and nanorods have proven effective for constructing various
kinds of hybrid systems [17, 32-34]. New techniques have been developed that allow a
precise fabrication of tubes with a diameter down to few nanometres only and a length up
to tens of micrometres [35-38]. These nanotubes can be grown on top of nanochips forming
diverse nanostructures and may also be integrated in complex hybrid systems. Combining
them into carpets of dense standing nanotubes forms a structured surface, which can be
used to study the influence of surface roughness on the quantum reflection probability of
atoms from surfaces [15, 30, 39]. An array of nanotubes can serve as a diffraction grating to
study diffraction and interference of large molecules or single atoms [13, 14]. Furthermore,
nanowire-based hybrid systems, where an atomic quantum gas couples to the mechanical
vibration of a nanowire have been proposed [40].

The basis for complex nanowire-based hybrid systems is the interaction of a single
atom with a cylindrical geometry and the corresponding scattering process [41, 42]. This
fundamental system lays the foundation for understanding systems of higher complex-
ity. Nevertheless, this seemingly simple problem turns out to be non-trivial due to the
two-dimensional character of the system [43-46] and due to the intricacy of the exact
interaction potential [42, 47, 48|.

The present thesis deals with the fundamental system of a single atom interacting with
a cylindrical geometry. An accurate description of this system needs to take into account
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both the exact Casimir-Polder interaction as well as the two-dimensional nature of the
system. This forms the basis for a detailed analysis of the scattering and absorption of
ultracold atoms by nanotubes. In a second step, the results obtained within this funda-
mental system can be applied to a complex hybrid system of a nanotube immersed in a
cold quantum gas, which is recently of particular interest both theoretically and experi-
mentally [49-51]. This dependable approach can give insight into the underlying processes
and promote a deeper understanding of this hybrid quantum system.

Outline of the thesis

In Chapter 1, the theoretical framework for the description of the scattering of atoms at
a cylindrical solid-state structure is presented. The scattering process is described within
two-dimensional scattering theory, which differs significantly from the well-studied three-
dimensional case, in particular in the low-energy regime of ultracold atoms. The dynamics
of the scattering process at large distances is governed by the long-range Casimir-Polder
potential. Close to the surface, the interaction becomes complicated and an accurate
and model-independent description of this highly reactive short-range regime is achieved
within the Langevin model using incoming boundary conditions.

In Chapter 2, we study the Casimir-Polder interaction for an atom facing a cylin-
drical geometry. This potential has in general a quite complicated form but simplifies
significantly in the non-retarded and in the highly retarded limit where retardation effects
are either negligible or dominant. In these limits, analytical expressions for the asymp-
totic behaviour of the interaction potential are given. An accurate description of the
full Casimir-Polder potential, which undergoes a smooth transition from the non-retarded
limit at small distances to the highly retarded limit at large atom-surface separations, is
given within a shape-function approach. This enables an accurate numerical evaluation
of the interaction potential for all distances. This method is successfully applied to the
Casimir-Polder potential of a hydrogen atom facing a cylindrical geometry.

The scattering of ultracold atoms at a cylindrical geometry is discussed in Chapter 3.
The scattering process in this low-energy regime is governed by the scattering length.
Numerical results of the scattering length are presented in the thin and thick-wire limit
where analytical expressions are derived. Particular attention is given to the fundamental
question of the influence of retardation effects on the scattering process, where a significant
difference between a metallic, perfectly conducting cylinder and an insulating tube is
observed. Furthermore, the scattering of atoms is compared to the diffraction of light
at a cylindrical geometry where the existence of an electromagnetic limit and of a non-
electromagnetic limit is shown.

In Chapter 4, we study a more complex hybrid system consisting of a single carbon
nanotube (CNT) immersed in an ultracold atomic quantum gas, such as a cloud of thermal
atoms or a Bose-Einstein condensate. We show that this system is properly described on
the basis of the fundamental scattering process discussed before. The predicted trap loss
in this system is in agreement with recent experimental results by Schneeweiss et al. [49].
This parameter-free approach offers a foundation for extensions to more complex hybrid
systems and might assist the design of CNT based nanodevices.






Chapter 1

Theoretical Framework

An atom scattered at a cylindrical geometry forms a system that is translationally in-
variant along the axis of the cylinder. The longitudinal free motion along the cylinder is
separated from the two-dimensional dynamics perpendicular to the cylinder. This leads to
an effectively two-dimensional system, which is governed by the interaction potential. In
this chapter, the general concept for the treatment of an atom colliding with a cylindrical
geometry, such as a nanotube, is developed. The collision process is described within the
framework of scattering theory [52-57], which is presented in the first part of this chapter
for the present case of an effectively two-dimensional system (Section 1.1). An accurate
method for the description of the highly-reactive interaction processes in the region close to
the surface of a mesoscopic structure is given within the Langevin model [58] (Section 1.2).

1.1 Scattering in two dimensions

The scattering of an atom at a mesoscopic structure, such as a plane wall or a cylindrical
or spherical geometry, is described within the framework of scattering theory, which is
a well-established field of theoretical physics [52-57]. Nevertheless the scattering process
in the present two-dimensional system differs significantly from the well-studied three
dimensional case, in particular in the low-energy regime of ultracold atoms [43-46].

1.1.1 Elastic scattering

The scattering process is in general a time-dependent problem. However, it is well de-
scribed by a time-independent Schrédinger equation in most cases [54]. For a projectile
particle of mass p and energy E = h?k?/(2u), interacting with the scattering target via
the potential V(r), the stationary Schrodinger equation for the two-dimensional system

reads
2

h
_EAQD +V(r)| v(r) = Ey(r), (1.1)
with the two-dimensional Laplacian Asp which is given in polar coordinates,

2 1d 14> & 1d L2
A — 1 td 4 1d_ Ly 1.2
2D = 42 + rdr + r2deg?  dr? + rdr r2R2’ (1.2)

13
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scattering

—> o
centre

incoming wave l outgoing wave

Figure 1.1: Schematic illustration of the two-dimensional scattering solution constituted
by an incoming plane wave and an outgoing circular wave.

with the distance r to the scattering centre and the polar angle ¢. The present work focuses
on the scattering of neutral atoms by nanostructures where the interaction potential V()
vanishes faster than 1/r2,

lim r?V(r) = 0. (1.3)

r—00

In this case, the scattering solution ¥ (7) in Eq. (1.1) has the following asymptotic form

elkr

Vr
The first term on the right-hand side of Eq. (1.4) represents a “plane” incoming wave
moving in positive z-direction with velocity v = hk/u. The second term describes an

outgoing circular wave, modulated by a scattering amplitude f(¢) depending on the polar
angle ¢ (see Fig. 1.1). The flux density

Y(r) "= e 4 f(9) (1.4)

h
. * _ * 1.5
J 21#(1& Vi) —pVypr) (1.5)
for the plane wave is kh/p e,, while the flux for the outgoing wave is

raoo IE 1

e f@Fe+0 (). (1.6)

Jout

Here e, (e,) denotes the unit vector pointing in radial direction (z-direction). The ratio of
the flux scattered into the angle d¢ to the incoming current density defines the differential
scattering cross section d\/d¢. The flux through the segment rd¢ is given by hk|f(¢)|?/u
and the differential cross section is
dx
-

Integrating over the polar angle gives the total elastic cross section

1f(o) . (1.7)

d)\ 27
N = / o= /0 F@)ds. (18)
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Notice that due to the reduced dimensionality of the system the cross section has the
dimension of a length. This is emphasised by the use of the letter “A” instead of “o”,
which typically denotes the cross section in three dimensions, which is a surface.

Partial-wave expansion

For an interaction potential V'(r) that is radially symmetric, V' (r) = V(r), the angular mo-
mentum is conserved. We expand the solution of the stationary Schrédinger equation (1.1)
in eigenfunctions of the angular part of the two-dimensional Laplacian (1.2),

vy =3 Um (1) gims (1.9)

with the eigenfunction € of the angular momentum operator L. to the eigenvalue hm
and the integer angular momentum quantum number m ranging from —oo to +o0o. The
radial wave function w,,(r) is a solution of the radial Schrédinger equation,

R d®>  hPm?-1/4
—+

n2k?
Coudr? 2y 2 B

V(r)] U (1) WUM(T) , (1.10)

which has — in each partial wave — the same form as the full stationary Schrodinger equation
for a one-dimensional system with an effective potential constituted by the centrifugal term
and the interaction potential,

h%m? —1/4
—— +

Vig(r) =
() 2u 12

V(r). (1.11)
The centrifugal term in Egs. (1.10) and (1.11) can be related to its familiar three-dimensional
counterpart by substituting |m| =+ 1/2. Notice that the centrifugal term in two dimen-
sions only depends on |m| and is, in contrast to the three- or higher dimensional form,
attractive for s waves, m = 0. This counter-intuitive attractive potential is just too weak
to support a dipole series of bound states, but it significantly affects the near-threshold
behaviour of the system (see Section 1.1.3).

The regular solution ne (r) and the irregular solution ul) (r) of the free radial Schrédinger
equation [V (r) = 0] in two dimensions are

uls) (r) =/ gkr T (k7)) (1.12)
ul) (r) =/ gk‘r Yim(kr) (1.13)

with cylindrical Bessel functions J,,(x) and Y, (x) [59]. Their asymptotic behaviour is

and

(©) () TR T
up’ (1) cos <kr |m| 5 4) (1.14)

and
T

() () "2 i mElT
up (1) sin (k:r |m| 5 4> : (1.15)
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The solution u,,(r) of the radial Schrodinger equation (1.10), including an interaction
potential V (r) vanishing faster than 1/r%, can — at large distances where the interaction
(c)

potential is negligible — be written as a superposition of the regular solution wuy, (1) and

irregular solution w3 (r),

r—00

U (1) " €088 )l (1) — sin (6, )ul® () "X cos <kr — ]m\g — Z + 5m> . (1.16)

m

which defines the energy-dependent scattering phase shift ,,. Furthermore, the scattering
solution in Eq. (1.4) can be expanded in partial waves and we obtain an expression for
the scattering amplitude

400 1

_ oime - —1). .
F@)= > fm€™ . fm T Sm =) (1.17)

The partial wave amplitudes f,, are determined by the S-matrix in partial wave m,
S,, = e?9n_ The asymptotic form of the radial solution (1.16) yields,

oo il . :
00 <ef1(kr7m7r/2+7r/4) o Sme+1(kr7m7r/2+7r/4)> ) (118)

U (1) Torh

The total elastic cross section can easily be evaluated

+oo
1 2
Ael = %mzzoo\l—sm\ , (1.19)

with the partial cross sections )\‘(;n) =1 —S,|*/k.

1.1.2 Inelastic and reactive collisions

In a more generalised case, the internal state of the projectile may also be affected by
the interaction between the projectile and the scattering target. An additional coupling
potential might change the internal state of the projectile during the scattering process;
more complex reactions of the projectile with the scattering target may lead to a loss of
the incoming projectile from the scattering process. The scattering without changing the
initial state of the atom defines the elastic channel, which has been discussed above. A
detailed description of the individual inelastic channels is possible [52] but not part of the
present work. However, the total flux that is inelastically scattered or otherwise lost from

the elastic channel is given by the net flux in the elastic channel, obtained from Egs. (1.9)

and (1.18),
+oo

jabs - = fjtotalds = z Z <1 - ’Sm’2) (120)

m=—00

In the absence of any absorption processes, the net flux in the elastic channel vanishes as
all incoming current is elastically scattered. Therefore the absolute value of the S-matrix
is

|Sm| =1 (1.21)
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and the scattering phase shift §,, is a real-valued number. In the case of additional inelastic
or reactive collisions the incoming net flux is non-vanishing and

1Sl < 1, (1.22)

leading to complex values of d,,.

Quantum reflection and absorption cross section

The complex value of 9, breaks up the intuition of a phase shift; however, we can interpret
the first term in the brackets on the right-hand side of Eq. (1.18) as an incoming wave and
the second term as the scattered, outgoing wave. This defines a reflection amplitude R,, of
each partial wave which is connected to the S-matrix via R,, = —5,,. The corresponding
reflection probability is P(m) |Ronl?.

In classical mechanics, the reflection is either certain (Pgr = 1) if there exists a classical
turning point reg, — given by E = Veg(rep) — or impossible (Pr = 0) in the absence of
any classical turning point. In contrast, the quantum mechanical reflection probability
Pr can attain any value between zero and unity. If reflection is classically forbidden, a
finite reflection probability is purely governed by quantum mechanical effects and there-
fore named quantum reflection, which is in particular a dominant effect in the scattering
of ultracold atoms, see Section 1.1.3.

In analogy to the total elastic cross section (1.8), the total absorption cross section is
given by the ratio of the absorbed flux (1.20) to the incoming flux which is hk/pu

Jr

N = T Z (1—|Sm|2>:% io (1-PF") (1.23)

with the partial absorption cross sections )\(m) (1 — |Sm|?)/k. In the case of purely
elastic scattering (|S,,| = 1 for all m) the absorptlon cross section consequently vanishes.

1.1.3 Near-threshold behaviour

In the limit £ — 0, the two linearly independent solutions (1.12) and (1.13) of the free
Schrodinger equation [V (r) = 0] are

3 +Hml
(&) kro0 VT kr 2 1.24
w0 e (5) 20

and

3—Im|
o) " = ()T o M R i () ] L 2

™

with Euler’s constant yg = 0.5772156649.... At threshold, k¥ = 0, the regular so-
lution (1.12) has to become a k-independent superposition of the linearly independent

threshold solutions r2 /™! and r2=Im| for m # 0 and V/r and /rln(r) for m = 0. This
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determines the threshold behaviour of the scattering properties. For the s wave (m = 0),
the threshold behaviour of the scattering phase shift dy for potentials falling off faster than

1/r? is
k—0 T ka -t
tandg ~ — |In| — ) +E . (1.26)
2 2
For |m| > 0 and potentials falling off faster than 1/72™+2 the threshold behaviour is

tan dpzo "~° Rl kam \ "™ (1.27)
" D(m)T(m o+ 1)\ 2 ' '

Notice that, in contrast to the scattering in three-dimensions, the scattering length in two
dimensions is always non-negative and for |m| > 0 the sign in Eq. (1.27) has to be chosen
explicitly. The threshold solutions of the radial Schrédinger equation (1.10) asymptotically
behave as

wk=0(r) "3 rln (2) , (1.28)

ubSy(r) S VR [(—m) " <—m>m] . (1.29)

The constants a and a,, are the scattering lengths in the respective partial wave and
unambiguously characterise the leading near-threshold behaviour of the scattering phase
shift §,, and the S-matrix S,,. This definition of the scattering length has been introduced
by Verhaar et al. [44]; alternative definitions [60] of the s-wave scattering length are rather
unpractical as they do not cover all contributions of O(k®) to tan dy.

For a general scattering process, including inelastic or reactive collisions, the absolute
value of 5}, is no longer unity and the near-threshold behaviour is expressed by a complex
scattering length a. For potentials falling off faster than 1/ r2ml+2 the S-matrix is

L~ T =l (1.30)
In <T) + e + 1 [arg(a) — ]
for the s wave and for partial waves with |m| > 0,
Spro =01+ 2l kay )" (1.31)
" E(lml + D)) \ 2 |

The reflection probability for the s wave P}(%mzo) = |Rg|? which is directly connected to
the S-matrix Sy thus yields,

(m=0) k>0 _ —27 arg(a)

: [ () + 2]+ [neto— ]

for potentials vanishing faster than 1/r2. The reflection probability for the s wave reaches
unity in the limit & — 0 even for attractive potentials where for m = 0 reflection is

(1.32)
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classically forbidden due to the absence of a classical turning point. Therefore quantum
reflection dominates the scattering in the near-threshold regime of ultracold atoms. For
partial waves with |m| > 0 the reflection probability still reaches unity at threshold; how-
ever, in these cases, reflection would also be allowed in a classical description and would
in particular be certain in the limit k& — 0 due to the centrifugal barrier.

The near-threshold behaviour of the cross sections is given by the leading contribution
of the s wave (m = 0). The total elastic cross section is thus given by,

2
k—0 = /k
el ~ - 2/ - (1.33)
{ln <%) + ’)'E} + {arg(a) - %]
and the absorption cross section is
—2 k
Aabs F° marg(a)/ (1.34)

[1n (%) +26] + [areto - 5]

Both the elastic and absorption cross sections diverge as 1/k, including additional loga-
rithmic factors. The next-to-leading contribution is of the order k' and comes from the
next-to-leading order of the s wave and from the leading order of the |m| = 1 contributions.
Notice that a real-valued scattering length, arg(a) = 0, leads to a vanishing absorption
cross section.

1.2 The Langevin model

The scattering of an atom by a nanostructure is a highly non-trivial problem. While the
interaction potential for large distances is given by the Casimir-Polder interaction (see
Chapter 2), the interaction at short distances to the surface of the nanostructure becomes
very complicated and remains in general unknown. The interaction of the projectile atom
with the individual atoms constituting the nanostructure leads to a variety of inelastic
channels and further reactive collision processes (adsorption, sticking, ...) [61-65]. There-
fore a reactive or inelastic collision is almost certain and an elastic collision practically
impossible in the region close to the surface. Such a scattering process has first been
described by Langevin in a classical model [58].

1.2.1 The classical Langevin model

The classical Langevin model [58] was originally developed to describe the scattering of an
ion by a neutral molecule. In a classical description of the scattering process there exists
a critical impact parameter b, such that trajectories with b > b, are deflected under the
influence of the interaction potential without reaching the scattering centre while trajec-
tories with b < b, are captured (see Fig. 1.2). At very short distances, both constituents
strongly interact and a reaction is practically certain. Then all classical trajectories that
enter this region lead to inelastic reactions and contribute to the absorption cross section.
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Figure 1.2: Schematic illustration of the classical Langevin model. All trajectories with
impact parameters b < b. are absorbed while all trajectories with b > b. are elastically
scattered. The critical impact parameter b. is given by the orbiting solution.

Therefore, the classical absorption cross section is'

Ackass — 9p,. . (1.35)

Although the Langevin model was originally developed for molecule-ion collisions, it is
applicable for all collisions that are highly reactive at very short distances between the
constituents, such as atoms colliding with nanostructures.

1.2.2 Incoming boundary conditions

In a quantum mechanical description, it is no longer possible to select distinct trajectories
that reach the scattering centre. Nevertheless, it is possible to reproduce the Langevin
model quantum mechanically.

In the short-range regime where the atom is close to the surface, inelastic reactions
are practically certain and impossible for distances beyond the short-range region. In the
spirit of the classical Langevin model, all flux entering the reactive short-range region is
absorbed by inelastic or reactive collisions. In the elastic channel this results in an ab-
sorbing boundary condition. This can be expressed via an inwards travelling wave, giving
rise to incoming boundary condition; alternative approaches using complex potentials are
purely artificial and model-dependent.

Equation (1.18) already showed that the asymptotic (r — oo) radial solution can
be separated into an inwards and outwards travelling plane wave. Typical atom-surface
potentials diverge in the region close to the surface and the solution of the Schrodinger
equation in this region cannot be expressed by such plane waves. However, an approximate
solution to the Schrodinger equation using the WKB approximation — originally developed
by Wentzel Kramers and Brillouin [67-69] — provides a wave function with properly defined
direction of motion. Therefore, we can express the absorbing boundary conditions by an
inwards travelling WKB wave function in the short-range region

WKB 1 i " / !
upy (1) o exp [——/ p(r )dr] , (1.36)
p(r) h )y

'For detailed discussion see e.g. [58, 66]
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Figure 1.3: Schematic illustration of a scattering process with incoming wave boundary
conditions. An attractive interaction potential V (r) (diverging faster than 1/r2) gives rise
to two regions where |Q| < 1, which is sketched for an arbitrary finite energy. In the
outer region the elastic scattering solution is given by a superposition of inwards (ujy,)
and outwards (uqyt) travelling plane waves [see (1.18)]. In the inner region an inwards

travelling WKB wave uiVXKB constitutes the absorbing boundary conditions at the surface.

with an in principal arbitrary reference point ry and the local classical momentum given

by,
plr) = \/ (£ 3 S -v)). (1.37)

Figure 1.3 shows a schematic illustration of the scattering process with incoming boundary
conditions realised via WKB waves (1.36).

The WKB wave function (1.36) is not necessarily an exact solution of the Schrédinger
equation (1.10). Explicit evaluation of the second derivative of the WKB wave func-
tion (1.36) gives

/ 2 "
d? uWKB(T) L pz(T) uWKB(T) _ [3 (p (T)) P (T)] uWKB(T) 0. (1.38)

dr2 ™ Rz 4 p2(r) 2p(r)

Comparing Eq. (1.38) to the radial Schrédinger equation (1.10) gives a reliable criterion
for the validity of the WKB approximation. Relation (1.38) resembles the Schrodinger
equation (1.10) whenever the third term on the left hand side is small compared to the
second term p(r)?/h%. The ratio of of both term defines the dimensionless quantality

function [70], )
3 / r /! r
oo (- £2)

Whenever the absolute value of the quantality function (1.39) becomes small,

Q(r)| <1, (1.40)

the exact solution of the Schrodinger equation is accurately approximated by the WKB
wave function. The accuracy of the WKB approximation is a local property; the quantality
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function allows an identification of spatial regions where the approximation is accurate,
see Eq. (1.40), or even exact for Q(r) = 0. For general inverse power potentials
e

Vi(r)= oy ra (1.41)

the quantality function Q(r) is

o(r) "=" % <1 - %) (é)a_Z (1.42)

and vanishes in particular in the limit » — 0 for potentials diverging faster than 1/r2 (see
Fig. 1.3), which is typical for atom-nanostructure potentials.

Typical length scales of the short-range region where reactive collisions happen are
much smaller than the characteristic length 3, of the long-range Casimir-Polder interac-
tion potential, which is typically on the order of several thousand Bohr radii (see Chap-
ter 2). Therefore the quantality function is sufficiently small in this region and an accu-
rate description of the incoming wave boundary conditions via an inwards travelling WKB
wave (1.36) is possible. Although the size of the reactive short-range region remains in
general unknown, the incoming boundary condition is applicable in the whole short-range
region, in particular at » = 0. This enables an unambiguous, model-independent descrip-
tion of the short-range interaction of ultracold atoms with nanostructures in the spirit of
the classical Langevin model.



Chapter 2

The Atom-Cylinder Potential

The vacuum fluctuations of the electromagnetic field are the origin of various effects like
the Lamb shift [71], spontaneous emission [72] but also of the dispersion forces acting
between atoms and surfaces of macroscopic or mesoscopic bodies [24]. Calculation and
measurements of this Casimir-Polder interaction has attracted considerable attention as
it plays an important role in various fields of physics [24, 25, 28, 73, 74].

The interaction of an atom with a cylindrical wire has been studied by various groups
during the last decades and is still subject of ongoing research [49, 51, 74]. The first
description of the corresponding interaction potential goes back to Zel’dovic [75] who
analysed the interaction between an atom and a thin metallic cylinder in 1935. By calcu-
lating the interaction potential at large distances, Zel’dovic obtained a —1/r* behaviour,
which differs from the correct result only by logarithmic corrections [48, 76-78]. Further
work by Schmeits and Lucas [79] extended the potential to the van der Waals interaction
— neglecting retardation effects — between an atom and a dielectric (insulating) cylinder
with finite radius. Their ansatz fails as the atom is described in an insufficient two-level
model, which has been proven wrong for a perfectly conducting plane [80].

A closed form of the full Casimir-Polder potential between an atom and a dielectric
cylinder of radius R was first given by Nabutovskii et al. in 1979 [48]. In their approach
the interaction energy of a rarefied gas, separated from the cylinder by a shell of vacuum,
is calculated via the force due to the fluctuating electromagnetic field, which was given
in Ref. [81]. The interaction potential of a single atom is obtained in the limit of zero
density of the gas. This result has been confirmed by Marvin and Toigo [76] in 1982 whose
ansatz was based on a normal-mode expansion and a linear-response formalism, proposed
by Langbein [82]. Further results for the van der Waals potential of a polarisable molecule
in front of a dielectric cylinder, neglecting retardation effects were obtained by Boustimi
et al. [83].

The interaction potential of a polarisable atom in front of a perfectly conducting cylin-
der, however, differs significantly from the potential of an atom facing a dielectric wire. It
has already been noted by Barash and Kyasov that the limit of perfect conductivity does
not commute either with the limit of large distances of the atom to the surface of the cylin-
der or with the limit of a small radius [84]. An accurate calculation of the Casimir-Polder
potential of an atom facing a perfectly conducting cylinder has recently been presented
by Eberlein and Zietal using a Hamiltonian approach and perfectly reflecting boundary

23



24 2. The Atom-Cylinder Potential

/
«—\R;:_):?j{

Figure 2.1: Schematic illustration of an atom at distance r from the axis of a cylinder
with radius R in cylindrical coordinates r, ¢, z.

conditions for the fluctuating electromagnetic field [77]. Their result has been confirmed
by Bereza et al. using a Green’s function method to determine the interaction energy [78].

Nevertheless, the potential derived by Nabutovskii et al. [48] (and equivalently the
result of Marvin and Toigo [76]) is valid also in the perfect-conductor limit and both re-
sults [77, 78] can be reproduced by treating the limit of perfect conductivity properly (see
Section 2.1). Therefore, the Casimir-Polder potential presented by Nabutovskii et al. [48]
and later by Marvin and Toigo [76] is the most general one, covering the interaction of
an atom with a cylindrical geometry with arbitrary dielectric properties, including the
perfectly conducting case of a metallic cylinder.

In this chapter the Casimir-Polder interaction potential for an atom facing a cylin-
drical geometry is presented. We discuss the behaviour of the interaction potential in
its asymptotic limits (Sections 2.1-2.3) and show, how it can accurately be applied to a
realistic system (Section 2.4).

Consider an atom located at a distance r from the axis of a cylinder of radius R (see
Fig. 2.1). According to the geometry of the system the potential is naturally given in
cylindrical coordinates (r, ¢, z) and depends, due to the rotational symmetry around the
cylinder axis (z-axis) and due to the translational invariance along the cylinder axis, on
the radial coordinate r only. The Casimir-Polder potential V (), given in Refs. [48, 76]2,
of an atom interacting with a dielectric cylinder of radius R and dielectric constant € in

“Note that there is a misprint in the paper of Nabutovskii et al.. The last term (underlined) in Eq. (18)
of Ref. [48] should read

U= -3 o} /Ooo dxMZ';(z){ o A pgt e (e~ 1) B (2) [P (1) — Wm(en)] - (2.1)

This can be verified by the equivalent result calculated by Marvin and Toigo [76].
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atomic units is

+oo
Vir)=— 21d3/ d¢ a(i§) Z / dx%[( (Qzl){q2 (5?+55)

TL
+ (5626? - QQC%) G + 1+ @%(gzl)
077
+4n?o™ gia? 23 (e — 1) n(021) [Pn(21) — Un(21)] } » (2:2)

where d = r — R is the distance of the atom to the surface of the cylinder. The following
abbreviations are used,

22 2 2

= SR Wy YIHP o

R o—1 o—1

d q T

q Cg’ q1 9_1, I 9_1, ( 3)
(58 = [nxlq%(e — 1)]2 + [Q12122]2 (\Iflg — ‘1321) (6\1112 — (1321) s (2.3C)
87 = [nz1gi(e = V)* + [q12122)* (W12 — Do) (W2 — Ugy) (2.3d)
8o = [n1gi(e = V)” + [q12122)* (W12 — Ua1) (W12 — o) (2.3¢)
v (z)—ilnl (2) ¢ (z)—ian (2) (2.3f)

n - dZ n ) n - dZ n )
ik = 2V (2k) i = 2P (), (2.3g)
with the modified Bessel functions I,,(z) and K,,(z) [59]. The dynamic polarisability a(i&)

of the atom can be expressed in terms of atomic dipole transitions [85]. The diagonal
components of an atomic or molecular polarisability are given by

Eji|(ildy|j
(i) =2) ]{2+£2 (2.4)
J#i

where \2> is the internal state of the atom with energy Fj;, d, are the components of the
dipole operator and E;; = E; — E; is the transition energy. In the present case we re-
fer to a spherical atomic state where the three components are equal, ;. = gy = a2 = .

2.1 The limit of a perfect conductor

It was already shown by Barash and Kyasov [84] that the Casimir-Polder potential of
an atom facing an insulating, dielectric cylinder differs significantly from the interaction
potential of a metallic, perfectly conducting wire. The latter case, where ¢ — oo, requires
a separate treatment because the perfect-conductor limit does not commute with the limit
of large atom-surface separations.
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Nevertheless, the full potential in [48] is valid for a perfectly conducting cylinder, as
long as the limit € — oo is treated properly. Taking the perfect-conductor limit first, we
avoid these problems (see Ref. [84]) and we find

\IJ(21
D(z1)

~—

89/69 =31, 55/00 =X

(2.5)

The last term in Eq. (2.2) is of O(e~1/?) and vanishes for € — oo; the full potential (2.2)
reduces to

+o0 2 2
Ve (r) = — %dg/ déa(ie) Y / dx{ <q2+ n% +x2> %K}%(gzl)

n=—oo

2 / /
o n° In(21) o 2 In(21) o 2 In(21) ;.10
— ¢ = K (0z1) —¢q K, “(0z1)+x K, 7 (0z1) . (2.6
Expressing the dynamic polarisability via Eq. (2.4) and changing the integration variables
to polar coordinates z and ¢ with x = zsin ¢ and ¢ = z cos ¢, where the angular integrals
are elementary

/2 B T 1
/ d¢ 2 2 =5 ’ (27)
0 B? + cos* ¢ 2+vB2+1

/2 B cos? T B2
[Faofe _x( ) .
0 B? + cos? ¢ 2 \VB2+1

/2 Bsin? ¢ T

— * = —_(v/B?+1-B 2.

/0 d¢B2—|—COSQ¢ 2 < + > ’ (29)

Eq. (2.6) yields

Ve%oo — Z Z / dZZ‘<Z|d|] ‘ { 22 In(Zl) K2(Q«31)
37Td3 E~,~d/c)2—i-z2 Ky(z1) "

;éz n=-—00

o%f [V 7 Kn( )
n? [ (Bdfc)’ I (1)
+92'Z% | (Ejin/C)Z + 22 ~ (Bjud/e )] WKEL(QZI)
[ (Bud/o)® RS
v e a C)] RyGer) 1 (020
+2z - (Ejid/c)? + 2% — (Ej@'d/C):| II{T;((Z)) K;f(gzl)} , (2.10)

with 21 = z/(0 — 1) according to (2.3). This result is equivalent to the one obtained by
Eberlein and Zietal in Eq. (17) of Ref. [77] and the potential calculated by Bezerra et
al., see Eq. (23) of Ref. [78]. The potential in Ref. [77] is obtained using a Hamiltonian
approach and calculating the interaction between a single atom and the fluctuating elec-
tromagnetic field by second-order perturbation theory. The perfect conductivity is taken
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into account by perfectly reflecting boundary conditions for the electromagnetic field at
the surface of the cylinder. The result in Ref. [78] is obtained via a Green’s function
method leading to the same result. Notice that in [77] the international system of units is
used, while this work refers to atomic units.

There are basically two timescales in the system, the time T}; = h/Ej; associated
with the atomic transition |i) — |j) and the mediation time T, = 2d/c it takes a virtual
photon, mediating the interaction, to travel from the atom to the surface and back. If
T, < Tj; for all contributing transitions, the interaction is entirely electrostatic. While,
for T', ~ T}j; or larger, retardation begins to play a role and the evolution of the internal
state of the atom during the exchange of a virtual photon is not negligible. According to
these timescales, we can identify two limits of the interaction; namely the non-retarded
(nr) or van der Waals limit, where 7', < T}j; and the highly retarded (hr) limit (sometimes
called the retarded or Casimir-Polder limit), where T, > T};.

2.2 The non-retarded or van der Waals limit

In the non-retarded or van der Waals limit the interaction is entirely electrostatic. The
electrostatic interaction is instantaneous and retardation effects due to the finite me-
diation time 7%, are negligible. Therefore, the non-retarded limit in the atom-cylinder
potential (2.2) is obtained in the limit 7, = 2d/c — 0, which enters the Casimir-Polder
potential (2.2) via Eq. (2.3b), where ¢ — 0. In this limit Eq. (2.3) reduces to

Z1 qu xI1, Z9 qu X (2.11&)
W1 — ey q—0 Wo1 — Wpo

g9 /g0 90 12 g0 920 2L T T2 2.11b

1/% Doy — €Wy’ /% Doy — Wip ( )

\Iflg qu \Ifgl s @12 qu (1321 . (211C)

The last term in (2.2) is of O(¢?) and vanishes in the limit ¢ — 0. In the non-retarded
limit the atom-cylinder potential in Eq. (2.2) thus is (see also Eq. (22) of Ref. [48])

g— e—1 © ) = 0 K, (z K] (x1)]~
vw>~”fﬂﬁ)é %Mg>ijé ¢m9Fhé3_.%&3]

n=—0oo

[K;f(gxl) + <QZ—; + 1> K,%(Q:cl)} . (2.12)

This result is equivalent to the potential calculated by Bustimi et al. [83] (see Eq. (13)
of Ref. [83] with oy = ayy = a2, = a(if) and gy = 0) who calculated the potential of
a polarisable molecule in front of a dielectric cylinder in the van der Waals limit using a
linear response ansatz.

The potential further simplifies as the integral over the dynamic polarisability «(i€)
reduces to

%/w%M@:§@37 (2.13)

0
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~2
Table 2.1: Expectation value of the squared dipole-operator (d) and characteristic
length Sy, of the atom-wire interaction in the non-retarded limit as defined in Eq. (2.16).

Atom He He’ He(2'9)¢ He(235)? Li®* Na/9 K9 Rb9 Cs9
(d%) [au] 3 2.256 32.04 22.8 1821 22.68 34.32 40.32 49.68
Bar/10% [aw] 3.67 11.0 156 111 154 633 1630 4190 8018

From Refs. 2[85]; P[86]; ©[87]; 4[88]; °[89]; f[90]; &[91]

~92 ~2

where <d > is the expectation value of the squared dipole-operator d . The potential
Var(r) of an atom interacting with a cylinder in the non-retarded or van der Waals limit
is thus

B2 B (e — 1) &% [ Kn(x1) Kh(x)]™
Vurl)) = =508 = Z/o doa” [efn@f)‘fa(xf)} :

n=—oo

2
/ n
|:Kn2(gx1) + (—2 5 + 1) K,%(Q:Cl)] . (2.14)
o~y
The non-retarded potential of an atom interacting with a metallic cylinder is obtained
either from Eq. (2.14) by taking the perfect-conductor limit, ¢ — oo, or from Eq. (2.10)
by taking the limit d/c — 0, which in both cases gives (see also Ref. [92])

2

V7o) = —E—Qﬁnr f /OodxeM K %(oz1) + SR K2 (o)
" 2umd® = Jo Kp(z1) [ " o*a? ! ’

(2.15)

with the characteristic length 5y, related to the expectation value of the squared dipole-

operator of the atom
~2

_ ) (2.16)

/Bnr—ﬁ 3

)
The characteristic length 5, is typically quite large, since <d > is usually of the order of a
few atomic units and the mass u of the atom, in atomic units, is quite large. Table 2.1 lists,

as examples, explicit values of the expectation value of the squared dipole-operator <&2>
and the characteristic length (5, for hydrogen and several alkali atoms in their respective
ground state and helium in its ground or metastable 25 state. Values of 3, range from a
few thousand to several million Bohr radii.

An explicit evaluation of the atom-cylinder potential (2.14) in the non-retarded limit is
difficult and requires a sophisticated treatment in order to reproduce the correct behaviour
of the non-retarded potential for all atom-surface separations. An accurate approximation
method that enables an explicit evaluation of the potential by truncating the infinite sum
in Eq. (2.14) to a finite range from —nmpax t0 +Nmax and including the residual terms
approximately, is presented in Appendix A.1.
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The interaction potential (2.14) of an atom facing a dielectric or metallic cylinder
in the non-retarded limit has in general a quite complicated form. However, it can be
substantially simplified in the asymptotic limits of small and large distances of the atom
to the surface of the cylinder.

2.2.1 Asymptotic behaviour at small atom-surface separations

Close to the surface of the cylinder, d/R — 0, each term of the sum in Eq. (2.14) is
of O(d/R) and contributes equally. By including all terms properly via an accurate ap-
proximation, as presented in Appendix A.1, we obtain the well-known result [26] for the
non-retarded van der Waals potential of an atom in front of a plane conducting surface

€—00 d/R—0 03(00) . 1 -2
Vie >0(r) T~ ==, with Gy(00) = 5{d"), (2.17)
and for a finite value of the dielectric constant,
d/R—0  Cs(e) . e—1
Vie(r) "~ — FEE with Cs(e) = e 103(00) . (2.18)

Notice that this behaviour can only be obtained by treating the potential properly, as it
is shown in Appendix A.1. This is particularly important in the context of the Langevin
model where a description via incoming boundary conditions requires a potential vanishing
faster than 1/d? for d — 0 (see Section 1.2); this is only guaranteed within an accurate
treatment and violated by simple truncation methods (see Appendix A.1).

2.2.2 Asymptotic behaviour at large atom-surface separations

For large atom-surface separations, d/R — oo, the leading contribution to the non-
retarded potential (2.14) for a dielectric cylinder differs substantially from the long-range
asymptote (2.10) of the non-retarded potential of a metallic wire. In the latter case, the
leading contribution to the potential (2.10) is given solely by the n = 0 term which is
proportional to 1/(r3In ) for large values of p,

d/Rso0 B2 T Pur

€— 00 - - rFar
Var = (r = o0) 2p 8 73 1n(r/R) -

(2.19)
This leading behaviour is, however, not very helpful, as the next-to-leading terms dif-
fer only through additional factors of 1/In o and such logarithmic series converge very
slowly [42, 92]. The deviations of the exact potential from its long-range asymptote are
> 1% even for distances d on the order of several millions of cylinder-radii R.

Figure 2.2 shows the asymptotic behaviour of the non-retarded atom-cylinder poten-
tial (2.15) at small and large atom-surface separations for a perfectly conducting cylinder.
For small distances of the atom to the surface of the cylinder, d < R, the non-retarded po-
tential (green solid line) is well described by the asymptotic expression given in Eq. (2.17),
shown by the black dashed line. The asymptotic behaviour (2.19) at large distances (black
dot-dashed line) remains a poor description in the whole range up to d/R = 50.

The long-range behaviour of the non-retarded potential of a dielectric cylinder (2.14)
is given both by the n = 0 and |n| = 1 terms in the sum, which are of O(1/0?) in this
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Figure 2.2: Asymptotic behaviour of the non-retarded atom-cylinder potential at small
and large atom-surface separations for an atom facing a perfectly conducting cylinder.
The green solid line shows the non-retarded potential (2.15); the black dashed line shows
the behaviour of the potential close to the surface, given in Eq. (2.17) and the black
dot-dashed line shows the behaviour of the non-retarded potential at large atom-surface
separations, given in Eq. (2.19). The deviations of the exact result from the long-range
behaviour are > 1% in the whole range of values d/R. Notice that Vi, (r)R3/Bu: depends
on the dimensionless ratio d/R only.

case. By retaining only these terms in Eq. (2.14), the leading behaviour a large distances
yields
d/R—00 h_29_7r (€ —1)(e +7) Bur R?

nrd
Var(d) 211128 e+1 7o

(2.20)

This asymptotic inverse power potential was already obtained in Refs. [48, 84] and pro-
vides, in contrast to the case of perfect conductivity, a useful approximation of the po-
tential, which is essentially indistinguishable from its long-range asymptote already for
distances d/R 2 10, see Fig. 2.3. However, Eq. (2.20) fails to reproduce the correct
asymptotic behaviour in the limit of perfect conductivity, e — oo, as the limit of large
atom-surface separations d/R — oo, and the limit of perfect conductivity, ¢ — oo, do not
commute. For that reason Eq. (2.20) is only applicable for a finite value of the dielectric
constant e.

Figure 2.3 shows the asymptotic behaviour of the non-retarded atom-cylinder poten-
tial (2.14) at small and large atom-surface separations for a dielectric cylinder. The di-
electric constant is chosen to be € = 5; qualitatively similar results are obtained for other
dielectric constants. For small distances of the atom to the surface of the cylinder, d < R,
the non-retarded potential (green solid line) is well described by the asymptotic expression
given in Eq. (2.18), shown by the black dashed line. Far away from the cylinder d > R
the potential reaches its long-range asymptote (2.20), shown by the black dot-dashed line.
In the transition region where d ~ R, the non-retarded potential shows a smooth but
non-trivial transition between both asymptotic limits.
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Figure 2.3: Asymptotic behaviour of the non-retarded atom-cylinder potential at small
and large atom-surface separations for an atom facing a cylinder with dielectric constant
¢ = 5. The green solid line shows the non-retarded potential (2.14); the black dashed line
shows the behaviour of the potential close to the surface, given in Eq. (2.18), and the black
dot-dashed line shows the behaviour of the non-retarded potential at large atom-surface
separations, given in Eq. (2.20). Notice that Vi, (r)R3/By depends on the dimensionless
ratio d/R only.

2.3 The highly retarded limit

In the highly retarded limit — sometimes also called the retarded or the Casimir-Polder
limit — the finite mediation time T, it takes a virtual photon to travel to the surface and
back, is non-negligible and thus the interaction is affected or even dominated by retardation
effects. Compared to the mediation time T, the characteristic times Tj; = h/Ej; of all
contributing atomic transitions are small and thus the highly retarded limit is obtained in
the limit 7;; — 0, or equivalently F;; — oco. Therefore, the dynamic polarisability, given
in Eq. (2.4) reduces to

(2 d 7 o0 d
a(i€) =23 Esil(d ’+’§‘72 B Z‘ (i "7 = aq. (2.21)
J#i VED

where ag is the static dipole-polarisability of the atom. By changing the integration
variable to ¢ = d/c&, the atom-cylinder potential in the highly retarded limit is,

2
Vi) = -3 2o Z/ o[ e )K2<gzl>{q2(6?+6é)

n2
1

+4n?p 1q‘11x2z%(6 — 1P, (021) [Prn(z1) — Vp(21)] } . (2.22)
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Table 2.2: Static dipole polarisability agq and characteristic length fy, of the atom-wire
interaction in the highly retarded limit as defined in Eq. (2.24).

Atom H® He’® He(2'S)? He(235)? Li%® Naf9 K9 Rb9 Cs9
aqg [au] 45  1.38 800 316 164 163 290 318 401
Be/103 [aw] 1.06 1.17 283 17.8 169 306 532 824 115

From Refs. 2[85]; P[86]; ©[87]; 4[88]; ©[89]; f[90]; &[91]

The highly retarded limit of the atom-cylinder potential in the perfect-conductor limit is
obtained from Eq. (2.10) in the limit 7%, = 2d/c — oo or equivalently from Eq. (2.22) by
taking the limit ¢ — oo, which allows further simplifications. Both procedures lead to

R BE X[ In(z1) [ n?
Veroo — 7 Fhr / d 3 n K 2 ) K2
hr (7") 2M 2 dd nzzoo 0 zz Kn(zl) n (921) + 922% + n(@Zl)

' z ’ 7’L2
072y

K, (21)

n

with the characteristic length of the highly retarded atom-cylinder potential,

2,u aq
r =1\ , 2.24
Brr = 4/ 72 2o, (2.24)

which is related to the static dipole-polarisability ayq and to the fine structure constant
ags = €2 /(he). Table 2.2 lists explicit values of the static dipole-polarisability ag and of
the characteristic length Sy, for hydrogen, several alkali atoms in their respective ground
state and helium in its ground or metastable 25 state. Typical values of [y, are large (in
atomic units) and range from few to several thousand Bohr radii, but they are usually
smaller than the corresponding length in the non-retarded limit 3, (see Tab. 2.1).

In contrast to the non-retarded limit, discussed in Section 2.2, the potential in the
highly retarded limit (2.22) allows no further simplifications. However, the remaining two
integrals can be evaluated numerically, as the the dynamic polarisability «(i§) — depending
on all atomic dipole transitions, which are in general unknown, and preclude an explicit
evaluation of Eq. (2.2) — has reduced to aq, which is a well-known property of the atom.
An explicit evaluation of the highly retarded potential in Eq. (2.22) remains difficult and
requires an accurate treatment similar to that of the non-retarded case. Appendix A.2
shows an accurate and practicable approximation based on a truncation of the infinite
sum in Eq. (2.22) and an approximate treatment of the residual terms.

The highly retarded limit of the atom-cylinder potential (2.22), which is in general
very complicated, simplifies in the asymptotic limits of large and small separations of the
atom to the surface of the cylinder.
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2.3.1 Asymptotic behaviour at small atom-surface separations

The behaviour of the potential close to the surface is obtained by treating Eq. (2.22) ac-
curately as shown in Appendix A.2, which includes contributions of all terms in Eq. (2.22)
— at least approximately. Close to the surface of the cylinder, d/R — 0, we obtain the
well-known interaction of an atom facing a plane conducting surface in the highly retarded
limit as first described by Casimir and Polder in 1948 [23],

d/R—0 C4(OO) . 3 aq
. ~ . with — . 2.2
Vi (1) i wi Cy(o0) = 87 o (2.25)
For a finite value of the dielectric constant we find [88, 89],
-1
Vi (r) 770 _szf), with  Cy(e) = Z+1 B(e) Cy(00). (2.26)
The function ®(e) is a smooth and well-defined function of the dielectric constant e,
_le+1
(e H( 2.2
—5 [ Hwe (227)
where s—p s—ep
- —€
H(p,e) = 1 - 2p? ith s = (e—1+p*)"? 2.2
pd =2+ L), with s= (- 1492, (229

and which is 23/30 for € = 1 and unity for € — oo

2.3.2 Asymptotic behaviour at large atom-surface separations

For distances much larger than the radius of the cylinder, d/R — oo, the highly retarded
atom-cylinder potential shows a significantly different behaviour for a cylinder with finite
dielectric constant and for a perfectly conducting wire. The long-range behaviour of the
atom-cylinder potential (2.23) for a perfectly conducting cylinder is given by the n = 0
term only, which is asymptotically proportional to 1/(r*1n ) in the limit of large o,

d/r—o0  h? 2 BL

T 2u3mrin(r/R)
Similar to the non-retarded case, this leading behaviour is not very helpful and differs
from next-to-leading terms only by additional logarithmic factors 1/1n p. This logarithmic
series converges slowly [42, 92] and deviations of Eq. (2.23) from its asymptotic behaviour
are > 1% even for large distances up to d/R < 1000.

Figure 2.2 shows the highly retarded potential (2.23) of an atom facing a perfectly
conducting cylinder (blue solid line) as well as the asymptotic behaviour at small (black
dashed line) and large (black dot-dashed line) atom-surface separations. While the poten-
tial is well-described by its asymptotic behaviour at short distances, the convergence to
the long-range asymptote remains poor.

Vi 20(r) (2.29)

In contrast to the perfectly conducting cylinder, the leading contribution of the poten-
tial for an insulating wire with a finite dielectric constant is given both by the terms with
n=0and |n| =1 in Eq. (2.22). Retaining these terms only, gives

d/R—oo  h2 2 (e—1)(Te + 39) ﬁhrRQ
2u 157 e+1 r6

Vi (d) (2.30)
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Figure 2.4: Asymptotic behaviour of the highly retarded atom-cylinder potential at small
and large atom-surface separations for an atom facing a perfectly conducting cylinder. The
blue solid line shows the highly retarded potential (2.23); the black dashed line shows the
behaviour of the potential close to the surface, given in Eq. (2.25) and the black dot-
dashed line shows the behaviour of the highly retarded potential at large atom-surface
separations, given in Eq. (2.29). Notice that Vi, (r)R*/32, depends on the dimensionless
ratio d/R only.

This long-range inverse-power behaviour, which was also obtained in Refs. [48, 84], ac-
curately approximates the highly retarded potential, which deviates less than 1% from
its long-range asymptote already for d/R 2 10. Similar to the non-retarded limit of the
Casimir-Polder potential, the long-range behaviour (2.30) for a dielectric cylinder fails, for
€ — 00, to reproduce the potential (2.29) obtained for a perfectly conducting wire, and is
thus only applicable to a cylinder with finite dielectric constant e.

Figure 2.5 shows the asymptotic behaviour of the highly retarded atom-cylinder po-
tential (2.22) at small and large atom-surface separations for a cylinder with dielectric
constant € = 5; qualitatively similar results are obtained for different values of e. For
small distances of the atom to the surface of the cylinder, d <« R, the highly retarded
potential (blue solid line) is well described by the asymptotic expression (black dashed
line) given in Eq. (2.26). The highly retarded potential reaches its long-range asymptote
(black dot-dashed line), given in Eq. (2.30) for d > R and shows a smooth but non-trivial
transition in between both asymptotic limits in the region where d ~ R.

2.4 Realistic atom-cylinder potential

The non-retarded and the highly retarded limit of the Casimir-Polder potential, which
have been discussed in the previous sections, are related to the mediation time T, it
takes a virtual photon to travel to the surface and back, and to the times T}; of the con-
tributing atomic transitions. In the non-retarded limit the mediation time 7', is negligible
(T, < Tj;) and T, > T}; constitutes the highly retarded limit. The mediation time 7%, of
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Figure 2.5: Asymptotic behaviour of the highly retarded atom-cylinder potential at small
and large atom-surface separations for an atom facing a cylinder with dielectric constant
¢ = 5. The blue solid line shows the highly retarded potential (2.22); the black dashed
line shows the behaviour of the potential close to the surface, given in Eq. (2.26), and
the black dot-dashed line shows the behaviour of the highly retarded potential at large
atom-surface separations, given in Eq. (2.30). Notice that Vi, (r)R*/B8Z, depends on the
dimensionless ratio d/R only.

the interaction is connected to the distance of the atom to the surface of the cylinder via
T, = 2d/c. Thus, in a realistic scenario the Casimir-Polder interaction potential reaches
its non-retarded or van der Waals limit at small distances, d — 0, and its highly retarded
limit at large distances, d — oo. In the transition zone in between the non-retarded and
highly retarded regime, the Casimir-Polder potential undergoes a smooth but non-trivial
transition.

In the limit of large radii, R > d, where the potential is given by Eqs. (2.18) and
(2.26) in the non-retarded and in the highly retarded limit, the full potential contains an
intrinsic length

_ Cu(e) _ 38, .
- GG = e, (2.31)

which separates the non-retarded region of small distances, d < L, from the highly re-
tarded region of large distances, d > L. This length scale was first introduced by Friedrich
et al. for the interaction of atoms with a flat surface [27]. A characteristic length for this
transition zone in the case of a thin (R < d) metallic cylinder can be obtained similarly
from Egs. (2.19) and (2.29),

L(e)

P M6 16, (2.32)

eroo 37'1'2 Bnr B 9

For a cylinder with a finite dielectric constant, the non-retarded and highly retarded limit
of the potentials behave as Cs/r® and Cg/r%, in the limit of small radii, R < d. A
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Table 2.3: Characteristic lengths L and L._,  of the transition zone for a perfectly
conducting tube and a cylinder with a dielectric constant ¢ = 5, given in Egs. (2.31) -

(2.33) as well as the characteristic ratio p = Bur/fhr-

Atom H He  He(2lS) He(23S) Li Na K Rb  Cs
L(c0) [a.u.] 294 120 4903 2717 1768 1411 1659 1548 1584
L. [au] 167 68 2775 1538 1000 798 939 876 897

Le=5)[au] 229 93 3806 2109 1372 1095 1287 1202 1230
L'(e=5) [au] 365 149 6084 3372 2193 1750 2058 1921 1966
p 345 934 551 6.24 911 207 306 508 69.5

characteristic length for the transition zone is given by

Cs 256 (7e+39) B,
Cs 13572 (e+7) Bur

L'(e) = (2.33)

Explicit values for the characteristic lengths L(e), L'(e) and L._, _ are given in Tab. 2.3 for
hydrogen, helium and several alkali atoms interacting with a perfectly conducting cylinder

as well as for an insulating tube with ¢ = 5.

2.4.1 Shape function approach

The Casimir-Polder potential in the transition zone can be described by a generalised
from of the ansatz that has already been used for the potential of an atom in front of a
plane surface [27] or a sphere [93]. In this description, the potential in the transition zone
between both asymptotic regimes of the potential is expressed using a shape function v(z),

Var (1)
Var (1) / Ve ()]

The non-retarded potential V. (r) diverges faster than Vj,(r) in the limit d — 0 [see
Egs. (2.18) and (2.26)] while the highly retarded potential V;,(r) vanishes faster than
Var(r) in the limit of large distances, d — oo [see Egs. (2.20) and (2.30)]. When the
magnitudes of V4, and V4, are very different, the Casimir-Polder potential V'(r) is close to
the weaker of the two, which is V;, for d — 0 and Vj,; for d — oco. In order to ensure the
correct asymptotic behaviour of the Casimir-Polder potential, v(z) fulfills the following
asymptotic properties:

Vi) =- (2.34)

1, —0,
v(x) = { v s o, (2.35)

This description of the Casimir-Polder potential using a shape-function approach to de-
scribe the transition between the non-retarded and highly retarded regime is is principle
no restriction but requires the knowledge of the shape function v(x). However, an accurate
numerical evaluation of the full Casimir-Polder potential in Eq. (2.2) is difficult in this
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Figure 2.6: Casimir-Polder potential for a hydrogen atom interacting with a cylinder with
a radius of 50nm (&~ 1000 a.u.). The dot-dashed curve shows the potential approximated
using the shape function vy from Eq. (2.36) and the dashed line shows the approximation
using vy from Eq. (2.37). The black dots show results of an explicit calculation of the
atom-cylinder potential, with errorbars resulting from the uncertainty of the numerical
calculation.

transition regime and the exact shape function can only be determined for few particular
cases (see Section 2.4.2). For explicit applications of the atom-wire potential for realistic
systems in general, we use two shape functions v(x),

vi(z) =1+, (2.36)
/2

arctan(m/(2x)) (2:37)

va(x) =

The shape function v; was first introduced by Shimizu [25] to analyse experimentally ob-
tained quantum reflection probabilities of metastable neon atoms reflected from a silicon
surface. The shape function vy was introduced by O’Carroll [94] to describe the interac-
tion potential between two atoms or molecules including retardation effects. Both shape
functions have already successfully been applied to similar situations [27, 41, 93].

2.4.2 Casimir-Polder potential between a hydrogen atom and a cylin-
drical geometry

A calculation of the dynamic polarisability «(i§) via Eq. (2.4) is possible — at least nu-
merically — for a hydrogen atom where all atomic transitions are well-known. This is the
only situation where all atomic transitions are known exactly and an evaluation of the
full Casimir-Polder potential (2.2) is possible beyond the non-retarded or highly retarded
limit, in particular in the transition regime.

In order to analyse the quality of the approximation of the transition region given
in Eq. (2.34) using the approximate shape functions (2.36) and (2.37), we calculate the
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Table 2.4: Numerical results for the Casimir-Polder potential V(r) for a hydrogen atom
in its ground state in front of a perfectly conducting cylinder with a radius of R = 50 nm
(~ 1000 a.u.). The uncertainty results from the extrapolation method in Eq. (2.39).

d [a.u.] V(r)/10~12 [Ey] | d Jau] V(r)/1071? [Ey]
20 — 8069 + 79 350 —0.6932  40.0106
30 — 2338 + 7 400 —0.4234  40.0053
40 —9622 £ 2.5 450 —0.2725  40.0027
50 —480.0 + 3.7 500 —0.1828  40.0014
60 —270.5 + 3.2 550 —0.1270 4 0.0008
70 —165.8 + 2.5 600 —0.09070 4 0.00046
80 —108.1 + 2.0 650 —0.06639 4 0.00027
90 — 7389 4+ 151 700 —0.04962 4 0.00016
100 — 5243 + 1.16 750 —0.03776 4 0.00010
110 —3836 4+ 0.90 800 —0.02920 4 0.00006
120 —2878 4+ 0.71 850 —0.02290 = 0.00004
130 —22.05 =+ 0.56 900 —0.01819 4 0.00002
140 — 1721 + 0.44 950 —0.01461 4 0.00002
150 — 1364 + 0.35 1000 —0.01186 =4 0.00001
160 —10.96 + 0.28 1100 —0.008027 +4x 1076
170 —8.915 + 0.229 1200 —0.005606 42 x 1076
180 —7.330 + 0.187 1300 —0.004021 +1x 1076
200 —5.096 + 0.126 1400 —0.002951 45 x 1077
220 —3.656 + 0.087 1500 —0.002210 +2x 1077
240 —2.693 £ 0.060 1600 —0.001684 41 x 1077
260 —2.028 £ 0.043 1700 —0.001304 +7x1078
280 —1.556 + 0.031 1800 —0.001023 +3x 1078
300 —1.214 + 0.022 1900 —0.0008132 +2 x 1078
320 —0.9614 + 0.0165 2000 —0.0006536 £ 1 x 107"

Casimir-Polder potential for a hydrogen atom in its ground state (1s) in front of a perfectly

conducting cylinder with a radius of 50nm (~ 1000a.u.). Contributions to the dynamic

polarisability (2.4) from transitions to the bound states |np) are included up to n = 1000.

For hydrogen atoms the transition energies Ej; = E,, — E1s and the transition matrix

element

28n7(n _ 1)2n—5
3(n + 1)2n+5

|(15]d, np)|* = (2.38)
are known analytically [85]. Transitions to continuum states are taken into account up
to an energy of 1000 Fyy, with the Hartree energy Fyp = 2 Ro = 27.21eV and have been
calculated numerically using the Coulomb continuum wave functions [52]. The remaining
transitions contribute less than 0.001% to the Casimir-Polder potential.

In Egs. (2.2) and (2.10) the summation over the index n in the exact atom-wire po-
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tential has to be truncated for an explicit numerical evaluation to a finite range from
—Nmax t0 +Nmax. An accurate treatment of the residual terms AV (r) is not possible in
the transition zone. However, in the non-retarded and highly retarded limit an accurate
approximation of AV, and AV, is possible (see Appendix A). The full Casimir-Polder
potential V"™max(r) obtained by truncating the summation can thus be extrapolated to
Nmax = 00 Via

AV hr(r)) . (2.39)

Vir)=V"m"max(r) | 1+ ——~—
= ( Vs ()

The full circles in Fig. 2.6 show numerical results for the full Casimir-Polder potential,
with the respective error bars coming from the extrapolation procedure in Eq. (2.39).
Explicit values for the potential are given in Tab. 2.4. The potential calculated with the
help of the shape functions (2.36) and (2.37) (dot-dashed and dashed curves, respectively)
provides a fair approximation to the exact potential which lies in between.

This shows that the description of the transition region via approximate shape func-
tions offers a practicable way of numerically calculating the atom-cylinder potential. This
method is also applicable to other atoms where the dynamic polarisability (i) is un-

~2
known but where g, and By, are accessible via the well-known properties <d > and ag of
the atom (see Tab. 2.1 and 2.2). Further calculations show that this result still holds for
cylindrical geometries with different radii and also for the case of a dielectric cylinder.

Summary

In this chapter we have presented the long-range Casimir-Polder interaction of a polarisable
atom facing a cylindrical geometry with radius R, which has first been given by Nabutovskii
et al. [48]. The crucial difference at large atom-surface separations between the interaction
of an atom with a dielectric cylinder or with a perfectly conducting tube has already been
emphasised by Barash and Kyasov [84]. However, we have shown that the potential derived
in Ref. [48] accurately describes both cases as long as the limit of perfect conductivity is
treated properly.

Particular attention has been given to the non-retarded (Section 2.2) and to the highly
retarded limit (Section 2.3) of the Casimir-Polder potential where retardation can either
be neglected or becomes dominant. In these limits the potential substantially simplifies
and allows an accurate numerical evaluation, as it is shown in Appendix A. Furthermore,
the behaviour of the Casimir-Polder potential at large and small distances has been dis-
cussed. At short atom-surface separations (r — R), the curvature of the cylinder becomes
unimportant and the potential resembles the well-known interaction of an atom facing a
plane surface, which is oc —1/(r — R)? in the non-retarded and oc —1/(r — R)* in the highly
retarded limit.

At large distances of the atom to the cylinder, it has been shown that the interaction
potential crucially depends on the dielectric properties of the cylinder. The Casimir-
Polder potential for an atom facing a dielectric cylinder asymptotically behaves oc —1/75
in the non-retarded and o —1/7% in the highly retarded limit. The interaction of an
atom with a perfectly conducting tube differs significantly from this behaviour and is
oc —1/[r3In(r/R)] in the non-retarded and o< —1/[r* In(r/R)] in the highly retarded limit.
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However, the leading asymptotic behaviour in the perfectly conducting case is not very
accurate as next-to-leading-order terms differ only by additional logarithmic factors.

In a realistic situation, the Casimir-Polder potential undergoes a smooth transition
from the non-retarded limit at small distances to the highly retarded limit at large dis-
tances. We introduced the characteristic length L for thick wires and L’ for thin wires,
separating the non-retarded from the highly retarded region of the potential. A proper
description of the full potential has been presented within a generalised shape-function ap-
proach. This method has been shown to be accurate and has successfully been applied to
the Casimir-Polder potential of a ground-state hydrogen atom interacting with a perfectly
conducting cylinder (Section 2.4).



Chapter 3

Scattering and Absorption of
Ultracold Atoms by Nanotubes

The fundamental properties in the interaction of ultracold atoms with a cylindrical geom-
etry can be studied by analysing the corresponding scattering process. The description of
a scattering process for atoms colliding with nanostructures in two dimensions has been
introduced in Chapter 1 and can now be applied to the scattering and absorption of ul-
tracold atoms at a nanotube. The corresponding Casimir-Polder interaction potential has
been discussed in the previous Chapter 2.

In the case of the scattering of ultracold atoms by a flat surface, which has been stud-
ied in detail both theoretically [27] and experimentally [25], the interaction potential can
only be modified by the choice of the scattered atom or surface material, which offers only
limited possibilities. In contrast, the scattering of atoms at a curved surface like a cylin-
drical geometry introduces the radius of the cylinder as a further tuning parameter to the
system. The scattering of ultracold atoms at a perfectly conducting cylinder has already
been studied in the non-retarded van der Waals limit in Refs. [42, 47, 95]. We extend this
result to the scattering at a cylinder with finite conductivity taking into account the full
Casimir-Polder interaction potential. We discuss the dependence of the scattering process
of ultracold atoms on the radius of the wire, where we are able to derive analytical results
in the limits of a thick and a thin cylinder (Section 3.1). The influence of retardation ef-
fects on the scattering process in studied in detail (Section 3.2). Furthermore, we compare
the scattering of atoms to the diffraction of light at a cylindrical geometry and show the
existence of an electromagnetic and non-electromagnetic limit in the scattering of matter
waves (Section 3.3).

The stationary Schrodinger equation describing the scattering process is

2 A2 RmPm?-1/4
—+

saa tan V)| () = Bun(r). (3.1)

The dynamics of the scattering process is determined by the Energy E = h?k?/(2u) and
the Casimir-Polder interaction potential V'(r). The atom-cylinder interaction potential in
Eq. (2.34), which is based on a generalised shape function approach (see Section 2.4.1),

41



42 3. Scattering and Absorption of Ultracold Atoms by Nanotubes

lal/ B

arg(a)/n

non—retarded

{ I —— highly retarded
0 1 2 3

R/B R/p

Figure 3.1: Modulus |a] and phase arg(a) of the scattering length as a function of
R/p for a perfectly conducting cylinder, in the non-retarded limit (green line) and in the
highly retarded limit (blue line) of the atom-cylinder interaction. The length 3 is the
characteristic length scale 8y, or By, in the corresponding limit.

depends on the radius R of the cylinder as well as on both characteristic lengths 5, and
Brr. Expressing the Schrodinger equation in terms of dimensionless quantities (z = /Sy,
or z = r/Py) leaves two dimensionless parameters which determine the Casimir-Polder
potential; the radius R of the cylinder relative to one of the characteristic length scales
Bur or Bur and the characteristic ratio

L B
ﬁhr ’

the latter being a property of the atom only. Explicit values for the characteristic ratio p
are listed in Tab. 2.3 for hydrogen and several alkali atoms in their respective ground state
and helium in its ground or metastable 2.5 state. The energy dependence of the dynamics
is given by the dimensionless product of k£ and one of the characteristic lengths.

The corresponding stationary Schrodinger equation expressed in terms of the dimen-
sionless quantity z = r/f is

(3.2)

2 2
—% + 71/4 +U(z,p, R/B) | um(2) = (kB)? um(2), (3.3)

where 3 is one of the two characteristic lengths By, or By, and U = 2u/h?V depending on
z, R/B and p.

3.1 The scattering length

The scattering of ultracold atoms is dominated by s-wave scattering, and in the regime of
low energies the crucial quantity, characterising the scattering process, is the (complex)
scattering length a (see Section 1.1.3). This scattering length thus gives insight into
the fundamental properties of the scattering of ultracold atoms and can be calculated
numerically from Eq. (3.3) for E = 0 or equivalently k5 = 0, where the asymptotic
behaviour of the threshold solutions is given in Eq. (1.28).
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Figure 3.2: Modulus |a| and phase arg(a) of the scattering length as a function of R/
for a cylinder with dielectric constant € = 5, in the non-retarded limit (green line) and in
the highly retarded limit (blue line) of the atom-cylinder interaction. The length 3 is the
characteristic length scale 8y, or By, in the corresponding limit.

The scattering length depends both on the characteristic ratio p and on the radius
R/ with (8 being one of the characteristic length scales [, or fy,. In order to study the
influence of the radius on the scattering process and the influence of the Casimir-Polder
potential in general, we calculate the scattering length for cases where retardation effects
are negligible (see also Refs. [42, 95]) or where retardation becomes dominant. The non-
retarded limit [Egs. (2.14) and (2.15)] of the Casimir-Polder potential, where retardation
is neglected, can be obtained from Eq. (2.34) in the limit p — 0 while the highly retarded
limit [Egs. (2.22) and (2.23)] of the interaction potential, where retardation is dominant,
is obtained in the limit p — oco. In these limits, the scattering length thus depends
solely on the dimensionless radius R/ and on the dielectric properties of the cylinder.
In a realistic scenario, the Casimir-Polder potential undergoes a smooth transition from
the non-retarded to the highly retarded limit and thus, the scattering process may be
dominated by the transition regime. However, in many cases, the scattering process is
dominated or can be approximated by the non-retarded or highly retarded limit, see
Section 3.2.

Figure 3.1 and Fig. 3.2 show the modulus |a| (in units of S, left panel) and phase
arg(a) (right panel) of the scattering length as a function of the ratio R//3, obtained from
a numerical solution of the Schrédinger equation (3.3) at £ = 0. The green line shows
results for the scattering length obtained in the non-retarded limit (p — 0) and the blue
line shows results obtained in the highly retarded limit (p — oo) of the atom-cylinder
interaction. The length g is the characteristic length scale 5, (Bpr) in the non-retarded
(highly retarded) limit. The scattering length shown in Fig. 3.1 is obtained for a perfectly
conducting cylinder. The scattering length for a cylinder with a finite dielectric constant
e = 5 is shown in Fig. 3.2; qualitatively similar results are obtained for other dielectric
constants.

In the limit of large radii, R > f, the scattering length behaves qualitatively similar
for a perfectly conducting and for a dielectric cylinder. While the modulus |a| increases
with increasing values of R/, the phase arg(a) vanishes in the limit of large R//. This
limit is discussed in Section 3.1.2.
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Table 3.1: Modulus |a|, phase arg(a), real- Re(a) and imaginary Im(a) part of the
scattering length for the scattering at homogeneous potentials (3.6) in two dimensions [46].

« 3 4 5 6

la|/Ba 3.1722190 0.8905362 0.7063830 0.6672841
arg(a)/m -1 -1 —1 —1
Re(a)/fBa —3.1722190 0 0.353192 0.471841
Im(a)/Ba 0 —0.8905362 —0.611746 —0.471841

For small radii, R <« 3, the Casimir-Polder potential and therefore the scattering
length shows a qualitative different behaviour for the scattering at a perfectly conduct-
ing nanotube compared to the scattering at a nanotube with finite dielectric constant.
This behaviour of the modulus |a| and for the phase arg(a) is discussed in the following
Section 3.1.1.

3.1.1 The scattering length in the limit of small radii

In the limit of a thin wire, R < 3, the scattering length crucially depends on whether the
cylinder is insulating (dielectric) or perfectly conducting (metallic), which is a result of
the significantly different behaviour of the corresponding Casimir-Polder potentials in the
limit of small radii R or large distances d.

Scattering at a perfectly conducting cylinder

For a perfectly conducting cylinder, the asymptotic behaviour of the Casimir-Polder poten-
tial for large radii R < d is given in Eq. (2.19) for the non-retarded limit of the interaction
potential,

nr 52 nr nr hQ nr
Vrfioo(r) R/ﬁN—>0 _nw p R/ﬁN—>0 __Eﬁi , (34)
2,18 3 In(r/R) 20 8 In (B / R)13
and for the highly retarded limit in Eq. (2.25),
B2 92 2 R 2 2
yeooo(y M=o 2 B R0 B2 By (3.5)

2 37 r*In(r/R) 2p 37 In( By /R)r*

Assuming In(r/R) = In(r/B) + In(8/R) ~ In(5/R) for large values of 5/R, the behaviour
in the thin-wire limit both in the non-retarded and in the highly retarded limit is given
by a homogeneous potential of the form

C, Mg 2u , \ 7Y
V(r) = T—a = ﬂﬂy‘@é s with ,Ba = <h_/;Ca> ) (36)

with @ = 3 in the non-retarded limit and o = 4 in the highly retarded limit. The
asymptotic form of the Casimir-Polder potential in Eqgs. (2.17) and (2.25) falls off faster
than the corresponding homogeneous potential only by a reciprocal logarithm.
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Figure 3.3: Modulus |a| of the scattering length on a logarithmic scale for a perfectly
conducting cylinder, in the non-retarded limit (green line) and in the highly retarded limit
(blue line) of the atom-cylinder interaction. The dashed lines show the behaviour of the
scattering length in the limit of small radii R/ — 0 from Egs. (3.7) and (3.8). The length
[ is the characteristic length scale Sy, or Sy, in the corresponding limit.

For a homogeneous potential, the scattering length a is proportional to the characteris-
tic length S, in Eq. (3.6). Values of the scattering length a for scattering at a homogeneous
potential (3.6) in two dimensions are given in Tab. 3.1 for « = 3, 4, 5, and 6. By com-
paring the asymptotic form of the Casimir-Polder potential for an atom facing a perfectly
conducting cylinder in Egs. (3.4) and (3.5) with Eq. (3.6) we obtain the behaviour of the
scattering length a in the limit R/S — 0,

R/ s /8

R/Bnr—0
lan| &~ 3 1722190 Bar » arg(apy) =~ — (3.7)
(5HI'/R)
in the non-retarded limit and
R/Bh—0 2/(3m) R/Bp—0 T
r ~ 0.8905362 - r ~ == 3.8
|ty | \/ln(ﬁhr/R)ﬁh arg(ap;) 5 (3.8)

in the highly retarded limit.

The asymptotic value of the phase arg(a) of the scattering length from Egs. (3.7) and
(3.8) is accurately reproduced by the numerical calculation of the scattering length in the
non-retarded and highly retarded limit, shown in Fig. 3.1. Figure 3.3 shows the modulus
la| of the scattering length for small radii R < f in the non-retarded (green line) and
in the highly retarded limit (blue line) of the atom-nanotube interaction. The dashed
lines show the behaviour of the scattering length in the limit of small radii, R < 3, from
Eqgs. (3.7) and (3.8). Due to the approximation of the asymptotic form of the Casimir-
Polder potential in Eqs. (2.17) and (2.25) by homogeneous potentials, the asymptotic
behaviour remains a poor approximation to the exact scattering length for R/S # 0.
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Figure 3.4: Modulus |a| of the scattering length for a cylinder with dielectric constant
€ = 5, in the non-retarded limit (green line) and in the highly retarded limit (blue line)
of the atom-cylinder interaction. The dashed lines show the behaviour of the scattering
length in the limit of small radii R < f from Egs. (3.9) and (3.10). The length S is the
characteristic length scale B, or Gy, in the corresponding limit.

Numerical tests indicate that in the non-retarded limit of the interaction the real part
of the scattering length Re(ay,) tends to 0 marginally slower than [In(R/S,,)] ! whereas
Im(ay,) tends to 0 marginally faster than [In(R/By,)] ! in the limit R/B,, — 0 [42, 47, 95].
In the highly retarded limit, both Re(ay,) and Im(a,,) tend to 0 marginally faster than

(I (R/ )] 2.

Scattering at a dielectric cylinder

In contrast to the scattering at a perfectly conducting cylinder, the asymptotic from of
the Casimir-Polder potential for an atom interacting with a dielectric cylinder is given by
Egs. (2.18) and (2.26). These asymptotic expressions can be identified with homogeneous
potentials with o = 5 in the non-retarded and o = 6 in the highly retarded limit. By
comparing the asymptotic form of the potential in Eqgs. (2.18) and (2.26) with Eq. (3.6)
we obtain the behaviour of the scattering length a in the limit R/8 — 0,

R/Bnr-)O 97T (6 — 1)(6 + 7) 2 1/3 R/ﬁnr—)o v
ar ~ 0.7063830 | —————>08, R , or o D 3.9
e (T i are(au) )
in the non-retarded limit and
R/ B0 2 (e—1)(Te+39) , ,\"* R/Bm—0 T
‘ahr’ ~ 0.6672841 <E et 1 5hrR s arg(ahr) ~ _Z (310)

in the highly retarded limit.
The numerical calculation of the scattering length for a dielectric cylinder with € = 5,
shown in Fig. 3.2, reproduces the asymptotic value of the phase arg(a) from Eqgs. (3.9)
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and (3.10). Figure 3.4 shows the modulus |a| of the scattering length for small radii,
R < 3, of a cylinder with a dielectric constant of € = 5 in the non-retarded (green line)
and in the highly retarded limit (blue line) of the atom-nanotube interaction. The dashed
lines show the asymptotic behaviour of the scattering length from Egs. (3.9) and (3.10).
In contrast to the scattering at a perfectly conducting cylinder, the scattering length is
accurately described by its thin-wire behaviour from Egs. (3.9) and (3.10) for R < .

3.1.2 The scattering length in the limit of large radii

For a thick wire, R > f3, the asymptotic behaviour of the Casimir-Polder potential in the
non-retarded and highly retarded limit is given by Egs. (2.17), (2.25), (2.18), and (2.26)
for an atom facing a perfectly conducting cylinder or a dielectric tube. The Schrodinger
equation at zero energy, F = 0, which determines the scattering length, is

d> 1/4  (Ba/R)*?

where a = 3 in the non-retarded limit and o« = 4 in the highly retarded limit of the Casimir-

Polder potential and ¢ = r/R. The characteristic length scales (3, of the potential in the

thick-wire limit are
e—1 5nr

3 e—1
= d = —_—
Ps e+1 4 an P dre+1

®(e) Pur, (3.12)

with the dielectric constant € and ®(¢) defined in Eq. (2.27). In the limit of large radii,
R > (8 and thus R > f,, the Casimir-Polder potential becomes small and Eq. (3.11)
almost corresponds to the free particle case, except for the region close to the surface,
o0 — 1, where the interaction potential is dominant as long as

A(Ba/R)** < (0= 1)* (3.13)

and the centrifugal term can be neglected. The appropriate wave function obeying incom-
ing boundary conditions for ¢ — 1 is the Hankel function [59],

_ N R (a—2)/2
Uinc(Q) X “ ga/]:lz Hé122 (y) with Yy = % <%> X (314)

For sufficiently large values of R/f3, condition (3.13) remains fulfilled even for small values
of (Ba/R)/(0 — 1) where the the Hankel function in Eq. (3.14) is accurately represented
by its small argument behaviour.

Non-retarded limit

In the non-retarded limit of the Casimir-Polder potential the wave function (3.14) in the
limit of small values of (5,/R)/(0—1) is

3—>00 i - i R R
S e (B) 1) o (B8).
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Figure 3.5: Real and imaginary part of the scattering length a as a function of R/f for
a perfectly conducting cylinder (e = co) and for a dielectric tube with € = 5. The green
(blue) line shows the scattering length obtained in the non-retarded (highly retarded) limit
of the atom-cylinder interaction and the length 3 is the characteristic length scale 5, or
Bhr in the corresponding limit. The real part increases linearly, with corrections on O(fy;)
in the non-retarded limit, while the imaginary part approaches a constant value (dashed
lines) from Egs. (3.19) and (3.23).

Matching this wave function to the asymptotic free-wave behaviour from Eq. (1.28) for
o— 1,

Uas(0) X —\/01n (a/%) ' In <%> - [1 - %ln <%>] (0—=1)+0([e—1]*), (3.16)

gives In(ay,/R) = 0 in leading order and
R/ﬁf;g\/—)oo R/ﬁi—)OO —7'['@

nr R .
e/ =

1+ 0(Bs3/R), arg(an;) (3.17)

The behaviour of the scattering length ay, in the limit of large radii R/f,, — oo thus
is [42, 95]

R/ By—00 me—1 0
nr ~ nr —1= 1
a [R+ O(p )]exp[ 146—|—1R:| (3.18)
or equivalently
nr — 00 nr — 00 - 1
Re (anr) 7 R+ O(Gur) Im (ay,) o7 T2 g (3.19)

de+1
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Highly retarded limit

In the highly retarded limit of the Casimir-Polder potential, the wave function (3.14) in
the limit of small values of (8,/R)/(0 — 1) is

wn(e) P \f 0y \/7 (54/?) (3.20)

and matching to the asymptotic free-wave behaviour from Eq. (3.16) yields

jane|/R T arg(ap) AT —ﬁ—}g : (3.21)

The behaviour of the scattering length ay,, in the limit of large radii R/f, — oo thus is

R/ﬁhr—mo 3 e—1 ,Bhr
~ R — 3.22
ane eXp[ 1@ (3.22)
or equivalently
. . 3e—1
Re (ahr) R/Bl'l\'ﬁoo R’ Im (ahr) R/ﬁl'l\‘ﬁoo - E E 41 ‘1)(5) ﬁhr . (323)

Figure 3.5 shows the real- and imaginary part of the scattering length a in the non-
retarded (green line) and in the highly retarded limit (blue line) for a perfectly conducting
cylinder (left panel) and for a dielectric tube with € = 5 (right panel). The scattering
length a is plotted as a function of R/S where 3 is the characteristic length scale 5, or
Bur in the corresponding limit. The imaginary part asymptotically approaches the con-
stant value from Egs. (3.19) and (3.23) which is shown by the dashed lines. The linear
increase of the real part is clearly visible in Fig. 3.5 with deviations on O(f,;) in the
non-retarded limit.

Note that the imaginary part of the scattering length in the thick-wire limit, R/ — oo,
[Egs. (3.19) and (3.23)] is the value one would expect for the imaginary part of the scat-
tering length in one-dimensional scattering or for s waves in the three-dimensional case
for a homogeneous potential (3.6) with @ = 3 (non-retarded case) and a = 4 in (highly
retarded case) and the corresponding length scales from Eq. (3.12) [70, 96]. In fact, close
to the surface where the curvature of the cylinder is negligible, the scattering process is
effectively one-dimensional and the potential resembles the potential of an atom facing
a plane wall, which is oc —1/d® in the non-retarded and o —1/d* highly retarded limit
[see Egs. (2.26) and (2.18)]. Although the low-energy behaviour of the scattering process
in one or three-dimensional scattering is very different from the two-dimensional case,
the imaginary part of the scattering length derived from the one-dimensional near-surface
scattering process agrees with the two-dimensional scattering length in the tick-wire limit,
even though the real part of the scattering length does not exist for 1/7% potentials in
conventional one- or three-dimensional scattering.
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Figure 3.6: Characteristic quantity g (3.24) on a logarithmic scale as a function of the
characteristic ratio p and the radius of the wire R/fy, for a perfectly conducting cylinder.
The green coloured area to the left shows systems where the scattering length has reached
its non-retarded (nr) limit (g < 1) while the blue coloured area to the right shows systems
where the scattering length has reached its highly retarded (hr) limit (£ > 1). Realistic
parameter configurations are shown as white lines. The red dashed line characterises the
transition [g=1] between the non-retarded and highly retarded regime for small radii
R < By, given in Eq. (3.27).

3.2 Influence of retardation on the scattering process

The behaviour of the atom-cylinder system in the low-energy regime, governed by the
scattering length a, has been discussed in the previous section for the special cases where
retardation is negligible (non-retarded limit, p — 0) and for the case in which retardation
effects are dominant (highly retarded limit, p — oo). In a realistic scenario the character-
istic ratio p has a finite value, given by the properties of the projectile atom (see Tab. 2.3),
and the Casimir-Polder potential undergoes a smooth transition from the non-retarded
limit of the potential at short distances to the highly retarded limit of the potential far
away from the surface.

The nature of the atom-cylinder scattering process can be characterised by the quantity

Enlp) — 122 — ]

a(p) ]’ (3.24)

where a(p) is the complex scattering length for a given atom with characteristic ratio p and
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any (apy) is the scattering length obtained from the non-retarded (highly retarded) limit
of the atom-cylinder interaction, see Section 3.1. If the scattering process is dominated by
the non-retarded part of the interaction then £ < 1 while if the highly retarded part is
dominant then £ > 1.

3.2.1 Influence of retardation for a perfectly conducting cylinder

For the scattering at a perfectly conducting cylinder (e = oo) this has already been dis-
cussed in Ref. [41]. Figure 3.6 shows {gr(p) as a function of the characteristic ratio p
and the scaled radius of the wire R/f},. The green area shows combinations of R and p
where the scattering length has reached the non-retarded limit while the blue area shows
systems where the scattering length has reached the highly retarded limit. The scattering
length a(p) was calculated using the shape functions (2.36) and (2.37). Similar results
were obtained in both cases and were averaged for the calculation of {r. As expected,
the scattering length undergoes a smooth transition from the non-retarded limit to the
highly retarded limit, indicated by the increase of the function £g from zero to infinity.
This transition (white area in Fig. 3.6) takes place around p ~ 1 and shows only a weak
dependence on the radius of the wire. For realistic systems the ratio R/f, obviously
becomes unphysical for R below the Bohr radius. For all atoms listed in Tabs. 2.1 - 2.3,
these realistic systems lie in the region where £g > 1 and therefore are dominated by
the highly retarded limit of the potential. This is illustrated in Figure 3.6, where realistic
parameter configurations for some of these atoms are shown as white lines.

This result is in agreement with what has already been obtained for the interaction
of a neutral atom and a plane surface [27]. The corresponding potential is reached by
the atom-wire potential in the limit of large radii and it has already been shown that in
this case the scattering process is dominated by the highly retarded part of the potential.
Decreasing the radius of the wire has only a weak influence on the transition between
the van der Waals and highly retarded limit. For finite and still physically meaningful
values of the radius, the system is always dominated by the highly retarded limit. This
result is not trivial and is in contrast to what has been obtained for an atom in front of
an absorbing sphere [93]. In this case, the system can either lie in the highly retarded
regime for large radii or, for small but still physically meaningful radii it can reach the
non-retarded van der Waals regime.

Influence of retardation at finite energies

The influence of retardation on the scattering process has been studied via {r(p), which
is based on the scattering length a, characterising the low-energy behaviour of the scat-
tering process. To analyse the influence of retardation effects on the scattering process at
higher energies where several partial waves contribute, we study in detail the scattering of
hydrogen atoms in the ground state (p = 3.45) and helium atoms in the metastable 29
state (p = 5.51), representing the two systems closest to the transition region between the
non-retarded and highly retarded limit in Fig. 3.6. We calculated the total elastic cross
section Ao and absorption cross sections A,ps for the scattering at a perfectly conducting
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Figure 3.7: Elastic cross section A¢ and absorption cross section A,ps as a function of the
wave number k for hydrogen atoms in the ground state (p = 3.45) and helium atoms in the
metastable 215 state (p = 5.51) scattered at a perfectly conducting (e = co) nanotube with
R = 200nm. The red dot-dashed [dashed] curve shows the cross section for a potential
approximated with the shape function v; from Eq. (2.36) [vs from Eq. (2.37)] and the solid
blue (green) curve shows the cross section in the highly retarded (non-retarded) limit.

nanowire with a radius of R = 20nm and R = 200nm as a function of the wave number
k, up to k = 2/pm. This corresponds to a temperature of 1.5 uK for hydrogen atoms and
500 nK for metastable helium atoms. Results for the elastic cross section \¢ and for the
absorption cross section Aups for a radius of R = 200nm are shown in Fig. 3.7. The red
dot-dashed [dashed] curve shows the results for a potential approximated with the shape
function v; from Eq. (2.36) [v2 from Eq. (2.37)] and the solid blue (green) line shows the
total elastic cross section in the highly retarded (non-retarded) limit.

Figure 3.7 supports the observation from Fig. 3.6; both shape functions give results
that differ significantly from the non-retarded limit while only small deviations from the
highly retarded limit are observed. This still holds if the radius of the cylinder is decreased
down to R = 20nm. The elastic cross section Ay and the absorption cross section Aups
for this system are shown in Fig. 3.8. The deviations between the results obtained from
both shape functions (red dashed and dot-dashed line) and the non-retarded limit (green
line) are still large and the deviations from the highly retarded limit (blue line) have only
increased slightly. Changing the projectile atom and going to higher characteristic ratios
p further decreases the deviations from the highly retarded limit.

The contribution of the s wave to the cross sections is dominant in the low-energy
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Figure 3.8: Elastic cross section ¢ and absorption cross section A,ps as a function of the
wave number k for hydrogen atoms in the ground state (p = 3.45) and helium atoms in
the metastable 215 state (p = 5.51) scattered at a perfectly conducting (e = 0o) nanotube
with R = 20nm. The red dot-dashed [dashed] curve shows the cross section for a potential
approximated with the shape function v; from Eq. (2.36) [vs from Eq. (2.37)] and the solid
blue (green) curve shows the cross section in the highly retarded (non-retarded) limit.

regime and gives an isotropic contribution to the differential elastic cross section. The
deviation from isotropy, governed by partial waves with |m| > 1, can be characterised via
the dimensionless asymmetry ratio (see also Ref. [93])

B=0-B=n
Y(k) = 13 — SV (3.25)
Be=0+g0@=m")
Figure 3.9 shows the asymmetry ratio (3.25) for hydrogen in the ground state and helium

in the metastable 219 state scattered at a perfectly conducting nanotube with R = 20nm
and R = 200nm. The results obtained from the shape functions v; (red dot-dashed line)
and v (red dashed line) differ from the non-retarded limit (green curve) but show only
small deviations from the highly retarded limit.

The results obtained for the elastic cross section and for the absorption cross section as
well as for the asymmetry ratio support the observation of Fig. 3.6. The characterisation
of the influence of retardation via g(p) at threshold energy, k = 0, still holds for higher
energies beyond the s-wave regime of the scattering process.
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Figure 3.9: Dimensionless asymmetry ratio X, defined in Eq. (3.25), as a function of the
wave number k for hydrogen atoms in the ground state (p = 3.45) and helium atoms in
the metastable 215 state (p = 5.51) scattered at a nanotube with R = 20nm and with
R = 200nm. The red dot-dashed (dashed) curve shows results obtained for a potential
approximated with the shape function v; from Eq. (2.36) [vs from Eq. (2.37)] and the solid
blue (green) curve shows results obtained from the highly retarded (non-retarded) limit.

Influence of retardation and characteristic length scales of the potential

The key to understanding the influence of retardation on the scattering process lies in
the characteristic length of the transition zone L (for R > ) and L’ (for R < f3) (see
Section 2.4) and the characteristic length scales associated with the asymptotic behaviour
of the Casimir-Polder potential.

For a thick wire, R > 3, the system is equivalent to the scattering of atoms at a

plane wall, which has been studied in Ref. [27]. The characteristic length scales ﬁf >B

and ﬂf>>6 , see Eq. (3.12), associated with the asymptotic 1/73 potential (non-retarded
limit) and with the 1/r* potential (highly retarded limit) are larger than the correspond-
ing length scale L of the transition zone in the thick-wire limit (see Tab. 2.3) for all atoms
listed in Tabs. 2.1 - 2.3. These lengths lie in the highly retarded region of the Casimir-
Polder potential. Therefore the scattering process is dominated by the highly retarded
limit of the interaction potential and the cross sections are similar to the results obtained
in this limit, as it was already shown in Ref. [27].

3The length 3 is the characteristic length scale Bur (Bnr) in the non-retarded (highly retarded) limit.
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Table 3.2: Characteristic length scales ﬂf <8 and ﬁf<<ﬁ , defined in Eq. (3.26), of the
Casimir-Polder potential in the thin-wire limit for hydrogen atoms in the ground state
and helium atoms in the metastable 2! state facing a perfectly conducting cylinder with
radius R = 200nm and R = 20 nm.

B3 <" (20mm) A< (200m) 45" (200mm) 57 (2000m) I

€— 00
H [a.u] 634 481 s s 167
He (219) [a.u.] 10171 6275 16466 9188 2775

@ For hydrogen atoms and R = 200 nm the thin-wire limit (R < ) is not appropriate since R > f3.

In the thin-wire limit, R < 3,> the Casimir-Polder potential can be approximated
by homogeneous potentials (3.4) and (3.5), neglecting logarithmic corrections (see Sec-
tion 3.1.1). These asymptotic forms of the interaction potential define a characteristic
length in the non-retarded (5R<<B ) and in the highly retarded limit (ﬁR<<B )

R<B p _ _ T/8 R< 2/(3m)
3 (R) (/Bnr/R) /Bnr 5 4 (R) ln(ﬂhr/R) /Bhr (326)

Both length scales have a weak dependence on the radius R via In(R/f) which leads to a
weak dependence of the transition between the non-retarded and highly retarded regime
on the radius (see Fig. 3.6). For all atoms listed in Tabs. 2.1 - 2.3 and physically mean-
ingful radii in the thin-wire limit, these characteristic lengths are noticeably larger than
L., and lie in the highly retarded regime of the Casimir-Polder potential. The scatter-
ing process is thus dominated by the highly retarded limit of the interaction potential and
the cross sections resemble the expectations for this limit. Values of ﬁR<<B nd 5R<<6

listen in Tab. 3.2 for hydrogen and helium in its metastable 2'S state for R = 20nm and

R =200nm.

From numerical calculations, it has been observed that the scattering length a(p) for a
realistic atom-cylinder system shows a behaviour similar to the Casimir-Polder potential in
Eq. (2.34). When a,, (non-retarded limit) and ay, (highly retarded limit) are very different,
the scattering length a(p) is close to the asymptotic result with the smaller modulus and
undergoes a smooth transition between these limits if |ay,| and |ap,| are similar. The
transition regime can thus be estimated by |a,,| = |an:|. Applying the analytical results
for the scattering length obtained in the thin-wire limit in Eq. (3.7) (non-retarded limit)
and in Eq. (3.8) (highly retarded limit), this yields,

3.1722190\ ? 373
) ” 2] (3.27)

(R/Bur)emy = exp [_ <0.8905362 128"

This relation is valid for thin, perfectly conducting wires and gives an accurate estimate
of the transition region between scattering processes in the low-energy regime that are
dominated by the non-retarded or by the highly retarded limit of the Casimir-Polder
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Figure 3.10: Characteristic quantity g (3.24) on a logarithmic scale as a function of
the characteristic ratio p and the radius of the wire R/fy, for a dielectric cylinder with
€ = 5. The green coloured area to the left shows systems where the scattering length
has reached its non-retarded (nr) limit ({g < 1) while the blue coloured area to the
right shows systems where the scattering length has reached its highly retarded (hr) limit
(€r > 1). Realistic parameter configurations are shown as white lines. The red dashed
line characterises the transition [{r(p)=1] between the non-retarded and highly retarded
regime for small radii R < fy, via Eq. (3.27).

potential. This is illustrated in Fig. 3.6 where Eq. (3.27) is shown as a red dashed line
that follows the transition regime (white region in Fig. 3.6) in the limit of small radii. *

3.2.2 Influence of retardation for a dielectric cylinder

The scattering of atoms at a dielectric cylinder differs from the perfectly conducting coun-
terpart in particular for small radii R < 3.3 Figure 3.10 shows £g(p) as a function of the
characteristic ratio p and the scaled radius of the wire R/fy, for a cylinder with dielectric
constant € = 5.

In the limit of large radii, where the Casimir-Polder potential resembles the interaction
between an atom and a plane surface, the scattering process is dominated by the highly
retarded limit of the potential (blue area in Fig. 3.10) — similar to the scattering at a

*If we assume | arg(a) —arg(an,)| & | arg(a) — arg(an,)|, which seems reasonable in the transition regime,
we can directly deduce {r(p) = 1 from |an:| = |an.|, which characterises the transition region in Fig. 3.6
(white area).
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Figure 3.11: Elastic cross section A¢ and absorption cross section A,ps as a function of
the wave number & for hydrogen atoms in the ground state (p = 3.45) and helium atoms
in the metastable 215 state (p = 5.51) scattered at a dielectric nanotube with ¢ = 5 and
R = 20nm. The red dot-dashed (dashed) curve shows the cross section for a potential
approximated with the shape function v; from Eq. (2.36) [vs from Eq. (2.37)] and the solid
blue (green) curve shows the cross section in the highly retarded (non-retarded) limit.

perfectly conducting cylinder. In contrast, in the limit of small radii, the influence of re-
tardation on the scattering process changes. For small but still physically meaningful radii
(see white lines in Fig. 3.10) the scattering of atoms at a dielectric cylinder can be domi-
nated by the transition zone or even by the non-retarded limit (green area in Fig. 3.10).
This is in contrast to what has been observed for a perfectly conducting cylinder and
resembles the behaviour of the scattering at a spherical geometry [93].

Influence of retardation at finite energies

Similar to the perfect-conductor case (see Section 3.2.1), the scattering of atoms at a
thick dielectric tube, R > (3, is dominated by the highly retarded limit of the Casimir-
Polder potential even for higher energies where several partial waves contribute. In order
to study the significantly different behaviour of the scattering process in the thin-wire
limit at higher energies, we analyse the scattering of ground state hydrogen atoms and
helium atoms in their metastable 21S state, scattered at a dielectric cylinder with e = 5
and R = 20nm. With R/By, = 0.36 for hydrogen atoms and R/S,, = 0.013 for 2'S
helium atoms, these systems are close to the transition region; while the hydrogen system
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Figure 3.12: Dimensionless asymmetry ratio X, defined in Eq. (3.25), as a function of
the wave number & for hydrogen atoms in the ground state (p = 3.45) and helium atoms
in the metastable 2'S state (p = 5.51) scattered at a dielectric nanotube with ¢ = 5
and R = 20nm. The red dot-dashed (dashed) curve shows results obtained for a potential
approximated with the shape function v; from Eq. (2.36) [v2 from Eq. (2.37)] and the solid
blue (green) curve shows results obtained in the highly retarded (non-retarded) limit.

(& = 5.2) is closer to the highly retarded regime, the helium system (£ = 0.67) is closer to
the non-retarded one. Figure 3.11 shows the elastic cross section \g and the absorption
cross section \;pg as a function of the wave number k in the same regime as in Fig. 3.8,
up to k = 2/pum. The asymmetry ratio (3.25) for the dielectric case is shown in Fig. 3.12
for hydrogen and helium atoms and a cylinder with ¢ =5 and R = 20nm.

For the absorption of hydrogen atoms, both shape functions (red dashed and dot-
dashed line) give results that differ from the non-retarded limit (green line) and show only
small deviations from the highly retarded limit (blue line) of the absorption cross section
Aabs- For the elastic scattering, the asymmetry ratio obtained from both shape functions is
still closer to the highly retarded limit but also shows only small deviations from the non-
retarded limit. The total elastic cross sections \g gives similar results in the non-retarded
and in the highly retarded limit and all cross sections are almost indistinguishable.

In contrast, for metastable helium atoms, the results obtained from both shape func-
tions for the elastic cross section A differ significantly from the highly retarded limit and
are almost indistinguishable from the non-retarded limit. The asymmetry ratio resembles
this behaviour; the results obtained from the two shape functions differ from the highly
retarded limit and are closer to the non-retarded limit. However, for the absorption cross
section Aps the dominating limit is unclear as results obtained from the two shape func-
tions show similar deviations from both the non-retarded and from the highly retarded
limit.

As obtained in Fig. 3.10 for threshold energy, k = 0, the scattering of atoms at a thin
dielectric cylinder with R = 20nm is dominated by the highly retarded limit in the case
of hydrogen atoms and is dominated by the non-retarded limit for helium atoms in their
metastable 219 state for finite energies beyond the near-threshold regime. However both
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Table 3.3: Characteristic length scales ﬁ? <8 and ﬁé% <8 , defined in Eq. (3.28), in the
thin-wire limit of the Casimir-Polder potential for hydrogen atoms in the ground state
and helium atoms in the metastable 219 state facing a cylinder with radius R = 200 nm
and R = 20nm and a dielectric constant of € = 5.

e=5 BE<F(20nm)  BE<P(20nm)  AE<P(200nm) AP (200nm) L
H [a.u.] 975 682 —a —a 365
He (219) [a.u.] 3402 2038 15791 9459 6084

@ For hydrogen atoms and R = 200 nm the thin-wire limit (R < ) is not appropriate since R > f3.

systems are quite close to the transition region and the dominance is less pronounced, e.g.
for the elastic cross section for hydrogen or for the absorption cross section for helium
atoms. By further decreasing the radius, both systems reach the non-retarded regime and
the scattering process is dominated by the non-retarded limit of the interaction potential.

Influence of retardation and characteristic length scales of the potential

The scattering of atoms at a dielectric cylinder in the thick-wire limit resembles the pre-
vious case of a perfect conductor and is thus dominated by the highly retarded limit. In
contrast, in the thin-wire limit, the influence of retardation on the scattering of atoms at a
dielectric cylinder crucially differs from the scattering at a perfectly conducting tube. This
can be understood by the significantly different behaviour of the Casimir-Polder potential
in the thin-wire limit. The Casimir-Polder potential for a thin wire is given in Eqgs. (2.20)

and (2.30) which define two characteristic length scales 52 <5 (non-retarded limit) and
é%<<6 (highly retarded limit), see Eq. (3.6),
1/3
R<Be R) = I (e-1)(e+7) R2 3.98
5 (67 ) <128 (€+1) 511[‘ ) ( . )
1/4
R<S 2 (e=1)(Te+39) 1 o
_ (2 2
e = (o ) (3.29)

depending on the radius R and on the dielectric constant e. For all atoms listed in Tabs. 2.1
- 2.3 and relatively large radii in the thin-wire limit, these length scales are larger than
the characteristic length of the transition zone L'(e), similar to the scattering at a perfect
conductor (see Section 3.2.1). However, for sufficiently small radii 5? <8 and ﬁé% <P can be
smaller than L'(€). Therefore, the characteristic length scales for a thin dielectric cylinder
can either lie in the highly retarded or in the non-retarded regime of the Casimir-Polder
potential and the scattering process is dominated by the corresponding limit.

Values of ﬁ? <F and 5(? <5 are listen in Tab. 3.3 for hydrogen atoms and a dielectric
cylinder (¢ = 5) of R = 20nm and helium in its metastable 2!S state and a radius of
R = 20nm and R = 200nm. For hydrogen atoms and R = 20nm both ﬁé%(ﬁ and
ﬁé% <P are larger than the characteristic length L’(¢€) of the transition zone. The scattering
process is thus dominated by the highly retarded regime and results are close to the highly

retarded limit.
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For helium atoms in the metastable 2'S state, the characteristic length scales ﬁ? <B

and 5(? <P of the asymptotic potential are smaller than L'(¢) for R = 20 nm and larger than
L'(e) for R = 200nm. The scattering process is thus dominated by the highly retarded
limit for R = 200nm but for R = 20 nm ﬁ? < and ﬁé% <P lie in the non-retarded regime
of the Casimir-Polder potential and the scattering process reaches the non-retarded limit.

The transition regime can again be characterised by |an,| = |an,| (see Section 3.2.1).
Applying the analytical results for the scattering length in the thin-wire limit from Egs. (3.9)
and (3.10) yields,

(B/Pur)ems = <0.7063830 (3.30)

0.6672841 ) 6
< 157 (e+1)

9 (e—1)(Te+39) ) 32 p2

This relation is valid for thin dielectric wires and gives an accurate estimate whether a
scattering processes in the low-energy regime is dominated by the non-retarded or by the
highly retarded limit of the Casimir-Polder potential. This is illustrated in Fig. 3.10 where
Eq. (3.30) is shown as a red dashed line that follows the transition regime (white region
in Fig. 3.6) in the limit of small radii.

The influence of retardation on the scattering process clearly reflects the behaviour of
the interaction potential. For a thick wire, the atom-cylinder interaction resembles the
reflection of an atom from a plane surface, which gives similar results for a dielectric and a
perfectly conducting cylinder. For realistic systems in the thick-wire limit, the scattering
process is always dominated by the highly retarded limit of the Casimir-Polder potential.
In contrast, for a thin wire, the asymptotic behaviour of the atom-cylinder Casimir-Polder
potential crucially depends on whether the cylinder is insulating (dielectric) or perfectly
conducting (metallic). Thus, the influence of retardation on the scattering at a dielectric
cylinder significantly differs from the scattering at a metallic tube. While, in the latter
case, retardation still dominates the scattering process in all realistic situations, the scat-
tering at a dielectric cylinder, can be dominated by the transition regime or even by the
non-retarded limit for sufficiently small but still physically meaningful radii. An accurate
estimate whether a scattering process is dominated by the non-retarded or by the highly
retarded limit of the interaction is given in Egs. (3.27) and (3.30).

3.3 Electromagnetic and non-electromagnetic limit

In the last part of this chapter we compare the scattering of atoms to the diffraction of
light at a cylindrical geometry. This is of interest in particular for the diffraction and
interference of atoms or large molecules [13, 14] where the wave nature of matter is in the
focus of attention. The diffraction of light at a cylinder goes back to Lord Rayleigh [97, 98]
and is described by the scattering of electromagnetic waves [97-100]. This scattering
process is qualitatively different from the scattering of matter waves. While the latter
is governed by the Casimir-Polder interaction, the scattering of electromagnetic waves is
determined solely by the boundary conditions at the surface of the cylinder.
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3.3.1 Scattering of electromagnetic waves at a cylinder

The propagation of electromagnetic waves in free space is determined by Maxwell’s Equa-
tions [99, 101]

1 0F 0B

with the electric field E(r,t) and magnetic field B(r,t) being

V x B =

E(r,t) = Eg(r)e“t, B(r,t) = Bo(r)e“". (3.32)

The z derivatives in Eq. (3.31) vanish due to translational invariance along the axis of
the cylinder (z-axis). Thus, Eq. (3.31) breaks up into two uncoupled sets, which can be
simplified to

(aﬁ +82+ i—j) B.(r) =0, (e. x V)B.(r) = iZU—QEl(r) , (3.33)
<a§ +0+ i—j) E.(r)=0, (e. x V)E.(r) =iwB (7). (3.34)

The subscript L denotes the (transversal) components perpendicular to the axis of the
cylinder,  and y in Cartesian coordinates or ¢ and r in cylindrical coordinates. Each
set of equations consists of a Helmholtz wave-equation for the z component of the mag-
netic (electric) field and a second equation connecting the z component of the magnetic
(electric) field with the perpendicular component of the electric (magnetic) field. The
Helmholtz wave-equation is equivalent to the Schrodinger equation (1.1) and the solution
for a scattering process can be derived similar to the scattering solution of the Schrodinger
equation (see Section 1.1.1 and Refs. [99, 100]). The boundary condition at the surface of
the cylinder, r = R, is determined by the component of the electric field which is parallel
to the surface. Due to the continuity condition at the perfectly conducting surface this
component of the electric field vanishes at r = R.

Transverse electric mode

Equation (3.33) describes the transverse electric (TE) mode of the electromagnetic field
where the electric (magnetic) field is polarised perpendicular (parallel) to the axis of the
cylinder. The boundary condition at the surface requires Ey(r = R) = 0 which leads, via
Eq. (3.33), to a von Neumann boundary condition for the magnetic field

0B,
or |,_g

=0. (3.35)

Matching the free solution (1.16) of the Helmholtz equation for the z component of the
magnetic field (3.33) to this boundary condition gives

J
tan §(TE) = % (3.36)

with the wave number k = w/c.



62 3. Scattering and Absorption of Ultracold Atoms by Nanotubes

Transverse magnetic mode

The transverse magnetic (TM) mode of the electromagnetic field where the magnetic
(electric) field is polarised perpendicular (parallel) to the axis of the cylinder is described
by Eq. (3.34). The boundary condition at the surface leads to a Dirichlet boundary
condition for the electric field

E.(r=R)=0. (3.37)

Matching the free solution (1.16) for the z component of the electric field from Eq. (3.34)
to this boundary condition gives

Jim| (ER)
(T™m) _ ZIm|
tan d,, Vo (RR) (3.38)

At low incident energies, kR — 0, the s-wave scattering phase shift 58TE) in the TE

mode is of O(kR)? while the scattering phase shift 5(()TM) in the TM mode is of O(1/ In[kR))
and the scattering process is dominated by the latter polarisation mode. Comparing
the low-energy behaviour of Eq. (3.38) with the near-threshold behaviour of a scattering
process in two dimensions, given in Eq. (1.26), we can identify a scattering length in the
transverse magnetic mode, (™) = R, see Ref. [102]. In the transverse electric case,
the von Neumann boundary condition violates the preconditions of the scattering process
presented in Chapter 1 and shows a qualitatively different behaviour in particular in the
low energy regime.? A detailed discussion of the scattering of electromagnetic waves at a
cylindrical geometry is given in Ref. [100].

3.3.2 Comparing the scattering of atoms with the scattering of electro-
magnetic waves

In the low-energy regime where the scattering process is governed by the scattering length a
(see Section 3.1) we can identify two regimes of qualitatively different behaviour in the
atom-cylinder scattering process. In the thin-wire limit, R/3 — 0,2 the scattering length
a is mainly determined by the long-range Casimir-Polder interaction, depending both on
the properties of the cylinder and on the properties of the atom. In contrast, in the thick-
wire limit, R/3 — 00,® the scattering length a is governed primarily by the position of
the surface of the cylinder and a — R. Thus, in the thick-wire limit, the near-threshold
behaviour of the atom-cylinder scattering process approaches the result obtained for the
scattering of electromagnetic waves in the transverse magnetic mode scattered at a per-
fectly conducting cylinder, where a(™) = R.

At finite energy E = h?k?/(2u), the Schrodinger equation of the scattering process in
the limit of a thick cylinder is

> m’—1/4  (Ba/R)*?

do? 0? (0—1)

For a dielectric cylinder an energy-dependent potential term appears in Eq. (3.33) and (3.34). This
energy-dependent potential violates the preconditions in Chapter 1 and causes a different behaviour of the
scattering process at low energies [100].

um(0) = (kR)* um(0), (3.39)
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where o = 3 in the non-retarded limit and a = 4 in the highly retarded limit of the
Casimir-Polder potential and ¢ = r/R. The characteristic length scales 3, are related to
Bnr and By, via Eq. (3.12). Similar to Section 3.1.2, the Casimir-Polder potential becomes
small in the limit R/B, — oo and Eq. (3.39) almost corresponds to the free particle
case except for the region close to the surface, o — 1 where the interaction potential is
dominant as long as

(Ba/R)* 2

m2 — 1 > (1% 340

In this region the centrifugal term (m? — 1/4)/0? in Eq. (3.39) is negligible and the
Schrodinger equation corresponds to a one-dimensional scattering process at a homo-
geneous —1/(p — 1)® potential. Expressing this one-dimensional Schrodinger equation in
dimensionless quantities leads to a dimensionless spatial coordinate z = (¢ — 1)/(8a/R)
and a dimensionless energy term kf,. Keeping kR constant, condition (3.40) remains
fulfilled while taking the limit k5,2 — 0 and simultaneously z — oo where we can express
the radial wave function u,,(¢) by the asymptotic low-energy behaviour of the solution of
the one-dimensional Schrédinger equation [52],

R 0 — 1 R/Ba—)oo 5&
uip(0) ~ kBa [1 - E—alD ] g:;l 0+0 (E) ) (3.41)

where aip is the (complex) scattering length in the one-dimensional scattering process. A
detailed discussion of the scattering in one dimension or for s-waves in three dimensions is
given in Refs. [52-54]. Matching this wave function to the asymptotic free-wave behaviour
from Eq. (1.16) for p — 1,

U (0) X Jj|(kRQ) — tan 6, Y, (kRo) , (3.42)

gives

tan d,,

Ripaee Tl (KR) <&> , (3.43)

Y| (kR) R

This result is, in leading order, independent of « and is therefore valid not only for the
non-retarded and highly retarded limit of the interaction but also for more realistic in-
teraction potentials which exhibit a smooth transition between both limits. In the limit
of a thick wire R/ — oo, the scattering phase shift ¢, — and therefore the elastic cross
section — depends solely on the dimensionless product kR and is in particular independent
— in leading order — of the Casimir-Polder interaction potential, which depends on the
properties of the projectile atom and on the dielectric properties of the cylinder. This
asymptotic behaviour is illustrated in Fig. 3.13.

Figure 3.13 shows the total elastic cross section \g (in units of R) for the scattering of
atoms at a perfectly conducting cylinder as a function of kR. The solid black line shows
the asymptotic cross section reached in the thick-wire limit from Eq. (3.43). The blue
(green) lines show results for the scattering of atoms at a perfectly conducting cylinder
in the highly retarded (non-retarded) limit. With increasing values of R/ from R/ =1
(dashed line), R/B = 5 (dot-dashed line) to R/ = 50 (dotted line), the corresponding
cross section approaches the asymptotic result in the limit R/ — co. The length S is the
characteristic length scale Sy (Snr) in the non-retarded (highly retarded) limit. Similar
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Figure 3.13: Total elastic cross section Ag (in units of R) for the scattering of atoms
at a perfectly conducting cylinder as a function of kR for various values of R/f ranging
from R/ = 1 (dashed line), R/8 = 5 (dot-dashed line) to R/ = 50 (dotted line). The
green (blue) line shows the scattering cross section obtained in the non-retarded (highly
retarded) limit of the atom-cylinder interaction and the length ( is the characteristic
length scale Sy, or By, in the corresponding limit. The electromagnetic limit which is
obtained at large radii, R/ — oo, is shown as a black solid line.

results are obtained for the scattering of atoms at a dielectric cylinder which shows the
same asymptotic behaviour.

Compared to the scattering of electromagnetic waves, the scattering of atoms at a
(dielectric or perfectly conducting) cylinder at finite energy is identical to the scattering
process of electromagnetic waves in the transverse magnetic mode scattered at a perfectly
conducting cylinder of the same radius [see Eq. (3.38) and Eq. (3.36)]. Therefore the thick-
wire limit, R > ( can be identified with the electromagnetic limit of the atom-cylinder
scattering process, which is thus dominated — in leading order — by the energy of the
projectile atom and by the radius R of the cylinder only. In contrast, the thin-wire limit
R < B crucially depends on the Casimir-Polder interaction potential and the scattering
process deviates from the electromagnetic counterpart. The thin-wire limit R < ( is thus
called the non-electromagnetic limit of the scattering process, which enables a detailed
study of the Casimir-Polder interaction depending on the characteristic ratio p as well as
on the dielectric properties of the cylinder € and the radius R.

Both limits, the electromagnetic and the non-electromagnetic limit, are within the
range of realistic parameter configurations. For a cylinder with a radius R ranging from
few nanometres up to several micrometres and different projectile atoms like hydrogen,
helium or various alkali atoms (listed in Tab. 2.1 and 2.2) the ratio R/f3 varies from 107°

(non-electromagnetic limit) up to 100 (electromagnetic limit).

Summary

In this chapter, a dependable approach has been presented to describe the scattering
and absorption of ultracold atoms at a nanowire, taking properly into account the two-
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dimensional nature of the scattering process as well as the exact Casimir-Polder interac-
tion.

The scattering length — characterising the scattering in the low-energy regime — has
been calculated numerically as a function of the radius R and analytical expressions in the
limit of a thin and of a thick wire have been derived (Section 3.1). In the limit of large
radii, R — oo, the real part of the scattering length is governed by the position of the
surface of the cylinder and thus Re(a) ~ R. The imaginary part of the scattering length
resembles the results obtained in one-dimensional scattering of an atom at a plane surface
and is governed by the corresponding Casimir-Polder potential.

For small radii, R — 0, the behaviour of the scattering length reflects the crucial
dependence of the Casimir-Polder potential on the dielectric properties of the cylinder
at large distances. For a dielectric cylinder, the modulus |a| of the scattering length is
o (R%By;)'/3 in the non-retarded, and is o< (Rfp,)"/? in the highly retarded limit of the
interaction. In contrast, for the scattering of atoms at a perfectly conducting cylinder,
the modulus of the scattering length is approximately proportional to [In(R/B,:)]~! in the
non-retarded, and to [In(R/By.)]~"/? in the highly retarded limit.

In a realistic scenario, the Casimir-Polder potential undergoes a smooth transition be-
tween the non-retarded limit at small distances to highly retarded limit at large distances.
We have introduced the quantity £gr(p), which characterises the nature of the low-energy
atom-cylinder scattering process (Section 3.2). In the thick-wire limit, the scattering pro-
cess resembles the reflection of an atom from a plane surface, which is dominated by the
highly retarded limit [25, 28]. In the thin-wire limit, the different behaviour of the po-
tential for a dielectric (insulating) and perfectly conducting (metallic) cylinder affects the
influence of retardation on the scattering process. While the scattering of atoms at a thin
(R — 0) perfectly conducting tube is dominated by the highly-retarded limit for all (real-
istic) radii, the scattering at a dielectric cylinder can be dominated by the transition zone
or even by the non-retarded limit of the potential for sufficiently small, but still physically
meaningful, radii. The key to understanding these different behaviours of the scattering
process is given by the comparison of the characteristic length scales of the transition zone
with characteristic length scales of the asymptotic behaviour of the potential. An accurate
estimate whether a scattering process is dominated by the non-retarded or by the highly
retarded limit of the interaction is given in Egs. (3.27) and (3.30).

In the last part of this chapter we have focused on the comparison between the diffrac-
tion of light and the scattering of ultracold atoms at a cylindrical geometry (Section 3.3).
Both scattering processes are described by the scattering of (electromagnetic or matter)
waves. However, the latter case is governed by the Casimir-Polder dispersion force acting
between the atom and the solid-state surface. It is found that for large radii, R — oo,
of the cylinder, both scattering processes approach the same result. In contrast, in the
limit of small radii, R — 0, the atom-cylinder scattering process depends crucially on the
Casimir-Polder potential and differs from the electromagnetic result. These limit are thus
called the electromagnetic (R — oo) and the non-electromagnetic (R — 0) limit of the
scattering process.

Table 3.4 summarises the main results for the interaction and scattering of ultracold
atoms at a nanotube obtained in Chapter 2 and 3.
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dielectric cylinder

thin-wire limit R — 0

thick-wire limit R — oo

ﬁ f ™ Bnr h2 1 Bnr h2 97 ( 1)( +7) BnrR h2 —11 Bnr
E Var(r) ~ =30 S Pt In(r/R) Vir(r) ~ =553 r—R)3 Vi (1) _ﬂm—e o 75 Vir(r) ~ =95 773 r—R)3
g
'g 9 (e—1)(e+7) 2 1/3
S | fan] ~ 3. 172222 (B /R Bnr lane| ~ R+ O(Bur) |ane| ~ 0.70638 { 155 TﬂnrR lane| ~ R+ O(Bur)
o]
—
8 ar(a )~—7r ar( )N_E/Bnr ( )N_z ( )N_zﬂ nr
= gfnr g fnr IR arg(anr 3 arg(nr 1 el
E 22 B W23 B K2 2 (e=1)(7e+39) B}, R? K2 e13 2
= | Vi) ~ —ou5r 7Ry Vie(r) ~ =gt iy Vier) ~ =i tr o1 4 Vie(r) ~ —gp e 3r (€ oy
z /
1/4
%?f | ~ 0.89054 / (22570 By | ~ R |ane| ~ 0.66728 (1%% 2 32) lane| ~
—~
= 3B 3 e—1
@’ arg(ap,) ~ —5 arg(an) ~ —\/ 1= 1 arg(apy) ~ — 7% arg(ap;) ~ p— D(e )
g
B B 7e+39) B, B

Losyoo = ?}%B:r L(o0) = %,8% L'(e) = 1527?2 ((:7)) B L(e) = %,8: @(e)
=
S
g= n 1/3
5| B = i o 5577 = 1 P = (3 AT ) 877 = 45 P
=
3
& 1/4

R<p 2/(3 R>p3 _ 3 R<B _ (2 1)(7¢+39) R>>5 3e-1lg
E 4 1n(gh 7;R B 4 =/ ir Ohr 6 = (F(e e(ﬁ BhrR2) ir Z+1 P(€) Pur
S
8
g dominant limit for realistic systems dominant limit for realistic systems
=
‘E highly retarded limit highly retarded limit non-retarded limit (8 < L) highly retarded limit
(L <p) (L <p) highly retarded limit (L < 3) (L < pB)

Table 3.4: Summary of the results obtained in Chapter 2 and 3 for the scattering of ultracold atoms at a perfectly conducting and at a
dielectric cylinder in the thin-wire limit, R — 0, and in the highly retarded limit, R — oo. The behaviour of the potential V() and the
corresponding scattering lengths a is shown in the non-retarded and highly retarded limit of the Casimir-Polder potential. The characteristic
length scales 5 and L, determining the influence of retardation, are given, as well as the dominant limit for realistic atom-cylinder systems.




Chapter 4

Application to a Complex Hybrid
System

In the previous chapter the fundamental scattering process of an atom interacting with a
cylindrical geometry has been studied. This system forms the basis for understanding more
nanotube-based hybrid systems of higher complexity. Particular attention is currently be-
ing given to the fundamental system of a single carbon nanotube (CNT) interacting with a
cold gas of atoms, such as a Bose-Einstein condensate (BEC) or a thermal cloud of atoms
(see Fig. 4.1) [49-51, 74]. This is by far not a trivial problem and raises the question of
the applicability of established scattering theory and non-dynamical approaches [51].

In this chapter, we present an accurate description for the absorption of atoms from
ultracold quantum gases by a carbon nanotube (see also Ref. [50]). The approach is based
on the underlying scattering process and on the atom-cylinder Casimir-Polder potential
that has been discussed in detail in the previous chapter. Within our description, we are
able to understand and describe recent experiments, where the trap loss induced by a CNT
immersed in a thermal cloud (Section 4.2 and 4.3) and in a Bose-Einstein condensate (Sec-
tion 4.4) has been measured by Schneeweiss et al. [49]. In contrast to fitting an arbitrarily
chosen model potential to the experimental data which has been done in Ref. [49], our
parameter-free approach gives insight into the underlying physics (Section 4.5) and offers
a basis for extensions to more complex hybrid systems, which can be useful for the design
of CNT based nanodevices.

The interaction potential between an atom and an actual CNT of finite length L and
varying radius R(z) obviously differs in a non-trivial fashion from the Casimir-Polder
potential obtained in Chapter 2 for an atom facing an ideal cylinder of infinite length.
The interaction potential of such a nanotube remains in general unknown. Approximative
methods such as pairwise-summation approaches [103] can, in general, not reproduce the
correct Casimir-Polder forces [104] and are only guaranteed to become accurate in the
limit of rarefied media [51]. Variations of the interaction energy along the tube axis
are, however, small as long as the radius R(z) of the CNT varies smoothly. In this
case, the longitudinal free motion of an atom along the CNT may be separated from the
two-dimensional dynamics perpendicular to the tube, as in Chapter 3. The dynamics
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nanotube
nanochip

Figure 4.1: Schematic view of a carbon nanotube immersed into a cloud of trapped
atoms with a density n(x,y,z). The nanotube is grown on top of a nanochip and the
centre of the cloud is held at a distance h to this surface.

perpendicular to the tube is thus governed by the Casimir-Polder potential of the atom
interacting with a cylinder of radius R(z) which has been discussed in Chapter 2. The
contribution of a single perpendicular plane to the total loss rate v can be given in a
differential form

dy(z) = n(0,0,2)K2Pdz, (4.1)

with the density of particles n(z,y, z) around the nanotube, located at (x,y) = (0,0) and
the loss rate constant K2P for inelastic and reactive scattering in this two-dimensional
(2D) subsystem. The loss rate constant depends on the absorption cross section A,ps of
the underlying scattering process which has been discussed in Chapter 1. The total trap
loss v of the full system is obtained by integration over all two-dimensional planes along
the nanotube,

L
7:/0 n(0,0, 2) K2Pdz . (4.2)

Deviations from this description might be expected at the tip of the nanotube where on the
one hand, the dynamics along the tube axis is influenced by the atom-nanotube potential
and on the other hand, the potential differs from the potential of an atom facing an ideal,
infinite cylinder. However, these deviations will only give small corrections to the total
trap loss (see Section 4.2).

The Casimir-Polder potential for the interaction of an atom with a multiwall carbon
nanotube depends on the non-trivial dielectric properties e(iw) of the CNT [24, 105, 106].
For the actual nanotube used in the experimental setup of Schneeweiss et al. [49] these are
not known. In our ansatz we assume a frequency independent dielectric constant € ranging
from e = 2.5 (insulator) to € = 100 (almost metallic), which includes the range of realistic
values. Thermal contributions to the Casimir-Polder interaction become important at
distances larger than the thermal wave length A = he/(kgT') [107]. For a thin tube with
a dielectric constant in the given regime (2.5 < € < 100) and with a radius in the nanometre
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Figure 4.2: Shape of the carbon nanotube used in the experimental setup of Ref. [49].
The exact shape (blue dots) of the nanotube has been determined from an SEM (scanning
electron microscope) image (a) in Ref. [108]. Panel (b) shows the profile of the nanotube
in the z-z plane and exhibits a slightly distorted shape of the CNT, see Ref. [108]. In
panel (c) the shape of the tube has been straightened and the orange curve shows a linear
model of the shape of the nanotube. Notice that the length scale of the ordinate has been
stretched.

regime the characteristic length scales in this thin-wire limit ﬁ? <8 (R) and ﬁé% <8 (R), given

in Eq. (3.28), are smaller than the thermal wave length at room temperature, which is
AT &~ 7.6 pm. Thermal contributions are thus negligible.

Within this description, we are able to calculate the trap loss of a cloud of atoms
interacting with a CNT.

4.1 Experimental setup

In a recent experiment [49] Schneeweiss et al. measured the losses of 8"Rb atoms absorbed
by a multiwall carbon nanotube, which was grown on top of a nanochip. The CNT was
immersed into a BEC and into a cloud of thermal atoms and the trap loss v was measured
as a function of the distance h between the centre of the trap and the surface of the
nanochip (see Fig. 4.1). The nanotube used in the experimental setup has a length of
L = 10.25 yum and a diameter ranging from 275nm at the bottom to 40nm at the tip.
Figure 4.2 shows the actual shape of the carbon nanotube determined from a scanning
electron microscope (SEM) image [panel (a) in Fig. 4.2] from Ref. [108]. Panel (b) in
Fig. 4.2 shows the profile of the nanotube in the xz-z plane which exhibits a slightly
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Figure 4.3: Shift of the centre of the atom-cloud in y-direction varying with the trap-
surface distance h. The blue (orange) circles show results obtained from a fit of the
experimental data from Ref. [49] to the trap loss calculated from Eq. 4.2 for a Bose-
Einstein condensate (thermal cloud). The results from the fit are in agreement with a
simulation of the magnetic fields of the trap, which predicts an angle of 13° between the
tube axis and the ray on which the centre of the cloud lies (dashed line) [109]. The trap-
surface distance where the cloud is centred over the nanotube is h ~ 0 which is determined
by fitting the positions.

distorted shape of the CNT, see Ref. [108]. This distortion has been smoothed and the
straightened outline of the tube is shown in panel (c) together with a linear model of the
CNT (orange curve) which is used in the theoretical description,

R(z) =135.5nm — z x 0.011463. (4.3)

The carbon nanotube together with its carrier nanochip is placed on top of an atom
chip. The rubidium atoms are kept in a magnetic loff-Pichard trap, which can be moved
in all spatial directions and allows a precise positioning of the atom cloud. A detailed
discussion in presented in Refs. [108, 110]. The magnetic trapping potential is accurately
approximated by a harmonic potential [108, 110, 111],

Virap (2,1, 2) = & [w2(z = 20)? + wlly = yo)? +w2(z = 20)?] - (4.4)

around the potential minimum at (zo,yo,20). The frequencies of the harmonic trapping
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potential are [109]
wy =21 16 Hz, Wy = w, =27 [87.72Hz — h x 0.77Hz/pm] ; (4.5)

note that w, and w, slightly change with the distance h of the trap centre to the surface
of the nanochip. Furthermore, the centre of the cloud is shifted away from the tube in
y-direction with increasing distance h. The centre of the cloud lies on a ray forming an
angle of 13° with the z-axis, which has been obtained from a simulation of the magnetic
trap-fields [109] but was not included in the discussion of Ref. [49]. This shift (shown as a
dashed line in Fig. 4.3) is in agreement with a fit of the y-position of the cloud via Eq. (4.2)
to the experimental data from Ref. [49]; see Sections 4.3 and 4.4 for a detailed description
of the calculation. This fit of the y-position is shown in Fig. 4.3 where the blue (orange)
circles show results obtained for the trap loss from a Bose-Einstein condensate (thermal
cloud); in this calculation a dielectric constant of € = 5 is assumed for the nanotube.
The error bars, which result from the uncertainty of the experimental data, show that this
shift has to be accounted for in order to describe the experimental measurement accurately
within the given uncertainty. The trap-surface distance h where the cloud is centred over
the nanotube remains unknown in the experimental setup and in the simulation of the
magnetic trap-fields [109]. However, the fit shown in Fig. 4.3 indicates that the trap is
centred over the tube at h =~ 0.

The experimental data from Ref. [49] are, for both cases (BEC and thermal cloud), as-
signed to trap-surface distances measured separately with a BEC. Notice that the authors
of Ref. [49] relate their data for the thermal cloud to a different calibration [108], impos-
ing an artificial shift of 2.05 um on the trap-surface distance. This calibration is based
on a simplified classical model and neglects quantum mechanical effects like tunnelling
or quantum reflection which play a non-negligible role. This observation is supported
by Ref. [112] which accurately describes the calibration system and which remarks the
necessity to account for quantum mechanical effects.

4.2 A classical time-dependent simulation

In a first approach, we study the hybrid system of a nanotube immersed in a cloud of
thermal atoms within a classical time-dependent three-dimensional simulation, similar to
a molecular dynamics simulation. In this simulation we can precisely control the hybrid
system and verify our ansatz and the assumptions made in Eq. (4.2). A cloud of Ny = 1000
particles at constant temperature is placed in a harmonic trapping-potential. The inter-
action potential between the atoms and the tube is approximated by the highly retarded
limit of the Casimir-Polder potential for a thin cylinder from Eq. (2.30). The approxima-
tion of the thin-wire limit is appropriate as R/ < 0.04 (both for f = By, and 8 = By;)
for the given nanotube of Fig. 4.2. Furthermore, it is reasonable to apply the highly re-
tarded limit as the characteristic length scales ﬁé%«B(R) and ﬁ?<<5(R) from Eq. (3.28)
are significantly larger than the corresponding length scale of the transition zone L'(e) for
the given nanotube and a dielectric constant in the range of € = 2.5 up to ¢ = 100, see
Section 3.2.2. In contrast to the sharp cutoff indicated by Eq. (4.2), the effect of the finite
length of the tube has been taken into account by a smooth decrease of the potential at
the endings of the tube,

V(r,z) = Vieso|r; R(2)] F(r,2). (4.6)
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Figure 4.4: Atom number N as a function of time ¢ for a thermal cloud of rubidium
atoms absorbed by a nanotube for different trap-surface separations h ranging from 7 ym
up to 17 um. The radius R(z) from Eq. (4.3) and the length L of the tube are chosen
in accordance with the experimental setup from Ref. [49] and the dielectric constant is
assumed to be € = 5. An exponential decay (4.9) is fitted to the atom losses and shown
as dashed lines.

The potential Vz—o[r; R(2)] of a cylinder with infinite length (in the highly retarded thin-
wire limit) is given in Eq. (2.30); the smooth decay around the tip is described by the
z-dependent function,

. fOL [7’2 + (Z — 20)2] —7/2 dZQ

F(r,z) = ,
(r2) = 2+ (2 — 20)2] "2 dz

(4.7)

which is based on a simple pairwise summation approximation [103]. In this approxima-
tion, the interaction of the atom with a solid-state object is calculated by dividing the
nanotube into infinite elements and summing up the interaction energies of the atom with
each of these infinite elements. The interaction of an atom with an infinite element, in
the highly retarded limit, is oc —1/s7, where s is the distance of the atom to the ele-
ment. The function F(r,z) is given by the ratio of a pairwise summation potential for
an infinitesimal-thin (R — 0) cylinder of length L and for a cylinder of infinite length.
This model potential becomes exact in the limit L — oo, however, numerical tests show
that the decay of the potential at the tip of the nanotube has no significant effect on the
obtained trap loss and the assumption of a sharp cutoff gives accurate results.

The temperature T' of the cloud is kept constant in the simulation using an Andersen-
type thermostat [113], where the momenta of the atoms are repeatedly reset according
to the Boltzmann distribution at temperature T after a time ¢ that is randomly chosen
with a Poisson distribution. This method is a common and well-established procedure
in molecular dynamic simulations. In the experimental situation, the temperature of
the atom cloud stays constant over time due to cooling by surface evaporation [114] at
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Figure 4.5: Trap loss vy for a thermal cloud of rubidium atoms overlapping with a carbon
nanotube of dielectric constant € = 2.5 (blue), e = 5 (orange), and € = 100 (green). The
geometry of the tube is chosen according to Ref. [49]. The solid lines show the trap loss
obtained from a classical calculation via Eq. (4.2) and the atom-cylinder potential in the
highly retarded thin-wire limit, as it is assumed for the classical three-dimensional time-
dependent simulation (blue circles, orange triangles and green boxes and corresponding
error bars). The calculated trap loss is in good agreement with the experimental results
in [49] (grey circles and error bars) in particular for e = 2.5 and € = 5.

the surface of the nanochip. Nevertheless, the evaporative cooling at the surface of the
nanochip causes the temperature of the cloud to vary with the distance of the trap-centre
to the nanotube, which can be approximated linearly [108]

T =124nK + h x 4.64nK/pm . (4.8)

Numerical tests show that the van der Waals interaction of the atoms in the cloud with
each other has no significant effect on the decay and can thus be neglected.

According to the Langevin model (see Section 1.2) the atoms are removed from the
cloud when they reach the surface of the nanotube. Figure 4.4 shows the total number N
of atoms in the cloud evolving in time ¢ for different distances h of the cloud to the bottom
of the nanotube on a logarithmic scale. The radius R(z) from Eq. (4.3) and the length L
of the nanotube are chosen in accordance with the experimental setup and the dielectric
constant is € = 5. Temperature and trap frequencies are chosen according to Egs. (4.5)
and (4.8).

As expected from the experimental observation, the number of atoms in the cloud
shows an exponential decay,

N(t) = Noe 7. (4.9)

By fitting Eq. (4.9) with Ny = 1000 to the numerical outcome of the simulation (dashed

lines in in Fig. 4.4) we obtain a loss rate -y, which is shown in Fig. 4.5 for different trap-



74 4. Application to a Complex Hybrid System

surface distances h and for a dielectric constant € = 2.5 (blue circles), ¢ = 5 (orange
triangles), and € = 100 (green squares). A meaningful estimate for the error of the decay
rate v from the classical simulation is obtained by generating many virtual simulation
samples based on the simulated decay [108, 115]. These samples are randomly distributed
around the exponential fit obtained from the simulation with the width of the spread is
chosen to be the standard deviation of the simulated system from the exponential decay.
Analysing and fitting these virtual samples (for the present analysis 25 samples are gener-
ated for each simulation) gives a standard deviation o of the decay constant v obtained
from the exponential fit. In accordance with Ref. [49] the error is estimated by Ay = 20,
corresponding to a 95% confidence interval.

4.3 Absorption of a thermal cloud

The trap loss for a thermal cloud of rubidium atoms is shown in Fig. 4.5 and in Fig. 4.7.
The density of the atoms in the thermal cloud is given by a Gaussian distribution [116],

1 22 P 2
n(r,y,2) = ———+——exp |—— ———= — — | , 4.10
(@y,2) (2m)3/20,040, P [ 202 202 20? (4.10)

with the o; given by the trap frequencies w;, the mass i of a ’Rb atom and temperature

T of the cloud,
kgT
o= 4| 25 (4.11)
Hw;

The velocity of the atoms in a two-dimensional plane, perpendicular to the nanotube, is
given by a Maxwell-Boltzmann distribution in two dimensions,

2

v v

ny(v) = —3 €Xp [—T‘Q} , (4.12)
v v

with o, given by the temperature T of the cloud from Eq. (4.8) and by the mass pu of the

87Rb atoms,
S L2 (4.13)
7

For the experimental setup of Ref. [49], the values of o; and o, are o, ~ 27pum, o, =
o, ~ 5.5pum and 0, ~ 3mm/s with a weak dependence on the trap-surface distance h
according to Eqgs. (4.5) and (4.8). For the scattering of projectiles with a uniform velocity,
the loss rate constant is simply given by the product of velocity v and absorption cross
section Aups [117]. Taking into account the Maxwell-Boltzmann distribution, the loss rate
constant of a thermal cloud of atoms is given by the thermal average

K3P = (01 dans(v1)) (4.14)

where v is the velocity in the plane perpendicular to the nanotube and A5 is the ab-
sorption cross section of an atom scattered at a cylinder or infinite length and radius R(z).
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4.3.1 Classical approach

In the classical Langevin model (see Section 1.2) the absorption cross section is given by

Alass — 9b, [see Eq. (1.35)]. The critical impact parameter b is determined by
d
Ver(r0,bc) = E and —Veg(r,be)| =0, (4.15)
dr r=rg

with the energy E of the incoming particle and the (classical) effective potential

A2 b2
Veff = W + V(’I“) = Eﬁ + V(T’), (4.16)
given by the centrifugal potential A?/(2ur?) and the interaction potential V(7). For the
special case of an attractive homogeneous potential V(r) = —C,/r®* (with a > 2) the
critical impact parameter b, is [118].
<b(a)>a _Caafy 2\ (4.17)
¢ B 2 a ' '

For the asymptotic Casimir-Polder potential of a thin-wire in the highly retarded limit of
the atom-cylinder interaction, given in Eq. (2.30), the critical impact parameter is

(4.18)

b _[9 (- 1)(Te+39) 12 B R 1/6
¢ 107 e+1 pu? wv? ’

which represents a characteristic atom-surface distance in the classical absorption process.
For the system studied in Ref. [49], R < b, which supports the assumption that the
thin-wire limit is appropriate.

Figure 4.5 shows the trap loss v as a function of the trap-nanochip distance h for
the absorption of a cloud of thermal atoms by a nanotube with a dielectric constant of
e = 2.5 (blue), € = 5 (orange), and € = 100 (green). The geometry of the tube is chosen
according to Ref. [49], see Eq. (4.3). The trap loss obtained within the classical calculation
via Eqs. (4.2), (4.14), and (4.18) perfectly reproduces the corresponding results from the
three-dimensional classical simulation in Section 4.2 (blue circles, orange triangles, green
squares and corresponding error bars). This supports the assumptions made for the cal-
culation of the trap loss v in Eq. (4.2) and confirms the validity of our approach, which
is crucial for any further application of this method. Furthermore, the calculated trap
loss is in good agreement with the experimental results from Ref. [49] (gray circles and
error bars) in particular for € = 2.5 and € = 5 while € = 100 seems to overestimate the
experimental results.

4.3.2 Quantum mechanical approach

Treating the absorption process quantum mechanically, the absorption cross section Aups
for the single-atom scattering process in two dimensions, which enters the loss rate con-
stant K2P in Eq. (4.14), has already been given in Eq. (1.23). The absorption cross section
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Figure 4.6: Absorption cross section for rubidium atoms scattered at a cylinder with
a radius R = 50nm and a dielectric constant of ¢ = 5. The black curve shows the full
absorption cross section A, including all contributing partial waves. The blue and green
curves show the individual contribution of each partial wave from m = 0 (s wave) up to
|m| = 4 (g wave). The orange region in the background shows the velocity distribution
perpendicular to the tube (in arbitrary units) for a cloud of 100 nK.

Aabs in two dimensions for rubidium atoms scattered by a cylinder of infinite length, radius
R = 50nm and dielectric constant € = 5 is illustrated in Fig. 4.6. The cross section has
been calculated using the full interaction potential, accurately represented via Eq. (2.34),
which is close to the highly retarded, thin-wire limit (see discussion in Section 4.2). Similar
results are obtained from both shape functions (2.36) and (2.37) and were averaged for
the calculation of A,hs. For a cloud with T'= 100 nK, angular momenta up to the g wave
(|m| = 4) contribute significantly to the absorption cross section Aups for the scattering
at a cylinder with a radius of 50 nm, while higher partial waves (|m| > 4) are negligible.
This is in contrast to simpler (classical) models as used in Ref. [49].

Figure 4.7 shows the trap loss v for a thermal cloud of rubidium atoms absorbed by
a carbon nanotube as a function of the trap-surface distance h. The trap loss obtained
via Eq. (4.2) is based on a quantum mechanical calculation of the absorption cross section
Aabs for a cylinder with a frequency-independent dielectric constant € = 2.5 (dot-dashed
line), ¢ = 5 (solid line), and ¢ = 100 (dashed line). The geometry of the cylinder is
chosen in accordance with the one used in Ref. [49], see Eq. (4.3). The experimental
data from Ref. [49] (full circles and error bars) are well reproduced by the calculated trap
loss within the presented range of static dielectric constants from e = 2.5 (insulator) up
to € = 100 (almost metallic). Although the dielectric properties of a multiwall carbon
nanotube remain in general unknown, variations of a frequency-independent dielectric
constant € in this wide range of realistic values lead to rather small variations of the
calculated results compared to the experimental error bars. Therefore a fit of a dielectric
constant or a detailed knowledge of the dielectric properties is not essential to describe the
experimental results in Ref. [49]. Explicit values of the trap loss v are given in Tab. 4.1.



4.3 Absorption of a thermal cloud

7

N
LN — &=100
4 \ L
"7 L PR £=5
= 50 \ = e=25
- [ O
g, I
o
e Tl
b [
1
0;‘ Il L L L Il L L L L Il L Il I
8 10 12 14 16 18

trap—surface distance 4 [um ]

Figure 4.7: Trap loss « for a thermal cloud of rubidium atoms overlapping with a carbon
nanotube. The calculated trap loss (4.2) for a dielectric constant € = 2.5 (dot-dashed line),

e = 5 (solid line) and ¢ = 100 (dashed line) reproduces the data given in Ref. [49] (full
circles and error bars) within this wide range of dielectric constants. Variations of € in this

range lead to rather small variations of the calculated results compared to the experimental

error bars.

Table 4.1: Trap loss «y for a thermal cloud of rubidium atoms overlapping with a carbon
nanotube at various trap surface distances h (see Fig. 4.1). The experimental data are
taken from Ref. [49] and compared to a calculation via Eq. (4.2) for a cylinder with a
dielectric constant ranging from € = 2.5, ¢ = 5 up to ¢ = 100.

v [1/3]

B[] Ref. [49] €=2.5 e=5 e = 100
8.65 3.4244 +1.243 2.5084 2.8344 3.6952
9.65 2.0978 =+ 0.61297 1.9664 9.2992 2.8946

10.65 1.5151 =+ 0.41402 1.5293 1.7283 2.2477

11.65 1.0572 =+ 0.18854 1.1832 1.3373 1.7354

12.65 0.82402 + 0.23747 0.91318 1.0321 1.3358

13.65 0.74406 + 0.209 0.70439 0.79616 1.0273

14.65 0.49852 + 0.1151 0.54399 0.61488 0.79071

15.65 0.39782 + 0.07116 0.42119 0.47611 0.61001

16.65 0.19073 4 0.06343 0.32732 0.37002 0.47223

17.65 0.08692 + 0.03413 0.25553 0.28889 0.36718
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The comparison of the experimental data with the full quantum mechanical calculation
and with the classical calculation shows a good agreement in both cases. The behaviour
of the thermal cloud at T &~ 100 nK can thus be considered to be essentially determined
by classical dynamics.

4.4 Absorption of a Bose-Einstein condensate

In contrast to the classical behaviour of a thermal cloud, the scattering and absorption
of a Bose-Einstein condensate at a carbon nanotube shows an extremely non-classical
behaviour. The BEC is described by a macroscopic wave function in the ground state of
the trap and the presence of an absorbing impurity inside of the cloud leads to a local
depletion of its density. As a result, the condensate readjusts with the characteristic speed
of sound vs [119], which causes a flux toward the nanotube [120]. Due to the symmetry
in the region close to the nanotube this flux is symmetric around the tube axis. Only s
waves (m = 0) reflect this symmetry and contribute to the absorption cross section A,ps.
An additional factor of 27, accounting for the isotropy of the incoming flux, needs to be
considered and the loss rate constant thus is

K2 = 2m oA (0y) (4.19)
where )\QTS:O) is the s-wave contribution to the absorption cross section in Eq. (1.23). The

density of the BEC in a harmonic trap is given by a Thomas-Fermi distribution [119],

15 1 i \?
n(x’y’Z)ZS_WiTEFTJFT;F Max |1 — Z (ﬁ) ,0] (4.20)

1=x,Y,2 ?

with the characteristic Thomas-Fermi radii,

.
IS L (4.21)
ey

depending on the mass p of an atom, on the frequencies w; of the trap, given in Eq. (4.5),
and on the chemical potential

1 2/5
= 3 <15h2u1/2wawywza) , (4.22)

where N is the total number of atoms in the Bose-Einstein condensate (N = 10* for the
BEC in Refs. [49, 108]). The scattering length a describes the two-body interaction of the
87Rb atoms inside of the condensate; a = 5.77nm for 3’Rb [4]. The Thomas-Fermi radii
are 73" ~ 16 um, ry " = ¥ ~ 3.2 ym for the experimental setup in Ref. [49] and show
a weak dependence on the trap-surface distance h according to Eq. (4.5). The speed of
sound in the Bose-Einstein condensate at the position of the nanotube is

47rh?
vy = \/ WMQ a n(0,0, z) , (4.23)
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Figure 4.8: Trap loss v for a Bose-Einstein condensate of rubidium atoms overlapping
with a carbon nanotube. The calculated trap loss (4.2) for a dielectric constant ¢ = 2.5
(dot-dashed line), e = 5 (solid line) and € = 100 (dashed line) reproduces the data given
in [49] (full circles and error bars) within this wide range of dielectric constants. Variations
of € in this range lead to rather small variations of the calculated results compared to the
experimental error bars.

depending on the density of the BEC, n(x,y, z), from Eq. (4.20). As the number of atoms
in the condensate decreases during the absorption process, the Thomas-Fermi radii and
the speed of sound do not stay constant over time, which leads to an algebraic instead of
an exponential decay for the loss of atoms from the condensate [120]. These corrections
and possible fluctuations due to collective oscillations [49, 51] lie within the experimental
error bars. The influence of the nanochip on the trap loss can be neglected for distances
h larger than 5 um (see Fig. 4 of Ref. [49]).

Figure 4.8 shows the trap loss v for a Bose-Einstein condensate of rubidium atoms
absorbed by a carbon nanotube as a function of the trap-surface distance h. The blue
lines show the trap loss obtained via Egs. (4.2) and (4.19) for a cylinder with a static
dielectric constant € = 2.5 (dot-dashed line), ¢ = 5 (solid line), and ¢ = 100 (dashed
line). The geometry of the cylinder is chosen according to Ref. [49], see Eq. (4.3). The
experimental data from Ref. [49] (full circles and error bars) are in good agreement with
the trap loss from Eq. (4.2) within the presented range of static dielectric constants from
e = 2.5 (insulator) up to e = 100 (almost metallic). Similar to the absorption of a cloud
of thermal atoms (see Section 4.3), variations of € in this range of realistic values lead to
rather small variations of the calculated results compared to the experimental error bars.
A detailed knowledge of the dielectric properties of the nanotube is thus not essential to
describe the experimental results. Explicit values of the trap loss v are given in Tab. 4.2.
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Table 4.2: Trap loss v for a Bose-Einstein condensate of rubidium atoms overlapping
with a carbon nanotube at various trap surface distances h (see Fig. 4.1). The experimental
data are taken from Ref. [49] and compared to a calculation via Eq. (4.2) for a cylinder
with a dielectric constant ranging from € = 2.5, ¢ = 5 up to € = 100.

o T
Ref. [49] €=25 e=5 e =100
5.65 58.4919 +£17.0006 52.2367 54.6366 09.9341
6.15 60.5244 =+ 13.9536 48.1012 50.3691 55.5232
6.65 61.6800 =+ 19.4241 43.6912 45.8092 00.7757
7.15 35.2399 £10.7969 39.0479 40.9981 45.7287
7.65 41.4942 £ 5.9427 34.2219 35.987 40.429
8.15 29.5464 + 7.8557 29.2726 30.836 34.9323
8.65 30.6964 £+ 3.0729 23.8647 25.1851 28.7894
9.15 18.2332 + 3.0207 17.6544 18.6616 21.5089
9.65 13.0319 + 1.9203 11.3777 12.0453 13.9939
10.15 6.37320 £ 1.2982 0.81326 6.16358 7.2186
10.65 2.20710 £ 0.8167 1.75676 1.86547 2.20359
11.15 0.66406 £ 0O 0.0154563 0.0164388 0.0195998
11.65 0.02674 £ 0.1837 0 0 0

4.5 Influence of retardation

The fundamental question of the influence of retardation on a scattering process has al-
ready been addressed in Section 3.2. The nature of the low-energy atom-cylinder scattering
process has been characterised by the quantity g (p), with Eg(p) < 1 (€g > 1) if the scat-
tering process is dominated by the non-retarded (highly retarded) limit. For the present
system the characteristic value {r(p) ranges from {r(p) ~ 10 (e = 2.5 and R = 20nm) up
to €r(p) ~ 100 (e = 100 and R = 137.5nm). The scattering process is thus dominated
by the highly retarded limit of the Casimir-Polder interaction, as it has been assumed in
the classical description of the hybrid system in Section 4.2. However, it remains unclear
whether the effect of retardation becomes important in the description of the trap loss in
a realistic hybrid system.

4.5.1 Influence of retardation on the absorption of a BEC

The absorption of a Bose-Einstein condensate by a nanotube is a highly non-classical
process and due to the symmetry of the scattering process only s waves contribute to the
absorption cross section and thus to the trap loss v. The s-wave contribution to the absorp-
tion cross section is related to the reflection probability Pr for the s wave via Eq. (1.23).
For s waves the effective potential Veg(r) in Eq. (1.11) is purely attractive and reflection is
classically forbidden. However, the reflection probability, in particular in the low-energy
regime, is governed by quantum mechanical effects and the reflection probability reaches
unity for £ — 0. If k£ becomes much larger than the inverse characteristic length scale 1/
of the potential, or equivalently if k3 becomes larger than unity, the reflection probability
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Figure 4.9: Influence of retardation on the trap loss v for a Bose-Einstein condensate
of rubidium atoms. The loss rates has been calculated via Eq. (4.2) based on the full
Casimir-Polder potential (blue curves) and on the non-retarded van der Waals potential
only, where retardation effects are neglected (green curves). The shaded area shows loss
rates for dielectric constant of the nanotube in a regime from ¢ = 2.5 (dot-dashed line)
up to € = 100 (dashed line). The solid line shows the trap loss for a dielectric constant
of ¢ = 5. The differences between the results obtained by using the full potential or the
van der Waals potential are rather small and cannot be resolved with in the experimental
data [49] (full circles).

vanishes.

For the present system, the velocity of the incoming wave is given by the speed of
sound vg ~ 8mm/s which corresponds to k£ ~ 1.1/um. In the non-retarded limit of the
atom-cylinder interaction kS, ~ 243 while in the highly retarded limit k3, =~ 4.8. In both
cases k[, > 1 and the reflection probability Pg is small. Therefore almost all incoming

flux is absorbed and the absorption cross section reaches its limit, )\SSS:O) — 1/k, given
in Eq. (1.23). This is true in particular for the non-retarded limit where k is significantly
larger than the inverse characteristic length 1/0;.

Figure 4.9 shows the trap loss v from a Bose-Einstein condensate obtained for the
non-retarded limit of the Casimir-Polder interaction (green lines) as well as from the full
Casimir-Polder potential (blue lines). The results, that have been obtained using only the
highly retarded limit of the interaction (not shown in Fig. 4.9), are almost indistinguishable
from the results obtained by using the full potential. For the non-retarded limit of the
potential, where k3, > 1, the absorption cross section )\SSS:O) is close to its 1/k limit and
thus the trap loss shows almost no dependence on the Casimir-Polder potential and thus on
the dielectric properties of the cylinder. In the highly retarded limit where 1 < kB, < kBur
the reflection probability is slightly larger compared to the non-retarded case and the trap
loss thus depends slightly on the dielectric constant . However, in both cases )\SSS:O) is
close to its 1/k limit and the differences between the loss rates obtained from the van der
Waals potential and from the full Casimir-Polder potential are rather small. Thus, the
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Figure 4.10: Influence of retardation on the trap loss v for a thermal cloud of rubidium
atoms. The loss rate v has been calculated via Eq. (4.2) based on the full Casimir-
Polder potential (blue curves) and on the non-retarded van der Waals potential only,
where retardation effects are neglected (green curves). The shaded area shows loss rates
for dielectric constant of the nanotube in a regime from ¢ = 2.5 (dot-dashed line) up to
e = 100 (dashed line). The solid line shows the trap loss for a dielectric constant of ¢ = 5.

The experimental data [49] (full circles) clearly deviate from the prediction calculated with
the van der Waals potential only.

effect of retardation is not resolvable by the experimental measurement (black circles and
error bars) in the given range of dielectric constants 2.5 < e < 100.

The difference between the results obtained from the non-retarded and from the full
or highly retarded potential is more pronounced for a smaller speed of sound vg, which
leads to an increasing reflection probability Pr. This can be realized by exchanging the
atom-type and lowering the density of the condensate.

4.5.2 Influence of retardation on the absorption of a thermal cloud

For a thermal cloud the (mean) velocity of the atoms is even larger than the speed of
sound in the Bose-Einstein condensate and the (quantum) reflection probability of the s
wave is almost zero. However, for the absorption of a thermal cloud several partial waves
contribute to the absorption cross section (see Section 4.3). For |m| > 1 the corresponding
effective potential Vog(r) in Eq. (1.11) is no longer purely attractive, and the reflection
probabilities are > 0, even for k8 > 1. The reflection probabilities and therefore the
absorption cross section A,ps thus depends crucially on the Casimir-Polder interaction
potential.

Figure 4.10 shows the trap loss v for a thermal cloud obtained from the non-retarded
limit of the Casimir-Polder interaction (green lines) as well as from the full Casimir-Polder
potential (blue lines). In contrast to the BEC, the non-retarded van der Waals potential
fails to describe the trap loss (green lines), within a wide range of dielectric constants
from e = 2.5 (dot-dashed line), e = 5 (solid line) up to e = 100 (dashed line). The results
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obtained with the full Casimir-Polder potential (blue lines) match the experimental data
(black circles and error bars) within the same range of dielectric constants. The trap loss
obtained from the highly retarded limit of the Casimir-Polder potential (not shown in
Fig. 4.10) is almost indistinguishable from the result from the full interaction potential.

The trap loss of a thermal cloud presented in Fig. 4.10 shows that retardation effects
can play a crucial role in realistic hybrid systems. In the system studied by Schneeweiss et
al. [49] the scattering process is dominated by the highly retarded limit of the interaction
and retardation effects can be resolved within the experimental measurements. Further-
more, it is feasible to explore the transition regime or even the non-retarded limit of the
atom-cylinder interaction. For helium atoms in the metastable 2'S state and a cylinder
with R = 32nm (for e = 100) or R = 131 nm (for e = 2.5) the transition zone between the
non-retarded and highly retarded limit of the Casimir-Polder interaction governs the scat-
tering process, see Eq. (3.30). Nanotubes of these dimensions (or even with lower radii)
are accessible for experimental setups and offer a practicable tool to probe the different
regimes of the Casimir-Polder potential.

Summary

In this chapter, an accurate parameter-free ab-initio description of the trap loss in a
hybrid system consisting of a single carbon nanotube immersed in an ultracold atomic
quantum gas has been presented. An accurate description of this hybrid system is achieved
with a proper description of the underlying scattering process (see Chapter 3) together
with the exact Casimir-Polder potential of an atom facing an infinite dielectric cylinder
(see Chapter 2). Our approach has proven its validity within a three-dimensional, time-
dependent classical simulation of a thermal cloud of atoms, where we have precise control
over the hybrid system and could verify the assumptions made in our ansatz (Section 4.2).

A classical and quantum mechanical calculation of the trap loss from a thermal cloud
of atoms, has been found to be in good agreement with recent experiments by Schneeweiss
et al. [49] (Section 4.3). The trap loss from a Bose-Einstein condensate, which shows an
extremely non-classical behaviour, is obtained within a quantum mechanical calculation of
the absorption cross section and leads to perfect agreement with the experiments results
of Ref. [49] (Section 4.4).

Furthermore, it has been shown that the non-retarded van der Waals potential fails
to reproduce the loss rates of a thermal cloud of atoms and that retardation effects that
are accounted for in the Casimir-Polder potential need to be considered. For a BEC, the
influence of retardation effects on the trap loss are rather small an not resolvable within
the experimental uncertainty of Ref. [49] (Section 4.5).

In contrast to previous attempts [49, 51] to describe the results of Ref. [49], the present
approach gives insight into the underlying processes, offers a basis for extensions to more
complex hybrid systems and therefore promotes a deeper understanding of hybrid systems,
which is essential for the design of future nanodevices.






Chapter 5

Conclusions and Outlook

In this thesis a detailed analysis of the fundamental hybrid quantum system consisting of
ultracold atoms interacting with a cylindrical geometry has been presented. It has been
shown that a proper description of this seemingly simple system is a non-trivial problem
due to the two-dimensional nature of the scattering process and due to the intricacy of
the Casimir-Polder interaction potential. A reliable approach needs to take into account
both, the reduced dimensionality of the system and the exact interaction potential.

The scattering and absorption in an (effectively) two-dimensional system is described
within the two-dimensional scattering theory, which has been presented in Chapter 1.
The scattering of atoms at solid-state structures can be separated into elastic dynamics
and reactive processes, constituting an elastic and an inelastic channel. The concept of
an elastic cross section and absorption cross section has been introduced to describe the
scattering in these channels. Particular attention has been given to the low-energy regime,
where the two-dimensional scattering process differs significantly from its better-known
one- or three-dimensional counterparts. The low-energy scattering process is dominated
by the scattering of the s wave and can be characterised by the complex scattering length
a. The dynamics of the scattering process at large distances is governed by the long-
range Casimir-Polder potential. At short atom-surface separations the interaction becomes
complicated and remains in general unknown. However, inelastic or reactive collisions
are practically certain in this regime. This short-range behaviour is properly described
by the Langevin model [58] leading to total absorption at the surface. In a quantum
mechanical picture this is ensured by the use of incoming boundary conditions. This allows
an accurate, model-independent description of the complicated short-range behaviour.

The long-range Casimir-Polder interaction between a polarisable atom and a cylindri-
cal geometry, which was first derived by Nabutovskii et al. [48], has been presented in
Chapter 2. The crucial difference at large atom-surface separations between the inter-
action of an atom with a dielectric (insulating) cylinder or with a perfectly conducting
(metallic) tube has already been emphasised by Barash and Kyasov [84]. However, we
have shown that the potential derived in Ref. [48] accurately describes both cases as long
as the limit of perfect conductivity is treated properly. Particular attention has been given
to the non-retarded and to the highly retarded limit of the Casimir-Polder potential where
retardation can either be neglected or is dominant. In these limits the potential substan-
tially simplifies and allows an accurate numerical evaluation, as shown in Appendix A.
Furthermore, the behaviour of the Casimir-Polder potential at large and small distances
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has been discussed. In the limit of short atom-surface separations (r — R), the curvature
of the cylinder becomes unimportant and the potential resembles the well-known interac-
tion of an atom facing a plane surface. At large distances of the atom from the cylinder,
the interaction potential shows a significantly different behaviour for the interaction of
atoms with a perfect conductor and with a dielectric cylinder. In a realistic situation,
the Casimir-Polder potential undergoes a smooth transition from the non-retarded limit
at small distances to the highly retarded limit at large distances. A proper description of
the full potential has been presented within a generalised shape-function approach. This
method has been shown to be reliable and has successfully been applied to the Casimir-
Polder potential of a ground-state hydrogen atom interacting with a perfectly conducting
cylinder.

These first two chapters form the basis for a dependable approach to describe the
scattering and absorption of ultracold atoms at a nanowire, taking properly into account
the two-dimensional nature of the scattering process as well as the exact Casimir-Polder
interaction. This scattering process has been analysed in Chapter 3. The scattering
and absorption of ultracold atoms has been studied by analysing the behaviour of the
complex scattering length a, which characterises the scattering process in the low-energy
regime. The scattering length has been calculated numerically and analytical expressions
in the limit of a thin and of a thick wire have been derived. In the limit of large radii,
R — o0, the real part of the scattering length is determined by the position of the surface
of the cylinder while the imaginary part resembles the one-dimensional scattering process
of an atom reflected from a plane surface, governed by the corresponding Casimir-Polder
potential. For small radii, R — 0, the behaviour of the scattering length reflects the crucial
dependence of the asymptotic behaviour of the Casimir-Polder potential on whether the
cylinder is dielectric or perfectly conducting. For a dielectric cylinder, the modulus |a| of
the scattering length is o< (R?f,:)"/? in the non-retarded, and o (RfBy)"/? in the highly
retarded limit. In contrast, the low-energy scattering of atoms at a perfect conductor
shows a logarithmic dependence on the radius R; the modulus |a| of the scattering length
is, in leading order, approximately proportional to [In(R/By)]~" in the non-retarded, and
to [In(R/Bn)]~ /2 in the highly retarded limit.

In a realistic scenario, the Casimir-Polder potential undergoes a smooth transition
between the non-retarded limit at short distances to the highly retarded limit at large
atom-surface separations. We have introduced the quantity {r(p), which characterises the
nature of the atom-cylinder scattering process in the low-energy regime. In the thick-wire
limit, the scattering process resembles the reflection of an atom from a plane surface, and
is thus governed by the highly retarded limit [25, 28]. This still holds for a thin, perfectly
conducting cylinder. However, for a dielectric tube the scattering process undergoes a
smooth transition between the highly retarded limit and the non-retarded limit and can
be dominated by the latter for sufficiently small radii. The key to understanding this
behaviour of the scattering process is given by the comparison of the characteristic length
scales of the transition zone with the characteristic length scales of the asymptotic be-
haviour of the potential, which crucially depend on whether the cylinder is dielectric or
perfectly conducting.

Furthermore, we have compared the diffraction of light to the scattering of ultracold
atoms at a cylindrical geometry. Both scattering processes are described by the scattering
of (electromagnetic or matter) waves. However, the latter case is governed by the Casimir-
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Polder dispersion force acting between the atom and the solid-state surface, while the
former one is determined solely by the boundary conditions at the surface of the cylinder.
For a thick cylinder, R — oo, the scattering of matter waves resembles the diffraction of
an electromagnetic wave and thus constitutes the electromagnetic limit of the scattering
process. In contrast, the scattering of atoms at a thin cylinder, R — 0, differs significantly
from the electromagnetic result and is thus called the non-electromagnetic limit.

The thorough understanding of the fundamental scattering process of a single atom
scattered at a cylindrical geometry forms the basis for understanding hybrid systems of
higher complexity. In Chapter 4 the results obtained in the previous chapters have been
applied to the quantum hybrid system constituted by a carbon nanotube immersed in a
cold quantum gas, such as a Bose-Einstein condensate or a thermal cloud of atoms. A
dependable approach has been derived, which accurately relates the trap loss coefficient
of this hybrid system to the absorption cross section of the underlying scattering process.
This approach has proven its validity within a three-dimensional, time-dependent classical
simulation of a thermal cloud of atoms, which gives precise control over the hybrid system
and where the assumptions made in our approach have been shown to be valid. A quantum
mechanical calculation of the trap loss is found to be in perfect agreement with recent
experimental results obtained by Schneeweiss et al. [49] for a thermal cloud of 8"Rb atoms,
governed mainly by classical dynamics, and for a Bose-Einstein condensate, which shows
an extremely non-classical behaviour.

Particular attention has also been given to the influence of retardation on the observed
trap loss. Consistently with the results of Chapter 3, the absorption is governed by the
highly retarded limit of the Casimir-Polder potential. Nevertheless, the effect of retarda-
tion cannot be resolved by the absorption of the Bose-Einstein condensate. However, the
non-retarded van der Waals potential fails to reproduce the trap loss of a thermal cloud of
atoms and retardation effects that are accounted for in the Casimir-Polder potential need
to be considered. The well-founded approach to describe this system gives insight into the
underlying processes and therefore promotes a deeper understanding of hybrid systems of
higher complexity.

Outlook

The present work has focused on the fundamental hybrid system of an atom interacting
with a cylindrical geometry and on the corresponding scattering and absorption processes.
This forms the basis for a thorough understanding and for the design of nanowire based
hybrid quantum systems of higher complexity.

We have shown that the radius of the cylinder can serve as a control knob to tune the
regime of the interaction potential, which dominates the scattering process, in particular
for an insulating tube. This offers a practicable tool to study the Casimir-Polder potential
at various distances. It has been shown that the experimental results of Ref. [49] give
insight into the highly retarded limit of the interaction; however, the transition zone or
the non-retarded limit can be studied in similar setups.

Furthermore, the scattering of atoms at a nanotube forms the basis for an accurate
description of the diffraction of matter waves at a nanograting, which is used for the
diffraction and interference of atoms or large molecules [13, 14]. We have shown the
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existence of an electromagnetic and a non-electromagnetic limit for the scattering at a
single nanowire. Therefore, for an array of nanotubes forming a diffraction grating, the
diffraction of atoms in the electromagnetic limit resembles the diffraction of light, while
in the non-electromagnetic limit, it might serve as further a tool to study the properties
of the Casimir-Polder interaction and its influence on the diffraction of matter waves at
nanogratings.

Recent progress in the field of microfabrication techniques has brought forth meso-
scopic structures with a mechanical degree of freedom, such as a nanomechanical oscil-
lator [121]. This leads to a new type of quantum hybrid systems, coupling an atomic
system to a mechanical degree of freedom [21]. Hybrid systems of a single atom or an
atomic sample, coupled to a mechanical oscillator via Casimir-Polder dispersion forces
have been proposed [40] and the excitation of a Bose-Einstein condensate by an oscillating
nanotube has already been shown, using a simplified model potential [51]. On the basis
of the present work an accurate description of the scattering and absorption of atoms by
an oscillating nanowire can be developed.

A thorough understanding of the scattering and absorption of ultracold atoms by
nanotubes, which has been studied in the present work, forms the basis for extensions
to various nanowire-based hybrid systems of higher complexity, which is essential for the
design of future nanodevices.



Appendix A

Accurate Treatment of the
Atom-Cylinder Potential

The Casimir-Polder interaction between an atom and a cylindrical geometry, which has
been discussed in detail in Chapter 2 has, in general, a very complicated form [see
Eq. (2.2)]. Nevertheless, it can be substantially simplified in the non-retarded (see Chap-
ter 2.2) and highly retarded limit (see Chapter 2.3). An explicit evaluation remains a
non-trivial task and requires a sophisticated treatment in order to reproduce the correct
behaviour for all atom-surface distances 0 < d < oc.

A.1 Accurate treatment of the non-retarded limit

For any explicit evaluation of the interaction potential (2.14) in the non-retarded limit, the
summation over n, from —oo to 4+o00, needs to be truncated. From the low-argument be-
haviour of the modified Bessel functions, it follows that the terms with n # 0 in Eq. (2.14)
behave as 1/ 02" for large distances of the atom to the surface of the cylinder, o — oo,
with ¢ = 7/R. The n = 0 term behaves as 1/0? for an dielectric cylinder with a finite
dielectric constant € and behaves as 1/1In(p) in the case of a perfectly conducting tube. At
small distances of the atom to the surface, p — 1 or equivalently d/R — 0, each term in
the sum in Eq. (2.14) behaves as (d/R), regardless of the index n.

The truncation of the summation over n in Eq. (2.14) to a finite range from —nyax to
+Nmax, approximates the non-retarded potential exactly up to terms of O(1/g*F2mmax) for
large distances but is a poor approximation close to the surface of the cylinder where all
terms contribute equally. A detailed discussion of the consequences of such a truncation,
in particular for the scattering of ultracold atoms, is given in Ref. [42, 47, 95] for the
special case of a perfectly conducting cylinder. An improvement suggested in Ref. [92], for
a perfectly conducting cylinder, involves explicitly retaining the n = 0 term and treating
the residual sum with the help of the uniform large-order approximation for the Bessel
functions [59]. Here we generalise this ansatz for a cylinder with arbitrary dielectric
properties. In contrast to Ref. [92], we allow an arbitrary finite number of terms to be
retained in the sum in Eq. (2.14) and apply the large-order approximation to the residual
sum containing terms with |n| > nyax. Hence, the non-retarded atom-cylinder potential
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Notice that the terms in Eq. (2.14) only depend on n? = |n|? and the residual contribution
thus is,
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Using the uniform large-order approximation of the Bessel functions; see Egs. (9.7.7)-
(9.7.11) of Ref. [59]
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The residual sum contribution in Eq. (A.3) thus simplifies to
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where A is a function of the integration variable { and of the ratio o = r/R,
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The integration and the summation in Eq. (A.5) commute, which allows an explicit eval-
uation of the sum. This yields
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Figure A.1: Numerical calculation of the non-retarded atom-cylinder potential for a
perfectly conducting cylinder (left panel) and for a cylinder with dielectric constant € = 5
(right panel). The solid black line shows the result of the approximation via Egs. (A.1) and
(A.9), where the contributions in Egs. (2.14) and (2.15) are included exactly for |n| < 5,
while terms with higher |n| are approximated via the uniform large-order behaviour of the
Bessel functions according to Egs. (A.7) and (A.10). The dashed black line shows the cor-
responding result for npax = 1 which is almost indistinguishable from the approximation
with npax = 5. The orange dashed (solid) line shows results obtained when the sum in
Egs. (2.14) and (2.15) is truncated after npmax = 1 (Pmax = 5) and the contribution from
In| > 1 (Jn| > 5) are neglected. Notice that the expression V. (r)R3/B,: depends only on
the dimensionless ratio d/R and the dielectric constant e.

The function J, is given by
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This defines a hierarchy of approximations to the exact atom-wire potential with levels
characterised by the index npyax up to which the terms in the sum in Eq. (2.14) are included
exactly. For the case of a dielectric cylinder, the lowest meaningful index is nma.x = 1, as
the terms in with n = 0 and |n| = 1in Eq. (2.14) are of the same O(1/0?) at large distances.

In the special case of a perfectly conducting cylinder, € — co (see also Ref. [42, 47, 95]),
the approximation of the full potential in Eq. (A.1) simplifies to

B2 By [ T oo 1 I(z1)
Ve%oo _ _ ' For d 2-'n
nr (T) 2,& 43 { Z /0 rx WKn(xl)x

N=—Nmax

o) + (Q”—x +1) Ki{om)] + Xssf::oo<r>} - (A9)

1
and the residual contribution yields

Xs;:?:oo<r>:3<9—l> /0 A€ To(v, €, 0)\/1 1 €. (A.10)

™ 4%
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Figure A.2: Absolute value of the relative deviation of various approximations to the
atom-cylinder potential Vj; in the non-retarded limit for a perfectly conducting cylinder
(left panel) and a dielectric cylinder with e = 5 (right panel). The black dashed line is the
result of approximations (A.1) and (A.9), when only the n = 1 contributions are included
exactly, while the sums are continued to higher |n| via the uniform large-order approxi-
mation of the Bessel functions according to Egs. (A.10) and (A.7). The orange dashed
(solid) line shows the result obtained by truncating the sum after nyax = 1 (Nmax = 5)
and neglecting contributions from |n| > 1 (|n| > 5).

In contrast to the potential of a dielectric cylinder, Eq. (A.9) is also applicable for 1y, = 0
and the leading contribution to the potential (2.15), given solely by the n = 0 term, is
proportional to 1/(r31n g) for large values of o.

The approximations (A.1) and (A.9) smoothly converge to the exact potentials (2.14)
and (2.15) in the limit nyax — 0o. At large distances, d/R — oo, the behaviour of the
non-retarded potential, is treated exactly up to and including therms of O(1/g**?"max), In
contrast to a simple truncation where terms with |n| > ny.x are neglected, the behaviour
of the potential close to the surface, d/R — 0, is also included properly, as all terms —
all of them are of O(d/R) — are taken into account exactly (|n]| < nmax) or approximately

(In] > nmax)-

Figure A.1 shows numerical results for the non-retarded potential V;,;(r) obtained in
various approximations for a perfectly conducting cylinder (left panel) and for a cylinder
with a dielectric constant e = 5 (right panel), which gives typical results. For ny.x > 2, the
potential, accurately approximated via Eqgs. (A.1) and (A.9), has converged to a relative
accuracy better than 1% in the whole range 0 < d/R < co. Even for ny.x = 1, Egs. (A.1)
and (A.9) approximate the exact potential quite well, as shown by the dashed black line
in Fig. A.1, and are almost indistinguishable from the results obtained for higher nax,
e.g., Nmax = 5 (solid black line in Fig. A.1). However, truncating the sum in Eqs. (2.14)
and (2.15) without including the contributions of the residual terms even approximately
gives a poor approximation, in particular if only contributions up to ny,a.x = 1 are included.
Increasing the number of terms included exactly seems to give better results (solid orange
line in Fig. A.1 with nyax = 5). Nevertheless, neglecting the contribution of terms with
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|n| > nmax always fails to approximate the potential close to the surface as all terms
contribute equally in this limit. To illustrate this, Fig. A.2 shows the relative deviation,

o VnarpprOX(T) - Vnr(r)

AVye(r) = V() (A.11)
nr
of various approximations V"' ®*(r) to the exact non-retarded atom-cylinder potential

Vi (r) for a perfectly conducting cylinder (left panel) and for a dielectric cylinder (right
panel). The dielectric constant of the cylinder is chosen to be € = 5. The relative deviations
of the approximations in Eqgs. (A.1) and (A.9) are on the order of a few percent for
Nmax = 1 (black dashed line) and better than 1% for ny.x = 5 (black solid line) in the
whole range 0 < d < oo. Neglecting contributions from terms with |[n| > nyax gives
a rather poor approximation, in particular for nmy,.x = 1 where the relative deviations
approache unity (solid orange line). By increasing the number of included terms the
relative deviation decreases for large values of d/R but always reaches unity for d/R — 0.
Thus the behaviour of the non-retarded potential close to the surface of the cylinder is
not reproduced correctly by truncating the sum in Egs. (2.14) and (2.15) at a finite nyax,
while an approximate treatment of the terms with |n| > npax according to Egs. (A.1)
and (A.9) describes the potential accurately in the whole range 0 < d < oo, in particular
for d/R — 0 where the approximations (A.1) and (A.9) become exact (see black lines in
Fig. A.2).
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A.2 Accurate treatment of the highly retarded limit

For an explicit evaluation of the Casimir-Polder potential (2.22) in the highly retarded
limit, the sum over n, from —oo to +00, needs to be truncated. Analysing the behaviour
of the contributing terms of the sum in Eq. (2.22) shows a behaviour similar to that of
the non-retarded case. For large distances of the atom to the surface of the cylinder,
0=1/R — oo, terms with n # 0 in Eq. (2.22) behave as 1/0?™. The n = 0 term behaves
as 1/0? for an dielectric cylinder with a finite dielectric constant e and behaves asymptot-
ically as 1/1n(p) in the case of a perfect conductor. At small atom-surface separations,
0 — 1 or equivalently d/R — 0, each term in the sum in Eq. (2.22) behaves as (d/R),
regardless of the index n.

A truncation of the infinite sum in Eq. (2.22) to a finite range from —nmax t0 +7max
is needed to enable an explicit evaluation of the highly retarded potential. This truncated
potential is exact up to and including terms of O(1/g>+?"max) for large distances. Close
to the surface of the cylinder all terms contribute equally and neglecting the truncated
terms is a poor approximation.

We follow the idea presented for the proper approximation of the non-retarded limit,
presented in Appendix A.l, and truncate the sum in Eq. (2.22) to a finite range from
—Nmax 10 +Nmax While the residual sum, containing terms with |n| > nyax is included
via the uniform large-order behaviour of the modified Bessel functions [59]. Doing so, the
highly retarded atom-cylinder potential is

h2 25}1 Ky 2 2 (<0 1
Vhr(’l“) = 2,[1, 7T2d2 Z / dq/ 60K )K (Qzl){q (51 +6O)

—TNmax

+ (2200 — ¢°6) <£—z§ +1+ <I>i(az1)>
+4n o gia? 23 (e — 1)®u(021) [Pr(21) — V(2 )]}+X"m"}- (A.12)

By changing the integration variables to x = z/n and n = ¢/n and using the uniform large-
order behaviour of the modified Bessel functions, Eq. (A.4a) - (A.4c), the contribution of
the residual sum simplifies to

§ n” (1 701>
X Thmax d d S \20T 0
hr 22/ X/ nn /1_|_£2{ 78_{_,}/8
52?1<Xiﬂ_nim>+4mX%$f—1y¢1+9Zg+§Wf} (A13)
0

0 50
dg
where v = npyax + 1 and the following abbreviation have been introduced,

70
2 2 2 2
- Vi +e
gzﬁj%Tiv &:_%TTZ’ (A.14a)

771=L=<J1/n7 X1=L=3€1/“7 (A-14b)

o—1 o—1

_|_
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%0 =~ Dant(e = DI + m&g/o)* (P12 + Uar) (€T1p + o) (A.14c)
’Y? ~ [Xlﬁ%(ﬁ - 1)]2 + [77152'5/9]2 (@12 + @21) (6@12 — @21) s (A.14d)
Y ~ Dani(e = DI + m&é/o? (P1a — War) (W12 + Ua1) | (A.14e)
Wi ~ 52‘12;%2 ; (A.14f)

k

which do not depend on the summation index n. The quantity A is a function of the of
the ratio o = r/R and & which depends on the integration variable x and 7,

2
_ 2. 2(Vire-yiee) 1+/1+€
A€ 0) =0 <1+m> : (A.15)

The integration and the summation in Eq. (A.13) commute and an explicit execution of
the sum gives

2 0 1
Xy = / dx/ dn J3(v,€, 0) 1+£2{ (% —>
52;2— ! <X27_? _ 2%) 252 (-1 +§2\£/21 +8%/¢? } (A.16)

w9
The function J3 is given by,
(v, &, 0 Z n3A" =

AY <A (1 +3v 4312 — 31/3) + A? (4 — 602 + 3;/3) — M- 1)3 n y3>
(1-4)*

_|_

(A.17)

This defines a hierarchy of approximations of the exact highly retarded atom-cylinder po-
tential with levels characterised by npax up to which the terms in Eq. (2.22) are included
exactly. The lowest useful approximation in the case of a dielectric cylinder is obtained
for npmax = 1 as the n = 0 term and the terms with |n| = 1 are of the same order.

In the special case of a perfectly conducting cylinder, e — oo the approximation of the
full potential in Eq. (A.12) simplifies to

Vi (r) = - Zﬁ@{ 3 [ ( 0 ko) + (s +2) Ke)|

N=—Nmax

I"/(Zl) K/Q(gzl) + _n2 K2(0z)| | 4 Ximex . (A.18)
Koy [ gt hiESoe
and the residual contribution yields

o—1\"
T

/ T de B e e VITE, (A.19)

0
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Figure A.3: Numerical calculation of the highly retarded atom-cylinder potential for a
perfectly conducting cylinder (left panel) and a cylinder with dielectric constant € = 5
(right panel). The solid black line shows the result of the approximation via Eqs. (A.12)
and (A.18), where the contributions in Egs. (2.22) and (2.23) are included exactly for
|n| < 5 while terms with higher |n| are approximated via the uniform large-order be-
haviour of the Bessel functions according to Egs. (A.16) and (A.19). The dashed black
line shows the corresponding result for nu,.x = 1 which is almost indistinguishable from
the approximation with ny.x = 5. The orange dashed (solid) line shows results obtained
when the sum in Egs. (2.22) and (2.23) is truncated after nmax = 1 (nmax = 5) and the
contribution from |n| > 1 (|n| > 5 ) are neglected. Notice that the expression Vi, (r)R?/Bu:
depends only on the dimensionless ratio d/R and the dielectric constant e.

In contrast to the case of a dielectric cylinder, Eq. (A.18) is also applicable for ny.x = 0
and the leading contribution to the potential (2.23), given solely by the n = 0 term, is
proportional to 1/(r*1In g) for large values of o.

For increasing values of npayx, the approximations (A.12) and (A.18) converge smoothly
to the exact potentials (2.22) and (2.23) in the limit nyax — 0o. The exact potential is
treated exactly up to and including terms of O(1/g?*?"max) at large distances (d/R — o)
and Egs. (A.12) and (A.18) reproduce the behaviour of the potential close to the surface
(d/R — 0) properly, as contributions of all terms are considered at least approximately.

Figure A.3 shows numerical results for the atom-cylinder potential Vi, (r) in the highly
retarded limit obtained in various approximations for a perfectly conducting cylinder (left
panel) and for a dielectric cylinder with e = 5 (right panel). The approximation (A.12)
and (A.18) of the highly retarded potential has converged to a relative accuracy better
than 1% even for nyax = 1 (dashed black line) and is essentially indistinguishable from
results obtained for higher nmax, €.8., Tmax = 5 (solid black line). Truncating the sum in
Egs. (2.22) and (2.23) without including the contributions of the residual terms approx-
imately gives a rather poor approximation, shown by the dashed orange line (np.x = 1)
and the solid orange line (npax = 5).

Although the result for ny.x = 5 seems to give better results an approximate treat-
ment where contributions from terms with |n| > nyax are neglected cannot reproduce the
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Figure A.4: Absolute value of the relative deviation of various approximations to the
atom-cylinder potential V4, in the highly retarded limit for a perfectly conducting cylinder
(left panel) and a dielectric cylinder with € = 5 (right panel). The black dashed line
is the result of approximations (A.12) and (A.18), when only the n = 1 contributions
are included exactly, while the sums are continued to higher |n| via the uniform large-
order approximation of the Bessel functions according to Eqgs. (A.16) and (A.19). The
orange dashed (solid) line shows the result obtained by truncating the sum after nmax = 1
(nmax = D) and neglecting contributions from |n| > 1 (|n| > 5).

potential close to the surface correctly. This is illustrated in Fig. A.4 where the relative
deviations (A.11) of various approximations of the highly retarded limit are shown. While
the deviations of the proper approximations in Eqgs. (A.12) or (A.18) are below 1% for
Nmax = 1 (dashed black line) and for my.x = 5 (solid black line), the result of a simple
truncation, where higher terms with |n| > npyax are neglected, gives an deviation of order
unity for nmax = 1 (dashed orange line). Including more terms (e.g., nmax = 5, solid
orange line) reduces the deviation but still fails in the limit d/R — 0 where the relative
deviation approaches unity.
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