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1 Introduction

In the previous chapter on weak and strong duality, we have seen that given any nonlinear pro-
gramming problem, referred to as the primal problem with equality and inequality constraints

Minimize
subject to

f(x)

g(x) ≤ 0

h(x) = 0

x ∈ X ,

with f : Rn → R, g : Rn → R
m, h : Rn → R

l and X ⊆ R
n,

many other, closely related, nonlinear programming problems exist. Our analysis has focused
on the so called Lagrangian dual problem, given by

Maximize
subject to

Θ(u, v)

u ≥ 0,

with Θ(u, v) = inf {f(x) + uTg(x) + vTh(x) : x ∈ X}.

This kind of dualization accommodates the constraints of the primal problem linearly into the
objective function of the dual problem by the use of Lagrangian multipliers u and v. Note
that given a primal nonlinear programming problem, several Lagrangian dual functions can
be formulated, depending on which constraints are handled by g(x) ≤ 0 and h(x) = 0 and
which ones are incorporated into the feasible set X . Thus, dependent on the right design choice,
dualization is a flexible and powerful mathematical tool.

Duality It has been shown that under suitable convexity assumptions (e.g. Slater’s constraint
qualifications) strong duality holds, meaning that the objective value of the primal and dual pro-
blem are equal at optimality f(x�) = Θ(u�, v�). Without convexity assumptions weak duality
reasons that the dual objective Θ(u, v) is always a lower bound to the optimal primal objective
f(x�). The primal-dual interrelation allows to solve the primal problem in a roundabout way
by finding a solution to one of its dual counterparts. As the dual function Θ(u, v) is not expli-
citly available, this work-around comes at the cost of having to solve a minimization problem
with respect to x ∈ X at each point where Θ(u, v) = inf {f(x) + uTg(x) + vTh(x) : x ∈ X}
is evaluated. For completeness and as a reminder, we give the two important duality theorems
without proofs [1].
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Theorem 1.1 (Weak Duality) Let x be a feasible solution to the primal problem (x ∈ X ,
g(x) ≤ 0 and h(x) = 0) and (u, v) be a feasible solution to the dual problem (u ≤ 0), then

f(x) ≥ Θ(u, v).

Theorem 1.2 (Strong Duality) Let X be a nonempty convex set in R
n, let f : R

n → R

and g : Rn → R
m be convex and h : Rn → R

l affine (h(x) = Ax − b). If there exists an
x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0 and 0 ∈ inth(X ), where h(X ) = {h(x) : x ∈ X}, then

inf {f(x) : x ∈ X , g(x) ≤ 0,h(x) = 0} = sup {Θ(u, v) : u ≥ 0}

Simplifications In order to simplify the notation on the following pages the equality cons-
traints h(x) = 0 are dropped and the general primal problem is rewritten as

Minimize
subject to

f(x)

g(x) ≤ 0

x ∈ X ,

with f : Rn → R and g : Rn → R
m.

This notation comes without loss of generality as each scalar equality constraint of the form
h(x) = 0 can be reformulated by using the inequality constraints h(x) ≤ 0 and −h(x) ≤ 0.
Therefore, equality constraints could easily be incorporated into g(x) ≤ 0. Note that in prac-
tical implementation such a reformulation can cause numerical problems.

Consequently, the considered dual problem in simplified notation is given by

Maximize
subject to

Θ(u) = inf {f(x) + uTg(x) : x ∈ X}
u ≥ 0

with f : Rn → R and g : Rn → R
m.
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Since the primal problem can also be a maximization problem (in the remainder, if not announ-
ced differently, only primal minimization problems are considered) the notation is repeated for
that kind of form.

Maximize
subject to

f(x)

g(x) ≤ 0

x ∈ X ,

with f : Rn → R and g : Rn → R
m.

The according dual problem becomes

Minimize
subject to

Θ(u) = sup {f(x)− uTg(x) : x ∈ X}
u ≥ 0

with f : Rn → R and g : Rn → R
m.

Note that the sign of the Lagrangian multipliers has changed from plus to minus and the dual
problem has turned from a max-min to a min-max problem.

Notation Finally, for proofs and further discussions, the set of optimal solutions to the Lag-
rangian dual subproblem inf {f(x) + uTg(x) : x ∈ X} is introduced

X (u) = {x : x minimizes f(x) + uTg(x) with x ∈ X}.

Outline In Section 2 we motivate this chapter. Section 3 inspects the dual function and its
properties thoroughly. We discuss concavity and differentiability of the dual function. Then
we outline the concept of subgradients and the subdifferential and derive ascent directions.
Subsequently, Section 4 and 5 study viable strategies to solve the dual problem by means of
algorithms. In particular, we introduce and analyze a method based on subgradients (Section 4)
as well as the cutting plane algorithm (Section 5), which uses a piecewise linear approximation
of the dual function. At the end of each method, we consider the problem of recovering the
primal variables. Finally, we apply duality in the context of primal recovery for convex problems
and the cutting plane method.
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2 Dual Problem - Motivation and Difficulties

Before starting our analysis we want to motivate this section by giving reasons for solving
the primal optimization problem indirectly by one of its Lagrangian dual problems. Not each
argument might be clear or straightforward at the moment, but should become comprehensible
during the discussion on the next pages.

• The dual problem is always concave.

• For the former reason each local maximum is a global maximum.

• The dual problem may have simpler constraints than the primal problem.

• The dual problem may have smaller dimension than the primal problem.

• Weak duality guarantees the dual objective Θ(u) (at any point u) to be a lower bound
for the optimal primal objective f(x�). This can be useful in certain applications, e.g.
branch-and-bound.

• With the exact solution u� of the dual problem and strong duality, all optimal solutions
x� can be found by minimizing L(x,u�) with respect to x ∈ X .

• If the dual is solved approximately by a near-optimal multiplier ũ and xũ minimizes
L(x, ũ) with respect to x ∈ X , then under strong duality xũ also solves the perturbed
primal problem with changed inequality constraints g(x) ≤ g(xũ). Moderate constraint
violations may be acceptable in practical scenarios.

Although these benefits make maximization of the dual problem an attractive undertaking,
there are also problems concerning the solution of the dual problem.

• Evaluation of the dual function Θ(u) at any u requires a minimization of L(x,u) with
respect to the unconstrained set x ∈ X . This makes the method intractable if the minimi-
zation of L(x,u) is not possible in closed form or is in general not simple. Note that the
initial primal minimization problem is replaced by a problem of maximizing a minimum,
a so called max-min problem.

• The dual function is not differentiable for many types of problems.

• There may be additional minimizers of L(x,u�) which are not elements of the primal-
feasible set X . This complicates the recovery of primal-feasible solutions after having
solved the dual problem with an optimal multiplier u�.
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3 Properties of the Dual Function

In order to introduce methods for solving the dual problem we have to study the basics of the
Lagrangian dual function. We state some important properties and theorems concerning the
dual function which have strong impact on the appropriate choice of problem solving methods
presented subsequently.

Concavity of the Dual Function The following theorem states that the Lagrangian dual
function is concave, even under moderate restrictions on the functions f(x) and g(x). This
ensures that any local maximum solves the dual problem globally.

Theorem 3.1 (Dual Concavity) Let X be a nonempty and compact set in R
n. Let f : Rn → R,

g : Rn → R
m be continuous functions. Then the dual function

Θ(u) = inf {f(x) + uTg(x) : x ∈ X}

is concave.

Proof Since the functions f(x) and g(x) are assumed to be continuous and the set X is
compact, the dual objective Θ(u) takes a finite value at every finite point u. For the proof
assume two Lagrangian multipliers u1,u2 ∈ R

m and a scalar λ ∈ [0, 1].

Θ(λu1 + (1− λ)u2) = inf {f(x) + (λu1 + (1− λ)u2)
Tg(x) : x ∈ X}

= inf {λ(f(x) + uT
1 g(x)) + (1− λ)(f(x) + uT

2 g(x)) : x ∈ X}
≥ λ inf {f(x) + uT

1 g(x) : x ∈ X}+ (1− λ) inf {f(x) + uT
2 g(x) : x ∈ X}

= λΘ(u1) + (1− λ)Θ(u2)

This is exactly the definition of a concave function.

Note that the proof holds for all u ∈ R
m without any non-negativity restrictions.

Dual Differentiability Lets assume for now, that the dual function is differentiable and the
gradient ∇Θ(u) is available at any point u. A first approach in order to solve the dual function
would be to start at a suitable starting point u0. The gradient ∇Θ(u0) is an ascent direction if it
is nonzero. Note that if it is zero, we have already found the maximum. Nevertheless, it is reaso-
nable, in a first iteration k = 1, to go from u0 into the direction d1 = ∇Θ(u0)/ ||∇Θ(u0)|| �= 0

in order to improve the dual objective Θ(u0) → Θ(u0 + s1d1). The right step-size sk in each
iteration k could be determined by a line search on Θ(u) over the direction dk, i.e. maximizing
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Θ(uk−1+ skdk) over sk ∈ R+. Observe that the new point uk−1+ skdk is not allowed to violate
the non-negativity constraints u ≥ 0. We will see how to handle this problem later.

It should be clear now that differentiability is an useful property for dual solving methods
and algorithms. The following theorem states under which conditions the dual function is dif-
ferentiable. A proof is given in the appendix.

Theorem 3.2 (Dual Differentiability) Let X ⊂ R
n be a nonempty compact set. Let f : Rn →

R, g : Rn → R
m be continuous functions. Let ū ∈ R

m be a certain multiplier and X (ū) be the
singleton {x̄}. Then Θ(u) is differentiable at ū with gradient ∇Θ(ū) = g(x̄).

Subdifferential and Subgradients As already mentioned in the motivation section, most
optimization problems don’t have a differentiable dual function and consequently the gradient
∇Θ(u) may not exist. In order to deal with these kinds of problems, the concept of subdif-
ferential and subgradients is introduced. These are crucial for finding the solution of the dual
function as they allow characterization of ascent directions which we will study later on.

Definition (Subgradient of a Concave Function) Let the function f : Rn → R be concave.
Then ξ is called a subgradient of f at x̄ ∈ R

n if

f(x) ≤ f(x̄) + ξT(x− x̄) for all x ∈ R
n . (1)

In other words: A concave function is always upper bounded by a linear hyperplane with normal
vector ξ touching f(x) at x̄. For completeness, we repeat the definition for convex functions.

Definition (Subgradient of a Convex Function) Let the function f : Rn → R be concave.
Then ξ is called a subgradient of f at x̄ ∈ R

n if

f(x) ≥ f(x̄) + ξT(x− x̄) for all x ∈ R
n .

Definition (Subdifferential) The collection of all subgradients of f(x) at x is called the sub-
differential ∂f(x).

Theorem 3.3 (Convexity of the Subdifferential) The subdifferential ∂f(x) of a convex or con-
cave function f(x) at x is a convex set.
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Proof We multiply (1) with α and (1− α)

αf(x) ≤αf(x̄) + αξT1 (x− x̄) (2)

(1− α)f(x) ≤(1− α)f(x̄) + (1− α)ξT
2 (x− x̄). (3)

By adding (2) and (3), we obtain

f(x) ≤f(x̄) + (αξT
1 + (1− α)ξT2 )(x− x̄).

Consequently, with α ∈ [0, 1], ξ3 = (αξ1+(1−α)ξ2) is also a subgradient and therefore element
of the subdifferential ∂f(x).

f(x)

X

��

x̄

f(x) + ξ
T

1(x − x̄)

f(x) + ξ
T

2(x − x̄)

f(x) + ξ
T

3(x − x̄)

ξ
T

2(x − x̄)

x

f(x̄)

(a) Subgradients of f(x) at x̄

∂f(x)

X
x̄ x

|

(b) Subdifferential ∂f(x) of f(x)

The next theorem states how to obtain a subgradient of the dual function at ū.

Theorem 3.4 (Subgradient of the Dual Function) Let X be a nonempty compact set in R
n.

Let the functions f : Rn → R, g : Rn → R
m be continuous, so that for any ū ∈ R

m, the
set of minimizers for the dual subproblem X (ū) is not empty. If xū ∈ X (ū), then g(xū) is a
subgradient of Θ(u) at ū.

Proof To proof the theorem, assume a certain multiplier ū and let xū ∈ X (ū) be one of the
minimizers of L(x, ū). Then it holds true, that
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Θ(u) ≤ f(xū) + uTg(xū)

= f(xū) + uTg(xū) + ūTg(xū)− ūTg(xū)

= f(xū) + ūTg(xū) + (u− ū)Tg(xū)

= Θ(ū) + (u− ū)Tg(xū).

With the definition for subgradients of a concave function and the result above it follows that
g(xū) is a subgradient of Θ(u) at ū and the proof is complete.

Note that this is true for all u ∈ R
m, no matter if u ≥ 0, for which there exists a minimizer

xu to the Lagrangian dual subproblem inf{L(x,u) : x ∈ X}.

Θ(u)

ū
��

ξ̄1

ξ̄2

∂Θ(u)

Figure 1: Subgradients and Subdifferential of Θ(u) at ū

Dual Directional Derivatives and Ascent Directions In order to develop methods to
improve the dual objective, it is essential to have an idea how ascent directions can be derived
from the subdifferential ∂Θ(u), the set of all subgradients at u.

Definition (Ascent Direction) A vector d is called an ascent direction of Θ(u) at ū if there
exists a δ > 0 such that

Θ(ū+ λd) > Θ(ū), ∀λ ∈ (0, δ).
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As we are interested in improving the dual objective, i.e., going into a direction with positive
rate of change, we will need the directional derivative of the dual function. Let us first revisit
the general definition of the directional derivative.

Definition (Directional Derivative) The directional derivative of a function f : Rn → R at x̄

along the vector d, denoted by f ′(x̄,d), is given by the limit

f ′(x̄,d) = lim
λ→0+

f(x̄+ λd)− f(x̄)

λ

if it exists.

Existence of the Directional Derivative As the dual function need not be differentiable,
the existence of the directional derivative seems not trivial. Although it may not be central for
the discussion, the next lemma clears the situation and guarantees the general existence of the
directional derivative for concave functions. A proof can be found in the appendix.

Lemma 3.5 (Existence of the Directional Derivative) Let f : Rn → R be a concave function.
Consider any x̄ ∈ R

n and a nonzero direction d ∈ R
n. Then the directional derivative f ′(x̄;d)

of f at x̄ exists.

Dual Directional Derivative In order to derive the directional derivative of the dual func-
tion Θ(u) from the subdifferential, the following theorem (for a proof see the appendix) is
given:

Theorem 3.6 (Directional Derivative of the Dual Function) Let X be a nonempty and
compact set in R

n. Let f : Rn → R, g : Rn → R
m be continuous functions. Let ū,d ∈ R

m and
∂Θ(ū) be the subdifferential of Θ(u) at ū. Then the directional derivative of Θ(u) at ū in the
direction d satisfies

Θ′(ū;d) = inf{dTξ : ξ ∈ ∂Θ(ū)}.

Using this result, it follows that a vector d is an ascent direction of Θ(u) at u, if and only if
inf{dTξ : ξ ∈ ∂Θ(u)} > 0, that is, if and only if

dTξ ≥ δ for each ξ ∈ ∂Θ(u)

holds true for some δ > 0.
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Corollary 3.7 This shows that each subgradient ξ makes an angle of less than 90 degrees with
all ascent directions dascent.

This result will be very important for the subgradient method that are going to discuss in a
moment.

Θ(u)

ū
��

ξ̄1

ξ̄2

∂Θ(u)

d

Θ′(ū;d)
Cone of ascent directions

Figure 2: Ascent Directions and Directional Derivative Θ′(ū;d) of Θ(u) at ū

Steepest Ascent Direction In order to solve the dual problem in a simple and fast way, it
would be good to know the direction of steepest ascent at each point u.

Definition A vector d̄ is called a direction of steepest ascent of Θ(u) at u if

Θ′(u, d̄) = max
||d||≤1

Θ′(u;d). (4)

In order to derive the direction of steepest ascent, we perform the maximization of (4)

max
||d||≤1

Θ′(u,d) = max
||d||≤1

inf {dTξ : ξ ∈ ∂Θ(u)}

≤ inf {max
||d||≤1

dTξ : ξ ∈ ∂Θ(u)}

= inf {||ξ|| : ξ ∈ ∂Θ(u)}
=

∣∣∣∣ξ̄∣∣∣∣
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where ξ̄ is the subgradient out of the subdifferential ∂Θ(u) with the smallest Euclidean norm.
This result already contains the proof of the next theorem.

Theorem 3.8 (Steepest Ascent of the Dual Function) Let X be a nonempty and compact set
in R

n and f : Rn → R, g : Rn → R
m continuous. The direction of steepest ascent d̄ of Θ(u) at

ū is given as

d̄ =



0 if ξ̄ = 0
ξ̄

||ξ̄|| if ξ̄ �= 0.

The fact that the whole set of subgradients is needed in order to determine the direction with
highest positive rate of change, makes it in general intractable to formulate algorithms that
replace the missing gradient by the direction of steepest ascent.

Θ(u)

ū
��

ξ̄1

ξ̄2

∂Θ(u)

ξ̄

Figure 3: Direction of Steepest Ascent ξ̄ of Θ(u) at ū
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4 Subgradient Methods

As for some interesting cases the dual problem is not differentiable, we are going to discuss a
method to solve the dual problem based on subgradients. It is important to observe that by
minimizing L(x, ū) for a certain Lagrangian multiplier ū with xū ∈ X (ū) yields a subgradient
g(xū) (Theorem 3.4) without additional effort. As the subgradient g(xū) makes an angle less
than 90 degrees with all ascent direction it need not be an ascent direction, but it holds that a
small move from ū along any subgradient at ū will decrease the distance to the set of maximizers
U� of the dual function Θ(u).

General Method The simplest type of subgradient method is given by

uk+1 = Π+(uk + skg(xuk
))

where the stepsize sk is a positive scalar, xuk
is the minimizer of L(x,uk) and Π+(u) is the

projection onto the set of feasible multipliers u ≥ 0.

Definition The projection ΠS(u) from u ∈ R
n onto a general set S ⊆ R

n is defined as

ΠS(u) = {y : y minimizes ||y − u|| : y ∈ S}.

The projection Π+(u) onto the set of vectors with non-negative entries u ≥ 0 is performed
easily by modifying the entries [u]i of u in the following way

[u]i =

{
[u]i if [u]i ≥ 0

0 if [u]i < 0.

Note that the new multiplier uk+1 may not improve the dual objective for all values of the
stepsize s, i.e., at some iteration k, it may be the case that

Θ(uk+1) < Θ(uk) ∀sk > 0.

Nevertheless, the distance to an optimal solution will be reduced if the stepsize sk is sufficiently
small.
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u ≥ 0

��u� ��
uk

gk

uk + skgk �� uk+1

Level sets of Θ(u)

Figure 4: General Subgradient Method

Adequate Stepsize Rule We derive a rule for the stepsize selection, that guarantees the
reduction of the distance to an optimal solution in each iteration. Our goal can be formulated as

||uk+1 − u�|| < ||uk − u�|| . (5)

Using the following equation that holds with equality

||uk + skgk − u�||2 = ||uk − u�||2 − 2sk(u
� − uk)

Tgk + (sk)
2 ||gk||2

and the subgradient inequality

(u� − uk)
Tgk ≥ Θ(u�)− Θ(uk),

we obtain

||uk + skgk − u�||2 ≤ ||uk − u�||2 − 2sk(Θ(u�)−Θ(uk)) + (sk)
2 ||gk||2 . (6)

In order to satisfy (5), the sum of the last two terms in (6) has to be negative, i.e.,
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(sk)
2 ||gk||2 < 2sk(Θ(u�)− Θ(uk)).

Therefore, the range of appropriate stepsizes with respect to our goal of reducing distance to
the optimal solution is

0 < sk <
2(Θ(u�)− Θ(uk))

||gk||2

and we can state the following theorem without further proof:

Theorem 4.1 (Range of Adequate Stepsize) If uk is not optimal, then for every dual optimal
solution u� we have

||uk+1 − u�|| < ||uk − u�||

for all stepsizes sk in the range of

0 < sk <
2(Θ(u�)− Θ(uk))

||gk||2
. (7)

One suggestion that can be derived from the above theorem is to use a stepsize according to

sk =
(Θ(u�)− Θ(uk))

||gk||2
.

This rule selects the stepsize to be in the middle of the range (7). It is obvious that the stepsize
has to be chosen depending on the difference to the optimal dual objective and the norm of
the gradient in the current iteration. Unfortunately, the optimal dual objective is generally
unknown and, therefore, we have to use an appropriate estimate of Θ(u�) or select the stepsize
by using a simpler scheme.

Constant Stepsize Rule The first practical stepsize rule which is discussed is a constant
stepsize rule, where we select sk to be the same for all iterations, i.e., sk = s, ∀k, with some
s > 0. In order to remove ||gk|| in (7) we assume that the norm ||g(x)|| is bounded over the set
x ∈ X by some constant C, i.e., ||gk|| ≤ C, ∀k. This is reasonable under the assumption that
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g(x) is a continuous function and the set X is compact. Then in the sense of (7) it holds, that
the distance to the optimal dual solution u� decreases, if

0 < sk <
2(Θ(u�)− Θ(uk))

C2
, ∀k, (8)

since

0 ≤ 2(Θ(u�)− Θ(uk))

C2
≤ 2(Θ(u�)−Θ(uk))

||gk||2
, ∀k.

With the reformulation of (8), it is equivalently to say that the distance to u� decreases if uk

belongs to the level set

{u : Θ(u) < Θ(u�)− sC2

2
}.

As a result, the coefficient sC2

2
determines how close we can get to the optimal dual solution with

the suggested constant stepsize rule. A solution arbitrarily close to the optimum is obtained
by choosing s to be sufficiently small with s > 0. To complete the section, the convergence
theorem for the constant stepsize method is given:

Theorem 4.2 (Constant Stepsize Rule - Convergence) Let {uk} be the sequence generated by
the subgradient method with constant stepsize s > 0.

If Θ(u�) = ∞, then

lim
k→∞

supΘ(uk) = Θ(u�).

If Θ(u�) < ∞, then

lim
k→∞

supΘ(uk) ≥ Θ(u�)− sC2

2
.

Proof see [2, p. 473].
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Diminishing Stepsize Rule Attaining an accurate solution with a constant stepsize, requi-
res to choose s very small. Unfortunately, a small stepsize will result in a slow progress of the
method and so it is common to start with moderate stepsize values sk, which are successively
reduced to a small s > 0. One possibility is to apply the diminishing stepsize rule, where the
stepsizes sk satisfy

lim
k→∞

sk = 0,

∞∑
k=0

sk = ∞. (9)

This choice allows a fast initial progress, the ability to travel infinitely far for a solution and
attain convergence by a small stepsize sk after some iterations. An example of such a stepsize
that satisfies (9) is the modified harmonic stepsize rule

sk =
β

k + γ
with 0 < β, γ < ∞. (10)

The next theorem guarantees convergence of the subgradient method with diminishing stepsize:

Theorem 4.3 (Diminishing Stepsize Rule - Convergence) Assume that the set of optimal dual
solutions U� is not empty and bounded. The stepsize sk is such that

lim
k→∞

sk = 0,
∞∑
k=0

sk = ∞.

Then for the sequence {uk}, generated by the subgradient method with a diminishing stepsize
rule, we have

lim
k→∞

d(uk,U�) = 0, lim
k→∞

Θ(uk) = Θ(u�).

Proof see [2, p. 479].

Primary Recovery A possibility to recover the variables of the primal problem while sol-
ving the dual problem with the modified harmonic stepsize rule (10), is to average over all
intermediate solutions xk. Therefore, the averaged subproblem solution in each iteration k is
obtained by



Dual Problem Algorithms 19

x̂k =
1

k

k−1∑
i=0

xi.

Theorem 4.4 (Convergence of x̂k to the Primal Solution Set) Suppose that the set
{x ∈ X |g(x) < 0} is nonempty, let the subgradient method with modified harmonic stepsize be
applied to the dual problem and let X � be the solution set of the primal problem, then

lim
k→∞

d(x̂k,X �) = 0.

Proof see [3, Proof Theorem 2].
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5 Cutting-Plane Method

The Master Problem A second method for solving the dual problem is called cutting-plane
algorithm. In each iteration k, a piecewise linear approximation of the dual function is maximi-
zed. The approximation simplifies the dual problem to a linear program with a finite number
of constraints (solvable with the simplex method) referred to as the master program

Maximize
subject to

z

z ≤ f(xi) + uTg(xi) i = 0, . . . , k − 1

u ≥ 0.

where the points x0, . . . ,xk−1 are points in X . Note that without restriction to a finite number
of points, the problem would be an optimization problem with infinite number of constraints
and intractable.

The Subproblem Let (zk,uk) be the optimal solution to the master problem. In order to
check if the algorithm can be terminated, consider the following problem, referred to as the
subproblem,

Minimize
subject to

f(x) + uT
k g(x)

x ∈ X .

Let xk ∈ X (uk) be the appropriate optimal minimizer of the subproblem, so that

Θ(uk) = f(xk) + uT
k g(xk).

If zk = Θ(uk), then the maximizer uk is an optimal solution to the Lagrangian dual problem,
and the method terminates. Otherwise, for u = uk there exists a x = xk that violates the
definition of the dual function Θ(u) being the infimum of L(x,u). Thus, the dual problem was
oversimplified in the master program. To strengthen the representation, the constraint

z ≤ f(xk) + uTg(xk) (11)

is added to the master-program by considering the point xk ∈ X (uk). Subsequently the program
is solved again with the extended set of constraints. Obviously, the new constraint (11) does
not allow the current point (zk,uk) to be a solution anymore. Hence, this point is now cutted
away in the following iterations.
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Graphical Interpretation The cutting plane method can be interpreted as a tangential
approximation technique. By definition we have

Θ(u) ≤ f(x) + uTg(x) for x ∈ X

and the hyperplane

{(u, z) : u ∈ R
m, z = f(x) + uTg(x)},

for any fixed x ∈ X , is an upper bound for the function Θ(u). Therefore, the master program
at iteration k can be interpreted as the problem

Maximize
subject to

Θ̂k(u)

u ≥ 0,

with Θ̂k(u) = min {f(xi) + uTg(xi) : i = 0, . . . , k − 1}.

The function Θ̂k(u) is a piecewise linear function that provides an outer approximation for
Θ(u) by considering k bounding hyperplanes. Therefore, in any iteration the function Θ̂k(u)

upper bounds Θ(u) at all points, i.e. Θ(u) ≤ Θ̂k(u), ∀u, ∀k. Each new constraint

z ≤ f(xk) + uTg(xk)

that is added to the master problem results in a better approximation of Θ(u). The next
theorem states that the cutting plane method converges. A proof is found in the appendix.

Theorem 5.1 (Convergence Cutting Plane Method) If the sequence {gk} is a bounded se-
quence, then every limit point of the sequence {uk} generated by the cutting plane method is a
dual optimal solution.
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Figure 5: Cutting Plane - Graphical Example
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Stopping Criteria We observe that while running the cutting plane method we produce
different sequences of primal and dual variables. These can be used to define a stopping crite-
ria and to recover the primal solution. By repeatedly solving the master problem we get the
sequence {zk}, where zk is the maximum value of the outer linear approximation to the dual
function in the k-th iteration. This sequence is a monotone decreasing upper bound of the
optimal dual objective Θ(u�) and we can state

Θ(u�) ≤ zk, ∀k. (12)

With the solutions to all the subproblems solved after the k-th iteration, the evaluations of the
dual function for all ui with i = 1 . . . k, we obtain the sequence {yk} defined by

yk = max
1≤i≤k

Θ(ui).

This sequence increases monotonously and gives a lower bound for the optimal dual objective
Θ(u�). Consequently, with (12) we obtain,

yk ≤ Θ(u�) ≤ zk ∀k.

With the two sequences {zk} and {yk}, which are upper and lower bounds for the optimal dual

u

z

⊗

Θ(u�)
��

�z1

��z2

��z3
��z4

(a) The Sequence zk, k = 4

u

z

⊗
Θ(u�) ��

��y1

����y2 = y3

(b) The Sequence yk, k = 3

Figure 6: Sequences produced by the Cutting Plane Method
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objective, we can define a stopping criteria with respect to εk defined as

εk = |Θ(u�)− Θ(uk)| ≤ |zk − yk|, ∀k.

Primary Recovery in the Convex Case We have discussed a method to solve the dual
problem with a simple approximation which is successively refined. The results provide us a
well defined and tunable stopping criteria. Until now we have just considered solutions to the
dual problem, the optimal dual variables u�. But this is not yet the solution to the initial pri-
mal problem. The last pages of this chapter will deal with the problem of obtaining the primal
variables x� out of the cutting plane method, for convex problems with strong duality. For the-
se problems the bounds on the optimal dual objective apply also to the optimal primal objective

yk ≤ Θ(u�) = f(x�) ≤ zk, ∀k.

First consider the sequence of primal variables that occurred during the algorithm. We have
approximated the dual function by a piecewise linear function

Θ̂k(u) = min {f(xi) + uTg(xi) : i = 0, . . . , k − 1}.

Each individual linear function f(xi) + uTg(xi) is generated by a known primal variable xi.
Some of these are primal feasible g(xi) ≤ 0 but far from optimal, others are primal infeasible
g(xi) > 0 but have a much better objective then the optimal primal objective. Since the primal
set X is convex it seems reasonable to find the best convex combination of all obtained primal
variables

∑k
i=0 λixi with

∑k
i=0 λi = 1, λi ≥ 0, ∀i and minimize the primal object f(

∑k
i=0 λixi)

with respect to λ under the constraint g(
∑k

i=0 λixi) ≤ 0. Unfortunately, this is very similar
to the original primal problem and thus yields no simplification. However, since the primal
objective function is convex, we know that

f
( k∑

i=0

λixi

) ≤ k∑
i=0

λif(xi).

The minimization of
∑k

i=0 λif(xi) will provide a minimizer x̂� =
∑k

i=0 λ
�
ixi for the upper

bound. The same argument holds for the convex constraint function g(x) for which

g
( k∑

i=0

λixi

) ≤ k∑
i=0

λig(xi).
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Figure 7: Primal Variables and Objectives produced by the Cutting Plane Method, k = 4

Satisfying the constraint
∑k

i=0 λig(xi) ≤ 0 will guarantee g(
∑k

i=0 λixi) ≤ 0. Minimizing the
low complexity linear program

∑k
i=0 λif(xi) constrained by

∑k
i=0 λig(xi) ≤ 0 will give an up-

per bounded primal feasible solution to a simplified version of the primal recovery problem. In
summary the simplified primary recovery problem can be defined by

Minimize
subject to

∑k
i=0 λif(xi)∑k
i=0 λig(xi) ≤ 0∑k
i=0 λi = 1

λi ≥ 0 ∀i.

Theorem 5.2 (Primal Feasible Solutions for the Convex Case) Let X be a nonempty convex
set in R

n, f : Rn → R and g : Rn → R
m convex functions and x0 an initial feasible solution

of the primal problem. Suppose that the points xu,i ∈ X (ui) for i = 1, . . . , k are generated by
any algorithm for solving the dual problem. Let λ�

i for i = 1, . . . , k be an optimal solution to
the simplified primal recovery problem. Then x̂�

k =
∑k

i=0 λ
�
ixi with

∑k
i=0 λ

�
i = 1 is a feasible

solution to the primal problem.

Proof Since X is convex and xi ∈ X for each i, it follows that x�
k ∈ X . Since g is convex it

can be deduced that g(x�
k) ≤ 0. Thus, x�

k is a feasible solution to the primal problem.

Note that this theorem only guarantees primal feasibility of the solution, irrespective of any
considerations regarding accuracy or convergence.
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Dual of the Master Problem As the solution to the simplified primary recovery problem
misses a link to our upper and lower bound of the optimal dual and primal objective, i.e. the
sequences {zk} and {yk}, we consider again the master problem of the cutting plane method

Maximize
subject to

z

z−f(xi)−u
T
g(xi) ≤ 0, i = 0, . . . , k

u ≥ 0.

The associated Lagrangian dual function is given by

Θ(λ) = max
z,u≥0

L(z,u,λ) = max
z,u≥0

(
z −

k∑
i=0

λi

(
z − f(xi)− u

T

g(xi)
))

= max
z,u≥0

( k∑
i=0

λif(xi) +
(
1−

k∑
i=0

λi

)
z + u

T( k∑
i=0

λig(xi)
))

.

Note that here the primal problem is a maximization problem. Looking at the dual functi-
on, we have to impose constraints in order to get a finite objective value of the dual function
and therefore a valid solution to the dual problem. As we can choose z without restriction,
1−∑k

i=0 λi = 0. Similarly,
∑k

i=0 λig(xi) ≤ 0, since otherwise we can choose u to be such that
the supremum of L(z,u,λ) tends to infinity. Note that the maximizing u will be the all zero
vector as long as

∑k
i=0 λig(xi) < 0. For the set of λ that satisfy these constraints, the dual

function simplifies drastically to

Θ(λ) = max
z,u≥0

L(z,u,λ) =
k∑

i=0

λif(xi)

and we can formulate the dual problem of minimizing Θ(λ) as follows

Minimize
subject to

∑k
i=0 λif(xi)∑k
i=0 λig(xi) ≤ 0∑k
i=0 λi = 1

λi ≥ 0 ∀i.

Surprisingly, this is exactly the same problem as the simplified primary recovery problem. This
connects the bounds we obtained from the cutting plane method to the solution of the sim-
plified primary recovery problem. Since the simplified primary recovery problem is dual to the
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cutting plane master problem

yk ≤ Θ(u�) = f(x�) ≤ f(x̂�) ≤
k∑

i=0

λ�
i f(xi) = zk, ∀k.

As a result, the solution to our simplified primary recovery problem will always lie inside the
bounds yk and zk, which can be made arbitrarily close by increasing the number of iterations.
Knowing that modern LP solvers provide the primal and also the dual solution, allows to obtain
a primal solution without additional computational cost each time the master problem has been
solved.
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Appendix: Proofs

Proof (Theorem 3.2) For the proof assume that for any multiplier u there exists a xu ∈ X (u)

which minimizes the Lagrangian L(x,u). So the following equations hold by the definition of
the dual function

Θ(u) = f(xu) + uTg(xu)

Θ(ū) = f(xū) + ūTg(xū).

The next two equations hold with inequality, due to the fact that we do not explicitly state
that the optimal minimizer x is used

Θ(ū) ≤ f(xu) + ūTg(xu)

Θ(u) ≤ f(xū) + uTg(xū).

Using the four equations above we can see that

Θ(u)−Θ(ū) ≤ f(xū) + uTg(xū)− f(xū)− ūTg(xū) = (u− ū)Tg(xū)

Θ(ū)−Θ(u) ≤ f(xu) + ūTg(xu)− f(xu)− uTg(xu) = (ū− u)Tg(xu)

while the last equation implies, that

Θ(u)−Θ(ū) ≥ (u− ū)Tg(xu).

Using the Schwartz inequality, which states
∣∣xTy

∣∣ ≤ ||x|| ||y||, it follows that

0 ≥ Θ(u)− Θ(ū)− (u− ū)Tg(xū)

≥ (u− ū)Tg(xu)− (u− ū)Tg(xū)

= (u− ū)T(g(xu)− g(xū))

≥ − ||u− ū|| ||g(xu)− g(xū)|| .

This can be rewritten as

0 ≥ Θ(u)− Θ(ū)− (u− ū)Tg(xū)

||u− ū|| ≥ − ||g(xu)− g(xū)||
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Only if X (ū) is the singleton {xū}, it can be shown that for u → ū also xu → xū. It follows
by the continuity of g(x) that for xu → xū also g(xu) → g(xū), and we have

lim
u→ū

Θ(u)− Θ(ū)− (u− ū)Tg(xū)

||u− ū|| = 0.

Lets remember that in general a function f : Rn → R is said to be differentiable at x̄ ∈ R
n if

there exist a vector ∇f(x̄) (the gradient vector) and a function α : Rn → R such that

f(x) = f(x̄) +∇f(x̄)T(x− x̄) + ||x− x̄||α(x̄,x− x̄) for each x ∈ R
n

with

lim
x→x̄

α(x̄,x− x̄) = 0.

With this definition and the above result it is revealed that Θ(u) is differentiable at ū with
gradient ∇Θ(ū) = g(xū).
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Proof (Lemma 3.5) For the proof assume λ2 > λ1 > 0 and let x̄ be a certain point in R
n.

Assume the direction d ∈ R
n to be non-zero, in accordance with the lemma. By the concavity

of f it holds, that

f(x̄+ λ1d) = f

[
λ1

λ2
(x̄+ λ2d) +

(
1− λ1

λ2

)
x̄

]

≥ λ1

λ2

f(x̄+ λ2d) +

(
1− λ1

λ2

)
f(x̄).

This implies

f(x̄+ λ1d)− f(x̄)

λ1

≥ f(x̄+ λ2d)− f(x̄)

λ2

.

Thus, the quotient [f(x̄+ λd)− f(x̄)]/λ increases monotonously as λ → 0+. Given any λ ≥ 0

and again considering the concavity of f , we have

f(x̄) = f

[
λ

1 + λ
(x̄− d) +

1

1 + λ
(x̄+ λd)

]

≥ λ

1 + λ
f(x̄− d) +

1

1 + λ
f(x̄+ λd)

and

(1 + λ)f(x̄) ≥ λf(x̄− d) + f(x̄+ λd)

λ(f(x̄)− f(x̄− d)) ≥ f(x̄+ λd)− f(x̄)

f(x̄)− f(x̄− d) ≥ f(x̄+ λd)− f(x̄)

λ
.

Therefore, f(x̄) − f(x̄ − d) is a constant upper bound on the monotone increasing quotient
[f(x̄+ λd)− f(x̄)]/λ. Consequently, the limit λ → 0+ exists.
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Proof (Theorem 3.6) For the first part of the proof assume xū+λd ∈ X (ū+ λd), i.e., xū+λd is
a minimizer of L(x, ū + λd). Then the following equation holds by the definition of the dual
function

Θ(ū+ λd)−Θ(ū) = f(xū+λd) + (ū+ λd)Tg(xū+λd)− Θ(ū)

= f(xū+λd) + ūTg(xū+λd)−Θ(ū) + λdTg(xū+λd).

As xū+λd need not to be a minimizer of L(x, ū), i.e., maybe xū+λd /∈ X (ū),

Θ(ū) ≤ f(xū+λd) + ūTg(xū+λd)

0 ≤ f(xū+λd) + ūTg(xū+λd)− Θ(ū)

and consequently

Θ(ū+ λd)−Θ(ū) ≥ λdTg(xū+λd).

Dividing by λ, taking the positive limit towards zero, λ → 0+, and observing that therefore
xū+λd → xū ∈ X (ū), it holds that

Θ′(ū;d) = lim
λ→0+

Θ(ū+ λd)−Θ(ū)

λ
≥ dTg(xū).

As g(xū) ∈ ∂Θ(ū), the former equation completes the first part of the proof implying that

Θ′(ū;d) ≥ inf {dTξ : ξ ∈ ∂Θ(ū)}. (13)

Lets go for the second part: For any subgradient ξ at ū, it follows by the definition of the
subgradient for a concave function (1), that

Θ(ū+ λd) ≤ Θ(ū) + (ū+ λd− ū)Tξ = Θ(ū) + λdTξ

Θ(ū+ λd)−Θ(ū) ≤ λdTξ.
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So again dividing by λ and taking the positive limit towards zero λ → 0+

lim
λ→0+

Θ(ū+ λd)− Θ(ū)

λ
≤ dTξ

it is obtained that Θ′(ū;d) ≤ dTξ. This holds true for any ξ ∈ ∂Θ(ū) and accordingly we end
up with

Θ′(ū;d) ≤ inf {dTξ : ξ ∈ ∂Θ(ū)}. (14)

The results (13) and (14) can only hold at the same time without contradiction, if

Θ′(ū;d) = inf{dTξ : ξ ∈ ∂Θ(ū)}

and the proof is complete.
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Proof (Theorem 5.1) For the proof notice that uk maximizes Θ̂k(u). Since g(xui
) is a subgra-

dient of Θ(u) at ui for all i , it holds that

Θ(u) ≤ Θ(ui) + g(xui
)T(u− ui), ∀u ≥ 0,

and by the definition of Θ̂k(u)

Θ(u) ≤ Θ̂k(u) ≤ Θ̂k(uk). (15)

Assume that the sequence {uk} converges to ū ≥ 0. Therefore, we obtain

Θ(ū) ≤ Θ̂k(ū) ≤ Θ̂k(uk) ≤ Θ(ui) + g(xui
)T(uk − ui) (16)

for all k and i < k. Letting k → ∞ and i → ∞

lim
k→∞

sup{Θ̂k(uk) : k} ≤ lim
i→∞,k→∞

sup{Θ(ui) + g(xui
)T(uk − ui) : i, k}.

Assuming that the sequence {g(xuk
)} is bounded

lim
i→∞,k→∞

g(xui
)T(uk − ui) = 0,

implying that

lim
i→∞

sup{Θ(ui) : i} ≥ lim
k→∞

sup{Θ̂k(uk) : k}.

With (16) it follows, that

lim
k→∞

inf{Θ̂k(uk) : k} ≥ Θ(ū).

By the upper-semicontinuity of Θ(u), it holds that

Θ(ū) ≥ lim
i→∞

sup{Θ(ui) : i}.
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Consequently,

lim
i→∞

sup{Θ(ui) : i} ≥ lim
k→∞

sup{Θ̂k(uk) : k} ≥ lim
k→∞

inf{Θ̂k(uk) : k} ≥ lim
i→∞

sup{Θ(ui) : i}.

This shows that

lim
k→∞

Θ̂k(uk) = Θ(ū).

Combining this with (15), we end up with

Θ(ū) ≥ Θ(u), ∀u.

This shows that ū must be a dual optimal solution.


