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Abstract

In this thesis, a new methodology using convex risk measures is developed to incorporate
parameter risk into prices of financial derivatives, provided that a distribution on the

parameter space is given. In this context, weak continuity properties of convex risk
measures w.r.t. the underlying probability measure on the parameter space are analyzed.

Parameter risk arising from time series estimation is discussed in extensive numerical case
studies and large-sample approximations for certain parameter risk-captured prices are

stated. A technique to induce a parameter distribution in case of calibration to market
prices is presented, allowing to conduct a comparison of parameter risk in different

financial market models and of different exotic options. For the calibration to quoted
bid-ask prices, a non-parametric calibration approach to broad classes of distortion risk

measures is developed and a calibration to quoted bid-ask prices – comparing the non-
parametric approach to given parametric suggestions – is assessed.

Zusammenfassung

In dieser Doktorarbeit wird eine neue Methodik basierend auf konvexen Risikomaßen
entwickelt, um Parameterrisiko in den Preisen von Finanzderivaten zu berücksichtigen.

In diesem Kontext werden schwache Stetigkeitseigenschaften von konvexen Risikomaßen
als Funktion des unterliegenden Wahrscheinlichkeitsmaßes auf dem Parameterraum un-

tersucht. Es wird Parameterrisiko resultierend aus Zeitreihenschätzung in numerischen
Fallstudien untersucht und Approximationen für parameterrisikoadjustierte Preise im

Falle von großen Stichproben angegeben. Im Falle der Parameterschätzung durch Kalib-
rierung an Marktpreise wird eine Technik entwickelt, ein Wahrscheinlichkeitsmaß auf dem

Parameterraum zu konstruieren, um einen Vergleich des Parameterrisikos in verschiede-
nen Finanzmarktmodellen sowie verschiedenen exotischen Optionen durchzuführen. Zur

Kalibrierung an marktquotierte Bid-Ask-Preise wird ein nichtparametrischer Ansatz
zur Kalibrierung an Verzerrungsrisikomaße entwickelt und eine Kalibrierung an mark-

tquotierte Bid-Ask-Preise zum Vergleich mit existierenden parametrischen Methoden
durchgeführt.
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1 Introduction

In this introductory chapter, we first give a short insight into mathematical modeling

in finance and explain the cruciality of model and parameter risk and uncertainty in
mathematical finance. We provide a literature overview on existing works on model and

parameter risk and uncertainty in mathematical finance and briefly summarize the main
contributions of this thesis.

1.1 The principles of mathematical modeling in finance

Today, mathematical modeling plays an important role in many different areas like,

e.g., geoscience, engineering, empirical social science, and, last but not least, finance.
In physics and engineering, mathematical modeling of real-world phenomena goes back

to, e.g., Sir Isaac Newton and even to the ancient Greeks. Contrasting, in finance,
mathematical and particularly stochastic modeling is a rather recent trend, starting

around 1900 with Louis Bachelier’s seminal PhD thesis (cf. (Bachelier, 1900)).

When regarding the financial world instead of modeling phenomena from classical me-
chanics (like, e.g., in engineering), one immediately recognizes that the whole system is

much more complex in the sense that many different forces drive the market in many
different ways. When describing the fall of a stone to the ground in a laboratory, there

are undoubtedly many different forces apart from earth gravitation that actually have an
influence (e.g. the aerodynamic resistance, the gravitation of different objects in the labo-

ratory). But their magnitude is so small compared to the magnitude of earth gravitation
that not considering them eventually does not matter too much for the model.

Contrasting, when modeling financial markets (e.g. stock markets for the purpose of

derivatives pricing), there are many different market participants that actually influence
asset prices in many different ways. Hence, a model trying to capture the whole market

microstructure with all action and interaction of market participants would be extremely
complicated, modeling many different dimensions with myriads of parameter. Thus,
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such an approach is challenging from a modeling and computational perspective. But,
contrastingly, there are several other good reasons not to model the microstructure of

financial markets. First, financial markets cannot be put under laboratory conditions
and therefore models cannot be tested reliably. Second, it is impossible to observe

all market participants’ behavior and interaction simultaneously. Third, many market
participants exhibit irrational and erratic behavior which may be difficult to model even

when modeling only a single market participant.1 Finally and maybe most crucial, the
whole system is dynamic, with new market participants entering and leaving the system

in a continuous manner. Even if one could observe the market participants’s behavior
and collect huge data to exploit, in every second, new market participants enter the

financial markets and behave differently, such that the predictions coming from a possible
collected data set are outdated and do not match the new market environment.2 Hence,

the typical approach to model stock markets is to forget about the market microstructure
and to model asset prices directly in a stochastic manner.

Since the advent of Louis Bachelier’s thesis (Bachelier, 1900) and the seminal papers
(Samuelson, 1965; Black and Scholes, 1973), the predominant principle to model the

prices of financial assets has been the following: The events on the financial mar-
kets and the time-increasing information is modeled by a filtered probability space

(Ω,F , (Ft)t≥0, P ), the filtration (Ft)t≥0 corresponding to the flow of information. Then,
the asset prices are modeled as a stochastic process S = (St)t≥0 which is adapted to

the filtration (Ft)t≥0. To obtain a useful asset price model, one should demand that the
stochastic process S fulfills stylized facts such as:

• The stock price process, abbreviated by S = (St)t≥0, is always positive;

• Returns (yields) of stock prices are scattered around 0 (or around somewhere close

to 0) and behave roughly similar and independent from each other.

Furthermore, the availability of (semi-)closed-form pricing formulae is crucial for quick

and efficient evaluation of common products.

The most famous model, the Black–Scholes model (cf. (Black and Scholes, 1973), awarded

with the Nobel Memorial Prize in Economic Sciences in 1997), models S by a geomet-
ric Brownian motion with drift parameter µ ∈ R and volatility σ > 0. For derivative

1Some groundbreaking work has, e.g., been done by (Kahneman and Tversky, 1979), where “irrational”

behavior is partly explained by the Prospect Theory. Daniel Kahneman was awarded the Nobel

Memorial Prize in Economic Sciences in 2002 for his work.
2In financial markets, one can even argue that relying too much on collected data may result in

overconfidence, since the data may not be representative any more to model future use.
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1.2 Model and parameter risk and uncertainty

pricing purposes, the drift term µ is already determined by the risk-free interest rate.
Furthermore, many other models, capturing more stylized facts of financial market time

series such as volatility clustering, the so-called “leverage effect” (cf. (Christie, 1982)),
or jumps, have been developed to overcome known shortcomings of the Black–Scholes

model. Examples are, e.g., the jump-diffusion models of (Merton, 1976; Kou, 2002) in-
corporating additional jumps in the stock price3, stochastic volatility models substituting

the constant volatility σ by a stochastic process (σt)t≥0 (like the Stein and Stein model
(Stein and Stein, 1991), the Heston model described in (Heston, 1993), or the jump-

diffusion style model of Barndorff-Nielsen and Shephard combining both approaches
(cf. (Barndorff-Nielsen and Shephard, 2001; Nicolato and Venardos, 2003)), and models

driven by processes other than Brownian motions (e.g. Lévy models like the Variance
Gamma model of (Madan et al., 1998), which are extensively treated in the textbook

(Cont and Tankov, 2004), Sato models as in (Carr et al., 2006)). Hence, since the Black–
Scholes model falls behind to model stock prices accurately due to the vast generalization

(returns are normally distributed), a whole zoo of models competing for usage has been
developed and it is difficult to decide which model to favor. There is vivid research to

provide new models for different situations, but, until now, a “gold standard” model for
derivatives pricing has not yet emerged.

1.2 Model and parameter risk and uncertainty

When setting up a stochastic model, one typically observes a complicated situation
where the outcome to model behaves in a more or less erratic manner (which is the

reason for employing stochasticity). In some cases, a simple and accurate description
of the behavior may be provided easily, as, e.g., the throw of a fair dice, where the

relative frequency of different results behaves like the (discrete) uniform distribution on
{1, . . . , 6}. But, typically, the objects (e.g. stock prices, interest rates, or FX rates)

to capture in finance behave much more complicated. Hence, it is not clear from the
beginning that the choice of one stochastic model (Ω,F , P ) is a good choice or whether

a different model (Ω̃, F̃ , P̃ ) might be more suitable to model the stock price by some
stochastic process (St)t≥0. Since the asset price process (St)t≥0 is typically used without

directly specifying the stochastic basis, the specification of the filtered measurable space
(Ω,F , (Ft)t≥0) is often done implicitly. So, choosing a model mostly means specifying

3The model of (Merton, 1976) employs normally distributed jumps, while the model described in

(Kou, 2002) uses double exponentially distributed jumps, also allowing for asymmetrically distributed

jumps.
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a probability measure P on an implicitly given filtered stochastic basis (Ω,F , (Ft)t≥0),
since the dynamics of the stochastic process (St)t≥0 are specified by the probability

measure P . Hence, the environment can be mathematically described as a situation
where a whole set of probability measures P (which may typically be infinite) is available

for modeling, i.e. the dynamics of (St)t≥0 follow different trajectories or the probabilities
of trajectories shift. Sometimes, the set of possible probability measures (i.e. different

stochastic models) P may be parameterized in a canonical way by a parameter space Θ,
i.e. P = {Pθ : θ ∈ Θ}.

To provide a concise wording to different situations that may occur when different models
P are available, we first provide a short excursion into the literature. In the seminal

dissertation (Knight, 1921), the situation where different objects x1, . . . , xN are possible
outcomes was analyzed. (Knight, 1921) distinguishes between two possible situations

that may occur:

1. One does not know any quantification about which outcome might occur

2. One knows the probability of each possible outcome x1, . . . , xN

The former situation, where basically no information is available, is called uncertainty by

(Knight, 1921), while the latter one, which at least provides a probabilistic description,
is called risk . Obviously, facing risk is a special case of uncertainty (one could always

forget about the probabilities) and a more comfortable situation compared to facing
real uncertainty. One can try to deal with a risky situation by risk management, i.e.

exploiting the information about the probabilities of the different outcomes x1, . . . , xN
and acting such that a certain risk functional may be minimized.

Transferring the concepts of risk and uncertainty to stochastic modeling, the situation
of having a whole set of models P to choose from for modeling is generally referred to

as model uncertainty. In case of an available and feasible parameterization of P by some
parameter space Θ, one speaks about parameter uncertainty. From a mathematical point

of view, model and parameter uncertainty are equivalent notions, since one may param-
eterize P by some suitable parameter set Θ and a bijection Θ → P. But, practically,

the set Θ can often be chosen such that treating different parameters θ ∈ Θ allows for
more convenient interpretation in the real world than treating the corresponding model

Pθ. If we additionally have a probability measure R given on the set of possible models
P (resp. on the set of possible parameters Θ) quantifying the likelihood of each model

(resp. parameter), then we are in a setting of model risk (resp. parameter risk), which
(trivially) is a special case of model (resp. parameter) uncertainty.
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1.2 Model and parameter risk and uncertainty

As we have mentioned above, during the last years, there has been developed a large
battery of different models (Lévy models, jump-diffusion models, stochastic volatility

models and many others) that may be used for derivatives pricing purposes. But, until
now, none of these models has turned out to become an accepted reference capturing

asset price movements completely. Conversely, the whole setting in finance is completely
dynamic: Market participants learn from historical mistakes, behave differently in new

market situations, and suddenly enter/exit the market. Hence, models describing the
dynamics of today’s financial markets quite decently may not be valid tomorrow due to

the completely changed setting. Furthermore, different models that are fitted to data
(typically via calibration to prices of liquid derivatives, e.g. European options) deliver

tremendously different results when pricing exotic derivatives (as, e.g., barrier options)
with them, as pointed out in (Schoutens et al., 2004). Hence, financial market modeling

(e.g. for the valuation of derivatives) is a situation where model uncertainty is prominent.
This was outlined, e.g., in (Figlewski, 1998; Green and Figlewski, 1999), and insistently

stressed in the seminal paper (Cont, 2006).

Another source of uncertainty, namely parameter uncertainty, plays an equally prominent

role for pricing derivatives. Typically, in practice, a parametric model (e.g. Black–Scholes
model, Heston model, Variance Gamma model etc.) is assumed to hold for the asset price

process. But the parameters of the model θ (like, e.g., the Black–Scholes volatility, the
numerous parameters for the Heston model, etc.) have to be specified, coming from a

(possibly rich) parameter space Θ. Some of the parameters (e.g. today’s asset price, risk-
free interest rates) may be available in liquid markets, but the crucial ones for derivatives

pricing are typically not.4 Hence, the model-specific parameters have to be specified.
Typically, there are two methods how to specify the parameters of the model:

1. If a trustworthy time series of historical asset prices, say (s1, . . . , sN ), exists and
there is statistical theory (estimation theory) available, one might try to estimate

an unknown parameter θ by employing an estimator θ̂ = θ̂(N) = θ̂(s1, . . . , sN ).5

2. If the asset (St)t≥0 is fairly liquidly traded (as, e.g., the major stock indices like

S&P 500, DAX, EURO STOXX 50, or important FX rates as EUR-USD), prices

4One might argue that in some mature markets, implied volatilities are readily available due to a vivid

market for European options. In these cases, one typically has ambiguity between different implied

volatilities calculated from different maturities and/or moneyness (volatility smile). Furthermore, as

mentioned above, the presence of different implied volatilities proves that the Black–Scholes model

is a questionable model.
5Since change of measure may affect some parameters, one has to be careful with this method for

derivatives pricing.
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of vanilla products (often European options) (C⋆
1 , . . . , C

⋆
N ) are available (often in

indirect quotation via Black–Scholes implied volatilities). In this situation, one

might try to fit the model to mimic the market prices of these vanilla products
(“calibration to market prices”) and to estimate the parameter by minimizing some

“aggregate error to market prices”.6

Actually, with both procedures to obtain the parameter θ, one implicitly runs into prob-
lems, which are often not addressed by neither practictioners nor academia:

• When using historical estimation, the historical measure P induces a distribution

on the parameter space Θ via the pushforward measure of the estimator θ̂N , often
briefly summarized by the estimator’s variance and (possible) bias. When just using

the point estimate (which results from plugging the time series data (s1, . . . , sN )

into the estimation function), the distribution of the estimator θ̂ is completely

disregarded. Hence, one runs the risk that the historical estimation procedure
yields the wrong parameter.7

• When employing calibration to market prices, there may be the possibility that

the employed optimization algorithm runs in a local minimum or that the global
minimum is not unique. Since the input prices may be distorted, e.g. due to delay

of quotes, one can also not be sure that the parameters which fit almost equally
well might not be a good alternative. Furthermore, due to the aggregate error

to market prices (which is the goal function in the optimization procedure), one
has some information about the “trustworsthyness” of the parameters. In many

parametric models, it is the case that the parameters play a partly interchangeable
role in determining the prices of vanilla options. Hence, different parameter vectors

may have similar errors to market prices.

Hence, parameter uncertainty (resp. parameter risk – when a distribution of the pa-
rameters is at hand) is an important issue when modeling the price of financial assets

and, particularly, for the pricing of financial derivatives. Moreover, since models tend
to become more and more complicated to capture more stylized facts (e.g. compare a
Bates model to a Heston model), calibration or estimation of these models become more

sophisticated and is often accompanied with more parameter risk/uncertainty.
6In practice, the second alternative “calibration” is typically the preferred variant for derivatives pricing

since the vanilla options that are employed for calibration are forward-looking, i.e. implicitly express

a “market consensus opinion” about future asset prices. Contrasting, historical estimation employing

time series of the asset price process reflects historic snapshots of the asset price.
7Actually, in many continuous settings, the probability that the point estimate is the true parameter

is actually zero!
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1.3 Literature overview

Immediately after recognizing the vast problems that are connected to model (resp.
parameter) risk and uncertainty, the question how to deal with this risk/uncertainty

immediately arises.

1.3 Literature overview

The topic of model and parameter risk and uncertainty in finance has been addressed in

numerous sources. Since the financial crisis of 2008, where the misspecification of models
played a prominent role for the valuation of portfolio credit derivatives, the problem of

model and parameter risk and uncertainty in a financial context is addressed more and
more. In some sense, the presence of the smile effect, i.e. the observation that implied

Black–Scholes volatilities for European options with different moneyness and/or matu-
rity are not constant, addresses parameter uncertainty in the special case when using

the Black–Scholes model. Furthermore, for risk-neutral valuation, the notion of incom-
plete markets (which is intensely discussed in the discrete and continuous case in the

textbook of (Černy, 2009)) treats a special kind of model (resp. parameter) uncertainty,
where all probability measures in doubt are equivalent to each other. A survey from

an economic perspective about model risk/uncertainty in derivatives pricing is given in
(Figlewski, 1998) where numerous sources of model/parameter risk and uncertainty are

discussed: The smile effect is addressed as well as problems connected to other models
incorporating returns with fatter tails, possible jumps, and stochastic volatility. param-

eter risk/uncertainty is described, in particular historical volatility estimating as well as
the specification of a GARCH-type stochastic volatility model. A thorough empirical

study about the risk in derivatives pricing and hedging which is associated to forecasting
Black–Scholes volatility has been done in (Green and Figlewski, 1999).

In an incomplete markets setting (which is, as we have described above, a special kind

of model uncertainty), more pricing (and hedging) approaches have been discussed and
the original sub-/superhedging pricing has been enriched. From the hedging persperc-

tive, weaker variants of hedging are also tackled by, e.g., mean-variance hedging (cf.,
e.g., (Föllmer and Schweizer, 1990; Schweizer, 1991)), quantile hedging (cf. (Föllmer and

Leukert, 1999)), and efficient hedging (cf. (Föllmer and Leukert, 2000)). (Carr et al.,
2001) discuss that complete sub-/superhedging even in incomplete markets may lead to

non-competitive prices for derivatives traders, since derivatives traders are paid for tak-
ing some risk, which may be the risk of having selected the wrong equivalent martingale
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measure. Thus, a “reduced sub-/superhedging price” is suggested. More detailed, de-
noting by Q := {Q ∼ P : Q martingale measure of the discounted stock price} the set

of all equivalent martingale measures, one may select a subset of measures Q0 ⊂ Q and
employ “reduced worst-case pricing” by setting price borders m(X) = infQ∈Q0 EQ[X]

and M(X) = supQ∈Q0
EQ[X] for some derivative X. From a mathematical point of

view, this ansatz brings coherent risk measures into play, which was generalized by (Xu,

2006) with pricing based by general convex risk measures in incomplete markets and
developing hedging strategies as well as diversification issues, which a derivatives trader

typically uses for her or his purposes. (Cherny and Madan, 2010) also employ convex
risk measure pricing in incomplete markets by using Choquet integrals w.r.t. concave

distortions of the historical measure P , which is a special class of convex risk measures.
Furthermore, the convenient representation is used to calibrate to bid-ask prices (instead

of mid prices as in a usual calibration setting), where parametric families developed in
(Cherny and Madan, 2009) are used to determine the risk measure.

Also, from a methodological point of view, there have been some treatments and sug-

gestions in the literature how to deal with model and parameter risk and uncertainty in
derivatives pricing. A mathematical approach treating a geometric Brownian motion-

style diffusion process (St)t≥0 with stochastic, but uncertain volatility process (σt)t≥0

is done in (Avellaneda et al., 1995): By means of control theory methods, a PDE-style

pricing principle is developed for worst-case pricing when the volatility process (σt)t≥0

is a bounded stochastic process, which is assumed to stay in some compact interval, i.e.

σt ∈ [σmin, σmax] for all t ≥ 0. This approach is usually refered to as the uncertain volatil-

ity model. (Avellaneda et al., 1995) develop a Hamilton–Jacobi–Bellman-type solution

to price derivatives in the uncertain volatility model, i.e. pricing is based on numerical
solutions of the so-called Black–Scholes–Barenblatt PDE.

A much more general approach is described in the seminal paper (Cont, 2006), where

the general pricing idea resulting from sub-/superhedges in incomplete markets is gen-
eralized. In case of the availability of a set of possible risk-neutral pricing models Q
consisting of martingale measures w.r.t. the asset price process (St)t≥0, i.e. (St)t≥0 is
a martingale8 under each Q ∈ Q, (Cont, 2006) advocats to do worst-case pricing,

similarly to the methodology which is used for sub-/superhedging in incomplete mar-
kets: The bid and ask prices which account for model uncertainty are calculated as

m(X) = infQ∈Q EQ[X] resp. M(X) = supQ∈Q EQ[X], leading to non-linear pricing such
that the functional M is a coherent risk measure. Moreover, if the risk-neutral measures

8Up to the proper numéraire, which is omitted here for simplicity.
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1.3 Literature overview

Q are given by calibration and the aggregated market pricing error is given by η(Q) for
some Q ∈ Q, (Cont, 2006) suggests a penalized worst-case approach (which is familiar

from convex optimization): The derivative’s price should be calculated using the worst-
case approach, penalizing every derivative price with the aggregated market error η(Q),

i.e. M(X) = supQ∈Q EQ[X] − η(Q) resp. m(X) = infQ∈Q EQ[X] − η(Q). From a crit-
ical point of view, the penalized approach has some methodological weaknesses: First,

every derivatives price – regardless of the magnitude, e.g. the notional of the contract –
is penalized by the same number, namely the aggregated error to market prices η(Q),

which does not depend on the derivative X. Second, nonperfect calibration to market
prices may also be the result of systematic underestimation of market prices. In such a

situation, reducing the market prices may not only be unintuitive, but highly dangerous,
since the already underestimated price is even further lowered.

An assessment of estimation risk in portfolio credit derivatives valuation, employing
a Gaussian copula model, is done by calculating quantiles (Value-at-Risk) and other

risk measures by (Heitfield, 2009). Here, the massive parameter risk which comes from
historical estimation of Gaussian copula models is recognized. Therefore, results about

asymptotic distributions are exploited as, e.g., the Cramér–Rao bound.

Furthermore, there has been some research in treating parameter (and, to a lesser ex-

tent, model) risk for risk-neutral valuation purposes. (Lindström, 2010) assumes that
the Black–Scholes volatility has a distribution (e.g. normal distribution, although the

Black–Scholes volatility is positive by definition). Model prices are then computed by
means of a two-step procedure: First, the price, conditioned on a fixed parameter, is cal-

culated. Afterwards, the parameter’s distribution is integrated out. (Lindström, 2010)
primarily aims at explaining smiles by randomizing the Black–Scholes volatility and does

not account for any risk aversion towards parameter risk in the sense of (Knight, 1921).

First ideas to incorporate the likelihood of parameters in a discrete setting have been

provided by (Bunnin et al., 2000) in a Bayesian averaging setting, while (Branger and
Schlag, 2004) yield ideas to measure model risk with spectral risk measure-type func-

tionals in a discrete way. (Gupta, 2009) and (Gupta et al., 2010) generalize the work of
(Cont, 2006) and (Lindström, 2010) by employing general convex risk measures for the

measurement of model risk.

There have been several attempts to incorporate Bayesian ideas into derivatives pricing,
we only sketch few of them (a complete overview would be out of scope). As described

above, derivatives pricing is a situation where one is exposed to parameter risk (and,
presumably, model risk). Hence, (Bunnin et al., 2000) and (Gupta and Reisinger, 2012)
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suggest to compute the posterior distribution via Bayesian updating incorporating new
data like realizations from time series and (more forward-looking) prices of plain vanilla

derivatives (e.g. European options). (Gupta and Reisinger, 2012) assume that plain
vanilla derivative prices follow a true model that is noised by independent error terms.

A mathematical framework is suggested how this assumption is interpreted in terms of
a parameter prior distribution. In particular, a local volatility framework is used and

they assume that in the short run, the “implied volatilities” of at-the-money options are
concise approximations for the local volatility.

1.4 Contributions

In this work, we provide a model (resp. parameter) risk framework that unifies and

generalizes concepts from incomplete markets to a general model (resp. parameter) risk
situation for derivatives pricing.9 Furthermore, in the case of risk (and not true uncer-

tainty), i.e. a probability measure R is given on the set of models Q quantifying the
likelihood of the different models, the proposals of (Cont, 2006) and (Lindström, 2010)

are generalized using the notion of convex risk measures in the spirit of (Branger and
Schlag, 2004; Gupta, 2009; Gupta et al., 2010). Instead of using worst-case methodol-

ogy or simply integrating out a possible distribution on the models (resp. parameters),
general law-invariant convex risk measures are employed in this work to bridge the gap

between expectation approaches (as in (Lindström, 2010; Bunnin et al., 2000; Gupta and
Reisinger, 2012)) and (possibly penalized) worst-case approaches (as suggested in (Cont,

2006; Gupta et al., 2010)), similar to (Gupta, 2009; Gupta et al., 2010). Furthermore, the
pricing suggestions for incomplete markets described in, e.g., (Carr et al., 2001; Cherny

and Madan, 2010; Xu, 2006) are embedded and transferred to a general model/parameter
risk situation. Our approach allows to capture model (resp. parameter) risk by explicitly

incorporating the parameter’s distribution, allowing a risk averse trader to acknowledge
model (resp. parameter) risk (e.g. arising from historical estimation or calibration to

market prices) and to reflect the amount of model (resp. parameter) risk in the width
of the bid-ask spread of some derivative. Since we have more comfortable situations in
case of parameter risk than model risk, i.e. we have more comprehensive examples for

estimators and better intuition how estimation or calibration work, we mainly provide
our results for parameter risk. In principle, the results may be equally transfered to a

model risk situation as well.
9Although our works focus on applications in a financial context, in particular derivatives pricing, our

methodology can equally be used in an actuarial context to calculate risk-captured insurance premia.

18



1.4 Contributions

It turns out that the settings described in (Cont, 2006) and (Lindström, 2010) are both
extremal cases of an application of the Average-Value-at-Risk (AVaR) w.r.t. different

significance levels α ∈ [0, 1]. Another possible generalization of (Cont, 2006)’s and
(Lindström, 2010)’s approaches arises from the entropic risk measure. In general, we

introduce the notion of risk-capturing functionals induced by a given convex risk measure.
Since we assume traders to be averse towards parameter risk, we suggest to use risk-

capturing functionals to determine parameter risk-captured prices in face of a non-Dirac
distribution on the parameter space (e.g. the pushforward measure of an estimator). In

line with the nonlinear pricing approaches of (Bion-Nadal, 2009; Carr et al., 2001; Xu,
2006; Cherny and Madan, 2010), we propose to use the price delivered by a risk-capturing

functional as an ask price. The properties of the parameter’s distribution are reflected
in the bid-ask spread and we give some examples how to calculate bid-ask prices facing

parameter risk.

A desirable feature of (parameter) risk-captured prices is that weak convergence of the

parameter distribution implies convergence of the according risk-captured price to the
risk-captured price computed with the limit distribution, i.e. if there is a sequence of

distributions (RN )N∈N on the models/parameters, a risk-captured price Γ(X) should
fulfill the property that if RN → R, N → ∞, in the weak sense, one might want

that Γ(X;RN ) → Γ(X;R), N → ∞. In particular, when this property is fulfilled, the
charge for parameter risk is (eventually) decreasing in the available amount of infor-

mation that is used to estimate the parameter. Actually, if the derivative’s price is a
continuous and bounded function of some parameter θ on a parameter space Θ, it is

shown that the risk-captured price arising from broad classes of convex risk measures
fulfills the described convergence property, namely all spectral risk measures (which cor-

respond to the distortion risk measures generated by continuous distortion functions
and form a superclass of, e.g., the Average-Value-at-Risk measures) and the entropic risk

measure. Furthermore, we state examples where the risk-captured price does not have
this property: Roughly spoken, all convex risk measures having some “worst-case part”

do not provide this weak convergence. Contrasting to the seminal paper (Krätschmer
et al., 2012), we always require weak convergence of the probability measures (while in

(Krätschmer et al., 2012), topologies that are possibly stronger than the weak topology
on the set of probability measures in the style of (Weber, 2006) are created and conti-

nuity properties of law-invariant convex risk measures are assessed w.r.t. those stronger
topologies). On the other hand, we state our results for convex risk measures on the set

of continuous and bounded functions Cb(Θ), while (Krätschmer et al., 2012) state their
results for broader domains, i.e. on general Orlicz spaces (which include the Lebesgue
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spaces Lp(Θ), p ∈ [1,∞] as a special case).

As a next step, we discuss in detail how to incorporate parameter risk in case of parameter
estimation. In particular, we apply our results about weak convergence and obtain that,

in case of a consistent estimator for the parameter, this implies that the risk-captured
price converges to the price computed with the true parameter. Furthermore, we state

approximations for large samples using the delta method and provide closed-form ap-
proximation formulae for the AVaR and entropic cases involving sensitivities w.r.t. the

parameters, which can be applied for a large class of Maximum Likelihood estimators.
For the numerical treatment, we discuss two cases where parameter estimation is a real-

istic situation one might run into in derivatives valuation. First, we discuss parameter
risk of the valuation of an exchange option in case of estimation of the correlation coeffi-

cient in a bivariate Black–Scholes model. Second, we provide a more elaborate example
assessing the parameter risk when estimating a multifactor model for the clean spark

spread10 and evaluate a gas power plant as a real option on the clean spark spread.

A problem which is mainly motivatived from best practice methodology is how to treat
parameter risk in case of calibration to market prices. So, we suggest a procedure how

the concept of risk-captured prices can be applied to incorporate calibration risk. In
contrast to the situation of estimating parameters historically, calibration does not nat-

urally yield a distribution on the parameter space, making it difficult to speak about true
parameter risk/calibration risk. Hence, we propose a methodology how a distribution

on the parameter set can be constructed that is in line with the calibration’s results.
We suggest transforming the function expressing the aggregate error to market prices to

obtain a density which can be interpreted as a pricing error-implied distribution. First,
we show some consistency properties the error function has to fulfill. Second, we focus on

theoretical solutions for obtaining a continuous distribution on the parameter set (most
financial market models have “continuous” parameter sets). Furthermore, we focus on

the practical problem how to deal with this from a computational point of view, sug-
gesting an algorithm how to obtain a discrete distribution on feasible parameter subsets.

As a practical relevant case study, we exemplarily investigate three popular models re-
garding their parameter risk coming from calibration to market prices: The stochastic

volatility models of Heston (see (Heston, 1993)) and Barndorff-Nielsen and Shephard
(see (Barndorff-Nielsen and Shephard, 2001)) as well as the Variance Gamma model

(see (Madan et al., 1998)). This is done by calculating calibration risk-captured prices
for three exotic derivatives (an Asian option, an ITM barrier option, and a lookback

10The clean spark spread is the spread of power prices compared to gas and CO2 emissions prices.
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1.4 Contributions

option, all observed on a discrete time scale). Hence, this enables us to compare the
exposure to parameter risk of the different models and also of the exotic options. As a

result, we conclude that in our study, the Heston model bears considerably less param-
eter risk than the Barndorff-Nielsen–Shephard model, both having decent calibration

performance. The Variance Gamma model’s calibration is significantly less accurate and
the parameter risk within the Variance Gamma model is much higher than in the two

stochastic volatility models.

Having set up a framework how to account for parameter risk in derivatives pricing, the

question remains which convex risk measure to use for calculating risk-captured prices.
At least, it would be helpful to select a convex risk measure from a rich subset, e.g. the

risk measures that are Choquet integrals w.r.t. distorted probabilities (a detailed treat-
ment of Choquet integrals can be found in (Denneberg, 1994)). Inspired by (Cherny and

Madan, 2010) who use parametric families of distortion risk measures in an incomplete
markets setting, a starting point is to calibrate to market prices, i.e. bid-ask prices of

liquid securities. We close this gap and discuss how one can re-engineer general distor-
tion risk measures from quoted bid-ask prices. Thus, we provide existence theorems,

ensuring that the bid-ask calibration problem can be solved in proper domains of distor-
tion functions. In contrast to (Cherny and Madan, 2010), we suggest a non-parametric

approach for obtaining the market-implied distortion risk measure for pricing, not re-
stricting ourselves to a specific parametric shape of the distortion function. This ansatz

is based on a piecewise linear approximation. The presented non-parametric approach
provides more flexibility for solving the bid-ask calibration problem than choosing from

a parametric class and remains simple to implement. Furthermore, it enables us to em-
pirically observe the shape of possible market-implied distortion functions. We present

an empirical analysis in the parameter risk setting, comparing our non-parametric cal-
ibration to a calibration within the AVaR- and minmaxvar -families. When using the

non-parametric calibration approach, we obtain a characteristic pattern with a jump
close to zero and a linear behavior afterwards. This gives rise to the introduction of an

alternative parametric class of distortion functions, the ess sup-expectation convex com-
binations, which allow for much faster calibration than the AVaR-/minmaxvar -families.

Furthermore, we enhance the existence theorems to larger families of distortion functions
with discontinuities at zero, containing the newly introduced family.
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Structure of the remaining work

The remaining thesis is organized as follows: In Chapter 2, we sketch the most important
definitions, theorems, and examples from the theory of convex risk measures as well as

Choquet integration theory. Chapter 3 introduces model and parameter risk and uncer-
tainty, presents our suggested framework of risk-capturing functionals and risk-captured

prices, proves basic properties, and states important examples. Chapter 4 establishes
a convergence property for risk-capturing functionals and shows that several classes of

functionals fulfill this property under mild technical conditions. Chapter 5 treats pa-
rameter risk arising from time series estimation, large sample approximations are stated

and the estimation risk of two different financial models is assessed in numerical case
studies. In Chapter 6, we discuss how to incorporate calibration risk into the framework

of risk-captured prices and scrutinize the parameter risk of different exotic derivatives
in different financial market models. Finally, in Chapter 7, we discuss solutions of the

calibration to bid-ask prices in different classes of distortion risk measures, suggest a non-
parametric calibration scheme, and perform a calibration exercise comparing different

calibration methods.

The results of this dissertation are partially published in the papers (Bannör and Scherer,
2013a,c; Bannör et al., 2013), further parts can also be found in the book chapter (Bannör

and Scherer, 2013b).
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2 Mathematical preliminaries

The measurement of risk (resp. uncertainty) is crucial in many situations in finance.

Thus, to ensure accuracy and effectivity, we need a sound mathematical machinery for
risk measurement. The specific characteristics, the treatment of practitioners, and the

economic interpretation of risky financial positions has given rise to the development of
the theory of convex risk measures, combining results from convex analysis, functional

analysis, and probability theory. In this chapter, we sketch a brief introduction into
the theory of convex risk measures, provide basic theorems that are used later in the

dissertation, and recall important examples for convex risk measures. Furthermore, this
thesis heavily uses the subclass of distortion risk measures, i.e. convex risk measures

that can be represented as a Choquet integral w.r.t. a distorted probability. Hence,
we need some deeper knowledge about Choquet integration theory to understand the

mathematics behind distorted probabilities and expectations w.r.t. them. Thus, we state
the basic definitions, facts, and theorems on Choquet integration based on the standard

reference book (Denneberg, 1994) to provide a deeper understanding of the Choquet
integral.

2.1 Theory of convex risk measures

Risk, particularly in a financial or actuarial context, has increasingly been the subject of
discussion in a professional environment, but also more and more in academia and dur-

ing the last years even in broader circles of society. The financial market crisis of 2008,
having its peak in the bankruptcy of Lehman Brothers in September 2008, has emerged

a vivid discussion in society what kind of risks and to which extent risks, particularly in
finance, should be taken by financial institutions. But, obviously, the ladder problem –

determining to which extent financial institutions are allowed to take risks – is immedi-
ately linked to another problem, which is broadly discussed in academia: Measuring and

quantifying the risk of financial positions. A popular method among practitioners and
regulators has been the Value-at-Risk measure: Given a financial position X (interpreted
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as a possible financial loss), which is modeled as a random variable on some probability
space (Ω,F , P ), the Value-at-Risk w.r.t. a safety or significance level α ∈ (0, 1) is given

by the upper α-quantile of X, hence VaRα(X) = q1−α(X). This number aggregates the
risk contained in the risky position X into one single number which has an appealing

interpretation: In 100 · (1 − α)% of all possible cases, the possible loss that may be
caused by the position X is overstated by the α-Value-at-Risk. Hence, determining the

“risk of the position” X by the Value-at-Risk has many advantages, particularly for risk
controlling and regulation.

Unfortunately, the Value-at-Risk bears some mathematical problems and exhibits some

counterintuitive behavior regarding diversification effects: Given two risky positions X
and Y , combining fractions of the two positions should account for positive effects since

unsystematic effects may partially be hedged away due to diversification between the
positions X and Y . But, the Value-at-Risk does not necessarily account for this diversi-

fication effect, since one can construct surprisingly easy situations where diversification
between two positions X and Y is even punished (cf., e.g., (Artzner et al., 1999)). These

effects are, amongst others, due to the fact that the Value-at-Risk only accounts for the
probability of losses, but not at all for their magnitudes.

Hence, in the academic community, an ongoing discussion about which properties a func-

tional measuring the risk of random variables should fulfill established. The seminal pa-
per (Artzner et al., 1999) stated a system of axioms mapping the economic requirements

for numbers measuring risk into mathematical properties (cash invariance, monotonicity,
subadditivity, and positive homogenity). Later, subadditivity and positive homogenity

were relaxed to convexity (cf. (Föllmer and Schied, 2002)) and even to quasi-convexity
(cf. (Cerreia-Vioglio et al., 2011)).

We start by recalling the definition of convex risk measures on a vector space of measur-
able functions, as it can be found in the textbook (Föllmer and Schied, 2004). Further im-
portant contributions to this wide field have, e.g., been done in (Kusuoka, 2001; Föllmer

and Schied, 2002; Acerbi and Tasche, 2002; Jouini et al., 2006; Frittelli and Scandolo,
2006; Krätschmer, 2006) and many other publications. We follow (Frittelli and Scan-

dolo, 2006) in extending the classical definition to translation invariance w.r.t. a linear
form, since we want translation invariance to hold not only for constants but also for all

contingent claims without exposure towards model (resp. parameter) uncertainty.

Definition 2.1.1 (Convex risk measure)

Let (Ω,F) be a measurable space and X ⊂ L0(Ω) be a vector space of measurable functions
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2.1 Theory of convex risk measures

on Ω. Let Y ⊂ X be a sub-vector space and π ∈ Y⋆, denoting by

Y⋆ := {λ : Y → R : λ linear}

the algebraic dual space of Y. ρ is called a convex risk measure with π-translation

invariance1 if it fulfills the following axioms:

1. ρ is monotone2: ∀X,Y ∈ X : X ≥ Y ⇒ ρ(X) ≥ ρ(Y ).

2. ρ is convex: ∀X,Y ∈ X ∀λ ∈ [0, 1] : ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

3. ρ is π-translation invariant: ∀X ∈ X ∀Y ∈ Y : ρ(X + Y ) = ρ(X) + π(Y ).

Furthermore, if ρ is a convex risk measure, we say that

1. ρ is coherent, if it is additionally positively homogeneous, i.e. ρ(cX) = cρ(X) holds

for all c > 0 and X ∈ X .

2. ρ is normalized, if ρ(0) = 0 holds.

3. If P is a probability measure on (Ω,F), we call ρ P -law invariant, if ρ(X) = ρ(Y )

holds in case of PX = P Y , denoting by

PX(A) := P (X ∈ A), A ∈ B(R),

the pushforward probability measure induced by the random variable X. If the

probability measure P is canonical, we just speak about law invariance instead of

P -law invariance.

The theory of convex risk measures has its origin in the shortcoming of the Value-at-Risk

(VaR): This risk measure (which is essentially a quantile) was advocated by J.P. Morgan
in the 1990s, but does not satisfy the convexity property (as pointed out by (Artzner

1If we do not mention the translation invariance w.r.t. a specified linear form π and the sub-vector

space Y, we always assume that Y is the vector space of constant functions and π is the canonical

linear form with π(1) = 1.
2Most contributions (e.g. (Föllmer and Schied, 2004; Artzner et al., 1999; Krätschmer, 2006; Frittelli

and Scandolo, 2006)) define convex risk measures to be anti-monotone and anti-translation invariant.

To match our purposes and for the sake of elegance, we follow (Cont, 2006) by employing ordinary

monotonicity and translation invariance.
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et al., 1999)). Hence, the Average-Value-at-Risk (AVaR)3 was developed (see (Acerbi
and Tasche, 2002)) to overcome this problem.

Example 2.1.2 (Average-Value-at-Risk)

Let (Ω,F , P ) be a probability space, α ∈ (0, 1] a given significance level, and X ∈ L1(P )

a random variable. Then we define the α-Value-at-Risk to be the upper α-quantile

VaRα(X) := qPX(1 − α) and the α-Average-Value-at-Risk to be the integrated upper tail

of the random variable X, i.e.

AVaRα(X) :=
1

α

∫ α

0
VaRβ(X) dβ.

Obviously, the Average-Value-at-Risk dominates the Value-at-Risk due to

AVaRα(X) =
1

α

∫ α

0
VaRβ(X) dβ

≥ 1

α

∫ α

0
VaRα(X) dβ = VaRα(X), α ∈ (0, 1].

Furthermore, for a normally distributed variable X ∼ N (µ, σ2), the Average-Value-at-
Risk w.r.t. some significance level α ∈ (0, 1] can be expressed in a closed-form expression

(cf. (McNeil et al., 2005, p. 45)) via

AVaRα(X) = µ+ σ
ϕ(Φ−1(1 − α))

α
, (2.1)

as usually denoting by Φ−1 the quantile function of the standard normal distribution

and by ϕ the density function of the standard normal distribution.

It can be shown that the Average-Value-at-Risk w.r.t. some significance level α ∈ (0, 1]

is a coherent, law-invariant risk measure (cf. (Acerbi and Tasche, 2002)). Moreover, for

α ց 0 and X P -a.s. bounded, AVaRα(X) converges to the P -essential supremum (cf.
(Föllmer and Schied, 2004, Remark 4.45)). Hence, the definition of the Average-Value-

at-Risk can sensibly be extended by defining

AVaR0(X) := ess supX, X ∈ L∞(P ).

The functionals examined in the theory of convex risk measures exhibit some attractive

properties: Convex analysis has introduced the notion of the Fenchel–Moreau transform
3In some publications, the Average-Value-at-Risk (AVaR) is also referred to as the Conditional-Value-

at-Risk (CVaR), Tail-Value-at-Risk (TVaR), or Expected Shortfall (ES). Although there are slight

differences in the definitions, which matter in some special cases, these alternative risk measures

coincide with the Average-Value-at-Risk in most practical relevant cases (cf. (Föllmer and Schied,

2004, Corollary 4.49)).
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2.1 Theory of convex risk measures

of a function defined via the dual space of its domain. A key result of functionals is
the dual representation theorem, where a canonical representation of every convex risk

measure is developed and, simultaneously, a canonical construction principle for the
development of new convex risk measures, is described.

Theorem 2.1.3 (Dual representation of convex risk measures)

Let (Ω,F) be a measurable space and X ⊂ L0(Ω) be a vector space of measurable functions

on Ω. Furthermore, let Y ⊂ X be a sub-vector space and π ∈ Y⋆ be a linear form on Y.

If ρ is a convex risk measure on X w.r.t. (Y, π), then ρ has the dual representation

ρ(X) = sup
λ∈X ⋆,π

+

λ(X)− ρ⋆(λ),

with ρ⋆ being the Fenchel–Moreau transform (or convex dual) of ρ given by

ρ⋆(λ) := sup
X∈X

ρ(X)− λ(X)

and

X ⋆,π
+ :=

{

λ ∈ X ⋆
+ : λ|Y⋆ = π

}

being all positive linear forms on X extending π.

Proof

See (Krätschmer, 2006, Proposition 1.1). �

The interpretation of the dual representation is as follows: A convex risk measure can
be regarded as the supremum of some linear functionals λ (which are, in many cases,

expectations w.r.t. probability measures), where each linear functional is additionally
penalized by the convex dual ρ⋆(λ), which could be interpreted as the “trustworthyness”

of the functional λ.

A crucial (topological) property of convex risk meaures is the so-called Fatou property.

Definition 2.1.4 (Fatou property of convex risk measures)

Let (Ω,F) be a measurable space and X ⊂ L0(Ω) be a vector space of measurable functions

on Ω. If ρ is a convex risk measure on X , then ρ carries the Fatou property, if for every

uniformly bounded and pointwise convergent sequence of functions (XN )N∈N in X (i.e.

there is a C > 0 such that |XN | ≤ C for all N ∈ N and XN → X for some X ∈ X ),

ρ(X) ≤ lim infN∈N ρ(XN ) holds.

The interpretation of the Fatou property is as follows: If some financial position X may
be approximated by other positions (XN )N∈N and it may be easy to calculate ρ(XN ),
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but the calculation of ρ(X) is difficult, one can approximate ρ(X) by ρ(XN ) without
running the risk of underestimating the risk of X, if N ∈ N is chosen large enough.

In case of law invariance w.r.t. some probability measure P on (Ω, F ), one can relax
the condition of pointwise convergence to P -a.s. pointwise convergence (cf. (Föllmer and

Schied, 2004, p. 171ff)). It can been shown that broad classes of convex risk measures
exhibit the Fatou property (cf. (Jouini et al., 2006; Krätschmer, 2006)).

An important class of convex risk measures are the so-called spectral risk measures,

which have been introduced in (Acerbi, 2002). As a direct generalization of the AVaR,
where the tail of a distribution is weighted uniformly, spectral risk measures introduce

a general weighting on the quantiles such that upper quantiles are weighted relatively
stronger than lower quantiles.

Definition 2.1.5 (Spectral risk measure)

Let (Ω,F , P ) be a probability space, X ∈ L∞(P ), and φ : [0, 1] → R≥0 be a decreasing

and normed (i.e.
∫ 1
0 φ(x) dx = 1) function. Then the functional ρφ : L∞(P ) → R defined

by

ρφ(X) :=

∫ 1

0
VaRα(X)φ(α) dα

is called a spectral risk measure with spectrum φ.

A detailed discussion of spectral risk measures can be found in (Acerbi, 2002). In par-

ticular, it is shown that spectral risk measures are a subclass of coherent risk measures.
(Acerbi, 2002) provides a representation theorem for spectral risk measures, showing

that spectral risk measures are actually a (possibly infinite) convex combination of
(AVaRα)α∈(0,1] risk measures.

Proposition 2.1.6 (Representation theorem for spectral risk measures)

Let ρφ be a spectral risk measure with spectrum φ. Then there exists a measure µ on

(0, 1] such that ρφ can be calculated as

ρφ(X) =

∫ 1

0
AVaRα(X)µ(dα),

i.e. ρφ is a (possibly infinite) convex combination of different AVaR risk measures.

Proof

In (Acerbi, 2002), one shows that there exists a measure µ on [0, 1] with the upper con-

struction. Since AVaR0(X) = ess supX does not have any influence on ρφ according to

Definition 2.1.5, the singleton {0} has to be a µ-nullset. �
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2.2 Choquet integration theory

2.2 Choquet integration theory

Classical integration theory treats how to measure areas and volumes. As a special
case, one has integration theory w.r.t. probability measures where the integral w.r.t.

some probability measure is exactly the expected value. One of the key properties of
the regular integral is that integrals are linear functionals. But, in reality, one can set-

up experiments where people which act according to some “expected value” that does
not behave linearly, but exhibits sub- or superlinear behavior (e.g. (Schmeidler, 1989)).

Thus, a generalization of the regular integration theory has been developed to capture
sub- or superlinearity of integrals.

Corresponding to classical integration theory, where one integrates w.r.t. some (prob-

ability) measure, the integrator in Choquet integration theory can be more general –
one can use monotone set functions for integration. We will not present Choquet inte-

gration theory in its most general variety, for these purposes we refer to the textbook
(Denneberg, 1994). We start with some interesting properties set functions may exhibit

(it may be noted that all of these properties hold for measures).

Definition 2.2.1 (Set functions)

Let Ω be a nonempty set and F ⊂ P(Ω) be a set field, i.e. a nullset-containing collection

of sets being closed w.r.t. complements and unions. Then µ : F → R≥0 is called a set

function, if µ(∅) = 0. Furthermore, µ is called:

1. monotone, if for A,B ∈ F , A ⊂ B, µ(A) ≤ µ(B) holds;4

2. submodular, if for A,B ∈ F , µ(A ∩B) + µ(A ∪B) ≤ µ(A) + µ(B) holds;

3. supermodular, if for A,B ∈ F , µ(A ∩B) + µ(A ∪B) ≥ µ(A) + µ(B) holds;

4. additive, if µ is sub- and supermodular.

In classical integration theory, one develops the integral by introducing it for simple

functions5 and then applying a limit procedure to extend the integral to the whole set
of (integrable) functions (cf., e.g., (Klenke, 2008)). Differently, the Choquet integral

is defined via improper Riemann integrals over the decumulative distribution function
(which is also often called survival function).

4In some papers and textbooks (e.g. (Föllmer and Schied, 2004)), a monotone set function is refered

to as a capacity, which relates to an interpretation from physics. We follow the terminology of (Den-

neberg, 1994) and call this type of functions monotone set functions, since it is more comprehensive

for non-expert readers.
5In this setting, we call X : Ω → R a simple function, if there exist n ∈ N, sets A1, . . . , An ∈ F , and
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Definition 2.2.2 (Choquet integral)

Let Ω be a nonempty set, F a set field on Ω, and µ a monotone finite set function. Let

furthermore X : Ω → R be a random variable. The Choquet integral of X w.r.t. µ is

then defined as

∫

Ω
X dµ :=

∫ 0

−∞
µ(X > x)− µ(Ω) dx+

∫ ∞

0
µ(X > x) dx.

When the domain Ω is unambiguous, we simply write
∫

X dµ instead of
∫

ΩX dµ.

The above definition of the Choquet integral is an immediate generalization of the clas-

sical measure integral (provided that we restrict ourselves to finite set functions and
measures), since the defining equality also holds for the classical integral w.r.t. some

finite measure.6

In some cases, the Choquet integral may be infinite or not defined. The improper
Riemann integrals of the (shifted) decumulative distribution function are always well-

defined, since the decumulative distribution function GX,µ(x) := µ(X > x) is a monotone
decreasing function. If both Riemann integrals are infinite, we run into a pathological

situation and declare such a Choquet integral as “not defined”. It can be easily shown
that the Choquet integral can be represented equivalently as a Riemann–Stieltjes integral

w.r.t. the cumulative distribution function, on which we rely on in some proofs later.

Proposition 2.2.3 (Choquet integral as a Riemann–Stieltjes integral)

Let Ω be a nonempty set, F a set field on Ω, and µ a finite monotone set function on F .

If X : Ω → R is an F-measurable function and the Choquet integral is defined, it can be

equally calculated via
∫

X dµ = −
∫ ∞

−∞
xF−X(dx),

denoting – as usually – by F−X(x) = µ(−X ≤ x) the cumulative distribution function.

Proof

The proof follows (Denneberg, 1994, Exercise 5.3). First note that the Lebesgue–Stieltjes

measure ν which is yielded by ν((a, b]) := µ(X > a) − µ(X > b) (use the classical

constants c1, . . . , cn ∈ R such that X =
∑n

j=1 cj1Aj
, denoting by1A(ω) =







1, ω ∈ A

0, otherwise

the indicator function w.r.t. the set A ∈ F .
6In most applications of Choquet integration theory, one uses normed set functions µ with µ(Ω) = 1.

30



2.2 Choquet integration theory

Carathéodory extension procedure to obtain the whole measure), a ≤ b, a, b ∈ R, has the

decumulative distribution function Gν(a) = ν((a,∞)) = µ(X > a), a ∈ R. Now, the

integral of the identity w.r.t. ν can be written as

∫ ∞

−∞
x ν(dx) =

∫ ∞

−∞
xGν(dx),

denoting Gν(x) := ν((x,∞)). On the other hand, the Lebesgue–Stieltjes integral coincides

with the Choquet integral, hence

∫ ∞

−∞
x ν(dx) =

∫ 0

−∞
Gν(x)− ν(R) dx+

∫ ∞

0
Gν(x) dx

=

∫ 0

−∞
µ(X > x)− µ(Ω) dx+

∫ ∞

0
µ(X > x) dx

=

∫

Ω
X dµ

holds. The assertion equally holds for F−X instead of GX due to the fact that the set

of discontinuity points of a monotone function is at most countable and the improper

Riemann integrals of two monotone functions that coincide on dense subsets are equal

(cf. (Denneberg, 1994, Lemma 1.3)). �

The Choquet integral has some properties which generalize the properties from the reg-
ular integral w.r.t. a (probability) measure. In particular, the monotonicity and positive

homogeneity of the integral prevails and the set function is enhanced in a natural man-
ner (cf. (Denneberg, 1994, Proposition 5.1)). Furthermore, the Choquet integral exhibits

properties which depend on the set function, i.e. super- (resp. sub-)modularity implies
that the Choquet integral is super- (resp. sub-)additive (cf. (Denneberg, 1994, Theorem

6.3, Corollary 6.4)).

Theorem 2.2.4 (Properties of the Choquet integral)

Let Ω be a nonempty set, F a set field on Ω, and µ a monotone set function on F . Let

X,Y : Ω → R be µ-a.s. bounded random variables such that their Choquet integrals exist,

then the following properties hold for the Choquet integral w.r.t. µ:

1. It is monotone, i.e. if X ≤ Y , then

∫

X dµ ≤
∫

Y dµ

holds;
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2. Is is positively homogeneous, i.e. for c > 0,

∫

cX dµ = c

∫

X dµ

holds;

3. It enhances µ, i.e. if A ∈ F , then µ(A) =
∫ 1A dµ holds;

4. It is comonotonic additive, i.e. if X,Y are comonotone, i.e. for ω1, ω2 ∈ Ω (X(ω1)−
X(ω2))(Y (ω1)− Y (ω2)) ≥ 07, then

∫

X + Y dµ =

∫

X dµ+

∫

Y dµ

follows;

5. If µ is submodular, then the Choquet integral is subadditive, i.e.

∫

X + Y dµ ≤
∫

X dµ+

∫

Y dµ;

6. If µ is supermodular, then the Choquet integral is superadditive, i.e.

∫

X + Y dµ ≥
∫

X dµ+

∫

Y dµ.

Proof

See (Denneberg, 1994, Proposition 5.1, Theorem 6.3, Corollary 6.4). �

An interesting property of the Choquet integral is the comonotonic additivity. If two

random variables X,Y are comonotonic, i.e. the move from one state ω1 to another
state ω2 is always in the same direction, the Choquet integral behaves just like the

classical integral and exhibits classical additivity. Being put in a financial context, one
may interpret two comonotonic random variables X,Y as financial positions that move

co-directionally as a function of the state. Roughly spoken, the financial position X

does not exhibit losses, if and only if the financial position Y does not exhibit losses.

Hence, diversification between the two financial positions X and Y does not make a
lot of sense.8 Using the Choquet integral as a “risk measure” in a financial context,

7An equivalent definition of comonotonicity is that there is a random variable Z such that Y and X are

an increasing functions of Z, i.e. there exist increasing functions f, g : R → R such that X = f(Z),

Y = g(Z), cf. (Denneberg, 1994, Proposition 4.5).
8One might argue to account for different sizes of losses, but, at least, the positions do not provide any

hedges towards each other’s losses.
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2.2 Choquet integration theory

comonotonic additivity means that no diversification is possible between comonotonic
financial positions.

One can bridge the gap between convex risk measures and Choquet integrals by the
following useful representation theorem, which is the Choquet integration equivalent of

the classical Daniell–Stone theorem in measure integration theory (one can even obtain
the Daniell–Stone theorem as a corollary, cf. (Denneberg, 1994)). It states that any

functional exhibiting monotonicity and comonotonic additivity is actually a Choquet
integral and one can easily construct the set function from the functional.

Theorem 2.2.5 (Representation theorem of Greco and Schmeidler)

Let F be a σ-algebra on a set Ω and denote by L∞(F) the set of bounded F-measurable

functions on Ω. If Γ : L∞(Ω) → R is a monotone and comonotonic additive functional,

i.e.

1. for X,Y ∈ L∞(F), X ≤ Y , Γ(X) ≤ Γ(Y ) holds, and,

2. for X,Y ∈ L∞(F) comonotonic, Γ(X + Y ) = Γ(X) + Γ(Y ) holds,

then µ(A) := Γ(1A) is a monotone set function and

Γ(X) =

∫

Ω
X dµ

holds.

Proof

See (Denneberg, 1994, Theorem 11.2). �

Many assumptions in the above theorem can actually be relaxed, as in (Denneberg, 1994,

Chapter 13), but we present it in the convenient version above. As a corollary, Theorem
2.2.5 can characterize all comonotonically additive convex risk measures as Choquet

integrals (cf. (Föllmer and Schied, 2004, Theorem 4.82)).

Corollary 2.2.6

If F is a σ-algebra on a set Ω and Γ : L∞(F) → R is a convex risk measure which is

additionally comonotonically additive, then it is a Choquet integral w.r.t. the submodular

set function µ(A) := Γ(1A).
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Distorted probabilities

A prime example for Choquet integration, which has been richly exploited for construct-
ing convex risk measures (cf., e.g., (Föllmer and Schied, 2004; Hürlimann, 2004; Gzyl

and Mayoral, 2008; Balbás et al., 2009)), is given by distorted probabilities. Grounded
in behavioral finance theory, one can exhibit that – in several situations – people that

know about probabilities do not use the raw probabilities, but “distort” them, i.e. assign
higher “subjective probabilities” to objectively small probabilities. It may occur that

this is done systematically according to the original probability level α, i.e. all events
with an objective probability α are assigned a subjective probability γ(α). In this case,

mathematically spoken, a distortion function is applied to the probabilities.

Definition 2.2.7 (Distortion function)

Let γ : [0, 1] → [0, 1]. γ is called a distortion function if γ is monotone, γ(0) = 0, and

γ(1) = 1.

The interpretation of distortion functions is as follows: Given a probability space (Ω,F , P ),
instead of measuring the probability of a set A classically via P (A), we alternatively
consider the distorted probability γ(P (A)) w.r.t. some distortion function γ. Obviously,

the set function γ ◦ P : F → [0, 1] is not a probability measure any more for gen-
eral γ, but still preserves monotonicity w.r.t. the set order: A ⊂ B, A,B ∈ F implies

γ(P (A)) ≤ γ(P (B)). Hence, instead of calculating the expected value w.r.t. P , one can
calculate the Choquet integral w.r.t. the set function γ ◦ P

∫

Ω
X d(γ ◦ P ) (2.2)

for some random variable X. The Choquet integral (2.2) can be interpreted as a “subjec-
tive expected value” where the original, objective probabilities provided by the measure

P are reweighted with the distortion function γ.

Furthermore, it can be shown that if the distortion function γ is concave, the Choquet
integral is a subadditive functional (cf. (Denneberg, 1994, Example 2.1)). Thus, Choquet

integrals w.r.t. concave distorted probabilities fulfill the axioms of convex risk measures
(even coherent risk measures) and are often referred to as distortion risk measures.

Definition 2.2.8 (Distortion risk measure)

Let (Ω,F , P ) be a probability space and Γ : L∞(P ) → R be a convex risk measure on the

set of P -a.s. bounded random variables. Γ is called a distortion risk measure, if there
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2.2 Choquet integration theory

exists a concave distortion function γ : [0, 1] → [0, 1] such that Γ is the Choquet integral

w.r.t. γ ◦ P , i.e.

Γ(X) =

∫

Ω
X d(γ ◦ P ) for each X ∈ L∞(P ).

Some authors (e.g. (Acerbi, 2002)) treat so-called spectral risk measures instead, which
is a somewhat equivalent approach to distortion risk measures (cf. (Föllmer and Schied,

2004; Gzyl and Mayoral, 2008)). One of the well-known examples for a distortion risk
measure is the Average-Value-at-Risk (AVaR), which was already mentioned in Example

2.1.2.

Example 2.2.9 (Average-Value-at-Risk)

It can easily be shown (cf., e.g., (Balbás et al., 2009)) that the AVaRα for some signifi-

cance level α ∈ (0, 1] can be represented as a Choquet integral w.r.t. a distorted probability.

The corresponding distortion function is given by

γα(u) =







u
α , u ∈ [0, α]

1, otherwise

and γα is obviously concave. For α = 0 (which is the essential supremum), the distortion

function is simply given by the indicator function 1(0,1].
As a more elaborate example, (Cherny and Madan, 2009) introduce several parametric

families of concave distortion functions and calculate positions w.r.t. the induced distor-
tion risk measures. The following minmaxvar -family of concave distortions is introduced

in (Cherny and Madan, 2009) and successfully employed in (Cherny and Madan, 2010).

Example 2.2.10 (minmaxvar-family of concave distortions)

Let ψx(y) : [0, 1] → [0, 1], x ∈ R≥0 be defined by9

ψx(y) := 1−
(

1− y
1

x+1

)x+1
.

It can easily be verified that ψx is a concave distortion function.

9Choosing x ∈ N allows for the following interpretation of the minmaxvar-distortion functions: If a

random variable X ∈ L1(P ) has the same distribution as min{Z1, . . . , Zx+1}, Z1, . . . , Zx+1 i.i.d.,

then
∫

X d(ψx ◦ P ) =

∫

max{Z1, . . . , Zx+1} dP

follows.
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As we have shown above, all Choquet integrals are comonotonically additive and all con-
vex risk measures which additionally exhibit comonotonic additivity are actually Choquet

integrals. Given a probability space (Ω,F , P ), a distortion risk measure is a somehow
“natural” approach where law invariance w.r.t. P is naturally preserved. And, actually,

another representation theorem yields that – under mild technical conditions – the dis-
tortion risk measures are the only Choquet integrals (hence the only comonotonically

additive convex risk measures) exhibiting law invariance.

Theorem 2.2.11

Let (Ω,F , P ) be an atomless10 probability space and Γ : L∞(P ) → R be a law invariant

convex risk measure which is additionally comonotonically additive. Then there exists a

concave distortion function γ : [0, 1] → [0, 1] such that Γ is a Choquet integral w.r.t. the

distorted probability γ ◦ P , i.e.

Γ(X) =

∫

Ω
X d(γ ◦ P ), X ∈ L∞(P ).

Proof

See (Föllmer and Schied, 2004, Theorem 4.87). �

Theorem 2.2.11 shows that the class of distortion risk measures is a natural subclass

of convex risk measures, providing both the rather natural properties of comonotonic
additivity and law invariance. Furthermore, calculations in the set of distortion risk

measures are tractable when using the representation provided in Proposition 2.2.3.

Corollary 2.2.12 (Riemann–Stieltjes representation)

Let Γ be a distortion risk measure which is associated with some concave distortion

function γ : [0, 1] → [0, 1]. Then we can calculate the distortion risk measure of some

claim X ∈ L∞(P ) as a Riemann–Stieltjes integral via

Γ(X) = −
∫ ∞

−∞
x (γ ◦ F−X)(dx),

as usually denoting by F−X(x) := P (−X ≤ x) the cumulative distribution function of

−X w.r.t. probability measure P .

Proof

Follows immediately from plugging in the definition of a concave distortion function in

the Riemann–Stieltjes integral representation from Proposition 2.2.3. �

10A probability space is called atomless, if it supports a standard uniformly distributed random variable

X, i.e. X ∼ U [0, 1].
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3 Model and parameter risk – a convex

risk measure ansatz

In this chapter, we describe and discuss our ansatz to treat model and parameter risk.

Therefore, we first formally define model and parameter uncertainty and risk and state
some examples (including classical ones like incomplete markets). We introduce our

concept of risk-capturing functionals and risk-captured bid/ask prices, which treat model
and parameter risk using convex risk measures in the spirit of (Branger and Schlag, 2004;

Gupta, 2009; Gupta et al., 2010), extending the ideas of (Carr et al., 2001; Xu, 2006;
Cherny and Madan, 2010) from the incomplete markets setting. By employing different

convex risk measures, we state examples which generalizing both the worst-case approach
of (Cont, 2006) as well as the treatment of (Lindström, 2010).

Notation

Let throughout the remaining thesis (Ω,F ,F) be a filtered measurable space and let
(St)t≥0 denote a d-dimensional F-adapted stochastic process modelling the basic instru-

ments with St = (S
(1)
t , . . . , S

(d)
t ), d ∈ N. To simplify notation, we assume without loss

of generality all claims being evaluated w.r.t. a martingale measure Q, typically denoted

by X, to be already discounted by the associated numéraire process.

3.1 Model and parameter uncertainty in derivatives pricing

In this section, we define model and parameter uncertainty and briefly recall the ap-
proaches of (Cont, 2006) and (Lindström, 2010) to capture model resp. parameter un-

certainty. Furthermore, we state some examples of models from derivatives pricing where
model resp. parameter uncertainty is crucial.
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Definition 3.1.1 (Model uncertainty)

Let Q be a family of probability measures on (Ω,F) such that all stochastic processes

modelling discounted basic instruments (S
(i)
t )t≥0, i = 1, . . . , d, are Q-martingales for all

Q ∈ Q. The financial market model (Ω,F ,F, (St)t≥0,Q) faces model uncertainty if

|Q| > 1, where |Q| denotes the cardinality of Q.

Definition 3.1.2 (Parameter uncertainty)

Let (Pθ)θ∈Θ be a family of pairwise different probability measures on (Ω,F) such that the

models (Ω,F ,F, (St)t≥0, Pθ) are arbitrage-free for all θ ∈ Θ. The model faces parameter
uncertainty if |Θ| > 1.1

Remark 3.1.3 (Interpreting parameter uncertainty as model uncertainty)

Obviously, parameter uncertainty is a special case of model uncertainty, since every θ ∈ Θ

induces a family of equivalent martingale measures Qθ. Therefore, exposure towards

model uncertainty exists w.r.t. the model family Q =
⋃

θ∈ΘQθ, just as pointed out in

(Cont, 2006). In case of incomplete models Pθ, we have uncertainty in two ways: The

parameter uncertainty about the true real-world model Pθ and furthermore model uncer-

tainty about the equivalent martingale measure Q ∈ Qθ := {Q : Q ∼ Pθ} obtained by a

change of measure.

As a prominent special case, which is extensively treated in the literature, model un-

certainty arises in incomplete markets with real-world measure P , where all measures
Q ∈ Q are equivalent. This special case of model uncertainty is widely understood and

hedging proposals are provided.

Example 3.1.4 (Incomplete markets)

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space, (St)t≥0 the asset price process and

let

Q := {Q probability measure on (Ω,F , (Ft)t≥0) : Q ∼ P , (St)t≥0 is Q-martingale}

be the set of P -equivalent martingale measures. General arbitrage pricing theory has

shown (cf. (Harrison and Pliska, 1983)) that there is model uncertainty w.r.t. Q if and

only if there exist contingent claims that cannot be hedged by a dynamic trading strategy.

Thus, this situation is called an incomplete market. This kind of model uncertainty pri-

marily arises from having different sources of stochasticity in the postulated real-world

model P (as, e.g., in stochastic volatility models where one cannot treat “volatility” as a

1As our notation in Definition 3.1.2 suggests, parameter uncertainty may arise from uncertainty of the

real-world measure and then transfers to uncertainty of the risk-neutral measure.
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3.1 Model and parameter uncertainty in derivatives pricing

tradeable asset) or from some kind of stochasticity in the real-world model that may be

distorted in many ways (as, e.g., in non-Brownian Lévy models where the processes pa-

rameters can be affected by equivalent measure change). Interpreting the Radon–Nikodým

derivative dQ/dP of the measure change Q ∼ P as the “market price of risk parameter”,

one can also think of incomplete markets as a situation of parameter uncertainty in a

natural way.

An illustrating example for parameter uncertainty can be stated in every model where a

hidden parameter vector θ has to be estimated and is not directly quoted by the market
(as, e.g., spot rates or interest rates). A simple example not coming from incomplete

markets is the famous Black–Scholes model with uncertain Black–Scholes volatility.

Example 3.1.5 (Parameter uncertainty in financial market models)

1. Examining the risk-neutral version of the Black–Scholes model, the dynamics of a

stock price follow a geometric Brownian motion, i.e. the SDE

dSt = rSt dt+ σSt dWt, S0 > 0,

with (Wt)t≥0 being Brownian motion, r the risk-free interest rate, and σ the stock’s

volatility. While the initial stock price S0 and the risk-free rate r are typically

market-quoted quantities (and therefore known), one does not have direct informa-

tion about the volatility σ. Hence, a priori, every positive number σ > 0 can be

taken. Usually, one uses market data (e.g. historical estimation, calibration to

market prices) to specify the volatility σ.

2. In the (risk-neutral) Heston model, the stock price dynamics follow the coupled

SDEs

dSt = rSt dt+ σtSt dW
(1)
t , S0 > 0,

dσ2t = κ(σ2t − σ2long) dt+ ξσt dW
(2)
t , σ20 > 0,

with (W
(j)
t )t≥0, j = 1, 2, being Brownian motions with correlation ρ ∈ [−1, 1].

Compared to the Black–Scholes model, the parameter vector of unknown parameters

has a higher dimension. Again, the initial stock price S0 and the risk-free rate r are

known by market quotation. Furthermore, one may argue that the initial volatility

σ0 may be given by some volatility index like the VIX as described in (Guillaume

and Schoutens, 2011). On the other hand, the mean reversion speed κ > 0, the

long-term volatility σ2long > 0, the vol-of-vol ξ > 0, and the correlation ρ ∈ [−1, 1]

are typically not given and have to be obtained in an estimation or calibration
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procedure. Hence, in the Heston model, one is typically exposed towards parameter

uncertainty at least w.r.t. the quadruple (κ, σ2long, ξ, ρ) ∈ R
3
≥0 × [−1, 1].

(Cont, 2006) proposes to handle model uncertainty by a worst case approach: Restricting
the set of contingent claims to the vector space

C :=







X ∈
⋂

Q∈Q

L1(Q) : Q 7→ EQ[X] ∈ L∞(Q)







,

one can define an upper bound for the price of a contingent claim X ∈ C by Γu(X) :=

supQ∈Q EQ[X] and analoguously a lower bound Γl(X) := −Γu(−X) = infQ∈Q EQ[X].

This definition clearly quantifies the extremes of model (resp. parameter) uncertainty,
which is the main purpose of (Cont, 2006).

A special case of (Cont, 2006)’s general setting is the uncertain volatility model of (Avel-

laneda et al., 1995), where a stochastic control approach is employed to calculate the
upper and lower price bounds.

Example 3.1.6 (Pricing with uncertain volatility)

Let (St)t≥0 be an asset price process following a geometric Brownian motion with stochas-

tic volatility, i.e.

dSt = rSt dt+ σtSt dWt.

The volatility process (σt)t≥0 can be arbitrary, but has its domain in an interval [σl, σu]

with σu > σl > 0 and should be chosen such that the defining stochastic differential

equation has a solution. The bounds σu, σl may be obtained from expert judgements or

data like, e.g., available implied Black–Scholes volatilities of liquid options. With these

implicitly imposed models, one can calculate the model-free upper and lower bounds for

the price of an FT -measurable derivative X with maturity T by a PDE approach (cf.

(Avellaneda et al., 1995)) for the price of some derivatives.

For pricing purposes, the worst-case approach of (Cont, 2006) might be too conservative
in practice (this is discussed later): Using Γu(X) may add a too large charge for model

risk. In case of parameter uncertainty, if Q = {Qθ : θ ∈ Θ} and Θ ⊂ R
m is a compact

set and the map θ 7→ EQθ
[X] is continuous, the supremum and infimum will be attained

for certain parameters θu, θl ∈ Θ, so EQθu
[X] would be the largest sensible price and

EQθl
[X] would be the lowest sensible price. Hence, a (very conservative) approach to

quote a bid-ask price pair for the derivative X could be to quote EQθl
[X] as a bid price

and EQθu
[X] as an ask price. But, in practice, the market typically does not accept
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3.1 Model and parameter uncertainty in derivatives pricing

these conservative prices, e.g. due to competition among different derivatives traders
that are willing to take some parameter risk (thus quoting narrower bid-ask prices).

Therefore, a worst case approach might not provide good practice in all situations to
calculate an additional charge that may be accepted by the market. Furthermore, in

case of an available distribution R on Q, the information contained in this distribution
R is disregarded. This immediately leads us to introduce a special situation of model

uncertainty where more information is given.

Definition 3.1.7 (Model risk)

Let (Ω,F ,F, (St)t≥0,Q) be a financial market model exhibiting model uncertainty, i.e.

|Q| > 1. If there is a σ-algebra FQ on Q and a probability measure R : FQ → [0, 1]

assigning a “likelihood of validity” to the models in doubt Q, the financial market model

exhibits model risk.

Analoguously to model risk, one defines parameter risk. A comprehensive example where
parameter risk arises naturally is in the case of parameter estimation. Given the example

of uncertain volatility in the Black–Scholes model provided in Example 3.1.5, we can try
to estimate the Black–Scholes volatility from time series with representative data. In

this case, the estimator itself has a distribution given by its pushforward measure and
we exhibit parameter risk in the sense of Definition 3.1.7.

Example 3.1.8 (Parameter risk from Black–Scholes volatility estimation)

We consider a Black–Scholes setting as given in Example 3.1.5, where the volatility σ is

the key parameter for risk-neutral pricing. This parameter is not directly given by the

market (different from the spot price S0 and the risk-free rate r). Hence, the determi-

nation of the volatility is a situation where one is exposed to parameter uncertainty (as

described in (Avellaneda et al., 1995)). If the stock price process actually follows the

Black–Scholes model, it may be a sensible idea to estimate the volatility from time se-

ries data. Under the assumption of normally distributed logarithmic returns x1, . . . , xN ,

xj = logStj+∆t − logStj , j = 1, . . . , N , one may choose the classical estimator for the

variance (it may be more convenient to estimate the returns’s variance), corrected for

the frequency of the data ∆t, which results in the estimator

σ̂2N =
1

∆t(N − 1)

N
∑

j=1

(xj − x̄)2, x̄ =
1

N

N
∑

j=1

xj

for the variance corresponding to the Black–Scholes volatility. Applying general theory

from statistics, one obtains that, under the assumption of having independent normally

distributed returns and a true variance σ20 > 0, the distribution of the estimator is a

41



chi-squared distribution up to some scaling (cf. (Knight, 2000, Proposition 2.11), i.e.

σ̂2N ∼ σ2
0

∆t(N−1)χ
2
N−1, which is a Gamma distribution with shape parameter (N−1)/2 and

scale parameter 2σ20/(∆t(N−1)). Hence, the distribution determining the parameter risk

arising from the estimation of volatility (resp. variance) is essentially determined by the

chi-squared distribution and the parameter risk triplet (Θ,FΘ, R) is given by Θ = R>0,

FΘ = B(R>0) with B(R>0) denoting the Borel-σ-algebra w.r.t. R>0 and

R(dx) =
(∆t(N − 1))

N−1
2

Γ
(

N−1
2

)

(2σ20)
N−1

2

x
N−3

2 exp

(

−x∆t(N − 1)

2σ20

)1{x>0} dx.

A special situation where a parameter risk situation is used for explaining the volatility

smile in the Black–Scholes model was done by (Lindström, 2010), again in a Black–
Scholes setting.

Example 3.1.9 (Smile modeling via volatility risk)

(Lindström, 2010) tries to explain the smile and term structure of implied volatility sur-

faces by substituting fixed parameters of given models by random variables; adding noise to

the parameters. In particular, he suggests substituting the volatility of the Black–Scholes

model by a symmetrically distributed noise variable. Generally speaking, a parameter θ

is substituted by a random variable θ̃ with support in the parameter space Θ. Then, he

calculates the option price serially: First, the parameter θ ∈ Θ is fixed and EQ[X|θ̃ = θ]

is calculated for each θ ∈ Θ. Afterwards, the function θ 7→ EQ[X|θ̃ = θ] is integrated

w.r.t. the distribution of the random variable θ̃, i.e. the price is calculated as

Γ(X) =

∫

Θ
EQ[X|θ̃ = θ]Fθ̃(dθ).

By defining Qθ(A) := EQ[1A|θ̃ = θ], considering the model family (Qθ)θ∈Θ, and define

the distribution R on the parameter space Θ to be the pushforward distribution of the

random variable θ̃, we can embed this approach into our notion of parameter risk.

The ansatz from (Lindström, 2010) leads to fairly successful results for smile explanation,
but does not account for aversion towards parameter uncertainty, since the risk-neutral

price is still calculated. Similar approaches have been advocated (in a discrete setting) by
(Bunnin et al., 2000) and (Branger and Schlag, 2004). The ansatz of (Lindström, 2010)

relies simply on integrating out the random parameter. Consequently, no additional
charge for parameter risk is stipulated. Beyond that, Jensen’s inequality shows that for

concave functions θ 7→ EQ[X|θ̃ = θ], adding a symmetric noise to the true parameter can
even lower the price. Furthermore, (Lindström, 2010) assumes that the distribution of
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3.2 Capturing model and parameter risk by using convex risk measures

the volatility is normal (which does not even match from the support - the Black–Scholes
volatility is assumed to be nonnegative, while the normal distribution has support all

over the real line). Hence, the ansatz of (Lindström, 2010) can be criticized from several
perspectives.

3.2 Capturing model and parameter risk by using convex

risk measures

In this section, we introduce our concept of model (resp. parameter) risk-capturing func-
tionals based on convex risk measures, extending the idea of using convex risk measures

for pricing in an incomplete markets setting2 described in (Carr et al., 2001; Xu, 2006;
Cherny and Madan, 2010) and similar to the ideas of measuring model risk by (Branger

and Schlag, 2004; Gupta, 2009; Gupta et al., 2010). Although we mainly focus on pa-
rameter risk in this thesis, we introduce it in the more general setting of model risk.

Furthermore, we show that the pricing proposals from (Cont, 2006) and (Lindström,
2010) are special cases of pricing with certain risk-capturing functionals, e.g. induced

by the well-known Average-Value-at-Risk and limit cases of risk-capturing functionals
induced by the entropic risk measure.

First, we state required properties of functionals to qualify for capturing model (resp.

parameter) risk. These properties can be related to properties of convex risk measures,
which we therefore apply to the current situation.
Properties 3.2.1

A functional Γ incorporating model uncertainty w.r.t. the model family Q into prices

should fulfill the following properties:

1. Order preservation: If there exists a model-free order, it should be preserved when

incorporating model uncertainty, i.e.

∀X,Y ∈
⋂

Q∈Q

L1(Q) : X(ω) ≥ Y (ω) for all ω ∈ Ω ⇒ Γ(X) ≥ Γ(Y ).

2. Diversification: Diversification of model uncertainty should not be penalized, i.e.

a convex combination of two positions facing model uncertainty should not have a

higher price than the convex combination of the single prices:

∀X,Y ∈
⋂

Q∈Q

L1(Q)∀λ ∈ [0, 1] : Γ(λX + (1− λ)Y ) ≤ λΓ(X) + (1− λ)Γ(Y ).

2Incomplete markets are a special case of model uncertainty, as mentioned in Section 3.1.
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3. Model independence consistency: If a payoff is consistently priced under all models

(resp. parameters), no model uncertainty is present and the model uncertainty cap-

tured price agrees with the risk-neutral price, i.e. no charge for model risk is added

to the risk-neutral price:

∀X ∈
⋂

Q∈Q

L1(Q) : Q 7→ EQ[X] is constant on Q ⇒ Γ(X) = EQ[X].

We now establish the notion of a (model) risk-capturing functional. We define it by
treating the more general type of model risk, but it can equally be applied in case of

parameter risk.

Definition 3.2.2 (Model risk-capturing functional)

Let Q be a family of models and let R be a probability measure on Q. Let A ⊂ L0(R) be

a vector space of measureable functions containing the constants and denote

CA :=







X ∈
⋂

Q∈Q

L1(Q) : Q 7→ EQ[X] ∈ A







as the vector space of all A-regular claims being available for all models in the model

family Q. Let furthermore ρ : A → R be a normalized, law invariant convex risk measure.

Then the mapping Γ : CA → R defined by

Γ(X) := ρ(Q 7→ EQ[X]) (3.1)

is called a (model) risk-capturing functional on the set of claims CA w.r.t. the distribution

R. ρ is called the generator of Γ and Γ(X) is called the risk-captured (ask) price of X

given the functional Γ.

The idea behind Definition 3.2.2 is that a derivatives trader, facing model risk, should

choose ask prices that are high enough that some buffer prevents her from losses due to
model risk, which may occur when selling too cheap. Conversely, one should account

for model risk when buying derivatives by setting bid prices low enough in order to
prevent oneself from losses due to model risk. A consistent strategy is to regard the dual

−Γ(−X) as the risk-captured bid price. Due to the dual nature of the bid and ask price
and for brevity, we will use the name “risk-captured price” for the risk-captured ask price

in the further, since the discussed properties transfer to the bid price in a dual manner.
Since

0 = Γ(0) = Γ((X + (−X))/2) ≤ (Γ(X) + Γ(−X))/2
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3.2 Capturing model and parameter risk by using convex risk measures

holds for every X ∈ CA (cf. (Bion-Nadal, 2009)), the risk-captured bid price is always
lower or equal than the risk-captured ask price.

Canonical choices for A are, e.g., the Lebesgue spaces Lp(R) for p ∈ [1,∞], depending on

the domain of ρ. The assumption that constants are included in A is important for the
valuation of model-invariant payoffs. Furthermore, ρ being normalized is also natural

from an economic point of view, since the risk-captured price of a zero payoff should
equal 0.

Obviously, parameter risk can also be incorporated into this framework: Given a set of

equivalent martingale measures (Qθ)θ∈Θ and a distribution R on Θ, the bijection ι : Θ →
Q with Q := {Qθ : θ ∈ Θ} defines a distribution on Q. When Q can be parameterized

by some parameter space Θ, we speak about parameter risk-capturing functionals. In
case of parameter risk w.r.t. a parameter space Θ, we abbreviate Eθ[X] := EQθ

[X] for

θ ∈ Θ.

Similar ideas, in a less technical context, were first provided by (Branger and Schlag,
2004) in a discrete setting employing spectral risk measures. (Gupta, 2009; Gupta et al.,

2010) suggest measuring model risk with convex risk measures, omitting to require law
invariance and normalization and without the interpretation of a risk-captured price.

The following proposition subsumes some basic properties of (model) risk-capturing func-

tionals and the relationship with their generators.

Proposition 3.2.3 (Properties of risk-capturing functionals)

If Γ is a risk-capturing functional as in Definition 3.2.2 with domain CA and generator

ρ, then the following holds:

1. Γ is a convex risk measure on CA and is translation invariant on the subspace of

model-invariant contingent claims X0 := {X ∈ CA : Q 7→ EQ[X] is constant} w.r.t.

the (well-defined) linear form π(X) := EQ[X],X ∈ X0 (in particular, Γ fulfills the

desirable properties described in 3.2.1).

2. If ρ is a coherent risk measure, then Γ is also coherent.

3. If ρ carries the Fatou property, then Γ also carries the Fatou property.

4. If A = Lp(R), p ∈ [1,∞], or A = C(Q) with a compact space of possible probability

measures Q, then the Fatou property holds automatically.

5. Γ can be represented in terms of positive linear forms extending π, i.e.

Γ(X) = max
λ∈(CA)⋆π+

λ(X) − α(λ)
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holds with (CA)⋆π+ denoting the set of all positive linear forms extending π and

α : (CA)⋆π+ → (−∞,∞] being a suitable penalty function.

Proof

1. Let X,Y ∈ CA. If X ≤ Y , then the monotonicity of ρ and of expected values

immediately yield

Γ(X) = ρ(E·[X]) ≤ ρ(E·[Y ])) = Γ(Y ).

Let furthermore λ ∈ [0, 1], then the convexity of ρ and linearity of expected values

yield

Γ(λX + (1− λ)Y ) = ρ(E·[λX + (1− λ)Y ]) = ρ(λE·[X] + (1− λ)E·[Y ])

≤ λρ(E·[X]) + (1− λ)ρ(E·[Y ]) = λΓ(X) + (1− λ)Γ(Y ).

Let now Y ∈ X0. Then the mapping Q 7→ EQ[Y ] =: c is constant. Hence, the cash

invariance of ρ delivers

Γ(X + Y ) = ρ(E·[X + Y ]) = ρ(E·[X] + c) = ρ(E·[X]) + c = Γ(X) + c.

2. Let c > 0, X ∈ CA, and ρ be coherent. Then positive homogeneity of ρ and the

expected value immediately yield

Γ(cX) = ρ(E·[cX]) = ρ(cE·[X]) = cρ(E·[X]) = cΓ(X).

3. Let (XN )N∈N be a pointwise convergent, uniformly bounded sequence of contin-

gent claims from CA with X := limN→∞XN and let ρ carry the Fatou prop-

erty. Since (XN )N∈N is uniformly bounded, there is a C > 0 such that |XN | ≤
C for all N ∈ N. Hence, Lebesgue’s dominated convergence theorem delivers

EQ[X] = limN→∞ EQ[XN ] for every Q ∈ Q. Thus, the functions νN : Q → R,

νN (Q) := EQ[XN ], converge pointwise to the function ν : Q → R defined by

ν(Q) := EQ[X]. Furthermore, the sequence (νN )N∈N is uniformly bounded, since

|νN (Q)| = |EQ[XN ]| ≤ EQ[|XN |] ≤ EQ[C] = C

hold for every Q ∈ Q and for every N ∈ N. Now the Fatou property of ρ immedi-

ately yields

Γ(X) = ρ(ν) ≤ lim inf
N∈N

ρ(νN ) = lim inf
N∈N

Γ(XN ),

which is exactly the Fatou property of Γ.
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3.2 Capturing model and parameter risk by using convex risk measures

4. If all mappings νX : Q 7→ EQ[X] are p-integrable for p ∈ [1,∞), and ρ is a convex

risk measure on Lp(R), ρ automatically carries the Fatou property, since the dual

space of Lp(R) can be identified with a set of signed measures {R̃ ≪ R} and the

argument presented in (Krätschmer, 2006). Similar, in case of dom(ρ) = C(Q) for

compact Q, the dual space of C(Q) can be identified by a vector space of signed Borel

measures on Q via the Riesz representation theorem (cf. (Werner, 2011, Theorem

II.2.5)), thus ρ automatically carries the Fatou property. For dom(ρ) = L∞(R),

the results from (Jouini et al., 2006) yield that ρ has the Fatou property due to

its law-invariance. Hence, (iii) delivers the Fatou property for the risk-capturing

functional Γ.

5. Follows directly from the representation in Theorem 2.1.3. �

If Γ carries the Fatou property, the practical interpretation is as follows: If the risk-
captured price Γ(X) of a contingent claim X is difficult to calculated (e.g. due to high

computational effort), but may be (pointwise) approximated by a (uniformly bounded)
sequence of contingent claims (XN )N∈N where the risk-captured price Γ(XN ) can be

calculated easier, the limit inferior of the risk-captured prices Γ(XN )N∈N can be used
as a conservative estimate; never understating the risk-captured price for X. This is

actually a desirable property, since an approximation of a claim X by some sequence
(XN )N∈N will not lead to risk-captured pricing understating the real risk.

An example is the approximation of a continuous arithmetic Asian option by a sequence
of Asian options with discrete observation, where the times of observation increase.

Example 3.2.4 (Approximation of a continuous arithmetic Asian option)

Let (St)t≥0 be an asset price process and X be an arithmetic Asian call option with

continuous observation, i.e.

X = e−rT

(

1

T

∫ T

0
St dt−K

)+

for some maturity T > 0, some risk-free rate r, and some strike K > 0. In practice, con-

tinuous observation is impossible. Thus, for valuation purposes (which is typically done

by means of Monte Carlo methods), one often approximates continuous Asian options by

Asian options with discrete observations, i.e.

XN = e−rT





1

N

N
∑

j=1

Stj −K





+

, N ∈ N,
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on a fine grid (t1, . . . , tN ) with tN = T . It has been shown that XN → X (if the density

of the grid (t1, . . . , tN ) tends to zero) in a pointwise sense for good-natured models (cf.

(Kemna and Vorst, 1990)). Furthermore, from a practical point of view, a maximum

payoff of some C > 0 is realistic in practice and a common assumption for numerical

valuation of options (as, e.g., in option valuation via numerical PDE solving). Hence,

the Fatou property guarantees that for a continuous Asian option X approximated with

discrete Asian options (XN )N∈ N, provided that the number of observations N is large

enough, the risk-captured price of the approximation Γ(XN ) is not lower than the risk-

captured true price Γ(X) due to Γ(X) ≤ lim infN∈N Γ(XN ).

The choice of the convex risk measure ρ (and therefore implicitly its domain A) com-

pletely determines the risk-capturing functional Γ. This allows us to exploit the rich
pool of convex risk measures fulfilling law-invariance and normalization to calculate risk-

captured prices.

3.3 Examples: AVaR- and entropic-driven risk-captured

prices

The Average-Value-at-Risk, which was introduced in Example 2.1.2, is a coherent law-
invariant risk measure and therefore fulfills the properties to serve as a generator of a risk-

capturing functional. Hence, we introduce the AVaR-driven risk-capturing functional.

Example 3.3.1 (Average-Value-at-Risk-induced risk-capturing functional)

Let Q be a family of martingale measures inducing model risk and let R be a distribution

on Q. Consider the L1(R)-regular claims and R ∗ AVaRα : CL1(R) → R to be the risk-

capturing functional generated by the coherent risk measure AVaRα : L1(R) → R for a

given confidence level α ∈ (0, 1], so

R ∗AVaRα(X) := AVaRα(Q 7→ EQ[X]).

We call R ∗ AVaRα the R-Average-Value-at-Risk, since it captures the risk arising from

the uncertainty on the model family Q by the distribution R isolated from risk within

a specific model Q ∈ Q. R ∗ AVaRα deals with the risk from the upper α-tail of the

distribution of the prices by averaging over the tail prices dependent on α. It should not

be confused with the regular Average-Value-at-Risk of a single model, which captures the

risk being described in a specific model.
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3.3 Examples: AVaR- and entropic-driven risk-captured prices

The R-Average-Value-at-Risk is a generalization of both (Cont, 2006) and (Lindström,

2010): First start with the approach discussed in (Lindström, 2010) to deal with param-

eter uncertainty. The existence of a single martingale measure Q is assumed. Further-

more, the parameter θ bearing uncertainty follows a distribution Qθ. In our terminology,

(Lindström, 2010) proposes to calculate Qθ ∗AVaR1, which can be easily seen by

∫

Θ
EQ[X|θ = θ0]Q

θ(dθ0) =

∫

Θ
EQθ0

[X]Qθ(dθ0) =

∫ 1

0
qQ

θ

EQ· [X](β) dβ

=

∫ 1

0
VaRβ(EQ· [X]) dβ = AVaR1(EQ·[X]) = Qθ ∗AVaR1(X).

The approach of (Cont, 2006) is to calculate the supremum of the expectations w.r.t.

a given family of models Q. In (Cont, 2006) the availability of a distribution is not

assumed, but in case of an at most countable Q, we can create a dummy distribution R on

the power set of Q with R(Q) > 0 for each Q ∈ Q. Furthermore, as described in Section

2.1, one can interpret AVaR0 as the essential supremum. By choosing a discrete dummy

distribution R on Q, the essential supremum turns out to become a regular supremum and

therefore R ∗ AVaR0(X) = supQ∈Q EQ[X] holds. Therefore, when there is uncertainty

about at most countably many models, the suggested worst-case ansatz from (Cont, 2006)

agrees with R ∗ AVaR0.

This shows that in (Cont, 2006) and (Lindström, 2010) it is suggested to use the extreme

points of R ∗AVaR, so the notion R ∗AVaR is a natural extension to interpolate between

these approaches and therefore provides prices with extra charges for uncertainty, being

more conservative than an expected value and less conservative than a supremum.

Remark 3.3.2 (Quantile property of Average-Value-at-Risk)

In Section 2.1, it has been shown that the Average-Value-at-Risk dominates the Value-

at-Risk. Translating this into the notion of R-Average-Value-at-Risks, it provides that

the risk-captured price induced by the R-Average-Value-at-Risk to a given significance

level α ∈ [0, 1] does not understate the fair price with probability 1− α, since it is more

conservative than the upper α-quantile of E·[X] w.r.t. the distribution R.

In presence of a distribution R on Q, the R∗AVaRα for a given significance level provides

an objective risk-captured price, since the only preference will be set by specifying the
significance level. A risk-neutral preference would be the expected value suggested in

(Lindström, 2010), the most conservative choice is the (essential) supremum as in (Cont,
2006). The next example provides a more subjective view on capturing model risk.
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Example 3.3.3 (Entropic-induced risk-capturing functional)

Another famous example for a convex risk measure is the entropic risk measure: If

(Ω,F , P ) is a probability space and X ∈ L∞(P ), the entropic risk measure with risk
aversion parameter λ ∈ (0,∞) is defined as

ρentλ (X) :=
1

λ
log(EP [exp(λX)]).

It is well known that the entropic risk measure is normalized and law-invariant (but not

coherent), see the treatment in (Föllmer and Schied, 2004, Example 4.33). We examine

(in presence of a distribution R on Q) the resulting R-entropic risk-capturing functional

generated by the entropic risk measure and denote it by Γent
λ for λ ∈ (0,∞). To ensure

that Γent
λ is well-defined, we restrict the set of evaluable claims to CL∞

.

Remark 3.3.4 (Properties of the entropic-induced risk-capturing functional)

• Since for λ ∈ (0,∞), x 7→ exp(λx) is a convex function, Jensen’s inequality pro-

vides

Γent
λ (X) = ρent(E·[X]) =

1

λ
log(ER[exp(λE·[X])])

≥ 1

λ
log(exp(λER[E·[X]])) = ER[E·[X]],

and, therefore, we obtain a more conservative risk-capturing functional compared

to the expected value w.r.t. R, which is the approach of (Lindström, 2010). It

is known (see below) that the extremal cases for λ ց 0 and λ ր ∞ agree again

with the risk-capturing functionals generated by the expected value and the essential

supremum.

• Jensen’s inequality also sheds some light on the role of λ: Heuristically speaking,

the higher λ ∈ (0,∞), the “more convex” the function x 7→ exp(λx) and therefore

the inequality in the above computation becomes “sharper”. Thus, the higher the

parameter λ is chosen, the more conservative the bid-ask pricing will be.

• An interesting feature of the entropic risk measure is that it is not positively ho-

mogeneous (unlike AVaR). Therefore, it may account for the risk being associated

with large trades, reflecting that large trades may bear additional risk due to liquidity

effects, risk management issues, or external regulatory constraints.

Similar to the Average-Value-at-Risk, it holds for the entropic risk measure that its ex-
tremal points are the essential supremum and the expected value. In a general probability
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3.3 Examples: AVaR- and entropic-driven risk-captured prices

space (Ω,F , P ), the entropic risk measure fulfills

ρentλ (X) =
1

λ
log(EP [exp(λX)])

= log

(

(

EP [exp(X)λ]
) 1

λ

)

= log ‖ exp(X)‖λ

for λ > 0 and X ∈ L∞(P ) with ‖X‖λ = EP [X
λ]1/λ. Thus, classical convergence

theorems (e.g. (Hardy et al., 1934)) yield

lim
λ→0

ρentλ (X) = lim
λ→0

log ‖ exp(X)‖λ

= EP [log(exp(X))] = EP [X]

and

lim
λ→∞

ρentλ (X) = lim
λ→∞

log ‖ exp(X)‖λ

= log(ess sup(exp(X))) = ess supX.

Therefore, the entropic-driven risk-capturing functional is an alternative generalization

of the ansatzes of (Cont, 2006) and (Lindström, 2010).

Parameter risk-captured prices as bid-ask prices

The fundamental idea for the application of parameter risk-capturing functionals to

derive bid-ask prices is that higher parameter risk (i.e. a distribution on the parameters
yielding a more dispersed price distribution) should result in a wider bid-ask spread.

A trader being unsure about the true value of a parameter, or having problems with
a position matching his book, usually adds a premium to the given theoretical model

price (the systematics behind this are often called edge rules). In case of parameter risk,
i.e. the quantification of the degree of parameter uncertainty by a distribution, the risk-

captured price provides a systematic approach for traders to account for parameter risk.
In case of stationary market conditions and the estimation of model parameters being

necessary (for example because liquid market data for a calibration is not available),
the estimator’s distribution delivers useful information how wide a reasonable bid-ask

spread could be. The choice of risk-capturing functional (as examples, the AVaR- and
the entropic-risk-capturing functional were presented) reflects the subjective preferences

of the trader (e.g. parameter risk aversion, aversion to large trades). When Γ : C → R

denotes a risk-capturing functional on a suitable vector space of contingent claims C, for

X ∈ C we suggest to treat Γ(X) as the ask price and Γ̄(X) := −Γ(−X) as the bid price
for the contingent claim X, as described in Section 3.2.
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3.4 Market-implied distributions

In case of liquid markets, some parameters are readily given by market quotes (e.g. liquid
stocks), so these parameters are not exposed to uncertainty. Hence, bid-ask spreads are

observable and can therefore be considered as market-implied. With available data
from liquid markets, we derive a market-implied distribution on the parameter set and

recover bid-ask prices via risk-capturing functionals, given this “synthetic parameter risk”
situation.

We start with a simple example, showing that the parameter risk-captured pricing ap-

proach of explaining bid-ask spreads is compatible to plug-in bid-ask spreads from liquid
quote-driven markets.

Example 3.4.1 (Bid-ask pricing from quoted parameters)

If the parameter is quoted in a liquid price-driven market (like spot prices, volatilities of

liquid stocks, or exchange rates), a bid-ask quote is readily available. From our frame-

work’s point of view, this bid-ask quote can be considered as a two-point distribution on

the parameter space: If Θ ⊂ R is a one-dimensional parameter space and we have a

quoted pair (θbid, θask) ∈ Θ × Θ, we define the implied parameter distribution on Θ by

R := 0.5δθbid +0.5δθask , denoting by δθ the Dirac measure w.r.t. θ ∈ Θ. If X is a contin-

gent claim, denoting the risk-neutral price w.r.t. θ ∈ Θ by f(θ) := Eθ[X], the quantile

function of f w.r.t. the probability measure R can be easily calculated (without loss of

generality we assume f(θbid) < f(θask))

qf (α) =

{

f(θbid), if α ≤ 0.5,

f(θask), otherwise,

and, therefore, R ∗ AVaRα(X) coincides for α ≤ 0.5 with the simple plug-in ask price.

The expected value does not represent the plug-in mid price (defining the mid parameter

as the arithmetic mean of bid and ask), but the mean of the plug-in bid and ask prices,

i.e. R ∗ AVaRα for α ∈ (0.5, 1) leads to a weighted average of the plug-in bid and ask

prices, weighting the plug-in ask price higher than the bid price. The entropic-driven risk

measure, being interpreted as more subjective, results in an ask price between the plug-in

prices as well, weighted by its utility.

Another, slightly more complicated application for the calculation of bid-ask spreads is

an order-driven market. If the parameter θ is not directly quoted with bid and ask price,
but is traded in a liquid order-driven market (as many stocks do, e.g. in Xetra trading),

bid and ask can be recovered by risk-capturing functionals, defining the market-implied
distribution by the order book.
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3.4 Market-implied distributions

Example 3.4.2 (Recovering bid-ask spreads from order-driven markets)

Let Θ ⊂ R be a one-dimensional parameter space and let (θ1, A1), . . . , (θM , AM ) ∈ Θ×R
+

for M ∈ N be a snapshot of the order book (e.g. the top M positions from bid and ask)

with parameter values θ1, . . . , θM and associated quantities A1, . . . , AM . If we assume

that the order book gives a useful prediction for a bid-ask price (which does not exist

naturally in an order-driven market), we could define a discrete probability measure on

Θ by setting Ā :=
∑M

i=1Ai and

R :=

∑M
i=1Aiδθi
Ā

to be the distribution based on which the risk-captured price has to be calculated.
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4 Convergence properties of risk-captured

prices

In Section 3, we defined a risk-capturing functional given a distribution R on the set of
possible models Q (resp. on the set of possible parameters Θ). To specify the distribution

R, there may be numerous possibilities (e.g. the pushforward measure of an estimator),
but in some cases, one might only be able to approximate a distribution R with some

sequence of distributions (RN )N∈N. One desirable property of a risk-capturing functional
is that the risk-captured price w.r.t. the sequence of distributions (RN )N∈N eventually

converges to the risk-captured price w.r.t. the limit distribution R. In this section, we
scrutinize convergence properties and provide convergence results for some classes of

risk-capturing functionals.

4.1 Convergence results of risk-capturing functionals

We postulate the following convergence property for risk-capturing functionals based on
weak convergence of probability measures.

Definition 4.1.1 (Convergence property (CP))

Let Θ be a parameter space and RN → R0, N → ∞, be a sequence of weakly conver-

gent distributions on Θ. Let A ⊂ L0(Θ) be a vector space of measurable functions and

(ρN )N∈N be a sequence of convex risk measures on A such that ρN is RN -law invariant.

The sequence of risk-capturing functionals ΓN : CA → R with

ΓN (X) := ρN (θ 7→ Eθ[X])

is said to have the convergence property (CP) on A, iff

lim
N→∞

ΓN (X) =: Γ0(X) = ρ0(θ 7→ Eθ[X])

converges for every X ∈ CA and Γ0 is a risk-capturing functional for the distribution R0

with generator ρ0.
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Intuitively, the convergence property (CP) describes that a sequence of risk-capturing
functionals is consistent with approximations of the parameter’s distribution in the sense

of weak convergence. Typically, one employs the same convex risk measure ρ ≡ ρN (e.g.
the AVaR), while varying the parameter distributions (RN )N∈N, eventually converging

to a limit distribution R0.

At first glance, the convergence property (CP) seems to be abstract and technical, but

the special case when the limit distribution is a Dirac distribution (as in case of, e.g.,
consistent estimators, which will be discussed in Chapter 5) sheds some light on its

usefulness.

Proposition 4.1.2 (Convergence to plug-in price)

Let (RN )N∈N be a sequence of probability distributions on the parameter set Θ converging

to a limit distribution R0 in the weak sense and (ΓN )N∈N be a sequence of risk-capturing

functionals. If the sequence (ΓN )N∈N carries the convergence property (CP) on A and

R0 = δθ0 , i.e. R0 is a Dirac distribution w.r.t. a parameter θ0, then ΓN (X) → Eθ0 [X]

holds for every X ∈ CA, N → ∞.

Proof

We calculate the risk-captured price given a Dirac distribution w.r.t. θ0 ∈ Θ. Under

the Dirac measure δθ0 , the law of θ 7→ Eθ[X] is equal to the law of the constant func-

tion θ 7→ Eθ0 [X]. Since we require the limit risk-capturing functional Γ0, Γ0(X) :=

limN→∞ ΓN (X), X ∈ CA, to be law-invariant w.r.t. the Dirac measure δθ0 , the claim is

established. �

In particular, this means that if a distribution carries lots of information about the
trustworthyness of parameters and clusters around a parameter θ0, the risk-capturing

price – provided the class of risk-capturing functionals carries the convergence property
(CP) – does not differ too much from the plug-in price w.r.t. the parameter θ0 where it

clusters.

In the further, we investigate which classes of risk-capturing functionals (or, equivalently,

which classes of convex risk measures generating the risk-capturing functionals) fulfill
the convergence property (CP) on which domain. We start with the AVaR-generated

risk-capturing functionals, which fulfill the convergence property provided the function
θ 7→ Eθ[X] is bounded and continuous.

Proposition 4.1.3 (AV aR-induced risk-capturing functionals fulfill (CP))

Let Θ ⊂ R
m be a Euclidean parameter space. Let RN → R0 be a weakly convergent

sequence of probability distributions on Θ and α ∈ (0, 1]. Then RN ∗ AVaRα(X) →
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4.1 Convergence results of risk-capturing functionals

R0 ∗AVaRα(X), N → ∞, for all X such that θ 7→ Eθ[X] is continuous and bounded, so

the sequence (RN ∗ AVaRα)N∈N fulfills the convergence property (CP) on Cb(Θ).

Proof

Let X ∈ CCb(Θ) and α ∈ (0, 1] be arbitrary, we abbreviate f(θ) := Eθ[X] for ease of

notation. We note that a well-known property of weak convergence is that it transfers to

pushforward measures of continuous functions (cf. (Bartoszynski, 1961)), so for every

continuous function g and x ∈ R, Fg,RN
(x) → Fg,R0(x), N → ∞, with Fg,S(x) := S(g ≤

x) denoting the distribution function of g w.r.t. a probability measure S. Furthermore,

since the quantile function is the quasi-inverse of the distribution function, it follows

qRN

f (β) → qR0
f (β) for Lebesgue-almost every β ∈ (0, 1) (cf. (Denneberg, 1994, p. 46)).

Applying Lebesgue’s dominated convergence theorem immediately yields

RN ∗AVaRα(X) =
1

α

∫ α

0
VaRRN

β (E·[X]) dβ =
1

α

∫ α

0
qRN

E·[X](1− β) dβ

N→∞−−−−→ 1

α

∫ α

0
qR0

E·[X](1− β) dβ = R0 ∗AVaRα(X). �

This theorem is rather basic and only states that the convergence property (CP) holds for

a very specialized class of risk-capturing functionals. But since the family of convex risk
measures (AVaRα)α∈(0,1] “constructs” the much broader class of spectral risk measures by
a relatively straight-forward construction (cf. Proposition 2.1.6), the result in Proposition

4.1.3 can easily be extended to all spectral risk measures.

Corollary 4.1.4 (Spectral-induced risk-capturing functionals fulfill (CP))

Let Θ ⊂ R
m be a Euclidean parameter space. Let RN → R0 be a weakly convergent

sequence of probability distributions on Θ. Then for every spectrum φ : [0, 1] → R≥0

satisfying φ(0) = limy↓0 φ(y), the spectral risk measure-induced risk-capturing functionals

fulfill the convergence property (CP) on Cb(Θ), i.e. if we define

ΓS
φ(X) :=

∫ 1

0
VaRS

α(E·[X])φ(α) dα

for a probability distribution S on Θ, we obtain ΓRN

φ (X) → ΓR0
φ (X) for all X ∈ CCb(Θ),

N → ∞.

Proof

Applying Proposition 2.1.6, the spectral risk measure ρφ can be represented by a Borel

measure µ on (0, 1] with

ρφ(X) =

∫ 1

0
AVaRα(X)µ(dα).

57



Hence, it follows by Proposition 4.1.3 and dominated convergence

ΓRN

φ (X) =

∫ 1

0
RN ∗ AVaRα(X)µ(dα)

N→∞−−−−→
∫ 1

0
R0 ∗AVaRα(X)µ(dα) = ΓR0

φ (X). �

As an immediate corollary we obtain that in case of a compact parameter space, the

assumption of boundedness can be dropped.

Corollary 4.1.5

Let the assumptions of Corollary 4.1.4 hold and Θ be additionally compact. Then the

spectral risk measure-induced risk-capturing functionals fulfill the convergence property

(CP) on C(Θ).

Proof

Since Θ is compact, C(Θ) = Cb(Θ). Hence, Corollary 4.1.4 yields the assertion. �

Scrutinizing the proofs above, our results can be regarded in the light of the so-called

portmanteau theorem (cf. (Billingsley, 2009, Theorem 2.1)) and we obtain a new char-
acterization of weak convergence.

Corollary 4.1.6 (Portmanteau theorem, spectral risk measure version)

Let Ω be a separable metrizable space and denote the Borel σ-algebra on Ω by B. Fur-

thermore, denote by P(B) the set of all probability measures on B. Let (Pn)n∈N be a

sequence of probability measures on B. Now the following equivalence holds:

1. (Pn)n∈N converges weakly to some limit P ∈ P.

2. For all bounded, continuous random variables X, EPn [X] → EP [X] for n→ ∞.

3. For all bounded, continuous random variables X and spectral risk measures ρφn :

L∞(Pn) → R defined by

ρφn(X) :=

∫ 1

0
VaRα(X;Pn)φ(α) dα,

ρφn(X) → ρφ(X) for n → ∞, while ρ denotes the spectral risk measure on L∞(P )

defined by

ρφ(X) :=

∫ 1

0
VaRα(X)φ(α) dα.
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4.1 Convergence results of risk-capturing functionals

Proof

1. ⇒ 3. was shown implicitly in Corollary 4.1.4. Since the expectation is the spectral risk

measure with spectrum φ(y) := 1, y ∈ [0, 1], 3. ⇒ 2. is trivial. 2. ⇔ 1. is provided by

the classical Portmanteau theorem (cf. (Billingsley, 2009, Theorem 2.1)). �

The conditions in the former theorems are not too strict for practical use in mathemat-
ical finance. Typically, pricing formulas of contingent claims are continuous w.r.t. the

model’s parameters (since the derivation of sensitivities is crucial, even differentiability
often holds). Furthermore, the additional assumption of boundedness is not really crit-

ical, since it is also heavily used when it comes to numerical problems in mathematical
finance, as, e.g., numerical option pricing using finite element methods, where options

are typically computed as barrier options with out-of-scope barriers.

The class of risk-capturing functionals being generated by entropic risk measures fulfills

the convergence property for consistent estimators as well, if the price of the contingent
claim is a continuous and bounded function of the parameters. Since the entropic-induced

risk-capturing functional is not coherent, it is not covered by the above propositions.

Proposition 4.1.7 (Entropic-induced risk-capturing functions fulfill (CP))

Let Θ ⊂ R
m be a Euclidean parameter space. Let (RN )N∈N be a sequence of probability

distributions on Θ converging weakly to a probability distribution R0. Let X be a contin-

gent claim such that the mapping θ 7→ Eθ[X] is bounded and continuous, so X ∈ CCb(Θ).

Denote the entropic parameter risk-capturing functional w.r.t. RN by Γent,N
λ and the one

w.r.t. R0 by Γent,0
λ .

It then follows Γent,N
λ (X)

N→∞−−−−→ Γent,0
λ (X) for all fixed λ ∈ (0,∞).

Proof

Let λ ∈ (0,∞) be arbitrary but fix. Since f(θ) := Eθ[X] is assumed to be continuous

and bounded, uλ ◦ f is continuous and bounded as well for uλ(x) := exp(λx). Since the

expectation of uλ ◦ f w.r.t. the measure RN is exactly the AVaR1 of uλ ◦ f , we obtain by

Proposition 4.1.3 the convergence

∫

Θ
uλ(Eθ[X])RN (dθ)

N→∞−−−−→
∫

Θ
uλ(Eθ[X])R0(dθ)

and since u−1
λ (y) = λ−1 log(y) is continuous, also

u−1
λ

(
∫

Θ
uλ(Eθ[X])RN (dθ)

)

= Γent,N
λ (X)

N→∞−−−−→ Γent,0
λ (X)

follows. �
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4.2 Counterexamples

Up to now, we have shown that property (CP) holds for some popular risk-capturing
functionals. However, property (CP) is not fulfilled by every risk-capturing functional.

It can easily be seen that the ess sup-driven risk-capturing functional does not provide
convergence for bounded and continuous functions θ 7→ Eθ[X].

Example 4.2.1 (Essential supremum does not fulfill (CP))

Consider the parameter space Θ = R and the sequence of distributions RN ∼ N (0, 1/N).

Let f ∈ Cb(R). Obviously, for N → ∞, RN → δ0 weakly, but on the other hand we

obtain ess supRN
f = supx∈R f(x) for all N ∈ N, since for every x ∈ R and every ε > 0

the environment Bε(x) := {y ∈ R : |x− y| < ε} has positive measure under the normal

distribution, i.e. for all N ∈ N RN (Bε(x)) > 0 holds. Thus, limN→∞ ess supRN
f =

supx∈R f(x) which, in general, does not coincide with ess supδ0 f = f(0).

Furthermore, one can show that boundedness of the plug-in function is a crucial assump-

tion for the validity of the convergence property, even for the Average-Value-at-Risk w.r.t.
an arbitrary level α ∈ (0, 1].

Example 4.2.2 (cf. (Stahl et al., 2012))

Let the parameter space Θ = R be the real axis and regard the distributions (RN )N∈N on

R defined as convex combinations of uniform and Dirac measures via

RN :=
N − 1

N
U [0, 1] +

1

N
δN2 ,

denoting by U [0, 1] the uniform distribution on the unit interval. Obviously, RN → U [0, 1]

weakly for N → ∞. Now take the (unbounded and continuous) identity function f(x) = x

and calculate the AVaRα-induced risk-captured prices for α ∈ (0, 1]. Obviously, for the

limit distribution, AVaRα(f ;U [0, 1]) = 1−α, since f is the identity. On the other hand,

we have

AVaRα(f ;RN ) ≥ AVaR1(f ;RN )

= ERN
(f) =

N − 1

2N
+N > N ,

thus AVaRα(f ;RN ) → ∞ for N → ∞.

4.3 Outlook

Some further investigations about convergence of (law-invariant) convex risk measures
have been made in (Krätschmer et al., 2012), but in a more general environment. The
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4.3 Outlook

notion of weak convergence of measures, which is used in this chapter, is a too weak
postulate in case the function θ 7→ Eθ[X] is not bounded or not continuous, e.g. θ 7→
Eθ[X] ∈ Lp(Θ) for p ∈ [1,∞]. They introduce a topology on the set of distributions
(the so-called ψ-weak topology w.r.t. some function ψ as in (Weber, 2006)) that can be

strictly stronger than the weak topology, yielding similar convergence results in case of
dropping continuity and/or boundedness. Using these results, one may equally prove the

theorems presented in this section.
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5 Application: Bid-ask prices implied by

estimation risk

In numerous cases in mathematical finance and particularly econometrics, one operates

with time series data and processes these to estimate financial market models for, e.g.,
derivatives pricing and hedging, risk management, or technical analysis. If available,

most financial market professionals try to rely on forward-looking data as, e.g., market
prices of options, since these instruments carry the information of market-implied price

dynamics. But, unfortunately, in numerous cases, forward-looking data is not available
(e.g. stocks with little market turnover), while there is an urgent need to estimate pa-

rameters in such a situation. Hence, historical estimation of parameters from time series
of financial market data remains an important tool. In this chapter, we translate the

results obtained for risk-capturing functionals exhibiting property (CP) to consistent
estimators. Furthermore, we state asymptotic results in case that the estimator’s distri-

bution is not known, but one knows the asymptotic distribution, which is often the case
in practical applications. Finally, we treat estimation risk in two extensive numerical

case studies, one concerning multivariate equity markets, the other concerning the joint
modeling of electricity and commodity markets. Sections 5.1-5.3 are based on the paper

(Bannör and Scherer, 2013a), while Section 5.4 is based on the paper (Bannör et al.,
2013).

5.1 Estimation risk-captured prices for consistent

estimators

In the previous chapter, we have investigated continuity properties of risk-captured prices

in presence of weak convergence of the distribution of the parameters. This can now be
translated into the case of consistent estimators.
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Corollary 5.1.1 (Property (CP) for consistent estimators)

Let (θ̂N )N∈N be a consistent estimator sequence for some true parameter θ0 ∈ Θ, i.e.

θ̂N = θ̂(x1, . . . , xN ) for some sample x1, . . . , xN , N ∈ N, with support in the parameter

space Θ and define the distributions quantifying the estimation risk as the estimator’s

distributions, i.e. RN := PN θ̂N , the pushforward measure of the random variable θ̂N

w.r.t. the product measure PN . Let furthermore (ΓN )N∈N be a sequence of risk-capturing

functionals that fulfill the convergence property (CP), i.e. each generator ρN is RN -law-

invariant and weak convergence is preserved. Then the sequence of estimation risk-

captured prices converges to the plug-in price w.r.t. the true parameter, i.e. ΓN (X) →
Eθ0 [X], N → ∞.

Proof

Since (θ̂N )N∈N is a consistent estimator, θ̂N → θ0 P -stochastically. In particular, we

obtain θ̂N → θ0 in P -distribution, which exactly describes weak convergence of the push-

forward measures RN to the Dirac measure δθ0 . Hence, Proposition 4.1.2 yields the

assertion. �

Having proved that convergence of risk-captured prices prices holds in Corollary 5.1.1,
we apply the results to the Black–Scholes example from Example 3.1.8.

Example 5.1.2

Continuing the Black–Scholes example from Example 3.1.8, it is a well-known fact that

the estimator σ̂2N for the variance, dependent on the sample size N ∈ N, is consistent

(i.e. converges in probability to the true variance parameter σ20) and follows a Gamma

distribution. Unfortunately, the function assigning to every volatility σ the Black–Scholes

prices BS(σ) for some option is continuous, but not bounded. Hence, one cannot directly

apply the above results. But, if we either restrict the available volatilities to some com-

pact set Σ ⊂ R≥0 or cut the Black–Scholes price at some C > 0, i.e. regarding the

function BScut(σ) := C ∧ BS(σ), we obtain a bounded and continuous function in σ.

In practice, similar restrictions are often done (e.g. in the uncertain volatility model

of (Avellaneda et al., 1995) or for finite element PDE pricing). Hence, when applying

these mild restrictions, the estimation risk-captured Black–Scholes prices converge to the

Black–Scholes price w.r.t. the true volatility parameter σ0.

In case of the entropic-induced risk-capturing functional, we can furthermore show that

in case of an unbiased estimator and convex relationship between parameter and price,
the risk-captured price always overstates the plug-in price w.r.t. the true parameter.
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5.2 Asymptotics of risk-capturing functionals

Remark 5.1.3

Let θ̂ be an unbiased estimator for the true parameter θ0 ∈ Θ and denote for λ ∈ (0,∞)

the entropic risk-capturing functional w.r.t. the estimator’s distribution by Γent
λ (X). Let

X ∈ CL∞(Θ). If θ 7→ Eθ[X] is convex, Γent
λ (X) ≥ Eθ0 [X] holds.

Proof

Denote the estimator’s distibution by R and let λ ∈ (0,∞) be arbitrary. Defining the

convex function uλ(x) := exp(λx) and applying Jensen’s inequality twice establishes

Γent
λ (X) = u−1

λ

(∫

Θ
uλ(Eθ[X])R(dθ)

)

≥
∫

Θ
Eθ[X]R(dθ) ≥ E∫

Θ
θ R(dθ)[X] = Eθ0 [X]. �

5.2 Asymptotics of risk-capturing functionals

Up to now, we have treated estimation risk-captured prices where the parameter’s dis-

tribution is given by the pushforward measure of an estimator. But, in many cases, the
calculation of estimation risk-captured prices bears a substantial obstacle: For many esti-

mators, the distribution is not known or not available in closed form. In this case, it may
be recovered by resampling methods such as bootstrapping, which is often computation-

ally expensive. Fortunately, there are situations where this problem can be circumvented
by substituting the estimator’s actual distribution by the asymptotic distribution, pro-

vided that the sample size is large enough. As an important example, broad classes of
estimators (as, e.g., Maximum Likelihood estimators under mild technical conditions, cf.

(van der Vaart, 2000, Theorem 5.39)) share the feature of asymptotic normality (like,
e.g., the arithmetic mean as the expectation estimator which is guaranteed by the central

limit theorem). In this case, the delta method (see (van der Vaart, 2000, Theorem 3.1))
provides convenient approximations for the distribution quantifying the parameter risk

of the price, provided that the sample size is large enough.

Proposition 5.2.1 (Asymptotics for parameter risk, general version)

Let (θ̂N )N∈N be an asymptotically normal sequence of estimators for the true parameter

θ0 ∈ Θ ⊂ R
m with asymptotic positive definite covariance matrix Σ, i.e.

√
N(θ̂N −θ0) →

Nm(0,Σ) weakly. Let furthermore X ∈ CL∞(Θ). If the plug-in parameter price θ 7→ Eθ[X]

is continuously differentiable in θ0 and the gradient ∇Eθ0 [X] 6= 0, then

√
N(Eθ̂N

[X] − Eθ0 [X])
N→∞−−−−→ N

(

0, (∇Eθ0 [X])′ · Σ · ∇Eθ0 [X]
)

weakly.
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Proof

Follows directly from applying the delta method as described in (van der Vaart, 2000,

Theorem 3.1). �

As an immediate corollary, we obtain an approximation for the “parameter risk distribu-

tion” w.r.t. a Maximum Likelihood estimator (in case of mild technical requirements on
the parameter estimation), since this class of estimators fulfill asymptotic normality.

Corollary 5.2.2 (Asymptotics for parameter risk, ML estimators)

Let (θ̂N )N∈N be a Maximum Likelihood estimator sequence for the true parameter θ0 and

let the conditions for asymptotic normality hold for the Maximum Likelihood estimator.

Furthermore, denote by I(θ) the Fisher information matrix w.r.t. θ ∈ Θ. Let furthermore

X ∈ CL∞(Θ). If the plug-in parameter price θ 7→ Eθ[X] is continuously differentiable in

θ0 and the gradient ∇Eθ0 [X] 6= 0, then

√
N(Eθ̂N

[X]− Eθ0 [X])
N→∞−−−−→ N

(

0, (∇Eθ0 [X])′ · I−1(θ0) · ∇Eθ0 [X]
)

weakly.

Proof

If the Maximum Likelihood estimator is asymptotically normal, its asymptotic covariance

matrix is the inverse Fisher information matrix I−1(θ0) w.r.t. the true parameter θ0.

Applying Proposition 5.2.1 yields the assertion. �

With this approximation at hand, the calculation of the AVaR- and entropic-induced

risk-capturing functionals can be reduced to a simple symmetric interval around the
evaluation at the true parameter since they preserve weak convergence of the distribu-

tions, provided that some assumptions hold.

We start with the entropic risk-capturing functional.

Proposition 5.2.3 (Approximation of entropic-induced risk-captured prices)

Let Γent
λ be the risk-capturing functional induced by the entropic risk measure with risk

aversion coefficient λ > 0. If (θ̂N )N∈N is an asymptotically normal estimator for the true

parameter θ0 with asymptotic covariance matrix Σ and X a contingent claim such that

the plug-in price function θ 7→ Eθ[X] is continuous and bounded, then we can approximate

the entropic-induced risk-captured price Γent(X;RN ) via

Γent,N
λ (X) := Γent(X;RN ) ≈ Eθ0 [X] +

λ

2N
(∇Eθ0 [X])′ · Σ · ∇Eθ0 [X],

denoting the distribution w.r.t. θ̂N by RN .
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5.2 Asymptotics of risk-capturing functionals

Proof

Due to the asymptotic normality of (θ̂N )N∈N, we approximate Eθ̂N
[X] by a normal ran-

dom variable Y with

Y ∼ N
(

Eθ0 [X],
(∇Eθ0 [X])′ · Σ · ∇Eθ0 [X]

N

)

.

Using the weak continuity of the entropic-induced risk-captured price, pricing with Y

instead with Eθ̂N
[X] is reasonable for large N ∈ N. With this approximation at hand, we

have Γent,N
λ (X) ≈ logE[exp(λY )]/λ, which is (up to the scaling factor λ) the cumulant-

generating function of Y evaluated at λ. Hence, we readily obtain

Γent,N
λ (X) ≈ 1

λ
logE[exp(λY )] = Eθ0 [X] +

λ

2N
(∇Eθ0 [X])′ · Σ · ∇Eθ0 [X]. �

A similar closed-form approximation can be found in case of the AVaR-induced risk-

capturing functional, since in the normal case, the AVaR can be calculated in closed
form.
Proposition 5.2.4 (Approximation of AVaR-induced risk-captured prices)

Let (θ̂N )N∈N be an asymptotically normal estimator for the true parameter θ0 with asymp-

totic covariance matrix Σ and X a contingent claim such that the plug-in price function

θ 7→ Eθ[X] is continuous and bounded. Let furthermore α ∈ (0, 1] and denote the AVaRα-

induced risk-capturing functional w.r.t. the distribution of θ̂N , N ∈ N, by θ̂N ∗ AVaRα.

Then the risk-captured price of X can be approximated via

θ̂N ∗ AVaRα(X) ≈ Eθ0 [X] +
ϕ(Φ−1(1− α))

α
√
N

√

(∇Eθ0 [X])′ · Σ · ∇Eθ0 [X],

denoting by ϕ the density and by Φ the distribution function of the standard normal law.

Proof

Applying (2.1) for the AVaR of a normal distributed random variable, we immediately

obtain

θN ∗ AVaRα(X) ≈ Eθ0 [X] +
ϕ(Φ−1(1− α))

α
√
N

√

(∇Eθ0 [X])′ · Σ · ∇Eθ0 [X].

The normal approximation sheds some light on the convergence rates for the entropic
and the AVaR risk measure and immediately yield some questions.
Remark 5.2.5 (Speed of convergence of risk-captured prices)

As discussed in Section 3.3, both the entropic risk measure and the AVaR risk measure

deliver some “interpolations” between the essential supremum and the expected value, i.e.

lim
λ→0

ρentλ (X) = E[X] , lim
λ→∞

ρentλ (X) = ess supX,

lim
α→1

AVaRα(X) = E[X] , lim
α→0

AVaRα(X) = ess supX,
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and so do their induced risk-captured prices. On the other hand, the formulae derived

in the Propositions 5.2.3 and 5.2.4 yield that the entropic-induced risk-captured price

converges with O (1/N) to the risk-neutral price computed with true parameter θ0, while

θN ∗ AVaRα converges with O(1/
√
N). At first glance, this result may look surprising,

since the limit points are the same. But, on the one hand, for the expected value, the upper

approximation does not hold, since for λ → 0 resp. α → 1 the feasible approximation

would simply be Eθ0 [X]. Hence, there is “infinite speed of convergence” for both the

AVaR and entropic risk-captured prices. On the other hand, property (CP) does not hold

for the essential supremum (see Example 4.2.1). Hence, convergence to the risk-neutral

price is actually not provided for the essential supremum. Hence, although the AVaR and

the entropic risk-captured prices are both reasonable “interpolations” between the extreme

cases of the essential supremum (complete risk aversion) and the expectation (no risk

aversion), the asymptotic speed of convergence differs considerably.

5.3 Case study: Estimation risk for Margrabe options in a

two-dimensional Black-Scholes market

In Section 3.4, we have already stated examples arising from market-implied distribu-
tions. These examples are quite simple, since they only deal with discrete distributions

and are therefore more of a descriptive nature. We now give a more specific exam-
ple where the incorporation of parameter estimation may be useful: The correlation

between two stocks in a two-dimensional Black-Scholes market can typically not be de-
rived from liquid assets (such as stock prices from cash equity markets or the implied

volatility from liquid option markets), which implies that obtaining the correlation via
calibration to market prices is often not possible. But under an equivalent change of

measure (which is done to change to the suitable risk-neutral measure), the correlation
in a two-dimensional Black-Scholes market remains invariant (cf. (Jacod and Shiryaev,

2003, Theorem III.3.24)). Therefore, a feasible method to obtain the correlation is to
estimate the correlation historically over a suitable period.

We give a numerical example and a comparison between the different risk-captured prices,

dependent on the sample size used to estimate the correlation.
Example 5.3.1 (Exchange option with estimated correlation)

Suppose we have a Black–Scholes model with three assets, the money market account S(0)

and two stocks S(1) and S(2). Under the real-world measure P , they follow the dynamics

dS
(0)
t = rS

(0)
t dt, dS

(i)
t = µiS

(i)
t dt+ σiS

(i)
t dW

(i)
t , i = 1, 2,
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Black-Scholes market

with (W
(i)
t )t∈[0,T ] being correlated Wiener processes, µi ∈ R, r, σi ∈ R>0 for i = 1, 2.

Furthermore we assume the covariation of the Wiener processes to be given by

dW
(1)
t dW

(2)
t = ρdt

for an unknown ρ ∈ [−1, 1]. Therefore the covariation between the stock prices is

dS
(1)
t dS

(2)
t = ρσ1σ2S

(1)
t S

(2)
t dt. The risk-neutral dynamics follow

dS
(0)
t = rS

(0)
t dt, dS

(i)
t = rS

(i)
t dt+ σiS

(i)
t dW

(i)
t , i = 1, 2,

and the covariation between the stocks remains dS1
t dS

2
t = ρσ1σ2S

1
t S

2
t dt.

We are interested in the fair value of a European Margrabe option (also called exchange
option), giving the holder the right to exchange stock 1 into an equal amount of stock

2 at maturity T , so the payoff of the contingent claim with exercise date T > 0 is

X = (S
(2)
T − S

(1)
T )+. In (Margrabe, 1975) a closed-form solution is calculated based on a

change of numéraire technique, which is given by

BS(S
(1)
0 , S

(2)
0 , σ1, σ2, T, ρ) = S

(2)
0 Φ(d1)− S

(1)
0 Φ(d2).

with

d1 :=
log(S

(2)
0 )− log(S

(1)
0 ) + 0.5T σ̃2

σ̃
√
T

, d2 := d1 − σ̃
√
T , σ̃ =

√

σ21 + σ22 − 2σ1σ2ρ.

We assume that all parameters except for the correlation ρ are known (in cases of fairly

liquid plain vanilla options on the stocks, this assumption may not be unappropriate).

One possible approach to obtain an estimate for the correlation is to estimate it via

Pearson’s sample correlation coefficient

ρ(N) =
N
∑N

i=1 xiyi −
(

∑N
i=1 xi

)(

∑N
i=1 yi

)

√

∑N
i=1 x

2
i −

(

∑N
i=1 xi

)2
√

∑N
i=1 y

2
i −

(

∑N
i=1 yi

)2

with N ∈ N being the largest number of feasible samples, xi, yi denoting the log-returns

of stock 1 resp. 2 for i = 1, . . . , N . Since a change of measure to the equivalent risk

neutral measure does not affect the parameter ρ, it is reasonable to derive the correlation

ρ under the real-world measure.

Without accounting for the uncertainty of the parameter ρ, we would simply plug in the

resulting point estimate of Pearson’s correlation estimator into the pricing formula. To
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calculate a risk-captured price, however, we first have to determine the distribution of the

correlation in the parameter space [−1, 1] induced by the estimator ρ(N).

Assuming to live in a Black–Scholes world, log returns are independent over time and fol-

low a bivariate normal distribution with correlation ρ. Therefore the well-known Fisher

transformation (see (Fisher, 1915)) can be applied, i.e. the transformed distribution ap-

proximately fulfills

artanh(ρ(N)) ∼ N
(

artanh(ρ0),
1

N − 3

)

, N ≫ 3,

where ρ0 denotes the true correlation parameter. Furthermore, it has to be noted that

Pearson’s correlation estimator is consistent but only asymptotically unbiased.1

We are now able to calculate risk-captured prices. We start with the calculation of the

entropic-driven risk-captured price: We fix λ ∈ (0,∞) and obtain

Γent
λ,N (X) =

1

λ
log

(
∫ 1

−1
exp

(

λ · BS(S(1)
0 , S

(2)
0 , σ1, σ2, T, ρ)

)

P ρ(N)
(dρ)

)

≈ 1

λ
log

(∫ ∞

−∞
exp

(

λ · BS(S(1)
0 , S

(2)
0 , σ1, σ2, T, tanh(x

√
N − 3 + ρ0))

)

ϕ(x) dx

)

.

This integral has to be evaluated numerically and defines the entropic-induced ask price.

In the further, we abbreviate

f(ρ) := BS(S
(1)
0 , S

(2)
0 , σ1, σ2, T, ρ),

fixing the parameters S
(1)
0 , S

(2)
0 , σ1, σ2.

For an efficient calculation of ρ(N) ∗AVaR, we use the characterization of AVaR as tail

conditional expectation from (Föllmer and Schied, 2004, Corollary 4.49) and calculate

ρ(N) ∗ AVaRα(X) = Eρ(N) [f |f ≥ VaRα(f)] ,

which is favourable from a computational point of view. The conditional expectation

Eρ(N) [f |f ≥ VaRα(f)] can easily be estimated by Monte Carlo simulation given the dis-

tribution of ρ(N). In our example, we use the Fisher transformation approximation due

to its simplicity.

In our numerical example we assume the following values to be known: S
(1)
0 = 120,

S
(2)
0 = 110, σ1 = 0.16, σ2 = 0.32, and T = 1. The correlation ρ is supposed to be

1To obtain a truly unbiased estimator, one can use the Olkin–Pratt adjustment of the estimator as

described in (Olkin and Pratt, 1958), at the cost of a much more complicated distribution of the

estimator.

70



5.3 Case study: Estimation risk for Margrabe options in a two-dimensional

Black-Scholes market
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Figure 5.1 Exchange option price as a function of the stocks’ correlation, i.e. ρ 7→ f(ρ).
In this case, the option price is decreasing and concave in correlation.

unknown, so we are exposed to parameter uncertainty w.r.t. ρ. As visualized in Figure

5.1, the correlation parameter has massive influence on the price of the exchange option.

In case of perfect positive correlation the price is 3.39, while in case of perfect negative

correlation the price is 17.16. Furthermore, Figure 5.1 shows that in this case the upper

and lower risk-captured price provide very rough estimates for a spread price when a

supremum-generated risk-capturing functional to determine risk-captured prices is used,

so the supremum/infimum approach may hardly be useful for a trader in this setting to

calculate a bid-ask spread that is accepted by the market.

If the stocks’ correlation is estimated, we may have more information about the parameter

and can apply the risk-capturing functionals developed in this thesis. Consistent with the

bivariate Black-Scholes model, we assume to have estimated the correlation with Pearson’s

correlation estimator from bivariate normal distributed stock returns, the real correlation

is supposed to be ρ0 = 0.4 and obtain the entropic risk-captured price and the AVaR-

induced risk-captured prices dependent on the selection of λ ∈ (0,∞) resp. α ∈ (0, 1]

and the sample size N . Since f is a continuous function being defined on the compact

interval [−1, 1], it fulfills the conditions to apply the convergence results of the previous

section. Convergence can also be visualized by plotting our risk-captured prices against

the sample size (see Figure 5.2).
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Figure 5.2 Different risk-captured prices as a function of the sample size. One can see
the convergence of the risk-captured prices towards the risk-neutral price

computed with the true parameter. Note that even for 250 samples (about
one year of daily data), the bid-ask spreads induced by parameter risk are

still considerably large.

First, we examine the AVaR-induced risk-captured price. The remaining parameter to

specify is the significance level α ∈ (0, 1], steering the level of conservativeness. For α = 0

we obtain Cont’s supremum approach and therefore the ask price ρ(N) ∗ AVaR0(X) =

17.16 - independent of the sample size. The higher (i.e. the less conservative) the sig-

nificance level α ∈ (0, 1] is chosen, the narrower are bid-ask spreads. For illustration,

we have plotted some spreads for different significance levels in Figure 5.3. As one can

see, the expectation-induced price converges very fast to the real price (which does not

provide a bid-ask spread due to the linearity of the expectation), while convergence ve-

locity shrinks for lower significance levels. When regarding the entropic-induced prices,

a higher risk-aversion parameter λ leads to wider bid-ask spreads. Since the entropic

risk measure is not positively homogeneous, a higher quantity of the same claim leads

to a higher price per notional in the same way a higher risk-aversion parameter does,

since for a quantity a ∈ R
+ the entropic-induced risk-captured price per notional w.r.t.
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Figure 5.3 The AVaR-induced bid-ask prices for different significance levels. The higher
the significance level α ∈ (0, 1] is chosen, the wider is the bid-ask spread.

The extreme case of a supremum-induced ask price (which agrees with ρ(N)∗
AVaR0) does not depend on the sample size and leads to a very conservative

bid-ask spread which may not comply to bid-ask spreads being quoted in
the market. The calculation of the expected value leads to prices being very

close to the plug-in price of the true parameter.

a distribution S is calculated as

Γent
λ (aX)

a
=

1

aλ
log(ES [exp(λaE·[X])])

=
1

λ̃
log(ES

[

exp(λ̃E·[X])
]

) = Γent
λ̃

(X)

with λ̃ := aλ. Due to this symmetric relationship between quantities and risk-aversion

parameters, we have only visualized how the risk-captured prices evolve for different risk-

aversion parameters (see Figure 5.4). It can be seen that higher risk-aversion parameters

bear numerical problems as well: The calculation of the exponential function w.r.t. a high

value (occuring for high risk-aversion parameters) will be less accurate and therefore the

results are less stable.
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Figure 5.4 The entropic-induced bid-ask prices for different risk-aversion parameters.
A higher risk aversion parameter λ ∈ (0,∞) results in wider bid-ask

spreads, leading to supremum resp. infimum induced prices in the limit.
The entropic-induced bid-ask prices are more fluctuating with rising risk

aversion parameter due to numerical issues.

5.4 The parameter risk-captured valuation of a gas power

plant

In energy finance, multi-asset models are used to evaluate derivatives that jointly depend
on the price of electricity and some other commodity serving as an energy feedstock. In

particular, power plants can be regarded as derivatives on the spread of the energy price
and the respective fuel price. Typically, the parameters of these models are estimated

from time series. However, since the models often have many different parameters to
model the single prices and the price dependency, one is heavily exposed to parameter

risk (more precise: estimation risk). In this section, we apply our developed framework
to calculate parameter risk-captured bid-ask prices for a gas power plant. From a prac-

tical perspective, this topic is highly relevant considering the German “Energiewende”,
where new capacities of gas power plants have to be build to support renewable energy

sources like wind or solar power. Hence, the correct valuation of gas power plants is
crucial to ensure sound economic decisions for policymakers and power plant operating
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companies.

Power plant valuation via spread options

Since we want to use financial models to evaluate the economic value of a gas power plant,

we have to state some simplifying assumptions. Hence, we assume that an operating gas
power plant’s profit stems from the difference of the produced energy’s price and the price

of the fired gas that was needed to produce the energy. In particular, we disregard further
costs as, e.g., maintenance costs. Additionally, due to the introduction of the European

Union Emission Trading Scheme, power production by firing gas is accompanied by costs
caused by the need to buy carbon emission certificates. Furthermore, we assume that

gas power plants can easily be switched on and off on demand. Thus, the plant will only
be switched on when the electricity price is higher than the price of the fired gas and

the emission certificates. Hence, we model the daily profit (Vt)t≥0 of a gas power plant
as an optional payoff and obtain

Vt = max{Pt − hGt − ηEt, 0}, (5.1)

where Pt is the power price, Gt is the gas price, Et is the carbon certificate price, h is the

heat rate of the power plant, and η is the CO2 emission rate of the power plant. Here,
we assume t to run on a discrete daily scale, i.e. t ∈ {0, 1/365, 2/365, . . . }. Hence, the

value of a gas power plant can be calculated as the present value of the expected daily
profits, i.e.

E

[

T
∑

t=0

exp(−rt)Vt
]

,

denoting by r ∈ R the risk-free rate and by T > 0 the remaining lifetime of the power
plant. Using the terminology of (Burger et al., 2008), a gas power plant can be regarded

as a strip of options on the clean spark spread, which is defined as the difference between
the power price and the sum of the respective gas and emissions certificate prices.

The joint emissions/gas/power price model

We model the emission price (Et)t≥0 as a geometric Brownian motion (following the
short-term emission price dynamics assumptions of (Yang et al., 2008)), i.e.

dEt = αE Et dt+ σE Et dW
E
t , (5.2)
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the gas price (Gt)t≥0 as a mean-reverting process2

Gt = eg(t)+Zt ,

dZt = −αG Zt dt+ σG dWG
t , (5.3)

and the power price (Pt)t≥0 as a sum of two mean-reverting processes3

Pt = ef(t)+Xt+Yt,

dXt = −αP Xt dt+ σP dWP
t ,

dYt = −β Yt dt+ dZt, (5.4)

where αG, αP , β ∈ R are the respective mean-reversion forces for the gas and power
price processes, αE ∈ R is the drift of the emission price process, σE , σG, σP > 0 are

the respective volatilities for the emissions, gas, and power price processes, WG, WE ,
and WP are Brownian motions, and Z is a compound Poisson process with intensity

λ > 0 and homogeneous jump size distribution J . For the jump sizes, we consider two
different scenarios: First, we suggest to use a non-central Laplace distribution to employ

a heavy-tailed jump distribution. Second, for comparison, we employ the Gaussian
distribution as already done in (Cartea and Figueroa, 2005). The functions g : R≥0 → R

and f : R≥0 → R model the respective seasonal trends for the gas and power prices and
are defined as

f(t) = a1 + a2 t+ a3 cos(a5 + 2πt) + a4 cos(a6 + 4πt),

g(t) = b1 + b2 t+ b3 cos(b5 + 2πt) + b4 cos(b6 + 4πt),

where a1 and b1 are the production expenses, and a2 and b2 are the slopes of increase in

these costs. The remaining parameters a3, a4, a5, a6, b3, b4, b5, b6 ∈ R are responsible for
modeling seasonal price changes in the respective underlying. Furthermore, we assume

that the processes WE, WG, Z are mutually independent, but the driving Brownian
motions of the power and gas price processes are correlated by some correlation ρ ∈
[−1, 1], i.e.

dWP
t dWG

t = ρdt. (5.5)

As described above, two processes (Xt)t≥0 and (Yt)t≥0 are responsible for capturing the

power price movements. The process (Xt)t≥0 is a Brownian-driven Ornstein–Uhlenbeck

2See (Lucia and Schwartz, 2002).
3See (Hambly et al., 2009).
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process and models daily price fluctuations in the power price. On the other hand,
the process (Yt)t≥0, which is an Ornstein–Uhlenbeck process driven by the compound

Poisson process Z, is responsible for modeling sudden shocks (so-called “spikes”) in the
power price, which may occur due to sudden electricity shortages. A detailed discussion

on electricity spikes can be found in (Benth et al., 2011).

Empirical Investigation

The total set of parameters4 that has to be estimated in the multi-asset model is given
by

{αE , σE , g, αG, σG, f, αP , β, σP , λ,E[J ],E[J2], ρ}.

Hence, our model for the clean spark spread has several degrees of freedom. Conse-

quently, the risk of determining parameters wrongly is considerable and it will turn out
that even the determination of single parameters may lead to tremendous results for

prices obtained in the model. Thus, using the methodology of parameter risk-captured
prices, we assess how the value of a gas power plant depends on the parameter risk of

the chosen model.

Input data

To estimate the parameters, time series of three different contracts are analyzed5: The
Phelix Day Base6 price (EUR/MWh) as a proxy for electricity prices, the daily NCG7

price (EUR/MWh) as a proxy for gas prices, and the daily emissions price8 measuresd in
EUR/EUA. The observation period covers approx. three years and runs from 05/29/2009
to 06/08/2012. Figure 5.5 depicts the development of the emissions, gas, and power

4In the parametric form of the Laplace resp. Gaussian distribution, we do not directly use the second

moment as a parameter, but the standard scaling parameters for Laplace resp. normal distribution

(variance for the normal distribution, mean absolute deviation from median for the Laplace distri-

bution). Obviously, using the second moment is only an equivalent reparametrization. Furthermore,

instead of specifying the respective parameters in the trend functions f and g, we abbreviate this by

treating the trend functions f and g themselves as parameters.
5All datasets are taken from the European Energy Exchange, www.eex.com.
6Phelix Day Base is defined as the arithmetic average of the auction prices for the hours 1 to 24 in

the market area Germany/Austria disregarding power transmission bottlenecks. Source: European

Energy Exchange.
7Source: European Energy Exchange.
8Source: European Energy Exchange.
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Figure 5.5 Evolution of the power (base load), gas, and carbon prices between
05/29/2009 and 06/08/2012.

prices during the observation period, while Figure 5.6 depicts the development of the

spark spread path.

Parameter estimation techniques

We try to rely on maximum likelihood estimators (ML estimators) as far as possible, since

maximum likelihood estimators exhibit (under mild technical conditions) asymptotic
distributions that are normal and their asymptotic variance is provided by the inverse

Fisher information matrix, i.e. for an ML estimator θ̂N , dependent on the sample size
N ∈ N, one has √

N(θ̂N − θ0) → N (0,I−1(θ0))

weakly, denoting by θ0 the true parameter which is subject to be estimated and I(θ0) the
Fisher information matrix. In particular, we use the following estimation techniques:
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Figure 5.6 Evolution of the clean spark spread between 05/29/2009 and 06/08/2012.
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1. Estimation of the trend and seasonalization parameters - i.e. estimation of the the
parameters aj , bj, j = 1, . . . , 6. These parameters represent the deterministic (lin-

ear and seasonal) trends of the gas and power price. We obtain the parameters by
using linear (for the linear trend) and nonlinear (for the seasonal effects) regression

on the functions f and g.

2. Decomposition of the deseasonalized power price into Brownian part (Xt)t≥0 and

jump part (Yt)t≥0 - The deseasonalized power price data has to be decomposed

into two data sets: One arising from the Brownian-driven Ornstein–Uhlenbeck
process (Xt)t≥0 and another arising from the mean-reverting jump process (Yt)t≥0.

We follow the methodology in (Cartea and Figueroa, 2005), where an iterative
filtering technique is used. First, all data points with a deviation of more than

three standard deviations of the mean are considered to arise from jumps and are
taken out of the sample. Afterwards, the standard deviation of the remaining

data points is recomputed and again all data points with a deviation of more than
three standard deviations of the mean are considered to arise from jumps and are

taken out of the sample. This procedure is repeated until all remaining data lies
within the range of three standard deviations of the mean. Hence, the taken out

data points represent the jump part (Yt)t≥0 and the remaining data repesents the
continuous part (Xt)t≥0.9

3. Estimation of the emissions price process - i.e. estimation of the parameters αE , σE ,
which is done by the standard estimators for mean and standard deviation on the

logarithmic process.

4. Joint estimation of the base power and gas signals - i.e. estimation of the parameters
ρ, αP , αG, σP , σG. Since the process (Xt, Gt)t≥0 is a two-dimensional (Brownian)

Ornstein–Uhlenbeck process, we can estimate the parameters from the discrete data
by estimating the parameters of a first order autoregressive model, i.e. an AR(1)
process with normal noise. We use the standard maximum likelihood estimator,

cf. (Knittel and Roberts, 2005).

9One should note that the threshold filtering technique to filter out the spikes – although often applied in

practice – yields that only large jumps are filtered out. When estimating the jump size distribution

from this data via ML estimation, one obtains considerably different location parameters for the

normal and the Laplace distribution, since the ML estimator for the location parameter of the

Laplace distribution is the median, while the ML estimator for the location parameter of the normal

distribution is the mean. This methodology can be criticized, but we rely on standard techniques

used in energy finance, cf. (Cartea and Figueroa, 2005).
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5. Estimation of the spike signal (Yt)t≥0 - i.e. estimating the intensity λ, the speed
of mean reversion β, and the jump distribution parameters. We estimate the

intensity λ of the driving compound Poisson process by the spikes frequency, i.e.
the number of detected spikes per period. Furthermore, we use the autocorrelation

function techniques described in (Barndorff-Nielsen and Shephard, 2001) to obtain
the speed of mean reversion β. Furthermore, we estimate the parameters of jump

size distribution by applying the according ML estimators on the filtered jump
data.

The result of the estimation procedure is given in Table 5.1.

Assessment of estimation risk

Since the distribution of the overall parameter distribution is very complex and difficult

to obtain (e.g. due to the filtering technique), we reduce the problem by considering
the estimator distributions of certain groups of parameters separately (e.g. the diffusion

parameters, the jump size distribution parameters). Hence, we scrutinize the estima-
tion risk w.r.t. selected groups of parameters and assume the remaining parameters to

be known, i.e. we disregard the parameter risk arising from estimating the remaining
parameters. In particular, all our results only describe lower bounds of the overall pa-

rameter risk. For parameter groups, we choose the following groups:

• Jump size distribution parameters (E[J ],E[J2]);

• Diffusion parameters for the emissions, gas, and power processes, i.e. the parameter

set (αE , σE , αG, σG, αP , σP , ρ);

• Diffusion parameters for the gas and power processes, i.e. (αG, σG, αP , σP , ρ).

To incorporate parameter risk into prices, we use the AVaR-induced risk-captured prices

w.r.t. different significance levels α ∈ (0, 1]. As derived in Proposition 4.1.3, the AVaR-
induced risk-captured prices are continuous w.r.t. the weak topology on the parameter

distributions, if the price function θ 7→ Eθ[X] is continuous and bounded in the parameter
θ ∈ Θ. Hence, it is justified to approximate the estimator distributions by the respective

asymptotic distributions and applying the approximation formula from Proposition 5.2.4.
Therefore, we assume the respective plug-in parameter θ0 as the true parameter and

calculate the expected value by a Monte Carlo simulation with K = 5000 runs. To
estimate the respective derivative ∂Eθ0/∂θ, we use the Monte Carlo central-difference
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Estimation Step Product Estimates Method

Geometric Brownian motion Emissions αE = −0.2843, σE = 0.4079 MLE

Seasonal trend Power a1 = 3.6716, a2 = 0.0980, a3 = −0.0274 OLS
a4 = 0.0368, a5 = 0.6524, a6 = 0.9530

Seasonal trend Gas b1 = 2.3420, b2 = 0.3503, b3 = 0.0218 OLS

b4 = −0.0445, b5 = 0.7829, b6 = 1.6126

Filtering Power 3×Std.Dev rule

Base process Gas αG = 13.5827, σG = 0.7768 Multivariate

Base process Power αP = 121.8684, σP = 2.5943, ρ = 0.1247 normal regression

Spike mean-reversion Power β = 243.7240 2×αP

Spike intensity Power λ = 13.4936 Annual frequency

Spike size (Laplace) Power µs(median) = 0.3975, σs(scale) = 0.6175 MLE
Spike size (normal) Power µs(mean) = 0.0863, σ2s(variance) = 0.5857 MLE

Heat rate Gas h = 2.5 technical constant
Emission rate Gas η = 0.4 technical constant

Interest rate r = 3% market-quoted

Table 5.1 The estimated parameters of the joint model for emissions, gas, and power prices and the respective estimation

methods. One should note that the resulting parameters are sometimes quoted to different (i.e. daily) timescales.
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5.4 The parameter risk-captured valuation of a gas power plant

estimator (cf. (Glasserman, 2004, p. 378f.)) applying the same paths from the Monte
Carlo simulation.

Results and interpretation

Calculating the parameter risk-captured prices using the above methodology, we obtain

risk-captured bid and ask prices. To compare the different risk-captured prices, we
calculate the relative width of the parameter risk-implied bid-ask spread by

ask price − bid price
mid price

,

where the mid price is here given by the plug-in parameter price. A comparison of the
relative width is done in Table 5.2.

Due to the large sample size of M = 790 observations, the estimation of the diffusion

signals has pretty high accuracy, provided that the parametric form of the model is
correctly chosen. Hence, parameter risk from the estimation of the parameters in the

diffusion components of the multi-asset model is very moderate and the parameter risk-
captured bid-ask spreads are relatively narrow. A completely different picture results for

the estimation of the spike size. Due to the threshold filtering technique, the number
of spikes is relatively small (M̃ = 41), which naturally enlarges the variance of the

asymptotic distribution. Furthermore, the jump size distribution is crucial for ensuring
that the real option representing the gas power plant gets deep into the money: When

there is a large upward spike in the power price process, the payoff of the real option
immediately jumps deeply into the money. Hence, the probability of producing large

upward spikes in the power price plays a major role in determining the future value of a
gas power plant. In case of Laplace distributed jumps, due to the different estimation of

the location parameter and the fatter tails of the Laplace distribution, the option prices
are significantly higher than in case of normally distributed jumps. Hence, the relative

width of the bid-ask spread is wider for normally distributed jumps when regarding
parameter risk arising from the base signals.

To ensure the stability of the Monte Carlo simulation, we additionally examine the bid-
ask prices as a function of the Monte Carlo samples, which we exemplarily illustrate

in the Figures 5.7a-5.10b. One can see that the numerical stability of the results is
generally provided, but is more sensitive in the assessment of parameter risk for the

jump size distribution, particularly for the case where a Laplace distribution is assumed
for the jump size.
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Jumps size distribution
Gaussian Laplace

α1 α2 α3 α1 α2 α3

Jump distribution 111.9% 73.71% 33.51% 163.5% 107.7% 48.96%

Gas, power base, and carbon 8.2% 5.5% 2.6% 3.9% 2.6% 1.5%
Gas and power base 6.5% 4.3% 1.9% 3.1% 2% 0.9%

Table 5.2 Resulting values for the relative width of the AVaR-induced parameter risk-captured bid-ask spread, concerning the
parameter risk in the jump size distribution and the diffusion components. The significance levels for the AVaR are

α1 = 0.01 (the highest risk-aversion), α2 = 0.1, and α3 = 0.5. One can see that the relative width of the parameter
risk-captured bid-ask spread for the jump size parameters is much higher than for the diffusion parameters, even

when estimating all diffusion parameters jointly.
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5.4 The parameter risk-captured valuation of a gas power plant

As a concluding result, we obtain that, in the given setting, the correct determination of
the jump size parameters primarily drives the estimation risk-captured prices. One has to

remark that the presented numbers are actually lower bounds of the assessed estimation
risk, since we simplified the setting and disregarded many sources of estimation risk like

the filtering procedure and the estimation of the seasonal trend parameters. Thus, the
obtained numbers provide a hint which parameters are crucial for the evaluation, but do

not exhaust the present parameter risk.
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Figure 5.7 Parameter risk-implied bid-ask spread w.r.t. the diffusion components, nor-

mal jumps. The parameter risk is moderate and the result is numerically
stable.
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Figure 5.8 Parameter risk-implied bid-ask spread w.r.t. the diffusion components,
Laplace jumps. The parameter risk is moderate, but the result is numeri-

cally less stable than when employing normal jumps.
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Figure 5.9 One can see that the parameter-risk implied bid-ask spread w.r.t. the jump
size distribution is crucial – the correct determination of the jump size dis-

tribution is the major driver for the power plant price. The results are
numerically stable.
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5.4 The parameter risk-captured valuation of a gas power plant
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Figure 5.10 One can see that the parameter-risk implied bid-ask spread w.r.t. the jump
size distribution is crucial – the correct determination of the jump size

distribution is the major driver for the power plant price. Furthermore,
convergence is much slower in the Laplace case than in the normal case

and the results become much less numerically stable.
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6 Application: Parameter risk induced by

calibration to market prices

In the previous chapter, we have discussed parameter risk which is induced by historical
estimation, i.e. where the risk can be expressed as the pushforward measure of some esti-

mator θ̂. In these cases, there are plenty of situations where the estimator’s distribution
is (at least asymptotically) available and the knowledge of the estimator’s distribution

can be exploited according to our suggested ansatz. While historical estimation is a
possibility for obtaining parameters, it is usually not the most preferred one by practi-

tioners. First, one can often see that the estimated parameters (e.g. the Black–Scholes
volatility from historical estimation) does not coincide with parameters obtained from

forward-looking instruments (as, e.g., implied volatilities of liquid options) in reality.
Second, practitioners prefer forward-looking instruments since they directly impose a

“market-implied model”. Third, since the model is supposed to be served for derivatives
valuation, one would like to obtain the risk-neutral parameters. For some parameters (in

particular: diffusion coefficients like the Black–Scholes volatility, or the correlation in a
two-dimensional Black–Scholes model), the coefficients are not affected by some equiv-

alent change of measure. But other parameters (as, e.g., the speed of mean reversion
and the long-term variance in the Heston model, jump parameters in jump models) can

have different values after an equivalent change of measure. Hence, their historically
estimated value may not be credible any more in the situation of risk-neutral pricing.

Thus, historical estimation is less popular compared to methods that fit model prices of
liquid forward-looking instruments to their given market prices.

These methods are usually subsumed under the phrase “calibration”. In these cases, one

has to have a liquid market for some forward-looking instruments (in the equity and
FX markets, these are usually plain vanilla options), where prices of these instruments

are readily available. Then, the model is fitted to the prices of these instruments in
an optimization procedure where an error function is minimized and the best-fitting

parameters are chosen. Hence, the parameter is given by estimation, but not necessarily
by historical estimation.
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Unfortunately, the calibration procedure bears several pitfalls. First, there may be many
parameters minimizing the error function, leaving us ambiguous which parameter to

choose. Second, observed market prices can be noised by illiquidity, quotation time lag, or
asymmetric quotes, so incorporating just the minimizing parameter may be overconfident

when low errors are observed for several parameters. Third, the exposure to numerical
problems in the optimization procedure is pretty large, thus, one might end up in some

local minima. Fourth, the choice of error function may influence the calibration results.
Finally, the number of liquid instruments might be too small to identify the parameters of

a complex model. Thus, using the resulting parameter vector from a standard calibration
exposes derivative pricing to a certain type of parameter risk, which we call calibration

risk.

In contrast to the situation of estimating parameters historically, calibration does not
naturally yield a distribution on the parameter space. Furthermore, there is little knowl-

edge about the asymptotic distributions of calibration-type estimators. Hence, in this
section, we present a method to construct a distribution on the parameter set that is

in line with the calibration’s results. We suggest using an error function of model to
market prices and to transform it to obtain a pricing error-implied distribution. First,

we show some consistency properties the error function has to fulfill. Second, we focus
on theoretical solutions for obtaining a continuous distribution on the parameter set

(most financial market models have parameter sets having positive Lebesgue measure).
Furthermore, we focus on the practical problem how to deal with this from a computa-

tional point of view, suggesting an algorithm how to obtain a discrete distribution on
feasible parameter subsets. Finally, we exemplarily investigate three popular models:

The stochastic volatility models of (Heston, 1993) and (Barndorff-Nielsen and Shephard,
2001) as well as the Variance Gamma model (see (Madan et al., 1998)). This is done by

calculating calibration risk-captured prices for three exotic derivatives. This enables us
to compare the exposure to parameter risk of the different models and also of the exotic

options. There is related works in the literature: (Gupta and Reisinger, 2012) suggest
a Bayesian procedure and proves consistency of Bayesian calibration estimators under

some assumptions (i.e. independence and normality of noise in prices), while (Schoutens
et al., 2004) compare the exotics prices of different models that are calibrated to the

same dataset of plain vanilla options. On the other hand, (Detlefsen and Härdle, 2007)
scrutinize the effect of using different error functions to measure the distance of model

to market prices.

This chapter is written along the lines of Chapter 6 of the paper (Bannör and Scherer,
2013a) and is organized as follows: In Section 6.1, we recall the setting which is required
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6.1 Calibration to market prices

for calibration to market prices. Section 6.2 discusses how to create a density on the
parameter set that is consistent with observed market prices, both from a theoretical

and a computational point of view. Finally, in Section 6.3, we apply the discussed tools
to a real-data calibration situation and scrutinize the parameter risk of different models

as well as parameter risk of different exotics.

6.1 Calibration to market prices

In this section, we briefly summarize the given facts about calibration to market prices.
Throughout the chapter, we assume that there exist liquid contingent claims C1, . . . , CM

(in reality, these claims will often be plain vanilla options), M ∈ N, with known respective
market prices C⋆

1 , . . . , C
⋆
M ∈ R that are used for calibration.

Crucial for calibration to market prices is a function measuring the error of model prices
to market prices for some parameter vector θ. Therefore, we state an axiomatization for

an error function.

Definition 6.1.1 (Error function)

Let Θ ⊂ R
k be a parameter space. We call ηC1,...,CM

: Θ → R≥0 an error function if there

is a componentwise monotone function η̃ : RM
≥0 → R≥0 such that η can be decomposed

via

ηC1,...,CM
(θ) = η̃(|Eθ[C1]− C⋆

1 |, . . . , |Eθ[CM ]− C⋆
M |)

with η̃(0, . . . , 0) = 0.1

There are several different error functions in use, we present some of them in the following

example.

Example 6.1.2 (Possible error functions)

1. A popular error function is the root mean square error

RMSEC1,...,CM
(θ) :=





1

M

M
∑

j=1

(Eθ[Cj]− C⋆
j )

2





1
2

,

possibly standardized by some number, e.g. the mean market price C⋆.

1For the sake of notation simplicity, we occasionally omit the dependence on the liquid contingent

claims C1, . . . , CM .
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2. If C1 . . . , CM are European call options, i.e. Cj = (STj
−Kj)

+ for some Tj,Kj > 0,

j = 1, . . . ,M , there is a mapping to implied Black–Scholes volatilities C⋆
j 7→ σimpl

j .

For a fixed maturity T > 0 and fixed strike K > 0, the mapping is strictly mono-

tone and one-to-one. Hence, implied Black–Scholes volatilities provide a method

to quantify prices in a “unit-free” manner. Thus, denoting the implied volatility

mapping for a strike K and maturity T by σ
(K,T )
impl : R2

≥0 → R≥0, C
⋆ 7→ σ

(T,K)
impl (C⋆),

one can regard the mean absolute deviation of implied volatilities

MADIV(θ) =
1

M

M
∑

j=1

|σ(Kj ,Tj)
impl (Eθ[Cj ])− σ

(Kj ,Tj)
impl (C⋆

j )|.

If Definition 6.1.1 is slightly extended to transform the measurement of the option

prices by their respective implied volatitility function2, the mean absolute deviation

of implied volatilities can also considered as an error function.

Different error functions can be used for different purposes. Among practitioners, using
some measure determined on implied volatilities such as the mean absolute deviation of

implied volatilities (MADIV, cf. Example 6.1.2) is popular, since one typically quotes
vanilla prices in implied volatility rather than in prices. Furthermore, implied volatilities

provide a “unit-free measure” for the price of plain vanilla options that is not distorted
by the options’ moneyness. A detailed discussion of the effect of error function choice on

calibration results and exotics pricing can be found in (Detlefsen and Härdle, 2007).

Given an error function, the standard calibration procedure works as follows: A numerical
optimization procedure determines the error minimizing parameter

θ0 = argmin
θ∈Θ

ηC1,...,CM
(θ).

Afterwards, the parameter θ0 is used as the model’s “true” parameter for pricing exotics.

Note that the result of this procedure might be seen as a Dirac distribution on Θ0 with
all probability mass concentrated on the parameter θ0.

6.2 Parameter risk from calibration to market prices

As described in Chapter 3, risk-capturing functionals enable us to incorporate parameter
risk into prices of contingent claims. Required for the application of risk-capturing

2Since such error functions are not applied in this thesis, we stick to Definition 6.1.1, where derivatives

prices are always measured in monetary units.
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6.2 Parameter risk from calibration to market prices

functionals is the existence of a distribution on the parameter space. Unfortunately, this
distribution is typically not known in a standard calibration setting. In this section, we

therefore present possible constructions of a distribution on Θ, being consistent with the
calibration result.

A theoretical approach

Since a distribution on Θ does not arise naturally in a calibration framework (opposed

to the case of estimation, where the estimator’s distribution is often at hand), it has to
be constructed from available information. The information used in a calibration stems

from the error function η, so a natural starting point is a suitable transformation of the
error function to imply a Lebesgue density on the parameter space Θ. Having found such

a transformation, the induced density can be used as a distribution on the parameter
space that is consistent with the calibration result. Hence, we try to find a function h

such that h◦η is a proper Lebesgue density on Θ, reflecting pricing errors in a consistent
manner. We formally describe which properties a transformation h of the error function

has to fulfill.

Properties 6.2.1 (Transformation function requirements)

Let η : Θ → R≥0 be an error function. A transformation function h : R≥0 → R≥0, creat-

ing a meaningful density from the error function η, has to fulfill the following properties:

1. h is decreasing: This is important to guarantee that the density’s values are in

concordance with the error function’s results. Parameters with lower aggregate

errors to market prices should be attributed with a higher likelihood.

2.
∫

Θ h(η(θ)) dθ = 1: This normalization assures that h ◦ η indeed induces a distribu-

tion R on Θ via R(dθ) = h(η(θ)) dθ.

The second property can easily be obtained by scaling, as long as
∫

Θ h(η(θ)) dθ < ∞.

Obviously, there may be several decreasing functions h : R≥0 → R≥0, but not all of them
may establish a finite integral

∫

Θ h(η(θ)) dθ.

Transformation of measures yields
∫

Θ
h(η(θ)) dθ =

∫ ∞

0
h(t) (λ ◦ η−1)(dt), (6.1)

denoting by λ the Lebesgue measure on Θ. Equation (6.1) may be useful to exploit for
considerations whether a function h is appropriate to induce a density on Θ. A first
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observation reveals that if “too many parameters” (in the sense of Lebesgue measure)
with low pricing errors exist, a Lebesgue density may not be established on Θ. Clearly, in

this case we are exposed to massive parameter risk and model prices should be considered
with uttermost caution.

Remark 6.2.2

Let h : R≥0 → R≥0 be decreasing and δ ≥ 0 such that h(δ) > 0. If the set of parameters

having an error less than δ has infinite Lebesgue measure, i.e. λ(η−1([0, δ])) = ∞ with

λ denoting the Lesbesgue measure on R
d, then h cannot fulfill the properties described in

6.2.1 due to
∫

Θ h(η(θ)) dθ = ∞.

Proof

Let λ(η−1([0, δ])) = ∞. Then we immediately obtain

∫

Θ
h(η(θ)) dθ =

∫ ∞

0
h(t) (λ ◦ η−1)(dt)

≥
∫ δ

0
h(t) (λ ◦ η−1)(dt)

≥ h(δ) · λ(η−1([0, δ])) = ∞. �

Geometrically speaking, this means that the error to market prices may not be too small

for “too large” (in the sense of Lebesgue measure, particularly unbounded) sets of pa-
rameters.3 We consider such situations to be pathological, since we do not want to

incorporate this huge amount of parameter risk into prices via a Lebesgue-a.c. distri-
bution. A situation where we have parameter risk to an unbounded set of parameters,

a feasible choice which parameter to use and how to weight it does not make sense to
evaluate the way we suggest in this work.

Furthermore, Remark 6.2.2 highlights that the choice of transformation function h may

be limited. In some cases, the choice of transformation function is much more restricted.
So, one can think of criteria which transformation functions may be suitable choices: To

ensure that the transformation function h produces a proper density, one may choose

• a function with compact support,

• a function decreasing to zero fast enough.

We now present some functions which may be used as transformation functions and fall

in one of the two categories above.
3This would typically happen when the parameters are underspecified, e.g. when sophisticated models

with several parameters meet few liquid market prices to calibrate to.
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6.2 Parameter risk from calibration to market prices

Example 6.2.3 (Suitable transformation functions)

Decreasing functions which may ensure small values for parameters with large errors to

market prices are the normal transformation function

hNλ (t) := c · exp
(

−
(

t

λ

)2
)

, t ≥ 0,

and the triangular transformation function

h∆λ (t) := c · 1{t≤λ}

(

− t

λ
+ 1

)

, t ≥ 0,

each equipped with a scaling parameter λ > 0 and c > 0 chosen such that the function

induces a density. The scaling parameter determines the amount of weight which is

assigned to parameters with low pricing error.

A particular class of functions, incorporating exactly the desired properties is the class
of Schwartz functions, which we introduce in the following definition (cf. (Werner, 2011,

Definition V.2.3)).

Definition 6.2.4

Let a, b ∈ R, a < b. A function f : [a, b] → R, f ∈ C∞([a, b]), is called a Schwartz
function, if for every α > 1 and every k ∈ N, the function

γα,k(t) : [a, b] → R, γα,k(t) := tα · ∂
kf(t)

∂tk

is bounded. Usually, the set of all Schwartz functions defined on the interval [a, b] is

denoted by S([a, b]).

The interpretation of Schwartz functions is that they decrease very fast to zero – every
derivative of a Schwartz function falls faster than any polynomial. Obviously, if we denote

the infinitely differentiable functions with compact support by C∞
c , the relationship C∞

c ⊂
S∞ ⊂ C∞ holds. The normal transformation function of Example 6.2.3 (and, if we

extend the definition of Schwartz functions to weak derivatives, also the triangular) is a
Schwartz function, i.e. it can be shown that for every α > 1 and every k ∈ N, the function

t 7→ tα · ∂khλ(t)/∂tk is bounded. Thus, Schwartz functions decrease faster to zero than
every polynomial increases to infinity. We denote the set of all Schwartz functions on

[0,∞) by S([0,∞)). A detailed discussion about Schwartz functions can be found in
(Werner, 2011) and (Hörmander, 1990). A sufficient criterion for a Schwartz function

to serve as a transformation function for the error function is presented in the following
proposition.
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Proposition 6.2.5

Let a transformation function h ∈ S([0,∞)) be decreasing and the “acceptable error

area map” t 7→ (λ ◦ η−1)[0, t], mapping an error level t to the Lebesgue measure of the

parameter area where all parameters have an aggregate error to market prices of at most

t, be differentiable. If the “error area” grows at most polynomial, i.e.

∂

∂t
(λ ◦ η−1)[0, t] ∈ O(tα), α ≥ 0,

then
∫

Θ h(η(θ)) dθ <∞ and h qualifies for inducing a density on Θ.

Proof

Transformation of the integral yields

∫

Θ
h(η(θ)) dθ =

∫ ∞

0
h(t) (λ ◦ η−1)(dt).

By differentiability of the Lebesgue–Stieltjes measure λ ◦ η−1, it follows

=

∫ ∞

0
h(t) · ∂

∂t
(λ ◦ η−1)[0, t] dt.

The finiteness of the integral is equivalent to h 7→
∫∞
0 h(t) (λ◦η−1)(dt) being a continuous

linear form, thus the measure λ ◦ η−1 is in the topological dual space S ′([0,∞)). These

linear forms are known as tempered distributions. In particular, if t 7→ ∂
∂t(λ ◦ η−1)[0, t]

grows at most polynomial, the functional

h 7→
∫ ∞

0
h(t) · ∂

∂t
(λ ◦ η−1)[0, t] dt =

∫

Θ
h(η(θ)) dθ

is a tempered distribution. Thus, the integral is finite. �

Interpreting the mapping t 7→ ∂
∂t(λ ◦ η−1)[0, t] geometrically, it means that the marginal

error area may not grow faster (with growth meaning growth of Lebesgue measure)

than polynomial. Furthermore, when considering the proof of Proposition 6.2.5, the
assumptions can be weakened. Differentiability does not have to hold, the only crucial

condition is that the Lebesgue-Stietjes measure λ ◦ η−1 on [0,∞) induces a tempered
distribution.
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6.2 Parameter risk from calibration to market prices

Computational issues

In practice, however, the function t 7→ ∂
∂t(λ◦η−1)[0, t] may not be easy to calculate, since

the error function η may be cumbersome and usually involves complicated evaluations,

e.g. for the Heston model, the semi-closed form price of vanilla options involves the
Fourier transform of a quite complicated characteristic funtion. Thus, the error function

may only be evaluated on selected parameters θ1, . . . , θN ∈ Θ, N ∈ N, on a specified
grid. A further convenient advantage of a discretization of the parameter space is that

finiteness of the integral in (6.1) is always assured. Although discretizing may not lead
to large deviations from the integral in a sufficiently small neighborhood of θ1, . . . , θN
when discretizing fine enough, it may not cover the integral over Θ if Θ is unbounded.
Thus, we have to select a compact Θ0 ⊂ Θ and discretize Θ0.

Algorithm 1 (Discrete density on a compact parameter space)

Given market prices C⋆
1 , . . . , C

⋆
M of liquid securities C1, . . . , CM , a continuous error func-

tion η, and a continuous decreasing function h, the discrete density on a compact param-

eter space Θ0 can be calculated in the following way:

1. Apply a standard calibration algorithm to determine θ0 = argminθ∈Θ0 η(θ).

2. Discretize Θ0 by choosing θ1, . . . , θN ∈ Θ0 such that there is a δ > 0 such that for

every θ ∈ Θ0 there is an i ∈ {0, . . . , N} with ‖θ− θi‖ < δ (which is possible due to

the compactness of Θ).

3. Calculate h(η(θi)), i = 0, . . . , N .

4. Define f(θi) = h(η(θi))/
∑N

j=1 h(η(θj)) as the (discrete) density on Θ0.

The last steps in Algorithm 1 may be computationally expensive, especially if the error

function η involves time-consuming computations (as it often does). Fortunately, after
specifying and discretizing Θ0, it is completely parallelizable. Thus, by distributing it

to several kernels, the performance may easily be improved.

Obviously, the choice of a compact set Θ0 ⊂ Θ bears a lot of discretion. Experienced

traders with sufficient information about calibrated parameters in the past may evaluate
the parameters on a suitable cuboid Θ0 = [θmin

1 , θmax
1 ] × · · · × [θmin

k , θmax
k ]. Others may

choose Θ0 as a regular ball centered at θ0 w.r.t. a norm on R
k, so Θ0 = Bδ(θ0)∩Θ for some

δ > 0. From an economic point of view, incorporating existing bid-ask spreads from liquid

options can be a reasonable choice. So, if the error function η represents a mean relative
deviation from market prices, choosing Θ0 = η−1[0, δ] for some δ > 0 makes sense.
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Unfortunately, chosen this way, it is not guaranteed that Θ0 is bounded. Furthermore,
the determination of a preimage of a sophisticated function may be challenging. Finally,

Θ0 may be disconnected, situations can arise where there may be many feasible “islands”
in the parameter space. However, we have developed an algorithm determining the

connected component containing θ0 of η−1[0, δ].

Algorithm 2 (Computation of a discretized preimage)

Let η be a continuous error function representing mean relative deviation from market

prices, δ > 0, and θ0 the calibration result parameter with η(θ0) < δ. We furthermore as-

sume that η−1[0, δ] is bounded and denote the connected component of η−1[0, δ] containing

θ0 by Θ0. Then the following algorithm returns a discretization of Θ0.

1. Apply a standard calibration algorithm to determine θ0 = argminθ∈Θ0 η(θ).

2. Choose a discretization step width s ∈ R
k
≥0 (different directions might have different

step widths).

3. pointsToSurround := {θ0}
pointsToCalculate := ∅
evalPairs := {(θ0, η(θ0))}
surroundedPoints := ∅
insidePoints := {θ0}
outsidePoints := ∅

4. while (pointsToSurround 6= ∅) do {

for each θ ∈ pointsToSurround {

pointsToCalculate := pointsToCalculate ∪ {(θ1+{−1, 0, 1}·s1, . . . , θk+
{−1, 0, 1} · sk)}

}

pointsToCalculate := pointsToCalculate ∩ Θ

pointsToCalculate := (pointsToCalculate - insidePoints)

- outsidePoints4

for each θ ∈ pointsToCalculate {

y := η(θ)

if (y ≤ δ) then {

insidePoints.Add(θ)

evalPairs.Add((θ, y))

}

4We denote the set difference operator by a regular minus sign.
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6.3 Case study: Comparing parameter risk of different models and exotic options

else outsidePoints.Add(θ)

}

surroundedPoints := surroundedPoints ∪ pointsToSurround

pointsToSurround := insidePoints − surroundedPoints

}

The set evalPairs contains the discretized set Θ0 and the evaluations of the error func-

tion η(Θ0).

Unfortunately, this algorithm is only partially parallelizable, since the iterated sets have

to be changed in the outer loop. However, the inner loop evaluating the error function
can be parallelized if concurrency can be avoided when writing on the sets (e.g. by storing

them in a database).

6.3 Case study: Comparing parameter risk of different

models and exotic options

In this section, we apply the techniques described above and calculate bid-ask spreads
of different exotic options induced by parameter risk, calculated by risk-capturing func-

tionals as proposed in Chapter 3. In the present work, however, we induce a distribution
on the respective parameter set by evaluating the errors to market prices of a Heston

model, a Barndorff-Nielsen–Shephard model, and a Variance Gamma model. This en-
ables us to calculate parameter risk-captured prices for different exotic options (similar

to (Schoutens et al., 2004) and (Jessen and Poulsen, 2012)), to compare parameter risk
of the three models, and to profile exotics w.r.t. their parameter risk.

Our universe of liquid securities consists of M = 887 DAX plain vanilla call options with

different strikes and maturities as of February 26, 2009, at a spot S0 = 3942. We use the
popular FFT method (see (Carr and Madan, 1999)) to calculate vanilla prices for a whole

strike grid simultaneously. We apply Algorithm 2 to calculate the connected component
of a preimage w.r.t. a specified error function. Afterwards, we evaluate different exotic

options (discrete barrier option, Asian option, discrete lookback option) via Monte Carlo
simulation and calculate AVaR0.05-induced bid-ask prices implied by parameter risk for

different densities.

We choose the relative root mean squared error

η(θ) =
RMSEC1,...,CM

(θ)

C̄⋆
,
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i.e. the mean deviation from mean market prices of the securities C1, . . . , CM with market
prices C⋆

1 , . . . , C
⋆
M as error function. This error function is comfortable to interpret and

calibration is equivalent to a calibration with RMSE, since it is just a strictly monotone
transformation of RMSE. We transform η by the normal transformation function

hNλ (t) = c · exp
(

−
(

t0 − t

λ

)2
)

, t ≥ t0,

to a density with t0 := η(θ0), denoting by θ0 the calibration parameter, scaling pa-
rameter λ > 0 and c > 0 matching such that a density is obtained. We correct the

centered transformation functions for the minimal encountered error to market prices
t0. First, this corrects for advantages in calibration performance of one model compared

to another. Second, the correction ensures that the induced distributions Rλ(dθ) =

hNλ (η(θ)) dθ/
∫

Θ h
N
λ (η(θ)) dθ converges weakly to δθ0 for λ→ 0. Since the AVaR-induced

risk-capturing functionals fulfill the convergence property (CP) (cf. Proposition 4.1.3),
we obtain the calibration plug-in price in the limit λ→ 0.

The Heston model

Heston introduced his popular model in (Heston, 1993), modifying the classical Black–
Scholes model by modeling the square of Black–Scholes volatility using a Cox–Ingersoll–

Ross process. The risk-neutral dynamics of the Heston model follow the SDEs

dSt = rSt dt+ σtSt dW
(1)
t ,

dσ2t = κ(σ2long − σ2t ) dt+ ξσt dW
(2)
t ,

dW
(1)
t dW

(2)
t = ρdt,

(W
(i)
t )t≥0, i = 1, 2, being correlated Brownian motions and r, S0, σ

2
0 , κ, σ

2
long, ξ > 0,

ρ ∈ [−1, 1]. Assuming that the spot S0 and risk-free rate r are quoted in the market, pa-

rameter uncertainty arises from the quintuple (σ20 , κ, σ
2
long, ξ, ρ) that has to be calibrated.

Furthermore, to avoid the occurence of negative volatilities, we require our parameters

to fulfill the so-called Feller condition ξ2 ≤ 2κσ2long, which guarantees that the process
(σ2t )t≥0 is strictly positive (cf. (Feller, 1951)). Hence, our parameter space for the Heston

model is

ΘHeston = {(σ20 , κ, σ2long, ξ, ρ) ∈ R
4
>0 × [−1, 1] : ξ2 ≤ 2κσ2long}.
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6.3 Case study: Comparing parameter risk of different models and exotic options

For FFT pricing à la (Carr and Madan, 1999) we need the characteristic function of the
log-price process Xt := log St. It is given as in (Schoutens et al., 2004) by

log φHeston
Xt

(u) = iu(log S0 + rt) +
σ20(a− c)(1 − exp(−ct))
ξ2(1− g exp(−ct))

+
κσ2long
ξ2

(

(a− c)t− 2 log

(

1− g exp(−ct)
1− g

))

with a := κ− ρξui, c :=
√

a2 − ξ2(−ui− u2), and g := (a− c)/(a+ c). It may be noted
that there are two specifications for the Heston characteristic function as pointed out in

(Albrecher et al., 2007), we have chosen the (numerically) less pathological one.

The Barndorff-Nielsen–Shephard model

Barndorff-Nielsen and Shephard developed a stochastic volatility model in which the
variance process is a subordinator-driven Ornstein–Uhlenbeck process (cf. (Barndorff-

Nielsen and Shephard, 2001; Nicolato and Venardos, 2003)). One of the most common
specifications for the subordinator is a compound Poisson process with exponentially

distributed jump sizes as in (Schoutens et al., 2004), resulting in the Γ-OU-Barndorff-

Nielsen–Shephard model , which will be used in the further. To account for the leverage

effect, the stock price has a negative jump whenever the volatility has an upward jump.
The dynamics of the log-price process Xt := logSt are governed by the following SDEs:

dXt =

(

r − σ2t
2

+
λcρ

α+ ρ

)

dt+ σt dWt − ρdZλt,

dσ2t = −λσ2t dt+ dZλt,

with parameters r, S0, σ20 , λ, c, ρ, α > 0, (Wt)t≥0 is a Brownian motion and (Zt)t≥0 is a

compound Poisson process with exponentially distributed jump size, i.e. Zt =
∑Nt

j=1 Uj

with a Poisson process (Nt)t≥0 with intensity c > 0 and (Uj)j∈N are exponentially i.i.d.

with parameter α > 0, (Wt)t≥0 and (Zt)t≥0 are independent. Given the observable spot
price S0 and risk-free rate r, the unspecified parameters with exposure to uncertainty is

the quintuple (σ20 , c, α, λ, ρ). Thus, without any further restrictions, our parameter space
for the Γ−OU-Barndorff-Nielsen–Shephard model5 is

ΘBNS = {(σ20 , c, α, λ, ρ) : σ20, c, α, λ, ρ ∈ R>0} = R
5
>0.

5We abbreviate this by BNS model.
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The characteristic function of the log-price process is (cf. (Nicolato and Venardos, 2003;
Schoutens et al., 2004; Cont and Tankov, 2004))

log φBNS
Xt

(u) = iu

(

log S0 +

(

r +
cλρ

α+ ρ

)

t

)

− ghσ20 + c
α log α−f1

α−ρui + f2λt

α− f2

with

g :=
u2 + ui

2
, h :=

1− exp(−λt)
λ

, f1 := ρui− gh, f2 := ρui− g

λ
.

The Variance-Gamma model

The variance gamma model is an exponential Lévy model without a diffusion compo-

nent.6 In this pure jump model, the log-returns are following the variance gamma process.
This model was introduced in (Madan and Senata, 1990) for modeling returns, (Madan

et al., 1998) introduced an option pricing model based on the variance gamma process.
The variance gamma process is a special case of a time-changed Brownian motion with

drift

Zt = ϑΛt + σWΛt

with ϑ ∈ R, σ > 0, (Wt)t≥0 is a Brownian motion and (Λt)t≥0 is a Lévy subordinator with

Λ0 = 0. In case of the variance gamma process, the subordinator (Λt)t≥0 is a Gamma
process, i.e. for h > 0 and t ≥ 0 the increments Λt+h−Λt follow a Γ(h/κ, κ)-distribution.

Thus, under a risk-neutral measure, the log-price process Xt is given (compare (Madan
et al., 1998)) by

dXt =

(

r +
1

κ
log

(

1− ϑκ− σ2κ

2

))

dt+ dZt.

Like the other two models, the variance gamma model can be regarded as an extension of
the classical Black–Scholes model. Instead of making volatility stochastic, time is made

stochastic, as it was first proposed in (Clark, 1973). The characteristic function of the
log-price process is calculated in (Madan et al., 1998) as

φVG
Xt

(u) = exp



iu



log(S0) + t



r +
log
(

1− ϑκ− σ2κ
2

)

κ













(

1− iϑκu+
σ2κu2

2

)− t
κ

.

6For abbreviation, we will frequently use the short name VG model.
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6.3 Case study: Comparing parameter risk of different models and exotic options

Error function calculation

Since the characteristic function of the log-prices of all three models is known, we use

the Fourier transform pricing method as described in (Carr and Madan, 1999). Provided
that the βth moment, β > 0, of the log-price exists, it is shown in (Carr and Madan,

1999) that the price of a plain vanilla call option C(K) at maturity T > 0 with strike
K > 0 is given by

C(K) =
1

πKβ

∫ ∞

0
exp(− log(K)vi)ψT (v) dv

with

ψT (v) =
exp(−rT )φT (v − (β + 1)i)

β2 + β − v2 + (2β + 1)vi
,

denoting by φT the characteristic function of the log-price at time T . We choose (as
in (Schoutens et al., 2004)) β = 0.75. The usage of the Fast Fourier Transform (FFT)

allows us to calculate call prices on a large strike grid simultaneously (cf. (Carr and
Madan, 1999)). We interpolate between the given strikes to obtain prices for the strikes

from our data.

A case study on parameter risk

We use Algorithm 2 to obtain a dense grid of parameters, all of them having a pricing

error smaller than the smallest pricing error t0 plus 2%. This enables us to compare the
pure parameter risk effect w.r.t. the same transformation function. For the Heston and

Barndorff-Nielsen–Shephard models we have chosen not to observe parameter risk arising
from the short-term volatility σ20 to reduce the parameter space to four dimensions (cf.

(Guillaume and Schoutens, 2011)). The following table gathers the result of the algorithm
and the minimal relative RMSE to market prices, denoting by t0 the minimal error to

market prices.

On the obtained parameter set, we evaluate three exotic options: An ITM discrete

barrier call option, an arithmetic Asian call option, and a discrete lookback call option.
An ITM discrete barrier call option with maturity T > 0, strike K > 0, barrier B > 0,

and observation points 0 < t1 < · · · < tL =: T , L ∈ N, is given by the payoff

ZBarrier = 1⋂L
l=1{Stl

<B}(ST −K)+.

103



6.3.1 Parameter risk in different models

Model Discretization step vector ♯ of feasible parameters t0

Heston model
(

0 0.07 0.1 0.07 0.02
)

5 868 1.44%

BNS model
(

0 0.1 0.5 0.15 0.2
)

9 536 1.79%

VG model
(

0.04 0.04 0.02
)

6 705 5.41%

Table 6.1 The calibration environment of the different models to compare with the
according discretization step vectors, the resulting number of feasible param-

eters, and the calibration error. One can see that the calibration performance
of the Variance Gamma model is much lower than the calibration performance

of the two stochastic volatility models.

An arithmetic Asian call option with maturity T > 0, strike K > 0, and observation

points 0 < t1 < · · · < tL =: T , L ∈ N, is given by the payoff

ZAsian =

(

1

L

L
∑

l=1

Stl −K

)+

.

Finally, the payoff of a discrete lookback call option with maturity T > 0, strike K > 0,

and observation points 0 < t1 < · · · < tL =: T , L ∈ N, is given by

ZLookback =

L
∨

l=1

(Stl −K)+ .

The payoff always takes place at maturity. In our case, for all three options we choose
as maturity T = 1, K = 4000 as strike, L = 24 equidistant observation points and, in

case of the barrier option, a barrier at B = 5000. For simplicity, we disregard dividends
and assume the risk-free rate to be r = 0.03.

The contingent claims described above are path-dependent, we evaluate them by Monte

Carlo simulation. Therefore, we draw accordingly distributed random numbers with the
same seed and rescale them with the different parameters. This prevents us from mixing

parameter risk with noise risk due to differently drawn random numbers. In our Monte
Carlo simulation, we evaluate using 10 000 sample paths and 24 observation points per
year.

6.3.1 Parameter risk in different models

Since we have evaluated the above mentioned contingent claims in different models, we
can empirically evaluate the amount of model specific parameter risk. Parameter risk
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6.3 Case study: Comparing parameter risk of different models and exotic options

Asian option Heston model BNS model VG model

Modus (Calibration plug-in value) 311.8868 316.1214 274.9964

Expected value

(integrating out the distribution on Θ)

311.4427 316.0965 274.2531

Coefficient of variation 0.0125 0.0152 0.0348

Skewness 0.2707 −0.3451 −0.2017

Table 6.2 Overall, the coefficient of variation is smallest for the Asian price distribu-

tions. In particular, the dispersion of the BNS model distribution is not much
larger than the dispersion of the Heston model distribution. The VG model

implies much different option prices (due to bad fit to ATM vanilla options)
and considerable higher dispersion. Furthermore, the jump model price dis-

tributions are slightly skewed to the left, while the Heston model prices have
a slight skew to the right.

is reflected in the width of bid and ask prices calculated according to Chapter 3. Our

methodology to create a distribution on the parameter set allows us to scrutinize the
pushforward distributions of the prices. The probability distributions can be visual-

ized in scatterplots. For a proper visual model comparison, we calculate and compare
the resulting cumulative distribution functions of the option prices and compare the

AVaR0.05-induced bid-ask spreads for the different models when varying the scaling pa-
rameter λ. The cumulative distribution functions of the different option price distribu-

tions are shown in Figures 6.1, 6.3, and 6.5. The parameter risk-captured bid-ask prices
are depicted together with scatterplots of the price distributions for the respective mod-

els in the Figures 6.2, 6.4, and 6.6. Furthermore, we calculate statistical properties of the
distributions and compare these in Tables 6.2-6.4. We calculate the modus (which es-

sentially is the plug-in calibration price), the expected value, the coefficient of variation,
and the skewness. We have decided to apply the coefficient of variation for measuring

dispersion due to its invariance w.r.t. multiplicative factors. Since we compare prices
with different levels, the coefficient of variation enables us to directly compare their dis-

persion. The expected value references to the AVaR1-induced parameter risk-captured
price, which was suggested for incorporating parameter risk by (Lindström, 2010).
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6.3.1 Parameter risk in different models
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Figure 6.1 The cumulative distribution functions of Asian option prices induced by the
normal transformation function with scaling parameter λ = 0.008. One

can see that the Heston price distribution observes slightly lower dispersion
than the BNS price distribution. Furthermore, the BNS price distribution

is moderately skewed to the left. Overall, the Heston model is less exposed
to parameter risk in this case. The VG price distribution is a lot more

dispersed and the peak of the distribution is quite different. This is due to
the large calibration error of the VG model, in particular when fitting to

ATM prices.
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6.3 Case study: Comparing parameter risk of different models and exotic options
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Figure 6.2 The scatterplots of the price distributions for the Asian option, employing

a scaling parameter λ = 0.008, and Asian option parameter risk-captured
bid-ask prices as a function of the scaling parameter. The bid-ask prices of

the BNS and Heston models are quite close, while the VG model bid-ask
spread is broader and has a different location.
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6.3.1 Parameter risk in different models

Barrier option Heston model BNS model VG model

Modus (Calibration plug-in value) 77.5529 97.9619 82.5580

Expected value

(integrating out the distribution on Θ)

75.0691 92.1595 98.8515

Coefficient of variation 0.0420 0.1257 0.2650

Skewness −0.0156 0.2889 1.6040

Table 6.3 The dispersion of the barrier price distribution is (regardless of the model) a

lot higher than for the Asian and lookback option due to higher sensitivity.
In particular, the coefficients of variation are a lot higher in the BNS model

than in Heston model and the dispersion of the VG model is by far the highest
among all models. While the Heston model price distribution observes almost

no skewness, the BNS model price distribution is slightly skewed to the right
and the VG model price distribution has very strong skewness, compared to

the other price distributions.

The Heston model

The Heston model shows narrow-peaked price distributions for all three options with
little variance. Overall, the price distributions are quite symmetric (skewness is close

to zero). Compared to the price distributions arising in the Barndorff-Nielsen–Shephard
model, the distribution has lower coefficients of variation for all three exotics. This

may be partly attributed to the better calibration performance, so values with worse
calibration performance are incorporated in the BNS model as well. Furthermore, the

Heston model, being completely driven by multivariate Brownian motion, has continuous
paths, while the Barndorff-Nielsen–Shephard model (in our specification) is also driven

by a compound Poisson process and allows for discontinuities in the stock price process.

The BNS model

In contrast to the Heston model, the Barndorff-Nielsen–Shephard model delivers distri-

butions for all three options without a clear single peak and considerably larger disper-
sion. This means that many parameters deliver an equally good fit to market prices

as the parameter obtained from the standard calibration, but differ substantially in the
calculated prices for exotics. We attribute this result to the strong focus of the jump
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6.3 Case study: Comparing parameter risk of different models and exotic options
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Figure 6.3 The cumulative distribution functions of ITM barrier option prices induced
by the normal transformation function with scaling parameter λ = 0.008.

Dispersion for ITM Barrier options is a lot higher for the BNS model than
for the Heston model, thus parameter risk for barrier options is higher in the
BNS model than in the Heston model. Furthermore, due to the discontinuity

of the payoff function, prices in the Barndorff-Nielsen–Shephard model jump
significantly. Furthermore, BNS model prices are considerably higher than

Heston model prices. This may be due to downward jumps, making stock
prices not breaking the barrier. Jumps are also very likely to be the reason

for the snatchy shape of the BNS distribution function. The VG model
prices are heavily skewed to the right and have much higher variability, due

to their poor calibration performance.
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Figure 6.4 The scatterplots of the price distributions for the ITM barrier option, em-

ploying a scaling parameter λ = 0.008, and ITM barrier option parameter
risk-captured bid-ask prices as a function of the scaling parameter. The

bid-ask prices of the VG model are clearly lower/higher than the induced
bid-ask prices of the Heston and BNS models. The methodology of calculat-

ing the preimage results in a special structure in the distribution scatterplots
of the BNS and VG models, causing certain parameter combinations to be

feasible, while other paths are filtered out due to too high errors to market
prices.
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6.3 Case study: Comparing parameter risk of different models and exotic options

Lookback option Heston model BNS model VG model

Modus (Calibration plug-in value) 847.9149 837.7727 840.3980

Expected value

(integrating out the distribution on Θ)

852.1520 856.3299 824.4740

Coefficient of variation 0.0127 0.0380 0.0638

Skewness 0.2621 −0.1539 −0.2031

Table 6.4 The coefficient of variation of the BNS model distribution is a lot higher

than in the Heston model. Indeed, in the Heston model, the lookback price
distribution has comparable dispersion to the Asian price distribution, while

variability is higher in the jump models. Furthermore, the sign of skewness in
the Heston model is positive, while in both jump models skewness is negative

(probably due to jumping down). The VG model shows by far the highest
coefficient of variation.

component to replicate smile and term structure of given market prices. Only slightly
different parameters concerning the jump component may result in considerable price dif-

ferences, especially concerning more sensitive contingent claims like lookback or barrier
options. It is observed that the Barndorff-Nielsen–Shephard model - considered isolated

- bears substantial parameter risk, even if only parameters with very low differences are
incorporated. Cont and Tankov observe in (Cont and Tankov, 2004, pp. 488–490) that

the Barndorff-Nielsen–Shephard model has problems to fit to several smiles, thus it has
some problems with calibration performance. This is verified by our observations. Fur-

thermore, the calibration result seems to be quite unstable in the sense that there are
many parameters matching equally well. From a computational point of view, this is a

drawback of the Barndorff-Nielsen–Shephard model. From an economic point of view,
the BNS model contains a higher degree of parameter risk than the Heston model.

The most striking differences occur for the ITM barrier option. Not only is the price of
the ITM barrier option significantly higher in the BNS model than in the Heston model,

which may be due to the downward pressure of the downward-directed jumps. Further-
more, observed parameter risk in the BNS model is huge. Besides larger parameter risk,

there are significant differences regarding the lookback option: In the Barndorff-Nielsen–
Shephard model, the distribution is clearly skewed to the left. This may be the result of

the jump component, allowing jumps only to move stock prices downwards, while in the
Heston model, the distribution looks quite symmetric.
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6.3.2 Parameter risk profiles of different exotics

The Variance Gamma model

The VG model’s calibration performance is a lot weaker than the calibration performance

of the Heston and the BNS model. This is consistent with the results in (Jessen and
Poulsen, 2012) which state that the calibration performance of the VG model is inferior

to that of the Heston model and ties approximately with the classical Black–Scholes
model. From this point of view, it plays in a different league than the Heston and the

Barndorff-Nielsen–Shephard model. The mediocre calibration performance is reflected
in the high degree of parameter risk, as one can see. The price distributions for all three

options are tremendously wider than the price distributions for the BNS and Heston
model. Many observed parameter constellations that match the criterion for the VG

model have quite poor performance in matching market prices, thus, in case of lookback
and ITM barrier options, this mismatch may produce extreme results. In case of the

barrier option price, it is heavily skewed to the right. Since the VG model did not match
ATM options well, it is no surprise that the price of the Asian option deviates a lot from

the prices in the BNS and the Heston model.

6.3.2 Parameter risk profiles of different exotics

Comparing the parameter risk w.r.t. the different types of options, we mainly expect

the parameter risk profiles of exotics to follow their sensitivities: Contingent claims with
high deltas and high Black–Scholes vegas are supposed to show greater parameter risk,

since stock price and volatility are supposed to be captured by the models. Figure 6.7
compares the relative deviation of AVaR0.05 induced bid-ask prices to the plug-in prices

for different options within the Heston model, the BNS model, and the VG model.

It can be easily identified that the parameter risk of the Asian option is quite small in all

models. This may be attributed to the averaging taking place in Asian payoff profiles,
so calculating prices with slightly different parameters does not lead to much different

results. On the other hand, the risk profile of an Asian option is close to the risk profile
of a plain vanilla option, delta and vega tend to be lower on an absolute basis. Thus,

since all parameter constellations on average match vanilla market prices quite good, too
large deviations from parameters are not expected.

For lookback options, the Heston model does not bear substantially higher parameter

risk than for Asian options. Parameter risk is more skewed to the ask price, this can
be explained by higher maximums being covered with the risk-captured prices. This is
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6.4 Outlook

mainly due to the sensitivity of the maximum of the stock price to parameter changes.
For the BNS model, the lookback option suffers from more parameter risk, especially

on the ask side. The parameter risk of the VG model is skewed a lot more. Bid prices
deviate significantly more than the ones in the BNS model, while ask prices do not.

The ITM barrier option shows large variability in the prices, mainly due to the knock-out

feature. For some parameter constellations, the price becomes quite sensitive, since a
high probability of stock prices hitting the barrier cause the option price to fall. Overall,

we have an option with highly varying delta and vega. Compared to the other options,
the parameter risk is substantially higher for both the Heston and the BNS model. In

the BNS model, incorporating parameter risk delivers a bid price of more than 30% less
than the plug-in price. Even worse deviations can be observed for the VG model. While

the bid price deviation can be compared to the one from the BNS model, the ask price
has enormous parameter risk - there are values that are 150% higher than the plug-in

price.

In a nutshell, our observations meet our expectations concerning the degree of parameter

risk. Options with low deltas and Black–Scholes vegas (e.g. Asian options) seem to be
quite robust w.r.t. parameter risk. On the other hand, setting the price for lookback

and barrier options classically may bear large amounts of parameter risk. Calculating
risk-captured prices may give useful hints for setting bid-ask spreads, they should be

narrow for good-natured exotics like Asians and wide for ITM barrier options.

6.4 Outlook

In this chapter, we have presented a method to induce a distribution on the parameter

space by employing a transformation of the error function of a calibration to market
prices. To select a transformation is highly subjective, roughly spoken, the transfor-

mation of the error function controls the “trustworthiness” of a given error to market
prices. One may argue that the error to market prices measured by the error function

is not sufficient to describe whether a parameter (vector) is trustworthy in the sense of
assigning it a certain likelihood. One possibility could be that, e.g., a minimum fit of all

options (in terms of relative price deviation or implied volatility) is regarded as a nec-
essary condition to assign any weight to some parameter vector. Actually, this practice

would even go beyond the typical calibration techniques that are used in industry and
would enhance some “constrained calibration” technique, where an error function has to
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be minimized additionally fulfilling some constraints (which may be given e.g. on the
single prices).

Furthermore, one may develop a numerical scheme yielding a truly continuous distribu-

tion on the parameter space. In our case, a discretization scheme is employed, which
does not capture the parameters that do not lie on the predefined vector grid. One way

to obtain a continuous distribution on the parameter could be realized by employing
density kernels on the grid. This could lead to several problems as, e.g., the support

of the density kernels have to be contained in the parameter space, which may be chal-
lenging in many cases (e.g. the correlation in the Heston model has support in [−1, 1],

the Feller condition in the Heston model implies a nonlinear inequality condition on the
parameters).
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6.4 Outlook
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Figure 6.5 The cumulative distribution functions of lookback option prices induced by

the normal transformation function with scaling parameter λ = 0.008. For
lookback options, the BNS model also shows considerably higher dispersion

than the Heston model. The VG model observes much more variability
compared to the other models. This may be directly related to the results

of the barrier option, since little stock price maximums make barriers not
to break.
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Figure 6.6 The scatterplots of the price distributions for the lookback option, employing

a scaling parameter λ = 0.008, and lookback option parameter risk-captured
bid-ask prices as a function of the scaling parameter. The bid-ask prices of

the VG model clearly dominate the induced bid-ask prices of the Heston
and BNS models, although their plug-in prices are very close.
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6.4 Outlook
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Figure 6.7 Relative deviations from the plug-in price compared among different option
types for the Heston, Barndorff-Nielsen–Shephard, and Variance Gamma

models. In the Heston model, both Asian and lookback options observe
low parameter risk. For lookback options, parameter risk is skewed to the

ask side. In the BNS model, Asian options observe low parameter risk, but
lookbacks have considerable parameter risk. For both models, parameter

risk is largest for the ITM barrier option, the BNS model observes large
deviations (> 20%) from the plug-in price. The Variance Gamma model

has higher deviations from the plug-in price. An extreme deviation can be
observed for the ITM barrier option ask price. Here we have deviations of

> 150% of the original price.
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7 Calibration of risk-captured model

prices to bid-ask market prices

7.1 Introduction

Several authors (see, e.g., (Carr et al., 2001; Xu, 2006; Bion-Nadal, 2009; Cherny and

Madan, 2010)) have suggested modeling bid-ask prices with convex risk measures, so
does this thesis in Chapter 3. All approaches have in common that a certain convex

risk measure Γ := Γask is employed for the calculation of ask prices. Moreover, the dual
functional Γbid, defined by Γbid(X) := −Γask(−X), is usually used for calculating bid

prices. In our case, we stick to this kind of “bid-ask symmetry”.

(Carr et al., 2001) and (Cherny and Madan, 2010) generalize the classical results from

incomplete markets, suggesting pricing based on coherent risk measures. In incomplete
markets with real-world measure P , a set of “stress-test measures” Q is selected from the

set of all equivalent martingale measures and the ask price of a contingent claim X is
determined as the supremum of the expectations w.r.t. the stress-test measures1:

Γ(X) := sup
Q∈Q

EQ[X].

In particular, (Cherny and Madan, 2010) suggest choosing the set of stress test measures
by an acceptability index. Their result consists of using coherent risk measures induced

by a parametric family of concave distortion functions (γλ)λ∈Λ with

Γλ(X) :=

∫

X d(γλ ◦ P ).

This approach is described in (Cherny and Madan, 2010) as “conic finance” and we will
adopt this name.

1(Cont, 2006) discuss a similar supremum-based approach not restricting to an incomplete markets

setting.
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A different approach to bid-ask prices, also relying on convex risk measures, is presented
in Chapter 3: Here, bid-ask spreads are explained in the context of parameter risk of

a parametric family of martingale measures (Qθ)θ∈Θ. In presence of a distribution R

on the parameter space Θ, one can define for contingent claims X and law-invariant,

normalized convex risk measures ρ the parameter risk-captured price, which may serve
as an ask price, by

Γ(X) := ρ(θ 7→ Eθ[X]),

denoting the risk-neutral price w.r.t. a fixed parameter θ̃ ∈ Θ by Eθ̃[X].

Obviously, we can restrict the choice of risk measures to distortion risk measures, since

they are law-invariant and normalized. Thus, using a concave distortion γ, the risk-
captured ask price turns into

∫

Θ
Eθ[X] (γ ◦R)(dθ).

In the following, we discuss the calibration to bid-ask prices that are created in a dis-
tortion risk measure-driven environment. The conic finance approach of (Cherny and

Madan, 2010) can be embedded into the parameter risk framework, since it restricts
parameter risk to the market price of risk. To cover both ideas in a unified way, we
formulate the framework in a general manner and write f(X) (f being a linear map

w.r.t. some matching vector spaces) as a symbol for the integrand under the Choquet
integral w.r.t. the distorted probability and R as symbol for the probability measure.

Hence, the generic ask pricing formula is given by
∫

f(X) d(γ ◦R). (7.1)

In the parameter risk-capturing framework described in Chapter 3, f(X) = Eθ[X] and R

is the probability measure on the parameter space Θ. In the conic finance environment
as described in (Cherny and Madan, 2009), we identify f(X) = X and R is a (previously

specified) risk-neutral measure Q.2

7.2 The bid-ask calibration problem

For classical linear pricing systems, the calibration of liquid instruments C1, . . . , CM to

their quoted mid prices C⋆
1
mid, . . . , C⋆

M
mid is a common way of obtaining the model’s un-

observable parameters; thus obtaining a market-implied distribution (from a previously
2Due to the general formulation, we omit the area of integration in the generic ask pricing formula

(7.1).
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7.2 The bid-ask calibration problem

selected family) for the expectation. Consequently, when extending to non-linear pricing
systems as briefly summarized in Section 7.1, it is natural to think about obtaining a

market-implied convex risk measure from quoted bid-ask prices. As a starting point,
(Cherny and Madan, 2010) develop semi-closed-form solutions for the calculation of bid

and ask prices in their conic finance approach. Using these semi-closed-form representa-
tions, they calibrate to given bid-ask prices employing, e.g., the minmaxvar -family (cf.

Example 2.2.10) of distortion functions.

In this section, we restate the bid-ask calibration problem in a formal way, using the

generic language of (7.1), and show that there exists a solution in a mildly restricted
class of distortion functions, not restricted to a fixed parametric shape of the distortion

function. As a corollary, we show the existence of a solution of the bid-ask calibration
problem in the AVaR- and minmaxvar -family of distortion functions.

We start with a general formulation of the bid-ask calibration problem.

Problem 7.2.1 (Bid-ask calibration problem)

Let C1, . . . , CM be contingent claims (e.g. plain vanilla options) with given market bid-

ask quotes (C⋆
1
bid, C⋆

1
ask), . . . , (C⋆

M
bid, C⋆

M
ask). Let furthermore η : R2M

≥0 → R≥0 be an

error function3 measuring the pricing error between model prices and market quotes.

A convex risk measure Γ̃ solves the (symmetric) bid-ask calibration problem on a domain

G, if Γ̃ minimizes the function

Γ 7→ η
(

| − Γ(−C1)− C⋆
1
bid|, . . . , | − Γ(−CM )− C⋆

M
bid|,

|Γ(C1)−C⋆
1
ask|, . . . , |Γ(CM )− C⋆

M
ask|
)

over the set of admissible functionals G.

The formulation of the bid-ask calibration in Problem 7.2.1 is quite general. Analogu-

ously to the calibration to mid prices, we want the model bid-ask prices to fit market
quoted bid-ask prices as good as possible. Therefore, we rely on minimizing an error

function, but now aggregate both the errors of the model bid and ask prices to the
respective market prices to ensure a consistent calibration to bid and ask prices.

Since the class of convex risk measure functionals can be very large and a numerical
solution may be difficult to obtain, we restrict ourselves to the set of distortion risk

measures. As described in Chapter 2, they represent a very tractable and rich class
of convex risk measures. The tractability of distortion risk measures stems from the

3Recall the definition of an error function from Definition 6.1.1.
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convenient representation as a Choquet integral w.r.t. a distorted probability (cf. 2.2.6).
We formulate our results in the generic language of (7.1).

The first theorem provides the existence of a best fit to market prices in broadly defined

subclasses of distortion risk measures. In short, Problem 7.2.1 is solvable.

Theorem 7.2.2 (Existence of a solution to the bid-ask calibration problem)

Let K > 0, η be a continuous error function, f(X) be R-a.s. bounded and define

GK := {γ : [0, 1] → [0, 1] : γ Lipschitz continuous, concave distortion

function with Lipschitz constant K}.

Furthermore, write Γγ(X) :=
∫

f(X) d(γ ◦ R) for γ ∈ GK . Then the bid-ask calibration

problem has a solution in GK , i.e. there exists a minimizing distortion function γ̃ ∈ GK

such that the function

η̃ : γ 7→ η
(

| − Γγ(−C1)− C⋆
1
bid|, . . . , | − Γγ(−CM )− C⋆

M
bid|,

|Γγ(C1)− C⋆
1
ask|, . . . , |Γγ(CM )− C⋆

M
ask|
)

is minimized in γ̃ in the following sense:

η̃(γ̃) ≤ η̃(γ) for all γ ∈ GK .

Proof

Step 1: GK is compact in the uniform topology.

We start by showing that GK is ‖ · ‖∞-closed: Let (γN )N∈N be a uniformly convergent

sequence in GK with (uniform) limit γ := limN→∞ γN . Since uniform convergence im-

plies pointwise convergence, for each x, y ∈ [0, 1], x ≤ y, γ(x) = limN→∞ γN (x) ≤
limN→∞ γN (y) = γ(y) holds. Furthermore, γ(0) = limN→∞ γN (0) = 0 and γ(1) =

limN→∞ γN (1) = 1 hold. Hence, γ is a distortion function. Furthermore, it can be

shown in a straightforward manner that γ is concave: Let x, y ∈ [0, 1] and λ ∈ [0, 1].

Now

γ(λx+ (1− λ)y) = lim
N→∞

γN (λx+ (1− λ)y)

≥ lim
N→∞

λγN (x) + (1− λ)γN (y) = λγ(x) + (1− λ)γ(y)

yields the concavity of γ.

It remains to show that γ is also Lipschitz continuous with Lipschitz constant K > 0:

Let ε > 0 be arbitrary. Due to uniform convergence, there exists some N ∈ N such that

122



7.2 The bid-ask calibration problem

‖γ − γN‖∞ < ε/2. Thus, applying γN ∈ GK and the triangular inequality,

|γ(x) − γ(y)| ≤ |γ(x)− γN (x)|+ |γN (x)− γN (y)|+ |γN (y)− γ(y)| < K|x− y|+ ε

for all x, y ∈ [0, 1]. Hence, GK ⊂ C[0, 1] is a closed set in the uniform topology.

Trivially, ‖γ‖∞ = 1 for all γ ∈ GK , thus, GK is uniformly bounded. Moreover, since

all functions γ ∈ GK have the joint Lipschitz constant K by definition, GK is also

an equicontinuous set. Hence, GK being a uniformly closed, uniformly bounded and

equicontinuous set, the Arzelà–Ascoli theorem (e.g. (Werner, 2011, Theorem II.3.4))

yields that GK is compact in the uniform topology on C([0, 1]).

Step 2: The map IX : GK → R defined by γ 7→ IX(γ) =
∫

f(X) d(γ ◦ R) is ‖ · ‖∞-

continuous.

Let γN → γ and recall the definition of the Choquet integral from Definition 2.2.2. Dom-

inated convergence (applicable due to the boundedness of f(X)) immediately delivers

∫

f(X) d(γN ◦R) =
∫ 0

−∞
γN (R(f(X) > s))− 1 ds+

∫ ∞

0
γN (R(f(X) > s)) ds

→
∫ 0

−∞
γ(R(f(X) > s))− 1 ds+

∫ ∞

0
γ(R(f(X) > s)) ds

=

∫

f(X) d(γ ◦R),

hence γ 7→
∫

f(X) d(γ ◦R) is continuous w.r.t. the uniform topology on C([0, 1]).

Since η is a continuous error function (thus η ◦ IX is ‖ · ‖∞-continuous) and GK is

compact, there exists an element γ̃ ∈ GK which minimizes the function η◦(IC1 , . . . , ICM
)

for given contigent claims C1, . . . , CM . Hence, γ̃ minimizes the error measured by η to

given market bid-ask prices (C⋆
1
bid, C⋆

1
ask), . . . , (C⋆

M
bid, C⋆

M
ask), i.e. η(I(γ̃)) ≤ η(I(γ))

holds for all γ ∈ GK . �

Restricting to the treated type of sets GK from Theorem 7.2.2, K > 0, deals with the
assumption that all considered distortion functions have a common maximum Lipschitz

constant K. At first glance, this may look technical and one could question this re-
striction, but in practice, this assumption is not too restrictive and distortion functions

behave smoothly on the majority of its domain: Every concave distortion function on
[0, 1] is Lipschitz continuous on [ε, 1] with constant 1/ε for every ε ∈ (0, 1) (furthermore,
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it can only have a jump at zero and is continuous on (0, 1]). Hence, for a numerical
discussion and practical implementation, it is sufficient and rather natural to focus on

sets of distortion functions which have a common Lipschitz constant.

Remark 7.2.3

1. We will show that the AVaR- and minmaxvar-families described in Examples 2.2.9

and 2.2.10 have a common Lipschitz constant when the allowed significance level

resp. the slope parameter are mildly restricted. Thus, these popular examples are

captured by our calibration framework.

2. If we scrutinize the proof of Theorem 7.2.2, in the second part we have only used that

γN → γ converges pointwise. In particular, we have shown that γ 7→
∫

X d(γ ◦R)
is sequentially continuous w.r.t. the pointwise topology.

From a practitioner’s point of view, the class GK is often too large to consider and

one tries to solve the bid-ask calibration problem in smaller domains, which may be
easier to parameterize (e.g. (Cherny and Madan, 2010) employ a model which is based

on minmaxvar (cf. Example 2.2.10) and other families and calibrate it to market bid-
ask prices). Therefore, the following immediate corollary provides a helpful sufficient

criterion that the bid-ask calibration problem is solved in smaller classes.

Corollary 7.2.4

Let G ⊂ GK for some K > 0 (GK as above) be ‖ · ‖∞-closed and η be a continuous error

function. Then, the bid-ask calibration problem has a solution in G.

Proof

Since G is ‖ · ‖∞-closed and GK is ‖ · ‖∞-compact, G is ‖ · ‖∞-compact. Thus, the same

arguments as in Theorem 7.2.2 provide the existence of a minimizing element γ̃ ∈ G. �

As already mentioned, Corollary 7.2.4 can be applied to ensure the existence of a solution
of the bid-ask calibration problem in some parametric family. As an example, we show

that – under mild technical restrictions – the bid-ask calibration problem has a solution
in the popular AVaR- and minmaxvar -families.

Example 7.2.5

1. Let ε > 0 and define the ε-bounded AVaR-family

Gε :=
{

γ : [0, 1] → [0, 1] : ∃α ∈ [ε, 1] : γ|[0,α](y) =
y

α
and γ|[α,1](y) = 1

}

.

From a statistical point of view, we disregard the AVaR-distortions focusing only

on the upper ε-tail of the price distribution.
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7.3 A non-parametric calibration scheme for bid-ask price

If we now select a convergent sequence (γN )N∈N, γN → γ := limN→∞ γN and

denote the adjacent significance levels by (αN )N∈N resp. α, then obviously αN → α

holds and α ≥ ε. Summarizing, γN ∈ Gε for all N ∈ N implies γ ∈ Gε, thus Gε is

closed. Applying Corollary 7.2.4 now immediately yields that the bid-ask calibration

problem has a solution in Gε.

2. Let K ∈ [0,∞) and define

GK :=
{

γ : [0, 1] → [0, 1] : ∃L ∈ [0,K] : γ(y) = 1− (1− y
1

L+1 )L+1
}

,

i.e. γ ∈ GK is a minmaxvar-type distortion function with parameter L ∈ [0,K].

If (γN )N∈N is a sequence in GK that converges uniformly, it is easy to show that

LN → L, in particular, limN→∞ γN ∈ GK . Thus, GK is ‖ · ‖∞-closed, applying

Corollary 7.2.4 shows that the bid-ask calibration problem has a solution in GK .

7.3 A non-parametric calibration scheme for bid-ask price

In this section, we present a tractable and highly flexible alternative to the bid-ask

calibration of parametric families à la (Cherny and Madan, 2010). We estimate the
distortion function in a non-parametric way, using a piecewise linear approximation.

Therefore, we remark that the set of piecewise linear distortion function is ‖·‖∞-dense in
the set of continuous distortion functions. Furthermore, we derive convenient evaluation

formulae for bid-ask pricing with piecewise linear distortion functions, which eventually
reduce the bid-ask calibration problem to a constrained optimization problem on the

unit cuboid. We argue that a non-parametric calibration scheme may be useful to obtain
the shape of a market-implied distortion function: Empirical results on market-implied

distortion functions are very rare, yet. Thus, a parametric approach may not capture
the distortions appropriately that are quoted on the market. Furthermore, our approach

can be used to find and justify some parametric shape of the market-implied distortion
function from empirical observations.

7.3.1 General results

We start with the following lemma, ensuring that a piecewise linear approximation of

a distortion function is a sensible approximation and does not produce much different
distorted expectations.
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Lemma 7.3.1 (Piecewise linear approximation)

Let γ : [0, 1] → [0, 1] be a continuous concave distortion function. Let N ∈ N and choose

0 =: y0 < y1 < · · · < yN := 1. Denote n(x) := max{n ∈ {0, . . . , N} : x ≥ yn} and

define

γN (x) :=







γ(yn(x)) +
γ(yn(x)+1)−γ(yn(x))

yn(x)+1−yn(x)
(x− yn(x)) , x ∈ [0, 1)

1 , x = 1.
(7.2)

Then γN is a piecewise linear concave distortion function and γN → γ uniformly, if the

mesh of the decompositions YN := {y0, . . . , yN} converge to zero, i.e. if maxn∈{1,...,N}{yn−
yn−1} → 0 for N → ∞.

Proof

Let N ∈ N. Obviously, γN is piecewise linear, monotone, and γN (0) = 0, γN (1) = 1.

Thus, γN is a piecewise linear distortion function. Furthermore, γN is concave, since

the a.e. defined derivative is decreasing. The convergence property follows from the proof

that the set of piecewise linear functions is uniformly dense in the space of continuous

functions on the unit interval C[0, 1] (cf. (Shilov, 1996, Section 1.23)). �

As an immediate corollary, we obtain that for all K > 0, the set of piecewise linear
distortion functions with maximum elevation K, is dense in the set GK from Theorem

7.2.2. Thus, solving the bid-ask calibration problem in Glin
K approximates a solution in

GK arbitrarily precise.

Corollary 7.3.2 (Piecewise linear approximation of calibration solutions)

Let K > 0 and GK be as in Theorem 7.2.2, let γ̃ be a solution of the bid-ask calibration

problem provided by Theorem 7.2.2, and define the set of piecewise linear distortion

functions with maximum elevation K, denoted by

Glin
K := {γ ∈ GK : γ is piecewise linear}.

Then the solution of the bid-ask calibration problem in GK can uniformly be approximated

in Glin
K , i.e. there exists a sequence (γN )N∈N in Glin

K such that γN → γ̃ uniformly.

Proof

Applying Lemma 7.3.1, we can construct a sequence (γN )N∈N in Glin
K converging to γ̃

uniformly. Since γ̃ is concave and the Lipschitz continuity ensures that the slope in each

point does not exceed K, the slope of the piecewise linear approximation cannot exceed

K either. Hence, the construction method in Lemma 7.3.1 guarantees that γN ∈ Glin
K for

every N ∈ N. �
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7.3 A non-parametric calibration scheme for bid-ask price

Hence, treating the bid-ask calibration problem in Glin
K is a sensible substitute for directly

solving among all distortion functions in GK .

Furthermore, the continuity of the error function assures that integrals w.r.t. piecewise

linear concave distortion functions converge as well, so optimizing in the piecewise con-
cave distortion functions may not provide significant disadvantages in accuracy compared

to optimizing in GK .

As a second result, we obtain that piecewise linear concave distortion functions are fully
characterized by an N -tuple of real numbers (with constraints).

Lemma 7.3.3 (Alternative characterization)

Let (y0, . . . , yN ) be a decomposition of the unit interval, i.e. 0 = y0 < y1 < · · · < yN = 1,

and γ be a piecewise linear concave distortion function which is linear on the subintervals

[yn−1, yn] for all n = 1, . . . , N . Then the distortion function γ is fully characterized by

the vector of differences on the decomposition points ∆γ ∈ R
N , where

∆γn := γ(yn)− γ(yn−1), n = 1, . . . , N .

Furthermore, ∆γ exhibits the constraints

∆γ1
y1 − y0

≥ ∆γ2
y2 − y1

≥ · · · ≥ ∆γN
yN − yN−1

≥ 0 and

N
∑

n=1

∆γn = 1. (7.3)

Proof

The vector ∆γ can be transformed to the different slopes by dividing each component

∆γj by yj − yj−1. Since piecewise linear functions are uniquely determined by the slopes,

their grid, and their start and end value, the differences ∆γ fully describes the distortion

function γ. Monotonicity, concavity, and γ(0) = 0, γ(1) = 1 immediately yield the

constraints from the assertion. �

In particular, solving the bid-ask calibration problem can be traced back to finding the

best matching (∆γ1, . . . ,∆γN ) fulfilling the conditions in (7.3), reducing the infinite-
dimensional bid-ask calibration problem from GK to a finite-dimensional problem. More-

over, piecewise linearity of the distortion function provides convenient expressions for the
distorted expectation, hence for bid-ask pricing. The key result for calculating distorted

expectations is presented in the following theorem.

Theorem 7.3.4 (Piecewise linear concave distorted expectations)

Let N ∈ N, γN be a piecewise linear concave distortion function with adjacent decompo-

sition 0 = y0 < y1 < · · · < yN = 1 and difference vector (∆γ1, . . . ,∆γN ) ∈ [0, 1]N . Let
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furthermore f(X) ∈ L∞(R) and y0, . . . , yN are points of continuity of Ff(X). Then the

distorted expectation of f(X) w.r.t. γN ◦R can be calculated via

∫

X d(γN ◦R) =
N
∑

n=1

∆γnE
[

f(X)
∣

∣

∣f(X) ∈
[

VaRyn(f(X)),VaRyn−1(f(X))
]

]

.

For the proof of Theorem 7.3.4, we need the following lemma yielding a convenient

decomposition for piecewise linear distortion functions.

Lemma 7.3.5 (Decomposition of piecewise linear distortion functions)

Let N ∈ N, γN be a piecewise linear concave distortion function with adjacent decompo-

sition 0 = y0 < y1 < · · · < yN = 1, and difference vector (∆γ1, . . . ,∆γN ) ∈ [0, 1]N .

Define the slopes of γ by γ̃n := ∆γn/(yn − yn−1) and the help functions fn(y) :=

min{yn,max{yn−1, y}} − yn−1 for n ∈ {1, . . . , N}. Then γN can be decomposed into

the slopes and help functions via

γN (y) =
N
∑

n=1

γ̃nfn(y).

Proof

Let ν ∈ {1, . . . , N} be arbitrary and y ∈ [yν−1, yν ]. By definition of γ̃n and fn, n ∈
{1, . . . , N}, we obtain

N
∑

n=1

γ̃nfn(y) =

N
∑

n=1

γN (yn)− γN (yn−1)

yn − yn−1
(min{yn,max{yn−1, y}} − yn−1).

Since y ∈ [yν−1, yν ], the terms for n > ν cancel, resulting in

=

ν
∑

n=1

γN (yn)− γN (yn−1)

yn − yn−1
(min{yn,max{yn−1, y}} − yn−1).

Furthermore, the terms for n < ν can be simplified, resulting in

=

ν−1
∑

n=1

(γN (yn)− γN (yn−1)) +
γN (yν)− γN (yν−1)

yν − yν−1
(y − yν−1)

= γN (yν−1) +
γN (yν)− γN (yν−1)

yν − yν−1
(y − yν−1)

= γN (y)

according to the construction in Lemma 7.3.1. �
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7.3 A non-parametric calibration scheme for bid-ask price

Proof (of Theorem 7.3.4)

Applying Lemma 7.3.5, we decompose γN =
∑N

n=1 γ̃nfn with γ̃n, fn, n ∈ {1 . . . , N} as

defined in Lemma 7.3.5. In particular, we obtain for f(X) ∈ L∞(R) by applying linearity

of Lebesgue–Stieltjes integrals in the integrators
∫

f(X) d(γN ◦R) = −
∫ ∞

−∞
x (γN ◦ F−f(X))(dx)

= −
∫ ∞

−∞
x

(

N
∑

n=1

γ̃n(fn ◦ F−f(X))

)

(dx)

= −
N
∑

n=1

γ̃n

∫ ∞

−∞
x (fn ◦ F−f(X))(dx).

Scrutinizing the Stieltjes integrators fn ◦ F−f(X), n ∈ N, one observes that the functions

fn ◦ F−f(X) are constant on [−∞, qyn−1(−f(X))] ∪ [qyn(−f(X)),∞], n ∈ N, denoting

by qα := qα(−f(X)) the lower α-quantile of −f(X), which follows directly from the

definition of fn. Since the Stieltjes integral w.r.t. a constant integrator is 0, one can

restrict the integration borders to [qyn−1 , qyn ]. Hence,

− 1

yn − yn−1

∫ ∞

−∞
x (fn ◦ F−f(X))(dx)

= − 1

yn − yn−1

∫ qyn

qyn−1

xF−f(X)(dx)

= −E

[

− f(X)
∣

∣

∣
− f(X) ∈

[

qyn−1(−f(X)), qyn(−f(X))
]

]

= E

[

f(X)
∣

∣

∣
f(X) ∈

[

VaRyn(f(X)),VaRyn−1(f(X))
]

]

delivers the desired result, since qα(−f(X)) = −VaRα(f(X)). �

In the theorem above, we have calculated an expression for the Choquet integral of

f(X) w.r.t. the distorted probability γN ◦ R which can be used to calculate ask prices.
Analoguously, we can obtain a similarly convenient result for bid prices by means of the

same techniques.
Corollary 7.3.6

Let N ∈ N, γN be a piecewise linear concave distortion function with adjacent decompo-

sition 0 = y0 < y1 < · · · < yN = 1, and difference vector (∆γ1, . . . ,∆γN ) ∈ [0, 1]N . Let

furthermore f(X) ∈ L∞(R) and y0, . . . , yN are points of continuity of Ff(X). Then the

dual of the distorted expectation of f(X) w.r.t. γN ◦R can be calculated via

−
(∫

−f(X) d(γN ◦R)
)

=

N
∑

n=1

∆γnE
[

f(X)
∣

∣

∣
f(X) ∈

[

qyn−1(f(X)), qyn(f(X))
]

]

.
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Proof

Following the steps of the proof of Theorem 7.3.4, one sees that for f(X) ∈ L∞(R)

−
∫

−f(X) d(γN ◦R) =
∫ ∞

−∞
x (γN ◦ Ff(X))(dx)

=

N
∑

n=1

γ̃n

∫ ∞

−∞
x (fn ◦ Ff(X))(dx)

holds. Similar to the above proof, the Stieltjes integrator is constant on [−∞, qyn−1(f(X))]∪
[qyn(f(X)),∞], n ∈ N, hence, it follows analoguously

1

yn − yn−1

∫ ∞

−∞
x (fn ◦ Ff(X))(dx)

= −E

[

f(X)
∣

∣

∣
f(X) ∈

[

qyn−1(f(X)), qyn(f(X))
]

]

,

which yields the assertion. �

In particular, the above formulae yield a tractable setting for solving the bid-ask calibra-
tion problem within the piecewise linear concave distortion functions, given a decompo-

sition Y = {y0, . . . , yN : 0 = y0 < · · · < yN = 1} of the unit interval. Hence, solving the
bid-ask calibration problem corresponds to finding a vector ∆γ ∈ R

N satisfying the con-

straints in (7.3) and minimizing some distance between model bid-ask prices and quoted
market bid-ask prices. Thus, we can now construct a rough algorithm to implement

bid-ask calibration to piecewise linear concave distortions, given a decomposition of the
unit interval.

Algorithm 3 (Bid-ask calibration to piecewise linear concave distortions)

Let (C⋆
1
bid, C⋆

1
ask), . . . , (C⋆

M
bid, C⋆

M
ask) be given bid-ask market quotes of contingent claims

C1, . . . , CM and η : R2M
≥0 → R≥0 an error function. The bid-ask calibration problem can

be solved by the following algorithm:

1. Choose N ∈ N.

2. Choose a decomposition Y = {y0, . . . , yN : 0 = y0 < · · · < yN = 1} of the unit

interval.

3. Calculate

E

[

f(Cj)
∣

∣

∣
f(Cj) ∈

[

qyn−1(f(Cj)), qyn(f(Cj))
]

]

and

E

[

f(Cj)
∣

∣

∣
f(Cj) ∈

[

VaRyn(f(Cj)),VaRyn−1(f(Cj))
]

]

for n = 1, . . . , N , j = 1, . . . ,M .
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4. Solve the constrained optimization problem

min
∆γ∈RN

≥0

η

( ∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(C1)|f(C1) ∈ [qyn−1 , qyn ]]− C⋆
1
bid

∣

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(CM )|f(CM ) ∈ [qyn−1 , qyn ]]− C⋆
M

bid

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(C1)|f(C1) ∈ [VaRyn ,VaRyn−1]]− C⋆
1
ask

∣

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(CM )|f(CM ) ∈ [VaRyn ,VaRyn−1]]− C⋆
M

ask

∣

∣

∣

∣

∣

)

subject to

N
∑

n=1

∆γn = 1, ∆γ ≥ 0,

(

∆γ2
y2 − y1

− ∆γ1
y1 − y0

, . . . ,
∆γN

yN − yN−1
− ∆γN−1

yN−1 − yN−2

)

=: D(∆γ) ≤ 0.

Thus, the core of the bid-ask calibration problem is reduced to a non-linear constrained

optimization problem in the compact convex space

G :=

{

∆γ ∈ R
N : ∆γ ≥ 0, D(∆γ) ≤ 0,

N
∑

n=1

∆γn = 1

}

.

Algorithm 3 treats the optimization on a fixed decomposition Y = {y0, . . . , yN} of the
unit interval. Obviously, the methodology can be enhanced by varying over the decom-
positions as well, which also delivers a constrained optimization problem. The problem

accompanying optimization over decompositions is performance: Varying decompositions
considerably slow down the optimization procedure, since all conditional expectations

E

[

f(Cj)
∣

∣

∣
f(Cj) ∈

[

qyn−1(f(Cj)), qyn(f(Cj))
]

]

and

E

[

f(Cj)
∣

∣

∣f(Cj) ∈
[

VaRyn(f(Cj)),VaRyn−1(f(Cj))
]

]

have to be recalculated in every optimization step, while they only have to be calculated
once when fixing the decomposition Y = {y0, . . . , yN : 0 = y0 < · · · < yN}.
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Remark 7.3.7 (Acceleration of Algorithm 3)

One possibility to accelerate and simplify the bid-ask calibration is equidistant spacing of

y0 < · · · < yN :4 Step 3 of Algorithm 3 then reduces to the calculation of

E

[

f(Cj)
∣

∣

∣f(Cj) ∈
[

qyn−1(f(Cj)), qyn(f(Cj))
]

]

for n = 1, . . . , N , j = 1, . . . ,M and the concavity constraint D(∆γ) ≤ 0 simplifies to

∆2γ := (∆γ2 −∆γ1, . . . ,∆γN −∆γN−1) ≤ 0.

Furthermore, a closer look on the optimization problem in Algorithm 3 suggests the
following strategies for the concrete numerical implementation. There are several possi-

bilities to use additional knowledge for faster implementation. Very helpful tools arise
from the theory of nonlinear optimization, where additional conditions on the objec-

tive function help for rapid implementation. A well-known tool in nonlinear constrained
optimization is exploiting the knowledge of Lagrangian multipliers, which has been pop-

ularized as the Karush–Kuhn–Tucker conditions (i.e. (Boyd and Vandenberghe, 2004, p.
243ff)). We can shown that the optimization problem above exhibits the Karush–Kuhn–

Tucker conditions under mild technical restrictions (i.e. exclusion of zero-slope parts,
continuous differentiability of the goal function).

Proposition 7.3.8 (Karush–Kuhn–Tucker conditions for Algorithm 3)

Let η : R2M
≥0 → R≥0 be an error function and denote the goal function for the optimization

problem described in Algorithm 3 by η̃ : RN
>0 → R≥0, i.e.

η̃(∆γ) = η

( ∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(C1)|f(C1) ∈ [qyn−1 , qyn ]]−C⋆
1
bid

∣

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(CM)|f(CM ) ∈ [qyn−1 , qyn ]]− C⋆
M

bid

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(C1)|f(C1) ∈ [VaRyn ,VaRyn−1]]− C⋆
1
ask

∣

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∣

N
∑

n=1

∆γnE[f(CM)|f(CM ) ∈ [VaRyn ,VaRyn−1]]− C⋆
M

ask

∣

∣

∣

∣

∣

)

for ∆γ ∈ R
N
>0

5. If the goal function η̃ is continuously differentiable, then the Karush–

Kuhn–Tucker conditions for nonlinear optimization are fulfilled, i.e. for a minimizing

4Actually, this can be relaxed further: If y0 < · · · < yN are symmetrically spaced around 0.5, the same

acceleration argument applies.
5To guarantee for an open domain, we restrict ourselves only to the distortion functions that have

non-zero slopes in every point.
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piecewise linear distortion function γ⋆, there exist constants λ1, . . . , λN−1 ∈ R≥0, ν ∈ R,

such that

∇η̃(∆γ⋆) +
N−1
∑

j=1

λjΞj + (ν, . . . , ν) = 0

holds, denoting by ∇η̃ the gradient of the goal function η̃ w.r.t. ∆γ and

Ξj := − ej
yj − yj−1

+
ej+1

yj+1 − yj
,

where (ej)
N
j=1 denote the the standard unit vectors in R

N with ej = (δ1j , . . . , δNj) and

δkl is the Kronecker symbol.

Proof

We use the Karush–Kuhn–Tucker conditions as described in (Boyd and Vandenberghe,

2004, p. 243) and obtain that

∇η̃(∆γ⋆) +
L
∑

j=1

λj∇fj(∆γ⋆) + ν∇h(∆γ⋆) = 0

holds for some λ1, . . . , λL ≥ 0, ν ∈ R, and optimal ∆γ⋆ ∈ R
N
>0, denoting by fj all

inequality constraints with fj(∆γ) ≤ 0 and by h the equality constraint

h(∆γ) = −1 +
N
∑

j=1

∆γj = 0.

If we scrutinize the concrete specification of fj from Algorithm 3, we obtain L = N − 1

and

fj(∆γ) =
∆γj+1

yj+1 − yj
− ∆γj
yj − yj−1

.

Calculating the partial derivatives of fj and h w.r.t. ∆γk exactly yields the gradients Ξj

as described in the assertion. �

Often, some Euclidean distance function is used as an error function (as we do in the
numerical case study described in Section 6.3). In this case, we can even use more

information than in the Karush–Kuhn–Tucker case described in Proposition 7.3.8 and
apply further specific algorithms as a strategy for finding a solution.

Remark 7.3.9 (Linear constrained least-squares problem)

If we use the Euclidean distance (or some strictly monotone transformation of it) as an

error function (e.g. the popular RMSE error function), the bid-ask calibration to piecewise

linear concave distortions reduces to a linearly constrained least-squares optimization

problem which is well treated in literature (see, e.g., (Hanson and Haskell, 1982; Hanson,

1986)).
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We now want to apply the nonlinear calibration procedure described in Section 7.3.1

to the parameter risk-captured pricing framework presented in Section 3.2. The central
assumption in this framework is the presence of a distribution R on the parameter space

Θ. In some cases of historical estimation of parameters (e.g. correlation estimation as
in Example 5), the distribution R on Θ is given by the distribution of the parameter’s

estimator. In other cases, e.g. the calibration to market prices, the distribution R may be
recovered from the calibration to mid prices by an algorithm as described in Chapter 6.

While in the examples in the Chapters 5 and 6, the choice of risk measure was regarded
to be subjective, Algorithm 3 allows us to calibrate parameter risk-captured prices to

bid-ask prices using a broad and flexible class of risk measures, represented by piecewise
linear concave distortion functions.

Using the suggested procedure for obtaining a distribution R on the parameters, when
calibrating to market prices of vanillas, the result is a three-step calibration scheme:

First, we calibrate to mid market prices and obtain a parameter θ0 ∈ Θ. Second, using
the parameter θ0, we construct the distribution R on the parameter space Θ as suggested

in Chapter 6. Finally, we calibrate to bid-ask prices using Algorithm 3 to obtain the
best matching concave distortion function γ0.

The choice of the error function is also somewhat delicate: (Detlefsen and Härdle, 2007)
observe that different choices of error functions deliver different calibration results. Fur-

thermore, (Guillaume and Schoutens, 2011) scrutinize different calibration methods (his-
torical calibration, calibration to vanillas, etc.), restricted to the Heston model. We omit

further interdependencies to those issues in the current investigation and concentrate on
one error function and one calibration method.

7.4 Application to data

In the previous section, we have presented and discussed a non-parametric calibration
scheme based on piecewise linear concave distortion functions to bid-ask prices. In this

section, we apply our piecewise linear calibration scheme and compare it to a paramet-
ric calibration scheme à la (Cherny and Madan, 2010), using the introduced parametric

families of AVaR- and minmaxvar -type distortion functions. Therefore, we calibrate a Γ-
OU-Barndorff-Nielsen–Shephard model to the quoted mid prices of plain vanilla options.
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Afterwards, we induce a distribution on the parameter space employing the normal trans-
formation function as in Chapter 6.3. Then, we calibrate the parameter risk-captured

prices to quoted bid-ask prices of vanillas, comparing parametric ansatzes following
(Cherny and Madan, 2010) and the non-parametric calibration approach from Algo-

rithm 3. As a result, we obtain a very characteristic shape of the “market-implied” piece-
wise linear approximation. From our empirical results, we consequently suggest using a

different parametric family of concave distortion functions: The ess sup-expectation con-
vex combinations, simply interpolating between the essential supremum and the vanilla

expectation w.r.t. the parameter distribution R. This family turns out to match the
results from the piecewise linear calibration approach and allows for a fast and efficient

calibration.

Our set of data is a DAX option surface, consisting of 501 bid and ask vanilla prices as

of December 2, 2011, with different maturities and strikes. For simplicity, we assume no
bid-ask spreads in the DAX spot price and EUR interest rates.6

We use a Γ-OU-Barndorff-Nielsen–Shephard model as in Section 6.3, for details see

(Barndorff-Nielsen and Shephard, 2001; Cont and Tankov, 2004). The risk-neutral dy-
namics of the log-index price (Xt)t≥0 in the Barndorff-Nielsen–Shephard model are given

by

dXt =

(

r − σ2t
2

+
λcρ

α+ ρ

)

dt+ σt dWt − ρdZλt,

dσ2t = −λσ2t dt+ dZλt,

with parameters r, S0, σ20 , λ, c, ρ, α > 0, (Wt)t≥0 is a Brownian motion, and (Zt)t≥0 is a
compound Poisson process with exponentially distributed jump size, i.e. Zt =

∑Nt

j=1 Uj

with a Poisson process (Nt)t≥0 with intensity c > 0 and (Uj)j∈N are exponentially i.i.d.
with parameter α > 0. (Wt)t≥0 and (Zt)t≥0 are independent. Since we assume the DAX

spot price S0 and risk-free rate r to be given, the unspecified parameters with exposure
to parameter risk are gathered in the quintuple (σ20 , c, α, λ, ρ).

For calculating vanilla prices, we use the Fourier pricing method of (Carr and Madan,
1999; Raible, 2000) and calculate call prices for the moneyness dimension simultaneously

via FFT. As an error function for both the initial calibration to mid prices and the
calibration to bid-ask prices, we use the RMSE error function without any weighting

(for the impact of using different error functions, we refer to (Detlefsen and Härdle,

6Since the DAX is a performance index, dividends are included and do not have to be modeled seper-

ately.
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2007)), standardized by the mean option price, similar to the setting in Section 6.3.
Thus, our error function is

η(θ) =

√

1
M

∑M
m=1(Eθ[Cm]− C⋆

M
mid)2

1
M

∑M
m=1C

⋆
M

mid
.

Parameter risk setup and calibration

We apply the methods presented in Chapter 6 and obtain a parameter risk distribution

R on Θ by discretizing Θ and weighting the parameters with their error to market prices,
transformed and normed by a decreasing function h such that the sum of all parameters

equals one. We hereby incorporate all parameters (on a discrete grid) up to an aggregate
market error of 3.5% and weight them by transforming the error function with the normal

transformation function

hNλ (t) := c · exp
(

−(t− t0)
2

2λ2

)

,

where λ = 0.005, c > 0 matching, and t0 = 1.63% denoting the minimal aggregate
market error. Doing so, we obtain a discrete distribution on Θ with a support of 9 430

parameter vectors with an aggregate market error of less than 3.5%.

With a distribution R on Θ at hand, we calibrate to bid and ask prices in various ways:
First, we calibrate to bid-ask prices with our non-parametric piecewise linear approxima-

tion scheme described in Algorithm 3. As a unit interval decomposition, we use 100 and
1 000 equidistant nodes; for optimization purposes, we use again the mean-standardized

RMSE as in the mid prices calibration. Second, we compare our result to a parametric
calibration using parametric families of distortion functions. We hereby employ the pop-

ular AVaR- and minmaxvar -families for calibration and observe differences in calibration
performance.

Results

As a first result, we obtain that the calibration performances of the piecewise linear
and the parametric approaches do not differ significantly, the standardized RMSEs of all

approaches are close to each other, cf. Table 7.1.

Actually, the distortion functions that result from the calibration differ in shape (cf.
Figure 7.2), in case of the AVaR-calibration due to its specific shape. The piecewise
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7.5 Calibration to discontinuous distortion functions

Distortion framework RMSE/mean to bid-ask prices CPU time

piecewise linear 1 000 nodes 1.64% 301.11 sec
piecewise linear 100 nodes 1.64% 4.26 sec

minmaxvar -family 1.65% 3.17 sec
AVaR-family 1.64% 3.73 sec

Table 7.1 A comparison of the calibration performance of different distortion function
families. Actually, the influences of the choice of the distortion function

family are minor, i.e. the calibration performance is comparable. Employing
much more nodes in the piecewise linear approach does not improve the

calibration performance, but results in more computational time.

linear calibration result is clearly the most flexible method and does not exhibit too strong

performance drawbacks compared to parametric calibration when choosing a reasonable
number of nodes.

As a very remarkable result, one observes that both the 100 and 1 000 nodes approx-

imation follow the same pattern: After a sharp increase close to zero, we can observe
linear growth in the argument of the distortion function. This observation is quite ro-

bust: When using different transformation functions for creating the distribution on Θ

and incorporating more parameters, this pattern remains the same. Even when using

a different model (e.g. the Heston model), a similarly shaped distortion function is ob-
tained. Furthermore, the result is stable w.r.t. different choices of starting vectors in the

optimization procedure, so it is also unlikely that it results from numerical instabilities.

7.5 Calibration to discontinuous distortion functions

The results from the calibration in the previous section exhibit a characteristic pattern

in the shape of the distortion function for the nonparametric piecewise linear approxima-
tion. Although the piecewise linear concave distortions are also continuous, the shape of

the calibration result suggest that a discontinuity in zero should be considered as well.

Hence, our results motivate to introduce another parametric family of concave distortion
functions, see Definition 7.5.1.
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Definition 7.5.1 (ess sup-expectation convex combinations)

Let λ ∈ [0, 1]. The distortion function

γλ(u) :=







0, u = 0

λ+ (1− λ)u, u ∈ (0, 1]

is called the ess sup-expectation convex combination distortion with weight λ on the

essential supremum.

The name of this family stems from the behavior of the Choquet integral w.r.t. a γλ-
distorted probability: If we have a probability measure P and a bounded random variable

X, the Choquet integral w.r.t. γλ ◦P is a convex combination of the essential supremum
of X and the ordinary expectation w.r.t. P , weighting the essential supremum with λ

and the expectation with 1− λ.

As one can easily see, the suggested class of distortion function from Definition 7.5.1 is
not continuous any more, but exhibits a jump at zero. As already pointed out in Section

7.2, zero is the only point where the a concave distortion function may exhibit jumps.
Hence, we can easily show that we can decompose every distortion function into two

parts.

Proposition 7.5.2 (Decomposition of discontinuous distortion functions)

Let (Ω,F , P ) be a probability space, γ a concave distortion function with a jump at

zero, X an integrable random variable that is P -a.s. bounded from above, and let λ =

limv↓0 γ(v) be the height of the jump. Then the function

γcont(u) =
limv↓u γ(v)− λ

1− λ

is a continuous concave distortion function and

∫

Ω
X d(γ ◦ P ) = λ ess supX + (1− λ)

∫

Ω
X d(γcont ◦ P ).

In particular, for every concave distortion function with a jump at zero the Choquet inte-

gral w.r.t. γ ◦P is representable as a convex combination of the ess sup and a continuous

concave distortion function γcont.

We call γcont the continuous part of γ and λ the jump part of γ. It may be noted that the

continuous part γcont is not unique, but we denote with it the construction in Proposition
7.5.2. For λ = 1, we trivially set γcont = 0.
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7.5 Calibration to discontinuous distortion functions

Proof (of Proposition 7.5.2)

It is easy to show that γcont is a continuous and concave distortion function (if λ = 1,

the proposition is trivially true). Abbreviate x0 := ess supX (first assuming x0 ≥ 0),

then the definition of the Choquet integral immediately yields
∫

Ω
X d(γ ◦ P ) =

∫ 0

−∞
γ(P (X > x))− 1 dx+

∫ ∞

0
γ(P (X > x)) dx

=

∫ 0

−∞
γ(P (X > x))− 1 dx+

∫ x0

0
γ(P (X > x)) dx

=

∫ 0

−∞
(1− λ)γcont(P (X > x)) + λ− 1 dx+

∫ x0

0
(1− λ)γcont(P (X > x)) + λdx

= λx0 + (1− λ)

∫

Ω
X d(γcont ◦ P ).

Similar for x0 < 0. �

In particular, if we use γλ from Definition 7.5.1 as distortion function, we are interpolating
between the essential supremum and the expectation (since the continuous part of γλ
is just the identity function on [0, 1]) when calculating the Choquet integral. With
this, we can easily generalize the counterexample which was presented in Example 4.2.1

that distortion-induced risk-captured prices do not necessarily exhibit the convergence
property (CP) presented in Definition 4.1.1.

Example 7.5.3 (Generalization of Example 4.2.1)

As, in Example 4.2.1, we consider the parameter space Θ = R and the sequence of

distributions RN ∼ N (0, 1/N), which converges to a Dirac distribution with probabil-

ity mass concentrated at 0. Let f ∈ Cb(R). Since we have seen that maxx∈R f(x) =

limN→∞ ess supRN
f 6= ess supR = f(0) in general, we can immediately conclude that

for every discontinuous distortion function, applying the decomposition from Proposition

7.5.2, the respective distortion risk measures (i.e. the Choquet integrals) do not converge,

since the ess sup-part does not converge.

Since our piecewise linear calibration results in Figure 7.1 look similar to an ess sup-
expectation convex combination, they deliver an appealing interpretation for trading:

When setting the bid-ask prices by means of the calibration risk framework of Chapter
6, we get bid-ask spreads that are fairly in line with the market when calculating the

worst case of all parameters, the expectation w.r.t. the delivered distribution, and sim-
ply interpolating between them, using the weight of the worst case as a “risk-aversion
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Distortion framework RMSE/mean to bid-ask prices CPU time

piecewise linear 100 nodes 1.64% 4.26 sec
minmaxvar -family 1.65% 3.17 sec

AVaR-family 1.64% 3.73 sec
ess sup-exp-family 1.64% 0.21 sec

Table 7.2 A comparison of the calibration performance of different distortion function
families, now including the ess sup-expectation convex combinations. One can

see that the simple structure of the ess sup-expectation convex combinations
results in higher computational efficiency compared to other one-parametric

distortion function families.

parameter”. Strikingly, this simple approach ties with the more sophisticated AVaR- and
minmaxvar -methodologies in calibration performance and is much easier and faster to

implement: In our setting, we just have to calculate the supremum, the infimum, and
the expectation, which can efficiently be done using vectorized programming systems

(e.g. MATLAB). Afterwards, the optimization procedure only incorporates three values
per vanilla option and is much faster compared to other parametric distortion function

types or the 100 nodes piecewise linear function:

Furthermore, we obtain a firm economic interpretation of the expectation w.r.t. the

distribution: The expectation can be interpreted as the “true mid price” (which is not
observable in the market, since we only get bid and ask quotes), with a (non-symmetric)

risk premium relative to the parameter risk which is expressed by the essential supremum
(for ask prices) and infimum (for bid prices). This is in line with (Cont, 2006) and (Lind-

ström, 2010), who argue seperately for the supremum and the expectation incorporating
model/parameter risk.

Since our empirical observations motivate the introduction of discontinuous distortion

functions, we finally generalize the existence theorem for a solution to the bid-ask cal-
ibration problem which was formulated for continuous distortion functions in Theorem

7.2.2 to discontinuous distortion functions and allow for an additional jump of arbitrary
size at 0.

Theorem 7.5.4

Let f(X) be bounded, η a continuous error function, K > 0, and define

Gjump
K := {γ : [0, 1] → [0, 1] : γ is a distortion function with γcont is concave,

monotone, Lipschitz with Lipschitz constant K}.

140



7.5 Calibration to discontinuous distortion functions

Then there is a solution of the bid-ask calibration problem in Gjump
K , i.e. there exists a

minimizing distortion function γ̃ ∈ Gjump
K such that the function

η̃ : γ 7→ η
(

| − Γγ(−C1)− C⋆
1
bid|, . . . , | − Γγ(−CM )−C⋆

M
bid|,

|Γγ(C1)− C⋆
1
ask|, . . . , |Γγ(CM )− C⋆

M
ask|
)

is minimized in γ̃ in the following sense:

η̃(γ̃) ≤ η̃(γ) for all γ ∈ Gjump
K .

Proof

Let γ ∈ Gjump
K and decompose γ = (λ, γ̃) via λ := γ(0+)−γ(0) and γ̃(y) := γ(y)−γ(0+),

which is very close to the decomposition which was introduced in Proposition 7.5.2. As a

first step, we equip Gjump
K with a special topology: Since the decomoposition into a jump

part λ and the remaining continuous part γ̃ is unique and can be recovered by setting

γ(y) :=







0, y = 0

λ+ γ̃(y), y > 0,

we identify Gjump
K with the set

S := {(λ, γ) ∈ [0, 1] × C[0, 1] : γ(0) = 0, γ(1) = 1− λ, γ is monotone,

concave with Lipschitz constant K}.

Thus, the product topology induced by the usual Euclidean topology on [0, 1] and the

uniform topology on C[0, 1] is the natural topology to equip S with. From now on, we

follow the steps from the proof of Theorem 7.2.2.

Step 1: Gjump
K (resp. S) is compact w.r.t. the product topology described above.

First, we define the set of all Lipschitz continuous “subdistortion functions”

G̃K := {γ ∈ C[0, 1] : γ(0) = 0, γ(1) ≤ 1, γ is monotone,

concave with Lipschitz constant K}.

Trivially, we obtain that S ⊂ [0, 1]×G̃K holds. By construction, G̃K is uniformly bounded

(by 1) and equicontinuous (since all functions are Lipschitz with Lipschitz constant K).

As a second step, we note that G̃K is closed: For a ‖ · ‖∞-convergent sequence (γn)n∈N

from G̃K with limit γ(y) := limn→∞ γn(y) for y ∈ [0, 1], we immediately obtain that γ is

monotone, concave γ(0) = 0 and γ(1) ≤ 1. Furthermore, γ is Lipschitz with Lipschitz
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constant K > 0. Let ε > 0 be arbitrary and choose N ∈ N such that ‖γ − γN‖∞ < ε/2.

Hence, for arbitrary x, y ∈ [0, 1], we obtain

|γ(x)− γ(y)| ≤ |γ(x) − γN (x)|+ |γN (x)− γN (y)|+ |γN (y)− γ(y)|
≤ 2‖γ − γN‖∞ + |γN (x)− γN (y)|
< K|x− y|+ ε.

Since ε was arbitrary, γ is Lipschitz continuous with Lipschitz constant K > 0. Thus,

γ ∈ G̃K , which proves that G̃K is closed. Hence, the Arzelà–Ascoli theorem yields that

G̃K is compact in the uniform topology. Thus, Tychonoff’s theorem immediately delivers

that [0, 1]×G̃K is compact in the product topology. Now, it suffices to show that the set S

is closed: Therefore we again take a convergent sequence (λn, γ̃n)n∈N with (λn, γ̃n) ∈ S for

every n ∈ N. The limit pair is then defined by λ := limn→∞ λn and γ̃(y) := limn→∞ γ̃n(y)

for y ∈ [0, 1]. If we now look at γ̃n(1) = 1− λn, γ̃(y) = limn→∞ γ̃n(y) = 1− λ trivially.

But this is exactly the condition that has to hold for (λ, γ̃) ∈ S. Hence, S is closed and

therefore compact.

Step 2: The Choquet integral as a function of the distortion function, i.e. the map IX :

Gjump
K → R defined by

IX(γ) :=

∫

f(X) d(γ ◦R),

is continuous w.r.t. the product topology.

Let (λn, γ̃n)n∈N be a convergent sequence in S with (λ, γ̃(y)) := limn→∞(λn, γ̃n(y)) for

y ∈ [0, 1]. According to Proposition 7.5.2, we know that the Choquet integral of f(X)

w.r.t. the induced distortion functions γn can be represented as

∫

f(X) d(γn ◦R) = λn ess sup f(X) +

∫

f(X) d(γ̃n ◦R)

= λn ess sup f(X) +

∫ 0

−∞
γ̃n(R(f(X) > x))− γ̃n(1) dx

+

∫ ∞

0
γ̃n(R(f(X) > x)) dx
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7.5 Calibration to discontinuous distortion functions

Dominated convergence, which is applicable due to the assumed boundedness of f(X),

yields

→ λ ess sup f(X) +

∫ 0

−∞
γ̃(R(f(X) > x))− γ̃(1) dx

+

∫ ∞

0
γ̃(R(f(X) > x)) dx

=

∫

f(X) d(γ ◦R)

for n→ ∞, which shows that the Choquet integral (as a function of the distortion func-

tion) is again continuous w.r.t. the product topology.

Since η is a continuous error function (thus η ◦ IX is continuous w.r.t. the product

topology) and Gjump
K is compact, there exists an element γ̃ ∈ Gjump

K which minimizes the

function η◦(IC1 , . . . , ICM
) for given contigent claims C1, . . . , CM . Hence, γ̃ minimizes the

error measured by η to given market bid-ask prices (C⋆
1
bid, C⋆

1
ask), . . . , (C⋆

M
bid, C⋆

M
ask),

i.e. η(I(γ̃)) ≤ η(I(γ)) holds for all γ ∈ Gjump
K . �

Theorem 7.5.4 shows that even for a broad class of discontinuous functions (i.e. those
with a jointly Lipschitz continuous part), the bid-ask calibration problem has always a

solution. Similar to the proof of Theorem 7.2.2, the proof heavily relies on the compact-
ness of the subset. Hence, we can again easily generalize the result to compact subclasses

of Gjump
K .

Corollary 7.5.5 (Existence of bid-ask calibration in subclasses)

Let K > 0, G ⊂ Gjump
K be a subset which is closed in the product topology (Gjump

K and the

product topology as described in Theorem 7.5.4) and η be a continuous error function.

Then, the bid-ask calibration problem has a solution in G.

Proof

Since G is closed and Gjump
K is compact in the product topology, G is also compact.

Hence, following the arguments of the proof of Theorem 7.5.4, we obtain that the bid-ask

calibration problem has a solution in G. �

Corollary 7.5.5 can, e.g., be applied to justify the usage of the parametric distortion
function class of the ess sup-expectation convex combinations described in Definition

7.5.1. We can now show that there is always a solution of the bid-ask calibration problem
in the set of ess sup-expectation convex combinations.

143



Example 7.5.6

Considering the ess sup-expectation convex combinations defined in Definition 7.5.1, we

can see that they can be identified with the set

C := {(λ, γ̃) ∈ [0, 1] × C[0, 1] : γ̃(y) = (1− λ)y}.

One can easily calculate that C is closed w.r.t. the product topology and, obviously, C ⊂
Gjump

K . Hence, according to Corollary 7.5.5, the bid-ask calibration problem has a solution

in the ess sup-expectation convex combinations.

7.6 Outlook

In this chapter, we have treated the calibration of market-quoted bid-ask prices to broad
classes of distortion risk measures, i.e. distortion risk measures that are induced by

Lipschitz continuous distortion functions, which is later extended to distortion functions
where the continuous part (cf. Section 7.5) is Lipschitz continuous. Furthermore, we have

proposed a non-parametric calibration scheme based on piecewise linear approximation.
Still, there remain some open questions which could be adressed in further research.

• First, in this work, we focus on distortion risk measures, which is a tractable class

of convex risk measures. One could argue that due to central limit arguments,
one can show that distortion risk measures are somehow the “center of attraction”

for all law-invariant coherent risk measures, which was shown in (Belomestny and
Krätschmer, 2012). Nevertheless, since the definition of parameter risk-captured

prices employs general convex, normalized, law-invariant risk measures, one might
want to find solutions in these broader classes. Hence, existence of a solution to the

bid-ask calibration problem as well as the numerical treatment to find calibration
results in these broader classes is a major obstacle for the future.

• Second, in our work, we always require that the continuous part of the distortion
function is Lipschitz continuous (even jointly Lipschitz continuous). We think that

this is not a major problem from a practical point of view (i.e. every distortion
function is Lipschitz continuous with Lipschitz constant 1/ε on [ε, 1] for ε ∈ (0, 1)),

but from a mathematical point of view, it would be more satisfactory to find
solutions for the bid-ask calibration problem in the class of all distortion functions.

• Third, one may be interested in empirical studies whether the observed pattern in
the calibration exercise is stable or the market-implied distortion function changes
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7.6 Outlook

over time. As the calibration result suggested, the market-implied prices are very
similar for very different kind of distortion functions (the parametric distortion

functions calibrated almost as good as the non-parametric piecewise linear variant,
cf. the results from Section 7.4).

Thus, we think that our contribution in this thesis provides good results that can be

applied in practice, but may be extended further to incorporate broader classes of convex
risk measures and to investigate how market-implied distortion functions may change

over time.
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Figure 7.1 Different calibration results for a (non-parametric) piecewise linear cali-

bration with 1 000 and 100 nodes, a parametric calibration to the AVaR-
distortion function family, and a parametric calibration to the minmaxvar -

family. While the piecewise linear calibration results with different nodes
are very similar and have a characteristic jump close to zero and after-

wards a linear behavior, we get very different results for the minmaxvar -
and AVaR-results. In the upper probability regions, the minmaxvar -result

allocates more probability than the piecewise linear result, while the AVaR

allocates even more probability. In the lower probability region, we get more

similarity for minmaxvar - and AVaR-results, but a very different pattern to
the jump in the piecewise linear calibration results. Since the calibration

results seem to be pretty similar, the higher probability allocation to high-
probability events like in the AVaR- and minmaxvar -case does not seem to

impact the calibration result too much.
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Figure 7.2 Bid-ask spreads for differently calibrated distortions vs. real-world bid-ask

spreads, expressed in implicit volatilities for a short-term (above) and a long-
term (below) maturity. Since the BNS model with its downward jumps

emphasizes the put side of the smile, we exhibit more parameter risk on
the left wing and those larger bid-ask spreads can be captured well by all

models. For the same reason, the right wing vol spread is matched less
accurate, in particular for short-term maturities, but AVaR- and piecewise
linear distortions match it more efficiently than the calibrated minmaxvar -

distortion. One has to encounter that parameter risk may not be the main
driver for far-OTM call prices, other effects like illiquidity seem to be more

predominant.
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8 Conclusion

8.1 Summary

In this dissertation, the phenomenon of model and parameter risk (with an emphasis on

parameter risk) in the context of risk-neutral pricing of derivatives is analyzed. Since
parameter risk is an omnipresent problem in derivatives pricing, it should be reflected

in the prices which derivatives traders are stating. In particular, it should influence the
width of bid-ask spreads.

In this thesis, a possible methodology to incorporate parameter risk into risk-neutral
derivatives prices is suggested and a framework and theory of model (resp. parameter)

risk-capturing functionals is developed based on the extended notion of convex risk mea-
sures which was suggested in (Frittelli and Scandolo, 2006; Krätschmer, 2006), where

translation invariance is given w.r.t. a linear form on a subspace. Other works on pa-
rameter risk (resp. uncertainty) as (Cont, 2006) and (Lindström, 2010) are generalized

by the presented framework, which resembles of ideas of (Branger and Schlag, 2004;
Gupta, 2009; Gupta et al., 2010). While analyzing continuity properties of risk-capturing

functionals, we exhibit continuity properties of convex risk measures as a function of
the underlying probability measure. Different from the ansatz of (Weber, 2006) and

(Krätschmer et al., 2012), where different topologies are imposed on the domains of the
convex risk measures, continuity w.r.t. the weak topology on the set of all probability

measures is analyzed w.r.t. different risk-capturing functionals. It can be shown that a
broad class of convex risk measures, the spectral risk measures, fulfill weak continuity

and an extended version of the Portmanteau theorem is provided as a corollary.

As an application, it is shown that the estimation risk premium that is caused by consis-

tent estimators eventually vanishes, if generated by a good-natured class of convex risk
measures. Moreover, in case of asymptotically normal estimators, large-sample approx-

imations can be stated, for selected risk measures in (semi-)closed form, provided that
the sensitivities (i.e. the derivatives of the contingent claim’s price) w.r.t. the parameters
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are known. Parameter risk resulting from historical estimation is treated in numerical
examples, discussing parameter risk arising from estimation of the correlation in a two-

dimensional Black–Scholes model when pricing an exchange option, and the multivariate
estimation of various parameters in a complex multifactor model for gas, electricity, and

emissions prices.

For practical use, a method to incorporate calibration risk is discussed in Chapter 6,

where the error function measuring the aggregate error to market prices is transformed
suitably to result in a distribution on the parameter space. With this methodology, the

framework developed in Chapter 3 can be applied and provides calibration risk-captured
prices. We stated conditions under which a transformation of the error function is

suitable and we provide an algorithm to construct a discrete distribution on the param-
eter space, approximating the continuous solution. Furthermore, an extensive numerical

study was done to compare the parameter risk of different exotic options (Asian options,
barrier options, lookback options) as well as the parameter risk of different models (He-

ston model, Γ-OU-Barndorff-Nielsen–Shephard model, Variance Gamma model). As a
result, we found that the more exotic payoff profiles (particularly barrier options and –

to a lesser extent – lookback options) exhibit considerably more parameter risk than the
relatively good-natured Asian options, regardless of the selected model. Furthermore,

in our study, calibration risk was less prevalent in the Heston model than in the BNS
model or even the Variance Gamma model.

In case that there are bid-ask prices quoted for plain vanilla derivatives, in Chapter 7

we presented an approach to calibrate to these prices, and to obtain a market-implied

risk-capturing functional. In case of incomplete markets and parametric distortion risk

measures, this has already been done in (Cherny and Madan, 2010). We proofed the
existence of a solution to this bid-ask calibration problem in different broad classes of dis-

tortion risk measures. Furthermore, a non-parametric calibration scheme was suggested
which is based on a piecewise linear approximation. This approach adopts flexibly to

virtually all available distortion functions and reduces the bid-ask calibration problem to
a constrained optimization problem. In a numerical case study, we calibrated distortion

risk measures to bid-ask prices of equity options employing the developed non-parametric
approach. As a resulting distortion function, we obtained a characteristic pattern and

introduce the parametric family of ess-sup-expectation convex combination, where cali-
bration is considerably faster than in the non-parametric case.

Altogether, this thesis contains a rigorous framework to incorporate parameter risk into
bid-ask prices, to apply the framework when parameters have to be estimated from time
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8.2 Critical reflection

series as well as when parameters are the result of a calibration to market prices, and to
finally calibrate the suggested ansatz to quoted bid-ask prices of plain vanilla options in

a non-parametric manner.

8.2 Critical reflection

This thesis focuses to treat parameter risk, i.e. it is assumed that a parameterized family

of models is given and a probability measure on the parameter space describes the
likelihood of the different parameters. Although the described framework can be equally

used when facing model risk, it is challenging to describe model risk in a tractable scope
in practice which is still exhaustive enough to cover the models of interest. First, it

is difficult to collect all possible models in a model class Q which is rich enough to
include most possible classes, but tractable enough for calculations. Even fairly general

approaches as, e.g., the uncertain volatiliy model of (Avellaneda et al., 1995) rely on
very restricting assumptions (in particular for the approach of (Avellaneda et al., 1995):

diffusion dynamics, bounded volatility processes) and not nearly describe a model class
including the most usual models for asset price dynamics. Second, even after having

specified a suitable model class Q with reasonable candidate models, it may be even
harder to determine the likelihood of the models, i.e. to specify a sensible distribution R

on the models in doubt Q which reflects the single “likelihood” of each model. Even the
uncertain volatility model of (Avellaneda et al., 1995) does not discuss the likelihood of

different paths, but relies on a worst-case approach as described in (Cont, 2006).

Furthermore, the suggested methodology in Chapter 6 treating calibration risk and trans-

lating the errors to market prices into a distribution bears some pitfalls. First, it is
the decision of the derivatives trader which transformation function to use, i.e. how to

weight parameters with different error to market prices. Partly, this may be answered
by a calibration to market prices as discussed in Chapter 7, but simultaneously calibrat-

ing to the transformation function and the risk measure may be an ill-posed problem.
The weighting assigned to parameters by transforming the error function still remains

a highly subjective choice. Second, as discussed in (Detlefsen and Härdle, 2007), differ-
ent measurements of error to market prices may result in tremendous differences in the

calibration result. Hence, they may also result in differences in derivatives prices. Thus,
also in the choice of the error function, a lot of discretion comes into play.

151



8.3 Outlook

At least since the financial crisis of 2008, model and parameter risk and uncertainty are

a topic which is discussed in a broader scope and even has found its place beyond the
professional audience, which is manifested in general media articles as (Salmon, 2009).

This thesis provides some ideas and approaches how to treat model and particularly pa-
rameter risk in derivatives pricing, but there are lots of other ideas where open questions
still arise and may be answered by future research.

Considering the convergence properties of risk-captured prices, one could try to charac-

terize weak (sequentially) convergence of risk-capturing functionals (or their generators),
also by employing different domains. In this thesis, we primarily treat the convergence on

the space of bounded and continuous functions Cb(Θ), but have not obtained a character-
ization yet even on this good-natured domain. All convex risk measures with “worst-case

part” do not exhibit continuity w.r.t. the weak topology, even when restricting the do-
main to Cb(Θ). Meanwhile, further research on similar continuity properties has been

done in (Krätschmer et al., 2012), but on different domains (Orlicz spaces) and w.r.t.
stronger topologies (the so-called ψ-weak topology w.r.t. a gauge function ψ, which was

introduced in (Weber, 2006)). Applying these techniques, one might equally deduct the
results from Chapter 4.

A topic which is crucial for practical applications is finding hedging strategies that “repli-
cate” parameter risk-captured prices: In complete models (e.g. the Black–Scholes model),

the imposed model directly yields the (theoretical) existence of a dynamic hedging strat-
egy for admissible contingent claims. In incomplete models, dynamic sub- and super-

hedging strategies can be used for sub-/superreplication. Furthermore, the theory of
variance-minimal hedging delivers dynamic strategies minimizing the hedging error due

to incompleteness. A hedging strategy (ξt)t≥0 w.r.t. a European-style claim (without
early exercise) X can be regarded as a solution of a backward stochastic differential

equation (BSDE), satisfying a terminal condition that ξT = X. Hence, the works of
(Drapeau et al., 2012) treating minimal supersolutions of BSDEs – superreplicating the

claim payoff X with a hedging strategy (ξt)t≥0 and ξT ≥ X is a step to establish su-
perhedging strategies. Similar to worst-case pricing, superhedging may not be used in

practice and leads to situations which are too conservative. Furthermore, the prob-
lem of finding minimal supersolutions is (up to now) only solved for the special case of

incomplete markets. A first step could be to define the problem minimial dynamic su-
perhedging problem in general model uncertainty and to look for conditions that and one
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would rather “partial superhedging”, e.g. by introducing stochastic orders in the style

ξT ≥Γ X :⇔ Γ(ξT −X) ≥ 0.

Another possibility how the presented work could be generalized is to incorporate param-
eter risk as a time-dependent issue. When pricing derivatives, one obtains a snapshot for

today’s parameters, but is unsure about tomorrow’s parameters, which are obtained via
recalibration. With such a framework, one might ask whether time-dependent (dynamic)

convex risk measures may be applied to capture time-dependent paramater risk. Since
dynamic risk measures have close links to BSDEs, a generalization in this sense may lead

to a similar question like possible risk-captured super-/subhedging.
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