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Abstract. Existing model persistence frameworks either store models
as a whole or object by object. Since most modeling tasks work with
larger aggregates of a model, existing persistence frameworks either load
too many objects or access many objects individually. We propose to
persist a model broken into larger fragments.
First, we assess the size of large models and describe typical usage pat-
terns to show that most applications work with aggregates of model ob-
jects. Secondly, we provide an analytical framework to assess execution
time gains for partially loading models fragmented with different gran-
ularity. Thirdly, we propose meta-model-based fragmentation that we
implemented in an EMF based framework. Fourthly, we analyze our ap-
proach in comparison to other persistence frameworks based on four com-
mon modeling tasks: create/modify, traverse, query, and partial loads.
We show that there is no generally optimal fragmentation, that frag-
mentation can be achieved automatically and transparently, and that
fragmentation provides considerable performance gains.

1 Introduction

Modeling frameworks (e.g. the Eclipse Modeling Framework (EMF) [22] or Ker-
meta [11]) can only work with a model when it is fully loaded into a computer’s
main memory (RAM), even though not all model objects are used at the same
time. This limits the possible size of a model. Modeling frameworks themselves
provide only limited capabilities to deal with large models (i.e. resources and
resource lazy loading in EMF [22]). Model persistence frameworks (e.g. Con-
nected Data Objects (CDO) [1]), on the other hand, store models in databases
and load and unload single model objects on demand. Only those objects that
are used at the same time need to be maintained in main memory at the same
time. This allows one to work with models larger than the main memory can
hold otherwise.

We claim that existing model persistence solutions may provide a main mem-
ory efficient solution to the model size issue, but not a time efficient one. In this
paper, time efficiency always relates the time it takes to execute of one of four
abstract modeling tasks. These tasks are (i) creating/modify models, (ii) traverse
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models (e.g. as necessary during model transformation), (iii) query models, and
(iv) partially loading models (i.e. loading a diagram into an editor).

An obvious observation is that some of these modeling tasks (especially
traversing models and loading parts of models) require to load large numbers
of model objects eventually. Existing persistence frameworks, store and access
model objects individually. If a tasks requires to load a larger part of the model,
all its objects are still accessed individually from the underlying database. This
is time consuming.

Our hypothesis is that modeling tasks can be executed faster, if models are
mapped to larger aggregates within an underlying database. Storing models as
aggregates of objects and not as single objects reduces the number of required
database accesses, or as Martin Fowler puts it on his blog: ”Storing aggregates
as fundamental units makes a lot of sense [...], since you have a large clump of
data that you expect to be accessed together”, [7]. This hypothesis raises three
major questions: Do models contain aggregates that are often accessed together?
How can we determine aggregates automatically and transparently? What actual
influence on the performance has the choice of concrete aggregates?

To answer these question, we will proceed as follows: First (section 2), we look
at three typical modeling applications: which model sizes they work with and
what concrete modeling tasks they perform predominantly. This will give us an
idea of what aggregates could be and how often objects can be expected to be ac-
tually accessed as aggregates. Secondly (section 3), we will present our approach
to finding aggregates within models. This approach is based on fragmenting mod-
els along their containment hierarchy. We will reason that most modeling tasks
need to access sub-trees of the containment hierarchy (fragments). In the related
work section 4, we present existing model persistence frameworks and interpret
their strategies with respect to the idea of fragmentation. Furthermore, we dis-
cuss key-value stores as a basis for persisting fragmented models. The following
section provides a theoretical analysis and upper bound estimation for possible
performance gains with optimal fragmentation. In section 6, we finally present
a framework that implements our fragmentation concept. The next section is
the evaluation section: we compare our framework to existing persistence frame-
works with respect to time and memory efficient execution of the four mentioned
abstract modeling tasks. Furthermore, we use our framework to measure the in-
fluence of fragmentation on performance to verify the analytic considerations
from section 3. We close the paper with further work and conclusions.

2 Applications for Large Models

In this section, we look at examples for three modeling applications. We do this
for two reasons. The first reason is to discuss the actual practical relevance of
large models. The second reason is to identify model usage patterns: which of
the four modeling tasks (create, traverse, query, partial load) are actually used,
in what frequency, and with what parameters. At the end of this section, we
provide a tabular summary of our assessment.
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2.1 Software Models

Model Driven Software Development (MDSD) is the application that modelling
frameworks like EMF were actually designed for. In MDSD all artifacts includ-
ing traditional software models as well as software code are understood as mod-
els [23], i.e. directed labelled graphs of typed nodes with an inherent containment
hierarchy.

Model size: Since models of software code (code models) provide the lowest
level of abstraction, we assume that models of software code are the largest
software models. In [18], we give an approximation for the size of code models
based on counting abstract syntax tree nodes in the Linux kernel and analyzing
the Linux kernels GIT repository. We also transferred all ratios learned from the
Kernel to other OS software projects and publicly reported LOC counts. The
results are presented in Fig. 1.

Usage patterns: There are two major use cases in today’s software develop-
ment: editing and transforming or compiling. The first use case is either per-
formed on diagrams (graphical editing) or on compilation units (e.g. Java-files,
textual editing). Diagram contents roughly corresponds to package contents.
Both packages and compilation units are sub-trees within the containment tree
of a software model. Transformations or compilations are usually either done for
the whole model or again on a per package or compilation unit basis. Within
these packages or compilation units, the (partial) model is traversed. A further
use-case is analysis. Analysis is sometimes performed with single queries. But
due to performance issues, model analysis is more often performed by traversing
the model and by executing multiple queries with techniques similar to model
transformations. Software models are only accessed by a few individuals at the
same time.
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Fig. 1. Rough estimates for software code model sizes based on actual SLOC counts
for existing software projects.



4

2.2 Heterogeneous Sensor Data

Sensor data usually comprises time series of measured physical values in the en-
vironment of a sensor. Our research group build the Humboldt Wireless Lab [24],
a 120 node wireless sensor network that produces heterogeneous sensor data:
data from a 3 axis accelerometers, data from monitoring all running software
components (mostly networking protocols), and other system parameters (e.g.
CPU, memory, or radio statistics). We represent and analyze this data with EMF
based models ([19]).

Model size: HWL’s network protocols and system software components pro-
vide 372 different types of data sets. Each data set is represented as an XML
document. Per second each node in the network produces XML entities that
translate into an average of 1120 EMF objects. A common experiment with
HWL involves 50 nodes and measures of a period of 24 h. During such an exper-
iment, the network produces a model of 5× 109 objects.

Usage patterns: There are two major use-cases: recording sensor data and
analyzing sensor data. Recording sensor data means to store it faster than it is
produced and (if possible) in a manner that supports later analysis. Sensor data
is rarely manipulated. Analysis means to access and traverse individual data sets
(mostly time series). Each data set or recorded set of data sets is a sub-tree in
the sensor data model. Recording and analysis is usually performed by only a
single (or a few) individuals at the same time.

2.3 Geo-spatial Models

3D city models are a good example for structured geo-spatial information. The
CityGML [8] standard, provides a set of XML-schemata (building upon other
standards, e.g. GML) that function as a meta-model. CityGML models repre-
sent the features of a city (boroughs, streets, buildings, floors, rooms, windows,
etc.) as a containment hierarchy of objects. Geo spatial models usually come in
different levels of details (LOD); CityGML distinguishes 5 LODs, 0-4 [8].

Model size: As for many cities, a CityGML model is currently established for
Berlin [21]. The current model of Berlin covers all of Berlin, but mostly on a
low-medium level of detail (LOD 1-2). To get an approximation of the model’s
size, we counted the XML entities. The current Berlin model, contains 128×106

objects. Based on numbers and average sizes per feature sizes in the Berlin model,
a complete LOD 3-4 model of Berlin would consist of 109 objects. Extrapolating
numbers to the world’s population that lives in cities, a LOD3-4 world 3D city
model would contain 1012.

Usage patterns: Compared to model manipulation, model access is far more
common and its efficient execution is paramount. If accessed, users usually load
a containment hierarchies (sub-tree) corresponding to a given set of coordinates
or address (geographic location): partial loads. Queries for distinct feature char-
acteristics within a specific geographic location (i.e. with-in such a partial load)
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are also common. Geo-spatial models are accessed by many people at the same
time.

Summary

The following table summarizes this section. Two + signs denote that execution
times of the respective tasks are vital for the success of the application; a single
+ denotes that the task is executed often, but performance is not essential; a −
denotes that the task is of minor importance.

application model size create/mod. traverse query partial load

software models 0− 109 + ++ + +
sensor data 109 ++ ++ - ++

geo-spatial models 109 − 1012 - - ++ ++

3 Model Fragmentation

3.1 Fragmentation in General

All models considered in this paper can be characterized as directed labeled
graphs with a fix spanning-tree called containment hierarchy. In EMF based
models, the containment hierarchy consists of containment references; other
graph edges are cross-references.

Model fragmentation breaks (i.e. fragments) a model along its containment
hierarchy. All fragments are disjoint; no object is part of two fragments. Fragmen-
tation is also always complete, i.e. each object is part of one fragment. The set of
fragments of a model is called fragmentation. References between fragments are
called inter-fragment and references within a fragment are called intra-fragment
references. 3

3.2 Fragmentation Strategies

Originally a model is not fragmented; once it was fragmented, the fragmenta-
tion needs to be maintained when the model is modified. Further, we have to
assume that fragmentation has an influence on performance (refer to sections 5
and 7). We denote a set of algorithms that allows us to create and maintain a
fragmentation as fragmentation strategy.

There are two trivial strategies: no fragmentation and total fragmentation.
No fragmentation means the whole model constitutes of one fragment, such as
in EMF (without resources). Total fragmentation means each object constitutes
its own fragment. There are as many fragments as objects in the model. This
strategy is implemented by existing persistence frameworks like CDO.

3 Based on these characteristics, fragments can be compared to EMF’s resources (es-
pecially with containment proxies); refer to section 6, where we use resources to
realize fragmentation.



6

A

B

C

≪fragments≫

A

B

B

C

C

f1

f2
f3

f3

f2

f2f1

f1

Fig. 2. Example meta-model (left) and model (right). In the model: dashed ellipses
denote fragments, double lines inter- and normal lines intra-fragment references. The
references of feature f1 determine the fragments, the reference of f3 is a inter-fragment
cross-reference by accident.

3.3 Meta-Model based Fragmentation

In this paper, we propose and use meta-model based fragmentation as fragmen-
tation strategy. A meta-model defines possible models by means of classes and
their attribute as well as reference features. Whereby, the meta-model deter-
mines which reference features produce containment and which produce cross-
references. The meta-modeler already uses containment reference features to
aggregate related objects.

In meta-model based fragmentation, we ask the meta-modeler to additionally
mark those containment reference features that should produce inter-fragment
containment references. This way, the meta-model determines where the con-
tainment hierarchy is broken into fragments, and it becomes easy to create
and maintain fragmentations automatically and transparently (ref. to section 6).
Only containment reference features determine fragmentation, cross-references
can become inter-fragment references by accident. See Fig. 2 for an example.

4 Related Work

4.1 Model Persistence

EMF: Models are persisted as XMI documents and can only be used if loaded
completely into a computer’s main memory. EMF realizes the no fragmentation
strategy. The memory usage of EMF is linear to the model’s size.

There are at least three different approaches to deal with large EMF models:
(1) EMF resources, where a resource can be a file or an entry in a database; (2)
CDO [1] and other object relational mappings (ORM) for Ecore; (3) morsa [15]
a EMF data-base mapping for non-relational databases.

First, EMF resources [22]: EMF allows clients to fragment a model into dif-
ferent resources. Originally, each resource could only contain a separate contain-
ment hierarchy and only inter-resource cross-references were allowed. But since



7

EMF version 2.2 containment proxies are supported. EMF support lazy load-
ing: resources do not have to be loaded manually, EMF loads them transparently
once objects of a resource are navigated to. Model objects have to be assigned to
resources manually (manual fragmentation). To actually save memory the user
has to unload resources manually too. The framework MongoEMF [10] maps
resources to entries in a MongoDB [16] database.

Secondly, CDO [1]: CDO is a ORM for EMF. 4 It supports several relational
databases. Classes and features are mapped to tables and columns. CDO was
designed for software modeling and provides transaction, views, and versions.
Relational databases provide mechanisms to index and access objects with SQL
queries. This allows fast queries, if the user understands the underlying ORM.

Thirdly, morsa [15]: Different to CDO, Morsa uses mongoDB [16], a NoSQL
database that realizes a key-value store (see below). Morsa stores objects, their
references and attributes as JSON documents. Morsa furthermore uses mon-
goDB’s index feature to create and maintain indices for specific characteristics
(e.g. an objects meta-class reference).

4.2 Key-Value Stores

Web and cloud computing require scaleability (replication and sharding5 in a
peer-to-peer network) from a database, and traditional ACID [9] properties can
be sacrificed if the data store is easily distributeable. This explains the popularity
of key-value stores. Such stores provide only a simple map data structure: there
are only keys and values. For more information and an comparison of existing
key-value stores refer to [14].

Model fragmentation does not need any complex database structure, since
a fragment’s content can be serialized (e.g. with XMI) and fragments can be
identified by keys (e.g. URIs). Key-value stores on the other hand provide good
scaleability for large models (sharding) or for parallel access (replication).

There are three different applications that inspired three groups of key-value
stores. First, there are web applications and the popular MongoDB [16] and
CouchDB [3] databases. These use JSON documents as values and provide ad-
ditional indexing of JSON attributes.

Secondly, there is cloud computing and commercial Google Big-Table [4]
and Amazon’s Dynamo [6] inspired data stores. HBase [12] and Cassandra [13]
are respective open source implementations. Those databases strive for massive
distribution, they provide no support for indexing inner value attributes, but
integrate well into map-reduce [5] execution frameworks, such as Hadoop (HBase
is Hadoop’s native data store).

A third application is high performance computing. Scalaris [20] is a key-
value store optimized for massive parallel, cluster, and grid computing. Scalaris

4 Lately, CDO also supports non-relational databases, such as MongoDB [16]. Such
features were not evaluated in this paper; but one can assume characteristics similar
to those of Morsa.

5 Sharding denotes horizontal partitioning of a database, i.e. to put different parts of
the data onto different nodes in the network



8

provides mechanisms for consistency and transactions and brings some ACID to
key-value stores.

5 Possible Performance Gains from Model Fragmentation

In this section, we analyze the theoretically possible execution times of partially
loading models with fragmentations of different granularity. This includes an
assessments for performance gains from optimal fragmentation strategies com-
pared to no or total fragmentation.

To keep this analysis simple, we have to make two assumptions that will
probably seldom hold in reality, but still lead to analysis results that provide
reasonable upper bounds for possible gains. The first assumption: we only con-
sider fragmentations where all fragments have the same size f . This means a
fragmentation for a model of size m consist of dm/fe fragments6. The second
assumption: all fragmentations are optimal regarding partial loads. This means
to load a model part of size l, we only need to load dl/fe fragments at most.

To determine the execution time for partial loading depending on the param-
eters model size m, fragment size f and size of the model part l, we need two
functions that determine the time it takes to read and parse a model and to ac-
cess a value in a key value store. The read and parse function is linear depending
on parsed model size s: parse(s) = O (s), the access function is logarithmic de-
pending on the number of keys k: access(k) = O(log(k)). Most key-value stores,
including HBase (that we use for our implementations) provide O(log) accesses
complexity (ref. also to Fig. 4).

With the given assumptions, parameters, and functions the time to execute
a partial load is:

tm,f (l) =

number of fragments to load︷︸︸︷⌈
l

f

⌉(
access(

⌈
m

f

⌉
) + parse(f)

)
︸ ︷︷ ︸

time to load one fragment

To actually use this cost function, we need concrete values for parse and
access. We measured the execution times for parse with EMF’s XMI parser for
models of various sizes and fit a linear function to the measured values (Fig. 3).
For access we measured the execution time for accessing keys in HBase for
database tables with various numbers of keys k. For k < 106 we use a linear
function and for k ≥ 106 a logarithmic function as a fit (Fig. 4).

Now, we can discuss the influence of fragment size f on tm,f (l). First, we use
a model of size m = 106 and vary f ∈ {100, . . . , 106}. Fig. 5 shows the computed
times t over loaded model objects l for the different fragment sizes f . We can
observe four things. First, there is no optimal fragment size. Depending on the
number of loaded objects, different fragment sizes are optimal. But intermedi-
ate fragment sizes provide good performance. With fragment size f = 102 for

6 dxe denotes the ceiling of x
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example, all partial loads take three times the optimal time at most. Second,
total fragmentation (f = 1) requires roughly 100 times more time than optimal
fragmentation, when larger numbers of objects ≥ 102 are loaded. Thirdly, no
fragmentation (f = m) is only a time efficient option, if we need to load almost
all of the model. But in those cases no fragmentation is usually not practical
for memory issues. Fourthly, for small partial models total fragmentation is far
better than no fragmentation, for large partial models no fragmentation provides
better performance.
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Fig. 5. Computed execution times for partial loads from a model with 106 objects and
fragmentations of different granularity.

6 Implementation of Model Fragmentation

In this section, we present the EMF based persistence framework EMFFrag [17]
which implements the presented meta-model based fragmentation strategy (refer
to section 3).
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Fig. 6. EMFFrag partially loads a persisted model as internal model of dynamic EMF
objects and exposes the model as client model via EMF generated model code with
feature delegation.

Design goal: The main goal in our implementation is to (re)use EMF resource
as much as possible. EMF resources already provide many required function-
alities: they realize partial model persistence, resources manage inter-resource
references through proxies, resources lazy-load, they can be added and deleted,
and objects can be moved between resources. EMFFrag extends the existing im-
plementations of EMF resources. EMFFrag could be realized with a very small
code base of less than 800 lines of code.

Underlying key-value store: EMFFrag uses a simple interface that abstracts
from concrete key-value stores. We provide an implementation for HBase (this
was used for all measurements in this paper). EMFFrag implements EMF’s
URIHandler interface to realize key-value store values as resources. Each frag-
mented model is stored in its own table.

Fragments and fragmentation: EMF XMIResources are used as fragments
and ResourceSets act as fragmentations. The model is internally realized as a
purely dynamic (no generated sources) EMF model.

Transparent load and unload of fragments: Fragments, Fragmentations,
and internal model are hidden from clients (ref. to Fig. 6). Clients use the model
through the usual EMF generated interfaces and classes. Those are configured
with reflective feature delegation to an EStore ([22] explains the concept). EMF-
Frag’s EStore implementation simply delegates all calls to internal objects. If
necessary, it creates an internal object for each client created object, and a client
object for each internal object. Client objects hold references to their internal
counterparts. Fragments manage client objects that correspond to the internal
objects they contain via Java’s weak references. When clients loose all strong ref-
erences to a fragment’s contents, the JVM collects the client objects as garbage
(despite existing weak references) and notifies the owning fragment. Thus, frag-
ments know if clients hold references to their objects, and they can safely unload
once no more client reference to their contents exist.
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Inter-fragment containment references: Client model classes have to be
generated with enabled containment proxies (see [22]) to allow containment ref-
erences between resources (i.e. fragments). Users can use EMF Ecore annota-
tion to mark containment reference features as inter-fragment features. When
EMFFrag’s EStore implementation delegates a call that manipulates an inter-
fragment containment feature, it creates or deletes fragments accordingly and
puts objects into their respective fragments.

Inter-fragment cross references: EMF persists references between XMI re-
sources with URIs. The first part of an URI identifies the resource (i.e. the frag-
ment within a key-value store). The second URI part (URI fragment part) iden-
tifies the referenced object within the containing resource. For all inter-fragment
containment references and for cross references within a fragment EMF’s default
intrinsic ID’s [22] are used.

Intrinsic IDs are similar to XPath expressions and identify an object via its
position in the containment hierarchy. Intrinsic IDs cannot be used for inter-
fragment cross references: when an object is moved, its intrinsic ID (URI frag-
ment) changes and all persisted referencing object use invalid URIs. For this
reason EMFFrag uses model-wide unique extrinsic IDs (an existing EMF func-
tionality). EMFFrag maintains a secondary index (i.e. another table in the key-
value store) that maps extrinsic IDs to respective intrinsic IDs. When an object
moves this entry is updated and all cross-references are updated automatically.
Extrinsic IDs and secondary index are only maintained for objects that are ac-
tually cross referenced from another fragment to keep the index small.

7 Evaluation

This section has two goals. First, we want to compare our fragmentation ap-
proach to other model persistence frameworks. Secondly, we want to verify our
findings from section 5. All measurements were performed on a Notebook com-
puter with Intel Core i5 2.4ĠHz CPU, 8 GB 1067 MHz DDR3 RAM, running
Mac OS 10.7.3. All experiments were repeated at least 20 times, and all present
results are respective averages. Code executing all measurements and all mea-
sured data can be downloaded as part of EMFFrag [17].

7.1 Fragmentation Compared to other Persistence Frameworks

To compare fragmentation to EMF’s XMI implementation, CDO, and Morsa,
we measured execution time for the three tasks (i) create/modify, (ii) traverse,
and (ii) query. To analyze traverse and query, we used example models from the
Grabats 2009 contest [2] as benchmarks. Those were already used to compare
Morsa with XMI and CDO here [15]. There are five example models labeled set0
to set4 and they all model Java software based on the same meta-model. Please
note: even though the models increase in size, their growth is not linear and the
internal model structure is different. To measure create/modify performance, we
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used a simple test model. We don’t provide any comparative measures for partial
loads. Partial loads are extensively measured for EMFFrag in the next section.

Fig. 12 shows the number of fragments that each framework produces for
each model. Morsa and CDO implement total fragmentation and the number of
fragments is also the number of objects in the model. For XMI there is always
only one fragment, because it implements no fragmentation. For EMFFrag, we
provided two different meta-model based fragmentations. The first one puts each
Java compilation unit and class file into a different fragment (labeled EMFFrag
coarse). The second one additionally puts the ASTs for each method block into a
different fragment (EMFFrag fine). The number of fragments differs significantly
for set2 and set3 which have to contain a lot of method definitions. We could
not measure CDO’s performance for set3 and set4 : the models are too large to
be imported with a single CDO transaction, and circular cross-references do not
allow us to import the model with multiple transactions.

Create/modify: To benchmark the performance of instantiating and persisting
objects, we used a simple one class. We created test models with 105 objects, a
binary containment hierarchy, and two different densities of cross references: one
cross reference per object and no cross references. We used a transaction size of
103 objects for CDO and a fragment size of 103 for EMFFrag.

Fig. 7.1 shows the average number of objects that could be persisted within
one second. The number of cross-references has only a minor influence on the
performance of CDO, Morsa, and EMFFrag. EMFFrag is a little slower than
XMI depending on the fragment size (Fig. 8). CDO and Morsa (both based on
complex indices that have to be maintained) can only create less than one tenth
of the objects per seconds that could be created with XMI and EMFFrag. Fig. 8
shows EMFFrag’s create performance for different fragment sizes.

Traverse: Fig. 9 shows the measurement results in traversed objects per second.
XMI performs well for small models, but numbers deteriorate for large models.
Interestingly, Morsa and CDO both use total fragmentation and achieve both a
comparable low 4,500 objects per second. EMFFrag performs depending on the
number of fragments: the less fragments the better. With the Grabats models,
fragmentation gives us about 10-18 times the number of objects per second
traversed than with CDO or Morsa do.

Query: The Grabats contest also provides an example query: find all Java type
declarations that contain a static method which has its containing type as return
type. Depending on the persistence framework, queries can be implemented in
different ways. With XMI and EMFFrag there are no indices that would help to
implement the query and we have to traverse the model until we found all type
declarations. CDO allows us to use SQL to query and Morsa provides a meta-
model class to objects index. We measured both: executing the queries with
these specific query mechanisms and with the previously mentioned traverse
based implementation.

The results are shown in Fig. 10. XMI performs badly for large models.
CDO and Morsa with SQL and meta-class index perform best. But even though
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second during traversing the different
Grabats models.
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ple query.
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Fig. 11. Memory usage during traversal
of the different Grabats models.

set0 set1 set2 set3 set4
10

3

10
4

10
5

10
6

10
7

N
u

m
b

e
r 

o
f 

fr
a

g
m

e
n

ts

 

 

CDO/Morsa

EMFFrag coarse

EMFFrag fine
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different persistence frameworks.

EMFFrag needs to traverse the model its performance is similar to CDO and
Morsa. For set3 and fine fragmentation, EMFFrag even outperforms Morsa’s
index. Remember, with the fine fragmentation, EMFFrag does not need to load
any method bodies to execute the query (partial load). Using the traverse imple-
mentation, CDO’s and Morsa’s performance difference to EMFFrag is similar to
the measures for model traverse (here we basically perform a partial traverse).

Memory usage: During model traverse, we also measured the memory usage
(Fig. 11). XMI’s memory usage is proportional to model size, because it needs
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Fig. 13. Execution times for loading model parts with different fragmentation granu-
larity measured with EMFFrag (left) and analytical (right).

to load the full models into memory. All other approaches need a comparable
constant quantity of memory independent of model size.

7.2 The Influence of Fragmentation on Partial Load Performance

In section 5, we looked at fragmentation analytically and provided a plot (Fig. 13,
right) that describes the expected influence of fragmentation granularity on par-
tial load execution times. New, we create the same plot, but based on data mea-
sured with EMFFrag. For this purpose, we used the same simple meta-model as
before (to measure create/modify) and generated models of size 106 with dif-
ferent fragment sizes f . We measured the execution times for loading parts of
different sizes l. The results are presented in Fig. 13, left.

The plots show a similar picture with comparable values. Although, the mea-
sured times are generally larger due to additional EMFFrag implementation
overhead that was not considered in our theoretical examination.

8 Future Work

Sorted and distributed key-value stores: Our fragmentation strategy is
based on unsorted key-value store accesses with O(log) complexity. Neither our
analysis, nor our implementation EMFFrag, or our evaluation consider sorted
key-value stores that allow us to access sequential keys with constant time
(scans). Neither did we consider distributed key-value stores which would allow
us parallel access. Key-value stores are easily distributed in peer-to-peer net-
works. This is done for two scaleability reasons: replication (allows more users
to access the same data in less time) and sharding (distributes data to allow
users faster and larger storage). Fragmentation can have an influence on both.

Transactions: If multiple user access/modify a model transactions become a
necessity. Transaction can either be provided by the underlying data store (e.g.
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with Scalaris [20]) or can be implemented into EMFFrag. On non-distributed
data stores, the usual transaction mechanisms can be implemented. More inter-
esting is to explore the influence of fragmentation on transactions (and version-
ing), because fragmentation granularity also determines the maximum transac-
tion granularity.

Large value sets: In large models, single objects can become very large them-
selves if they hold large sets of attribute values and references. CDO maps an
object’s feature values to individual entries in a database table and can manage
such objects, but does this slowly. EMFFrag (and Morsa), on the other hand,
consider objects as atomic entities and large object can become a performance
burden. We need to extend the fragmentation idea to large value sets. Similar
to all consideration in this paper, strategies for large value sets have to be op-
timized and evaluated for the abstract tasks manipulation, iteration (traverse),
indexed access (query), and range queries (partial load).

9 Conclusions

Large software models consist of up to 109 objects. Models from other appli-
cation can have a size of up to 1012 objects. Traversing models and loading
larger aggregates of objects are common tasks (section 2). Depending on frag-
ment size, partially loading models can be done faster than loading whole mod-
els or loading models object by object. There is no optimal fragment size, but
intermediate fragment sizes provide a good approximation (sections 5 and 7).
We provide a persistence framework that enables automatic and transparent
fragmentation, if appropriate containment features are marked as fragmenta-
tion points in the meta-model (sections 3 and 6). We compared our framework
to existing frameworks (EMF’s XMI implementation, CDO and Morsa) and
our framework performs significantly better for the tasks create/manipulate,
traverse, and partial loads. Execution times are 5 to 10 times smaller. Model
queries (that favor object-by-object based model persistence with indexes, such
as in CDO and Morsa) can be executed with comparable execution times (sec-
tion 7). All together, fragmentation combines the advantages of both worlds,
low memory usage and fast queries like with CDO or Morsa, and traverse and
partial load execution times similar to those of XMI.

Model fragmentation also determines the granularity of transactions, which
can be a disadvantage. Further problems are single objects with features that
can hold large value sets; the fragmentation approach has to be extended for
fragmentation of such value sets (section 8). Our framework stores fragments in
key-value stores. Those scale easily (both replication and sharding is supported)
and integrate well with peer-to-peer computation schemes (e.g. map-reduce).
Fragmentation is therefore a good preparation for modeling in the cloud appli-
cations (section 4).
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