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Abstract: This paper investigates the optimal design of event-triggered estimation for first-
order linear stochastic systems. The problem is posed as a two-player team problem with a
partially nested information pattern. The two players are given by an estimator and an event-
trigger. The event-trigger has full state information and decides whether the estimator shall
obtain the current state information by transmitting it through a resource constrained channel.
The objective is to find an optimal trade-off between the mean squared estimation error and the
expected transmission rate. The proposed iterative algorithm alternates between optimizing one
player while fixing the other player. It is shown that the solution of the algorithm converges to
a linear predictor and a symmetric threshold policy, if the densities of the initial state and the
noise variables are even and radially decreasing functions. The effectiveness of the approach is
illustrated via numerical simulations. In case of a multimodal distribution of the noise variables
a significant performance improvement can be achieved compared to a separate design that

assumes a linear prediction and a symmetric threshold policy.

1. INTRODUCTION

In contrast to periodic estimation, where measurements
are sampled within equidistant time-intervals, an event-
triggered estimator receives measurement updates in an
asynchronous fashion. Event-triggered sampling is also
referred to as adaptive sampling in Rabi et al. [2012],
Lebesgue sampling in Astrém and Bernhardsson [2002]
and dead-band control in Otanez et al. [2002], Hirche et al.
[2005]. The event-trigger is a preprocessing unit situated
at the sensor which decides upon its available information,
whether to update the estimator with current information.
Event-triggered sampling schemes for estimation are very
promising in the context of networked control systems,
where estimator and plant are spatially distributed and
communication is a sparse resource. Examples for such
networked control systems are given by sensor networks,
multi-robot systems and distributed power generation net-
works. The work in Astrém and Bernhardsson [2002] and
Rabi et al. [2012] showed that event-triggered sampling
outperforms periodic sampling with respect to the state
estimation error of a first-order linear system in the pres-
ence of two different communication constraints. In Rabi
et al. [2012], the communication constraint is induced
by limiting the number of transmissions during a finite
interval, whereas the work in Astrém and Bernhardsson
[2002] limits the average transmission rate. Differing to
these approaches, we extend the standard minimum mean
square estimator problem by an additional communication
penalty to reflect the communication constraint in the
optimization problem. A similar problem is also studied
in Xu and Hespanha [2004] and Lipsa and Martins [2011].
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Opposed to the aforementioned work which either fixes the
estimator, such as Astrom and Bernhardsson [2002], Rabi
et al. [2012], Xu and Hespanha [2004] or computes the es-
timator from the choice of the event-trigger, such as Lipsa
and Martins [2011], we aim at the joint optimal design
of the estimator and the event-trigger. Built on previous
work that identifies structural properties of the optimal
estimator Molin and Hirche [2010a,b], we formulate a two-
player team problem with a nested information pattern,
where the players are given by the event-trigger and the
estimator. The joint design is motivated by the fact that
the choice of the event-trigger may significantly influence
the form of the optimal estimator.

The contribution of this paper is two-fold. First, it de-
velops an iterative method for the joint design of event-
trigger and estimator for first-order stochastic systems
with arbitrary distributions. The algorithm iteratively al-
ternates between optimizing one player while fixing the
other player. Similar iterative procedures are shown to be
very promising methods for calculating optimal policies
for team problems with non-classical information patterns,
as studied by Karlsson et al. [2011] for the Witsenhausen
counterexample or by Hajek et al. [2008] for the joint op-
timization of paging and registration policies. It turns out
that the proposed iterative method can yield a remarkable
decrease of the overall cost compared to a design where
the estimator is designed separately of the event-trigger.
In such separate design, the optimal estimator takes the
form of a linear predictor that assumes that transmission
instants are statistically independent of the state, whereas
the optimal event-trigger is an even threshold function of
the estimation error. In the following, even and symmetric
refer to the same meaning.

Second, it is shown that the solution of the algorithm
converges to the separate design, when the densities of the



initial state and the noise variables are symmetric and uni-
modal. This result coincides with results obtained in Lipsa
and Martins [2011], which uses majorization theory and
rearrangement inequalities to show that there always exists
a symmetric threshold policy that outperforms an arbi-
trary event-triggering law. In fact, we show that symmetric
threshold policies are optimal by analyzing the asymptotic
behavior of the proposed iterative procedure. Therefore,
our approach can be viewed as an alternative line of proof
to show that symmetric policies are optimal under the
aforementioned assumptions. On the other hand, it turns
out that symmetry of the densities is not sufficient to show
that the separate design is optimal. In fact, numerical sim-
ulations indicate significant improvements of our approach
compared to an independent design, when noise densities
are symmetric but multimodal.

The remainder of this paper is organized into four sections.
In Section 2, we introduce the stochastic system model and
describe the problem setting. Section 3 contains the main
results of this paper and studies the joint design of event-
trigger and estimator. In Section 4, numerical simulations
are conducted to validate the proposed method.

Notation. In this paper, (-) denotes a free parameter.
The expectation operator is denoted by Ef[-] and the
conditional expectation is denoted by Ey[-|-], where the
underlying probability measure Py is parameterized by
the policy f. The variable X* denotes the sequence of
variables [z, ..., zk]. The indicator function is denoted
by 14(x) taking a value of 1 if z € A and 0 otherwise. The
complement of a set A is denoted by A°. The convolution
of two real-valued function f and g is denoted by f * g.

2. PROBLEM FORMULATION

We consider the following stochastic scalar discrete-time
process P driven by noise wy

Tyl = aTf + Wy, (1)
where a € R\{0}. The system noise process wy, takes val-
ues in R and is an ii.d. (independent identically dis-
tributed) random process described by the probability
density function ¢,,, which is zero-mean and has finite
variance. The initial state, ¢ is statistically independent
of wy, and is described by density function ¢,,, which has
a mean Ty and a finite variance. System parameters and
statistics are known to the event-trigger and estimator.

The system model is illustrated in Fig. 1. The process P
outputs the state xy. The event-trigger £ decides upon
its available information whether or not to transmit the
current state to the remote state estimator S. We define
the output of the event-trigger as

5. — 1 update zj sent
¥~ 10 otherwise

The channel A/ can be viewed as a Jj-controlled erasure
channel whose outputs are described by

5y — Tl 5k:1
" \e
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where @& is the erasure symbol. As it will be useful for
subsequent analysis, we define the last update time 7 as

T = max{k|d, =1, k < k} (3)

Lk 2k Tk
P i
xS
Fig. 1. System model of the networked control system

with plant P, event-trigger £, state estimator S, and
communication channel N.

with 7, = —1, if no transmissions have occurred prior
to k. The variable 7, can be described by the follow-
ing dj-controlled difference equation

{k’ op=1
Tk+1 =
Tk

0 =10
Admissible event-triggers are given by mappings of their
past history to
(Skak(Xk), k=0,...,N—1.
The state estimator S outputs the state estimate Zj and
is given by mappings gi defined by
.i'kzgk(Zk), k=0,...,N —1.

The design objective is to jointly design the event-trigger

T():*l. (4)

f = 1[fo,-.., fnv—1] and the estimator g = [go,...,gNn—1]
that minimize cost J.
N-1
J=Es, Z |.Tk—i'k|2+)\5k . (5)
k=0

The per-stage cost of J is composed of the squared esti-
mation error |z) — 21| and a communication penalty Adj.
The weight A\ determines the amount of penalizing trans-
missions over the channel A.

3. JOINT DESIGN OF EVENT-TRIGGER AND
ESTIMATOR

3.1 Preliminaries

We begin with a characterization of the optimal estimator.

Lemma 1. For any given event-trigger f, the optimal state
estimator ¢g* is given by the least squares estimator

ip = g5 (Z%) = Ef[xx|Z¥], k=0,...,N —1.
Proof. Fix an arbitrary event-trigger f. The commu-
nication penalty term E; [Zg;ol )\54 is then constant

and can be omitted from the optimization. In the
remaining estimation problem the mean squared er-

ror Ef [Zggol |y — fkﬂ is to be minimized. The optimal

solution for this problem is given by the least squares
estimator E[z;|Z"], Bertsekas [2007]. This completes the
proof.

In the following, we define the linear predictor 2} by the
following recursion

. Tht1 0 =1
ﬁi:{m? 5y =0 (©)



with #5F = Z.

Remark 1. The linear predictor can be regarded as the
optimal estimator, when having no information about the
choice of the event-trigger f and assuming that transmis-
sion instances are statistically independent of the state
evolution. This also implies that the linear predictor is op-
timal in the case, when transmission instances are selected
in advance.

Similar to Lipsa and Martins [2011], Molin and Hirche
[2009], let us rewrite the optimization problem by defining
k=1,...,.N—1
and eg = w_1, where we define w_1 = x¢9 — Tg. The
variable e; defines our new state to be estimated and
follows the recursion

Cr+1 = hk(ek, O, W) = (1 —d)aer + wg. (7)
Further, we define é; to be the least squares esti-
mate E[ey|Z*], where Z is defined accordingly as

2 o €L 5k = 1

k= g 6.=0

The next lemma gives us further insights into the structure
of ék.

Lemma 2. Let the event-trigger f be fixed. Then, the least
squares estimate of ey, is given by

o — ek 0 =1
k= ak(Tk) 5k = 0
where 7, is defined by (3) and oy (%) is defined by
k—1

ag(mi) = Ef lz a" w041 =0,...,8, =0] . (8)

l:Tk-

~LP
€ = T — aTp_q,

Proof. Clearly, we have é, = ej for §p = 1, as e, € AR
For 6, = 0, 7, is a sufficient statistics for é,. The
mapping «y is determined by applying recursively (7)
with e;, 41 = w,,. This completes the proof. O

The function a in Lemma 2 can be interpreted as a
bias term to improve the state estimate by incorporating
additional information 6,,+1 = --- = d = 0 at time £.

Rather than regarding a as a function of k£ and 7, we
will interpret v as a vector in Rz NN+ by reindexing its
entries appropriately.

It is straightforward to see that the estimation er-
ror e, — € and xp — 2, are identical random variables for
a fixed event-trigger f, as ej corresponds to a translatory
coordinate transformation of xj shifted by fai}c‘fl which
is known since the sequence [dg,...,0—1 i measurable
with respect to Z*. Therefore, our initial optimization
problem with cost function J can be rewritten as
N—1
m}nEf Z(l—5k)|ek—ak(7'k)|2+)\5k . 9)
k=0
It can be observed that the running cost reduces to A and is
therefore independent of the current oy, in the case 6, = 1.
Because of the introduction of the state ey, the event-
trigger f is given by a mapping from E* to {0,1}. Since
there always exists a bijection from X* to E* given the
variables §p, . . ., 0x_1, this change of variables does not put

any restrictions on the further analysis keeping in mind
that any policy expressed in E* can also be written as a
function in X*.

3.2 Iterative procedure

What prevents a further study of the optimization prob-
lem (9) is the fact that the value ay, at 7, depends on the
particular policy f chosen up to time k. Therefore, meth-
ods like dynamic programming are not directly applicable
to solve (9). In order to overcome this burden, we relax
optimization problem (9) by considering the variable «y
as a new decision variable being a function of 7. Then,
the optimization problem is given by

I}linJ (10)
with
N-1
J(f,0) =Ep | Y (1= dk)lex — ar(m)> + Aok | . (11)
k=0

The optimization problem (10) enlarges the set of possible
solutions compared to optimization problem (9), because
it omits the constraint for o given by (8). By considering
optimization problem (10), we are able to specify the
structure of the optimal event-trigger, which is given by
the following lemma.

Lemma 3. Let a be fixed. Then, for all k € {0,...,N — 1}
the variables e, and 7 are a sufficient statistics for the
optimal event-trigger fy, .

Proof. The evolution of the pair (ex, 7x) can be regarded
as a dg-controlled Markov process defined by (4) and (7).
The running cost of J at time %k is a function of the
pair (eg, 7%), input 0 and noise wy. By Bertsekas [2007],
this problem can be solved by dynamic programming with
(e, Tx) being the state, which is a sufficient statistics of
the optimal solution fj. This completes the proof. O

Lemma 3 implies that the optimal event-trigger is a

function of e and 7. It can be observed that for a fixed

event-trigger f, the optimal map « can be calculated

by (8). On the other hand, for any fixed map «, the

optimal event-trigger f can be calculated by dynamic

programming. We therefore define the running cost and

the Bellman operator as follows

Cgk (ek,Tk, 5k) = (1 — 5k)|€k — Oék(Tk)|2 + A\,

T * k1 () = min ¢ (-, 0k) + E[Jr1(err1, Trt1)] Okl
0,€{0,1}

The value function Ji being a function of the augmented

state (ey, 1) is determined by recursive application of the

Bellman equation given by

Je =T Tt
with Jy = 0, where the argument in the minimization
yields the optimal event-trigger f and we have

J(f, @) = Ef[Jo(eo, =1)].

This observation motivates us to propose the following
iterative procedure sketched in Fig. 2, which alternates
between optimizing f while fixing policy « and vice versa.

Algorithm 1 describes the iterative procedure. With slight
abuse of notation, we declared 75, as a second subscript
instead of an argument of «ay.



dynamic programming

estimator S event-trigger £

least squares estimation

Fig. 2. Iterative scheme to calculate event-trigger £ and
estimator S.

Algorithm 1 Iterative procedure to calculate (f, @)

Require: a%m eR, k=0,....N=-1,7, =—1,...,k—1
1: 140
2: repeat
3 k=N, Jyv=0
4 repeat
5: k<« k— 1
6 Ji Eakjjﬁ_l
7 fier, ) € argming, <q 1 cz’“ (ek, Ty O) +
E [Jks1(ert1, Thr1)ler, Tk, Ok
8: until k=0
9: a;;_lk — Efi [Zf::_lk akilil’wl|57k+1 =0,..., 0 =0
10: 14 1+1

11: until convergence

As the cost J decreases or is at least kept constant in each
step of the iteration, the sequence [(f°,a®), (f!,al),.. ]
produces a non-increasing succession of costs J.

In the following subsection, we are interested in the con-
vergence properties of the proposed iterative algorithm for
symmetric unimodal distributions.

3.8 Symmetric unimodal distributions

In the following, we consider the iterative procedure de-
scribed in previous subsection as a discrete-time dynamical
system and consider o as the state. By using Lyapunov
stability theory we show that o = 0 is a globally asymptot-
ically stable equilibrium point when the initial state ey and
the noise process {wy} have symmetric unimodal density
functions. The next lemma finds a potential equilibrium
point only by assuming symmetric distributions.

Lemma 4. Let the initial state ey and the noise pro-
cess {wy} have symmetric distributions. Then a* = 0 is
a fixpoint of the Algorithm 1. The policy of the event-
trigger f* that corresponds to ™ is an even mapping of e,
and independent of 7, for k =0,...,N — 1.

Proof. Let us choose the map a' to be 0 for all k and all 7
in the initialization of Algorithm 1. The cost function J
reduces then to

N-1

J(f,0%) =Eg | Y (1= di)lexl” + Ao

k=0
where e, evolves by recursion (7). Therefore, the resulting
optimal f? is only a function of e, for all k = 0,..., N — 1.

In the following, we first show that the application of
the Bellman operator 7,0 preserves symmetry of the value
function Jy4 1 for any k. Given an even value function Jy 1,
the conditional expectation E [Jxy1(€x+1,Tk+1)|" 0k] pre-
serves symmetry for both §; = 0 and §; = 1. Adding the
cost ¢ (-,0x) also preserves symmetry, because the sum
of two even functions is again even. Taking the pointwise
minimum of two even functions yields an even function.
Therefore, an even function remains even after application
of the Bellman operator. As Jy = 0 is an even function, it
follows by induction that every value function Jj is even
for k € {0,..., N — 1}. This implies that the f{ resulting
in the first iteration step from Algorithm 1 is an even
mapping of ey, if a¥ = 0.

Next, we calculate a! assuming fp being an even function
of ey for k€ {0,...,N —1}. Let ¢., |, be defined as the
density function of the conditional probability distribution
of ej, given 7 and & = 0, when using event-trigger f°. The
definition of ¢, |, yields the following calculation of a}w

04,1977 = / e be, |- (e)de
ecR

For k = 0, ¢, |, is determined by truncating the density
function ¢., of the initial state eo at all (e, T), where fq
takes a value of 1 and by normalizing the resulting func-
tion, i.e.
¢e \‘r(e): (b@o(e)'(l_fg(eﬂ-)) )
0 fee]R ¢eo (e) : (1 - fg(evT))de
Since ¢., and f§ are even functions, we conclude that Geo|r
is even and therefore we have af _; = 0. Along the same
lines, we can show that ¢, |x—1 is even and oy, ; = 0
for k € {1,..., N — 1} by replacing ¢, with ¢,, in (12) .
For a constant 7, the conditional density function eyl
evolves by the recursion

(2 Genr (1) % ) (e) - (1= fR(e, 7))
Jren (e () % du)(e) - (1= f(e,7))de

It can be observed that this recursion preserves symmetry
of the conditional density function ¢, |, as f,g is an even
function. Therefore, we have shown that o = 0 is a
fixpoint of Algorithm 1, which completes the proof. O

(12)

¢ek+1 |T(e) =

In above lemma, the distributions need not to be uni-
modal, but only symmetry properties are required. A
natural question arising from Lemma 4 is whether the
fixpoint at 0 is a stable and unique fixpoint. This question
is partly answered in the following Theorem by adding the
assumption that the distributions are unimodal.

Theorem 5. Let the initial state ey and the noise pro-
cess {wy} have symmetric and unimodal distributions.
Then, o = 0 is a globally asymptotically stable fixpoint
of Algorithm 1.

Proof. By considering the bias o' as a state variable that
evolves according Algorithm 1 with increasing iteration
index 7, and using the supremum norm of o' as a Lyapunov
candidate, it can be shown that the resulting system is



globally asymptotically stable with a unique equilibrium
at o = 0. A detailed proof can be found in Molin and
Hirche [2012].

Remark 2. As the iterative Algorithm 1 produces a se-
quence of pairs (f?, a') whose costs are non-increasing with
increasing ¢, we conclude that 0 is the optimal choice for «,
when noise distributions are symmetric and unimodal ac-
cording to Theorem 5. The optimal state estimator of
xy is then given by the linear predictor in (6) and is
therefore independent of the choice of the event-trigger f.
The distribution of the initial state, zg, must be also
symmetric and unimodal, but its mean Zy can be chosen
arbitrarily. Hence, the symmetry axis of the distribution
of g need not to be at zero. In order to determine the
optimal f*, dynamic programming must only be applied
once with a = 0. Therefore, the joint design approach in
the case of symmetric densities can be considered as an
independent design of event-trigger and estimator.

Remark 3. The result is in accordance with Lipsa and
Martins [2011] and constitutes an alternative way by an-
alyzing the asymptotic behavior of Algorithm 1 to prove
that symmetric event-triggering laws are optimal in the
presence of symmetric unimodal distributions. Moreover,
the iterative algorithm may be applied to arbitrary distri-
butions. Although a =0 is a fixpoint of the Algorithm 1
by Lemma 4 assuming symmetric density functions, the
next section shows that an independent approach given
by a = 0 can be outperformed by Algorithm 1 by almost
50%. Hence, we can conclude that symmetry of the densi-
ties is not sufficient to show that the independent design is
optimal. Therefore, additional assumptions are required to
show that the independent design is optimal. In the case of
Theorem 5 such requirement is given by the unimodality
assumption of the density functions.

4. NUMERICAL ILLUSTRATION

This section intends to outline the benefits of the proposed
iterative algorithm by numerical examples. These also
show that a = 0 is optimal for unimodal symmetric noise
distributions. We compare the iterative algorithm with the
optimal symmetric event-trigger having a linear predictor,
i.e. assuming a = 0. Suppose the system process to be
defined by (1) with a = 1, a communication penalty
A = 0.5, and the distribution of the initial state and the
system noise to be identical and defined by the density
function ¢,,

Bul,0) = 563 (11,0) + 505 (~11.0)

with ) )
(x—p)
On (1, 0) = e 2o
V2ro?
In the special case of © = 0, we retrieve the normal
distribution. In order to facilitate comparability between
different distributions, we choose p € [0,1) and set

oc=+/1—p?

that yields an identical variance of 1 for all p € [0,1). In
the limit p — 1, the noise process degrades to a Bernoulli
process taking discrete values {—1,1} with probability 1.
Various density functions for different p are sketched in
Fig. 3.
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Fig. 3. Various bimodal/unimodal density functions with
zero-mean and identical variance of 1 composed of two
Gaussian kernels shifted by 4pu.
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Fig. 4. Performance comparison for a horizon N = 10. The
degree of unimodality 1— g (1 for zero-mean Gaussian
and 0 for Bernoulli process with discrete parameters
in {-1,1}) is drawn on a logarithmic scale.

We observe that for u < 0.8 the peaks of the bimodal
density function are less distinctive. Therefore, we can not
expect that large gains of the iterative procedure can be
attained compared with the optimal symmetric solution
for i < 0.8. A performance comparison of the iterative pro-
cedure and the optimal symmetric event-trigger is drawn
in Fig. 4 for a horizon N = 10 and various p. The initial-
ization for the iterative procedure is chosen to be a® = 0.1.
As expected the costs are almost identical for p € [0, 0.8].
This also validates Theorem 5, since ¢,, is unimodal for
sufficient small choice of p. For p > 0.8 a rapid perfor-
mance improvement can be observed. In the limit ¢ — 1,
the costs are reduced by a factor of 45% by the iterative
procedure compared with the optimal symmetric event-
trigger. This may seem surprising, because the cost func-
tion as well as the noise distribution are all even functions.
Fig. 5 gives an illustrative explanation of such significant
performance improvement for N =1 and p = 0.95. With
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5. Event-trigger policy f (scaled by 0.007) re-
sulting from the iterative Algorithm 1 with initial
noise distribution ¢,, © = 0.95, horizon N = 1
and initial choice oy = 0.1. The algorithm con-

verges to ap = 0.95 and an asymmetric event-
trigger f(xo) = 1{[0.25,0.65)}(%0)-

Fig.

an initial value o = 0.1, the iterative algorithm converges

to ag = 0.95 and an asymmetric event-trigger policy
f(wo) = Tyg0.25,1.653(z0), whereas the optimal symmet-
ric event-trigger is given by f(zo) = I{_o.7,0.7}(0).

By asymmetric, we mean that the triggering thresholds
are not evenly spaced from the origin. The event-trigger
and estimator resulting from the iterative procedure have
therefore an implicit agreement, if no state update is sent
over the resource-constrained channel. In that case, no
transmission indicates the estimator that the state xg is
situated at the right peak resulting in the estimate ag. In
contrast to that, the linear predictor defined in (6), which
is optimal for the symmetric event-trigger, is independent
to the choice of the threshold of the symmetric event-
trigger and the noise-distribution.

5. CONCLUSIONS

By considering the joint optimal design of state estimator
and event-trigger as a two-player problem, an efficient
iterative algorithm is developed, which alternates between
optimizing the estimator while fixing the event-trigger and
vice versa. The iterative method reveals certain structural
characteristics of the optimal event-triggered estimator in
the case of unimodal and symmetric distributions of the
uncertainty. In this situation it is shown that the optimal
event-triggered estimator can be obtained by a separate
design and is given by a linear predictor and a symmetric
threshold policy. This result is along previous results and
offers an alternative line of proof for showing that such
separate design is optimal in case of symmetric unimodal
distributions.

In the case of symmetric and bimodal distributions, the
iterative procedure offers a systematic method, which
leads surprisingly to asymmetric event-triggers and biased
estimators that outperform symmetric threshold policies.

Similar properties of the iterative method are likely to
hold as well in the case of multidimensional systems and
are a subject of current investigations. Further research
also investigates to extend the proposed iterative proce-
dure to a sensor network setting, where various spatially
distributed sensors shall find a common state estimate
through exchanging information through a common digital
network.
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