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Abstract—This paper is concerned with the asynchronous
consensus problem of discrete-time second-order multi-agent
system under dynamically changing communication topology,
in which the asynchrony means that each agent detects the
neighbors’ state information to update its state information by
its own clock. It is not assumed that the agents’ clocks are
synchronized. Nor is it assumed that the time sequence over
which each agent update its state information is evenly spaced.
By using tools from graph theory and nonnegative matrix theory,
particularly the product properties of row-stochastic matrices
from an infinite set, we finally show that essentially the same
result as that for the synchronous discrete-time system holds in
the face of asynchronous setting. This generalizes the existing
result to a very general case.

Index Terms—Asynchronous consensus; Multi-agent systems;
Second-order dynamics.

I. INTRODUCTION

OVER the last decades, collective behaviors in networks
of autonomous agents has received a huge amount of

attention from different fields. One of the main reasons for that
comes from the abundance of technological applications multi-
agent systems (MAS): vehicle formations [10], [37], flocking
and swarming [19], [26], scheduling of automated highway
systems, sensor networks [13], [29], [38], microgrids [34], and
power systems [27], just to name a few.

It is worth noting that to solve the load restoration problem
for Microgrids, various soft computing algorithms have been
applied, in which MAS is one of the most popular distributed
solutions as opposed to those centralized control scheme which
lacks adaptivity to the structure changes of the power net-
works, see, e.g., [8] and [27]. But these MAS-based methods
apply only to certain power system of special structures.
Another of its shortcoming is that they lack of rigorous
stability or convergence analysis. Very recently, to address the
problems arising in the existing solutions, a fully distributed
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load restoration algorithm based on MAS which applies to the
network of any structure is proposed in [34], where mainly
the consensus theory is used to perform the convergence
and stability analysis. Such MAS consensus theory is further
extended in [35] to solve the load shedding problem for power
systems.

Consensus is well accepted as being a fundamental paradig-
m for coordination of multi-agent system. The consensus prob-
lem refers to the design of a consensus protocol through which
all agents are coordinated in the sense that they all agree on
some particular parameter of interest such as attitude, position,
velocity and etc.. Starting with the agreement algorithm in
[28], much progress has been made in studying the consensus
problems from various perspectives [1], [9], [11], [14]–[16],
[18], [25], [32], in which each agent dynamics is taken to be
a first-order integrator. Recently, the second-order consensus
problem in which each agent is governed by double-integrator
dynamics has also spurred great interest partly due to its ability
to model a broader class of complicated dynamical agents. For
example, holonomic mobile robot dynamics can be feedback
linearized as double integrators. Also, the unmanned aerial
vehicles and underwater vehicles are adjusted for their desired
motion directly by their accelerations rather than by their
speeds. Progresses toward this direction can be founded in
[21], [23], [24], [36], [39], [40], just to name a few. It is worth
noting that synchronization of complex dynamical networks,
such as small-world and scale-free networks, which is closely
related to the multi-agent consensus problem, has also been
widely studied (see, e.g., [4], [12], [17], [30]) from different
perspectives.

Most of the aforementioned works are concerned with
continuous-time dynamics. Considering in real applications the
information transmission among agents may not be continuous
due to the unreliability of communication channels or the
limited sensing ability of agents, there have been a number
of publications studying the discrete-time consensus problem
[3], [7], [20], [22], where each agent synchronously receives
its neighbors’ information at discrete times, in which the
synchrony means that all the agents update their states using
latest information of its neighboring agents at the same time.
However, considering that a central synchronizing clock may
not be available and the communication topology is dynam-
ically changing, it is of more practical interest to consider
the asynchronous consensus, i.e., each agent’s update action
is independent of the others’.

There are several publications considering the information
consensus of asynchronous first-order multi-agent systems [2],
[5], [33]. To the best of our knowledge, few works have
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considered the asynchronous consensus for agents modeled
by second-order dynamics with an exception in [6], in which
asynchronous discrete-time system with communication de-
lays is transformed into the convergence of a continuous
system with time-varying delays, and the balanced and strong-
ly connected assumption is imposed on the communication
topologies at each time instant in order to help perform the
convergence analysis. The balanced and strongly connected as-
sumption is a rather restrictive condition on the communication
topology as opposed to those investigating the asynchronous
consensus of first-order multi-agent systems [2], [33], in which
the communication topologies are relaxed to be repeatedly
jointly rooted.

We consider in this paper the asynchronous consensus of
discrete-time second-order multi-agent systems under dynam-
ically changing communication topologies. The model to be
investigated is closely related to our earlier work concerning
the synchronous consensus of second-order discrete-time [22].
In contrast to the work in [22], we will be focusing on the
case where the times at which the agent receives the state
information from its neighbors are independent of the other
agents, and the time sequence over which each agent update
its state information is not necessarily evenly spaced. The
differences between the current work and that in [22] lie
mainly in the following three perspectives: (1) The asyn-
chronous setting largely generalizes the synchronous case and
further includes its synchronous counterpart as a very special
case; (2) The technical issues brought by considering the
asynchronous setting is much more challenging compared with
the synchronous case, which require us to deal with the model
considered by using different methods; (3) The analysis of the
asynchronous systems is considerably more difficult than that
of their synchronous counterparts. One of the reasons comes
from the asynchronous setting itself. Another reason is purely
from the technical part that the length of update intervals may
take any value from an infinite set and that the set from which
the possible weighting factors are chosen is also infinite, both
of which makes the widely used method concerning product
property of row-stochastic matrices from a finite set invalid in
our work.

The remainder of the paper is organized as follows. Notation
and definitions reside in the next section. We formulate the
problem to be investigated in Section III and then state the
main result in Section IV, while consensus analysis for the
asynchronous discrete-time system is performed in Section V.
In Section VI, application-inspired numerical example show-
ing the effectiveness of the theoretical finding is simulated.
Some concluding remarks are finally drawn in Section VII.

II. NOTATION AND DEFINITIONS

Directed graphs (digraphs) will be used to model the com-
munication topologies among the agents. Let G = (V,E , A)
be a weighted digraph of order N with a finite nonempty
set of nodes V = {1, 2, . . . , N} , a set of edges E ⊂ V × V,
and a weighted adjacency matrix A = [aij ] ∈ RN×N with
nonnegative adjacency elements aij . An edge of G is denoted
by (i, j), meaning that there is a unidirectional exchange link

from i to j. The adjacency elements associated with the edges
are positive, i.e., (j, i) ∈ E ⇔ aij > 0. Moreover, we
assume aii = 0 for all i ∈ V. Given a nonnegative matrix
S = [sij ] ∈ Rn×n, the associated digraph of S, denoted by
Γ(S), is the directed graph with the node set V = {1, 2, . . . , n}
such that there is an edge in Γ(S) from j to i if and only if
sij > 0.

The set of neighbors of node i is denoted by Ni =
{j ∈ V : (j, i) ∈ E } . Denote by L = [lij ] the graph Laplacian
induced by weighted digraph G = (V,E , A), which is defined
by

lij =


N∑

k=1,k ̸=i

aik j = i

−aij j ̸= i

.

The graph Laplacian L associated with an undirected graph is
positive semi-definite, but the graph Laplacian associated with
an digraph does not have this property. In both the undirected
and directed cases, 0 is an eigenvalue of L with associated
eigenvector 1, where 1 denotes the column vector of all ones
with compatible dimension.

G is called a rooted graph or a graph has a directed spanning
tree if there exists at least one node, called the root, which
can be connected to each other node along a directed path
within G. A matrix M ∈ Rn×n is nonnegative (positive),
denoted as M ≥ 0 (M > 0), if all its entries are nonnegative
(positive). Let N the square matrix with the same dimension as
M , M ≥ N implies that M −N ≥ 0. Note that for arbitrary
nonnegative square matrices, say M and N , with the same
dimension satisfying M ≥ γN, where γ > 0, if Γ(N) is a
rooted graph then Γ(M) is also a rooted graph.

A nonnegative matrix M is said to be row stochastic if
all its row sums are 1. A row-stochastic matrix M is called
indecomposable and aperiodic (SIA) (or ergodic) if there exists
a column vector v ∈ Rn such that limk→∞ Mk = 1vT.
Let

∏k
i=1 Mi = MkMk−1 · · ·M1 denote the left product of

the matrices Mk,Mk−1, · · · ,M1. Given any row-stochastic
matrix P = [pij ], define λ(P ) = 1−mini,j

∑
k min{pik, pjk}

[31]. λ(P ) = 0 if and only if the rows of P are identical. Two
nonnegative matrices M and N are said to be of the same
type, denoted by M ∼ N , if they have zero elements and
positive elements in the same places. For example, given A =[
0.4 0 0.6
0 0.3 0.7
0 0 1

]
, B =

[
0.2 0 0.8
0 0.9 0.1
0 0 0.3

]
, C =

[
0.4 0 0.6
0.3 0 0.7
0 0 1

]
,

then matrices A and B are of the same type but A and C are
of different types.

III. PROBLEM DESCRIPTION

The system to be considered consists of N autonomous
agents, labeled 1 through N , all moving in the Euclidean space
Rp. Each agent is regarded as a node in a digraph G of order
N.

In the continuous-time setting, each agent is modeled by
second-order dynamics

ẋi = vi, v̇i = ui, i ∈ V, (1)

where xi ∈ Rp and vi ∈ Rp are, respectively, the position and
velocity of the ith agent, ui ∈ Rp is the distributed control
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input which uses only its own state information and the state
information of its neighbors. A consensus algorithm for (1)
that is investigated in [21], [23] and [36] is given by

ui(t) = −γvi +
∑

j∈Ni(t)
αij(t)(xj(t)− xi(t)), (2)

where γ > 0 denotes the velocity damping gain and Ni(t)
denotes the set of neighbors of agent i at time t. The depen-
dence of Ni(t) on t means that the communication topology
considered is dynamically changing.

In a real world application, information may not be trans-
mitted continuously due to the unreliability of communication
channels or the limited sensing ability of agents which results
in discrete-time formulation in which each agent obtains its
neighbors’ state information only at discrete times.

A. Synchronous Discrete-time System

In the discrete-time case, using the forward difference
approximation as that employed in [3] and [22], each agent in
the network has an estimate of the second-order information
state as follows:{

xi(tk+1)− xi(tk) = Tvi(tk)
vi(tk+1)− vi(tk) = Tui(tk)

, (3)

where xi(tk), vi(tk) and

ui(tk) = −γvi(tk) +
∑

j∈Ni(tk)
αij(tk)(xj(tk)− xi(tk)),

(4)
are, respectively, the position, velocity and control input of the
ith agent at time tk, and T > 0 is the step-size (or sampling
time). Obviously, the times at which each agent gets the state
information from its neighbors are synchronized and the step
sizes are same for each updating process. These relatively
restrictive conditions in real application naturally motivates the
investigation of the asynchronous system which is elaborated
in the following subsection.

B. Asynchronous System

In contrast to that specified in the above subsection, we con-
sider in this paper the asynchronous consensus in which each
agent independently detects its neighbors’ state information
at times determined by its own clock. Also, the event times
at which each agent update its states are are not necessarily
evenly spaced. More specifically, we assume that each agent
i ∈ {1, 2, . . . , N} receives or detects its neighbors’ states at
times ti0, t

i
1, . . . , t

i
k, . . . , which is denoted by a real number

sequence {tik} for simplicity. We further assume for each
i ∈ {1, 2, . . . , N} that {tik} satisfies the following constraints:

Tu ≤ tik+1 − tik ≤ T̄u, k ∈ N, (5)

where N denotes the set of nonnegative integers, ti0 = 0 and
Tu and T̄u are positive numbers.

Definition 1: We say that discrete-time system (3), (4) is
asynchronous if the times at which the agent receives its
neighbors’ states are independent of each other, i.e., {tik} is
independent of {tjk}, ∀i, j ∈ {1, 2, . . . , N}, i ̸= j.

Similar to that in [2], let us merge all the N time sequences
{tik}, i = 1, . . . , N, into a single ordered sequence T . Relabel

the elements of T as t0, t1, t2, . . . in such a way so that t0 = 0
and tk < tk+1, k ∈ N. Let τk = tk+1 − tk, k ∈ N. Note
that the independence of sequences {tik}, i = 1, . . . , N, does
not preclude the arbitrary closeness of such sequences from
different agents. Thus τk could be any positive number in
(0, T̄u], i.e. τk ∈ (0, T̄u], k ∈ N.

For any agent i ∈ {1, 2, . . . , N} and k ∈ N, there exists
s ∈ N such hat tis ≤ tk < tk+1 ≤ tis+1. Then the dynamics of
asynchronous discrete-time systems can be written as follows.{

xi(tk+1)− xi(tk) = τkvi(tk)
vi(tk+1)− vi(tk) = τkui(tk)

, (6)

where

ui(tk) = −γvi(tk) +
∑

j∈Ni(tk)
αij(tk)(xj(t

i
s)− xi(tk)).

(7)
Different from the assumption in [22], [36] that the set
from which all the weighting factors are chosen is finite,
it is assumed in this paper that all the nonzero and thus
positive weighting factors are uniformly and upper bounded,
i.e. αij(tk) ∈ [α, ᾱ] whenever j ∈ Ni(tk), where 0 < α < ᾱ.
It is worth pointing out that in (7), it is the state information
xj(t

i
s) instead of xj(tk) that is received by agent i in updating

the state information. This is because agent i only receives the
state information of agent j at time tis.

Remark 1: By slightly modifying algorithm (7), we can get
the following algorithm

ui(tk)

=− γvi(tk) +
∑

j∈Ni(tk)

αij(tk)
(
[xj(t

i
s)− xi(tk)]− [δj − δi]

)
,

which can be used to guarantee the differences of the agents’
position states converge to the desired values, i.e. xj(tk) −
xi(tk) → ∆ij = δi − δj , where δi ∈ Rp, i = 1, . . . , N , are
constant vectors. However, the consensus analysis for these
two algorithms are essentially the same. To see this, one can
use xj − δj to replace xj perform the consensus analysis.

For simplicity, we assume in what follows p = 1. However,
all results still hold for any positive integer p by introducing
the notation of the Kronecker product ‘

⊗
’.

We say that consensus is reached for asynchronous system
(6), (7) if for any initial position and velocity states,

limk→∞ xi(tk) = limk→∞ xj(tk)

and
limk→∞ vi(tk) = 0, i, j ∈ V.

It is assumed that xi(tk) = xi(0) and vi(tk) = vi(0) for any
k < 0 and i, j ∈ V .

IV. MAIN RESULT

To state the main result, we need to introduce a few
definitions. Denote Ḡ as the set of all possible communication
topologies for all the N agents1. The union of a group of
digraphs {Gi1 , . . . , Gik} ⊂ Ḡ is a digraph with the same

1Ḡ is infinite since the set consisting of the weighting factors is infinite.
However, there are only finite different topological structures in Ḡ.
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node set and the edge set given by the union of the edge sets
of Gij , j = 1, . . . , k.

A finite sequence of digraphs with the same node set is
said to be jointly rooted if the union of such finite sequence
of digraphs is a rooted graph, while an infinite sequence of
digraphs G0, G1, G2, . . . , with the same node set is called
repeatedly jointly rooted if there exists an infinite sequence
of contiguous, nonempty, uniformly bounded time intervals
[kj , kj+1), j = 1, 2, . . . , starting at k1 = 0, for which
each finite set of digraphs Gkj , Gkj+1, . . . , Gkj+1−1 is jointly
rooted [9], [25].

Remark 2: The definition of repeatedly jointly rooted di-
graphs used here is slightly different from that in [2], in
which all the time intervals are with the same length, i.e. all
kj+1 − kj’s, j = 1, 2, . . . , are the same as each other.

Each edge (i, j) in digraph G(tk) corresponds to a unidi-
rectional information link from i to j at time tk, where G(tk)
denotes the communication topology at time tk, k ∈ N.

In the face of synchronous setting, the result concerning
the consensus of discrete-time second-order agents under
switching topology is rephrased as follows.

Theorem 1: (Theorem 3, [22]) Assume that the velocity
damping gain γ satisfies 2

√
dmax ≤ γ < 2

T , where dmax =
(N − 1)ᾱ. Then consensus is reached for the synchronous
discrete-time system (3), (4) if the infinite sequence of di-
graphs G(t1), G(t2), . . . is repeatedly jointly rooted.

The final aim of this paper is to prove that essentially the
same result holds in the face of asynchronous setting.

Theorem 2: Assume that γ satisfies 2
√
dmax ≤ γ < 2

T̄u
,

where dmax = (N−1)ᾱ. Then consensus is reached for asyn-
chronous system (6), (7) if the infinite sequence of digraphs
G(t1), G(t2), . . . is repeatedly jointly rooted.

V. CONSENSUS ANALYSIS

This section aims to give a Proof of Theorem 2. The
analysis is motivated by the work in [2] and [33], the time
sequences at which each agent detects its neighbors’ state
information are merged into a single ordered sequence T
and then asynchronous discrete-time system is casted into
an equivalent augmented synchronous discrete-time which
evolves over time sequence T . Finally, mixed tools from graph
theory and nonnegative matrix theory, particularly the infinite
product properties of row-stochastic matrices from an infinite
set, is employed to prove that essentially the same result as
that for the synchronous case holds in the face of asynchronous
setting.

Follow the above proof guidelines, we first perform the
following model transformation, which helps us deal with
the asynchronous consensus problem for an equivalent trans-
formed synchronous discrete-time system evolving on the
index set of T . Denote y(tk) =

2
γ v(tk) + x(tk) and r(tk) =[

xT(tk), y
T(tk)

]T, where x(tk) = [x1(tk), · · · , rN (tk)]
T and

v(tk) = [v1(tk), · · · , vN (tk)]
T
.

Denote by L(tk) the graph Laplacian induced by graph
G(tk). Further, let m̌ denote the upper bound for the number
of elements in set {tj : tj ∈ [tik, t

i
k+1), j ∈ N} for any

i = 1, . . . , N , and k = 0, 1, . . . . The following result is from
[33] (see Lemma 1 therein).

Lemma 1: Let m̌ be the integer as defined above, m̌ =
(⌊T̄u/Tu⌋+ 1)(N − 1) + 1, where ⌊T̄u/Tu⌋ is the maximum
integer not greater than T̄u/Tu.

Let ξ(k) = [r(tk)
T, r(tk−1)

T, . . . , r(tk−m̌+1)
T]T, where

k ≥ m̌ − 1. Given any square matrix A = [aij ], let
diag{A} denote the diagonal matrix with the ith diago-
nal element equals to aii. By observing the expression of
system (6), (7), there exists a state matrix, denoted by
M(γ, τk,Ξ1(γ, τk, tk), . . . ,Ξm̌(γ, τk, tk)), which is defined
as that in (8),

where

Ξ1(γ, τk, tk)

=

[
(1− γτk

2 )In
γτk

2 In
γτk

2 In − 2τk

γ (diag{L(tk)} −A1(tk)) (1− γτk

2 )In

]
and

Ξℓ(γ, τk, tk) =

[
0N,N 0N,N

2τk

γ Aℓ(tk) 0N,N

]
, ℓ = 2, 3, . . . , m̌,

such that

ξ[k + 1]

=M(γ, τk,Ξ1(τk, tk, tk), . . . ,Ξm̌(τk, tk, tk))ξ[k]. (9)

Note that A1(tk), . . . , Am̌(tk) are nonnegative matrices
satisfying A1(tk) + A2(tk) + · · · + Am̌(tk) = A(tk), where
A(tk) = diag{L(tk)} − L(tk) is the adjacency matrix
associated with digraph G(tk) and if tis = tk−k′ , where
k

′ ∈ {0, 1, . . . , m̌− 1}, then the ith row of matrix Ak′+1(tk)
is equal to the ith row of matrix A(tk), while the ith rows
of all the other matrices in A1(tk), . . . , Am̌(tk) are equal to
zeros.

We begin our analysis with the following observation.
Lemma 2: Let dmax = (N − 1)ᾱ, then Ξ(γ, τk, tk) =

Ξ1(γ, τk, tk) + Ξ2(γ, τk, tk) + · · · + Ξm̌(γ, τk, tk), k ∈ N,
is a row-stochastic matrix with positive diagonal elements if
γ satisfies

2
√
dmax ≤ γ <

2

T̄u
. (10)

Proof. The result follows directly by observing the fact that

Ξ(γ, τk, tk)

= Ξ1(γ, τk, tk) + Ξ2(γ, τk, tk) + · · ·+ Ξm̌(γ, τk, tk)

=

[
(1− γτk

2 )In
γτk

2 In
γτk

2 In − 2τk

γ L(tk) (1− γτk

2 )In

]
.

and the constraints on γ. �
Based on the above lemma, now we have the following

result.
Lemma 3: Suppose that γ satisfies the inequality in

(10). Let {z1, z2, . . . , zq} be any finite subset of N
for which the sequence of digraphs G(tz1), G(tz2),
. . . , G(tzq ) is jointly rooted. Then the sequence of digraphs
Γ(Ξ(γ, τz1 , tz1)),Γ(Ξ(γ, tz2 , tz2)), . . . ,Γ(Ξ(γ, tzq , tzq )) is al-
so jointly rooted.

Proof. According to the definition of the union of a
group of digraphs, the union of digraphs Γ(Ξ(γ, τz1 , tz1)),
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M(γ, τk,Ξ1(γ, τk, tk),Ξ2(γ, τk, tk), . . . ,Ξm̌(γ, τk, tk))

=


Ξ1(τk, tk, tk) Ξ2(τk, tk, tk) · · · Ξm̌−1(τk, tk, tk) Ξm̌(τk, tk, tk)

I2N 0 · · · 0 0
0 I2N · · · 0 0
...

...
. . .

...
...

0 0 · · · I2N 0

 ∈ R2Nm̌×2Nm̌, (8)

Γ(Ξ(γ, τz2 , tz2)), . . . ,Γ(Ξ(γ, τzq , tzq )) is exactly the digraph
Γ(

∑q
ℓ=1 Ξ(γ, τzℓ , tzℓ)). Because γ satisfies the inequality in

(10), it follows from Lemma 2 that Ξ(γ, τzℓ , tzℓ), ℓ =
1, 2, . . . , q, is a row-stochastic matrix with positive diagonal
entries. Let δ = min{τz1 , τz2 , . . . , τzq}, by observing the
form that Ξ(γ, τzℓ , tzℓ) takes in, one can get that∑q

ℓ=1
Ξ(γ, τzℓ , tzℓ) ≥

[
0 γ

2 qδIn
2
γ δ(

∑q
ℓ=1 A(tzℓ)) 0

]
≥ δ̄

[
0 In∑q

ℓ=1 A(tzℓ) 0

]
= δ̄

[
M11 M12

M21 M22

]
,

where δ̄ = min{ 2
γ δ,

γ
2 qδ} > 0, M11 = 0N×N , M12 =

IN , M21 =
∑q

ℓ=1 A(tzℓ), and M22 = 0N×N . With the
above inequality which implies a close relation between di-
graph Γ(

∑q
ℓ=1 Ξ(γ, τzℓ , tzℓ)) and Γ(

∑q
ℓ=1 A(tzℓ)), we can

find a root of digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) based on
Γ(

∑q
ℓ=1 A(tzℓ)), the union of digraphs G(tz1), G(tz2), . . . ,

G(tzq ), which is a rooted graph according to the given
condition.

Checking the entries in matrix M21 one can find if (i, j) is
an edge in digraph Γ(

∑q
ℓ=1 A(tzℓ)) then (i, n+ j) is an edge

in digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)) for any i, j = 1, . . . , N,
i ̸= j, and checking the entries in matrix M12 one can
get that edge (n + i, i) ∈ Γ(

∑q
ℓ=1 Ξ(γ, τzℓ , tzℓ)) for any

i = 1, . . . , N. In what follows, we will specify how to find a
root of digraph Γ(

∑q
ℓ=1 Ξ(γ, τzℓ , tzℓ)). Assume ℓ is the root

of digraph Γ(
∑q

ℓ=1 A(tzℓ)) and without loss of generality
denote by (ℓ → k) the directed path connecting node ℓ to
node k within digraph Γ(

∑q
ℓ=1 A(tzℓ)), k ∈ {1, . . . , N},

k ̸= ℓ. By splitting each edge, say (i, j) in directed path
(ℓ → k), into edges (i,N + j), (N + j, j) and adding
edge (N + ℓ, ℓ) to node ℓ one can get a directed path in
digraph Γ(

∑q
ℓ=1 Ξ(γ, τzℓ , tzℓ)) connecting node N + ℓ to

node k, ∀k ∈ {1, . . . , N}, k ̸= ℓ. Obviously, this procedure
simultaneously results in a directed path connecting node N+ℓ
to node N + k, ∀k ∈ {1, . . . , N}, k ̸= ℓ. Combing the above
arguments implies that node N + ℓ can be connected to any
other node in digraph Γ(

∑q
ℓ=1 Ξ(γ, τzℓ , tzℓ)) and thus it is a

root of digraph Γ(
∑q

ℓ=1 Ξ(γ, τzℓ , tzℓ)). �
Assume, in the sequel, that γ satisfies 2

√
dmax ≤ γ < 2

T̄u
.

Then, by Lemma 2, all possible Ξ(γ, τk, tk) must be nonneg-
ative with positive diagonal elements. In addition, for each
fixed γ, denote by D̃(γ) the set consisting of all possible
matrices Ξ(γ, τk, tk), k ∈ N. To proceed further we need to
exploit the compactness of D̃(γ) (see Remark 4 for the reason

why we need to do so), this is reasonable since the set of all
2Nm̌ × 2Nm̌ matrices can be viewed as the metric space
R(2Nm̌)2 . Unfortunately, D̃(γ) itself is not compact, this is
because (0, T̄u], the interval from which τk is chosen, is not a
compact set. Instead of investigate D̃(γ) directly, we consider
the following set

D(γ)

=

{
Ξ(γ, τ)

∣∣∣∣Ξ(γ, τ) = [
(1 − γτ

2 )In
γτ
2 In

γτ
2 In − 2τ

γ L (1 − γτ
2 )In

]
,where

L = [lij ] is a graph Laplacian, li,j ∈ {0} ∪ [α, ᾱ],

∀i, j ∈ {1, . . . , N}, i ̸= j, and τ ∈ [0, T̄u]

}
.

Clearly, D̃(γ) is a subset of D(γ). However, different from
D̃(γ) which is not compact, D(γ) is a compact set. This
argument is stated and carefully proved as follows.

Lemma 4: For each γ satisfying 2
√
dmax ≤ γ < 2

T̄u
, D(γ)

is a compact set.
Proof. Note that the set of all 2N × 2N matri-

ces can be viewed as the metric space R4N2

. Each
Ξ = [Ξi,j ] in D(γ) can be viewed as a vec-
tor [Ξ1,1, . . . ,Ξ1,2N ,Ξ2,1, . . . ,Ξ2,2N ,Ξ2N,1, . . . ,Ξ2N,2N ] in
R4N2

. Denote by D(γ, τ) the set consisting of the elements
in D(γ) for each fixed τ ∈ [0, T̄u], it is then clear that
D(γ) is compact if each D(γ, τ) is compact since D(γ) =∪

τ∈[0,T̄u]
D(γ, τ) and [0, T̄u] is a compact set. Note that when

τ = 0, D(γ, τ) is compact since it is a set consisting of only
one point in R4N2

. In what follows, we consider the case that
τ ∈ (0, T̄u]. Let

Si

=

{
[Ξi,1, . . . ,Ξi,2n]

∣∣∣∣[Ξi,1, . . . ,Ξi,2N ] is the vector taken from

the i-th row of Ξ,Ξ ∈ D(γ, τ)

}
, i = 1, . . . , 2N, τ ∈ (0, T̄u].

Then, D(γ, τ) = S1×S2×· · ·×S2N and D(γ, τ) is compact
if each Si (i = 1, 2, . . . , 2N) is compact. Considering that
each Si, i = 1, 2, . . . , N , is a set with only one element in
R4N2

, the compactness of which follows directly, and thus we
will only prove in the sequel that SN+1 is compact, but the
proof of the compactness for the other SN+k’s, k = 2, . . . , N
can be obtained in exactly the same way.

By observing the form that each Ξ in D(γ, τ) takes in, we
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have

SN+1

=

{
Ξ(N+1) = [ΞN+1,1, . . . ,ΞN+1,N , 1− γτ

2
, 0, . . . , 0]

∣∣∣∣
Ξ(N+1) is the vector taken from the (N + 1)−th row of Ξ,

Ξ ∈ Υ(α, T )

}
.

Denote C1 as

C1

=

{
[x1, x2 . . . , xN , 1− γτ

2
, 0, . . . , 0]

∣∣∣∣γτ2 − 2τdmax

γ
≤ x1

≤ 2τ

γ
, and xj ∈ {0} ∪ [

2τ

γ
α,

2τ

γ
ᾱ], j = 2, . . . , n

}
.

C1 is compact since it is the product space of 2N compact
spaces in R1. Moreover, SN+1 ⊂ C1, but SN+1 ̸= C1. This
is because there is an extra constraint imposed on SN+1, i.e.,
the sum of all the elements in each vector of SN+1 is 1. To
illustrate accurately the relation between SN+1 and C1, we
introduce the following continuous multivariate function:

f : R2N → R,

f(x) :=
2N∑
i=1

xi, ∀x = [x1, x2, . . . , x2N ] ∈ R2N .

Since f is continuous and {1} is a compact set, f−1({1})
is compact. This, together with the fact that S1 = f−1({1})∩
C1 and C1 is compact, implies that S1 is compact, thereby
completing the proof. �

Let Π(γ) denote the set of matrices
Ξ1 Ξ2 · · · Ξm̌−1 Ξm̌

I2N 0 · · · 0 0
0 I2N · · · 0 0
...

...
. . .

...
...

0 0 · · · I2N 0

 ,

such that Ξ1,Ξ2, . . . ,Ξm̌ ∈ Λ(Ξ(γ, τ)) and Ξ1 + Ξ2 + . . .+
Ξm̌ = Ξ(γ, τ), where Ξ(γ, τ) ∈ D(γ), τ ∈ [0, T̄u], and
Λ(Ξ(γ, τ)) = {Ξ = [Ξij ] : Ξij = Ξij(γ, τ) or Ξij =
0, i, j = 1, 2, . . . , 2N}. Clearly, the set Π(γ) include all
possible state matrices of system (9). Π(γ) is a compact set
which can be obtained by observing the the fact that given
any Ξ(γ, τ) ∈ D(γ), all the possible choices of Ξ1, · · · ,Ξm̌

are finite and then using the similar proof as that for Lemma
4.

Given any positive integer K, define

Π(γ,K)

=
{∏ϵ

i=1
M(γ, τ i,Ξi1, . . . ,Ξim̌) : M(γ, τ i, ·) ∈ Π(γ) and

there exists an integer ϵ, 1 ≤ ϵ ≤ K such that the sequence

of digraphs Γ(
∑m̌

j=1
Ξij), i = 1, . . . , ϵ, is jointly rooted

}
.

Π(γ,K) is also a compact set, which can be derived by
noticing the following facts: 1) Π(γ) is a compact set; 2) all

possible choices of ϵ are finite since ϵ is bounded by K; 3) all
possible choices of the root node are finite; 4) given ϵ, a root
and a directed spanning tree that is incurred by this root, the
following set{∏ϵ

i=1
M(γ, τ i,Ξi1, . . . ,Ξim̌) : M(γ, τ i, ·) ∈ Π(γ) and the

union of the digraphs Γ(
∑m̌

j=1
Ξij), i = 1, . . . , ϵ, contains

the specified directed spanning tree
}

is compact (this can be proved by following the similar proof
of Lemma 10 in [33]). Note that the set Π(γ,K) includes all
possible products of ϵ, ϵ ≤ K, consecutive state matrices of
system (9).

To derive the main result, we need the classical results
concerning the infinite product properties of row-stochastic
matrices. Before that, we first introduce some useful notation
from [31]. Let A = {A1, . . . , Ak} (A can be an infinite set)
be a set of square matrices which are of the same order. By a
word (in the A′s, A ∈ A) of length m we mean the product
of m A′s (repetitions permitted). The main results in [31] is
rephrased as follows.

Lemma 5: ( [31]) Let M = {M1,M2, . . . ,Mq} be a finite
set of n × n SIA matrices with the property that for each
sequence Mi1 ,Mi2 , . . . ,Mij of positive length, the matrix
product MijMij−1

· · ·Mi1 is SIA. Then, for each infinite
sequence Mi1 ,Mi2 , . . . there exists a column vector c ∈ Rn

such that

limj→∞ MijMij−1 · · ·Mi1 = 1cT. (11)

In addition, if there are infinite many elements in M, i.e. M
is an infinite set, let φ(n) (which may depend on n) denote
the number of different types of all n× n SIA matrices, then
λ(W ) < 1 for any word W in the M ′s, M ∈ M, of length
φ(n) + 1. Furthermore, if there there exists a constant 0 ≤
d < 1 satisfying λ(W ) ≤ d for all the words in the M ′s of
length φ(n) + 1, then (11) still holds.

Remark 3: Apparently, the product of row-stochastic matri-
ces from an infinite set is much more complicated than that
of the finite case. Lemma 5 shows for the infinite case, the
existence of such d as that defined in Lemma 5 is of key role
in establishing equation (11).

The following result is key in establishing the convergence
analysis, which paves the way for us to use the result in
Lemma 5.

Lemma 6: For any Φ1, . . . ,Φk ∈ Π(γ,K), where k =
φ(2Nm̌) + 1, there exists a constant 0 ≤ d < 1 such that
λ(
∏k

i=1 Φi) ≤ d.
Proof. We first prove that for any Φ ∈ Π(γ,K),

Φ is a SIA matrix. According to the definition of
Π(γ,K), there exist positive integer ϵ (1 ≤ ϵ ≤ K),
M(γ, τ i,Ξi1, . . . ,Ξim̌) ∈ Π(γ), i = 1, . . . , ϵ, such that
Φ =

∏ϵ
i=1 M(γ, τ i,Ξi1, . . . ,Ξim̌) and the sequence of di-

graphs Γ(
∑m̌

j=1 Ξij), i = 1, . . . , ϵ is jointly rooted.
Since M(γ, τ i,Ξi1, . . . ,Ξim̌) ∈ Π(γ),

∑m̌
j=1 Ξij must be

nonnegative matrices with positive diagonal elements. Fur-
thermore, by observing the form that

∑m̌
j=1 Ξij takes in, one
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can get that there exists a positive number µ = min{1, 1 −
γT̄u

2 } < 1 such that diag(
∑m̌

j=1 Ξij) ≥ µI2N , for any
M(γ, τ i,Ξi1, . . . ,Ξim̌) ∈ Π(γ). Combining this with the
condition that the sequence of digraphs Γ(

∑m̌
j=1 Ξij), i =

1, . . . , ϵ, is jointly rooted, we can prove that matrix Φ is SIA
by following the proof of Lemma 7 in [32]. Let

d = max
Φi∈Π(γ,K)

λ(
∏k

i=1
Φi).

Recall that each matrix in Π(γ,K) is of order 2Nm̌. Since∏k
i=1 Φi is a word in the Φ’s (Φ ∈ Π(γ,K)) is of length k =

φ(2Nm̌)+1, it follows from Lemma 5 that λ(
∏k

i=1 Φi) < 1.
This, together with the fact that Π(γ,K) is a compact set
and λ(·) is continuous, implies that there exists a positive
number d and 0 ≤ d < 1 such that λ(

∏k
i=1 Φi) ≤ d for

any Φ1, . . . ,Φk ∈ Π(γ,K). �
Remark 4: It can be seen from the proof of Lemma 6 that

the compactness of set Π(γ,K) is key to prove the existence
of such d that satisfies 0 ≤ d < 1. This is also the reason
why we define Π(γ) and Π(γ,K) based on D(γ) rather than
D̃(γ).

We will denote M(γ, τk,Ξ1(tk), . . . ,Ξm̌(tk)), the state
matrix of system (9), by M(tk) for simplicity if it is clear
from the context. Recall that Ξ(γ, τk, tk) = Ξ1(γ, τk, tk) +
Ξ2(γ, τk, tk) + · · · + Ξm̌(γ, τk, tk). With the above prepara-
tions, we are now finally in a position to prove the main result.

Proof of Theorem 2: We first prove that consensus can be
reached for system (9). Let Φ(tk, tk) = I2Nm̌, k ≥ 0, and
Φ(tk, tl) = M(tk−1) · · ·M(tl+1)M(tl), k > l ≥ 0.

Since the infinite sequence of graphs G(t0), G(t1), . . . is
repeatedly jointly rooted, there exists an infinite sequence
of contiguous, nonempty, uniformly bounded time intervals
[kj , kj+1), j = 1, 2, . . . , starting at k1 = 0, for which each
finite sequence of graphs G(tkj ), G(tkj+1), . . . , G(tkj+1−1)
is jointly rooted. Assume, without loss of generality, that
the lengths of all the time intervals [kj , kj+1), j =
1, 2, . . . , are bounded by K. It follows from Lemma 3
and the condition that the sequence of digraphs G(tkj ),
G(tkj+1), . . ., G(tkj+1−1) is jointly rooted that the se-
quence of digraphs Γ(Ξ(γ, τkj , tkj )), Γ(Ξ(γ, τkj+1, tkj+1)),
. . ., Γ(Ξ(γ, τkj+1−1, tkj+1−1)) is also jointly rooted for each
j ∈ N, which, together with the proof of Lemma 6, im-
plies that Φ(tkj+1,tkj

) =
∏kj+1−1

k=kj
M(tk) ∈ Π(γ,K). S-

ince Φ(tkj , 0) = Φ(tkj , tkj−1)Φ(tkj−1 , tkj−2) · · ·Φ(tk2 , tk1),
it then follows from Lemma 5 and Lemma 6 that

limj→∞ Φ(kj , 0) = 12Nm̌wT, (12)

where w ∈ R2Nm̌ and w ≥ 0.
The remaining part then can be completed by mimicking

an argument similar to the proof of Theorem 2 in [9]. That is,
for each m > 0, let kl be the largest nonnegative integer such
that kl ≤ m. Note that matrix Φ(tm, tkl

) is row stochastic,
thus we have

Φ(tm, 0)− 1wT = Φ(tm, tkl
)Φ(tkl

, 0)− Φ(tm, tkl
)1wT

= Φ(tm, tkl
)(Φ(tkl

, 0)− 1wT).

The matrix Φ(tm, tkl
) is bounded because it is the product of

finite matrices which come from a bounded set Π(γ). By using

(12), we immediately have limm→∞ Φ(tm, 0) = 12Nm̌wT.
Combining this with the fact that ξ(tm) = Φ(tm, 0)ξ(0)
yields limm→∞ ξ(tm) = (wTξ(0))12Nm̌, which in turn,
together with the fact that y(tm) = 2

γ v(tm) + x(tm), im-
plies limm→∞ x(m) = limm→∞ y(m) = (wTξ(0))1N and
limk→∞ v(m) = 0, and therefore completing the proof. �

VI. NUMERICAL EXAMPLE

In this section, we present an example to demonstrate the
effectiveness of our result.

Consider a group of four autonomous ground robots which
are shown in Figure 1. Assume that each robot is governed by
double-integrator dynamics (1), and further that each robot’s
update intervals are uniform random variables over [0.2, 0.5].
Assume that the weighting factor of each edge of the commu-
nication topology is 1. We further assume the system evolves
in the following asynchronous way
(1) robot 2 can receive the state information of robot 1 at

update times t24k+1, k ∈ N;
(2) robot 3 can receive the state information of robot 4 at

update times t34k+2, and receive the state information of
robot 1 at update times t34k+3, k ∈ N;

(3) robot 4 can receive the sate information of robot 2 at
update times t44k+2, and receive the state information of
robot 3 at update times t44k, k ∈ N.

Fig. 1. Four ground robots (photo taken at the Australian National
University).

1 2

43

Fig. 2. A rooted graph in which node 1 is the root.

We further assume that γ = 2 which satisfies the inequality
in (10) since dmax = 1 and T̄u = 0.5. Obviously, the infinite
sequence of digraphs G(t1), G(t2), . . . is repeatedly jointly
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Fig. 3. Position trajectories for the robots evolving according to asynchronous
system (6), (7).
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Fig. 4. Velocity trajectories for the robots evolving according to asynchronous
system (6), (7).

rooted (see Figure 2 for the union of the communication
topologies across a sufficiently long but bounded time interval,
in which node 1 is the root). It can be seen from Figure 3 and
Figure 4, which show respectively the position and velocity
trajectories of the four robots that consensus is finally reached
for the asynchronous system (6), (7).

VII. CONCLUSIONS

We have investigated in this paper the asynchronous con-
sensus problem of discrete-time second-order multi-agent sys-
tem under dynamically changing communication topology, in
which a very general setting as opposed to the synchronous
case has been considered. By merging the time sequences
at which each agents detects its neighbors’ state information
into a single ordered sequence T and then casting the asyn-
chronous discrete-time system into an equivalent augmented
synchronous discrete-time system which evolves over time
sequence T , it has been shown by rigorous analysis that based

on some conditions on the velocity damping gain, consensus
can be reached if the infinite sequence of communication
topologies over the time sequence T is repeatedly jointly root-
ed, which is essentially the same condition for guaranteeing
the synchronous consensus and thus extending the existing
results to a very generalized case.
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