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Abstract— Under many circumstances event-triggered con- systems, whose control loops are closed over a shared
trol outperforms time-triggered control schemes when resowces  communication networks.
such as communication, computation, or energy are sparse. Related work can be found in [2], [4], [7]-[9] that analyze
This paper investigates another benefit of event-triggered con- . TR . .
trol concerning the ability of adaptation. The system under the performance of event-triggered schem.es In Contgntlon-
consideration comprises multiple heterogeneous control loops based networked control systems. Conclusions vary with the
that are closed over a shared communication network. Each choice of the communication model. Using CSMA models
subsystem is modelled as a discrete-time stochastic linear with priority or randomized arbitration as [2], [4], event-
system. The design problem is formulated as an average yjgqered control outperforms significantly periodic awht

cost Markov decision process (MDP) with unknown global . . .
system parameters that are to be estimated during execution. schemes. Unlike [2], [4], it has been shown in [7], [8]

Techniques from distributed optimization and adaptive MDPs  that time-triggered scheduling outperforms event-trigde
are used to develop distributed self-regulating event-triggers schemes for slotted and unslotted ALOHA transmission
that adjust their transmission rate to meet a global resource schemes. In [9], time-triggered and event-triggered sagpl
ZO“Stra'?]t' Ng”.}ler'ca' s'”;]ma“ons show the effectiveness of the gchemes are compared within different communication mod-
pproach and fllustrate the convergence properties. els. It is concluded that the choice of both the sampling
. INTRODUCTION scheme and the model significantly influence the perfor-

The recent increased interest in networked control s Ste”rpsance of the overall system.
Y Throughout the aforementioned work, the design of the

and cyber-physical systems has led to various paradig o . .
shifts in the digital control design. The systems undeé%nt triggered control scheme is determined beforehand

. . ; . in a centralized fashion. This might be inconvenient, as
consideration usually consist of a multitude of small-scal

integrated entities coupled through a common communicit s difficult to implement, as the number of subsystems
nteg up 9 : ) ?night be large, and it lacks of flexibility, as it needs to be
tion network. The efficient usage of available resourcés, li

communication. computation. or enerav. is a prerequisite f rerun completely whenever changes in the system occur. The
' P ' 9y, prereq ability of adaptation of event-triggered control systenas h

the supcessful operation of such control systems. This f‘?\%t been studied properly yet. This motivates us to address
has stimulated researchers to look for advanced sampli problem of designing event-based controllers for beter

hem nd th nventional periodi mplin h S
f(;: ri dlf:ebfg:oﬂceecg?]su?n 'gor? ?Ae Ia?rdg Z?no%ntgosfclitzrggneous subsystems closed over a common communication
ption. 9 network in a distributed manner.

atur.e [1]-6] shows that event-triggered contr ol sc-hemes The contribution of this paper is to develop a distributed
ach|ev|e tEe same hﬁontrgl perforzmanceb as 1}'me'tr'lgger.%ﬁgorithm for an event-triggered control system, whereheac
cpptro schemes, while reducing .t € humber of samples S'gﬂbsystem adjusts its event-triggering mechanism to opti-
nificantly. Potential p_roblem settings where event-trigge mally meet a global resource constraint imposed by the com-
control has been applied successfully range from contret ov

icati 11-141 and multi ¢ svst 51 to th munication network. The problem is formulated in the MDP
communications [1]-{4] and mu -agent sys ems [5] to §ramework with an average cost criterion. Each subsystem
control design in embedded real-time systems [6].

Besides th ity f ficient f is modelled as a discrete-time stochastic linear systern wit
esides the necessily Tor an efficient use o _re‘c’_ou_rceg’quadratic control cost. The communication constraint is
other non-functional requirements like self-configuripil

. o .given by limiting the total average transmission rate of all
and adaptability need to be addressgd Ll des'@absystems. Such formulation has been successfully dpplie
of networked control and cyber-physical systems. In th

isioned " local entit h 4o fh [4] to approximate a communication system with a limited
envisioned system, focal entilies, Such as Sensor NOGes, @, ,per of transmission slots per time step. Despite of

aware that a common resource 1s Shar.‘?d among ‘h‘?m- S relaxation to an average transmission constraint which
awareness is reflected in the capability of adjusting th

i te adaptively t duce 1eso od hJ nores that collisions may occur during transmission, it
sampiing rate adaptively 1o reduce resource needs, Whjlg.,s ot in [4] that the approximative approach serves as
maintaining a certain amount of performance. To be mor

ific. thi id ltiole ind dent cont good approximation for the problem with a hard trans-
specilic, This paper considers mulliple independent contrg,ission constraint. Inspired by distributed optimizatimd
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system to adjust their event-triggering thresholds. Nicaér Ukl pi |Zk
simulations are conducted to illustrate the effectivenafss
the obtained algorithm. o ¢ s
The remaining part of this paper is structured as follows. communieation
In Section Il, we introduce the system model and describe the
problem statement. Section Il develops the adaptive event
triggered controller. The efficiency of the proposed apphoa
is illustrated in Section IV by numerical simulations.
Notation. In this paper, the operatqr)™ and tr[-] denote
the transpose and trace operator, respectively. The Eaclid
norm is denoted by - ||2. The variableP denotes the prob-
ability measure on the abstract sample space denotéel by T P! |
The expressior¥, P —a.s. denotes that the eveht occurs
almost surely w.r.t. probability measuRe The expectation Fig. 1. System model of the networked control system wihcon-
operator is denoted bf[-] and the conditional expectation tcrgészgtlems %Ogecsier?;/grrg Sharg(]iv ;ﬁ??ounr:mg?; lnetWOCrlfv %ﬁe pr
IS den,Oted byE[[]. Th,e relat',onx ~ N(0,X) denotes 8 hetwork manager broadcasts the same variahlo all subsystems.
Gaussian random variable with zero-mean and covariance

matrix X. The operator[-]" denotes the projection onto

2k Ak

g

the non-negative real line, i.e[;]™ = max{0,-}. The rate of theith subsystem is defined as

operatorly., denotes the indicator function. The truncated =

sequence up to timé of a signalz,, £ > 0, is denoted rt = limsup — E[Z 5t 3)
by Xk, i.e., Xg = [zo,...,2k]. If not otherwise stated, Tooo T =0

subsystem.

N
Il. PROBLEM STATEMENT y= r (4)
=1

Figure 1 depicts the networked control system undefhe communication constraint is given by limiting the total
consideration. It showsV independent control subsystemsaverage transmission rate. i.e.

whose feedback loops are connected through a shared com-
munication network. A control subsysteinconsists of a y<c¢, ¢>0. (5)
processP*, a controllerC” that is implemented at the actuatorthe work in [4] demonstrates that the communication con-
and a senso’. The processP’ is given by a controlled straint in (5) is remarkably suitable to approximate commu-
time-homogeneous Markov chain with statetaking values pjcation systems with a limited number of transmissionsslot
in R™* and evolving by the following difference equation per time step, although the occurrence of collisions is not
1) m_odelled in above constraint. In particular, _the (_)ptimwrﬁv
triggered controller based on this approximation converge
where A” € R"*"i B ¢ R™*™:_The control inputu} is to the optimal solution with a limited number of transmis-
taking values inR™:. The system noisevi takes values sions per time step for increasing number of subsystems.
in R™ at eachk and is i.i.d. withw} ~ N(0,W?). The Therefore, the constraint (5) serves as an adequate model.

initial stateszy, i € {1,..., N}, have a distribution whose ~ Each subsystem € {1,..., N} has a cost functior/*
density function is symmetric around its mean vakje)] given by the linear quadratic average-cost criterion
and has finite second moment. At each time stephe T—1

scheduler situated at the sensor stat®ndecides, whether  Ji = limsup — E T Qlal +ulTQiul . (B)
a state update should be sent to the contralfeover the T—o0 k=0

contention-based network. Thith scheduler is described by The weighting matrixQ’ is positive definite and’ is

the variabled; € {0,1}, where positive semi-definite for eache {1,..., N}. We assume
. ; i\ - e . 7',71
. 1 updatezi is sent that the pair(A4*, B") is stabl|lllzablel f\nd the paitd*, Q.?)

=30 otherwise is detectable withQ! = (Qz2)TQz2. It is assumed that

the sensor and the controller of thith subsystem merely

The received signal at thih controller,z}, is given by have knowledge of the local system parameters. These

o are A", B*, W*, the distribution ofz,, and@?,, @Q;, of (6).

i zy 0 =1 @ The control lawy* = {~{,~4, ...} reflecting the behavior
710  otherwise of controllerC? is described by causal mappingé of the

) ) past observations for each time stepi.e.,
In order to quantify the resource constraint due to the

. . L. L i N %
communication network, the individual average transroissi ug, = 71(Zk);



where Z} is the observation history until timé of sub- transmission rate to approximate the pricing gradient. The
systemi. We distinguish between two classes of schedmplementation of the algorithm is discussed in the last.par
ulersti = {x§,rt, ...} resulting from two types of network

managers. In the first case, the network manager broadcastd a-@grange approach

fixed parameten initially and the event-triggered scheduler In the following, we define the Lagrangian function,
is then given by introduced in [12] for constrained MDPs, by

i DN 4
6k = 7TIL<: (Xk)a

N
, Lt aN oA AN ) = J + Ay —c
where X} is the state history of subsysteinlt should be ( 7 75N ; =)

remarked that we will usually omik for notational conve-
nience. In the second case, the network paranigtehanges
over timek and the scheduler adapts its law w.r.tXg i.e.,

With this, we can rewrite the optimization problem given
by (7) into the corresponding dual problem
) P ) : 1 N 1 N
512277127)%()(!1@)- Iilgé( 1.rr‘u.n N Loy .,m vy, oy, A, (8)
The parameted, itself is given by a causal mappirfg of T ™

the past transmission history, i.e., The Lagrange multiplieA can be interpreted as a penalty or

N, — 1 N 1 N price for the transmission rate. Therefore, we sometinfes re
A =1k(0g, -, 00 -y 0py -, 01 ) S10M ) i
to A as the communication penalty or price. By reordering

The mapping; represents the adaptation mechanism of thghe terms inC and using the definition af in (4), we obtain
network manager to the current traffic and will be specified

later in more detail.

The design objective is to find the optimal control lays
and optimal scheduling laws®, i € {1,..., N} that min-
imize the social cost given as an average cost criteriofor a fixed\ > 0 and each subsystem the values of/J’
while satisfying the rate constraint defined in (5). The abci andr? only depend on the choice of the local control laiv
cost is defined by the sum of the individual costs of and the local scheduling law’. Therefore, the minimization
each subsystem. Therefore, the optimization problem can be(8) can be stated as a separate local minimization within

N
LN =) (J+ M) = e

i=1

summarized as follows. each subsystem for a fixe i.e.,
N o ; 1 1 : N N
Cmin U stoy<e ) min (J° + Ar%) 4o 4 min, (I 4 ArT).
DAEREREN] i=1 )
al N ’ From above formulation, we observe that the task of the

geeey

network manager is to broadcast the prikein order to
It should be noted that optimization problems with an avgoordinate the local optimization problems.
erage cost criterion as given above are underselective [11] sybsequently, a characterization of the local minimizatio
This is because it does not matter how well the policy workgs presented. The above local optimization can be considere
at the beginning. Only its stationary behavior determins i as the joint design of control and scheduling for a singteslo
cost and the feaSlblllty of the constraint. Therefore, ehersystem with a communication pena|ty in the feedback |00p_
may exist two policies, which differ completely with respec This problem has been studied in various works [13]-[16].

to their performance in the firgt time steps, but eventually |t js shown in [15] that the certainty equivalence controlle
converge to the same stationary behavior and therefore yigk optimal. Therefore, the control law is given by

the same average cost. Hence, the optimization problem does . ‘ 4 R

not distinguish between these two policies. For the purpose up =" (Zy) = —L" E[z}| Z;], 9)
of our work, we will however consider this feature as an i iT pi i N1 i T Di Ad i
advantage, as it allows us to design an adaptation mechaniglorﬁﬁif) ﬁ of_th(f al 1; b]fai;Rcigg(:)atig uftigln and P* is the
for each subsystem that learns the appropriate transmissid 9 q

rate that achieves the optimal performance. Pl = AYT(P' — PIBY(B"TP'B' + Q') ' B"TPH A" + Q..

1. DISTRIBUTED OPTIMIZATION The reason for this structural property of the optimal cointr
In this section, ideas from dual decomposition and adagpaw is mainly given by the nestedness property of the

tive MDPs are used to develop a distributed approach thatformation pattern. The information pattern is nestedc¢si
solve optimization problem (7). In the first part, a Lagrang¢he information available at the controller is a subset @f th
approach is taken to formulate the dual problem of (7), whicmformation available at the scheduler. Furthermore, thekw
enables us to derive a dual price exchange mechanism tlia{14] proves that symmetric scheduling laws for first-arde
broadcasts a price to use the communication network ®&ystems are optimal. It is conjectured that this also habdds f
each subsystem. A corresponding sample-path algorithm hggher-order systems in the following. It is remarked tHat i
proposed in the second part that estimates the average tdtas conjecture fails, the optimal estimator must be ex¢eind



by an additive bias term whose calculation is given in [16]ln [10], it is shown that the derivative af(\) with respect
The optimal estimator can be written as to \ is obtained by

oo =l 99 _y—e

(A* = B'L') E[z},_4|Z; 1] 6, =0 oA

Therefore, the projected gradient algorithm for the dual
problem is given by

Elzi 2] = {

with E[z}|Zi] = E[z}] for §; = 0. It should be noted
that the optimal control law is independent xf Therefore,
the control law can be fully implemented prior to execution Ne1 = [Me + Be(ye — o))" (14)
without additional knowledge.

By defining the estimation error with an arbitrary initial value\q and 8 > 0 for all k. The

projection is needed to guarantee that the pemgltyemains

er =zl — E[xL|Zi_1], non-negative at all timeg. The total transmission rate is
the remaining problem to determine the optimal schedulin(g]eﬁned as N
law 7% can be cast as the following MDP with statg yp = Zr;
T—1 4 i=1
min lim - E D (1= 6)er Qlek + Aoy | + te[ P, wherer, is the average transmission rate defined in (3) as-
k=0 suming that the controlley® given by (9) and the scheduling
(10)  jaw 72+ obtained from (10) are used. The complete algo-

where Q¢ = L*T(Q!, + B*TP'BY)L* and ¢}, is described rithm can be regarded as a dual price exchange mechanism:

as adi-controlled Markov chain evolving by the following after broadcasting the price. by a central network manager

difference equation to all subsystems at time stgp each subsystem adjusts
its scheduling policy according to the local optimization

ek1 = (1= 0k) Aey, + wy (1) problem (10) with\,, as the dual price. It is shown in [17]

with initial condition e = xy — E[zo]. The additional that the algorithm converges to the optimal prige for

term tr[P'W?] is constant and can be omitted from thesufficiently smallg;.

optimization in (10). Optimal policies are therefore sintiry ~ Above gradient method is completely decoupled from

mappings of the estimation erref.. Under some mild con- the actual dynamics of the subsystems. Hence, the op-

ditions on the admissible policies* given in [13], above timal price A* can be calculated prior to execution and

optimization problem can be solved by value iteration [11]is spread to the subsystems that use the stationary event-

It can be observed that the resulting optimal schedulingigger 6, = =*"*(ej,) for k& > 0.
law is a symmetric threshold policy and takes the foIIowian. Adaptive sample-based Algorithm

form for a first-order subsystem ] ) ] )
; i The drawback of the gradient method in (14) is obvious.
b =m""ex) = Lyjei j>ai(n)} (12)  The total average transmission raggis not exactly known
parameterized by the threshold that depends on the at time stepk, as the central network manager would have
price \. By varying A € (0,00) in (10) different pairs of needed to gather information about every individual trans-
individual costs.Ji and transmission rates are attained Mission rater® from each subsystem, which also is defined
by the optimalri* for each subsystem € {1,...,N1. in the limit " — oo. Instead, we consider an estimajg
In fact, it has been shown in [4] that the relation betweeﬁf the total transmission rat_e to approxir_nate the gradient
optimal J* and+* € (0,1) is described by a decreasing and" (14)- Therefore, the mappinfy, representing the network
strictly convex function, which is denoted by (r?) in the ~Manager introduced in Section Il is determined by
following. Subsequently, we also assume tigt) is twice Mert = [ + Be(Gr — O)*. (15)
continuously differentiable. Then, the optimization in ¢&n . _
be rewritten as the dual formulation of a network utility The estimate of is performed at the network manager by

maximization problem [10] with a single link, i.e., using a moving window technique taking tiig most recent
N measurements, i.e.,
max ~ min Z JHrY) + My — o). (13) 1 k L
i & X!
It is well known that this problem has a unique solution for E=[k—Tw+1]+ i=1
assigning the optimal transmission raiési € {1,...,N}. A less memory consuming implementation of the estimate

As there is only one link, it is also clear that the resourcé given by the recursive formulae
constrainty < ¢ will be fulfilled with equality. Letg(\) be

N
defined as N " 1 i i
v Yk+1 = Yk + 7TW ;71(51%1 - 5k--TW+1)
A) = min JHrY) + My — ©). N B
9 riie{l,..., N}; ) =) = hTw@k"SiH’éi—Twﬂv e >511cv+1’5l]cvaw+1)7



where it is assumed that no transmission occurs at timestimate to approximate the gradi%{ Unlike broadcasting
before0, i.e., d; = 0 for all k& < 0. By choosing the step the price\, by a network manager, a complete decentralized
size 3 to be adaptation mechanism can be realized when each subsystem
{Tkw k € {mTw|m € Z+) is able to sense the amount of traffic directly. Then, the
B = ] calculation of\;, can be performed locally in each subsys-
0  otherwise tem. In contrast to a time-triggered scheduling mechanism,
which needs a global exhaustive search at runtime to find
the optimal scheduling sequence, the event-triggeredsehe
allows therefore a tractable implementation. Apart froma th
Tml,igloo YTw = YT, P-a.s, fact that the adaptation mechanism enables the distributed
) ] ] architecture, the local event-triggers are capable tosadju
we observe that the sample-path algorithm in (15) is & goqfleir thresholds according to runtime changes that areofte
approximation of (14) for a large window siZ8y. The = fong in real applications. These are for example given by
drawback of choosing the step size as defined above is Sl%ding or removing control loops during runtime, changes

convergence. Therefore, we will consider a step S'_Z% of in the resource constraint, or changes in the local system
in the following numerical simulations. This choice is VelYparameters.

common for recursive algorithms, where the gradient isynois
as > B = oo and S22 B2 < oo, see, e.g., [18]. IV. NUMERICAL RESULTS
Figure 2 summarizes the mechanism of the complete Suppose the system comprises of two subsystems with
adaptive event-triggered control system by illustratinge o System parameterd® = 1.25, B' =1, Q; =1, Q}, =0
particular subsystem and its interplay with the networland A> = 0.75, B> = 1, Q2 = 1, Q2 = 0, respectively.
manager. In contrast to the design mechanism describedBath systems start withj = x5 = 0 and the system noise is
the end of subsection Ill-A, the price is not determinediven byw;, ~ N(0,1). The communication constraint is set
prior to execution, but is continuously estimated withie th to ¢ = 1. The optimal control gain in (9) is given by’ = A’
network manager for every time stép for each subsysteni € {1,2}, which corresponds to a
deadbeat control strategy. The optimal scheduling laws for
7 = fixed A of each subsystem is a symmetric threshold policy
EloxlZi] LT defined in (12) with threshold?, i € {1,2}. The optimal
event.ti threshold for various fixed Lagrange multiplierss obtained
gger . X ;
- el by value iteration for the average cost problem in (10).
— e Figure 3 shows the mapping fromto the optimal thresholds
_ ‘ st of both subsystems. It should be noted that the determimatio
ug, LS of the mapping shown in Fig. 3 can be performed offline and
locally for each subsystem. Therefore, the computatignall
intensive part for the determination of the optimal thrdgho
can be accomplished before runtime. Figures 4 and 5 show

and using the fact that the solutiori* for an arbitrary\
yields an ergodic Markov chain, i.e.,

Vany
N\

network manager 25 T

Met1 = M+ Br (@ — o)) T
Jk+1 = hay (Tk, +)

g
@

Fig. 2. Complete structure of the networked control for sskeyi with
optimal event-triggered schedulef-*«* that adapts its law according to
the price),. The price\, is broadcasted to each subsystem from the central
network manager. System blodk denotes al-step delay element.

threshold d*

C. Implementation and Discussion
0

The implementation of the overall system is accomplished o o5
in two phases. In the first phase, which is performed before

execution and locally in each subsystem, the optimal CorI]-'_ig. 3. Mapping from communication penallyto the optimal symmetric

troller v given by (9) is calculated _and the mapping fromscheduling law described by the threshalidfor subsystent, i {1,2}.
price )\ to the optimal event-trigger®** by solving (10)

through value iteration. In the second phase, the netwotke sample-path behavior of the adaptive algorithm for a
manager adjusts the price accordingly to the total averagiene-horizon ofl0 000 for the thresholdg’, i € {1,2}, com-
transmission rate estimated given @y, which serves as an munication penalty\, and the estimated total transmission

35 4

15 2 25
penalty A



rate gy, respectively. The initial statg, is set tol. The step
size 3, of the gradient algorithm in (15) is chosen to %e
For the calculation of the estimafg of the total rate, we
select a window oflyy = 500.

V. CONCLUSIONS AND OUTLOOK

Based on a dual price exchange mechanism, this paper
develops a framework for the design of distributed event-
triggered control systems that share a common resource.

Therein, it is shown that convexity properties of the optima
event-trigger design enable the application of dual foemul

- - -threshold d*
——threshold d?||

thresholds d¢

Oo 2000 4000 6000 8000 10000 [1]
step k
Fig. 4. Sample path of the thresholds andd? of the subsysteri and2. (2]
3]
[4]
181 : :
B! = = =est. total transmission rate
16F .', communication penalty A |
o (5]
14014
[
S120) A
8 A R
= 1 |' ‘“'“NWMM‘"J \Nr’"\“'\m
- ]
Zosh . 71
o ]
gosf
04 (8]
U
0.2
. | | | | [9]
0 2000 4000 6000 8000 10000
step k
[10]
Fig. 5. Sample path of the estimated total transmissiongatand of the
communication penalty. [11]
[12]

The optimal thresholds have been determined in [4] b
solving the global resource allocation problem and arergivey
by d'* = 0.5 and d*>* = 0.95. From Fig. 4 we observe
that these optimal are asymptotically attained by the sampll(14]
path based algorithm. The communication penalty converges
to A = 0.5, while the total rate converges towartlsAfter [15]
approximately2 500 steps convergence is achieved, after
which the signafj, has a mean d§.997 and varianc®.0015.

The slow ramp up in the starting phase is due to the fact
that g, is initialized with 0. The convergent behavior can
be enhanced by choosing a smaller windayy for the 17
transmission rate estimator leading to a greater variafice o
the estimate, which implies fluctuations in the threshaltls [18]
andd?.

tions related to network utility maximization. The distiibd
approach is realized by an adaptive event-trigger thatséslju
its threshold according to the estimated price for the nesou
The proposed framework opens up a diversity of problems
that have to be addressed in the future. A convergence
analysis of the overall adaptive system based on stochastic
approximation is to be carried out. The consideration of
hard communication constraints rather than an average rate
constraint with a limited number of transmission slots is
another line of research to be tackled in the future.
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