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Abstract— Under many circumstances event-triggered con-
trol outperforms time-triggered control schemes when resources
such as communication, computation, or energy are sparse.
This paper investigates another benefit of event-triggered con-
trol concerning the ability of adaptation. The system under
consideration comprises multiple heterogeneous control loops
that are closed over a shared communication network. Each
subsystem is modelled as a discrete-time stochastic linear
system. The design problem is formulated as an average
cost Markov decision process (MDP) with unknown global
system parameters that are to be estimated during execution.
Techniques from distributed optimization and adaptive MDPs
are used to develop distributed self-regulating event-triggers
that adjust their transmission rate to meet a global resource
constraint. Numerical simulations show the effectiveness of the
approach and illustrate the convergence properties.

I. INTRODUCTION

The recent increased interest in networked control systems
and cyber-physical systems has led to various paradigm
shifts in the digital control design. The systems under
consideration usually consist of a multitude of small-scale
integrated entities coupled through a common communica-
tion network. The efficient usage of available resources, like
communication, computation, or energy, is a prerequisite for
the successful operation of such control systems. This fact
has stimulated researchers to look for advanced sampling
schemes beyond the conventional periodic sampling scheme
to reduce resource consumption. A large amount of liter-
ature [1]–[6] shows that event-triggered control schemes
achieve the same control performance as time-triggered
control schemes, while reducing the number of samples sig-
nificantly. Potential problem settings where event-triggered
control has been applied successfully range from control over
communications [1]–[4] and multi-agent systems [5] to the
control design in embedded real-time systems [6].

Besides the necessity for an efficient use of resources,
other non-functional requirements like self-configurability
and adaptability need to be addressed within the design
of networked control and cyber-physical systems. In the
envisioned system, local entities, such as sensor nodes, are
aware that a common resource is shared among them. Such
awareness is reflected in the capability of adjusting the
sampling rate adaptively to reduce resource needs, while
maintaining a certain amount of performance. To be more
specific, this paper considers multiple independent control
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systems, whose control loops are closed over a shared
communication networks.

Related work can be found in [2], [4], [7]–[9] that analyze
the performance of event-triggered schemes in contention-
based networked control systems. Conclusions vary with the
choice of the communication model. Using CSMA models
with priority or randomized arbitration as [2], [4], event-
triggered control outperforms significantly periodic control
schemes. Unlike [2], [4], it has been shown in [7], [8]
that time-triggered scheduling outperforms event-triggered
schemes for slotted and unslotted ALOHA transmission
schemes. In [9], time-triggered and event-triggered sampling
schemes are compared within different communication mod-
els. It is concluded that the choice of both the sampling
scheme and the model significantly influence the perfor-
mance of the overall system.

Throughout the aforementioned work, the design of the
event-triggered control scheme is determined beforehand
in a centralized fashion. This might be inconvenient, as
it is difficult to implement, as the number of subsystems
might be large, and it lacks of flexibility, as it needs to be
rerun completely whenever changes in the system occur. The
ability of adaptation of event-triggered control systems has
not been studied properly yet. This motivates us to address
the problem of designing event-based controllers for hetero-
geneous subsystems closed over a common communication
network in a distributed manner.

The contribution of this paper is to develop a distributed
algorithm for an event-triggered control system, where each
subsystem adjusts its event-triggering mechanism to opti-
mally meet a global resource constraint imposed by the com-
munication network. The problem is formulated in the MDP
framework with an average cost criterion. Each subsystem
is modelled as a discrete-time stochastic linear system with
a quadratic control cost. The communication constraint is
given by limiting the total average transmission rate of all
subsystems. Such formulation has been successfully applied
in [4] to approximate a communication system with a limited
number of transmission slots per time step. Despite of
the relaxation to an average transmission constraint which
ignores that collisions may occur during transmission, it
turns out in [4] that the approximative approach serves as
a good approximation for the problem with a hard trans-
mission constraint. Inspired by distributed optimizationand
adaptive MDPs, a distributed sample-path based algorithm is
proposed. In contrast to [4], a dual decomposition approach
related to congestion control [10] is chosen to study the
underlying optimization problem. By measuring the total
transmission rate, a dual price mechanism forces each sub-



system to adjust their event-triggering thresholds. Numerical
simulations are conducted to illustrate the effectivenessof
the obtained algorithm.

The remaining part of this paper is structured as follows.
In Section II, we introduce the system model and describe the
problem statement. Section III develops the adaptive event-
triggered controller. The efficiency of the proposed approach
is illustrated in Section IV by numerical simulations.
Notation. In this paper, the operator(·)T and tr[·] denote
the transpose and trace operator, respectively. The Euclidean
norm is denoted by‖ · ‖2. The variableP denotes the prob-
ability measure on the abstract sample space denoted byΩ.
The expressionF,P−a.s. denotes that the eventF occurs
almost surely w.r.t. probability measureP. The expectation
operator is denoted byE[·] and the conditional expectation
is denoted byE[·|·]. The relationx ∼ N (0, X) denotes a
Gaussian random variable with zero-mean and covariance
matrix X. The operator[·]+ denotes the projection onto
the non-negative real line, i.e.,[·]+ = max{0, ·}. The
operator1{·} denotes the indicator function. The truncated
sequence up to timeK of a signalxk, k ≥ 0, is denoted
by XK , i.e., XK = [x0, . . . , xK ]. If not otherwise stated,
a variable with superscripti indicates that it belongs to
subsystemi.

II. PROBLEM STATEMENT

Figure 1 depicts the networked control system under
consideration. It showsN independent control subsystems
whose feedback loops are connected through a shared com-
munication network. A control subsystemi consists of a
processPi, a controllerCi that is implemented at the actuator
and a sensorSi. The processPi is given by a controlled
time-homogeneous Markov chain with statexk taking values
in R

ni and evolving by the following difference equation

xi
k+1 = Aixi

k +Biui
k + wi

k, (1)

whereAi ∈ R
ni×ni , Bi ∈ R

ni×mi . The control inputui
k is

taking values inRmi . The system noisewi
k takes values

in R
ni at eachk and is i.i.d. withwi

k ∼ N (0,W i). The
initial statesxi

0, i ∈ {1, . . . , N}, have a distribution whose
density function is symmetric around its mean valueE[xi

0]
and has finite second moment. At each time stepk, the
scheduler situated at the sensor stationSi decides, whether
a state update should be sent to the controllerCi over the
contention-based network. Theith scheduler is described by
the variableδik ∈ {0, 1}, where

δik =

{

1 updatexi
k is sent

0 otherwise

The received signal at theith controller,zik, is given by

zik =

{

xi
k δik = 1

∅ otherwise
(2)

In order to quantify the resource constraint due to the
communication network, the individual average transmission
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Fig. 1. System model of the networked control system withN con-
trol systems closed over a shared communication network with pro-
cessesP1, . . . ,PN , sensorsS1, . . . ,SN and controllersC1, . . . , CN . The
network manager broadcasts the same variableλk to all subsystems.

rate of theith subsystem is defined as

ri = lim sup
T→∞

1

T
E[

T−1
∑

k=0

δik] (3)

and the total average transmission rate as

y =
N
∑

i=1

ri (4)

The communication constraint is given by limiting the total
average transmission rate, i.e.,

y ≤ c, c > 0. (5)

The work in [4] demonstrates that the communication con-
straint in (5) is remarkably suitable to approximate commu-
nication systems with a limited number of transmission slots
per time step, although the occurrence of collisions is not
modelled in above constraint. In particular, the optimal event-
triggered controller based on this approximation converges
to the optimal solution with a limited number of transmis-
sions per time step for increasing number of subsystems.
Therefore, the constraint (5) serves as an adequate model.

Each subsystemi ∈ {1, . . . , N} has a cost functionJ i

given by the linear quadratic average-cost criterion

J i = lim sup
T→∞

1

T
E

[

T−1
∑

k=0

x
i,T
k Qi

xx
i
k + u

i,T
k Qi

uu
i
k

]

. (6)

The weighting matrixQi
x is positive definite andQi

u is
positive semi-definite for eachi ∈ {1, . . . , N}. We assume

that the pair(Ai, Bi) is stabilizable and the pair(Ai, Q
i, 1

2
x )

is detectable withQi
x = (Q

i, 1
2

x )TQ
i, 1

2
x . It is assumed that

the sensor and the controller of theith subsystem merely
have knowledge of the local system parameters. These
areAi, Bi, W i, the distribution ofx0, andQi

x, Qi
u of (6).

The control lawγi = {γi
0, γ

i
1, . . .} reflecting the behavior

of controller Ci is described by causal mappingsγi
k of the

past observations for each time stepk, i.e.,

ui
k = γi

k(Z
i
k),



where Zi
k is the observation history until timek of sub-

system i. We distinguish between two classes of sched-
ulersπi = {πi

0, π
i
1, . . .} resulting from two types of network

managers. In the first case, the network manager broadcasts a
fixed parameterλ initially and the event-triggered scheduler
is then given by

δik = π
i,λ
k (Xi

k),

whereXi
k is the state history of subsystemi. It should be

remarked that we will usually omitλ for notational conve-
nience. In the second case, the network parameterλ̂k changes
over timek and the scheduler adapts its law w.r.t. toλ̂k, i.e.,

δik = π
i,λ̂k

k (Xi
k).

The parameter̂λk itself is given by a causal mappingfk of
the past transmission history, i.e.,

λ̂k = fk(δ
1
0 , . . . , δ

N
0 , . . . , δ1k, . . . , δ

N
k )

The mappingfk represents the adaptation mechanism of the
network manager to the current traffic and will be specified
later in more detail.

The design objective is to find the optimal control lawsγi

and optimal scheduling lawsπi, i ∈ {1, . . . , N} that min-
imize the social cost given as an average cost criterion,
while satisfying the rate constraint defined in (5). The social
cost is defined by the sum of the individual costsJ i of
each subsystem. Therefore, the optimization problem can be
summarized as follows.

min
γ1, . . . , γN

π1, . . . , πN

N
∑

i=1

J i s.t. y ≤ c. (7)

It should be noted that optimization problems with an av-
erage cost criterion as given above are underselective [11].
This is because it does not matter how well the policy works
at the beginning. Only its stationary behavior determines its
cost and the feasibility of the constraint. Therefore, there
may exist two policies, which differ completely with respect
to their performance in the firstk time steps, but eventually
converge to the same stationary behavior and therefore yield
the same average cost. Hence, the optimization problem does
not distinguish between these two policies. For the purpose
of our work, we will however consider this feature as an
advantage, as it allows us to design an adaptation mechanism
for each subsystem that learns the appropriate transmission
rate that achieves the optimal performance.

III. DISTRIBUTED OPTIMIZATION

In this section, ideas from dual decomposition and adap-
tive MDPs are used to develop a distributed approach that
solve optimization problem (7). In the first part, a Lagrange
approach is taken to formulate the dual problem of (7), which
enables us to derive a dual price exchange mechanism that
broadcasts a price to use the communication network to
each subsystem. A corresponding sample-path algorithm is
proposed in the second part that estimates the average total

transmission rate to approximate the pricing gradient. The
implementation of the algorithm is discussed in the last part.

A. Lagrange approach

In the following, we define the Lagrangian function,
introduced in [12] for constrained MDPs, by

L(π1, . . . , πN , γ1, . . . , γN , λ) =

N
∑

i=1

J i + λ(y − c)

With this, we can rewrite the optimization problem given
by (7) into the corresponding dual problem

max
λ≥0

min
γ1, . . . , γN

π1, . . . , πN

L(π1, . . . , πN , γ1, . . . , γN , λ). (8)

The Lagrange multiplierλ can be interpreted as a penalty or
price for the transmission rate. Therefore, we sometimes refer
to λ as the communication penalty or price. By reordering
the terms inL and using the definition ofy in (4), we obtain

L(·, λ) =
N
∑

i=1

(J i + λri)− λc.

For a fixedλ ≥ 0 and each subsystemi, the values ofJ i

andri only depend on the choice of the local control lawγi

and the local scheduling lawπi. Therefore, the minimization
in (8) can be stated as a separate local minimization within
each subsystem for a fixedλ, i.e.,

min
γ1,π1

(J1 + λr1) + · · ·+ min
γN ,πN

(JN + λrN ).

From above formulation, we observe that the task of the
network manager is to broadcast the priceλ in order to
coordinate the local optimization problems.

Subsequently, a characterization of the local minimization
is presented. The above local optimization can be considered
as the joint design of control and scheduling for a single-loop
system with a communication penalty in the feedback loop.
This problem has been studied in various works [13]–[16].
It is shown in [15] that the certainty equivalence controller
is optimal. Therefore, the control law is given by

ui
k = γ

i,∗
k (Zi

k) = −Li
E[xi

k|Z
i
k], (9)

whereLi = (Bi,TP iBi + Qi
u)

−1Bi,TP iAi and P i is the
solution of the algebraic Riccati equation

P i = Ai,T(P i − P iBi(Bi,TP iBi +Qi
u)

−1Bi,TP i)Ai +Qi
x.

The reason for this structural property of the optimal control
law is mainly given by the nestedness property of the
information pattern. The information pattern is nested, since
the information available at the controller is a subset of the
information available at the scheduler. Furthermore, the work
in [14] proves that symmetric scheduling laws for first-order
systems are optimal. It is conjectured that this also holds for
higher-order systems in the following. It is remarked that if
this conjecture fails, the optimal estimator must be extended



by an additive bias term whose calculation is given in [16].
The optimal estimator can be written as

E[xi
k|Z

i
k] =

{

xi
k δik = 1

(Ai −BiLi)E[xi
k−1|Z

i
k−1] δik = 0

with E[xi
0|Z

i
0] = E[xi

0] for δi0 = 0. It should be noted
that the optimal control law is independent ofλ. Therefore,
the control law can be fully implemented prior to execution
without additional knowledge.

By defining the estimation error

eik = xi
k − E[xi

k|Z
i
k−1],

the remaining problem to determine the optimal scheduling
law πi,λ can be cast as the following MDP with stateeik

min
πi,λ

lim
T→∞

1

T
E

[

T−1
∑

k=0

(1− δik)e
i,T
k Qi

ee
i
k + λδik

]

+ tr[P iW i],

(10)

whereQi
e = Li,T(Qi

u + Bi,TP iBi)Li and eik is described
as aδik-controlled Markov chain evolving by the following
difference equation

ek+1 = (1− δk)Aek + wk (11)

with initial condition e0 = x0 − E[x0]. The additional
term tr[P iW i] is constant and can be omitted from the
optimization in (10). Optimal policies are therefore stationary
mappings of the estimation erroreik. Under some mild con-
ditions on the admissible policiesπi,λ given in [13], above
optimization problem can be solved by value iteration [11].

It can be observed that the resulting optimal scheduling
law is a symmetric threshold policy and takes the following
form for a first-order subsystem

δik = πi,λ(ek) = 1{|ei
k
|>di(λ)} (12)

parameterized by the thresholddi that depends on the
price λ. By varying λ ∈ (0,∞) in (10) different pairs of
individual costsJ i and transmission ratesri are attained
by the optimalπi,λ,∗ for each subsystemi ∈ {1, . . . , N}.
In fact, it has been shown in [4] that the relation between
optimal J i andri ∈ (0, 1) is described by a decreasing and
strictly convex function, which is denoted byJ i(ri) in the
following. Subsequently, we also assume thatJ i(ri) is twice
continuously differentiable. Then, the optimization in (8) can
be rewritten as the dual formulation of a network utility
maximization problem [10] with a single link, i.e.,

max
λ≥0

min
ri,i∈{1,...,N}

N
∑

i=1

J i(ri) + λ(y − c). (13)

It is well known that this problem has a unique solution for
assigning the optimal transmission ratesri, i ∈ {1, . . . , N}.
As there is only one link, it is also clear that the resource
constrainty ≤ c will be fulfilled with equality. Letg(λ) be
defined as

g(λ) = min
ri,i∈{1,...,N}

N
∑

i=1

J i(ri) + λ(y − c).

In [10], it is shown that the derivative ofg(λ) with respect
to λ is obtained by

∂g(λ)

∂λ
= y − c

Therefore, the projected gradient algorithm for the dual
problem is given by

λk+1 = [λk + βk(yk − c)]+ (14)

with an arbitrary initial valueλ0 andβk > 0 for all k. The
projection is needed to guarantee that the penaltyλk remains
non-negative at all timesk. The total transmission rate is
defined as

yk =

N
∑

i=1

rik

whererik is the average transmission rate defined in (3) as-
suming that the controllerγi given by (9) and the scheduling
law πi,λk,∗ obtained from (10) are used. The complete algo-
rithm can be regarded as a dual price exchange mechanism:
after broadcasting the priceλk by a central network manager
to all subsystems at time stepk, each subsystem adjusts
its scheduling policy according to the local optimization
problem (10) withλk as the dual price. It is shown in [17]
that the algorithm converges to the optimal priceλ∗ for
sufficiently smallβk.

Above gradient method is completely decoupled from
the actual dynamics of the subsystems. Hence, the op-
timal price λ∗ can be calculated prior to execution and
is spread to the subsystems that use the stationary event-
trigger δik = πi,λ∗,∗(eik) for k ≥ 0.

B. Adaptive sample-based Algorithm

The drawback of the gradient method in (14) is obvious.
The total average transmission rateyk is not exactly known
at time stepk, as the central network manager would have
needed to gather information about every individual trans-
mission rateri from each subsystem, which also is defined
in the limit T → ∞. Instead, we consider an estimateŷk
of the total transmission rate to approximate the gradient
in (14). Therefore, the mappingfk representing the network
manager introduced in Section II is determined by

λ̂k+1 = [λ̂k + βk(ŷk − c)]+. (15)

The estimate ofyk is performed at the network manager by
using a moving window technique taking theTW most recent
measurements, i.e.,

ŷk =
1

TW

k
∑

ℓ=[k−TW+1]+

N
∑

i=1

δiℓ.

A less memory consuming implementation of the estimate
is given by the recursive formulae

ŷk+1 = ŷk +
1

TW

N
∑

i=1

(δik+1 − δik−TW+1)

= hTW(ŷk, δ
1
k+1, δ

1
k−TW+1, . . . , δ

N
k+1, δ

N
k−TW+1),



where it is assumed that no transmission occurs at times
before0, i.e., δik = 0 for all k < 0. By choosing the step
sizeβk to be

βk =

{

TW
k

k ∈ {mTW|m ∈ Z
+}

0 otherwise

and using the fact that the solutionπi,λ for an arbitraryλ
yields an ergodic Markov chain, i.e.,

lim
TW→∞

ŷTW = yTW , P -a.s.,

we observe that the sample-path algorithm in (15) is a good
approximation of (14) for a large window sizeTW. The
drawback of choosing the step size as defined above is slow
convergence. Therefore, we will consider a step size of1

k

in the following numerical simulations. This choice is very
common for recursive algorithms, where the gradient is noisy
as

∑∞
k=0 βk = ∞ and

∑∞
k=0 β

2
k < ∞, see, e.g., [18].

Figure 2 summarizes the mechanism of the complete
adaptive event-triggered control system by illustrating one
particular subsystem and its interplay with the network
manager. In contrast to the design mechanism described at
the end of subsection III-A, the price is not determined
prior to execution, but is continuously estimated within the
network manager for every time stepk.
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Fig. 2. Complete structure of the networked control for subsystemi with
optimal event-triggered schedulerπi,λ̂k,∗ that adapts its law according to
the priceλ̂k. The priceλ̂k is broadcasted to each subsystem from the central
network manager. System blockT denotes a1-step delay element.

C. Implementation and Discussion

The implementation of the overall system is accomplished
in two phases. In the first phase, which is performed before
execution and locally in each subsystem, the optimal con-
troller γi given by (9) is calculated and the mapping from
price λ to the optimal event-triggerπi,λ,∗ by solving (10)
through value iteration. In the second phase, the network
manager adjusts the price accordingly to the total average
transmission rate estimated given byŷk, which serves as an

estimate to approximate the gradient∂g
∂λ

. Unlike broadcasting
the priceλ̂k by a network manager, a complete decentralized
adaptation mechanism can be realized when each subsystem
is able to sense the amount of traffic directly. Then, the
calculation ofλ̂k can be performed locally in each subsys-
tem. In contrast to a time-triggered scheduling mechanism,
which needs a global exhaustive search at runtime to find
the optimal scheduling sequence, the event-triggered scheme
allows therefore a tractable implementation. Apart from the
fact that the adaptation mechanism enables the distributed
architecture, the local event-triggers are capable to adjust
their thresholds according to runtime changes that are often
found in real applications. These are for example given by
adding or removing control loops during runtime, changes
in the resource constraint, or changes in the local system
parameters.

IV. NUMERICAL RESULTS

Suppose the system comprises of two subsystems with
system parametersA1 = 1.25, B1 = 1, Q1

x = 1, Q1
u = 0

and A2 = 0.75, B2 = 1, Q2
x = 1, Q2

u = 0, respectively.
Both systems start withx1

0 = x2
0 = 0 and the system noise is

given bywk ∼ N (0, 1). The communication constraint is set
to c = 1. The optimal control gain in (9) is given byLi = Ai

for each subsystemi ∈ {1, 2}, which corresponds to a
deadbeat control strategy. The optimal scheduling laws fora
fixed λ of each subsystem is a symmetric threshold policy
defined in (12) with thresholddi, i ∈ {1, 2}. The optimal
threshold for various fixed Lagrange multipliersλ is obtained
by value iteration for the average cost problem in (10).
Figure 3 shows the mapping fromλ to the optimal thresholds
of both subsystems. It should be noted that the determination
of the mapping shown in Fig. 3 can be performed offline and
locally for each subsystem. Therefore, the computationally
intensive part for the determination of the optimal threshold
can be accomplished before runtime. Figures 4 and 5 show
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Fig. 3. Mapping from communication penaltyλ to the optimal symmetric
scheduling law described by the thresholddi for subsystemi, i ∈ {1, 2}.

the sample-path behavior of the adaptive algorithm for a
time-horizon of10 000 for the thresholdsdi, i ∈ {1, 2}, com-
munication penaltyλ, and the estimated total transmission



rate ŷk, respectively. The initial statêλ0 is set to1. The step
sizeβk of the gradient algorithm in (15) is chosen to be1

k
.

For the calculation of the estimatêyk of the total rate, we
select a window ofTW = 500.
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Fig. 4. Sample path of the thresholdsd1 andd2 of the subsystem1 and2.
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Fig. 5. Sample path of the estimated total transmission rateŷk and of the
communication penaltŷλk.

The optimal thresholds have been determined in [4] by
solving the global resource allocation problem and are given
by d1,∗ = 0.5 and d2,∗ = 0.95. From Fig. 4 we observe
that these optimal are asymptotically attained by the sample-
path based algorithm. The communication penalty converges
to λ = 0.5, while the total rate converges towards1. After
approximately2 500 steps convergence is achieved, after
which the signal̂yk has a mean of0.997 and variance0.0015.
The slow ramp up in the starting phase is due to the fact
that ŷk is initialized with 0. The convergent behavior can
be enhanced by choosing a smaller windowTW for the
transmission rate estimator leading to a greater variance of
the estimate, which implies fluctuations in the thresholdsd1

andd2.

V. CONCLUSIONS AND OUTLOOK

Based on a dual price exchange mechanism, this paper
develops a framework for the design of distributed event-
triggered control systems that share a common resource.
Therein, it is shown that convexity properties of the optimal
event-trigger design enable the application of dual formula-
tions related to network utility maximization. The distributed
approach is realized by an adaptive event-trigger that adjusts
its threshold according to the estimated price for the resource.

The proposed framework opens up a diversity of problems
that have to be addressed in the future. A convergence
analysis of the overall adaptive system based on stochastic
approximation is to be carried out. The consideration of
hard communication constraints rather than an average rate
constraint with a limited number of transmission slots is
another line of research to be tackled in the future.
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