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Abstract

A Spatial Query Language enables the spatial analysis of Building Information Models and the extraction of partial models that
fulfill certain spatial constraints. Among other features, the developed spatial query language includes directional operators, i.e.
operators that reflect the directional relationships between 3D spatial objects, such as northOf, southOf, eastOf, westOf, above
and below. The paper presents in-depth definitions of the semantics of two new directional models for extended 3D objects, the
projection-based and the halfspace-based model, by using point set theory notation. It further describes the possible implementation
of directional operators using a newly developed space-partitioning data structure called slot-tree, which is derived from the
objects’ octree representation. The slot-tree allows for the application of recursive algorithms that successively increase the discrete
resolution of the spatial objects employed and thereby enables the user to trade-off between computational effort and the required

accuracy. The article also introduces detailed investigations on the runtime performance of the developed algorithms.
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1. Introduction

Humans view buildings primarily as an aggregation of
physical objects with well-defined geometry and specific
spatial relations. In most cases, the architectural and/or
structural function of a particular building component is
closely related to its shape and its position in relation to
other building components. For architects and engineers
involved in designing buildings, geometric properties and
spatial relations between building components accordingly
play a major role in finding solutions for most of the design
and engineering tasks. However, software tools that allow
for a sophisticated spatial analysis of digital building mod-
els are not yet available.

The current lack of building model management software
supporting geometric-topological analysis can be explained
by the fact that, over the last decade, research in the field
of computer-supported building design has concentrated
mainly on the development of a semantic object-oriented
building model, also called Product Model or Building In-
formation Model (BIM) [1-5]. These efforts have resulted in
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the widely known standards Industry Foundation Classes
(IFC) [6] and CIS/2 [T7].

Building product models, such as the IFC, do not nor-
mally describe the geometry of a building component ex-
plicitly, i.e. not by using a Boundary Representation (B-
Rep) or the Constructive Solid Geometry (CSG) approach,
but by object attributes that have a geometric meaning.
The main motivation behind this “attribute-driven geom-
etry” approach is the scope that an abstract description of
this kind provides for deriving both full three-dimensional
models and two-dimensional drawings with partly symbol-
ized representations, as stipulated in national building reg-
ulations and construction contracts.

Unfortunately, the existing product model servers that
are utilized to store and manage building information mod-
els are unable to interpret the attribute-driven geomet-
ric information that is implicitly contained in the building
model, since they are not familiar with the spatial seman-
tics of particular attributes and relationships. Accordingly,
the expressiveness of the query languages provided by the
product model servers, such as the Partial Model Query
Language [8] of the Secom IFC Model Server or the Prod-
uct Model Query Language of the EuroStep Model Server,
is limited to numerical comparisons and tests on those spa-
tial relationships that are predefined in the product data
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model.

In the case of the IFC, some examples of these pre-
defined relationships are IfcRelFillsElement, IfcRelVoids-
Element and IfcRelContainedInSpatialStructure. Unfortu-
nately, many product modeling tools do not fill the en-
tire set of spatial relations with appropriate data when
exporting a building model into the IFC format. In a re-
cently conducted test, we used the commercial CAD tool
Autodesk Revit 2008 to model a high-rise building com-
pletely equipped with interior fittings. The analysis of the
exported IFC file showed that, while the IFCRelFillsEle-
ment and IFCRelVoidsElement relationships between walls
and windows were set correctly, no IfcRelContainedInSpa-
tialStructure relationships had been set. Accordingly it was
not possible to query the product model for the furniture
contained in a certain room or office, for example.

Other spatial relationships, such as directional relations
(e.g. one object above another) are completely ignored by
the IFC product model. From the point of view of prod-
uct modeling this makes absolute sense, because storing all
possible spatial relations would (1) result in huge models
with many object relations not needed by the majority of
applications and (2) introduce even more redundancy, since
directional relationships are already implicitly defined by
the shape and position of the respective objects. For this
reason, we follow an analytic approach here, where spatial
relations are not required to be set by the modeling tool in
use, but are derived from the objects’ shapes and positions,
i.e. the explicit geometry of the building’s components, in-
stead.

Another issue to be considered in the context of spa-
tial analysis is that for many AEC domains, such as tun-
nel, road or bridge engineering, only rudimentary product
models exist [9] and have not been used in practice so far.
On the other hand, pure 3D modeling is gaining more and
more importance in these areas and, with it, the potential
benefits of using spatial analysis tools.

In order to fill the technological gaps mentioned above,
we have developed a spatial query language for 3D building
and infrastructure models. We propose employing a query
language as interface to the spatial analysis facilities, be-
cause it allows a user or application developer to formulate
spatial analysis problems in a declarative way while hiding
the technical details of efficient data retrieval. Furthermore,
using a query language is the usual way to access database
systems, which — thanks to their inherent multi-user and
persistence capabilities — will naturally be the instrument
of choice for hosting building models in the near future.
The concept of spatial query languages is well established
in the field of Geographic Information Systems (GIS), but
was so far limited to two-dimensional models.

Possible applications for our 3D Spatial Query Language
for Building Information Models range from the selection
of specific building components to the verification of con-
struction rules and the extraction of partial models that ful-
fill certain spatial constraints. Such a partial model result-
ing from a spatial query may serve as input for a numerical

simulation or analysis, or might be made exclusively acces-
sible to certain participants in a collaborative scenario.

The proposed 3D Spatial Query Language relies on a spa-
tial algebra that is formally defined by means of point set
theory and point set topology [10,11]. Besides fully three-
dimensional objects of type Body, the algebra also provides
abstractions for spatial objects with reduced dimensional-
ity, namely by the types Point, Line and Surface. This is
necessary because building models often comprise dimen-
sionally reduced entities. All types of spatial objects are
subsumed by the super-type SpatialObject.

The spatial operators available for the spatial types are
the most important part of the algebra. They comprise
— metric (distance, closerThan, fartherThan etc.),

— directional (above, below, northOf etc.) and
— topological (touch, within, contains etc.)
operators.

While the metric operators are presented in [12], this
paper discusses the definition and implementation of the
directional operators.

We see the development of a spatial query language for
BIMs as a first step towards making higher spatial concepts
directly available in computer-aided engineering tools. We
expect that spatial modeling and processing will play an
increasing role in future engineering systems.

2. Related work
2.1. Spatial query languages

The overall concept of providing a Spatial Query Lan-
guage for analyzing Building Information Models is closely
related to concepts and technologies developed in the area
of Geographic Information Systems (GIS). Such systems
maintain geographical data, such as the position and shape
of cities, streets, rivers etc. and provide functionalities for
the spatial analysis of this data. Due to the nature of this
domain most GI systems only support spatial objects in
two-dimensional space.

The first implementations of spatial query languages on
the basis of SQL were also realized in the GIS context. In
the late 80’s, a multitude of different dialects was devel-
oped, including PSQL [13], Spatial SQL [14], GEOQL [15],
KGIS [16] and TIGRIS [17]. A good overview of the differ-
ent dialects and the basic advantages of a SQL-based im-
plementation is provided in [18].

The GIS research community also coined the phrase Spa-
tial Database to describe database management systems
(DBMS) that provide spatial data types and spatial index-
ing techniques and thus allow for an easy and efficient access
to spatial data [19,20]. There is now a wide range of com-
mercial 2D spatial database systems, the most wide-spread
ones being PostGIS, Oracle Spatial and Informiz Geode-
tic Datablade. The majority of available spatial databases
complies to the standard developed by the OpenGIS con-
sortium that defines a common interface for accessing 2D



spatial data and accordingly enables the exchangeability of
the database component in an overall GI system [21].

In [22] the potential benefits of using GI systems for the
analysis of dynamical processes in buildings are discussed.
The author states that, even if component-oriented CAD
systems provide sophisticated functionality for geometric
modeling, they normally lack comprehensive spatial anal-
ysis capabilities. For this reason, she stores floor plans of
buildings in a GIS database in order to use it’s 2D spatial
analysis facilities. The author underlines that 3D spatial
analysis would be an even more powerful tool for analyzing
processes in buildings.

Up to now, spatial database systems that support 3D
spatial analysis are only to be found in a research con-
text. The investigations set out in [23], for example, clearly
show that the spatial analysis capabilities of the commer-
cial database system Oracle Spatial are limited to 2D space,
even though it is possible to store simple 3D geometry.

As far as GIS is concerned, the main interest lies in the
3D modeling of the ground surface, buildings and infras-
tructure as well as the subsoil layers. The most important
works in this area include [24-26] which report on the de-
velopment of GeoToolkit, an object-oriented framework for
efficiently storing and accessing 3D geographic and geologic
data. The main disadvantage of using the framework for
analyzing building models is the need to model all spatial
entities according to the mathematical concept of simplicial
complexes. The obligatory conversion of a boundary rep-
resentation, as used in CAD tools, to a simplicial complex
representation is expensive and, in some special cases, ab-
solutely unfeasible. A more flexible, yet theoretic approach
for applying algebraic topology on building models is pre-
sented in [27].

Though [28-31] provide concepts and data structures for
storing 3D city models in spatial databases, the definition
and implementation of directional operators has been com-
pletely omitted in these papers.

[32] introduces a database system that allows for the spa-
tial analysis of 3D CAD models. It provides simple volume,
collision and distance queries, but supports neither topolog-
ical nor directional predicates. The implementation of the
system relies on a voxel approximation of the CAD parts
stored in the database and a special index structure opti-
mized for this representation. We follow a similar approach
here but use a dynamically created, hierarchical data struc-
ture, which we call slot-tree.

2.2. Directional relationships

Directional operations between point-shaped objects can
be defined in a simple and unambiguous way [33,34]. In
order to apply these definitions on extended one-, two-
or three-dimensional objects a point-based approximation,
such as the center of gravity, is normally used. This rough
approximation often causes results that do not comply with
the intuitive expectations of the user (Fig. 1).

above

west east

below

Fig. 1. Approximating target and reference object by their centroids
may cause results that do not comply with the intuitive expectations
of the users. In this example, B would be classified as being west of
A and not as being above it.

Fig. 2. The cone-based model for point-shaped objects in 2D. Left—
hand side: 4-direction model. Right-hand side: 8-direction model.

Fig. 3. The projection-based model for point-shaped objects in 2D
[33]. The space is dissected horizontally (left) and vertically (right),
then the resulting halfspaces are superimposed, thus creating 4 space
partitions.

For the two-dimensional space, there are two known mod-
els for defining directional relations between points: the
cone-based and the projection-based model. The cone-based
model dissects the space around the reference point in ei-
ther four partitions of 90° (Fig. 2, left-hand side) or eight
partitions of 45° (Fig. 2, right-hand side) [33-37]. The di-
rection of the target point with respect to the reference
point is defined by the partition in which the target point
is located.

The projection-based model [33] dissects the space by
means of horizontal and vertical lines that cross at the refer-
ence point. While the horizontal line creates a northern and
southern halfspace, the vertical line creates the western and
eastern halfspace. Superimposing the halfspaces produces
four directional partitions, namely north-west, north-east,
south-east and south-west.

In [38] a framework for representing directional relation-
ships between a line and a point is presented. This model
can be employed to assign one of the 15 qualitative distinct
locations shown in Fig. 4 to the target point.

Allen [39] uses a set of 13 interval relations to model
spatial relationships between intervals in one-dimensional
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Fig. 4. According to [38] a point C can take one of the 15 illustrated,
qualitatively distinct positions with respect to line AB.
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Fig. 6. The model in [40] maps the bounding boxes of target and
reference object onto x- and y-axis and then applies Allen’s interval
relations to classify the spatial relationship. Since MBRs are used
to approximate extended objects, the result may differ from the
real relation of the exact shapes; the shown configuration would be
classified as an overlap situation, for example.

space (Fig.5). Unfortunately, instead of clearly separat-
ing topological from directional relations, this model mixes
them up. In [40] Allen’s intervals are mapped on the x- and
the y-axis in order to express directional (and topological)
relationships between extended objects in 2D. Only 8 of
Allen’s 13 intervals are used on each axis, resulting in 64
different relations between 2D objects. The model approx-
imates the geometry of extended objects by means of min-
imum bounding rectangles (MBR), so the resulting spatial
relation may deviate from that of the exact shapes. [41]
and [42] follow the same approach, but use a different set
of interval relations.

Goyal [43] also partitions the space around the reference
object on the basis of projections of the MBR, but intro-
duces a direction-relation matrix that is able to record pre-
cisely into which direction tiles a target object falls. But
because the model does not assign names to direction rela-

qualitative relations between intervals in 1D [39].

tions, it is only of limited use for the application in a spatial
query language.

The approach presented in [37] models direction as a unit
vector and orientation as a set of directions. The model
can not only be used for expressing absolute directional re-
lations, but also for object- and viewer-based orientation.
Unfortunately also this model uses the centroids of refer-
ence and target object, resulting in the same limitations as
stated above. Although relative orientation has important
applications in the field of similarity assessment and data
mining [43-45], it is of less significance for the area of in-
terest addressed by this paper.

To summarize, no directional model that has been devel-
oped so far meets the particular requirements of a spatial
query language for 3D building information models. Most
models approximate the objects involved either by means
of centroids or minimum bounding boxes, producing unex-
pected results when applied on building components with
complex geometry. Very little work has been carried out on
directions in 3D space so far [46,37].

3. Formal specification of directional operators

Colloquial language is often vague and ambiguous when
used to describe directional relationships. Because an un-
equivocal definition is essential for using directional rela-
tionships as conditions in a spatial query language, it is
necessary to formally specify their semantics.

Direction is a binary relation of an ordered pair of objects
A and B, where A is the reference object and B is the target
object. The third part of a directional relation is formed
by the reference frame, which assigns names or symbols to
space partitions.

According to [47], three types of reference frames can be
distinguished: an intrinsic reference frame relies on the in-
ner orientation of the spatial objects, such as that defined
by the front side of a building, for example. A deictic ref-
erence frame is aligned to the position and orientation of
the observer. By contrast, an extrinsic reference frame is
defined by external reference points. In geographical appli-
cations, for example, these external reference points are the
earth’s north and south pole.

In a geographical context, we usually distinguish four
(north, east, south, west) or eight space partitions (north,



north-east, east, southeast, south, south-west, west, north-
west). In 3D context, normally the additional directional
predicates above and below are used [48], which may also be
employed in conjunction with the aforementioned 2D sub-
direction, resulting in north-east-above, east-above, etc.

To meet the requirements of different application sce-
narios, we developed two new models for representing di-
rectional relationships between 3D objects: the projection-
based model and the halfspace-based model. Both models
use an intrinsic reference frame that is determined by the
orientation of the coordinate system chosen by the user.

The proposed directional models are appropriate for ar-
bitrary combinations of spatial types and are based on a
separate examination of directional relationships with re-
spect to the three coordinate axes. For each axis, there are
precisely two possible relations, only one of which holds
at the most: eastOf and westOf in the case of the z-axis,
northOf and southOf for the y-axis and above and below
for the z-axis. We haven chosen the names of geographical
cardinal directions instead of left, right, in front of, behind
to clearly label our models as observer-independent.

As opposed to the directional models used in [40,41] and
[43], the directional relationships of the relevant axis are not
superimposed. Accordingly, the relationship between two
spatial objects is not north-east, for example, but northOf
and eastOf.

Both models distinguish two “flavors” of directional op-
erators. Whereas the strict directional operators only re-
turn true if the entire target object falls into the respective
directional partition, the relazed operators also return true
if only parts of it do so.

3.1. The projection-based directional model

In the projection-based model, the reference object is ex-
truded along the coordinate axis corresponding to the di-
rectional operator. The target object is tested for intersec-
tion with this extrusion. Let reference object A and tar-
get object B be spatial objects of type SpatialObject and
a € A, b € B. Then the formal definitions of the relaxed
projection-based operators read:

eastOf_proj_relazed (A, B) &
da,b:ay =by, Na, =b, Nay <bg,
westOf-proj_relazed (A, B) <
da,b:ay =by, Na, =b, Nay > b,
northOf_proj_relazed (A, B) <
da,b:ay, =by ANa, =b, ANay < b,
southOf_proj_relaxed (A, B) <
Jda,b:ay, =by ANa, =b, Aay > b,

A (s g

NN

T,

X

Fig. 7. The projection-based directional model relies on the extrusion
of the reference object (A) along the respective coordinate axis. In the
illustrated example, the relaxed operator above_proj_relaxed returns
true for the target objects B, D, E and G, but false for any other
target object. By contrast, the strict operator above_proj_strict also
returns false for B, G and E.

above_proj_relazed (A, B) <

Jda,b:az =bz Nay =by, Na, <b,,
below_proj_relazed (A, B) &

da,b:az =by; Nay =by, Na, > b,

The relaxed operators return true if there is an inter-
section between the extrusion body and the target object,
otherwise false. By contrast, the strict projection-based op-
erators only return true if the target object is completely
within the extrusion body. Accordingly, the formal defini-
tions of the strict operators are:

eastOf_proj_strict (A, B) <

Va: (Fb:ay=byNa, =b, Nag <by) A
(Bb:a, =b,Na, =b, Na, >b,),
westOf_proj_strict (A, B) &
(@ray=byNa,=b, ANay > by) A
(Bb:ay, =b,Na, =b, Nay <b,),
northOf_proj_strict (A, B) <
s (3brag =by Na. =b; Nay < by) A
(Pb:a, = b, Na,=b, Nay >by),
southOf_proj_strict (A, B) <
c(3brag =by Na.=bs ANay > by) A
(Bb:a, =b, Na, =b, Aay, <by),
above_proj_strict (A, B) <
Va: (3b:ag =by Nay =by Aa, <b,) A
(Fb:a, = b, Nay=byANa, >b,),
below_proj_strict (A, B) &
(@rag=bgNay=byNa, >b.)A
(ﬂb:ai =by ANay=by, Na, <b,) .

Fig. 7 illustrates the consequences of these definitions.
In colloquial language, the semantics of the operator



Fig. 9. In the halfspace-based directional model the direction tiles are
formed by halfspaces defined by the reference object’s axis-aligned
bounding box. In the given example, A is the reference object. The
relaxed operator above_hs_relaxed returns true for the target objects
B and F, the strict operator above_hs_strict only returns true for F'.

above_proj_strict, for example, could be described as “di-
rectly above” or “exceptionally above”. In Fig.8 the di-
verging semantics of the different directional operators are
illustrated by a practical example.

3.2. The halfspace-based model

The second model is based on halfspaces that are de-
scribed by the reference object’s axis-aligned bounding box
(AABB). In this model, the target object is tested for in-
tersection with the halfspace corresponding to the direc-
tional predicate. In analogy to the projection-based model,
we distinguish strict and relaxed operators. The formal def-
initions of the relaxed operators are:

SVa:db:a, <b,,
SVa:3db:a, > b,

above_hs_relazxed

)

eastOf-hs_relaxed(A, B) < Va : 3b: ay < by,
westOf-hs_relazed(A, B) < Va : 3b: az > b, ,
northOf_hs_relazed(A, B) < Va : 3b: ay < by,
southOf-hs_relazed(A, B) < Va : 3b: ay > b, ,
(4,B)
(4, B)

below_hs_relaxed|

For the relaxed operators to return true it is sufficient
if parts of the target object are within the relevant halfs-
pace. By contrast, the strict operators only return true if
the target object is completely within that halfspace. The
formal definitions of the strict operators accordingly read:

eastOf-hs_strict(A,B) < Va, b :
westOf-hs_strict(A,B) < Va, b :
northOf-hs_strict(A,B) < Va,b :
southOf-hs_strict(A,B) < Ya,b: ay, > by, ,
above_hs_strict(A,B) & Ya,b: a, <b, ,
below_hs_strict(A,B) < Ya,b :

az < by,
az; > by,
ay < by,

a, >b,

The examples in Fig.9 illustrate the consequences of
these definitions.

4. Implementation
4.1. Providing spatial types and operators in SQL

Our concept for realizing the proposed spatial query lan-
guage is based on object-relational database techniques im-
plementing the ISO standard SQL:1999 [49] which allows
the extension of the database type system in an object-
oriented way, especially by providing abstract data types
(ADTs) which may possess member functions (methods)
[60-52]. By using an Object-Relational Database Manage-
ment System (ORDBMS), spatial data types and spatial
operators can be made directly available to the end-users,
enabling them to formulate queries like

SELECT *
FROM buildingcomps comp, Ceilings cl, Ceilings c2
WHERE comp.above(c1) AND comp.below(c2) AND

cl.id =1 AND c2.id =2

to extract all building components between Ceiling 1 and
Ceiling 2.

As can be seen in the example, spatial operators, such as
above, are implemented as methods of spatial data types
and can be used in the WHERE part of an SQL statement.
As opposed to purely object-oriented databases, these
methods are stored and processed server-side, resulting in
dramatically reduced network traffic compared to a client-
side solution. This section discusses the implementation of
the directional operators as server-side methods.

The spatial types as defined in [10,11] and the directional
operators specified in Section 3 are integrated in the object-
relational query language SQL:1999 in the following way:
The supertype SpatialObject and its subtypes Body, Sur-
face, Line and Point are declared as complex, user-defined
types and the available spatial operators as member func-
tions of these types. For the commercial ORDBMS Oracle
the declaration reads:

CREATE OR REPLACE TYPE SPATIALOBJECT AS OBJECT
EXTERNAL NAME ’SpatialObjectJ’
LANGUAGE JAVA USING ORAData

(

MEMBER FUNCTION above_proj_strict(object SPATIALOBJECT)
RETURN NUMBER
EXTERNAL NAME ’above_proj_strict(SpatialObjectJ)
return int’,

MEMBER FUNCTION below_proj_strict(object SPATIALOBJECT)
RETURN NUMBER
EXTERNAL NAME ’below_proj_strict(SpatialObjectJ)
return int’,

)

The SQL type is bound to a corresponding Java type
stored within the database, accordingly the declared SQL
member functions are bound to specific Java methods of
this type. Following its declaration, the user-defined SQL
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Fig. 8. Example illustrating the diverging semantics of the different directional operators. In each case, the reference object is depicted in
blue, whereas the result set identified by the particular operator is depicted in red. Left: above_proj_strict. Middle: above_proj_relazed. Right:
above_hs_relaxed. Please note that, for this example, the result of above_hs_strict is equal to that of above_hs_relaxed.

type may be used to create object tables, i.e. tables that
exclusively host instances of the given type.

CREATE TABLE buildingcomponents OF BODY;

As soon as the table is filled with instances, the user is
able to perform queries on them that may contain calls of
member functions in the WHERE part:

SELECT =*

FROM buildingcomps bcl, buildingcomps bc2

WHERE bcl.id = ’58’ AND
bc2.above_proj_strict (VALUE(bcl)) =1

The processing of a spatial operator is forwarded to the
specified Java routines stored within the database. In the
case of a directional operator, such as above_proj_strict, the
Java stored procedure performs one of the algorithms pre-
sented in the next two sections.

4.2. Implementation of the halfspace-based model

The halfspace-based directional model can be imple-
mented easily and efficiently by using the axis-aligned
bounding boxes of both the reference and the target ob-
ject. All that needs to be checked is whether the vertices of
the target object’s bounding box are within the respective
halfspace with regard to the reference object. To this end,
only the coordinate associated with the examined direction
has to be tested. In the case of the relaxed operators, in or-
der to return true, it is sufficient for the coordinate of one
of the vertices of the target’s AABB to be smaller/greater
than that of all the vertices of the reference’s AABB.

Let Apin = (amin,xa Amin,ys amin,z) and Apar =
(@maz,z) Gmaz,ys Gmasz,>) be the vertices of the reference ob-
ject’s AABB and B, and By, the vertices of the target
object’s AABB, accordingly. Then the relaxed operator
above_hs_relazed, for example, checks whether by,q, . >
Gmag,- 1s fulfilled. The strict operator above_hs_strict, on
the other hand, checks whether byn.. > @mas,. holds
(Fig. 10).
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Fig. 10. The implementation of the halfspace-based directional model
is based on a comparison between the respective coordinate of the
vertices of the reference and target object’s AABBs.

4.3. Implementation of the projection-based directional
model

The implementation of the projection-based model is
much more complex than that of the halfspace-based
model. The proposed algorithm is based on a hierarchical
space-partitioning data structure called slot-tree, that has
been developed by our team. It is derived from the octree
data structure.

The octree is a space-dividing, hierarchical tree data
structure for the discretized representation of 3D volumet-
ric geometry [53-55]. Each node in the tree represents a cu-
bic cell (an octant) and is either black, white or gray, sym-
bolizing whether the octant lies completely inside, outside
or on the boundary of the discretized object. Whereas black
and white octants are branch nodes, and accordingly have
no children, gray octants are interior nodes that have ex-
actly eight children. The union of all child cells is equal to
the parent cell, and the ratio of the child cell’s edge length
to that of its father is always 1:2. The equivalent of the
octree in 2D is called quadtree.



Fig. 11. The implementation of the projection-based operators first
checks, whether the projection of the target object’s AABB lies
completely inside the projection of the reference object’s AABB.

In our implementation concept for projection-based di-
rectional operators, each spatial object is represented by
an individual octree. There are several different approaches
for generating an octree out of the object’s boundary repre-
sentation, most of which are based on a recursive algorithm
that starts at the root octant and refines those cells that
lie on the boundary of the original geometry, i.e. which are
colored gray.

For our implementation we use the creation method de-
veloped by Mundani [56,57] that is based on the halfspaces
formed by the object’s bounding faces. In Mundani’s ap-
proach, the color classification is based on a simple eval-
uation of the plane equation of each halfspace for the re-
spective octant and a subsequent combination by means
of Boolean expressions. Accordingly, the algorithm auto-
matically marks inner cells as black without the need to
perform an expensive filling algorithm. As described in the
next sections, the existence of black cells are an important
prerequisite for the applicability of many rules that make
it possible to abort the recursive algorithm at an early re-
finement level in many situations.

Before applying the octree-based algorithm, it is wise to
conduct a rough test based on the relative position of the
operands’ AABBs. In the case of the relaxed operators, it
is necessary for the projections of the AABBs on the plane
orthogonal to the direction under examination to overlap.
In the case of the strict operators, the projected AABB of
the target object has to lie completely inside the projection
of the reference object’s AABB (Fig.11). If these initial
conditions are not fulfilled, the operators return false.

Once the initial test has been passed, it is necessary to
conduct a detailed examination based on the exact geom-
etry of the operands. As mentioned above, the proposed
algorithms use a newly developed, space-partitioning data
structure called slot-tree. A slot-tree re-organizes the cells
of an octree (octants) with respect to their position orthog-
onal to the coordinate axis under consideration.

The basic element of a slot-tree is the slot. A slot of level
k is formed by the extrusion of a level k cell along the

Slot 1 ; Slot 2

Slot 1| Slot 2 \

Slot 3| Slot 4 AN :
I
\\ \\
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Fig. 12. Slots in 3- and 2-dimensional space, respectively. A slot in
z-direction contains all the cells that lie above one another.

- Level 2
: —> Level 3
I - Level 4
—> Level 2

Fig. 13. A slot in 2D that owns cells from different levels of the
underlying quadtree (Slot 1212 from Fig. 14).

examined axis (z, y or z according the definitions in Section
3.1). It contains all cells which intersect with this extrusion.
If we take a look at the z-direction, for example, a slot
contains all the cells that lie above one another (Fig. 12). It
accordingly possesses a list of octants in the order of their
appearance. The octants may stem from different levels
of the octree, and consequently may have different sizes
(Fig. 13). This also means that one octant might appear in
the list of different slots. Introducing the slot data structure
allows for the application of simple tests based on the color
and absolute position of the cells contained therein in order
to decide whether the examined directional predicate is
fulfilled or not.

In analogy to the octree, the slot-tree organizes the slots
in a hierarchical manner. Each node in a 3D slot-tree has
either 4 or no children, depending on whether the corre-
sponding slot contains gray octants. A slot-tree may be
directly derived from an existing octree representation, or
generated on-the-fly while processing the algorithm of the
directional operator. The procedure is illustrated in Fig. 14.
Traversing the octree top-down in a breadth-first manner,
we proceed to build up the slot-tree, generating child slots
and inserting them into the slot-tree, as required. Such a
refinement is necessary if at least one cell in the current
slot is gray. By coupling the generation of octree and slot-
tree with the processing of the directional operator, it is
possible to avoid unnecessary refinements at places of no
relevance for the operator’s results.

Due to the differing semantics, strict and relaxed opera-
tors are implemented differently. Thus, the corresponding
algorithms are explained in two separate subsections. Both
algorithms rely on the principle of creating slot pairs with
one slot from object A and one from object B, both cover-
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Fig. 14. Generation of a 2D slot-tree up to level 4. A slot will only be refined if it possesses at least one gray quadrant. A 2D slot tree can
be derived directly from the quadtree presentation of the objects’ geometry, a 3D slot tree from an octree representation accordingly.

ing the same subset of space, and performing local tests on
these pairs. For the sake of better comprehensibility, but
without loss of generality, only the direction above is con-
sidered here.

4.3.1. Strict projection-based operators

The main routine above_proj_strict() (Algorithm 1) con-
trols the recursive algorithm. The level of recursion is iden-
tical to the slot-tree level that is currently under examina-
tion. At the beginning, the level-0 slots of object A and ob-
ject B are passed to above_proj_strict() as parameters. Be-
fore jumping to the next level of recursion, all tests for the
current hierarchy level are performed (breadth-first traver-
sal). This makes it possible to avoid unnecessary refinement
steps, terminate the algorithm at the earliest moment pos-
sible and return either true or false.

The recursion is stopped, if one of the tests for the child
pairs returns a negative result (Algorithm 1, lines 3-5), the
chosen maximum level of refinement has been reached (line
9) or no pairs for the next recursion level have been created
(line 7). The latter occurs if all slot pairs of the current
level pass the tests, and thus no refinement is necessary. In
this case, above_proj_strict() returns true (line 15).

The core of the algorithm consists in the slot-wise check-
ing of rules, realized by the subroutine applyRules_create-
ChildPairs (Algorithm 1). It is called for each single slot
pair. First, general tests based on the slots’ colors are per-

formed. The color of a slot is determined by the colors of
the octants belonging to it. If at least one of the octants
is gray, the color of the slot is also gray. The same applies,
if the slot has both white and black octants. The slot only
obtains the corresponding pure color if there are just white
or just black octants, respectively.

The slot color-based rules for above_proj_strict are as fol-
lows: if the B slot is black, the algorithm returns false (line
4), because in this case B fills the whole height of the do-
main, i.e. there is at least one B point that is not above an
A point. If slot B is white, then the respective slot pair is
not relevant for the evaluation of the directional predicate,
i.e. no child pairs are created and true is returned. If slot B
is gray and slot A is white, then there is at least one point
in B that “hangs in the air”, i.e. it is not above an A point.
Accordingly the algorithm has to return false (line 10). If
slot A is gray and slot B is black, then there is no B point
in this slot that is above all A points. Again, false has to
be returned (line 13).

Detailed examinations with respect to the position and
color of individual cells are only necessary if both slots are
gray. In this case, the subroutine makes use of the slots’
methods lowestNonWhite(), highestNonWhite(), highest-
Black() and lowestBlack() that return the position of the
respective cell as integer value, as well as hasBlack() that re-
turns a Boolean value. The implementation of these meth-
ods relies on a traversal of the list of cells owned by the slot.



boolean above_proj_strict
(SlotPair[] slotpairs, int currentLevel)

1: for all slotpairs do

2:  boolean result < applyRules_createChildPairs( slotpairs[i],
childPairs )

3: if result = false then

4: return false

5.  end if

6: end for

7: if number of childPairs > 0 then

8: if currentLevel = maxLevel then

9: return true

10:  else

11: currentLevel < currentLevel + 1

12: return above_proj_strict(childPairs, currentLevel) // recur-

sive call

13:  end if

14: else

15: return true

16: end if

Algorithm 1: The main routine above_proj_strict controls
the recursive traversal of the slot-trees by calling itself re-
cursively.

boolean applyRules_createChildPairs
(SlotPair slotPair, SlotPair[] childSlotPairs)

1: slotA < slotPair.slotA

2: slotB « slotPair.slotB

3: if slotB.color = black then

4:  return false

5: else

6:  if slotB.color = white then

7 return true

8: else // slotB.color = gray

9: if slotA.color = white then

10: return false

11: end if

12: if slotA.color = black then

13: return false

14: end if

15:  end if

16: end if

17: if slotB.lowestNonWhite() < slotA.lowestNonWhite() then
18:  return false // Negl-Rule

19: end if

20: if slotA.hasBlack then

21:  if slotB.highestBlack() > slotA.lowestNonWhite() then
22: return false // Neg2-Rule

23:  end if

24:  if slotA.highestNonWhite() < slotB.lowestNonWhite() then
25: return true // Pos-Rule

26: end if

27: end if

28: if slotB.hasBlack then

29:  if slotB.lowestBlack() < slotA.highestNonWhite() then
30: return false // Neg3-Rule

31:  end if

32: end if

33: childSlotPairs <« createChildSlotPairs(slotA, slotB)

Algorithm 2: The sub-routine applyRules_createChild-
Pairs performs the slotwise checkings of rules and creates
pairs of child slots, if necessary.
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Fig. 15. Examples of constellations where the rules Pos, Negl, Neg2
or Neg3 are applied during the processing of the algorithm above-
_proj-strict(A,B). The slots shown side-by-side actually occupy the
same position in space.

The rules for this exact examination are illustrated in
Fig. 15. The first test checks, whether the lowest non-white
cell in B has a lesser height than the lowest non-white cell
in A. If this is the case, the definition is violated, because
B points “hang in the air” (rule Neg1, see Fig. 15) and false
is returned (line 18).

The next two tests are only performed if B has at least
one black cell. If the highest black cell of A is higher than
or at the same position than the highest black cell of B,
then false has to be returned (line 22), because according to
the definition of above_proj_strict all gray or black B cells
have to be above the highest black A cell (rule Neg2). If,
however, the highest non-white A cell is below the lowest
B cell, the definition is entirely fulfilled (rule Posl), i.e.
the subroutine returns true without creating pairs of child
slots (line 25).

The final test is only conducted, if B owns at least one
black cell. It checks whether the lowest black cell in B lies
below a non-white A cell. If this is the case, then there is
at least one point in B that is below a point in A, i.e. the
definition is violated (rule Neg3) and accordingly false is
returned (line 30).

If none of the tests yields a positive or negative result,
there is no definitive statement possible for the current slot
pair and a further refinement is required. Accordingly, pairs
of child slots are created (line 33) and returned to the main
routine above_proj_strict(). The creation of pairs of child
slots is realized as follows: if both slots are gray, i.e. not
leaf nodes of the corresponding slot tree, each of the four
children of slot A is combined with a child of slot B at the
same position, resulting in four pairs of child slots. If one
of the slots is either black or white, i.e. a leaf node without
children, it is combined with each child of the other slot,
also resulting in four pairs of child slots. Consequently, there
may be pairs of slots from different levels.

4.3.2. Relazed projection-based operators

The implementation of the relaxed operators differs from
that of the strict operators with respect to (1) the rules
that are checked during the recursive algorithm and (2) the
conditions for stopping the recursion before reaching the
maximum refinement level. It follows from the definition of
the relaxed operators that, in contrast to the strict opera-



boolean above_proj_relaxed
(SlotPair[] slotpairs, int currentLevel )

—_

: for all slotpairs do

boolean result <« applyRules_createChildPairs( slotpairs][i],
ChildPairs )

if result = true then

v

3

4 return true

5 end if

6: end for

7: if number of childPairs > 0 then

8 if currentLevel = maxLevel then

9: return false
10:  else
11 currentLevel < currentLevel + 1

return above_proj_relaxed(childPairs, currentLevel) // re-
cursive call

end if

: else

return false

: end if

Algorithm 3: The main routine above_proj_relazed con-
trols the recursive traversal of the slot-trees by calling itself
recursively.

tors, there is no rule that may force the algorithm to stop
because of a negative condition. However, it is possible for
the algorithm to stop if only one slot pair fulfills the posi-
tive conditions.

This fact is reflected by the main procedure above_proj_-
relazed() that controls the recursive breadth-first traversal:
as soon as the subroutine applyRules_create ChildPairs() re-
turns true for a slot pair (lines 3-4), above_proj_relazed()
stops the recursion and returns true. The same behavior
occurs whenever no pairs of children have been created on
the current refinement level (lines 7, 15). Another differ-
ence is that above_proj_relazed() returns false if none of the
slot pairs has fulfilled the positive conditions on reaching
the maximum refinement level (line 9).

As for the strict version of the operators, the rules are
tested in testSlots_createChildPairs (Fig. 3). Again, simple
tests based on the slots’ colors are conducted first. If one
of the slots is white, then this is not a slot pair that has to
be subjected to further examination. Accordingly, no pairs
of children are created and false is returned (line 4).

If none of the slots is white and at least one is black,
then there is at least one point in B that is above a point
in A or has the same vertical position. Thus, the formal
definition of above_proj_relaxed is fulfilled, i.e. no pairs of
children are created and true is returned (line 7), which
results in the abortion of the recursion. If neither the first
nor the second rule is fulfilled, then both slots are gray and
detailed examinations have to be conducted with respect
to the color and position of the individual cells.

If slot B owns a black cell with the same or a higher
position than the highest non-white cell of slot A, then there
is at least one B point above an A point, i.e. the definition
is fulfilled and true is returned (line 10) without creating
pairs of child slots (rule Pos1, see Fig. 16).
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boolean applyRules_createChildPairs
(SlotPair slotPair, SlotPair[] childSlotPairs)

: slotA « slotPair.slotA
: slotB « slotPair.slotB
: if slotA.color = white or slotB.color = white then

return false
else

if slotA.color = black or slotB.color = black then

return true

end if
end if
: if slotB.hasBlack and (slotB.highestBlack()>slotA.lowestNon-
White()) then

return true // Posl-Rule
: end if
: if slotA.hasBlack and (slotB.highestNonWhite() > slotA.lowest-
Black()) then

return true // Pos2-Rule
: end if
: childSlotPairs « createChildSlotPairs(slotA, slotB)

QL XD

—

Algorithm 4: The sub-routine applyRules_createChild-
Pairs performs the slotwise checking of rules and creates

pairs of child slots, if necessary.
A B

Pos 2

A B

Pos 1

Fig. 16. Examples of constellations where the rule Pos! and Pos2
are applied when processing the algorithm above_proj_relazed(A,B).
The slots shown side-by-side actually occupy the same position in
space.

If slot A owns at least one black cell and the highest non-
white cell in B has the same or a higher position than the
lowest black cell in A, then again at least one B point is
above an A point. So the definition is fulfilled (rule Pos2)
and true is returned (line 14).

If none of the tests yields a positive or negative result,
then either slot A and slot B has exclusively gray cells or the
black cells do not occupy a relevant position. In both cases,
a further refinement is necessary, i.e. pairs of child slots are
created (line 16) and returned to above_proj_relaxed() for
the next level of recursion.

4.3.3. Imprecision issues

If the refinement level is not high enough, the slot-tree
based algorithms may produce incorrect results. Due to dif-
ferent interpretations of non-resolved slot pairs when reach-
ing the maximum refinement level, the strict operators may
incorrectly return true when the definition is actually vi-
olated (Fig. 17, left) while, on the other hand, the relaxed
operators may return false altough the definition is actu-




Fig. 17. In the given examples, the critical parts (depicted in black)
will not be detected by the slot-based algorithms if the maxi-
mum refinement level is not greater than 4. Left: The operator
above_proj_strict will incorrectly return true. Right: The operator
above_proj_relazed will incorrectly return false.

-256 0 256

Fig. 18. Geometrical setup 1 for performance measurement of the
strict operator. The algorithm has to refine an entire edge where the
objects overlap vertically.

ally satisfied (Fig. 17, right).

The different treatment of unresolved cases is chosen in
this way to reflect the more probable situation: when ap-
plying the strict operator, one slot pair that violates the
definition suffices to stop the algorithm and make the op-
erator return false. It can therefore be assumed that the
objects in question fulfill the definition if the maximum re-
finement level is reached and no such slot pair has been
found. By contrast, when applying the relaxed operator,
one slot pair that fulfills the definition suffices to stop the
algorithm and cause the operator to return false. Thus, in
this case it is assumed that the objects in question violate
the definition if the maximum refinement level is reached
and no such slot pair has been found.

4.3.4. Performance

In order to investigate the performance of the developed
algorithms, we applied them to extreme geometric constel-
lations that force the algorithms to refine the generated
slot-tree up to the maximum level defined by the user.
These extreme cases are depicted in Fig. 18 and 19 for the
relaxed operator and Fig. 20 for the strict operator.

As can be seen, in the case of the relaxed operator, the ge-
ometry setup is formed by two plates that slightly overlap
when seen from above. Here we have examined two distinct
cases; in the first configuration the plates overlap along an
entire edge (Fig. 18), in the second one only at one corner
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-256 0 256

Fig. 19. Geometrical setup 2 for performance measurement of the
strict projection-based operator. The algorithm only has to refine
the corner where the objects overlap vertically.

(Fig. 19). In addition, we varied the thickness of the plates:
we ran the tests for thicknesses of 16 and 128 units, respec-
tively.

The results of the performance measurements are de-
picted in Fig.22, where the runtime of the algorithm is
plotted logarithmically against the maximum refinement
level. The diagram clearly shows the exponential behavior
of the runtime of the algorithm. Such runtime complexity
is doubtlessly undesirable, but it is predetermined by the
nature of the refinement approach followed by the slot-tree
algorithms.

In the case of the strict operator we used two plates
that have exactly the same dimensions and lie precisely
above one another (Fig.20). In this case, all four sides of
the hexagons have to be refined up to the maximum level.
Again, we used two different thicknesses for the plates, 16
and 128 units. The results of these tests are depicted in
Fig. 23 and visualized in Fig.24. As can be seen, we are
obliged to observe an exponential behavior of the algorithm
in case of the strict operators, too.

It is important to note that the geometric constellations
examined here for performance measurements are worst-
case scenarios, i.e. constellations that are rarely found in
real building models. In most cases, the algorithms will be
able to stop at a much lower refinement level, resulting in
dramatically reduced processing time for the average object
pair.

A fairly realistic scenario is the model of a building’s
structural framework as presented in Fig. 8, which consists
of 216 building components. A specimen query that selects
all the building components that are exactly above a ground
floor column using the strict_above_proj algorithm in con-
junction with an A ABB-based pre-filter takes no more than
42 ms on average, when refining up to level 7. In this ex-
ample, the correct set of building components is already
identified by the algorithm at refinement level 4.

The presented algorithms are implemented in Java. All
performance tests were run using JDK 1.6.0_02 installed
on an Intel Pentium 4 3.0 GHz machine, a typical desktop
computer in use in many engineering offices today. In order
to directly measure the performance of the algorithms pre-
sented here, the time for query processing and secondary



256 0 256

Fig. 20. Geometrical setup for performance measurement of the re-
lazed projection-based operator. The algorithm has to refine all four
sides of both hexagons up to the maximum level.

max. level 5 6 7 8 9 10 | 11
edge/edge thick 15 | 60 | 205 | 810 | 3058

edge/edge thin 15 | 41 | 105 | 285 |1013|3341
corner/corner thin 5 7 7 7 7 9 11
corner/corner thick 5 7 13 | 21 | 41 78 | 156

Fig. 21. Timings in ms taken for the slot-based implementation of
the strict projection-based operators.
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Fig. 22. The timings shown in Fig. 7?7 plotted logarithmically against
the maximum refinement level. The exponential behavior of the
runtime is clearly shown.

max. level 4 5 6 7
thick 97 396 | 1947 | 12302
thin 97 306 | 1078 | 3623

Fig. 23. Timings in ms taken for the slot-based implementation of
the strict projection-based operators.

storage retrieval has been disregarded.

To summarize, even if the runtime complexity of the al-
gorithms is not optimal for worst-case scenarios, the av-
erage runtime of the algorithms — when used for typical
building models —is more than acceptable. The sub-optimal
runtime behavior has to be assessed in the context that
no algorithms for determining precise directional relations
between extended 3D objects were available so far. Nev-
ertheless, we intend to pursue our work on improving the
runtime performance of the presented algorithms.
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Fig. 24. The timings shown in Fig. 23 plotted logarithmically against
the maximum refinement level. The exponential behavior of the
runtime is clearly shown.

max. level| 3 4 5 6 7 8 9 | 10

time [ms] 33 | 33 | 35 | 39 | 42 | 90 | 379 |1261

Fig. 25. Timings taken for the evaluation of the strict projec-
tion-based operator strict_above_proj for the red-marked column of
Fig. 8.
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Fig. 26. The timings shown in Fig.25 plotted linearly against the
maximum refinement level. The correct result set is already identified
by the algorithm with a maximum refinement level of 4.

5. Summary

In this article we have presented in-depth definitions and
possible implementations of directional operators in a 3D
Spatial Query Language for Building Information Mod-
els. By using point-set theory notation, we have formally
defined two directional models: the halfspace-based model
where the directional partitions are formed by the reference
object’s axis-aligned bounding planes, and the projection-
based model that relies on the extrusion of the reference
object in the respective direction. The notions of strict and
relared predicates have been defined for both models.

Possible implementations of the directional operators
have also been discussed. Whereas the halfspace-based
model can be implemented by simple tests using the axis-
aligned bounding boxes of both the reference and the target
object, the algorithms for implementing the projection-
based model are much more complex. The paper describes
in detail a possible implementation by means of so-called
slot-trees, a new space-partitioning data structure that has
been introduced here. The data structure is related to the



well-known octree data structure but organizes the cells
primarily in directional order. It is created on-the-fly out
of the boundary representation of the reference and the
target object, respectively. The algorithms traverse the re-
sulting trees in a breadth-first manner, perform local tests
based on the color and location of the underlying octants,
and either opt for further refinement or for stopping the re-
cursive traversal. With the ongoing recursion, the discrete
resolution of the spatial objects employed is successively
increased. By choosing the maximum refinement level, the
user is able to trade-off between computational effort and
the required accuracy.

Finally, the paper has presented various investigations
concerning the performance of the presented algorithms.
We have studied some worst-case scenarios clearly illustrat-
ing the drawback of the refinement approach resulting in
exponential runtime behavior. At the same time, we have
also been able to show that the algorithms have compara-
tively short processing times, when applied for real-world
scenarios, which makes the entire concept suitable for real
engineering problems.

6. Future research work

Our current efforts focus on developing an alternative
implementation of the projection-based directional opera-
tors, which will be based directly on the boundary repre-
sentation of the reference and target object and will involve
traditional geometric approaches, such as ray-triangle in-
tersection tests. We hope to use this approach to overcome
the exponential behavior of the slot-tree based algorithm.

Within the scope of the overall Spatial Query Lan-
guage project we intend to enhance the performance of
the database access further still by implementing R-tree
indexing structures within the database management sys-
tem. In addition, we want to analyze the potential use of
so-called In-Memory Databases to avoid secondary storage
access while retaining the benefits of a declarative query
language.

In the current phase of our project we store the ex-
plicit geometry of all building components of a BIM in the
database by means of a simple vertex-edge-face data struc-
ture. In the future, we want to upgrade to a more compre-
hensive boundary representation, such as Winged-FEdge or
Radial-Edge, which will make it possible to use the results
of a spatial query for further processing in the end-user’s
CAD system. We also intend to store semantic information,
such as BIM classes and non-geometric attributes, to make
it possible to employ such information within the selection
predicate.

Of particular interest is the combination of the proposed
spatial query language for building models with techniques
for the extraction of air volumes from 3D models that have
been developed by our group [58,59]. This combination will
enable the user to not only query spatial relationships be-
tween building components, such as walls and columns, but
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also to include non-physical spatial entities such as rooms
and floors.

Another promising research direction is the evaluation of
an alternative query language as a basis for the extension by
spatial operators. Possible candidates are XQuery, a query
language for XML data [60], and SPARQL, a language for
querying RDF ontologies developed in the context of the
Semantic Web [61,62].

Finally, we will place emphasis on showing practical ap-
plications of the spatial query language by developing us-
age cases in the context of construction rule checking and
partial model creation.
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