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Abstract. The article presents an efficient and robust algorithm to produce an enhanced octree 

data structure for topological queries in Building Information Modeling applications. The major 

benefit of the presented approach is that also poor-quality geometric data can be used as input for 

the developed spatial query functionality. Additionally, the runtime behavior of the algorithm is 

optimized in a way that it makes it suitable for rapid queries in a real world scenario. To achieve 

this, the octree data structure is supplemented with a grid structure which enables fast information 

propagation from any leaf cell to its neighbors.  

1. Introduction 

Building Information Modeling is a comprehensive approach for managing the digital 

information generated and used throughout a building’s lifecycle by means of a holistic 

model. To fulfill this goal, a Building Information Model comprises (1) semantic information 

of the components and spaces of the building, (2) a detailed description of the geometry of 

these entities, and (3) the relationships between these entities. Due to the inherent spatial 

nature of buildings, the spatial relationships play an extraordinary important role.  

However, the building information models generated by the respective authoring tools in use 

today include only a small subset of the required spatial relations explicitly. Thus, it becomes 

desirable to provide means for querying the model for spatial relationships, based directly and 

solely on the geometric description of the building entities. As a result, the formulation and 

processing of spatio-semantic queries becomes possible. An example for this kind of query is 

“Which columns touch ceiling 1?”. 

The topological operations always correlate two spatial entities. Because of the Boolean 

return value of an operation, they are also referred to as topological predicates. The operation 

can be evaluated by the use of the 9-Intersection Model (9-IM) introduced in (Egenhofer, 

1991). The 9-IM calculus makes use of the mathematical field of Point Set Topology  

(Gaal, 1964) where the neighborhood of a point is used to describe topological concepts such 

as the interior A°, the boundary δA and the exterior Aˉ of a point set A. The intersection of 

interior, boundary and exterior of two entities lead to a 3 x 3 matrix whose individual entries 

are populated with either the empty set symbol or the non-empty set symbol. 
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The resulting matrix can be used to define the topological predicates disjoint, touch, equals, 

inside, contains, covers, coveredBy, and overlap (Borrmann & Rank, 2009).  
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Figure 1 shows the 9-IM matrix for the constellation where object A is inside object B and 

object B contains object A, respectively. 
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Figure 1:  Topological Relationship by the 9-Intersection Model 

The geometry of the individual components stored in a Building Information Model is usually 

represented by means of a boundary representation (B-Rep). Since general approaches able to 

derive topological relationships directly from the boundary representation of the involved 

entities are not yet known, we are using a space-partitioning representation (octree) as the 

intermediate geometry format (Borrmann 2007). Consequently, the overall algorithm 

comprises the followings steps: (1) transform each of the boundary representations of the 

involved objects into a corresponding octree, (2) create a 9-IM matrix by superimposing the 

octrees as shown in Figure 2, and (3) determine the applicable topological predicate by 

comparing the created 9-IM matrix with the predefined ones. 

 
Figure 2:  Creating a 9-IM matrix by superimposing two quadtrees 

 

The octree is a hierarchical data structure based on cell decomposition (Samet, 1989). The 

geometry is decomposed with equally sized cubic cells. To enhance computation performance 

and to minimize memory allocation needed by the tree, a hierarchical approach is used. Every 

cell has exactly one parent cell and either 0 or 8 child cells. Cells which are totally inside or 

outside the represented objects have no child cells. The edge length of a child cell to that of its 
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parent cell is always 1:2. As we decouple a cell with its descendants from the global tree, we 

again obtain an octree. This opens up the possibility to use recursive algorithms. 

We use the octree to introduce a layer of geometry abstraction. In addition, the accuracy of 

the topology predicate can be defined on run time by increasing the refinement level of the 

tree generation. 

2. Related work 

The potential benefits of using the functionality of Geographical Information Systems (GIS) 

for the analysis of dynamical processes in buildings are discussed in (Ozel 2000). The author 

states that, even if component-oriented CAD systems provide sophisticated functionality for 

geometric modeling, they normally lack comprehensive spatial analysis capabilities. For this 

reason, Ozel stores floor plans of buildings in a GIS database in order to use its 2D spatial 

analysis facilities. Ozel underlines the fact that 3D spatial analysis would be a much more 

powerful tool for analyzing processes in buildings.  

Up to now, spatial database systems that support 3D spatial analysis are only to be found in a 

research context. The investigations set out in (Gröger et al. 2004), for example, clearly show 

that the spatial analysis capabilities of the commercial database system Oracle Spatial are 

limited to 2D space, even though it is possible to store simple 3D geometry.  

In the 3D-GIS research community, the main interest lies in the modeling of the ground 

surface, buildings and infrastructure as well as the subsoil layers. The most important works 

in this area include (Breunig et al. 1994; Breunig et al. 2001) which report on the 

development of GeoToolkit, an object-oriented framework for efficiently storing and 

accessing 3D geographic and geologic data. The main disadvantage of using the framework 

for analyzing building models is the need to model all spatial entities according to the 

mathematical concept of simplicial complexes. The obligatory conversion of a boundary 

representation, as used in CAD tools, to a simplicial complex representation is expensive and, 

in some special cases, absolutely unfeasible. A more flexible, yet theoretic approach for 

applying algebraic topology on building models is presented in (Paul and Bradley 2003).  

In (Zlatanova et al. 2004; Zlatanova 2006; Coors 2003; Arens et al. 2005) concepts and data 

structures for storing 3D city models in spatial databases are presented and the suitability of 

different geometry models for querying topological relationships is discussed. In general, GIS 

research follows the approach of choosing geometry data structures that implicitly contain 

topological relationships. Accordingly many of the proposed data structures rely on a 

simplicial decomposition of the space (Egenhofer et al. 1989; Egenhofer and Herring 1992; 

Shi et al. 2003). Since building information models are in most case purely geometric 

representations, we do not assume any pre-defined topological structure in our research. 

3. Problem statement 

For implementing the spatial operators provided by the query language, algorithms have been 

developed which are based on an octree representation of the operands (Borrmann 2007).  

In the currently available implementation of topological queries, the halfspace-based approach 

introduced in (Mundani, 2005) is used to generate the octrees corresponding to the geometric 

objects involved in a topological query (Borrmann & Rank, 2009). For each face of the 

examined geometric object, two half spaces are created: an interior and an exterior one. 
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Convex objects can subsequently be represented by the intersection of the half spaces created 

by their faces. This consideration is used to establish a respective octree generation algorithm. 

In reference to the 9-Intersection Model, we define three possible color values for the 

produced cells in the octree: White for a cell which lies in the exterior, Black if it is in the 

interior and Gray if the cell is intersected by the boundary of the face. Every gray cell has to 

be refined until the maximum user defined level is reached. To get to an efficient tree 

generation, the determinate of a cell’s color has to be computed with the less possible effort 

because of the recursive execution of this function (Figure 3). Mundani (2005) introduced a 

fast algorithm for the color determination based on the Manhattan Norm. This algorithm is 

approved to be efficient and robust for convex geometry objects. 

 

Figure 3: The root cell is intersected by the straight line                    with  
 ∑ | | 

   = 1. At every refinement a0 has to be transformed by   ̃             . The signs of the 

parameters a1, a2, and a3 are defined by the translation direction in space. Illustrated is the refinement 

for the line equation 
 

 
  

 

 
     

 

 
     . Example taken from (Mundani, 2005) 

 

As a concave object is supposed to be transformed into an octree representation using the 

Mundani approach, it has to be considered as a composition of convex sets of half spaces by 

combining those using Boolean operations (Figure 4). The required operations are 

intersection, union and difference. 

Figure 4:  Decomposition of a concave object into its convex parts 

 

The described decomposition into convex parts has to be realized recursively until no new set 

can be created. The geometry of an object involved in a query is represented as a triangle 

meshes. Meshes, in generally, consist of vertices which bound edges. These edges again 

define faces, in our case triangles. The stated components of a mesh have to fulfill certain 

adjacent criteria in order to represent a valid mesh.  
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For degenerated meshes, where faces are erroneously not adjacent, the decomposition into 

convex subparts required for the halfspace-based octree generation is error-prone. Currently 

available BIM authoring tools often produces such corrupted boundary representations if 

models are exported (Section 5). To provide spatial query functionality also for such 

imperfect geometric models, a more robust and efficient implementation of the octree 

generation has been developed and is presented in the following section.  

4. Octree generation 

Initially, the fast 3D Triangle-Box Overlap Testing (Akenine-Möller, 2001) is utilized to 

generate the octree. In the first instance, this tree represents only the boundary of the 

geometry, but not the interior and the exterior. Consequently, in this state, the tree contains 

only undetermined and Gray colored cells. In the next step, the interior and the exterior is 

marked by making use of a fill algorithm. To enable filling the octree, the deepest cells of the 

tree, i.e. the finest octants, are cross-linked such that each octant has direct access to its 

neighbors. Doing so, the tree is transformed into a combination of a tree/grid data structure. 

The generated grid is used to efficiently mark the interior cells with a Black color attribute. 

Accordingly, cells located in the exterior are set to White. Finally, the tri-colored octree is 

handed over to the algorithm determining the topological relationship. 

4.1 Fast 3D Triangle-Box Overlap Testing  

The geometry of the two operands is received as two lists of triangles, which are stored in 

memory during the execution of the algorithm. By use of this geometry information,  the axis 

aligned bounding boxes of the operands can be calculated. The two bounding boxes are 

combined to find the appropriated cubic domain which represents both equally sized root 

octants of the upcoming tree refinement of the examined objects.  

Every octant stores a list of integer values. These values represent indices in the triangles list, 

which are accessible for the octants during execution. The stored indices indicate intersecting 

triangles for the current octant. If an octant contains intersecting triangles and the maximal 

tree level is not reached yet, the octant is refined into 8 child octants. The children inherit the 

indices list from their common parent. The Triangle-Box Overlap test is started again for each 

newly created octant. If a considered triangle does not intersect with the octant, the 

corresponding index is deleted from the octant’s integer list. This approach ensures that only 

potential intersecting triangles are tested against the current octant. Furthermore, the memory 

expensive triangle data only needs to be retained once. An octant is not furthermore refined if 

its indices list is empty or the maximal refinement level is reached. 

The implementation of the Triangle-Box Overlap test follows the Hyperplane Separation 

Theorem based algorithm presented in (Akenine-Möller, 2001). According to this theorem, 

two convex geometry objects are disjoint, if  

 there is a separating axis parallel to the normal of a face of either of the objects 

or  

 there is a separating axis along an axis obtained by the cross product of an edge of the 

first object and an edge of the second one. 

To deduce if a triangle intersects a box, 13 axes have to be tested against. In the presented 

case, the box represents an octant and is therefore a cube, which leads to an even more 

efficient implementation.  
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Location = { xBit, yBit } 

As the routine only involves efficient subparts like computing the cross product of vectors and 

interval overlay checking, it is faster than face based tests, e.g. intersecting the triangle with 

all faces of the box.  

4.2 Cross-linking of leaf cells in the octree 

At this point of the algorithm, the tree comprises Gray marked cells, indicating intersections 

by the boundary of the geometry. The remaining cells are still undetermined in their color. 

These cells are either located in the interior or the exterior of the bounding geometry of the 

operand. Thus, the two uncolored cell groups are separated by the Gray cells between them. 

This makes the use of a flooding algorithm which sets the color attribute of the cells 

applicable if it uses the Gray cells as boundary. To efficiently mark the leaf cells according to 

their location, each cell has to detect its neighbors. Crouse (2003) presents an algorithm for 

finding the neighbors of a cell by use of a bit code for the local locations of cells in their 

common parent (Figure 5).  

 

Figure 5:  Bit code of the location of cells in their parent cell in 2D 

 

If the desired neighbor of a leaf cell is located within the same parent cell, its identification is 

trivial. Otherwise, to find neighboring cells in different parents a search is performed. To this 

end, a Path is defined as a sequence of locations {{xBit, yBit}Level}. If the tree is traversed from 

a leaf cell in order to get outside lying neighbors, the Path data structure is repeatedly filled 

with the current location bits until the bit of the examined direction changes. This is 

depictures in the top of figure 6. Note that in the first Path structure the xBit in the last position 

has switched from 1 to 0. Accordingly, a neighbor in the investigated direction lies in the 

currently reached level. To get possibly existing adjacent child cells, the Path data is 

modified. All bits in the respective direction are inverted and the ordering of locations is 

reversed. By this altered structure, we travel down the tree from the determined cell which 

contains the examined cell and the neighboring cell in the desired direction. The traversal is 

done as deep as possible.  

Thus, the direct neighbors of the initially examined cell are reached, even if they are located 

in another parent cell (Figure 6).  
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Figure 6:  Finding adjacent cells by tree traversals routed via bit encoding for cell locations 

 

In (Crouse, 2003), the octree is smoothed such that a maximum difference of one level for 

neighboring cells is achieved. Since this prevents the full advantages of the hierarchical tree 

structure concerning memory allocation, we disregard this smoothing step. As a consequence, 

a cell can have an infinite count of neighbors in theory. In practice, however, the count of 

neighboring cell is still manageable. Therefore, adjacent cells can be stored in a list structure 

in each cell. The knowledge of neighboring cells is ideal for fast information transfer between 

adjacent cells. The flooding algorithm described in the following section makes use of this 

optimization.  

4.3 Flooding the leaf cells of the octree 

The presented flooding algorithm targets the classification of interior and exterior cells. In the 

first step, an arbitrary cell which is not marked Gray is picked, and an inside/outside test is 

performed for it. This is repeated until at least one interior and one exterior cell is found.  

In building information models in use today there are only very rare occurrences of geometric 

objects with caves. Therefore we regard only caveless geometry here. This allows the 

application of robust inside/outside tests, using intersection rays, for example, and eases the 

application of the flooding algorithm. Please note that spaces, which are important operands 

for topological queries, are regarded as distinct volumetric objects, for which in most cases, 

the assumption of cavelessness holds.  

Figure 7:  Information transfer by the flooding algorithm in 2D 
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As soon as a first interior cell is found, its adjacent neighbors in the six axis directions are 

marked as Black except for those which have previously been set to Gray. This procedure is 

recursively called for the found colorless neighbors, which establishes a flooding of the Black 

color to all interior cells. Likewise, the exterior cells are marked as White (Figure 7). 

5. Implementation of topological operators 

The algorithm determining the topological relationship between two operands uses the 

generated three-colored octrees as input. On each recursion level, pairs of octants are created 

with one octant originating from object A and one octant from object B, both representing the 

same sector of the 3D space. Each octant pair provides a color combination to which specific 

rules can be applied. These rules may lead to filling a 9-IM working matrix that is maintained 

by the algorithm to keep track of the knowledge gained about the topological constellation. 

There are 12 positive and 9 negative rules altogether. A positive rule (Figure 8) can be applied 

when a certain color combination occurs, and a negative rule (Figure 9) if certain color 

combinations do not occur over an entire level. Positive rules lead to empty set entries in the 

matrix, negative rules to non-empty set entries. 

 

Figure 8: Examples for Positive Rules.  

The rules are derived from the semantics of the colors. If a White octant of the first operand 

occurs at the same place as a Black octant of the second operand, it follows that the 

intersection between the exterior and the interior of the operands is non-empty. The 

9-IM working matrix is successively filled by applying these rules to all octant pairs. When 

processing the two operators against each other to obtain the accurate topological attribute, 

the working matrix is compared with all predicate matrices of the formal definitions: touch, 

equals, inside, contains, covers, coveredBy, and overlap. If the working matrix complies fully 

with one of them, the recursion is aborted and the algorithm returns the respective predicate. 

If there is any contradiction between the filled matrix and the matrix of a predicate, the 

respective predicate is precluded. If no unequivocal decision is possible for any of the 

predicates, a further refinement is necessary, i.e. octant pairs of the next level are created. 

 

Figure 9: Examples for Negative Rules 

In the case of the predicate operators the 9-IM working matrix is checked against the 

corresponding predicate matrix only. If there is a contradiction the algorithm returns false, if it 

completely complies, it returns true. If, after execution of all applicable rules, the current 

occupancy of the working matrix does not allow for validation or disproval of the/any 

predicate and the maximum refinement level is not reached, child pairs are created and the 
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algorithm calls itself recursively.  If the algorithm reaches the maximum refinement level and, 

the result is not determinable, a so-called predicate hierarchy is applied, which again ensures 

that the most probable situation is detected.  

6. Valid tree generation despite complex geometry  

The previously used half space oriented method (Mundani, 2005) can exclusively operate on 

convex geometry. If concave geometry is involved in a query, it has to be decomposed to its 

convex subparts. The subparts represent the same geometry if they are combined in certain 

order by use of Boolean operations on half spaces. Firstly, this entails that the tree generation 

is executed repeatedly and the individual results have to be combined as well, which leads to 

a multiplication of the runtime. Secondly, with increasing complexity of the geometry, the 

count of involved half spaces representing the geometry increases accordingly. If one single 

half space is set up erroneous, the entire octree is corrupted because the half spaces interact 

globally with each other. On the other hand, the presented algorithm solely creates the 

octree’s subparts by local data. So, the result does not have dependencies from distantly 

located geometry parts. Furthermore, this approach reacts, to a certain extent, uncritically to 

imperfect input geometry, which is often created by available BIM software. 

 

Figure 10:  Complex B-Rep geometry (e.g. a circular staircase) transferred to the  

octree data structure by use of the presented algorithm (f.l.t.r: Front-, Right-, Top-, 3D-View) 

7. Conclusion 

The paper presents an efficient and robust method to produce octree structures from B-Rep 

geometry in BIM. The octree generation method has been successfully integrated in a spatial 

query language (Borrmann, 2007). The algorithm determining the topological relationship 

uses the octree representations of the operands as input. Therefore, the accuracy of the trees is 

essential to deduce valid results for the topological queries. The necessary accuracy is 

delivered by the described octree generation method and verified with real world data used in 

the construction industry. Furthermore, the user of the spatial query language experiences 

shorter execution times by use of the described method. This is an advantage over the 

half space based approach (Mundani, 2005), used in the previous implementation. The 

acceleration is achieved by the faster octree generation and the enhanced data structures that 

make a rapid information transfer between adjacent octants possible. Additionally, the stated 

method is more robust, as it does not contain a decomposition of concave geometry in its 

convex subpart as the Mundani algorithm. The robustness is also achieved with degenerated 

input geometry, which is often produced and used by BIM authoring tools.   
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