
1

Efficient and Robust Octree Generation for Implementing

Topological Queries for Building Information Models

S. Daum, A. Borrmann

Chair of Computational Modeling and Simulation, Technische Universität München, Germany

daum@bv.tum.de

Abstract. The article presents an efficient and robust algorithm to produce an enhanced octree

data structure for topological queries in Building Information Modeling applications. The major

benefit of the presented approach is that also poor-quality geometric data can be used as input for

the developed spatial query functionality. Additionally, the runtime behavior of the algorithm is

optimized in a way that it makes it suitable for rapid queries in a real world scenario. To achieve

this, the octree data structure is supplemented with a grid structure which enables fast information

propagation from any leaf cell to its neighbors.

1. Introduction

Building Information Modeling is a comprehensive approach for managing the digital

information generated and used throughout a building’s lifecycle by means of a holistic

model. To fulfill this goal, a Building Information Model comprises (1) semantic information

of the components and spaces of the building, (2) a detailed description of the geometry of

these entities, and (3) the relationships between these entities. Due to the inherent spatial

nature of buildings, the spatial relationships play an extraordinary important role.

However, the building information models generated by the respective authoring tools in use

today include only a small subset of the required spatial relations explicitly. Thus, it becomes

desirable to provide means for querying the model for spatial relationships, based directly and

solely on the geometric description of the building entities. As a result, the formulation and

processing of spatio-semantic queries becomes possible. An example for this kind of query is

“Which columns touch ceiling 1?”.

The topological operations always correlate two spatial entities. Because of the Boolean

return value of an operation, they are also referred to as topological predicates. The operation

can be evaluated by the use of the 9-Intersection Model (9-IM) introduced in (Egenhofer,

1991). The 9-IM calculus makes use of the mathematical field of Point Set Topology

(Gaal, 1964) where the neighborhood of a point is used to describe topological concepts such

as the interior A°, the boundary δA and the exterior Aˉ of a point set A. The intersection of

interior, boundary and exterior of two entities lead to a 3 x 3 matrix whose individual entries

are populated with either the empty set symbol or the non-empty set symbol.

 (

)

The resulting matrix can be used to define the topological predicates disjoint, touch, equals,

inside, contains, covers, coveredBy, and overlap (Borrmann & Rank, 2009).

(1)

2

Figure 1 shows the 9-IM matrix for the constellation where object A is inside object B and

object B contains object A, respectively.

 (

)

Figure 1: Topological Relationship by the 9-Intersection Model

The geometry of the individual components stored in a Building Information Model is usually

represented by means of a boundary representation (B-Rep). Since general approaches able to

derive topological relationships directly from the boundary representation of the involved

entities are not yet known, we are using a space-partitioning representation (octree) as the

intermediate geometry format (Borrmann 2007). Consequently, the overall algorithm

comprises the followings steps: (1) transform each of the boundary representations of the

involved objects into a corresponding octree, (2) create a 9-IM matrix by superimposing the

octrees as shown in Figure 2, and (3) determine the applicable topological predicate by

comparing the created 9-IM matrix with the predefined ones.

Figure 2: Creating a 9-IM matrix by superimposing two quadtrees

The octree is a hierarchical data structure based on cell decomposition (Samet, 1989). The

geometry is decomposed with equally sized cubic cells. To enhance computation performance

and to minimize memory allocation needed by the tree, a hierarchical approach is used. Every

cell has exactly one parent cell and either 0 or 8 child cells. Cells which are totally inside or

outside the represented objects have no child cells. The edge length of a child cell to that of its

A

B
B contains A

A inside B

⇒

𝐼 (

)

B contains A

A inside B

3

parent cell is always 1:2. As we decouple a cell with its descendants from the global tree, we

again obtain an octree. This opens up the possibility to use recursive algorithms.

We use the octree to introduce a layer of geometry abstraction. In addition, the accuracy of

the topology predicate can be defined on run time by increasing the refinement level of the

tree generation.

2. Related work

The potential benefits of using the functionality of Geographical Information Systems (GIS)

for the analysis of dynamical processes in buildings are discussed in (Ozel 2000). The author

states that, even if component-oriented CAD systems provide sophisticated functionality for

geometric modeling, they normally lack comprehensive spatial analysis capabilities. For this

reason, Ozel stores floor plans of buildings in a GIS database in order to use its 2D spatial

analysis facilities. Ozel underlines the fact that 3D spatial analysis would be a much more

powerful tool for analyzing processes in buildings.

Up to now, spatial database systems that support 3D spatial analysis are only to be found in a

research context. The investigations set out in (Gröger et al. 2004), for example, clearly show

that the spatial analysis capabilities of the commercial database system Oracle Spatial are

limited to 2D space, even though it is possible to store simple 3D geometry.

In the 3D-GIS research community, the main interest lies in the modeling of the ground

surface, buildings and infrastructure as well as the subsoil layers. The most important works

in this area include (Breunig et al. 1994; Breunig et al. 2001) which report on the

development of GeoToolkit, an object-oriented framework for efficiently storing and

accessing 3D geographic and geologic data. The main disadvantage of using the framework

for analyzing building models is the need to model all spatial entities according to the

mathematical concept of simplicial complexes. The obligatory conversion of a boundary

representation, as used in CAD tools, to a simplicial complex representation is expensive and,

in some special cases, absolutely unfeasible. A more flexible, yet theoretic approach for

applying algebraic topology on building models is presented in (Paul and Bradley 2003).

In (Zlatanova et al. 2004; Zlatanova 2006; Coors 2003; Arens et al. 2005) concepts and data

structures for storing 3D city models in spatial databases are presented and the suitability of

different geometry models for querying topological relationships is discussed. In general, GIS

research follows the approach of choosing geometry data structures that implicitly contain

topological relationships. Accordingly many of the proposed data structures rely on a

simplicial decomposition of the space (Egenhofer et al. 1989; Egenhofer and Herring 1992;

Shi et al. 2003). Since building information models are in most case purely geometric

representations, we do not assume any pre-defined topological structure in our research.

3. Problem statement

For implementing the spatial operators provided by the query language, algorithms have been

developed which are based on an octree representation of the operands (Borrmann 2007).

In the currently available implementation of topological queries, the halfspace-based approach

introduced in (Mundani, 2005) is used to generate the octrees corresponding to the geometric

objects involved in a topological query (Borrmann & Rank, 2009). For each face of the

examined geometric object, two half spaces are created: an interior and an exterior one.

4

Convex objects can subsequently be represented by the intersection of the half spaces created

by their faces. This consideration is used to establish a respective octree generation algorithm.

In reference to the 9-Intersection Model, we define three possible color values for the

produced cells in the octree: White for a cell which lies in the exterior, Black if it is in the

interior and Gray if the cell is intersected by the boundary of the face. Every gray cell has to

be refined until the maximum user defined level is reached. To get to an efficient tree

generation, the determinate of a cell’s color has to be computed with the less possible effort

because of the recursive execution of this function (Figure 3). Mundani (2005) introduced a

fast algorithm for the color determination based on the Manhattan Norm. This algorithm is

approved to be efficient and robust for convex geometry objects.

Figure 3: The root cell is intersected by the straight line with
 ∑ | |

 = 1. At every refinement a0 has to be transformed by ̃ . The signs of the

parameters a1, a2, and a3 are defined by the translation direction in space. Illustrated is the refinement

for the line equation

 . Example taken from (Mundani, 2005)

As a concave object is supposed to be transformed into an octree representation using the

Mundani approach, it has to be considered as a composition of convex sets of half spaces by

combining those using Boolean operations (Figure 4). The required operations are

intersection, union and difference.

Figure 4: Decomposition of a concave object into its convex parts

The described decomposition into convex parts has to be realized recursively until no new set

can be created. The geometry of an object involved in a query is represented as a triangle

meshes. Meshes, in generally, consist of vertices which bound edges. These edges again

define faces, in our case triangles. The stated components of a mesh have to fulfill certain

adjacent criteria in order to represent a valid mesh.

1

3

5

3

1

3

1

3

5

3

1

3

1

3
 1

1

3
 1

5

3

1

3

 1

5

3

 1

 conve

x

=

 convex

 convex

5

For degenerated meshes, where faces are erroneously not adjacent, the decomposition into

convex subparts required for the halfspace-based octree generation is error-prone. Currently

available BIM authoring tools often produces such corrupted boundary representations if

models are exported (Section 5). To provide spatial query functionality also for such

imperfect geometric models, a more robust and efficient implementation of the octree

generation has been developed and is presented in the following section.

4. Octree generation

Initially, the fast 3D Triangle-Box Overlap Testing (Akenine-Möller, 2001) is utilized to

generate the octree. In the first instance, this tree represents only the boundary of the

geometry, but not the interior and the exterior. Consequently, in this state, the tree contains

only undetermined and Gray colored cells. In the next step, the interior and the exterior is

marked by making use of a fill algorithm. To enable filling the octree, the deepest cells of the

tree, i.e. the finest octants, are cross-linked such that each octant has direct access to its

neighbors. Doing so, the tree is transformed into a combination of a tree/grid data structure.

The generated grid is used to efficiently mark the interior cells with a Black color attribute.

Accordingly, cells located in the exterior are set to White. Finally, the tri-colored octree is

handed over to the algorithm determining the topological relationship.

4.1 Fast 3D Triangle-Box Overlap Testing

The geometry of the two operands is received as two lists of triangles, which are stored in

memory during the execution of the algorithm. By use of this geometry information, the axis

aligned bounding boxes of the operands can be calculated. The two bounding boxes are

combined to find the appropriated cubic domain which represents both equally sized root

octants of the upcoming tree refinement of the examined objects.

Every octant stores a list of integer values. These values represent indices in the triangles list,

which are accessible for the octants during execution. The stored indices indicate intersecting

triangles for the current octant. If an octant contains intersecting triangles and the maximal

tree level is not reached yet, the octant is refined into 8 child octants. The children inherit the

indices list from their common parent. The Triangle-Box Overlap test is started again for each

newly created octant. If a considered triangle does not intersect with the octant, the

corresponding index is deleted from the octant’s integer list. This approach ensures that only

potential intersecting triangles are tested against the current octant. Furthermore, the memory

expensive triangle data only needs to be retained once. An octant is not furthermore refined if

its indices list is empty or the maximal refinement level is reached.

The implementation of the Triangle-Box Overlap test follows the Hyperplane Separation

Theorem based algorithm presented in (Akenine-Möller, 2001). According to this theorem,

two convex geometry objects are disjoint, if

 there is a separating axis parallel to the normal of a face of either of the objects

or

 there is a separating axis along an axis obtained by the cross product of an edge of the

first object and an edge of the second one.

To deduce if a triangle intersects a box, 13 axes have to be tested against. In the presented

case, the box represents an octant and is therefore a cube, which leads to an even more

efficient implementation.

6

Location = { xBit, yBit }

As the routine only involves efficient subparts like computing the cross product of vectors and

interval overlay checking, it is faster than face based tests, e.g. intersecting the triangle with

all faces of the box.

4.2 Cross-linking of leaf cells in the octree

At this point of the algorithm, the tree comprises Gray marked cells, indicating intersections

by the boundary of the geometry. The remaining cells are still undetermined in their color.

These cells are either located in the interior or the exterior of the bounding geometry of the

operand. Thus, the two uncolored cell groups are separated by the Gray cells between them.

This makes the use of a flooding algorithm which sets the color attribute of the cells

applicable if it uses the Gray cells as boundary. To efficiently mark the leaf cells according to

their location, each cell has to detect its neighbors. Crouse (2003) presents an algorithm for

finding the neighbors of a cell by use of a bit code for the local locations of cells in their

common parent (Figure 5).

Figure 5: Bit code of the location of cells in their parent cell in 2D

If the desired neighbor of a leaf cell is located within the same parent cell, its identification is

trivial. Otherwise, to find neighboring cells in different parents a search is performed. To this

end, a Path is defined as a sequence of locations {{xBit, yBit}Level}. If the tree is traversed from

a leaf cell in order to get outside lying neighbors, the Path data structure is repeatedly filled

with the current location bits until the bit of the examined direction changes. This is

depictures in the top of figure 6. Note that in the first Path structure the xBit in the last position

has switched from 1 to 0. Accordingly, a neighbor in the investigated direction lies in the

currently reached level. To get possibly existing adjacent child cells, the Path data is

modified. All bits in the respective direction are inverted and the ordering of locations is

reversed. By this altered structure, we travel down the tree from the determined cell which

contains the examined cell and the neighboring cell in the desired direction. The traversal is

done as deep as possible.

Thus, the direct neighbors of the initially examined cell are reached, even if they are located

in another parent cell (Figure 6).

7

Figure 6: Finding adjacent cells by tree traversals routed via bit encoding for cell locations

In (Crouse, 2003), the octree is smoothed such that a maximum difference of one level for

neighboring cells is achieved. Since this prevents the full advantages of the hierarchical tree

structure concerning memory allocation, we disregard this smoothing step. As a consequence,

a cell can have an infinite count of neighbors in theory. In practice, however, the count of

neighboring cell is still manageable. Therefore, adjacent cells can be stored in a list structure

in each cell. The knowledge of neighboring cells is ideal for fast information transfer between

adjacent cells. The flooding algorithm described in the following section makes use of this

optimization.

4.3 Flooding the leaf cells of the octree

The presented flooding algorithm targets the classification of interior and exterior cells. In the

first step, an arbitrary cell which is not marked Gray is picked, and an inside/outside test is

performed for it. This is repeated until at least one interior and one exterior cell is found.

In building information models in use today there are only very rare occurrences of geometric

objects with caves. Therefore we regard only caveless geometry here. This allows the

application of robust inside/outside tests, using intersection rays, for example, and eases the

application of the flooding algorithm. Please note that spaces, which are important operands

for topological queries, are regarded as distinct volumetric objects, for which in most cases,

the assumption of cavelessness holds.

Figure 7: Information transfer by the flooding algorithm in 2D

𝑃𝑎𝑡ℎ {{1,1 , {1, , { ,1

𝑃𝑎𝑡ℎ𝑎𝑙𝑡 {{1,1 , { , , { ,1

1 2

4 5 3

8

As soon as a first interior cell is found, its adjacent neighbors in the six axis directions are

marked as Black except for those which have previously been set to Gray. This procedure is

recursively called for the found colorless neighbors, which establishes a flooding of the Black

color to all interior cells. Likewise, the exterior cells are marked as White (Figure 7).

5. Implementation of topological operators

The algorithm determining the topological relationship between two operands uses the

generated three-colored octrees as input. On each recursion level, pairs of octants are created

with one octant originating from object A and one octant from object B, both representing the

same sector of the 3D space. Each octant pair provides a color combination to which specific

rules can be applied. These rules may lead to filling a 9-IM working matrix that is maintained

by the algorithm to keep track of the knowledge gained about the topological constellation.

There are 12 positive and 9 negative rules altogether. A positive rule (Figure 8) can be applied

when a certain color combination occurs, and a negative rule (Figure 9) if certain color

combinations do not occur over an entire level. Positive rules lead to empty set entries in the

matrix, negative rules to non-empty set entries.

Figure 8: Examples for Positive Rules.

The rules are derived from the semantics of the colors. If a White octant of the first operand

occurs at the same place as a Black octant of the second operand, it follows that the

intersection between the exterior and the interior of the operands is non-empty. The

9-IM working matrix is successively filled by applying these rules to all octant pairs. When

processing the two operators against each other to obtain the accurate topological attribute,

the working matrix is compared with all predicate matrices of the formal definitions: touch,

equals, inside, contains, covers, coveredBy, and overlap. If the working matrix complies fully

with one of them, the recursion is aborted and the algorithm returns the respective predicate.

If there is any contradiction between the filled matrix and the matrix of a predicate, the

respective predicate is precluded. If no unequivocal decision is possible for any of the

predicates, a further refinement is necessary, i.e. octant pairs of the next level are created.

Figure 9: Examples for Negative Rules

In the case of the predicate operators the 9-IM working matrix is checked against the

corresponding predicate matrix only. If there is a contradiction the algorithm returns false, if it

completely complies, it returns true. If, after execution of all applicable rules, the current

occupancy of the working matrix does not allow for validation or disproval of the/any

predicate and the maximum refinement level is not reached, child pairs are created and the

9

algorithm calls itself recursively. If the algorithm reaches the maximum refinement level and,

the result is not determinable, a so-called predicate hierarchy is applied, which again ensures

that the most probable situation is detected.

6. Valid tree generation despite complex geometry

The previously used half space oriented method (Mundani, 2005) can exclusively operate on

convex geometry. If concave geometry is involved in a query, it has to be decomposed to its

convex subparts. The subparts represent the same geometry if they are combined in certain

order by use of Boolean operations on half spaces. Firstly, this entails that the tree generation

is executed repeatedly and the individual results have to be combined as well, which leads to

a multiplication of the runtime. Secondly, with increasing complexity of the geometry, the

count of involved half spaces representing the geometry increases accordingly. If one single

half space is set up erroneous, the entire octree is corrupted because the half spaces interact

globally with each other. On the other hand, the presented algorithm solely creates the

octree’s subparts by local data. So, the result does not have dependencies from distantly

located geometry parts. Furthermore, this approach reacts, to a certain extent, uncritically to

imperfect input geometry, which is often created by available BIM software.

Figure 10: Complex B-Rep geometry (e.g. a circular staircase) transferred to the

octree data structure by use of the presented algorithm (f.l.t.r: Front-, Right-, Top-, 3D-View)

7. Conclusion

The paper presents an efficient and robust method to produce octree structures from B-Rep

geometry in BIM. The octree generation method has been successfully integrated in a spatial

query language (Borrmann, 2007). The algorithm determining the topological relationship

uses the octree representations of the operands as input. Therefore, the accuracy of the trees is

essential to deduce valid results for the topological queries. The necessary accuracy is

delivered by the described octree generation method and verified with real world data used in

the construction industry. Furthermore, the user of the spatial query language experiences

shorter execution times by use of the described method. This is an advantage over the

half space based approach (Mundani, 2005), used in the previous implementation. The

acceleration is achieved by the faster octree generation and the enhanced data structures that

make a rapid information transfer between adjacent octants possible. Additionally, the stated

method is more robust, as it does not contain a decomposition of concave geometry in its

convex subpart as the Mundani algorithm. The robustness is also achieved with degenerated

input geometry, which is often produced and used by BIM authoring tools.

10

References

Akenine-Möller, T., (2002). Fast 3D triangle-box overlap testing. J. Graph. Tools 6(1), pp. 29-33.

Arens, C., Stoter, J., van Oosterom, P., (2005). Modelling 3D spatial objects in a geo-DBMS using a 3D

primitive. Computers & Geosciences, 31(2), pp. 165–177.

Borrmann, A., (2007). Computerunterstützung verteilt-kooperativer Bauplanung durch Integration interaktiver

Simulationen und räumlicher Datenbanken. Dissertation, Technische Universität München.

Borrmann, A., Hyvärinen, J. & Rank, E., (2009). Spatial constraints in collaborative design processes.,

In: Proc. of the Int. Conf. on Intelligent Computing in Engineering (ICE'09). Berlin, Germany.

Borrmann, A., Rank, E. (2009). Topological analysis of 3D building models using a spatial query language,

Advanced Engineering Informatics 23(4). pp. 370-385.

Borrmann, A., Rank, E. (2009). Query Support for BIMs Using Semantic and Spatial Conditions.

In: Underwood. J. and Isikdag. U. (Eds): Handbook of Research on Building Information Modeling and

Construction Informatics: Concepts and Technologies, IGI Global.

Breunig, M., Bode, T., Cremers, A., (1994). Implementation of elementary geometric database operations for a

3D-GIS. In: Proc. of the 6th Int. Symp. on Spatial Data Handling.

Breunig, M., Cremers, A., Müller, W., Siebeck, J., (2001). New methods for topological clustering and spatial

access in object-oriented 3D databases. In: Proc. of the 9th ACM Int. Symp. on Advances in Geographic

Information Systems.

Coors, V., (2003). 3D-GIS in networking environments. Computers, Environment and Urban Systems, 27(4),

pp. 345–357.

Crouse, B., (2003). Lattice-Boltzmann Strömungssimulationen auf Baumdatenstrukturen. Dissertation,

Technische Universität München.

Egenhofer, M., Herring, J., (1989). A mathematical framework for the definition of topological relationships.

In: Proc. of the 4th Int. Symp. on Spatial Data Handling.

Egenhofer, M. (1991)., Reasoning about Binary Topological Relations. In: Proc. of the 2nd Symp. on Advances

in Spatial Databases (SSD’91).

Gaal, S. (1964). Point Set Topology. Academic Press.

Gröger, G., Reuter, M., Plümer, L., (2004). Representation of a 3-D city model in spatial object-relational

databases. In Proc. of the 20th ISPRS congress.

Mundani, R.-P., (2005). Hierarchische Geometriemodelle zur Einbettung verteilter Simulationsaufgaben.

Dissertation, Universität Stuttgart.

Ozel, F., (2000). Spatial databases and the analysis of dynamic processes in buildings. In: Proc. of the 5th Conf.

on Computer Aided Architectural Design Research in Asia.

Paul, N., Bradley, P. E., (2003). Topological houses. In: Proc. of the 16th Int. Conf. of Computer Science and

Mathematics in Architecture and Civil Engineering.

Shi, W., Yang, B., Li, Q., (2003). An object-oriented data model for complex objects in three-dimensional

geographical information systems. Int. J. of Geographical Information Science, 17(5), 411–430.

Samet, H., (1989). Applications of Spatial Data Structures: Computer Graphics, Image Processing and

GIS.:Addison-Wesley.

Zlatanova, S. (2006). 3D geometries in spatial DBMS. In: Proc. of the Int. Workshop on 3D Geoinformation

2006.

Zlatanova, S., Rahman, A., Shi, W. (2004). Topological models and frameworks for 3D spatial objects. Journal

of Computers & Geosciences, 30(4), 419–428.

