
1 INTRODUCTION  

Pedestrian simulations are used for a wide variety 
of applications, namely the identification of possible 
conflict points or bottlenecks in buildings and sur-
roundings, the determination of evacuation times, 
the determination of optimal evacuation routes etc. 
To simulate pedestrian behavior, a wide variety of 
different models is used as summarized in [Schad-
schneider et al. 2009]. Our objective is to describe 
individual movement and navigation processes in 
buildings with a microscopic graph-based model. 

2 MODEL DESCRIPTION 

To simulate pedestrian movements, we use two 
different model approaches. The first approach com-
bines a cellular automaton [Burstedde et al. 2001, 
Emmerich and Rank 1997, Kinkeldey 2003, Klüpfel 
2003, Kretz 2007] and a force model according to 
[Schadschneider et al. 2009]. The second approach 
[Helbing et al. 2001, Höcker et al. 2009] describes 
pedestrian movement by means of space continuous 
interactions. The individual interaction force con-
tains a driving term directed to a destination as well 
as a repulsive term originating from other pede-
strians and obstacles.  

One challenge of this model is the calibration be-
tween the different force terms to achieve the most 
realistic walking and navigation behavior in com-
plex buildings. To solve this challenge, we configure 

the individual driving force by introducing a visibili-
ty graph [de Berg et al. 2000] of the scenario topo-
graphy. This graph is used to navigate pedestrians 
from their sources to their destinations by applying 
different routing criterions and algorithms. 

3 GRAPH DERVIATION FROM THE 
SCENARIO TOPOGRAPHY 

To map pedestrian movements within a scenario, 
we introduce a method to construct a visibility graph 
as the underlying structure for routing algorithms. 
We automatically derive the graph from the scenario 
topography consisting of sources and destinations as 
well as different kinds of obstacles such as walls, 
polygons (e.g. desks inside buildings) etc. From this 
initial geometry we start extracting the graph by ap-
plying the following two steps. 

First, we place so-called orientation points on the 
bisector of each convex obstacle corner (refer to Fig. 
1 top). We choose the distance to the corners accord-
ing to an appropriate measure such that “artificial” 
congestions at corners can be avoided when pede-
strians are trying to pass these orientation points. 

In order to prevent that a point is not visible from 
the related corner, it has to be checked if another ob-
stacle, e.g. the line of a wall, intersects the imaginary 
sight line between the corner and the point. In case 
of an intersection, we move this point closer to the 
corner. 
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In detail, the orientation point is placed midway 
of the shortest distance vector between the cutting 
edge and the corner (see Fig. 2). 
 

 
Fig. 1. Graph derivation from the scenario topography. 

 

 
Fig. 2. Repositioning of orientation points. 

 
To avoid orientation points that are too close to 

each other, we prune these redundant points by melt-
ing these neighboring points into one new point as 
shown in Fig. 3.  

 

 
Fig. 3. Melting of two adjacent orientation points. 

 
Finally, the resulting orientation points represent 

the graph nodes.  

Second, we start connecting these graph nodes 
with each other subsequently. Two orientation points 
are connected by means of a graph edge, if they are 
in sight of each other. In addition, they are con-
nected to sources and destinations in the same man-
ner. 

After the graph generation we perform a check 
for dispensable edges to achieve a most efficient na-
vigation process. For individual routing, there are 
only edges necessary leading around the obstacle 
corners. This characteristic can be detected with a 
so-called corner related sight criterion illustrated in 
Fig. 4. The obstacle corner is connected to a sight 
crossing area bounded by the imaginary sight lines 
placed along the two corner sides. 

We define an edge as necessary if it leads from 
the orientation point out of the sight crossing area. If 
this criterion is not fulfilled, the edge will be discon-
nected. In this manner, up to 75 percent of the initial 
edges can be reduced. 

 

 
Fig. 4. Graph edge reduction. 

 
The resulting graph (as shown in Fig. 1 bottom) 

can be used for the routing algorithms defining at 
least one path between the sources and destinations 
if it exists. This follows directly from the construc-
tion procedure.  

4 ROUTING ALGORITHMS 

We apply different algorithms, which are based 
on the developed visibility graph, to route the pede-
strians from their sources to their destinations.  

More precisely, we combined two different 
routing strategies: The first one is a common short-
est path finding algorithm [Dijkstra 1959] with dy-
namic edge weight variation. The second one is a 
heuristic algorithm according to [Russel and Norvig 
2003], which is able to find as well an optimal short-
est path, but in most cases more efficiently – de-
pending on the heuristic values. We start with the 
description of the common Dijkstra algorithm with 
adaptation to our problem, followed by the A* algo-
rithm with the heuristics we used. 



4.1 Dijkstra algorithm with dynamic edge weights 

Since the Dijkstra algorithm considers edge 
weights to compare two edges while traversing the 
graph from a given node (source) to a designated 
node (destination), we focus on determining the 
edge weights to match pedestrian behavior. 

Our approach is to take travel times as edge 
weights instead of Euclidean distances. The travel 
time is derived as follows: For each edge, we define 
an area associated with it (see Fig. 5). Then, we 
count the number of pedestrians that are traversing 
along that edge. From the number of pedestrians in 
relation to the whole accessible size of the area, we 
derive the density factor as in (1):  

areaedgeaccessible

spedestrianofnumber
factordensity

__

__
_        (1) 

As edge areas can overlap, we have to associate 
pedestrians not only to one edge area but to all sur-
rounding edges whose areas are affected. 
 

 
Fig. 5. Construction of an area to measure density on an edge: 
The edge is rotated by 90° to define the corner points of the 

area. 
 
According to [Weidmann 1993], there exists a re-

lation between density and velocity for pedestrians 
(see Fig. 6). We take this proposed relation to obtain 
a deceleration factor for the pedestrians.  
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Fig. 6. Velocity-Density Relation for pedestrians, as proposed 

in [Weidmann 1993]. 
 

More precisely, we take the density factor of an 
area and derive the corresponding velocity. Multip-
lying this velocity with the Euclidean distance of the 
edge, the expected travel time is computed as: 

edge
density
edgeedge distveloctimetravel _  (2) 

As travel times may vary over time depending on 
the density on each edge, we have to re-compute it 
with each pedestrian that enters a specific edge area. 

Consequently, a shortest path is time-dependent, 
so that pedestrians entering the scenario later may 
get assigned a different path than earlier ones. 

In case of more than one route leading to the tar-
get, this technique even allows us to avoid conges-
tions by dynamically performing checks for each 
pedestrian entering an edge. If this assigned edge has 
a density factor that exceeds a certain threshold, we 
search for a different route.  

4.2 A* algorithm with heuristic node weights 

To minimize runtime for the re-computation of 
shortest ways, we introduce the A* algorithm, which 
may not need to inspect each graph edge (like a con-
ventional Dijkstra algorithm) by applying an addi-
tional heuristic. 

The A* algorithm uses therefore edge weights as 
well as node weights calculated with a node related 
function F(x) = G(x) + a · H(x). G(x) represents the 
real length of a detected shortest path between a 
source and the (intermediate) destination x. The real 
length equals the sum of the path edge weights, e.g. 
the Euclidian distance or the travel time. H(x) 
represents the approximated length of the path be-
tween x and the destination, scaled with a factor a. 
For a = 0, the A* algorithm analyzes all graph nodes 
– like the Dijkstra algorithm. For a ≠ 0, the heuristic 
path search ranges over a part of the network only, 
so that the time involved gets reduced.  

A pseudo code of the A* algorithm is illustrated 
in Fig. 7. The algorithm uses a list LO for analyzed 
graph nodes and a closed list LC. At the beginning of 
an individual routing process, both lists are empty. 
LO is initialized with the source and weights it with 
F(x). Next, we loop until the destination is reached 
or if LO does not contain a graph node any more.  

The loop starts with checking LO and removing 
the element x with the lowest node weight. For this 
element x all successors xN will be analyzed, which 
are not already contained in the closed list LC.  

Successors which are not even contained in the 
list LO, are added to it and weighted with F(x); fur-
thermore, a backward-reference between each suc-
cessor xN and x will be stored.  

If a successor xN is already contained in LO, the 
node weight and the backward-reference of the suc-
cessor xN will be updated, if the calculated weight is 
lower than the stored node weight.  



At the end of each loop, the element x will be 
stored in the closed list LC. 

In case of removing the destination from LO for 
examination, the algorithm terminates and recon-
structs the shortest path between the source and the 
destination via the stored backward-links.  
 
Algorithm: Path-finding 
Parameters: Graph G:=(X;E), source s in X, destination d in X,  
                      node weight function F(x) 
  1. init node lists LO und LC 
  2. store s with F(s) in LO 
  3. while LO is not empty 
  4.  select node x | x in LO, stored F(x) = min 
  5.  remove x from LO 
  6.   if x == d 
  7.   init path P from s to d using the stored backward-links 
  8.   Result: P 
  9.  end if 
10.  for all successors xN of x in G 
11.   if xN not element of LC 
12.     if xN element of LO 
13.      if F(xN) < stored F(xN) 
14.      stored F(xN) = F(xN) 
15.       set the stored backward-link from xN to x 
16.     end if 
17.    else 
18.     store xN with F(xN) in LO 
19.     store backward-link from xN to x 
20.    end if 
21.   end if 
22.  end for 
23.  store x in LC 
24. end while 
25. Result: No path between s and d found 

Fig. 7. Pseudo code of the A* algorithm. 
 

 
Fig. 8. Heuristic path search with the air line distance. 

 
A commonly used definition of the heuristic func-

tion H(x) is the Euclidian distance of the air line be-
tween the current graph node and the destination. 
The air line distance heuristic describes individual 
map knowledge about the surrounding space and the 
related navigation behavior realistically.  

Fig. 8 illustrates such a heuristic path search with 
a simple scenario. The approximated shortest path is 
depicted by a dashed line leading from the source 
(left in the figure) to the destination (right in the fig-
ure). It runs permanently along the lowest air line 
distances. In this manner, it differs partly from the 
real shortest path, which runs along the lower side of 
the obstacle. In this case, the heuristic term H(x) 
dominates the node weight function F(x).  

5 APPLICATION EXAMPLE 

By means of the presented model approaches and 
routing algorithms, pedestrian flow inside an office 
building was simulated. 

 

 
Fig. 9. Topography of the tested scenario: The grey areas and 
lines define obstacles and walls of the building, the dots refer 
to sources, and the rectangle on the upper right corner defines 

the destination of all pedestrians. 
 
Fig. 9 illustrates the scenario topography of our 

example scenario. On this scenario we first ran the 
conventional Dijkstra algorithm with static and dy-
namic edge weights and compared the results. Addi-
tionally we applied the A* algorithm on this scena-
rio and show that the number of visited nodes can be 
sufficiently smaller than with a conventional 
Dijkstra algorithm. 

5.1 Comparison of the Dijkstra algorithm with 
static and dynamic edge weights 

For the comparison between static and dynamic 
path finding, we used the first, space discrete model 
approach, as described in [Klein et al. 2010]. Pede-
strians are placed inside the offices (dots); their des-
tination is situated outside the building. In order to 
observe density effects, we generated pedestrians pe-
riodically (six pedestrians per source and second) 
until a sufficient number (750 pedestrians) was 
reached. 

 



 
Fig. 10. Mainstream of pedestrians shown for the static path al-

gorithm (left) and dynamic path algorithm (right). 
 
Fig. 10 shows the mainstream (the counted num-

ber of pedestrians that passed on a rectangular grid 
cell throughout the simulation) - in the upper picture 
for the static shortest path where we assigned the 
Euclidean distance as edge weights and in the lower 
picture for the dynamic fastest path. 

Applying the static path algorithm, we can ob-
serve that all pedestrians walk the same route as 
there is no dynamical adaptation of new routes. In 
contrast, the mainstream resulting from the dynamic 
path algorithm shows that there were pedestrians 
who changed their route according to the densities 
on the conventional shortest path. We get a better 
distribution of the pedestrians throughout the right 
part of the office. 

The drawback concerning runtime is – that in the 
dynamic version – a new fastest path has to be cal-
culated as soon as an edge exceeds a certain density. 

5.2 Results for the A* algorithm 

To resolve these runtime issues we can calculate 
these individual dynamic paths – depending on the 
travel time – more efficiently by using the heuristic 
A* algorithm instead of the conventional Dijkstra 
algorithm. The behavior of the A* algorithm was 
tested with the simulation tool JWalkerS [JWalkerS 
2010], which is an object-oriented implementation 

of the second, space-continuous model approach 
(see section 2).  

 

 
Fig. 11. Searched graph nodes (black filled quadrangles) of an 

individual routing process with the A* algorithm (a = 1). A 
conventional Dijkstra algorithm would have visited all nodes of 

the visibility graph. 
 
Fehler! Verweisquelle konnte nicht gefunden 

werden. illustrates a visibility graph calculated with 
JWalkerS: Orientation nodes are represented by 
small-sized circles. The simulation is restricted to 
the routing process of a single pedestrian from an of-
fice room towards the exit which is located in the 
upper part of the figure. The pedestrian is depicted 
by an elliptical space in the lower left room of the 
office building. The approximated shortest path is 
located between the heuristically analyzed graph 
nodes represented by black filled quadrangles. It is 
clearly visible that the path search ranges only over a 
small part of the network whereas the conventional 
Dijkstra algorithm visits every single node of the 
graph. As a consequence, the performance of the A* 
algorithm is much better than the one of the Dijkstra 
algorithm for this specific case.  

More generally spoken, one can observe, that in 
buildings with a complex geometry (e.g. many offic-
es or rooms), the A* algorithm does not search with-
in rooms that are neither positioned in the same di-
rection as the air line to the destination nor close to 
the real shortest path.  

 Configuring the A* algorithm, it must be consi-
dered that the probability for differences between 
approximated and real shortest path increases with 
the heuristic factor. From our experience we can 
state, that for a ≤ 1, we could not observe any differ-
ences between the real shortest path and the one 
found by the A* algorithm. 

6 OUTLOOK  

In this contribution, we introduced new methods 
for a graph-based description of paths in buildings as 
well as individual routing processes.  



Here, the paths are automatically derived from 
scenario topography by placing orientation points on 
the bisectors of convex obstacle corners and calcu-
lating sight connections. By using criterions for 
melting adjacent orientation points and for reducing 
sight connections on crossings, we developed an ef-
ficient graph structure by reducing the number of 
nodes and edges as far as possible. 

Moreover, we presented routing algorithms which 
can dynamically assign new individual paths de-
pending on pedestrian densities. Along with an ap-
plication example we demonstrated that this dynam-
ic assignment leads to a more realistic prognosis of 
pedestrian route choice and thus of pedestrian distri-
bution. To minimize the path-finding time involved, 
we introduced an A* algorithm using the airline dis-
tance between an orientation point and a destination 
as heuristic value. The A* algorithm is able to the 
individual paths faster than the conventional Dijkstra 
algorithm, for specific cases as we described in Sec-
tion 5.2.  

Nevertheless, there are still some aspects of the 
graph structure as well as the routing algorithms to 
be investigated. 

In order to simulate multi-level scenarios, graph-
based models for level connections like stairs or es-
calators must be taken into account. For a multi-
level navigation process, a further stage of the air 
line heuristic is necessary, e.g. with a temporary 
orientation to the level connections. Besides, another 
heuristic representing individual route decision crite-
rions must be developed. 

To be more efficient in deriving the edge weights, 
we will improve the algorithm in defining non-
overlapping edge areas. Another step will be to im-
plement a detection of pedestrian cluster which can 
be associated with the corresponding edges. 

To reduce runtime and start re-calculation of fast-
est path only when necessary, further work has to 
focus on defining precise criteria, e.g. slow down 
factors on edges or distance ratios of k-shortest paths 
etc. 

Given this dynamical path-assignment, a next 
step will be to dynamically vary a scenario during 
runtime (with occurring events like door closure or 
fire).  
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