
1 INTRODUCTION

Pedestrian simulations are used for a wide variety
of applications, namely the identification of possible
conflict points or bottlenecks in buildings and sur-
roundings, the determination of evacuation times,
the determination of optimal evacuation routes etc.
To simulate pedestrian behavior, a wide variety of
different models is used as summarized in [Schad-
schneider et al. 2009]. Our objective is to describe
individual movement and navigation processes in
buildings with a microscopic graph-based model.

2 MODEL DESCRIPTION

To simulate pedestrian movements, we use two
different model approaches. The first approach com-
bines a cellular automaton [Burstedde et al. 2001,
Emmerich and Rank 1997, Kinkeldey 2003, Klüpfel
2003, Kretz 2007] and a force model according to
[Schadschneider et al. 2009]. The second approach
[Helbing et al. 2001, Höcker et al. 2009] describes
pedestrian movement by means of space continuous
interactions. The individual interaction force con-
tains a driving term directed to a destination as well
as a repulsive term originating from other pede-
strians and obstacles.

One challenge of this model is the calibration be-
tween the different force terms to achieve the most
realistic walking and navigation behavior in com-
plex buildings. To solve this challenge, we configure

the individual driving force by introducing a visibili-
ty graph [de Berg et al. 2000] of the scenario topo-
graphy. This graph is used to navigate pedestrians
from their sources to their destinations by applying
different routing criterions and algorithms.

3 GRAPH DERVIATION FROM THE
SCENARIO TOPOGRAPHY

To map pedestrian movements within a scenario,
we introduce a method to construct a visibility graph
as the underlying structure for routing algorithms.
We automatically derive the graph from the scenario
topography consisting of sources and destinations as
well as different kinds of obstacles such as walls,
polygons (e.g. desks inside buildings) etc. From this
initial geometry we start extracting the graph by ap-
plying the following two steps.

First, we place so-called orientation points on the
bisector of each convex obstacle corner (refer to Fig.
1 top). We choose the distance to the corners accord-
ing to an appropriate measure such that “artificial”
congestions at corners can be avoided when pede-
strians are trying to pass these orientation points.

In order to prevent that a point is not visible from
the related corner, it has to be checked if another ob-
stacle, e.g. the line of a wall, intersects the imaginary
sight line between the corner and the point. In case
of an intersection, we move this point closer to the
corner.

Graph-based approaches for simulating pedestrian dynamics
in building models

Mario Höcker & Volker Berkhahn

Institut für Bauinformatik, Leibniz Universität Hannover, Callinstr. 34, 30167 Hannover, Germany

Angelika Kneidl, André Borrmann
Lehrstuhl für Computation in Engineering, Technische Universität München, Arcisstr. 21, 80290 München,
Germany

Wolfram Klein
Siemens AG, CT T DE TC3, 80200 München, Germany

ABSTRACT: This paper presents different path-finding algorithms for simulating pedestrian dynamics in
building models. Starting from a given model (scenario), we show how to automatically derive a visibility
graph. This graph is used as the underlying structure for routing pedestrians from their sources to their desti-
nations. Based on this graph, we search for fastest routes by means of a conventional Dijkstra algorithm
where we assign dynamically changing travel times as edge weights. To update the shortest paths due to
changing edge weights, we introduce a heuristic A* algorithm, which is faster in finding optimal paths. We
compare the results of our approach to a variant where we assign Euclidean distances as static edge weights.
Additionally, we show that the A* algorithm has a better performance in finding the shortest path for most
cases.

In detail, the orientation point is placed midway
of the shortest distance vector between the cutting
edge and the corner (see Fig. 2).

Fig. 1. Graph derivation from the scenario topography.

Fig. 2. Repositioning of orientation points.

To avoid orientation points that are too close to

each other, we prune these redundant points by melt-
ing these neighboring points into one new point as
shown in Fig. 3.

Fig. 3. Melting of two adjacent orientation points.

Finally, the resulting orientation points represent

the graph nodes.

Second, we start connecting these graph nodes
with each other subsequently. Two orientation points
are connected by means of a graph edge, if they are
in sight of each other. In addition, they are con-
nected to sources and destinations in the same man-
ner.

After the graph generation we perform a check
for dispensable edges to achieve a most efficient na-
vigation process. For individual routing, there are
only edges necessary leading around the obstacle
corners. This characteristic can be detected with a
so-called corner related sight criterion illustrated in
Fig. 4. The obstacle corner is connected to a sight
crossing area bounded by the imaginary sight lines
placed along the two corner sides.

We define an edge as necessary if it leads from
the orientation point out of the sight crossing area. If
this criterion is not fulfilled, the edge will be discon-
nected. In this manner, up to 75 percent of the initial
edges can be reduced.

Fig. 4. Graph edge reduction.

The resulting graph (as shown in Fig. 1 bottom)

can be used for the routing algorithms defining at
least one path between the sources and destinations
if it exists. This follows directly from the construc-
tion procedure.

4 ROUTING ALGORITHMS

We apply different algorithms, which are based
on the developed visibility graph, to route the pede-
strians from their sources to their destinations.

More precisely, we combined two different
routing strategies: The first one is a common short-
est path finding algorithm [Dijkstra 1959] with dy-
namic edge weight variation. The second one is a
heuristic algorithm according to [Russel and Norvig
2003], which is able to find as well an optimal short-
est path, but in most cases more efficiently – de-
pending on the heuristic values. We start with the
description of the common Dijkstra algorithm with
adaptation to our problem, followed by the A* algo-
rithm with the heuristics we used.

4.1 Dijkstra algorithm with dynamic edge weights

Since the Dijkstra algorithm considers edge
weights to compare two edges while traversing the
graph from a given node (source) to a designated
node (destination), we focus on determining the
edge weights to match pedestrian behavior.

Our approach is to take travel times as edge
weights instead of Euclidean distances. The travel
time is derived as follows: For each edge, we define
an area associated with it (see Fig. 5). Then, we
count the number of pedestrians that are traversing
along that edge. From the number of pedestrians in
relation to the whole accessible size of the area, we
derive the density factor as in (1):

areaedgeaccessible

spedestrianofnumber
factordensity

__

__
_  (1)

As edge areas can overlap, we have to associate
pedestrians not only to one edge area but to all sur-
rounding edges whose areas are affected.

Fig. 5. Construction of an area to measure density on an edge:
The edge is rotated by 90° to define the corner points of the

area.

According to [Weidmann 1993], there exists a re-

lation between density and velocity for pedestrians
(see Fig. 6). We take this proposed relation to obtain
a deceleration factor for the pedestrians.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 1 2 3 4 5

V
el

oc
it

y
[m

/s
]

Density [Pers/m2]

Velocity-Density Relation

Fig. 6. Velocity-Density Relation for pedestrians, as proposed

in [Weidmann 1993].

More precisely, we take the density factor of an
area and derive the corresponding velocity. Multip-
lying this velocity with the Euclidean distance of the
edge, the expected travel time is computed as:

edge
density
edgeedge distveloctimetravel _ (2)

As travel times may vary over time depending on
the density on each edge, we have to re-compute it
with each pedestrian that enters a specific edge area.

Consequently, a shortest path is time-dependent,
so that pedestrians entering the scenario later may
get assigned a different path than earlier ones.

In case of more than one route leading to the tar-
get, this technique even allows us to avoid conges-
tions by dynamically performing checks for each
pedestrian entering an edge. If this assigned edge has
a density factor that exceeds a certain threshold, we
search for a different route.

4.2 A* algorithm with heuristic node weights

To minimize runtime for the re-computation of
shortest ways, we introduce the A* algorithm, which
may not need to inspect each graph edge (like a con-
ventional Dijkstra algorithm) by applying an addi-
tional heuristic.

The A* algorithm uses therefore edge weights as
well as node weights calculated with a node related
function F(x) = G(x) + a · H(x). G(x) represents the
real length of a detected shortest path between a
source and the (intermediate) destination x. The real
length equals the sum of the path edge weights, e.g.
the Euclidian distance or the travel time. H(x)
represents the approximated length of the path be-
tween x and the destination, scaled with a factor a.
For a = 0, the A* algorithm analyzes all graph nodes
– like the Dijkstra algorithm. For a ≠ 0, the heuristic
path search ranges over a part of the network only,
so that the time involved gets reduced.

A pseudo code of the A* algorithm is illustrated
in Fig. 7. The algorithm uses a list LO for analyzed
graph nodes and a closed list LC. At the beginning of
an individual routing process, both lists are empty.
LO is initialized with the source and weights it with
F(x). Next, we loop until the destination is reached
or if LO does not contain a graph node any more.

The loop starts with checking LO and removing
the element x with the lowest node weight. For this
element x all successors xN will be analyzed, which
are not already contained in the closed list LC.

Successors which are not even contained in the
list LO, are added to it and weighted with F(x); fur-
thermore, a backward-reference between each suc-
cessor xN and x will be stored.

If a successor xN is already contained in LO, the
node weight and the backward-reference of the suc-
cessor xN will be updated, if the calculated weight is
lower than the stored node weight.

At the end of each loop, the element x will be
stored in the closed list LC.

In case of removing the destination from LO for
examination, the algorithm terminates and recon-
structs the shortest path between the source and the
destination via the stored backward-links.

Algorithm: Path-finding
Parameters: Graph G:=(X;E), source s in X, destination d in X,
 node weight function F(x)
 1. init node lists LO und LC
 2. store s with F(s) in LO
 3. while LO is not empty
 4. select node x | x in LO, stored F(x) = min
 5. remove x from LO
 6. if x == d
 7. init path P from s to d using the stored backward-links
 8. Result: P
 9. end if
10. for all successors xN of x in G
11. if xN not element of LC
12. if xN element of LO
13. if F(xN) < stored F(xN)
14. stored F(xN) = F(xN)
15. set the stored backward-link from xN to x
16. end if
17. else
18. store xN with F(xN) in LO
19. store backward-link from xN to x
20. end if
21. end if
22. end for
23. store x in LC
24. end while
25. Result: No path between s and d found

Fig. 7. Pseudo code of the A* algorithm.

Fig. 8. Heuristic path search with the air line distance.

A commonly used definition of the heuristic func-

tion H(x) is the Euclidian distance of the air line be-
tween the current graph node and the destination.
The air line distance heuristic describes individual
map knowledge about the surrounding space and the
related navigation behavior realistically.

Fig. 8 illustrates such a heuristic path search with
a simple scenario. The approximated shortest path is
depicted by a dashed line leading from the source
(left in the figure) to the destination (right in the fig-
ure). It runs permanently along the lowest air line
distances. In this manner, it differs partly from the
real shortest path, which runs along the lower side of
the obstacle. In this case, the heuristic term H(x)
dominates the node weight function F(x).

5 APPLICATION EXAMPLE

By means of the presented model approaches and
routing algorithms, pedestrian flow inside an office
building was simulated.

Fig. 9. Topography of the tested scenario: The grey areas and
lines define obstacles and walls of the building, the dots refer
to sources, and the rectangle on the upper right corner defines

the destination of all pedestrians.

Fig. 9 illustrates the scenario topography of our

example scenario. On this scenario we first ran the
conventional Dijkstra algorithm with static and dy-
namic edge weights and compared the results. Addi-
tionally we applied the A* algorithm on this scena-
rio and show that the number of visited nodes can be
sufficiently smaller than with a conventional
Dijkstra algorithm.

5.1 Comparison of the Dijkstra algorithm with
static and dynamic edge weights

For the comparison between static and dynamic
path finding, we used the first, space discrete model
approach, as described in [Klein et al. 2010]. Pede-
strians are placed inside the offices (dots); their des-
tination is situated outside the building. In order to
observe density effects, we generated pedestrians pe-
riodically (six pedestrians per source and second)
until a sufficient number (750 pedestrians) was
reached.

Fig. 10. Mainstream of pedestrians shown for the static path al-

gorithm (left) and dynamic path algorithm (right).

Fig. 10 shows the mainstream (the counted num-

ber of pedestrians that passed on a rectangular grid
cell throughout the simulation) - in the upper picture
for the static shortest path where we assigned the
Euclidean distance as edge weights and in the lower
picture for the dynamic fastest path.

Applying the static path algorithm, we can ob-
serve that all pedestrians walk the same route as
there is no dynamical adaptation of new routes. In
contrast, the mainstream resulting from the dynamic
path algorithm shows that there were pedestrians
who changed their route according to the densities
on the conventional shortest path. We get a better
distribution of the pedestrians throughout the right
part of the office.

The drawback concerning runtime is – that in the
dynamic version – a new fastest path has to be cal-
culated as soon as an edge exceeds a certain density.

5.2 Results for the A* algorithm

To resolve these runtime issues we can calculate
these individual dynamic paths – depending on the
travel time – more efficiently by using the heuristic
A* algorithm instead of the conventional Dijkstra
algorithm. The behavior of the A* algorithm was
tested with the simulation tool JWalkerS [JWalkerS
2010], which is an object-oriented implementation

of the second, space-continuous model approach
(see section 2).

Fig. 11. Searched graph nodes (black filled quadrangles) of an

individual routing process with the A* algorithm (a = 1). A
conventional Dijkstra algorithm would have visited all nodes of

the visibility graph.

Fehler! Verweisquelle konnte nicht gefunden

werden. illustrates a visibility graph calculated with
JWalkerS: Orientation nodes are represented by
small-sized circles. The simulation is restricted to
the routing process of a single pedestrian from an of-
fice room towards the exit which is located in the
upper part of the figure. The pedestrian is depicted
by an elliptical space in the lower left room of the
office building. The approximated shortest path is
located between the heuristically analyzed graph
nodes represented by black filled quadrangles. It is
clearly visible that the path search ranges only over a
small part of the network whereas the conventional
Dijkstra algorithm visits every single node of the
graph. As a consequence, the performance of the A*
algorithm is much better than the one of the Dijkstra
algorithm for this specific case.

More generally spoken, one can observe, that in
buildings with a complex geometry (e.g. many offic-
es or rooms), the A* algorithm does not search with-
in rooms that are neither positioned in the same di-
rection as the air line to the destination nor close to
the real shortest path.

 Configuring the A* algorithm, it must be consi-
dered that the probability for differences between
approximated and real shortest path increases with
the heuristic factor. From our experience we can
state, that for a ≤ 1, we could not observe any differ-
ences between the real shortest path and the one
found by the A* algorithm.

6 OUTLOOK

In this contribution, we introduced new methods
for a graph-based description of paths in buildings as
well as individual routing processes.

Here, the paths are automatically derived from
scenario topography by placing orientation points on
the bisectors of convex obstacle corners and calcu-
lating sight connections. By using criterions for
melting adjacent orientation points and for reducing
sight connections on crossings, we developed an ef-
ficient graph structure by reducing the number of
nodes and edges as far as possible.

Moreover, we presented routing algorithms which
can dynamically assign new individual paths de-
pending on pedestrian densities. Along with an ap-
plication example we demonstrated that this dynam-
ic assignment leads to a more realistic prognosis of
pedestrian route choice and thus of pedestrian distri-
bution. To minimize the path-finding time involved,
we introduced an A* algorithm using the airline dis-
tance between an orientation point and a destination
as heuristic value. The A* algorithm is able to the
individual paths faster than the conventional Dijkstra
algorithm, for specific cases as we described in Sec-
tion 5.2.

Nevertheless, there are still some aspects of the
graph structure as well as the routing algorithms to
be investigated.

In order to simulate multi-level scenarios, graph-
based models for level connections like stairs or es-
calators must be taken into account. For a multi-
level navigation process, a further stage of the air
line heuristic is necessary, e.g. with a temporary
orientation to the level connections. Besides, another
heuristic representing individual route decision crite-
rions must be developed.

To be more efficient in deriving the edge weights,
we will improve the algorithm in defining non-
overlapping edge areas. Another step will be to im-
plement a detection of pedestrian cluster which can
be associated with the corresponding edges.

To reduce runtime and start re-calculation of fast-
est path only when necessary, further work has to
focus on defining precise criteria, e.g. slow down
factors on edges or distance ratios of k-shortest paths
etc.

Given this dynamical path-assignment, a next
step will be to dynamically vary a scenario during
runtime (with occurring events like door closure or
fire).

REFERENCES

Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.,
2001. Simulation of Pedestrian Dynamics Using a 2-
dimensional Cellular Automaton, Physica A 295, pp. 507-
525.

de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.,
2000: "Chapter 15: Visibility Graphs", Computational Ge-
ometry (2nd ed.), Springer-Verlag, pp. 307–317, ISBN 3-
540-65620-0.

Dijkstra, E. W., 1959. A note on two problems in connection
with graphs. Numerische Mathematik 1, pp. 269-271.

Emmerich H., Rank, E., 1997. An Improved Cellular Automa-
ton Model for Traffic Flow Simulation. Physica A, 234: pp.
676-686, 199.

Kinkeldey, C., 2003. Fussgängersimulation auf der Basis zellu-
lärer Automaten. Studienarbeit im Fach Bauinformatik.
Universität Hannover.

Klein, W., Köster, G., Meister, A., 2010. Towards the Calibra-
tion of Pedestrian Stream Models. Lecture Notes in Com-
puter Science: PPAM 2009. Springer, Berlin Heidelberg.

Klüpfel, H., 2003. A Cellular Automaton Model for Crowd
Movement and Egress Simulation. PhD thesis, Universität
Duisburg–Essen.

Kretz, T., 2007. Pedestrian Traffic. Simulation and Experi-
ments. PhD thesis, Universität Duisburg-Essen.

Helbing, D., Farkas, I., Molnár, P., Viscek, T., 2001. Simula-
tion of Pedestrian Crowds in Normal and Evacuation Situa-
tions. In: Schreckenberg, M., Sharma, S. D., Pedestrian and
Evacuation Dynamics, Springer, Berlin, 2002, pp. 21-58.

Höcker, M., Milbradt, P., Seyfried, A., 2009. Simulation of Pe-
destrian Dynamics and Model Adjustments: A Reality-
Based Approach. Proceedings of the Conference on Traffic
and Granular Flow, Shanghai University, Shanghai.

JWalkerS, 2010. Institut für Bauinformatik, Leibniz Universität
Hannover, http://www.bauinf.uni-hannover.de/427.html.

Russel, S. J., Norvig, P., 2003. Artificial Intelligence: A Mod-
ern Approach. International Conference on Conceptual
Structures (ICCS), 2nd edition, Prentice Hall.

Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T.,
Rogsch, C., Seyfried, A., 2009. Evacuation Dynamics: Em-
pirical results, Modeling and Applications. R.A. Meyers
(Ed.), Encyclopaedia of Complexity and System Science
Vol. 3, Berlin Heidelberg: Springer, pp. 3142-3176.

Weidmann, U., 1993. Transporttechnik der Fußgänger. Schrif-
tenreihe des IVT, Vol. 90, 2nd edition, Institute for Transport
Planning and Systems, ETH Zürich.

