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Abstract. In order to model realistic pedestrian crowds, different aspects on dif-

ferent scales have to be taken into account. Besides behavioral aspects, locomo-

tion on short-scale and human navigation on large-scale have to modeled ap-

propriately. In the simulation models existing to date, these two aspects are 

modeled separately. To overcome the limitations of currently available models, 

this paper presents a new hybrid multi-scale model, which closely links infor-

mation between the short-scale and the large-scale layer to improve the naviga-

tional behavior. 

In the presented hybrid navigation model, graph-based methods using visibility 

graphs are used to model large-scale way-finding decisions. The pedestrians' 

movements between two nodes of the navigation graph (the short-scale) are 

modeled by means of a dynamic navigation floor field. The floor field is updat-

ed dynamically during the runtime of the simulation, explicitly considering oth-

er pedestrians for determining the fastest path.  
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1 Introduction 

Simulation of crowd dynamics has become an important field of research in the last 

years. A variety of different approaches have been developed, focusing on different 

objectives. Microscopic multi-scale models form one type of models (e.g. [1], [2], 

[3]). These approaches model crowd behavior on different scales: on the small scale, 

locomotion is modeled, i.e. how do pedestrians move (stroll, walk, run) towards a 

visible destination while trying to avoid other pedestrians. These aspects are mostly 

modeled either by cellular automata combined with force models or with continuous 

floor fields. Each individual’s step is calculated according to given potentials (i.e. 

gradients of the potentials) or forces, until all individuals have reached a designated 

destination. On the large-scale, navigational aspects are addressed. These include the 

route choice towards a (not visible) destination via intermediate destinations. The 

decision of which way to take at each intermediate destination might depend on envi-

ronmental conditions, e.g. choosing illuminated paths in the evening, and can vary 

from pedestrian to pedestrian, e.g. take the shortest path, take the fastest path, avoid 

congestions, follow signage, follow friends, etc. To model these aspects, graphs such 



as Voronoi diagrams (e.g. [4]), visibility graphs (e.g. [5]), or corridor maps [6] are 

used and different routing algorithms are applied on those.  

Various models combine these scales into so-called multi-scale models, combining 

graph-based approaches either with force models (e.g. [3],[7],[8]) or with agent type 

models (e.g. [9]-[13],[31]). However, these multi-scale models typically combine the 

small-scale and large-scale layer in a very simplistic fashion. Thus the limitations of 

small scale (e.g. being short-sighted) and large scale (e.g. not considering other mov-

ing pedestrians for route choice decisions) are usually not resolved. Typically, the 

large-scale layer provides the next intermediate destination to pedestrians steering in 

the small-scale layer and no information sharing between the small-scale and the 

large-scale layer takes place. 

In this work, a new hybrid multi-scale approach is proposed, in which a combination 

of the small-scale and the large-scale layer is driven further: we share information 

between both layers to improve the accuracy of the model resolving the above men-

tioned issues. 

2 State of the Art  

To date, the small-scale and the large-scale layer are combined as follows to form a 

multi-scale model: The navigation graph is used to generate pedestrians' paths based 

on a specific navigation strategy. Paths themselves consist of a list of intermediate 

destinations. The navigation field is then used to navigate pedestrians between these 

intermediate destinations until the final destination is reached. Although the combina-

tion of the layers already improves the realism of simulations, since small scale as-

pects (e.g. avoiding other moving pedestrians in close vicinity) and large-scale aspects 

(e.g. navigation strategy) are addressed, there are still several open issues to be 

solved:  

 

Fig. 1. Example for not distinguishing visible and invisible edges: The pedestrian on the left 

would walk around the south-west corner navigating according to a dynamic floor field, alt-

hough he cannot see the congested area from his position 

Current models are limited by the lack of information exchange between the layers 

resulting in unrealistic effects. On the small scale, static floor fields are often used 

[14-19], since dynamic floor fields, i.e. fields, which take pedestrians into account, 

are computationally too expensive. However using static floor fields results in artifi-

cial movement patterns. Nevertheless, some approaches use these dynamic fields 



([20], [21], [22]). On the large-scale, graph-based algorithms assign edge weights 

without distinction between visible and invisible edges, which we believe is provides 

more information than actually available for human individuals and thus does not 

correctly reflect human perception (c.f. Fig. 1).  

3 Setup of the new hybrid multi-scale model 

The proposed hybrid multi-scale model consists of two layers; a schematic setup of 

the model is shown in Fig. 2. 

The small-scale layer consists of a cellular automaton. This automaton is composed of 

hexagonal cells, each of them having the size of an average European male. Pedestri-

ans move on these cells following simple rules that depend on different cell values. In 

the simplest case these are given as a sum of a navigation field and a repulsive pedes-

trian field. The navigation fields are derived from dynamic floor fields, which are 

calculated based on the Fast Marching Method (FMM) [23]. Summing up local repul-

sions of all other pedestrians, the repulsion field is obtained. The large-scale layer is 

formed by a navigation graph [5], which is derived automatically from the scenario’s 

geometry. Based on this graph, different routing algorithms are implemented to reflect 

different navigational behavior. 

 

 

Fig. 2. Setup of the two-layered simulation model 

3.1 Information exchange from navigation layer to locomotion 

layer 

Instead of calculating one dynamic floor field for each destination, which covers the 

whole area of the scenario, vertices from the navigation graph serve as intermediate 

destinations. This enables the division of the scenario area into many small floor 

fields. The advantage of having many small fields is that only those fields have to be 

updated where pedestrians are located on. This results in lower computational time, 

since only small areas have to be updated. A second advantage comes into play, if the 

directions of the edges of the graph are considered: Since navigation graphs are di-

rected graphs towards the destination, directed floor fields can be created by sorting 



the cell values xi according to a key κ(xi), which combines travel times and distance to 

origin [24]: 

 κ(xi) = αT(xi) + (1 − α)βd(xi, V
O
), (1) 

where κ(xi) denotes key the values are sorted by, T(xi) is the time to reach cell     V
O
 

stands for the origin vertex and 0 ≤ α ≤ 1 and β > 0 are appropriate constants. The 

difference between an undirected and a directed floor field is depicted in Fig. 3 for 

different values of α and β. One can see that the choice of α has to be made carefully 

in order to still obtain a sufficient number of cells being covered by the field. 

 

Fig. 3.  Comparison between undirected floor field for edge e and directed floor fields for 

different values of α 

3.2 Information exchange from the small-scale layer to the large-

scale layer 

In current multi-scale models, edge weights for the graph layer are simple distances or 

travel times, the latter being derived from densities on the edges. Local densities can 

be accessed easily in cellular automata, since the neighborhood of each pedestrian is 

known and the occupied cells can be counted. From the determined density, the pe-

destrians’ velocity on the particular edge is derived by means of a fundamental dia-

gram, and the corresponding travel time is used as edge weight. However due to the 

local nature of densities, resulting travel times may be in inaccurate. This becomes 

apparent, if only a small part of the edge is congested, i.e. due to a bottleneck. Using 

mean velocity values may be too optimistic, while taking the minimum velocity re-

sults in too pessimistic estimates. Additionally, pedestrians taking a detour in order to 

avoid congestions cannot be captured.  

Taking values from the dynamic floor field improves the estimates significantly. In-

stead of using velocities and distances to derive travel times, the floor field values 

from the vertex cells reflect the travel time explicitly. An example that illustrates this 

improvement in realism of the simulations is given in Fig. 4. 

Nevertheless, applying these floor field values as edge weights for all edges of the 

entire navigation graph would result in unrealistic behavior, since this implies that 

individuals have global knowledge of the current situation in the entire scene. How-

ever, as pedestrians are only able to take congestions into account, which are visible 

from their current position, a distinction has to be made between visible and invisible 

edges. This can be achieved easily in a pre-computational step, since a visibility graph 



is applied. Taking the Euclidean distance for invisible edges and the floor field values 

for visible edges improves the realism of the calculated routes, when implementing a 

fastest path strategy.  

 

 

Fig. 4. Schematic sketch of a dynamic floor field estimating travelling times of pedestrians 

travelling form the origin VO to the destination VD. 

An overview of the overall information exchange flow within the hybrid multi-scale 

model is given in Fig. 5. 

 

 

Fig. 5. Interaction between the layers of the hybrid simulation model 

4 Tests 

To illustrate the improvements resulting from the proposed hybrid model, two test 

cases are presented. All presented simulations rely on the microscopic pedestrian 

simulator introduced in [16]. For further references we refer also to [25–30]. 

The first scenario consists of a corridor around a corner; three different simulations 

have been considered. First, static floor fields have been used, not taking into account 

other moving pedestrians. The second simulation has been based on dynamic floor 

fields without using the vertices from the navigation graph as intermediate destina-

tions. The third simulation has combined the graph with floor fields. Results for the 

different simulations are shown in Fig. 6.  

One can see that using static floor fields results in unrealistic patterns. Pedestrians are 

jamming in front of the corner, while they could walk around the other pedestrians in 

order to steer around the congestion. The second and third simulation produce more 



realistic results: The whole width of the corridor is used and no artificial congestion 

occurs at the left side of the obstacle. Furthermore, one can also observe that the qual-

ity of the results is not reduced when using intermediate destinations, although signif-

icantly less computational time is required for updating the floor fields.  

 

 

Fig. 6. Simulation screenshots after 100 and 200 seconds: (a) snapshot with static navigation 

field; (b) snapshot with an undirected dynamic navigation fields; (c) snapshot with directed 

dynamic navigation field in combination with a navigation graph 

The second test case we have considered illustrates the importance of distinguishing 

between visible and invisible edges and thus assigning different edge weights to both 

sets. The scenario consists of several obstacles and a bottleneck, which is not visible 

from the origin (c.f. Fig. 7).  

If visible and invisible edges are not distinguished, pedestrians detect a new fastest 

path leading around the south corner of the obstacle when the congestion in front of 

the bottleneck forms. This does not seem to be realistic, since pedestrians at the origin 

typically would not know about the congestion at the bottleneck. If the distinction 

between visible and invisible edges is introduced, pedestrians are walking around the 

north corner of the first obstacle, realizing the congestion and then decide to walk 

around the south corner of the second obstacle. This seems to be a more natural be-

havior. All simulation results are visualized in Fig. 7. 

 



 

Fig. 7. Left: Scenario of the test case: There are several obstacles and a bottleneck which is not 

visible from the origin. Right: Simulation results: (a) traces of all pedestrians for the simulation 

with distinguishing between visible and invisible edges; (b) traces of all pedestrians for the 

simulation without distinction; (c) simulation screenshot of the simulation with distinction 

between visible and invisible edges; (d) simulation screenshot for the simulation without dis-

tinction 

5 Conclusions 

In this work a new hybrid multi-scale model has been proposed, which combines a 

small-scale locomotion layer with a large-scale navigation layer in order to overcome 

the limitations of existing multi-scale models: Using static floor fields for modeling 

small-scale aspects leads to artificial movement patterns. Calculating dynamic floor 

fields – i.e. taking into account moving pedestrians - results in a high computational 

time, since these fields have to be updated every time step in order to reflect the cor-

rect values. Introducing intermediate destinations from the navigation graph and di-

viding the scenario into many small floor fields results in significantly reduced com-

putational effort, since only a few fields have to be updated, namely only those where 

(many) pedestrians are located on. At the same time, a significant improvement for 

estimating travel times on individual edges is achieved when compared with static 

floor fields or density-based approaches. On the large-scale, most simulation tools 

simply take the fastest path to calculate the routes for the pedestrians. Imprecise esti-

mates lead to routes, which can be misleading. Taking values from the dynamic floor 

fields for visible edges instead, leads to a more precise estimate for edge weights and 

thus to more accurate routes. 

The presented examples show that this close coupling between the small-scale and 

large-scale navigation decisions leads to significantly more realistic simulation results 

than achievable with conventional multi-scale approaches. 
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