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Abstract
In  the  recent  decades,  the  quantitative  structure-activity  relationship  (QSAR) 

approach to modeling chemical and biological properties of small molecules has gained 
considerable  popularity.  The benefits  of  the  QSAR approach are  low costs  and high 
productivity  levels  of  modeling  of  large  chemical  libraries  and  possibility  to  assess 
properties of non-existing and non-synthesized compounds. These benefits are in high 
demand in the area of drug design and discovery.  According to numerous studies the 
main reason for failure is poor pharmacokinetical and toxicity properties. Therefore, it is 
vital  for  drug discovery  process  success  to  determine compounds with unacceptable 
ADME/T profiles as early as possible in the drug discovery pipeline. 

The prediction of metabolism of molecules is of great interest for drug discovery. 
Cytochromes P450 (CYP) are a superfamily of enzymes, involved in metabolism of a 
large number of xenobiotic compounds. Approximately 75% of currently used drugs are 
cleared through metabolism and eight CYP forms in human liver carry out virtually the 
whole CYP-mediated metabolism. This makes CYP enzymes a primary target for early 
stage drug design screenings and introduces high demand on high-quality QSAR models 
for  CYP inhibition.  High promiscuity with regards to substrates,  high flexibility and 
clinically significant genetic polymorphism of the CYP enzymes makes QSAR modeling 
of CYP inhibition a challenging task.

This thesis focuses on several aspects of QSAR modeling of human cytochrome 
P450 inhibition and suggests the methodology to increase the quality of CYP inhibition 
models.  The  validity  of  the  methodology  is  demonstrated  in  comprehensive  QSAR 
modeling  of  five  most  important  CYP  isoforms  -  CYP1A2,  CYP2C9,  CYP2C19, 
CYP2D6 and CYP3A4. It  is  shown that  the addition of  newly developed descriptors 
derived from docking simulations increases the predictive ability of the resulting models. 
It is also shown that using these descriptors in a modified QSAR modeling workflow 
allows  to  extrapolate  modeling  results  across  closely  related  cytochromes.  This 
methodology  allows  to  predict  drug  activity  against  mutated  versions  of  genetically 
polymorphic cytochromes. 

The studies were performed on the OCHEM platform (http://ochem.eu) and all the 
descriptors, datasets and models are publicly available to the scientific community.
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Zusammenfassung
In  den  vergangenen  Jahrzehnten  hat  der  Ansatz  der  Quantitative  Struktur-

Wirkungs-Beziehung  (QSAR:  Quantitative  Structure-Activity  Relationship)  zur 
computergestützten Vorhersage chemischer und biologischer Eigenschaften von kleinen 
Molekülen beträchtlich an Popularität gewonnen. Die Vorteile des QSAR Ansatzes sind 
zum einen die niedrigen Kosten und zum anderen die hohe Effektivität der Bearbeitung 
großer chemischer Bibliotheken. Hinzu kommt die Möglichkeit, die Eigenschaften von 
bisher  nicht  existierenden  und  nicht  synthetisierten  Verbindungen  zu  bewerten.  Im 
Bereich der  Wirkstoffforschung und -entwicklung besteht  eine  hohe Nachfrage  nach 
ebendiesen  Vorteilen.  Wie  in  vielen  Studien  bestätigt,  ist  der  Hauptgrund  für  das 
Scheitern  eines  Wirkstoffkandidaten  seine  schlechten  pharmakokinetischen  bzw. 
toxikologischen  Eigenschaften.  Daher  ist  es  von  entscheidender  Bedeutung  für  eine 
erfolgreiche Wirkstoffenwicklung, Verbindungen mit inakzeptablem ADME/T-Profil so 
früh wie möglich in der Pipeline der Wirkstoffforschung herauszufiltern. 

Die Vorhersage der Metabolisierung von Molekülen ist von großem Interesse für 
die Wirkstoffforschung.  Eine wichtige Superfamilie der Enzyme sind die Cytochrome 
P450 (CYP), welche an der Verstoffwechselung einer Vielzahl von Xenobiotika beteiligt 
sind.  Etwa  75%  der  derzeit  verwendeten  Medikamente  werden  durch 
Stoffwechselvorgänge  abgebaut,  wobei  davon  nahezu  der  gesamte  CYP  abhängige 
Metabolismus  in  der  menschlichen  Leber  durch  acht  verschiedenen  CYP-Formen 
erfolgt.  Dies macht die CYP-Enzyme zu einem Primärziel des Frühphasen-Screenings in 
der  Wirkstoffentwicklung und stellt  somit  einen hohen Anspruch an hochqualitative 
QSAR Modelle zur Vorhersage der CYP-Hemmung. Unterschiedlichste Substrate, hohe 
Flexibilität  und  klinisch  signifikante,  genetische  Polymorphismen  der  CYP-Enzyme 
machen die Entwicklung von QSAR Modellen zur Vorhersage der CYP-Hemmung zu 
einer anspruchsvollen Aufgabe.

Der  Fokus  dieser  Arbeit  liegt  auf  den  unterschiedlichen  Aspekten  der  QSAR-
Modellierung humaner Cytochrom-P450-Hemmung und schlägt  eine neue Methodik 
vor, um die Qualität der Modelle zur Vorhersage der CYP-Hemmung zu verbessern. Die 
Methodik wird durch umfassende Modellierung der  fünf wichtigsten CYP-Isoformen 
validiert,  CYP1A2,  CYP2C9,  CYP2C19,  CYP2D6  und  CYP3A4.  Des  Weiteren  wird 
gezeigt,  dass  die  Hinzunahme  von  neu  entwickelten,  aus  Docking-Berechnungen 
abgeleiteten,  Deskriptoren  die  Vorhersagekraft  der  resultierenden  Modelle  erhöht. 
Ferner wird gezeigt, dass durch Verwendung dieser Deskriptoren in einem erweiterten 
QSAR  Modellierungsansatz  die  Modellierungsergebnisse  zwischen  eng  verwandten 
Cytochromen extrapoliert werden können. Durch diese Methode wird es möglich, eine 
potentielle  Wirkung,  auch  gegenüber  mutierten  Versionen,  genetisch  polymorpher 
Cytochrome vorherzusagen.

Alle Studien wurden auf der Plattform OCHEM (http://ochem.eu) durchgeführt 
und  alle  Deskriptoren,  Datensätze  und  Modelle  sind  für  die  wissenschaftliche 
Gemeinschaft öffentlich zugänglich.
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1 Introduction

1 Introduction
n  this  chapter  we  introduce  the  QSAR  field  of  knowledge  and  give  basic 
definitions  used  in  this  thesis.  We  also  introduce  the  cytochrome  P450 
superfamily  and describe  the  challenges  that  lie  in  QSAR prediction of  their 

inhibition activity. Finally, we provide the motivation behind this work and a brief overview 
of accomplishments achieved in this study.

I
1.1 Quantitative structure-activity 

relationship

The idea  that  the  physiological  effects  of  a  substance  depends  on  its  chemical 
composition and structure  was  first  formulated  more than a  hundred years  ago  [1]. 
However, quantitative estimates of such a relationship could be determined only at the 
beginning of the 20th century. It was first established that for a certain group of organic 
compounds,  there  is  a  connection  between  the  sedative  effect  (narcotic/depressant 
action)  and the  oil  /  water  partition  coefficients  of  these  compounds  [2].  Later  the 
mathematical proof was provided of the correlation of depressant action with the relative 
saturation of volatile compounds in the vehicle in which they were administered [3]. In 
biochemical studies the first work in this area was a work by Hansch and Muir, which 
studied  the  structure-activity  relationships  of  plant  growth  regulators  and  their 
dependency on Hammett constants and hydrophobicity [4]. The results of these studies 
formed  the  basis  of  the  mechanistic  approach  to  quantitative  structure-activity 
relationship (QSAR) model construction. 

Today this approach is widely used in biochemical, pharmaceutical and other fields 
of  science  where  predicting   properties  of  chemical  compounds  is  necessary.  The 
popularity of this approach is based on the now obvious statement that the biological or 
physicochemical activity of the compound is a function of its structure, represented by a 
set  of  directly  measurable  or  computable  parameters  [5].  However,  establishing  this 
functional  relationship is  a  very  time-consuming and non-trivial  task,  the  successful 
outcome of which is dependent on the progress in the following fields:

• Preparation and availability  of  large  data  sets  of  experimental  measurements  of 
physicochemical  and biological  properties  of  chemical  compounds.  At  the same 
time specialization and annotation of these data sets is important, since for each 
particular case study it is often required to consider only a subset of chemical space.

• Development  of  new  tools  and  methods  to  describe  a  molecule  by  a  set  of 
measurable or computable parameters. New methods that would include additional 
information that  was discarded in previous studies in the modeling process are 
important.

• Since no statistical model can be equally predictive on a whole chemical space, it is 
important to develop methods to estimate accuracy of predictions for a given model 
and given chemical compound.
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1 Introduction

• The creation of new computing technologies and computational tools that provide 
opportunities for QSAR analysis in a reasonable timeframe.

• Development  of  necessary  methodology  to  ensure  effective  use  of  known 
mathematical methods to achieve the purposes of QSAR modeling. This includes 
development of new mathematical  statistics and machine learning methods. For 
qualitative  predictions  of  the  presence  of  a  particular  type  of  activity  the 
development of classification methods is important. If the quantitative prediction of 
properties  of  chemical  compounds  is  necessary,  the  development  and  use  of 
regression methods is important.

The benefits of QSAR modeling reflect the benefits of computational modeling in 
general and include:

• Low costs and high productivity levels of modeling of large chemical libraries

• Environmentally-friendly  research,  reduction  in  necessary  chemical  experiments 
and animal testing

• Possibility to assess properties of non-existing and non-synthesized compounds

• Requires minimal tools, staff and infrastructure

These benefits are in high demand in the area of drug design and discovery. A drug 
discovery is a process of narrowing down from millions of synthesizable compounds to a 
single drug. The average time to discover and get a drug to the market is 10 – 12 years.  
According to numerous reports [6–9] a large fraction of drug candidates fail on different 
steps of drug discovery pipeline. The most expensive fails are fails that are late in the 
pipeline: preclinical and clinical trials. According to studies [10–12] the main reason for 
failure  is  poor  pharmacokinetical  and  toxicity  properties  –  ADME/T  (absorption, 
distribution,  metabolism, excretion, toxicity).  Therefore,  it  is  vital  for drug discovery 
process success to determine compounds with unacceptable ADME/T profiles as early as 
possible in the drug discovery pipeline. That's why QSAR, a methodology that doesn't 
require measurements or even synthesis of the tested compounds, is important in the 
early stages of the drug discovery process.

1.2 Cytochromes P450
The prediction of metabolism of molecules is of great interest for drug discovery. 

Cytochromes P450 (CYP) are a superfamily of enzymes, involved in metabolism of a 
large number of xenobiotic compounds [13]. CYP are involved in metabolism of a large 
amount  of  drugs  currently  present  on  the  market  [14]. Individual  CYP enzymes  in 
families  1,  2  and 3 metabolize  xenobiotics,  including the majority  of  small  molecule 
drugs  currently  in  use  [15]. The  distinctive  feature  of  CYP  enzymes  is  broad  and 
overlapping substrate specificity  [16]. Approximately 75% of currently used drugs are 
cleared through metabolism and eight CYP forms in human liver carry out virtually the 
whole CYP-mediated metabolism (Figure 1.1). It is worth noting that most drugs that 
are cleared by the CYP system are metabolized through several CYP forms. As a general 
rule,  drugs that  are metabolized by a single CYP form are more susceptible to drug 
interactions than drugs metabolized by multiple forms.
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1.2 Cytochromes P450

Figure  1.1. Percentage of  currently  marketed drugs  metabolized by different  human 
enzymes (left); percent of CYP-metabolized drugs by specific CYP isoforms (right) [17]

The promiscuity with respect to substrates makes the CYP prone to inhibition by a large 
amount of drugs, which may lead to clinically significant drug-drug interactions [18,19]. 
Similarly  to  a  large  number  of  other  proteins,  CYP  enzymes  are  prone  to  both 
competitive  and  noncompetitive  inhibition.  In  competitive  inhibition,  there  is  a 
competition between the substrate and inhibitor to bind to the same position on the 
active site of the enzyme. In the noncompetitive mode of inhibition, the active binding 
site  of  the  substrate  and  inhibitor  is  different  from  each  other.  In  the  case  of 
noncompetitive inhibition, the inhibitor binds to the enzyme–substrate complex, but not 
to the free enzyme entity. In practice, mixed-type inhibition displaying elements of both 
competitive and noncompetitive inhibition are frequently observed for CYP enzymes. 

CYP inhibition can lead to decreased elimination of  compounds dependent on 
metabolism for systemic clearance. If a drug is metabolized mainly via a single pathway, 
CYP inhibition may result in an increased steady-state concentration and accumulation 
ratio and non-linear kinetics as a consequence of the saturation of enzymatic processes. 
Especially with pro-drugs, inhibition may result in a decrease in the amount of the active 
drug form. Thus, inhibition of CYP may lead to toxicity or lack of efficacy of drugs [15]. 
Therefore, early prediction of CYP-related activity of compounds may help to avoid the 
pursuit  of  drug  candidates  with  these  undesirable  effects.  The  metabolism  of 
carcinogens, pro-carcinogens, and chemotherapeutics by  CYP enzymes gives them an 
indisputable role in the cancer prevention and treatment strategies and a large number of 
studies research CYP inhibition for prevention and treatment of cancer  [20–22]. This 
dictates  a  high  interest  in  QSAR  and  computational  chemistry  methods  of  CYP 
inhibition prediction [23–25].

In  this  thesis  the  research  is  focused  on  five  most  involved  isoforms:  CYP1A2, 
CYP2C9, CYP2C19, CYP2D6 and CYP3A4. 

CYP1A2 is a major enzyme in the metabolism of a number of important chemicals, 
which typically belong structurally to the group of planar polyaromatic amides and amines 
[26]. It accounts for 15% of total CYP contents in human liver and is responsible for the 
metabolism of approximately 10% of therapeutically used drugs  [15,27,28]. Amitriptyline, 
ethoxyresorufin,  caffeine,  fluvoxamine,  phenacetin,  theophylline,  clozapine,  melatonin, 
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haloperidol, zolmitriptan and tizanidine are biotransformed predominantly by CYP1A2 [29]. 
CYP1A2 participation in xenobiotics metabolism and corresponding implications for drug 
development is an intensively studied topic in medicinal chemistry [30].  

Multiple studies to a different degree of success performed QSAR modeling of CYP1A2 
inhibition. Most of the studies focus on QSAR modeling of small classes of closely related 
compounds and pursue the goal of determining structural features of molecules responsible 
for  inhibition  [31–35].  Some  studies  also  perform  QSAR  modeling  on  large  sets  of 
heterogeneous compounds [36–40].

CYP2C9 is expressed in the human liver to an  extent of 15-20% of the total amount of 
CYP enzymes and is responsible for metabolism of around 15% of currently marketed drugs 
[17]. CYP2C9 is involved in the metabolism of drugs especially many of the commonly used 
polar  acidic  drugs  in  humans.  CYP2C9 is  competitively  inhibited by non-steroidal  anti-
inflammatory  drugs.  Such  drugs  as  diclofenac,  ibuprofen,  tolbutamide,  glyburide, 
amitriptyline, tamoxifen and S-warfarin are predominantly metabolized by CYP2C9  [29]. 
Therefore, the need to evaluate drugs by QSAR for their ability to interact with CYP2C9 in 
their early stages of development is thought to be critical, since the chance of drug-drug 
interactions in a large fraction of patients is very high.

To date there are several QSAR studies on small groups of closely related compounds 
that successfully predict CYP inhibition concentration  [41–46]. Available  studies on large 
heterogeneous sets of compounds focus on inhibitor/non-inhibitor type classification tasks 
[40].

CYP2C19 is involved in metabolism of around 10% of the marketed drugs. Main known 
CYP2C19  substrates  are  some  proton  pump  inhibitors  (lansoprazole,  omeprazole, 
pantoprazole), anti-epileptics (diazepam, phenytoin, phenobarbitone) and some other drugs 
(amitriptyline, clomipramine, primidone, R-warfarin). Among known CYP2C19 inhibitors 
are chloramphenicol, fluvoxamine, modafinil and topiramate [29]. Numerous QSAR studies 
on datasets of variable sizes were performed on CYP2C19 inhibition activity prediction [47–
50].

CYP2D6  holds  a  10%  share  of  marketed  drug  metabolism  and  is  involved  in 
biotransformation  of  beta  blockers  (carvedilol,  S-metoprolol,  propafenone,  timolol), 
antidepressants (amitriptyline, clomipramine, desipramine) and antipsychotics (haloperidol, 
perphenazine, thioridazine  and zuclopenthixol)  [29]. There are several successful QSAR 
studies dedicated to prediction of CYP2D6 inhibition and substrate activity [50–54].

CYP3A4 is  involved  in  the  largest  fraction  of  drug  metabolism  (around  50%  of 
marketed  drugs  are  metabolized  by  this  isoform)  [17]. CYP3A4  substrates  span  across 
multiple chemical classes and include macrolide antibiotics (clarithromycin, erythromycin, 
telithromycin),  anti-arrhythmics(quinidine),  benzodiazepines  (alprazolam,  diazepam, 
triazolam),  immune  modulators  (cyclosporine,  tacrolimus),  HIV  Antivirals  (indinavir, 
nelfinavir, ritonavir), antihistamines (astemizole, chlorpheniramine, terfenadine) and multiple 
other classes of drugs [29]. Several QSAR studies have been performed to predict CYP3A4 
inhibition and substrate activity [40,55–59].

As several reviews [60,61] stress, another important CYP-related task is predicting the 
CYP isoform primarily responsible for the clearance of a particular small molecules. Several 
computational models are developed to address this task [62,63].
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1.3 CYP polymorphism

The human CYP genes are highly polymorphic. Phenotypically, a specific population 
are composed of ultrarapid metabolizers (UMs), extensive metabolizers (EMs), intermediate 
metabolizers (IMs), and poor metabolizers (PMs). The distribution of the genetic variations 
and the phenotypes is ethnicity dependent [64]. The PM phenotype is due to the presence of 
two nonfunctional (null) alleles or deletion of entire gene, while the EM phenotype is due to 
one or two alleles with normal function. An IM phenotype is usually found in individuals 
carrying one null allele and another allele with reduced function, while UMs often carry 
more than one extra functional gene. 

Genetic polymorphisms within CYPs mainly affect the metabolism of drugs that are 
substrates for those particular enzymes, probably leading to differences in drug response, in 
addition to an altered risk for adverse drug reactions  [65,66]. Allelic variants resulting in 
altered protein expression or activity have significant effects on the disposition of drugs and 
may cause diseases as a phenotype. Genetic polymorphism is defined as a stable variation in 
a  given  locus  of  the  genetic  sequence,  which  is  detected  in  1% or  more  of  a  specific 
population. The most common genetic mutation in human  CYP genes is single-nucleotide 
polymorphisms (SNPs), and nonsynonymous SNPs are functionally important SNPs, since 
they occur in a coding region and cause an amino-acid change in the corresponding CYP 
[64]. The functional CYP polymorphisms consist of gene deletions, gene duplications, and 
deleterious mutations creating inactive gene products, e.g., small insertions and deletions 
causing frame shift mutations, etc. Furthermore, amino acid changes might be introduced 
which, in some cases, can change the substrate specificity.  An important aspect of the CYP 
polymorphism is the copy number variation where multiple functional gene copies of one 
allele can result in increased drug metabolism and absence of drug response at ordinary 
dosage. It was found that each human CYP gene contains a mean of 14.6 nonsynonymous 
SNPs and many of them are associated with altered drug metabolism or susceptibility to 
certain diseases [67].

In 1969 the first direct evidence from a twin study was provided that the metabolic 
clearance of nortriptyline was influenced by genetic factors [68]. It was later discovered that 
the metabolism of debrisoquine and sparteine, respectively, is polymorphic, and it was later 
shown that these drugs are metabolized by a common enzyme (i.e., CYP2D6 whose activity 
is determined by genetic trait)

The  different  alleles  are  summarized  at  the  Human  CYP  allele  nomenclature 
committee  home  page  [69].  The  page  currently  encompasses  alleles  for  the  CYP1A1, 
CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, 
CYP2E1, CYP2F1, CYP2J2, CYP2R1, CYP2S1, CYP3A4, CYP3A5, CYP3A7, CYP3A43, 
CYP4A11, CYP4A22, CYP4B1, CYP5A1, CYP8A1, CYP19A1, CYP21A2 and CYP26A1 
genes. The database at present contains more than 350 functionally different CYP alleles, i.e., 
gene variants that affect the function and/or activity of the gene products. 

The CYPs that are highly involved in drug metabolism have a large number of existing 
alleles.  The most diverse is the CYP2D6 cytochrome with over one hundred registered 
alleles. CYP2C9 has over 30 registered variations, CYP2C9 – around 30 registered variations. 
CYP3A4 and CYP1A2 have around 20 registered variations [65].
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It is estimated that the genetic variability of the CYP2C9, CYP2C19 and CYP2D6 
genes can be estimated to significantly influence about 20–25% of drug treatment to such a 
large extent  that  they are of  clinical  importance for  the outcome of  drug therapy.  The 
polymorphism of the different CYPs translates into interindividual variability to different 
extents depending on the enzyme in question and the impact of the allelic variant. Among 
the  particularly  important  treatment  regimens  affected  by  these  polymorphisms  are 
therapies  with  several  antidepressants,  antipsychotics,  antiulcer  drugs,  anti-HIV  drugs, 
anticoagulants, antidiabetics and the anticancer drug tamoxifen [65].

Therefore,  research  in  the  field  of  QSAR modeling  of  activities  of  mutated  CYP 
isoforms  with  minimal  additional  experimental  data  is  important  for  early  stage  drug 
discovery purposes and personalized medicine approaches.

1.4 Motivation
This thesis focuses on several aspects of QSAR modeling of human cytochrome 

P450 inhibition.

While multiple studies were performed in the area of QSAR predictions of CYP 
inhibition, these studies were limited with respect to the number of applied machine 
learning methods and diversity of descriptors as well as the lack of a common approach 
to model evaluation and estimation of confidence of predictions on external test sets.

The goal of this work is to study how the accuracy of prediction of CYP inhibitors 
depends on the different machine learning methods and descriptor sets and to find the 
combination of descriptors and machine learning, ensemble and meta-learning methods 
that would yield the highest predictivity. 

Another goal of this work is to assess expediency of introducing protein structure 
information (in the form of novel docking-derived descriptors) with respect to QSAR 
model quality and predictivity. 

Lastly, this study focuses on the methodological aspects of predicting activities of 
mutated CYP isoforms. The combination of cytochrome structural information and a 
modification  in  traditional  QSAR  modeling  workflow  is  studied  with  respect  to 
extrapolating CYP inhibition prediction to structurally similar CYP isoforms. 

All QSAR studies in this thesis are complemented with a fragment-based analysis 
to provide a  mechanistic  explanation of  results.  Applicability domain approaches are 
extensively used to analyze the practical usability of the obtained models both for CYP 
inhibition  prediction  and  for  experiment  planning  in  the  field  of  CYP  inhibition 
measurements.

This study also provides publicly accessible models that could be easily used by 
chemoinformatics community to screen their compounds for CYP inhibition activity. 
While there were many publications in this area, in most cases the published models and 
data are not publicly available and can not be used by the community. Moreover, the use 
of these models will allow to better evaluate the usefulness of HTS screening techniques 
and in silico approaches for identification of CYP inhibitors.
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2 General methodology
his chapter focuses on the methodological aspects of QSAR research in general and 
the studies presented in this thesis in particular. The QSAR study starts with the 
object of research - a physicochemical or biological property (or a set of properties) 

to  be  modeled.  The  scope  of  the  study  is  often  determined  by  the  available  dataset  of 
experimentally obtained measurements. 

T
The first step in QSAR modeling that defines all subsequent steps is selection, analysis 

and  preparation  of  datasets.  The  datasets  may  be  obtained  from  scientific  literature, 
downloaded  from  specialized  databases,  or  measured  directly.  Most  of  QSAR  studies 
performed by pharmaceutical companies are based on in-house datasets of experimental 
measurements.  Except  for  the  experimentally  measured  value,  the  context  and  the 
conditions  of  the  measurement  are  very  important.  A  good  dataset  would  include 
information on temperature, pressure, pH, concentration or other experimental conditions 
important for the measured property.

The next step consists of choosing the tools for analysis of available dataset.

Representing  information  about  molecules  in  a  computer-processable  format  is 
essential for QSAR analysis. Depending on the task requirements (storing 3D confirmation 
information, storing charge information, etc) the molecule may be represented in one of the 
several common formats. 

Molecule conformation sampling and molecule conformation optimization steps are 
essential  in QSAR studies for  properties  dependent on 3D molecular  information.  The 
initial molecule structures are optimized to get a most probable bioactive conformation.

A key role in QSAR studies is the choice of descriptors. There are two basic approaches 
to the selection of descriptors to build QSAR. First, mechanistic, based on a priori choice of 
descriptors, based on known data about the property being studied and the most important 
structural features of the studied molecules. Second, statistical, based on the assumption that 
the choice of descriptors should not be made subjectively. In this case various chemometric 
methods are used to construct the models and select the most appropriate descriptor sets. 
The advantage of the statistical approach includes the absence of the subjective factor which 
may bias model performance. 

The  matrices  of  molecular  descriptors  and  experimental  values  are  processed  by 
machine learning methods to produce a predictive model. The choice of a machine learning 
method is dictated by the dataset and problem specifics.

Proper  model  validation  procedure  is  essential  for  correct  estimation  of model 
performance.  Statistically  valid tests  should be performed during model  comparison in 
order to make conclusions on advantages or disadvantages of each particular model. 

The  use  of  applicability  domain  approaches  is  essential  for  estimating  individual 
accuracy of the model for each compound. Since model performance is non-uniform on the 
whole  chemical  space,  separating  molecules  with  confident  predictions  from the  non-
confident ones is beneficial.
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2.1 Molecule representation in QSAR

2.1.1  Small molecules

The common way of representing a molecule in literature is a molecular name or a 2D 
sketch of the molecule. Both these ways have their own disadvantages and generally an not 
be used for computations. All of the machine-readable molecule representations are based in 
one way or another on the representation of the molecule as a non-directed graph. The most 
common representations include SMILES, Molfile/SDF, MOL2 and InChI / InChIKey. 

SMILES (Simplified  molecular  input  line  entry  specification)  is  a  way  of 
unambiguously representing molecules with short, human-readable ASCII strings. While in 
general the same molecule may have several SMILES representations, the canonical SMILES, 
built following a specific rule, is unique for a molecule. The advantage of this format is it's 
short and human-readable nature. The disadvantage is the inability to represent individual 
atomic coordinates in a molecule and thus to represent different molecular conformations. 

In terms of graph theory, SMILES is obtained by printing symbols (atom and bond 
representations) encountered during a depth-first traversal of a chemical graph. Hydrogen 
atoms are often remover prior to traversal. All cycles (including aromatic rings) are broken 
in the graph and numbers are used to indicate connection points. Parentheses are used to 
indicate points of branching on the tree. Different extensions of the SMILES standard exist, 
such as isomeric SMILES.

InChI (IUPAC  International  Chemical  Identifier)  is  also  a  textual  one-string 
representation  of  a  molecule  designed  to  provide  a  human-readable  and  machine-
processable standard for storing molecule information  [70–72]. The standard is designed 
and maintained by IUPAC (International  Union of  Pure  and Applied Chemistry).  The 
InChI  string  contains  “layers”  and  “sublayers”  separated  by  slashes.  Some  layers  and 
sublayers are optional. Each layer, except the first one, starts with a specific prefix. The layers 
include: main layer (chemical formula, atom connections, hydrogen atoms), charge layer 
(positive  charges,  negative  charges),  stereochemical  layer  (double  bonds,  tetrahedral 
stereochemistry,  type  of  stereochemistry  information),  isotopic  layer,  fixed-H layer  and 
reconnected layer. The advantage of separator-prefix format is the possibility to parse large 
amounts of molecules in InChI representation by wildcards or regular expressions to filter 
molecules with specific features. 

InChIKey is a complementary format and is a hashed version of the full  standard 
InChI using  SHA-256 algorithm.  It  consists  of  three  parts  separated  by hyphens:  a  14 
character hash of the connectivity information layers, 9 character hash of the rest of the 
layers plus one character identifying the version of the InChI calculation tool,  and one 
character checksum information.  The InChIKey has a  fixed length,  is unique for every 
molecule  and  therefore  is  extremely  useful  for  searches  in  different  database 
implementations. 

Figure 2.1 displays some examples of SMILES, InChI and InChIKey representations of 
molecules.
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Figure 2.1. Sample SMILES, InChI and InChIKey representation of Nicotine and Vanillin

Molfile (or  MDL)  is  a  connection-table  style  molecule  representation  format.  It 
consists of a header (three lines that can hold arbitrary information on the information 
origin, name, date, etc.), a summary line (containing information on the total number of 
atoms in a molecule, total number of bonds in a molecule, file format version, etc.), atom 
information  section  (each  line  of  which  holds  atom  type,  three  atomic  coordinates, 
supplementary atom information) and bond information section (each line of which holds 
bond type, numbers of atoms a bond connects, supplementary bonds information). This file 
format  is  less  human-readable,  but  can  hold  every  particular  details  of  the  molecule 
conformation.

SDF  (structure-data file) is an extension of the Molfile format. It allows to supplement 
the molecule structure information with a set of key-value pairs named “tags”. Tags can hold 
any additional information about a molecule a user would like to store - molecule names, 
molecular weight, some internal database identifier, etc. SDF format also allows to store 
several molecules in one file separated by $$$$ separator.

MOL2 is a molecule representation format similar to SDF. It allows storing information 
about atom and bond types, atom coordinates and additional information. This file format 
includes more atom types that SDF, since it discriminates, for example, aromatic and non-
aromatic carbons. The distinctive feature of MOL2 file is the ability to store partial charges 
among  other  atomic  information,  which  makes  this  format  important  for  molecular 
descriptor calculation tools that incorporate information about charges.

2.1.2  Protein structures and the Protein Data Bank

The Protein  Data  Bank (PDB) is  an  archive  of  experimentally  determined three-
dimensional structures of biological  macromolecules. The data contained in the archive 
include atomic coordinates, crystallographic structure factors and NMR experimental data. 
Aside from coordinates, each deposition also includes the names of molecules, primary and 
secondary  structure  information,  sequence  database  references,  where  appropriate,  and 
ligand and biological  assembly  information,  details  about  data  collection  and structure 
solution, and bibliographic citations.

All the Protein Data Bank entries are stored in a special format - PDB. Every PDB 
file is presented in a number of lines. Each line in the PDB entry file consists of 80 
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columns and is self-identifying. The first six columns of every line contains a record 
name. Record names are listed and explained in great detail in the PDB format guide 
[73].  Another way to describe a PDB file is as a collection of record types. Each record  
type consists of one or more lines. 

Records can be semantically grouped into sections. 

• A title section contains records used to describe the experiment (title, authors, 
literature citations, etc) and the biological macromolecules present in the entry

• The primary structure section of a PDB formatted file contains the sequence of 
residues in each chain of the macromolecules. Embedded in these records are 
chain identifiers and sequence numbers that allow other records to link into 
the sequence

• The  heterogen  section  contains  the  complete  description  of  non-polymer 
chemical residues in the entry

• The secondary structure section describes helices, sheets, and turns found in 
protein and polypeptide structures

• Several  additional  information  and  annotation  sections  include  the 
connectivity annotation section and miscellaneous features section

• A separate section describes the geometry of the crystallographic experiment 
and the coordinate system transformations. 

• The coordinate section contains the collection of atomic coordinates  

• The connectivity section provides information on atomic connectivity

• The bookkeeping section provides some final information about the file itself

The format, initially designed to describe biopolymers, can also serve as a structure 
format for small molecules. This way it only needs the title, coordinate, connectivity and 
bookkeeping section. 

The AutoDock Vina  [74] docking tool used in this study requires both protein 
and ligand be presented in PDBQT format. PDBQT [75] is a modification of the PDB 
format to store additional annotations of atoms in the protein and ligand structures.
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2.2 Molecule preprocessing, 
conformation sampling and 
optimization

2.2.1  Molecule preprocessing

Prior  to any further  analysis  by most  computational  methods molecules should be 
standardized, neutralized and subjected to salt- and counter-ion removal.

Standardization is the process of transforming a molecule according to a set of SMARTS 
templates. The templates used in the this study allow converting nitro mesomers. It  is  a 
required  step  to  receive  consistent  molecule  datasets.  Due  to  limitations  of  molecule 
representation in QSAR, molecules with different nitro mesomer representations may be 
treated as different molecules. This is wrong from a chemical and biological point of view. 
Therefore, it is required to convert all analyzed molecules to a consistent representation. 

Neutralization refers to neutralization of charged atoms in the molecules by attaching 
additional hydrogen atoms to them. Mesomers like nitro groups or quaternary nitrogens 
without hydrogens remain intact.

Remove salts is a procedure that allows removing salts, counter-ions, solvents and other 
molecule fragments from molecular structure. From all the detached fragments the biggest by 
mass is usually kept. It is an important step, since a large amount of molecule optimization or 
molecule descriptor calculation tools can not correctly process molecules containing salt or 
counter-ions. This procedure, however,  results to loss of information on complete molecule 
structure and may lead to false duplicates in analyzed datasets.

Figure 2.2 shows the examples of molecule structure preprocessing.

Figure 2.2. Examples of possible molecule preprocessing options

All  preprocessing  steps  in  this  study  were  performed  by  Chemaxon  software 
(Chemaxon Marvin and Chemaxon Standardizer libraries) [76,77]. 
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2.2.2  Molecule conformation sampling and optimization

When intending to calculate 3D descriptors or perform studies related to protein-
ligand interactions it is important to remember that most organic molecules of nontrivial 
size are not just three- dimensional, they are “four-dimensional”, because they exist as an 
ensemble of three-dimensional conformations inter- changing over time (or equivalently, 
consist of a distribution of conformations at any time). Their properties and reactivities 
depend intimately on this ensemble. Knowing the “structure” of a molecule requires either 
knowing all the structures in this ensemble or knowing one structure of the ensemble that is 
favorable for a particular task. Respectively, the task of obtaining bioactive conformations of 
molecules is often divided to two major subtasks - conformation sampling (i.e., generation of 
multiple conformations) and conformation optimization. 

Conformation  generation  algorithms  fall  into  two  broad  categories:  deterministic, 
which  exhaustively  enumerate  all  possible  torsions  at  certain  discrete  intervals,  and 
stochastic, which use a random element to explore the molecule’s conformational space. For 
flexible  molecules,  stochastic  methods,  such  as  molecular  dynamics  and  Monte  Carlo 
sampling can be considered preferable, since deterministic sampling of the torsions of all 
rotatable  bonds  would  have  exponential  computational  complexity  with  respect  to  the 
number of these bonds. 

An alternative approach, known as distance geometry, is to generate conformations 
that satisfy a set of geometric constraints derived from the molecular connectivity table. 
There are two forms of constraints: distance constraints encoded in the form of upper (uij) 
and lower (lij) bounds for every interatomic distance dij (such that lij < dij < uij), and volume 
constraints that prevent the signed volume Vijkl formed by four atoms i, j, k, l from exceeding 
certain limits. The latter are used to enforce planarity of conjugate systems and correct 
chirality of stereocenters. The advantage of distance geometry is that it generates chemically 
sensible conformations without any direct energy calculation. 

Two main components of conformation optimizations are an optimization method 
and a target function. The target function for conformation optimization is generally energy 
as calculated by a specific force field. In the context of molecular modeling, a  force field 
refers to the form and parameters of mathematical functions used to describe the potential 
energy of a system of atoms in a molecule. Force field functions and parameter sets are 
derived from both experimental work and high-level quantum mechanical calculations. One 
can differentiate between "all-atom" force fields that provide parameters for every type of 
atom  in  a  system,  including  hydrogens,  and  "united-atom"  force  fields  that  treat  the 
hydrogen and carbon atoms in methyl and methylene groups as a single interaction centers. 
For biopolymers even more crude representations are used in form of "coarse-grained" force 
fields. 

The MMFF94 [78] force field is used to evaluate conformation quality by OpenBabel 
software package in the studies presented in this work. Other popular force fields (and their 
implementations  in  software  packages)  used  for  molecular  dynamics  are,  for  example, 
CHARMM, AMBER and GROMACS [79–82].

12



2.2 Molecule preprocessing, conformation sampling and optimization

The total energy by MMFF94 force field can be described as follows

indices i, j, k and l indicate atoms, respectively.

The  EB term represents bond stretching energy,  EA - angle bending energy,  EBA - 
stretch-bend  interactions,  EOOP -  out-of-plane  bending  at  tricoordinate  centers,  ET - 
torsion interactions. These terms represent bonded interactions within a molecule.

The  EvdW term  represents  van  der  Waals  interactions  and  EQ -  electrostatic 
interactions. These terms represent the non-bonded interactions. 

Each term is calculated by it's own approximation function and is parametrized based 
on experimental data.

The optimization algorithm itself can be an implementation of any widely used general-
purpose  optimization  algorithms  from  computer  science  studies.  OpenBabel  [83],  for 
example, uses gradient descent for conformation optimization. Balloon software [84,85] uses 
gradient descent for initial conformation optimization and the specialized genetic algorithm 
for further conformation generation and optimization.

The software package used in this study for 3D optimization is Corina by Molecular 
Networks GmbH [86]. It uses a rule-based approach empirical optimizations. 

By combining monocentric fragments with standard bond lengths and angles and by 
using appropriate dihedral angles a 3D model of a molecule is built. Bond lengths and angles 
are  taken  from  a  table.  Since  multiple  solutions  exist  for  torsion  angles,  Corina  uses 
empirical approaches to tackle two separate problems: selection of bond torsions in a way 
that would ensure proper ring closure, and minimization of non-bond atom interactions 
(“atom crowding”). 

For the ring closure problem rings of up to a size of nine atoms are processed by using 
a table of single ring conformations that implicitly ensure ring closure. In the case of fused or 
bridged  systems,  a  backtracking  search  procedure  finds  a  contradiction-free  set  of 
conformations for each single ring following some geometric and energy restrictions. The 
ring conformations are then translated into 3D coordinates and further refined using a 
simplified pseudo force field that contains only special geometric terms for the optimization 
of ring systems.

To minimize the non-bond interactions the principle of longest pathways has been 
implemented in Corina for acyclic fragments and molecules. The main chains are extended 
as much as possible by setting the torsion angles to anti or trans configurations, unless a cis  
double bond is specified. This method effectively minimizes non-bonding interactions. 

After the combination of the three-dimensional fragments of the ring systems and of 
the acyclic parts,  the complete 3D model is checked for overlap of atoms and for close 
contacts. If such situations are detected, Corina performs a reduced conformational analysis 
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in order to avoid these interactions. First, a strategic rotatable bond within the pathway 
connecting the two interacting atoms is determined, depending on topological features and 
double bond character. Secondly, the torsion angle of this bond is changed until the non-
bonded interactions are eliminated. For appropriate torsion angles, Corina uses a set of rules 
and data obtained from a statistical analysis of the conformational preferences of open-chain 
portions in small molecule crystal structures.

Special  extensions  are  made  to  handle  big  ring  structures  and  organometallic 
complexes.

This  makes  Corina  an  extremely  useful  tool  for  conformation  generation  and 
optimization for the studies presented in this work.

2.3 Molecular docking

The  number  of  algorithms  available  to  assess  and  rationalize  ligand  protein 
interactions  is  large  and  ever  increasing.  Many  algorithms  share  common 
methodologies with novel extensions, and the diversity in both their complexity and 
computational  speed provides  a  plethora  of  techniques  to tackle  modern structure-
based  drug  design  problems  [87].  Assuming  the  receptor  structure  is  available,  a 
primary  challenge  in  lead  discovery  and  optimization  is  to  predict  both  ligand 
orientation and binding affinity; the former is often referred to as “molecular docking”.

Molecular  docking  is  a  computer  simulation  procedure  to  predict  the 
conformation of a receptor-ligand complex, where the receptor is usually a protein or a 
nucleic  acid molecule  (DNA or RNA) and the  ligand is  either  a  small  molecule or  
another protein. It can also be defined as a simulation process where a ligand position  
is estimated in a predicted or predefined binding site [88].

Molecular  docking  simulations  may  be  used  for  reproducing  experimental  data 
through  docking  validations  algorithms,  where  protein-ligand  or protein-protein 
conformations  are  obtained  in  silico  and  compared  to  structures  obtained  from X-ray 
crystallography or nuclear magnetic resonance. Furthermore, docking is one of main tools 
for virtual screening procedures, where a library of several compounds is “docked” against 
one drug target and returns the best hit. The procedure of virtual screening through docking 
has become crucial when it is necessary to test a database of thousands (or even millions) of 
compounds against one or more targets in a short period of time. This search would be 
impossible to be reproduced experimentally at a so small economic and time cost. For this 
reason docking has been found to be a useful step in QSAR studies, where statistical analysis 
is applied to thousands of drug candidates. 

In this thesis molecular docking is used as a step in calculation of novel Protein-Ligand 
Interaction-Based descriptors. The docking of the ligand is first performed against the target 
in question, and then a set of descriptors is calculated as functions of relative coordinates of  
atoms of the ligand and the target.

14



2.3 Molecular docking

2.3.1  Short classification of available methods

A number of reviews on molecular docking algorithms, methods and software that 
provide a thorough classification and comparison of different approaches used in the area 
were published during the last years [87–91]. 

A general approach to classifying docking protocols is as a combination of two  mostly 
independent components; a search algorithm and a scoring function. The search algorithm 
should generate an optimum number of configurations that include the experimentally 
determined  binding  mode.  Generating  a  broad  range  of  binding  modes  is  ineffective 
without a model to rank each conformation that is both accurate and efficient. The scoring 
function should be able to distinguish the experimental binding modes from all other modes 
explored through the searching algorithm.

The quality of the docking methodology can be evaluated by performing the docking 
on the ligands, for which the crystallographic information is available. The quality score 
would then be root-mean-square deviation (RMSD) calculated on two sets of coordinates - 
obtained by crystallography and by docking simulations.

where (xci,  yci,  zci) is a set of crystallography-obtained coordinates for the  i-th atom of the 
ligand and (xdi, ydi, zdi) is a set of docking-obtained coordinates. The coordinates of the atoms 
of the protein should be the same for two compared cases.

All current docking approaches can be separated into three major groups.

Rigid ligand to rigid protein docking is  a common approximation in early docking 
algorithms  [92]. Both the ligand and target are treated as rigid bodies and only the six 
degrees of translational and rotational freedom are explored. This approach is extremely 
simple and not very computationally demanding. Although this method has been successful 
in certain cases, there is a limitation to the rigid body docking paradigm in that the ligand 
conformation must be close to the experimentally observed conformation when bound to 
the target  [93]. Furthermore, numerous examples of conformational change of the target 
upon binding to a receptor limit the applicability of this type of methods [94].

Flexible ligand to rigid protein docking is the most popular approach used in modern 
docking studies. In this approach the ligand is considered flexible and the traversed search 
space includes the conformational space of the ligand itself in addition to the position of the 
ligand with  respect  to  the  protein.  For  this  case  the  variety  of  search  algorithms and 
conformation evaluation functions exist.  The task pursued in flexible ligand docking is 
similar to the tasks of conformation generation and optimization described in section 2.2 , 
page 11. 

Flexible ligand to flexible protein docking is the most computationally demanding type 
of docking and is a target of intensive research. The approaches used in this type of docking 
include docking to a fully rigid protein with some relaxed constraints on protein and ligand 
atoms overlapping  [95,96], docking of a ligand to a protein with flexibility of only the 
predefined side-chains in the binding site [97–101], and docking of ligand to several rigid 
conformations of the protein (possibly generated by molecular dynamics methods)  [102–
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104].

Based on the used conformation search algorithm most of the docking methods can be 
classified  into  several  large  categories.  In  existing software  the  methods are  often used 
complementarily.

Molecular dynamics methods involve the calculation of solutions to Newton’s equations 
of motions. The goal of the MD simulations is generally finding the global minimum energy 
of  a  docked protein-ligand complex.  Due  to  high  computational  demands  and several 
methodological problems (due to it's gradient nature, the method tends to get “stuck” in 
local  minima,  unable  to  step  over  an  energy  barrier  to  reach  the  favorable  binding 
conformation)  the  method  is  often  used  on  an  local  conformation  optimization  step, 
conformation being produce by some other algorithm [79,101,105].

Monte Carlo simulations is an established and popular approach in docking software 
[106–108]. A significant advantage of the MC technique compared with gradient based 
methods, such as MD, is that a simple energy function can be used which does not require 
derivative  information.  Furthermore,  through  a  judicious  choice  of  move  type,  energy 
barriers can simply be stepped over. Force fields are used to estimate favorability of each 
conformation.  Most  popular  force  fields  used  in  docking  software  are  different 
modifications of CHARMM and AMBER.

Since  their  inception,  genetic  algorithms have  increased  in  popularity  as  an 
optimization tool. The genetic algorithm approach is also widely used in docking [103,109–
111]. The essence of a GA is the evolution of a population of possible solutions via genetic 
operators  (mutations,  crossovers  and  migrations)  to  a  final  population,  optimizing  a 
predefined fitness function. The mutation operator randomly changes the value of a gene, 
crossover exchanges a set of genes from one parent chromosome to another, and migration 
moves individual genes from one sub-population to another. The fitness function of genetic 
algorithm based docking solutions is also an energy function as defined by a force field of 
choice.

The broad philosophy of fragment based docking methods can be described as dividing 
the ligand into separate portions or fragments,  docking the fragments,  followed by the 
linking  of  fragments  [112–114].  These  methods  require  subjective  decisions  on  the 
importance of the various functional groups in the ligand, which can result in the omission 
of possible solutions, due to assumptions made about the potential energy landscape.

Docking ligands to the binding site of a receptor is often performed using  points of  
complementarity between the  protein  and ligand.  Many of  the  fragment  based docking 
algorithms could also be included in this category, although an important distinction is 
generally made between algorithms that treat the ligand as a complete entity throughout the 
docking method, and those where the ligand is divided into fragments [115,116].

Tabu search algorithms are a family of docking algorithms which may be described as a 
stochastic evolution of the system using a tabu search with a generalized scoring function 
[117–119].

In this thesis an AutoDock Vina tool was used for flexible ligand to rigid protein 
docking.
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2.3.2  AutoDock Vina

AutoDock Vina is a relatively new program for molecular docking and virtual screening 
[74]. Is is a successor of an older docking suit, AutoDock 4. The developers claim that Vina 
achieves a two orders of magnitude speed-up compared to the previous version, while also 
significantly improving the accuracy of the binding mode predictions, judging by the tests on 
the training set used in AutoDock 4 development.

The optimization algorithm used in Vina is a variation of an “iterated local search” global 
optimizer [120,121]. Vina uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [122] method 
for the local optimization, which is considered to be an efficient quasi-Newton method.

The scoring function is a function developed especially for the Vina tool. The current 
implementation of Vina is designed to work with the scoring functions that have a general 
form of

where the summation is over all of the pairs of atoms that can move relative to each other,  
normally excluding 1–4 interactions, i.e., atoms separated by three consecutive covalent bonds. 
Here, each atom i is assigned a type ti, and a symmetric set of interaction functions ftitj  of the 
interatomic distance rij should be defined. This value is considered as a sum of intramolecular 
and intermolecular interactions. 

c=cintracinter
The optimization algorithm attempts to find the global minimum of c and other low-

scoring conformations, which it then ranks.

The predicted free energy of binding is calculated from the intermolecular part of the 
lowest-scoring conformation:

s1=g cinter
In the current implementation of Vina the atom typing scheme follows that of X-score 

[123]. The hydrogen atoms are not considered explicitly, other than for atom typing, and are 
omitted from the scoring function. The interaction functions  ftitj  are defined relative to the 
surface distance dij = rij − Rti − Rtj :

f ti t j
r ij≡ht i t j

d ij ,
where Rt is the van der Waals radius of the atom type t.  The scoring function htitj is 

defined as a weighted sum of five terms:

hti t j
d ij = −0.0356⋅gauss1d ij−0.00516⋅gauss2 d ij0.840⋅repulsion d ij

−0.0351⋅hydrophobicd ij−0.587⋅hydrogenbonding d ij

The  coefficients  were  tuned  by  the  Vina  authors  using  experimental  data  from 
PDBind. The individual terms are defined as following:

gauss1d =e−d /0.5 Å2 gauss2 d =e−d−3 Å/2 Å
2

repulsiond ={d
2 , if d0
0, if d≥0 }
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2 General methodology

hydrophobic d ={
1 , if d0.5 Å
0, if d1.5 Å
−d1.5 Å /1 Å , if 0.5 Å≤d≤1.5 Å}

hydrogenbonding d ={
1 , if d−0.7 Å
0, if d0 Å
−d /0.7 Å , if −0.7 Å≤d≤0 Å}

The function  g used for ranking the conformations and for predicting free binding 
energy is:

g cinter=
cinter

10.0585⋅N rot

where Nrot is the number of active rotatable bonds between heavy atoms in the ligand. 

The implementation details are described in the original paper [74].

AutoDock Vina was chosen as a docking tool for the studies in this thesis for  number 
of its distinctive features:

• high benchmarked accuracy of conformation predictions

• high speed of calculations

• runs on most Linux platforms and Mac OS X

• support for multiprocessor and multicore parallelization

• lightweight one-executable software, easy to use in a cluster environment

• available for free

2.4 Molecular descriptors

Machine learning methods are statistical and computer science methods that operate 
on numerical representation of entities. When applied to predicting chemical and biological 
properties  of  small  molecules the important  task arises to adequately represent  a  small 
molecule in the form of a numerical vector. The numbers of this vector that are used to 
represent different structural or functional aspects of the molecule are called molecular 
descriptors. 

Since molecules and molecule interactions are complex entities, any numerical vector 
would only be an approximation of these entities with respect to some specific problem. 
Therefore it is important to choose a set of descriptors relevant to a particular problem.

There are numerous ways to classify descriptor sets and descriptor calculation software. 
A widely accepted classification approach is to rely on the type of structural information used 
by the method and split the whole variety of descriptors into five categories of 0D - 4D 
descriptors [124]:

• The 0D descriptors are the descriptors independent of any knowledge concerning 
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the  molecular  structure.  The  1D  descriptors  are  calculated  over  such  one-
dimensional representations of a molecule.  Examples of 0D descriptors are total 
atom number, absolute or relative number of specific atom types, absolute or relative 
number of specific bond types, etc; the 1D descriptors include counts of fragments 
or functional groups of interest present in the molecule. The 0D/1D classification is 
often ambiguous.

• The 2D descriptors are derived from two-dimensional topological representation of 
the molecule and include topological information indices, molecular profiles and 2D 
autocorrelation descriptors.

• The 3D descriptors are based on a three-dimensional representation of the molecule 
and  require  a  valid  optimal  three-dimensional  conformation  of  a  represented 
molecule. The examples of these descriptors include WHIM, GETAWAY and 3D-
MoRSE descriptors from Dragon software package. The Protein-Ligand Interaction-
Based descriptors are calculated based on the three-dimensional structure of a ligand 
obtained by docking simulations and, therefore, can be considered 3D descriptors. 

• The  4D  descriptors  are  descriptors  calculated  over  an  ensemble  of  molecular 
conformations. One approach to generating 4D descriptors would be to generate an 
ensemble  of  potentially  active  optimal  conformations  and  calculate  normal  3D 
descriptors  over  each  of  these  conformations.  Average  values  and  standard 
deviations  of  these  descriptors  over  a  whole  conformation  ensemble  would  be 
classified as 4D descriptors.

Another way to classify the descriptors would be into two classes: general purpose 
descriptors and chemogenomics based descriptors. 

• General purpose descriptors are based solely on the structure of the molecule itself. 
The  may either be calculated on the molecule structure directly or be a result of 
simulations of interaction of a molecule with some default force field or probe atom / 
molecule. These descriptors are general an can be equally used for predicting both 
chemical and biological properties of molecules. There is a wide variety of successful 
general purpose descriptors used for QSAR studies.

• Chemogenomics based descriptors are calculated with the intention of describing not 
the small molecule itself, but rather a protein - small molecule interaction. These 
descriptors incorporate not only structural information of the small molecule, but of 
the protein as well. Depending on the approach the information may include atomic 
coordinates of the protein, specifics of the protein binding site, relative position of 
the protein and the small molecule in question, etc. These descriptors mostly make 
sense only in the context of biological properties related to protein-ligand interaction 
such as activation or inhibition of a specific protein, molecule binding affinity, etc. 
The  presented Protein-Ligand Interaction-Based descriptors  are  chemogenomics 
based descriptors. 
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2.4.1  General purpose descriptors

Throughout this study a number of general purpose descriptors were used and their 
performance compared. These descriptors are described briefly below. 

ISIDA SMF descriptors  [125,126] were calculated using the fragmentation tool from 
the ISIDA suite. The substructural molecular fragments (SMF) method is based on the splitting 
of a molecule into fragments. The fragment type is then a descriptor, and the number of 
occurrences of this fragment in a molecule is the value for this descriptor. Two different types 
of fragments are considered: “sequences” and “augmented atoms”. For each type of fragment 
three subtypes can be defined AB (atom and bond types), A (atom types only), and B (bond 
types only). In the studies presented in this work the AB type descriptors were used. 

Atom type  E-state  indices  and  molecular  bond  E-state  indices are  described  in 
appropriate  articles  by  Hall  and  Kier  [127].  These  descriptors  combine  electronic  and 
topological  properties  of  the  described molecules.  Each  atom in  the  molecular  graph is 
represented by an E-state variable, which encodes the intrinsic electronic state of the atom as 
perturbed by the electronic influence of all other atoms in the molecule within the context of 
the topological character of the molecule. The E-state index for an atom or bond consists of an 
intrinsic value for that atom/bond plus a term for its perturbation by all the other atoms in the 
molecule.  For every atom type and bond type in the molecule the calculated indices are 
summed.

Dragon [124] is a software tool licensed by Talete inc. The Linux version of Dragon – 
dragonX 1.2.4, which calculates 1664 molecular descriptors, was used in this thesis. These 
descriptors cover 0D - 3D descriptors which are arranged into 20 blocks. Dragon descriptors 
are very popular and are often successfully used for QSAR modeling of various properties. 

2.4.2  Chemogenomics based descriptors

Chemogenomics is an emerging interdisciplinary field described [128] as “the study of 
the genomic and/or proteomic response of an intact biological systems whether it be single 
cells or whole organisms to chemical compounds, or the study of the ability of isolated 
molecular  targets  to  interact  with  such  compounds”.  This  chapter  focuses  on  several 
examples  of  chemogenomic  methods  used  in  QSAR  studies.  It  also  argues  about  the 
necessity of a new set of chemogenomics based descriptors. Finally, a novel set of descriptors 
is presented. 

Chemical  genomics  based  virtual  screening  approach  applied  in  several  studies 
demonstrated excellent results in prediction of biological activities of small molecules and in 
finding novel bioactive molecules [129–133]. 

An  example  study  applying  this  approach  [129] was  aimed  at  predicting  small 
molecule  activity  on  a  set  of  G-protein  coupled  receptors  the  initial  dataset  contained 
information on 5207 small molecule - protein interactions (a total of   317 unique GPCRs 
and 866 ligands). Descriptors were calculated separately for small molecules and proteins. 
Chemical descriptors for small molecules were calculated using traditional 2D molecular 
descriptors.  Protein  descriptors  were  calculated  from  the  sequences  alone  based  on  a 
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mismatch-allowed spectrum kernel. The concatenated protein-ligand descriptors vector was 
used in the QSAR study of predicting small molecule activity against individual GPCRs.

This method has several important advantages. One of the advantages is the lack of 
necessity to generate bioactive conformations of small molecules and independence of the 
3D structure of the protein in question. This allows fast and efficient screening for proteins 
for  which  the  structure  is  unknown.  Another  advantage  is  the  possibility  to  combine 
knowledge  about  interactions  of  small  molecules  with  a  wide  variety  of  proteins  in  a 
systematic and sensible manner.

On the other hand, this method can not be applied to a dataset containing  molecule 
activity against one protein or few closely related proteins, like CYP family. In this case the 
protein section of the descriptors would not be discriminative enough to increase the model 
predictivity  compared  to  the  traditional  QSAR  models  build  on  traditional  molecular 
descriptors. Since the crystal structures of many important CYPs have been reported, it 
would make sense to incorporate this information into the QSAR model. 

COMBINE  (COMparative BINding Energy) analysis  [134,135] is a well established 
method to derive a system-specific expression to compute binding free energy using the 
three-dimensional  structures  of  receptor-ligand  complexes.  The  method  uses  empirical 
scoring functions that are quick to compute to estimate binding free energy using a single 
structure of a receptor-ligand complex. If some experimental binding data are available for a 
set of related complexes, then this information is used to derive a target-specific scoring 
functions. This is the approach taken in COMBINE analysis in which the binding free 
energy, inhibition constant or some related property is correlated with a subset of weighted 
interaction  energy  components  determined  from  the  structures  of  energy  minimized 
receptor-ligand complexes. These energy terms can be considered as descriptors in terms of 
QSAR studies. 

The COMBINE analysis method is based upon the assumption that the binding free 
energy (∆G), measured in experiments as inhibition constants (Ki), can be correlated by 
Partial Least Squares (PLS) with selected weighted interaction energy terms. In the recent 
COMBINE studies Coulombic (∆Uelec) and Lennard-Jones (∆Uvdw) interaction energies as 
well as electrostatic solvation energy terms (∆Gsolv) were computed using the 3D coordinates 
of  all-atom  models  of  receptor-ligand  complexes.  The  Coulombic  and  Lennard-Jones 
interaction energies were partitioned into interaction terms (∆uelec and ∆uvdw) between each 
amino acid residue of the receptor and the ligand. The ligands were not subdivided because 
of  the  high  diversity  of  their  lead  structures  in  the  datasets  studied.  The  electrostatic 
solvation energy terms were calculated for the ligand (∆GL

solv) and for the protein (∆GR
solv) 

by solving the Poisson-Boltzmann equation. The resulting model would have the form of the 
sum:

∆G=∑
i=1

n

wi
vdw ∆ui

vdw∑
i=1

n

wi
elec∆ui

elecwsolv
R ∆G solv

R wsolv
L ∆Gsolv

L C

where (wvdw, welec, wRsolv, wLsol) are determined by the appropriate terms contribution to 
the PLS model. The values (∆uvdw, ∆uelec, ∆GRsolv, ∆GLsolv) can then be considered as 
COMBINE descriptors in a PLS model.

To predict the binding affinities of new ligands, it is necessary to model the structures 
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of their protein-ligand complexes. When the ligands are similar, it may be possible to do this 
by analogy to experimentally determined protein-ligand complexes. However, in general, 
and particularly for the virtual screening of compound libraries, it is necessary to dock the 
ligands into the receptor binding sites  de  novo.  For this  reason,  COMBINE analysis  is 
coupled with a ligand-receptor docking step.

COMBINE analysis was originally developed to study the interactions of one target 
macromolecule with a set of related ligands. Since then, it has been shown that the method can 
be  successfully  applied  to  a  wide  variety  of  complexes  including  enzyme-substrate  and 
inhibitor complexes, protein-protein/peptide complexes, and protein-DNA complexes [136–
140]. 

While being successfully used in several studies, the COMBINE approach has several 
issues that require additional handling. First is that the resulting energy is considered to be a 
linear  composition of  it's  (energy-type)  terms.  Applying a  non-linear  machine learning 
method, while quite possible, would ruin the concept of a resulting energy being a sum of 
individual energy terms. Second issue lies in the calculation of the energy terms themselves. 
The software calculating the energy terms uses a particular force field, that is empirical by 
itself  and  is  parametrized  for  some  subset  of  molecular  interactions.  This  conversion 
introduces additional noise to the resulting model. And third issue lies in the per-residue 
calculation  of  energy  terms.  This  makes  seamless  combining  of  datasets  for  different 
proteins problematic. While this problem may be partially tackled for closely related proteins 
by aligning their binding sites and calculating descriptors for matching residues only, the 
efficiency of  this  method and the applicability of it  to non-related proteins is  an open 
question.

Protein-ligand atom pair descriptors is a set of descriptors to transparently describe 
protein-ligand interactions in a way suitable for (possibly non-linear) QSAR analysis. The 
descriptors presented and used in this thesis are a simplified modification of the Distance-
Dependent Atom-Type Pair Descriptors [141] re-purposed for the use in QSAR studies and 
were developed with the following ideas in mind:

• easily calculable directly from the protein-ligand complex structural information, 
omitting intermediate empirical steps

• universal with respect to proteins and ligands

• descriptors of interactions of different proteins should be easily combinable to form 
a single dataset

The calculation of descriptors is performed on the protein-ligand complex obtained 
from the docking or molecular mechanics simulations. The protein-ligand complex should 
contain the coordinates of all protein and small molecule atoms.

All  atom  pairs  between  the  protein  and  ligand  are  considered.  Atom  pairs  are 
combined in groups. Atom pairs are combined to groups based on:

• Protein and ligand atom types

• Protein and ligand atom partial charge sign

• Binned distance between protein and ligand atoms (distances are binned into five 
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groups: 0–3Å, 3–4Å, 4–5Å, 5–6Å, 6–12Å). All atom pairs with distances larger than 
12Å are ignored.

In each group the number of atom pairs and the sum of products of partial charges of 
atom pairs is calculated. This gives two descriptors for each atom pair group. 

Figure 2.3. Docking conformation of a sample ligand in a fragment of CYP1A2 protein (left); 
sample oxygen-carbon atom pairs in the 3-4 Å distance bin (right)

Figure 2.3 (left) displays a sample ligand docked to the binding site of the CYP1A2 
protein. Only amino acids with distances closer than 4Å  to the ligand are displayed. 
Figure  2.3 (right)  displays  a  schematic  representation  of  protein-ligand  atom  pair 
calculation.  Labeled arcs display seven atom pairs  that  fall  to the “oxygen negatively 
charged,  carbon positively  charged,  distance bin 3-4Å” group.  Since  for  this  protein-
ligand atom pair the total number of atom pairs in this group is 7, the respective atom 
pair count descriptor value is 7.

2.5 Machine learning methods
Machine learning methods is a set of algorithms that aim to extract knowledge is some 

particular form from an amount of input data. The core objective of the machine learning 
method is to generalize the presented data and extract some specific information on the 
distribution of the data that would allow to either provide additional information on the 
existing data points or to predict specific properties of new data points.

In  QSAR  the  most  often  used  class  of  machine  learning  methods  are  so-called 
supervised machine learning methods. In supervised learning the input data consists of a 
number of training examples, which consist of the input object and the resulting signal (most 
commonly, vectors of numerical values or labels from a predefined set). The goal of the 
supervised machine learning method is to analyze a set of training examples and infer a 
functional dependency between the input and output objects in a dataset. Such a function is 
generally called a  classifier,  when the output object is a label from a discrete set,  and a 
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regression function, when the output is a continuous numerical value. The problems in this 
case are called  classification  and  regression problems respectively. Some machine learning 
methods can be adapted to both types of problems, while others are suited only to one type 
of problems.

In  QSAR  studies  training  examples  most  often  include  a  vector  of  molecular 
descriptors for a particular small molecule as an input object and a (often experimentally 
measured) numerical value or a discrete label for a physicochemical or biological property 
for this molecule as an output object. The goal of the machine learning method is to build a 
regression function or  a  classifier  that  would allow to predict  property  values  for  new 
molecules, which were not yet measured or even synthesized.

The machine learning methods most often used in QSAR are multilinear regression 
(MLR),  k-nearest  neighbors  (KNN),  artificial  neural  networks  (ANN),  support  vector 
machines (SVM), random trees / random forest (RT / RF), C4.5 decision trees (C4.5), etc. 
Linear methods additionally can be extended by kernel techniques. Kernel functions map 
the initial descriptor space of the problem to a higher dimensional space, thus allowing to 
solve non-linear problems by linear machine learning methods. Kernel-based methods are 
very popular in QSAR studies [142,143].

In addition, several methods used in machine learning can not be attributed to one 
specific  machine  learning  method,  but  bear  a  common nature  and  can  be  applied  in 
combination  with  a  number  of  machine  learning  methods.  These  techniques  can  be 
generally called as meta-learning techniques.

This chapter gives a short summary on the machine learning methods and meta-
learning methods used in this study. A physicochemical property or biological property that 
needs to be predicted will be referred to as target property. The capital letter J will represent a 
chemical compound, xi(J) – the i-th descriptor of a compound J, y(J) and y J  – real and 
predicted values of the target property,  M  and N – the number of the used molecular 
descriptors and the number of molecules in the training set, respectively.

2.5.1  K-nearest Neighbors

KNN is a machine learning method that derives predictions on new instances based on 
the distance of this instance in descriptor space to k instances on the training set, where k is 
an optimizable parameter. Although the distance may be calculated using different metrics, 
an Euclidean distance is most often used. It's an example of instance-based machine learning 
method  where the function is only approximated locally, no training process (except for, 
possibly, optimizing the k parameter) takes place, and all computation is deferred until the 
prediction phase.

For classification problems the prediction value is obtained by voting of the k nearest 
neighbors of the instance. For regression problems the value of the instance is generally 
calculated as the weighted average of values of the nearest neighbors of the instance. The 
weight  can  generally  be  1/d  where  d is  a  distance  to  the  neighbor.  This  scheme  is  a 
generalization of linear interpolation. 

The KNN model is fully described by a matrix of descriptors of the training set xij.
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2.5.2  Artificial Neural Networks

ANN  is  a  family  of  mathematical  models  inspired  by  the  functionality  of  a  
biological  neuron.  The  neural  networks  most  often  used  in  QSAR  studies  are 
multilayered perceptrons  [144]. A multilayered perceptron can be represented as a 
multilayered directed graph, where all nodes of some layer are connected to all the 
nodes  of  the  previous  layer.  Mathematically  the  neural  network  predicting  one 
property y for a compound J can be presented as following:

y J = f L−1,0J 

f i , j J ={ g ∑
k=1

M

wijk⋅xk  J  , for i=0, j=0. . Z i−1

g ∑
k=1

Z i−1

wijk⋅f i−1, k  J  , for i=1. . L−1, j=0. .Z i−1}
where L is a total number of layers in a network, Zi - a total number of neurons in layer i,  
wijk is a weight of input k of a neuron j in a layer i, and fi,j(J) is an output of neuron j in a 
layer i for a compound J. The function g(x) is some nonlinear function, generally referred to 
as “neuron activation function”. Note that the resulting prediction is the output of a single 
neuron of the last layer of the network. An example of such function would be hyperbolic 
tangent, or some other sigmoid function. An ANN model, therefore, is completely defined 
by the set of neuron weights W = {wijk}, given that the configuration of the network (the 
number of layers, the number of neurons in each layer, the form of the activation function 
for every neuron) is fixed.

Neuron inputs (z1,  ...,  zn) may either be a vector of descriptors (x1,  ...,  xM) for the 
neurons of the first layer, or outputs of the neurons of the previous layer - otherwise. 

The process of constructing of a predictive ANN (“training of the neural network”) lies 
in optimizing the input weights of all the neurons in the network, so that sum predefined 
cost function is minimized.

For  the  simplest  case  the  cost  function  may  be  a  sum  of  squared  errors  of  
predictions on the training set,  similarly  to  the linear  regression.  When applying a  
gradient descent method to this minimization task, one gets a most straightforward yet 
very efficient algorithm for training neural networks -   back propagation algorithm 
[145]. 

In  this  study  the  neural  networks  were  trained  by  SuperSAB  -  an  adaptive 
modification  of  the  back  propagation  algorithm  [146]. It's  distinctive  features 
compared to the classical back propagation algorithm is high conversion speed and 
insensitivity to the choice of parameter values. 

Additionally, the neural networks used in this study are combined with a local  
correction  LIBRARY  approaches  in  a  specific  implementation  called  Associative 
Neural Networks (ASNN) [147,148].
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2.5.3  Support Vector Machines

The original SVM is the non-probabilistic linear binary classifier and is initially 
suitable only for classification problems. More precisely, the algorithm tries to build a 
hyperplane in descriptor space that would separate the instances of two classes and 
that the distance to instances of each class (so-called “functional margin”) would be 
maximal. The algorithm is based on quadratic programming an was first introduced by 
Vapnik [149].

A generalization of SVM to multiple-class  classification problem involves building 
multiple hyperplanes.

Since the construction of such a hyperplane that would separate all the instances 
is not always possible, a extension was suggested with a maximum margin idea that 
would allow misclassified instances  [150]. If there exists no hyperplane that can split 
the examples of  two classes,  the soft  margin method will  choose  a  hyperplane that 
splits the examples as cleanly as possible, while still  maximizing the distance to the 
nearest cleanly split examples. The additional penalty variables are introduced, which  
measure the degree of misclassification of each instance. 

Although the original SVM is a linear method, an extension was proposed that 
allows  to  create  nonlinear  SVM  classifiers  by  applying  kernel  modification  to 
maximum-margin hyperplanes. The resulting algorithm is formally similar, except that 
every  dot  product  is  replaced by  a  nonlinear  kernel  function.  As  a  result,  SVM is  
performed not in the original  space but in the  feature space obtained via  this  non-
linear  kernel  transformation  of  the  original  space.  The  feature  space  has  a  higher 
dimensionality  (often,  it  has  an  infinite  number  of  dimensions),  which  makes  it  
possible  to  separate  classes  that  were  not  linearly  separable  in  the  original  non-
transformed space.  Kernel-based SVM is  very  popular  in  QSAR studies due to  the 
non-linear  nature  of  QSAR  problems  [142,143]. The  popular  kernel  functions  are 
polynomial kernels, radial basis function, hyperbolic tangent, etc. Some kernels may 
have optimizable parameters that influence SVM performance for each particular task. 
These parameters, as well as a soft margin parameter of the SVM method itself, can be  
optimized via a grid search using cross-validation procedures. 

2.5.4  Random Tree / Random Forest

Random  Tree  [151] is  a  simple  example  from  a  large  family  of  decision  tree  
algorithms. Decision  trees  (in  general  case  they  can  be  both  classification  and 
regression trees) map a number of observations (i.e, descriptors) about an item to the  
target property value. In a tree leaves represent the actual classification or regression 
values,  and  intermediate  nodes  -  conjunctions  of  features  that  lead  to  those 
classifications.

Random Tree is most often used with a bagging meta-learning method to produce 
a Random Forest  [152].  A single Random Tree is constructed as following (let  the 
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number of training cases be N, and the number of variables in the classifier be M): 

1. We are told the number  m of input variables to be used to determine the 
decision at a node of the tree; m should be much less than M. 

2. A training set for this tree if formed by choosing N times with replacement 
from all N available training cases (i.e. take a bootstrap sample). Use the rest of 
the cases to estimate the error of the tree, by predicting their classes. 

3. For each node of the tree, randomly m variables are chosen on which to base 
the decision at that node. The best split based on these  m variables in the 
training set is calculated.

For a Random Forest multiple trees are created and the result value is obtained by 
voting of individual trees.

2.5.5  C4.5 Decision Tree

C4.5 is a successor of an ID3 algorithm an is a decision tree algorithm based on  
the idea of entropy gain [153].

At each node of the tree, C4.5 chooses one attribute of the data that most effectively 
splits its set of samples into subsets enriched in one class or the other. Its criterion is the 
normalized information gain (difference in entropy) that results from choosing an attribute 
for splitting the data. The attribute with the highest normalized information gain is chosen 
to make the decision. The C4.5 algorithm then recurs on the smaller sublists. For each list 
there are several base cases.  If  all  the samples in the list  belong to the same class,  the 
algorithm creates a leaf node for the decision tree saying to choose that class.  If none of the 
features provide any information gain, C4.5 creates a decision node higher up the tree using 
the expected value of the class. 

Main distinctive features of C4.5 decision tree include:

• The ability to handle both continuous and discrete input attributes. In order to 
handle continuous attributes, C4.5 chooses a threshold and then splits the list 
into those whose attribute value is above the threshold and those that are less 
than or equal to it.

• Handling training data with missing attribute values. Missing attribute values 
are simply not used in gain and entropy calculations.

• Handling attributes with differing costs.

• Pruning trees after creation - C4.5 goes back through the tree once it's been 
created and attempts to remove branches that do not help by replacing them 
with leaf nodes. 
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In  this  thesis  a  Java  implementation  of  C4.5  algorithm  from  Weka  machine 
learning package [154] - J48 - is used extensively for classification tasks. 

2.5.6  Bootstrap aggregating (bagging)

Bootstrap aggregating (bagging) is a variation of machine-learning ensemble meta-
algorithm that  was  proposed  by  Breiman  [152] to  increase  prediction  accuracy  and 
stability  and reduce  the  risks  of  over-fitting  for  random trees.  Although it  was  first 
introduced for tree classifiers, the concept can be used for all machine learning methods, 
both for regression and classification problems. The method relies on building multiple 
classification or  regression models  and averaging the results (for regression tasks)  or 
voting on the result (for classification tasks) to obtain the final prediction.

The  training  set  for  each  individual  model  is  obtained  by  resampling  with 
replacement of the original training set. Given the uniform distribution of the selected 
training  set  instances,  every  resulting  training  set  is  likely  to  have  63.2% of  unique 
instances of the original training set. This king of training instance samples is called a 
bootstrap sample.

It is worth noting, that since the results of the individual regression models are 
averaged, the bagging approach does not increase the quality of predictions of linear 
models.

Bagging  has  been  used  intensively  in  the  studies  described  in  this  thesis  to 
successfully  increase  prediction  accuracy  of  different  machine  learning  methods, 
especially - random and C4.5 decision trees. Bagging approach also allows to estimate 
the  accuracy  of  predictions  for  each  individual  compound,  as  described  in  the 
applicability domain section. 

2.5.7  Local corrections and the LIBRARY approach

As  discussed  earlier,  machine  learning  methods  like  ANN  are  memoryless 
approaches, as after the training is complete all information about the input patterns is 
stored in the neural network weights and the input data is no longer needed, i.e., there is 
no explicit  storage of any presented example in the system. And contrary to that, such 
methods as the  k-nearest-neighbors (KNN) represent  the memory-based approaches, 
since  their  predictions  are  derived  from local  approximations  derived  directly  from 
training data. A global model provides a good approximation of the global metric of the 
input  data  space However,  if  the  analyzed  property  is  too  complicated,  there  is  no 
guarantee that all details of its fine structure will be represented. Thus, the global model  
can be inadequate because it does not describe equally well the entire state space with 
poor performance of the method being mainly due to a high bias of the global model in 
some particular regions of space.

The idea of local corrections [147] lies in combining global ANN models with local 
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corrections derived from KNN approach. For local corrections to make sense a special 
metrics of similarity of predicted instances in model output space is introduced. The 
most successful metrics is reported to be Spearman rank-order correlation coefficient 
between vectors of predictions for an instance by an ensemble of ANN networks. The 
KNN corrections are performed for k nearest neighbors in model output space.

Formally, let y J  be a vector of property predictions of individual networks in 
an ensemble, and z i , z j

=∥zi , z j∥ - some similarity measure (e.g., Spearman rank-
order correlation coefficient) between two vectors z⃗i and z⃗ j .

Then a classical approach would be to average prediction values of the individual 
networks to obtain a final prediction

̄̃y (J )=
1
M
⋅∑
k=1

M

ỹ k (J ) ,

where  M is  a  number  of  networks  in  an  ensemble.  The  local  correction  approach 
provides a corrected prediction ̄̃y ' ( J )

̄̃y ' ( J )=̄̃y ( J )+
∑
k=1

K

( y( J k )−̄̃y (J k))⋅F (ξ( ⃗̃y (J ) , ⃗̃y( J k)))

∑
k=1

K

F (ξ(⃗̃y ( J ) , ⃗̃y (J k )))

where  K -  a  number  of  nearest  neighbors  from the  training  set  Jk to  the  predicted 
compound J (where ξ is the distance metrics), F - a weighting function for corrections 
introduced by individual neighbors from the distance to these neighbors. The simple 
case would be F≡1 to account for corrections of individual neighbors equally.

The idea of LIBRARY approach lies in extending a ready model built with local-
corrections  enable  machine  learning  method with  an  additional  set  of  experimental 
measurements (i.e., a library). This increases the overall accuracy of the model without 
the need of retraining it on the new data - the information from this new data will be  
included in the final predictions through the local corrections. The approach has been 
shown to increase  the  accuracy  of  LogP predictions  on in-house  datasets  of  several 
pharmaceutical companies [155–157]. 

2.6 Model performance evaluation

The general approach to model performance evaluation is to apply this model to a 
number of  instances,  for  which the experimental  values are known,  and to calculate 
some performance metrics based on the real values and the prediction values obtained 
from the  model.  To  estimate  whether  any  given  model  has  any  predictive  ability,  a 
number of integral model performance measures is used. Regression and classification 
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models have different performance metrics.

Since  the  models  in  this  thesis  are  only  binary  classification  models,  the 
performance metrics will be described in terms of binary classification. The metrics can 
be generalized to multiclass classification if necessary. In the definitions below numbers 
of true positives (instances that belong to “positive” class, which were correctly classified 
as  “positives”)  ,  true  negatives (instances that  belong to “negative” class,  which were 
correctly  classified as “negatives”),  false positives (instances that  belong to “negative” 
class, which were misclassified as “positives”), and false negatives (instances that belong 
to “positive” class, which were misclassified as “negatives”) are denoted as  TP, TN, FP,  
FN,  respectively.  The metrics  used in  the  studies  are sensitivity,  specificity,  accuracy, 
balanced accuracy and Matthew's correlation coefficient.

2.6.1  Sensitivity and specificity

Sensitivity and specificity are measures of the ability of the model to correctly  
detect “positives” and “negatives” respectively.

SENS=
TP

TP+FN
, SPEC=

TN
TN+FP

Sensitivity  is  the  percentage  of  actually  positive  compounds that  are  predicted  as 
positive,  whereas  specificity  is  the  percentage  of  actually  negative  compounds  that  are 
predicted as negative. A 100% sensitive model never misses an actually positive compound, 
but can give false positives. On the contrary, a 100% specific model will never give false 
positives, but can miss an actual positive and report it as negative.

2.6.2  Accuracy

In  classification  tasks  accuracy  is  determined  as  the  ratio  of  correctly  classified 
instances to a total amount of classified instances.

ACC=
TP+TN

TP+FP+TN+FN
Accuracy can be an acceptable measure if the number of “positive” and “negative” 

instance in the set is approximately same (i.e., a set is balanced). For highly imbalanced sets 
it is more informative to use a balanced accuracy.

2.6.3  Balanced accuracy

Balanced accuracy is  calculated as  a  weighted sum of  accuracies  within  each 
class.

BACC=
SENS+SPEC

2
=
1
2
⋅(

TP
TP+FN

+
TN

TN+FP
)
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2.6.4  Matthews correlation coefficient

Matthews  correlation  coefficient  [158] takes  into  account  true  and  false 
positives and negatives and is generally regarded as a balanced measure which can be 
used  even  if  the  classes  are  of  very  different  sizes.  The  MCC  is  in  essence  a 
correlation coefficient between the observed and predicted binary classifications; it  
returns  a  value  between  −1  and  +1.  A  coefficient  of  +1  represents  a  perfect 
prediction, 0 an average random prediction and −1 an inverse prediction. 

MCC=
TP⋅TN−FP⋅FN

√(TP+FP )⋅(TP+FN )⋅(TN+FP)⋅(TN+FN )

Matthews correlation coefficient  can be  used to  estimate  classification model 
performance disregarding the differences in datasets.

2.7 Model validation

Model validation is a process of obtaining model performance metrics in a way to 
reflect  the  actual  model  prediction  ability.  Given  a  fixed  limited  set  of  experimentally 
measured points, a good validation strategy would try to simulate as close as possible the 
“real world” scenario, when the resulting model is presented with completely new instances, 
not used in training.

Estimating model performance on the same dataset that was used for model training 
could lead to over-optimistic  results.  Given a large enough number of  descriptors,  it  is 
possible to construct a model that will “remember” the exact values for all instances in the 
training set. Such a model, however, will probably have a poor performance on any new data 
due to the lack of generalization abilities. These models are referred to as over-fitted models 
and should be avoided. 

The validation strategies used in this thesis are test set validation, cross-validation and 
bagging validation. 

2.7.1  Test set validation

The most straightforward validation strategy would be to divide the initial available 
dataset into two subsets - training set and validation set. The training set is then used for 
model training. The resulting model is then applied to the instances from the validation set 
and the performance metrics are calculated. 

The training and test sets may either be of equal or different sizes, and may either be 
created by random splitting or by specialized procedures. Although specialized procedures 
(e.g., “optimal design”) can yield smaller training sets and better model performance results, 
it is important to use them with caution. Since in optimal design approaches the training set 
is  constructed  based  on  the  information  from  the  whole  set,  it  can  be  regarded  as 
introduction of a bias to the training set.
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Test set validation is an easy and universal validation strategy. One of the variations of 
this strategy would be to construct a model on the data from one source, and validate on the 
data from another, unrelated source.

The negative side of test set validation is that only part of the data is used to build the 
model (hence, the inevitable loss of information), and that there's no estimation of model 
performance on the data that is used for model creation. To avoid these problems one can 
use cross-validation of bagging validation strategies.

2.7.2  Cross-validation

In  the  cross-validation  strategy,  the  data  is  randomly  divided  into  N folds.  The 
modeling procedure is then repeated N times. During each modeling procedure one fold is 
used as a validation set, and the rest N-1 are combined to form a training set. Each of the N 
available folds is used once as a validation set and N-1 times as a part of a training set. 

Performance measures are calculated based on the prediction values from validation 
folds. In cross-validation the model accuracy on the whole data is considered.   In QSAR 
studies the N-fold cross-validation is the most popular validation strategy.

A special case of an N-fold cross-validation is the leave-one-out (LOO) strategy. In 
leave-one-out one item is excluded from the training set and forms a “validation set”. The 
modeling procedure is repeated for each excluded item. 

2.7.3  Bagging validation

Validation can also be performed using a bagging procedure, described in detail in 
section 2.5.6 (page 28). As described earlier, for each individual run a training set is formed 
as a bootstrap replica of the initial training set, i.e. the individual training set if formed by 
resampling with replacement. The individual training set then contains approximately 63% 
of unique instances from the initial training set. This means the rest 37% of instances can be 
used as a validation set for this run. 

If we run the procedure multiple times (the bagging approach for models in this study 
used 100 individual models in a bag) the chances are high that each molecule in the initial 
dataset will appear in the validation set at least once. If the molecule appears in multiple 
validation sets, the prediction results are averaged.

2.7.4  General considerations

The described  validation  methods  (external  validation  set,  cross-validation  and 
bagging validation) can be combined.  Although cross-validation is considered to be the 
most popular validation strategy in QSAR studies, the bagging validation is favorable in 
some cases since it 
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• combines the ensemble model creation and validation; ensemble models 
have shown to have a higher average accuracy compared to single models.

• it provides multiple predictions for each compound; multiple predictions 
can  be  used  to  calculate  the  statistical  information  for  estimating  the 
applicability domain of the model (see section 2.9, page 34)

Bagging validation, however, has one disadvantage - it requires significantly more 
computational power. The bagging model with 100 individual models in a bag would, 
naturally, require 100 times more computational power to create and to apply to new 
compounds.

Regardless  of  the  validation  method  it  is  important  to  avoid  placing  the  same 
compound in the training and validation folds, as it will lead to over-optimistic model 
performance evaluation (i.e., over-fitting).

2.8 Model comparison

A correct comparison of two models' performance is a non-trivial task. The direct 
approach would be to just compare the selected performance measure values (RMSE, MAE, 
MCC, etc.) for two models on the same validation set.  The model performance values, 
however, are obviously dependent on the contents of the validation set. That's why when 
declaring that one model has higher performance then the other, we also have to check 
whether this performance difference is not caused by a mere chance, but is significant in the 
statistical sense.

With this formulation the task of comparing the performance of two models using a 
given  performance  measure  on  a  given  validation  set  becomes  a  classical  statistical 
hypothesis testing problem. The result (i.e., difference in model performance) would then be 
called statistically significant if it is unlikely to have occurred by chance alone, according to a 
predetermined threshold probability, the significance level. 

A general approach to hypothesis testing is choosing one outcome of the test as a 
default, i.e. null hypothesis. For example, the null hypothesis in model comparison would be 
“two models have same performance”.  Then a p-value calculated based on the type of the 
statistical test performed. A p-value is the probability of obtaining a test statistic at least as 
extreme as the one that was actually observed, assuming that the null hypothesis is true. 
When  the  p-value  is  less  than  a  predefined  threshold  (usually  0.05  or  0.01),  the  null 
hypothesis  is  rejected.  When  the  null  hypothesis  is  rejected,  the  result  is  said  to  be 
statistically significant. In our case models were considered statistically significantly different 
with significance level of 0.05 

Two general types of tests are parametric and non-parametric. The parametric tests 
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(e.g., t-test) are usually based on some assumptions on the observed statistics distribution 
(most commonly the statistics is assumed to have a normal distribution). The p-value is then 
often  calculated  as  a  function  from  the  statistics  distribution  parameters.  The  non-
parametric tests (e.g., bootstrap test, Wilcoxon test) involve fewer assumptions and can be 
used universally.

In this work the non-parametric bootstrap test was used.

The bootstrap test involves generating N (in this work N = 10000) test set samples 
from the original  test  set  by resampling with replacement.  Then the tested models  are 
applied  to  these  generated  test  sets  and  their  performance  measure  (e.g.,  RMSE  for 
regression models or MCC for classification models) is compared in a pairwise manner. If 
one of the model has better performance then the other in 95% of all tested cases, we claim 
that this model has better performance with significance level p = 0.05.

2.9 Applicability domain methods

2.9.1  General concepts

The first general definition of the applicability domain was given as following 
[159]:  “The  applicability  domain  of  a  QSAR  model  is  the  response  and  chemical  
structure space in which the model makes predictions with a given reliability”.

Obviously, a QSAR model is created on a limited subset of chemical space and can not 
have the same level of accuracy and predictive ability for every molecule.  Thus, it is very 
important to distinguish reliable and non-reliable predictions: the former predictions can be 
used in  place  of  experimental  measurements  while  the  latter  ones  should be  tested in 
experiments. The assessment of the applicability domain of the model generally involves a 
more general task - estimation of prediction accuracy for a given compound by a given 
model. 

Typically,  to  assess  the  prediction  accuracy,  a  QSAR  model  is  validated  using  a 
validation strategy of  choice and the average model performance metrics  on this set  is 
reported as the ultimate indicator of the model performance. This approach, however, does 
not reflect the actual model performance and is misleading for diverse datasets, since model 
accuracy within the validation set is inhomogeneous. Molecules similar to the ones present 
in the model's training set are likely to have a better-then-average prediction accuracies, 
while molecules holding some distinctive features different to the model's training set will 
probably be predicted with lower accuracy. In applicability domain studies the goal is to 
individually  estimate  the  prediction  accuracy  for  every  predicted  compound.  The 
compound that have accuracy higher then some predefined level can then be considered to 
be “in the applicability domain of the model”.

The key concept used for assessment of AD is distance to model (DM), defined 
as follows: distance to a model is any numerical measure of the prediction uncertainty 
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for a given compound by the model [160]. Distances to models were used in several 
QSAR studies to estimate the AD of predictive models [160–163]. Distance to model 
is a general, abstract concept. It is considered that the compounds that have higher  
DM  values  are  “far  from  the  model”  and  thus  have  a  lower  average  accuracy  of  
predictions, while compounds with small DM values are “close to the model” and are  
more likely to be predicted accurately.

The  traditional  approaches  to  DM  calculation  include  descriptor-based  DMs 
[164–166]. The example of descriptor-based DM is leverage:

LEVERAGE ( J )= x⃗( J )⋅(X T⋅X )−1⋅⃗x (J )T ,

where  x⃗ ( J ) is a vector of molecular descriptors for the compound  J,  X is a matrix of 
descriptors for compounds from the training set.  Higher leverage values indicated bigger 
distance of the predicted compound J from the model training set in descriptor space. Often a 
threshold is  chosen,  and compounds with leverage  values  bigger  then the  threshold  are 
considered outside of the model's applicability domain.

One of the descriptor-based DMs is Tanimoto similarity index. It's distinction from the 
other descriptor-based methods is that it does not take into account the descriptors of the 
model  itself,  rather  derives  own  fragment-based  descriptors  directly  from  molecule 
structure. It is calculated as following:

TANIMOTO( J , K )=
∑
i=1

N

(x J ,i⋅xK , i)

∑
i=1

N

( xJ , i⋅x J ,i)+∑
i=1

N

(xK ,i⋅xK , i)−∑
i=1

N

(x J , i⋅x K ,i) ,

where N is the number of unique fragments in both the compounds, xJ, i and xK, i are the counts 
of the i-th fragment in the compounds J and K. The distance between two compounds J and 
K is  1 – TANIMOTO(J, K) and the distance of a compound to a model is the minimum 
distance between the investigated compound and compounds from the training set of the 
model.

In  this  work,  however,  prediction-based  DM  approaches  are  used.  The 
prediction-based  approaches  were  shown  to  have  better  results  at  discriminating 
accurate and inaccurate predictions [163]. 

2.9.2  Prediction-based DM measure for classification tasks

As in this work only binary classification problems were addressed, the DM measures 
were specific to the binary classification. For calculation purposes the “negative” or “non-
active” class was assigned a numerical value “-1”, and the “positive” or “active” class - a 
numerical  value “+1”.  Given a sample of  predictions for a particular compound by the 
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ensemble of models, we can calculate standard statistical measures for this sample - mean 
value, standard deviation, etc. 

One possible measure based only on the mean value of model predictions is “rounding 
effect” or CLASS-LAG. Since the mean values of predictions is numeric, it will have to be 
rounded to the nearest label (-1 or +1) to identify the class of compound. The less amount of 
rounding is required, the more reliable the prediction is expected to be. This assumption is 
utilized  by  the  CLASS-LAG  DM.  The  absolute  value  of  difference  between  the  mean 
prediction  value  and the  nearest  of  the  labels  can  be  used as  a  DM.  This  measure  is 
calculated as follows:

d CLASS−LAG (J )=min {∣−1− ȳ (J )∣,∣1− ȳ (J )∣}

Another measure, similar to STD DM for regression tasks, would be concordance of 
ensemble  predictions.  The concordance of  the  ensemble  can be  defined as  the  biggest 
percent of models in the ensemble that give the same prediction. The opposite value (1-
concordance) could serve as the DM. (The bigger concordance is, the smaller the distance of 
this compound to the model is, the bigger prediction reliability is). The DM measure may be 
defined, or example, as following:

d INCONCORDANCE (J )=min{0.5− ȳ (J )
2

,0.5+
ȳ (J )
2 }

Another  DM  called  PROB-STD  [163], combines  the uncertainty  related  to 
rounding of predictions and the uncertainty the disagreement of different models. One 
can think of this measure as of a Gaussian probability (according to the observations) of 
the compound to be of a different, than assigned by a majority of votes, class. It is worth 
noting,  that  although  our  set  of  ensemble  predictions  is  not  necessarily  distributed 
normally (and in case if every model in the ensemble returns the numerical values {-1,1} 
to  represent  each  of  the  classes,  the  distribution  will  definitely  not  be  normal),  the 
probability is calculated based on expressions for normal distribution:

d STD−PROB( J )=min
∫
0

+∞

N ( x , y (J ) , d STD( J ))dx

∫
−∞

0

N ( x , y (J ) , d STD( J ))dx

,

where N ( x , y( J ) , d STD( J )) is the normal distribution density function with a mean y(J) 
and a standard deviation d STD( J ) . 

Figure 2.4 displays four charts for four possible situations. Charts a and b represent the 
reliable and unreliable predictions for a {-1} class. Charts c and d represent the reliable and 
unreliable predictions for a {+1} class. Higher standard deviation values lead to larger areas 
representing the probability that the prediction is opposite compared to the one determined 
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by the majority of votes. This leads to higher PROB-STD DM values. The images on the left 
represent reliable predictions (small area); the images on the right – unreliable predictions 
(large area).

Figure  2.4. Charts a-d display reliable and unreliable predictions for class {-1} and 
reliable and unreliable predictions for class {+1} respectively. Green area represents  
PROB-STD DM measure (larger area for higher uncertainty, smaller area for lower  
uncertainty). 

2.9.3  Analysis of model performance with applicability 
domain approach

The traditional approach in QSAR studies is to publish the average model performance 
(RMSE, MAE, classification accuracy or MCC) for the test set or for the cross-validated 
model.  Sometimes  the  appropriate  model  performance  measure  is  used  to  calculate 
confidence intervals for the whole model, and all model predictions are appended by these 
confidence intervals. This approach is not very illustrative and does not reflect the whole 
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information  on  model  performance,  since  different  classes  of  compounds  (and  even 
different  compound  within  each  class)  have  different  prediction  accuracies.  For  some 
compounds the estimated accuracy may be comparable to experimental accuracy, while for 
other compounds the prediction could have the reliability of a random guess. It is important 
to separate these compounds and to build confidence intervals based on this information 
about these compounds. 

The DM measures described above give us some information on model prediction 
reliability. It is thus important to calculate the average estimated accuracy for a compound or 
a group of compounds based on this information.

The sliding window averaging (SWA) approach involves choosing a sliding window 
size N and averaging the accuracy on N adjacent compounds sorted by some particular DM. 
The resulting value gives a SWA estimate of prediction accuracy for a middle compound in 
the window. The window is then shifted by one compound and the averaging is repeated to 
get the accuracy estimate for the next compound. The SWA accuracy plot is a useful tool for 
assessing  DM-based  estimated  accuracy  for  a  compound and  generally  contains  SWA 
accuracies (or errors) for compounds plotted against their DM values. For a successful DM 
measure  the  SWA accuracy  plot  should  have  an  overall  downward (for  accuracies)  or 
upward (for errors) trend. Figure 2.5 displays an example of SWA accuracy plot for a CYP 
classification model with BAGGING-STD DM.

 A different approach to assessing prediction accuracy is cumulative averaging, the 
accuracy is averaged over all the compounds with DMs less than a particular (variable) 
threshold. The DM threshold is often given implicitly in the form of a percentage of the 
dataset that have DM values less then this threshold. The resulting values plotted against the 
percentage thresholds result into a cumulative averaging accuracy plot. This plot can easily 
display the average accuracy for top 10% best  predicted compounds,  for example.  This 
cumulative  averaging  is  easily  interpretable  and  very  stable  against  noise.  However  is 
strongly depends on the diversity of the set and it's similarity to the training set of the model. 
Figure 2.6 displays an example of the cumulative averaging accuracy plot for the same three 
CYP classification models.

The  provided  examples  display  classification  accuracy  for  a  classification  task. 
However, the concept stays the same for regression tasks. The only difference is that for 
regression tasks the error measure (like RMSE or MAE) is used instead of accuracy measure.

The  functional  dependency  between  the  DM  values  and  corresponding  SWA 
estimated accuracy for the training set is the basis for estimating prediction accuracies for 
new  predicted  compounds.  To  obtain  an  accuracy  estimate  for  a  new  compound,  we 
calculate its DM value and determine the corresponding accuracy using SWA plot. If an 
estimate for a set of compounds is required, it is calculated as an average of estimates for all 
compounds in the set as follows. 

The details about AD assessment approaches used in this study can be found in a 
comprehensive methodological work [167].
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Figure 2.5. SWA accuracy graph for a classification model

Figure 2.6. Cumulative accuracy averaging graph for a classification model
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2.10 Summary
QSAR is  a  methodology  that  combines  computational  chemistry,  statistics  and 

machine  learning  methods  to  build  predictive  statistical  models  for  chemical  or 
biological properties of small molecules.

In QSAR studies small molecules are represented in one of the machine-readable 
formats:  SMILES,  SDF,  MOL2  or  InChI/InChIKey.  All  these  formats  are  based  on 
representation of a molecule as a non-directed graph. As a result of requirements of the 
studies in this thesis, SDF molecule format is used in all experiments described in the 
manuscript. 

The atomic 3D coordinates  most probable for the molecule bioactive confirmation 
should  be  determined before  any 3D molecular  information  can be  used in  further 
studies. Numerous molecule conformation and sampling methods exist, among which 
deterministic and stochastic methods optimizing force field target functions, empirical 
or  semi-empirical  methods,  etc.  In  studies  in  this  thesis  rule-based  empirical 
optimization tool Corina is used.

Molecular docking is a field of computational chemistry that aims to predict the 
correct binding conformation of a small molecule in a binding site of a protein. Based on 
the search algorithm the methods are divided to molecular dynamics methods, Monte 
Carlo simulations, genetic algorithms, fragment-based docking, etc. In the studies in this 
section the docking is used to obtain protein-ligand conformations which are then used 
to calculate protein-ligand atom-based descriptors. The docking tool used in the studies 
is Autodock Vina. 

The molecule conformations obtained from 3D optimization or docking are then 
used  to  calculate  numerical  features  that  represent  some  molecular  properties  – 
descriptors. The descriptors used in the studies described in this manuscript are ISIDA 
SMF descriptors, E-state indices, Dragon descriptors and novel protein-ligand atom pair 
descriptors.

Machine  learning methods used in  the  studies  are  K-nearest  neighbors,  ASNN 
neural  networks,  Support  Vector  Machines,  Random Forest  and C4.5  decision trees. 
Bootstrap aggregating is used to increase model accuracy and for applicability domain 
purposes.

The validation of  the  models  is  performed via  N-fold  cross-validation,  bagging 
validation and external set  validation.  Since this  manuscript  focuses on classification 
tasks,  model  quality  is  assessed  by  calculating  sensitivity  and  specificity  measures, 
accuracy and balanced accuracy, as well as Matthews correlation coefficient.

Applicability  domain  methods  in  model  prediction  space  are  used  to  estimate 
model  prediction  accuracy.  The  methods  include  calculation  of   BAGGING-STD 
distances to model.
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3 OCHEM – The database of 
experimental 
measurements and 
modeling environment

his chapter describes the Online Chemical Modeling Environment project [168] 
(OCHEM, http://ochem.eu). It is a database of experimental measurements of 
physicochemical and biological properties of compounds integrated with the 

powerful QSAR modeling framework. OCHEM was used as a research and development tool 
for all the studies presented in this work. 

T
The author  of  this  work  made  an  essential  contribution  to  the  OCHEM  project 

development. The contribution involves design of the general concept and the modeling 
framework API, implementation of data integration tools, and development of a major part 
of the database system and data processing nodes of the modeling environment. All the 
described novel descriptor calculation methods were implemented and tested as parts of the 
OCHEM environment.

3.1 Motivation

A  typical  process  of  QSAR  modeling  involves  several  highly  repetitive,  time-
consuming steps. Automatization of these steps is the key to shifting researcher’s attention 
from  routine  steps  of  data  preparation  and  management  to  model  interpretation, 
applicability domain assessment and outliers’ study.

One  of  the  most  time-consuming  parts  of  building  any  QSAR  model  is  data 
preparation. Most of the available experimental data can be found in published scientific 
articles. Most of the articles contain only one or several measurements on a small group of 
closely related compounds. This makes the process of collecting a chemically diverse dataset 
quite a tedious task. Additionally the measurements are often performed under different 
experimental conditions and the resulting values are reported in different measurement 
units.  Careful  comparison  of  the  compatibility  of  measurement  conditions  and 
transformation of the values to the same measurement unit may be a challenging task for a 
QSAR researcher.

Employing a consistent and well-structured database of experimental measurements of 
molecular  properties  can  minimize  all  these  steps.  The  database  may  help  find  the 
experimental  properties  relevant  to  the  topic,  given  they  were  previously  uploaded  by 
another  scientist.  Even  if  a  researcher  has  collected  a  specific  dataset  of  interest,  any 
additional data may be used for validation of the developed model. The embedded tools may 
also automatically  perform the routine tasks  of  unit  conversion,  duplicates  control  and 
filtering.
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Another issue is model usability and reproducibility. Hundreds of QSAR models  are 
published  in  scientific  journals  every  year.  More  than  50  models  published  only  for 
lipophilicity, logP, and water solubility in 2005 [169,170]. For most of these models the life 
cycle ends with a publication in a journal. Only a small share of the published models is 
maintained as standalone tools and is applied to new compounds. While being useful as 
proof-of-concept for the methods or descriptors used in the study, this type of models is 
useless for further study.

An attempt at reproducing a published model often meets several specific problems. 
One of the difficulties is reproducing the initial dataset. In a vast amount of cases, the dataset 
is not published with the model. Often the published dataset contains molecular names or 
structure  depictions,  both of  which  are  ambiguous and prone to  human errors.  Many 
models involve a complicated procedure of selecting the training and test sets from the 
initial dataset, and unless the exact contents of these sets are explicitly published, the models 
become irreproducible. 

The extreme variety of (often only commercially available) machine learning methods 
software  and molecular  descriptors  calculation  software  make  reproducing  a  published 
model yet more difficult. Even for the same tool the values are very dependent on the tool 
version, which makes it impossible to reproduce the older models, built with older versions 
of tools. 

A central repository that would provide access to a wide variety of machine learning 
tools and descriptor calculation software and allow to store the data, the model and the 
model’s protocol in the same place would allow to publish reusable and reproducible models.

There’s a wide variety of online databases and modeling tools available, none of which 
resolve all of the mentioned problems. Some databases (PubChem, ChemSpider, DrugBank, 
ChemExper [171–177]) fulfill the role of storing the chemical data and providing tools for 
navigating this data. However, these solutions lack some important functionality for QSAR 
data  preparation  (unit  conversion  tools,  consistent  experimental  conditions,  etc.)  The 
mentioned sites also lack any modeling capability and thus can only be used as a data source 
on the early stage of model development. A number of modeling tools are also available 
online [178,179] but are too generic and incapable of supporting a complete QSAR model 
development pipeline.

This chapter presents a unique online tool – OCHEM, the Online Chemical Modeling 
Environment that addresses all of the mentioned problems. The OCHEM consists of two 
essential  parts  –  the database of  experimental  measurements,  and the QSAR modeling 
framework. The database allows search, manipulation, upload and download of QSAR data. 
It  contains  tools  to  convert  units,  remove  duplicates,  form separate  datasets  based  on 
experimental conditions, and perform other steps essential for preparing a good dataset. The 
modeling framework is integrated with the database and allows using the prepared datasets 
as input to the QSAR modeling workflow. The user has the possibility to choose from 
numerous  machine  learning  methods  and  meta-learning  techniques  and  dozens  of 
descriptors to build the models even for the most demanding properties.  The resulting 
models can be made available either for peer review or publicly, which encourages people to 
use or reproduce them, thus extending their life cycle.
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3.2 Database of experimental properties

3.2.1  Structure overview

The central concept of the OCHEM database is experimental property or record. The 
experimental  property  represents  a  single  measurement  of  a  particular  property  for  a 
particular molecule under defined conditions, and published in a defined article. This single 
record represents a single data point in a QSAR dataset. The simplified structure of the 
experimental property is shown on Figure 3.1.

Figure 3.1. A schematic overview of the experimental property structure

The experimental property itself is the central entity of the database and represents a 
measurement value. The value may be numeric or represent a qualitative observation. 

The  property represents a physical, chemical or biological property being measured. 
The property may be quantitative – then an exact numerical value of the measurement is 
provided, or qualitative. 

For qualitative properties one must provide a list of available options. For example, for 
qualitative  “DMSO  Solubility”  property  only  two  options  are  available  “soluble”  and 
“insoluble”. This approach to solubility is useful when the studied fact of interest is solubility 
of a particular compound above some defined threshold. 

A  measurement  unit must  always  complement  a  numeric  value  for  a  quantitative 
property. The units are grouped by categories. For example, the units mol/l, mg/l, g/cm3 all 
belong to “concentration” category. Main categories available in OCHEM database involve 
temperature, concentration, speed, time, dose, pressure, density, etc. The database policy is 
to store the unit exactly the way it was published in the referenced article. However, within 
one category units can be automatically converted for modeling purposes. For quantitative 
properties  a  unit  category  is  associated  with  the  property.  For  example,  the  property 
“Melting point” has a “temperature” unit category associated with it. The user may provide 
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data points in degrees Celsius, Kelvin or Fahrenheit.

Since QSAR data reflects measurements for particular molecules, information about 
molecule structure is an essential part of this data. Each  experimental property contains 
information about the molecule, for which the measurement was performed. The OCHEM 
supports rich facilities for describing a molecule, which involve common molecule formats 
(SDF, MOL2, SMILES), molecule names, and possibilities to draw a structure in a molecular 
editor. 

Both  property and  molecule can be marked by a set  of  tags. Tags provide a non-
hierarchical way to classify data according, for example, to tasks or areas of interest. Several 
thousand molecules in the OCHEM, for example, are marked with “ChemBridge” tag. This 
represents, that these molecules are available in form of DMSO solution from ChemBridge 
provider (as mentioned in tag description). This may be useful information for someone 
performing virtual screening before buying compounds for actual laboratory experiments. 

Another important part of the  experimental property entity is the article  (or more 
generally  –  the  source),  where  the  value  was  published.  The  OCHEM database  policy 
requires a user to provide the reference to the article, from which the value was obtained. 
This allows for a better data quality control. In case of any suspicion (for example, if a data 
point represented by a particular experimental property is a distinctive outlier in a model) 
the user of the data has the possibility to check the original article for the correct value.

One of the features that distinguish the OCHEM from other chemical databases is the 
possibility to store  conditions of experimental measurements. It is clear, that values of the 
“Boiling point” property are dependent on the pressure, under which they were measured. 
Similarly, the “Solubility” values depend on the temperature of the solution. Thus it is very 
important to store this kind of information with the measurement to be able to form a 
consistent dataset.

3.2.2  Data search and editing

Browsers are an important concept in the OCHEM database. It is a special dialog that 
is  associated  with  almost  every  meaningful  entity  in  the  database.  Currently  there  are 
specific  browsers  created  for  experimental  properties,  molecules,  properties,  conditions, 
units, articles, journals, molecule sets, tags and models.

Every browser generally consists of the viewing area that displays a page with a list of 
items and the navigation bar that allows changing pages, and a set of  filters that allows 
narrowing the set of items displayed in the viewing area. By default, the filters are empty and 
the viewing area displays all available items (with user-specific restrictions applied). Every 
item in the list holds some functional elements (buttons, icons or clickable links) that can be 
used for editing or deleting this item, obtaining some additional information about the item, 
or navigating to some other browser in the database that is relevant to this item. Figure 3.2 
displays a browser for properties with a  name filter applied (the  items area only display 
properties that have “con” in their names). Every property in the list has the “edit” and “look-
up in wiki” icons and the clickable link that will open an experimental property browser 
with this property’s records.
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Figure 3.2. Properties browser

The main browser of the OCHEM database is the experimental properties browser. It 
is the biggest, most function-rich and the most complicated browser in the system. It allows 
searching and editing of experimental measurements and grouping them into sets (that can 
be later used as training or test sets in the modeling environment). The available filters allow 
narrowing the scope of the displayed measurements:

• Property filters make most sense, since a QSAR researcher is generally interested in a 
single property or a group of closely related properties

• Molecule filters allow finding records for one specific molecule (by filtering by a 
molecule  name  or  InChI  key)  or  for  a  group  of  molecules  (by  filtering  by  a 
subfragment or a range of molecular weights) and are useful for researches interested 
in specific families of compounds (e.g., triazoles). 

• Article filters allow specifying the desired source article for the records.

• Filter by experimental conditions is very important to form a consistent dataset for 
QSAR modeling

• Additional filters allow selecting records from a specific set, displaying error records 
or records with wrong names only, selecting only records originally measured in the 
articles, etc. These filters are created to help with data quality control and data set 
creation and manipulation.

As it is very important to keep the data consistent, the OCHEM implements a set of 
rules to identify duplicate data. Two types of duplicate records are considered in the system: 
strong  duplicates and  weak  duplicates.  Two  experimental  measurement  records  are 
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considered strong supplicates if they describe measurements that are performed for the same 
property and for the same molecule under same conditions, published in the same article 
and  have  the  same  values  (with  precision  to  3  significant  digits,  given  the  values  are 
converted to the same measurement unit).  Strong duplicates are not allowed to hold a 
“valid” status; one of the duplicates should be explicitly marked as “error”. Weak duplicates 
are records that share only part of the data (e.g., property and molecule). These records are 
allowed, but the experimental properties browser has the tools to search for such records.

A separate topic of consideration is duplicate control among molecules. The OCHEM 
implements the industry standard method of molecule duplicate control – control by InChI 
key.  InChI  key  is  an  IUPAC-developed  fingerprint  hash  [70–72].  Two  molecules  are 
considered same if their InChI keys are same.

3.2.3  Data introduction

Since the OCHEM is a user-contributed platform, it is essential to provide the user 
with simple and efficient tools to introduce data into the system. 

Experimental  property  browser  provides  the  single  record  edit  tool.  It  allows 
modifying every aspect of the record and is useful for data correction or single record 
introduction,  but  becomes  impossible  to  use  when  the  introduction  of  hundreds  or 
thousands of records is required. 

For efficient and fast introduction of large amounts of data, the OCHEM includes the 
“mass data introduction tool” or the “batch upload” tool. The input data for the tool is a 
specially prepared Excel workbook, CSV or SDF file. 

The preferred file format for the batch upload tool is Excel file. The example Excel file 
with all possible columns and explanations can be downloaded directly at the first page of 
the  batch  upload  tool.  As  described  earlier  in  section  3.3.1 (page  48), the  essential 
information, contained in the record, is a value of a biological or chemical property for a 
specific  molecule,  published in a  specific  article.  Although the Excel file  format allows 
providing all the detailed information about the record (number of a page in an article, 
where a particular value was published, accuracy of measurements, textual comments to the 
record, record evidence, etc.), the minimal valid file should contain information on property 
value, molecule structure and article for every uploaded record. In case if some information 
is not provided (i.e. unit of measurement), the default values are taken. 

The number of features makes record uploading easier. For example, information 
about the molecule structure can be provided in form of SMILES, SDF or MOL. If the 
structure of the molecule is not available, it is possible to provide a molecule name or 
CASRN  [180] – the tool  will  make an attempt to fetch the structure from PubChem 
automatically.  The article  can  be  provided either  in  form of  internal  OCHEM article 
identifier or PubMed [181] identifier. The sheet can also contain information about the 
measurement conditions. For proper work of the data upload, the information about the 
property itself and all the required conditions and units should be already present in the 
database. For numeric properties the user can provide predicates, such as >, <, ≥, ≤, ~, >>,  
<<, ≈. 
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After the file has been created, the user can use the batch upload tool to introduce data 
to OCHEM. The tool is created in the form of a wizard with a step-by-step approach to the 
upload process. The wizard will highlight all the potential data problems (like unrecognized 
property or unit name, unknown molecule, duplicate data, etc.) and provide previews and 
reports on the data upload process. Figure 3.3 displays a screenshot of a preview page of the 
data upload wizard.

Figure 3.3. A preview page of the data upload wizard. Erroneous records are highlighted.

3.2.4  Typical OCHEM usage scenario

If a QSAR researcher has some data of his own (collected from literature or obtained 
from some other database, for example), he is most likely to start with data introduction. 
With the help of appropriate browsers he will introduce a source article for his data, property 
and unit (in case they are missing). After that he will form an Excel sheet with his data and 
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use the batch upload tool to introduce his data to the OCHEM. He may mark his data 
“private” while doing so.

Once the data is in the database, he is likely to create a training set with the uploaded 
records, by using the appropriate experimental properties browser tools.

Additionally the researcher would most likely search for any additional relevant data to 
form an external validation set. That can be achieved in the experimental properties browser 
by  filtering  by  relevant  property,  measurement  conditions  and  (possibly)  molecule 
fragments. After reviewing any appropriate data and using the duplicate and error control 
tools to avoid redundancy in it, the researcher can create a data set, which can be used as an 
external validation set.

Once the training and validation sets are ready, they can be used as input parameters in 
the modeling part of the OCHEM system.

3.3 Modeling framework

3.3.1  Overview

The main goal of the OCHEM environment is to reduce the amount of work a QSAR 
researcher should perform to obtain a predictive model.

The preparation and management of the data, filtering, grouping as well as storing and 
reusing of the data can be performed by the database part, described earlier. With the help of 
appropriate tools a researcher can prepare training and validation sets for further use in 
modeling.

Modeling  framework is  an  essential  part  of  the  OCHEM. It  functions  in  a  tight 
integration with the database and provides rich tools for model creation and analysis. It is 
built in a form of a step-by-step wizard, each step of which allows modification of different 
settings of the model-building framework.

The OCHEM software is built  to handle wide range of available data.  To suit  this 
purpose,  typical  time-consuming steps  (like  conversion of  all  available  data to the  same 
measurement  unit)  are  taken  care  of.  The  OCHEM supports  both  regression  problems 
(prediction of the numerical values of properties, e.g., solubility in mg/l) and classification 
problems (prediction of qualitative properties, e.g. inhibitor/non-inhibitor, mutagenic/non-
mutagenic, etc.) The OCHEM also supports simultaneous prediction of several properties, i.e. 
multilearning [182].

A rich selection of descriptors calculation software allows choosing the descriptors best 
suitable for a specific task. In additional to popular and industry-standard software, the 
OCHEM provides access to a  wide variety of descriptor  calculation tools  developed by 
scientific  groups  all  over  the  world.  Some  tools  (like  protein-ligand  interaction  based 
descriptors,  which  are  an  implementation  of  the  approaches  described  in  the  General
methodology section (page  7) of this work, or atomic-based descriptors) are a result of 
research in the OCHEM group.
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A special parallel computation back-end suitable for coarse-grain parallel tasks typical 
for QSAR modeling was developed. The central MetaServer node governs distribution of 
computational tasks and collecting results for a computational cluster of over 300 cores.

Finally, the OCHEM provides tools for analysis and modification of the models. These 
tools allow AD assessment and prediction accuracy estimation, outlier removal, fragment-
based model interpretation, etc.

3.3.2  Dataset, machine learning method and validation 
method selection

The modeling framework was built with a standard QSAR model building workflow in 
mind. The wizard takes the user through typical steps of dataset selection, selection and 
configuration of the appropriate machine learning method, selection and configuration of 
the descriptor calculation software, configuration of descriptor selection block, selection of 
the appropriate validation (or meta-learning) method.

The wizard starts with the first step necessary for any QSAR modeling – the selection 
of the training and the (optional) validation sets. The sets may contain one or several related 
properties, both quantitative and qualitative. The content of the sets defines the applicable 
machine learning methods. For datasets containing quantitative properties the OCHEM 
supports automatic unit conversion. The modeling wizard page suggests the user to select a 
default unit for each modeled quantitative property from the appropriate category, and all 
values from the dataset for this property will be converted to that unit. This allows seamless 
combining of heterogeneous measurements in one dataset.

Based on the contents of the dataset the researcher is presented with the choice of 
machine learning methods suitable for the data points in the dataset. Several methods (e.g., 
Weka implementation of C4.5 decision tree – WEKA-J48) can only handle classification 
data, and the only method capable of multilearning so far is Associative Neural Networks 
(ASNN).

The machine learning methods currently  available  are  ASNN (ASsociative  Neural 
Networks),  FSMLR  (Fast  Stagewise  Multiple  Linear  Regression), KNN  (K-Nearest 
Neighbors),  KPLS (Mathematica implementation of  Kernel  Partial  Least  Squares),  KRR 
(Kernel  Ridge  Regression),  LIBRARY  (a  model-base  local  correction  method),  MLR 
(Multiple  Linear  Regression),  LibSVM (Support  Vector  Machines  implementation)  and 
WEKA-J48  (Weka-based  implementation  of  C4.5  decision  tree).  These  methods  are 
reviewed in detail in section 2.5 , page 23.

Model  validation is  an  important  part  of  any  model-building  process.  A  correct 
validation approach can ensure that the model is not overfitted and is not prone to some bias 
(e.g. descriptor selection bias).  A missing or incorrect validation procedure may result to 
misleading over-optimistic results [183,184]. The OCHEM modeling framework supports two 
types of validation: N-fold cross-validation and bagging validation (described in detail in the 
section 2.7 , page 31).

If the N-fold cross-validation is selected, the training set is randomly split into N folds 
(the default and most used value for N is 5). Special care is taken, that records with same 
molecules (disregarding stereochemistry differences) are placed necessarily placed in the 
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same fold. The whole modeling process is then performed N times, one different fold being 
used as a validation set, and other N-1 combined – as a training set. This way we receive 
model performance estimation on the whole set, while avoiding predictions of the training 
data.

For the bagging validation the modeling process is performed several (by default - 100) 
times. For each time the training set is formed randomly from the original training set by 
resampling with replacement. The samples not selected for the training set (on the average 
33% of the original training set) form the test set. The predictions of all validation sets of all 
models are then combined (duplicate results are averaged) to form a model performance 
evaluation for the initial training set. 

The bagging in OCHEM has a modification called stratified bagging. It is useful for 
highly  imbalanced  classification  dataset.  The  stratified  bagging  tries  to  form  balanced 
training  sets  from  the  original  training  set  by  undersampling  the  occurrence  of   the 
overrepresented class. 

Figure 3.4 displays the screenshot of the OCHEM modeling wizard with the dataset, 
machine learning method and validation method selection dialogs.

Figure 3.4.  First page of the OCHEM modeling wizard
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3.3.3  Data preprocessing

The user has the possibility to choose some data preprocessing and data handling  
options before processing to the descriptor selection page.

Data  preprocessing  options  refer  to  molecular  structure  preprocessing.  The 
available options are “standardization”, “neutralization” and “remove salts”. The details  
about the effects of these options can be found in section 2.2.1, page 11.

Data  handling  options  refer  to  handling  of  non-typical  numerical  values.  The 
OCHEM allows storing “greater than” and “less than” values (e.g., melting point > 100  
ºC), interval values (e.g., solubility = 7 – 9 mg / l), and values with accuracies (e.g.,  
boiling point = 25 ± 3 ºC). Since most of the machine learning methods can’t use these 
kinds of values explicitly (the only exception being ASNN method), the user has the 
choice either to exclude data with these values from his dataset, or to convert them to 
“equals” values.  When converting,  boundary values are taken for “greater than” and 
“less than” data and average values – for interval data and data with accuracies.

3.3.4  Molecular descriptors

The  available  descriptors  are  grouped  by  the  software  that  contributes  them: 
ADRIANA.Code  [185],  CDK  descriptors  [186],  Chirality  codes  [187–189],  Dragon 
descriptors  [124],  E-State  indices  [127],  ETM  descriptors  [190],  GSFrag  molecular 
fragments  [191],  Inductive  descriptors  [192],  ISIDA  molecular  fragments  [125], 
Quantum chemical MOPAC 7.1 descriptors [193], MERA and MERSY 3D descriptors 
[194–196],  MolPrint  2D  descriptors  [197],  ShapeSignatures  [198] and  logP  and 
aqueous solubility calculated with AlogPS program [157]. The descriptors used in this 
work are described in greater detail in section 2.4 , page 18. 

Many of the descriptors also include additional options, e.g., the minimal and maximal 
fragment length for ISIDA, the individual descriptor block selection for Dragon, Inductive 
and CDK descriptors, etc. The list also includes experimental Protein-Ligand Interaction-
Based descriptors, described in this work (page  22). The descriptor screen is shown in 
Figure 3.5.

If the property has some important conditions (temperature condition for solubility, 
pressure condition for boiling point, pH condition for a variety of chemical and biological 
properties), it is possible to include these condition values in the dataset as descriptors. By 
using  this  approach  it  is  possible  to  build  a  single  consistent  model  for  a  dataset  of 
measurements performed under different conditions. 

For example, by including pH condition as a descriptor it is possible to combine the 
whole amount of LogP data measured under different pH into one model.  This model 
would  then  be  able  to  predict  LogP values  for  different  pH values,  which  widens  the 
applicability area of the model.

Depending on whether there were any 3D-dependent descriptors selected on this 
step, the user may be asked for molecule 3D structure optimization options on the next  
step of the wizard. Current options allow the user to skip optimization and stay with 
the 2D-structure, use Corina [86] tool, or use MOPAC [193] tool for optimization. 
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Figure 3.5. Descriptor screen of the OCHEM modeling wizard

3.3.5  Descriptors filtering

The OCHEM implements several descriptors filtering tools.  The filtering tools  are 
unsupervised, that is, the target property values are not used in the selection process.

The  available  filtering  methods  are  filter-by-value,  filter-by-variance,  pairwise 
correlation based grouping, unsupervised forward selection [199] and principal component 
analysis. 

For the filter-by-value tool the user specifies the minimum number of different values 
for a descriptor column to be selected. For example, the filter-by-value tool with the value 
“2” will select all non-constant descriptor columns (i.e., columns with at least two different 
values).  This  tool  is  most  often used as  a  preprocessing tool  for  the machine learning 
method implementations that do not filter out constant-value columns themselves (e.g., 
ASNN tool). 

Pairwise correlation based tool removes columns that correlate with coefficient more 
than some predefined value. The user can define the correlation coefficient threshold on the 
descriptor selection settings page. If the amount of descriptors makes it computationally 
infeasible to calculate a full correlation matrix, the descriptors are split into sets and filtering 
is performed within each set. This leads to a bigger amount of resulting descriptors, but 
reduces  the  necessary  calculation  time.  The  correlation  matrices  are  calculated  for  the 
descriptor sets, and the descriptors are selected based on their correlation values with other 
descriptors in the same set. The goal of filtering in each set is to obtain the smallest subset of 
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non-correlating descriptors. 

Unsupervised forward selection (UFS) aims to generate a subset of descriptors from 
any given data set in which the resultant variables are relevant, redundancy is eliminated, 
and multicollinearity is reduced [199]. 

PCA is an orthogonal transformation that allows substituting the original matrix of 
(possibly)  correlated  descriptors  with  the  matrix  of  uncorrelated  values  –  principal 
components. A user can define a variance threshold (all principal components with smaller 
variance  will  be  removed)  and  a  threshold  value  for  the  total  number  of  principal 
components. 

The user can also upload a text file with a list of descriptors he would like to keep. This 
is useful for a number of scenarios – reproducing of a published model, for example. Figure
3.6 displays a screenshot of the descriptor selection settings.

Figure 3.6. Descriptor selection settings

3.3.6  Machine learning method configuration

The final screen of the modeling wizard allows the user to configure the selected 
machine learning method. Machine learning methods and their parameters are described in 
detail  in  the  methods  section.  This  section  gives  a  short  overview  of  the  modifiable 
parameters.

• For ASNN the user can modify the training algorithm, number of neurons in the 
hidden  layer  of  a  network,  the  number  of  networks  in  an  ensemble,  and  the 
maximum number of training iterations. The parameters allow reaching a balance in 
the “calculation time” vs. “model complexity” vs. “model generalization ability”.

• For FSMLR the user can specify shrinkage (influences the generalization ability of 
the  model)  and the  relative  size  of  an internal  validation set  (influences model 
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complexity).

• For  KNN a  user  can specify the number of  neighbors to use and the distance 
metrics. Both parameters have a data-specific effect on the resulting model.

• In KRR the user can either specify the Lambda regularization parameter explicitly 
or  set  the  parameters  for  the  cross-validation  loop  that  will  determine  it 
automatically. The user can also select the kernel type.

• The LIBRARY method has no user-customizable settings.
• For MLR the user can specify the Alfa parameter that regulates internal descriptor 

selection procedure.
• The SVM implementation allows wide customization, involving SVM type, kernel 

type, and the boundaries for the parameter-optimization grid-search.
• The  WEKA-J48 wrapper  inherits  all  the  customizable  settings  from  the  Weka 

implementation. 

3.3.7  Model calculation start

Once all the aspects of the modeling workflow are configured, the model can be sent for 
calculation.  The  final  screen,  where  the  user  has  the  possibility  to  give  a  name  to  his 
calculation task and (in case of privileged users) specify its priority is displayed in Figure 3.7.

Figure 3.7. Last screen of the modeling wizard

The data is  then preprocessed according to  user  setting and fed to  the modeling 
workflow. The workflow itself is schematically presented on  Figure 3.8. This workflow if 
valid for most of the OCHEM models, except for some special cases (e.g., LogP-LIBRARY 
method does not require descriptors).

While the workflow itself is consecutive, there are parts of it that can be calculated in 
parallel.  For  example,  different  descriptor  calculation  tools  or  different  instances  of  a 
machine learning method nodes in a validation procedure are calculated simultaneously, if 
there is enough free calculation power.

Since for big datasets and for specific settings of machine learning methods the model 
calculation may take hours or even days, it would be inconvenient for the user to wait for the 
modeling process to finish. That’s why every model once sent to the calculation workflow is 
placed in a pending tasks registry. The user can access the registry page to view the status of 
his model. It is important to note, that a user can schedule several models this way, and if 
there’s  enough computational  power  the  models  will  be  calculated  simultaneously.  The 
screenshot of the pending task registry is displayed on Figure 3.9.
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Figure 3.8. Simplified structure of the modeling workflow

Figure 3.9. Pending task registry page

3.3.8  Tasks management and load distribution

Building  a  predictive  QSAR model  is  often  a  calculation-intensive  task.  Memory, 
computation power and time requirements may be very high for specific cases. 

Descriptor calculation tasks may take up to several hours for an average dataset. If the 
dataset is large or if flexible docking or molecular dynamics simulations must be performed 
prior to descriptor calculations, this stage of QSAR modeling may take days on a single 
machine.

Descriptor selection and filtering tasks involve operations on large matrices and may 
take hours for a relatively large dataset.

Depending on the machine learning method itself and the settings of this machine 
learning method, the model training stage may yet be the most computationally intensive 
task in the whole QSAR modeling process. And when ensemble modeling is involved, the 
amount of required calculations increases. And ensembles have been shown to produce 
better  modelings  results  and are  also requited for  ensemble-based applicability  domain 
methods, described in section 2.9 , page 34. A good example would be an average ASNN 

55



3 OCHEM – The database of experimental measurements and modeling environment

model  with  Bagging  validation.  One  instance  of  ASNN  model  is  an  ensemble  of  64 
networks. The bag size of 100 instance would lead to training of 6400 individual neural 
networks.

However, most of the QSAR modeling subtasks can be calculated in a parallel manner 
-  calculating  descriptors  for  individual  molecules  and  training  individual  instances  of 
models  in  an  ensemble  or  individual  folds  in  validation  procedure  can  be  performed 
independently.  That's  why a powerful  parallel  calculation subsystem is  important  for  a 
modeling framework.

The OCHEM has an implementation of a parallel calculation system. The calculations 
may be distributed to over 500 CPUs of the Helmholtz Center's Institute of Bioinformatics 
LSF cluster and around 20 CPUs of the desktop computers of the members of the group. The 
central Metaserver node is responsible for scheduling and distributing tasks, collecting and 
storing results from individual computational nodes. Individual computational nodes may 
perform  descriptors  calculation  tasks,  machine  learning  method  computations  (neural 
networks,  kNN,  SVM,  WEKA-J48,  etc.),  and  general  QSAR  modeling  workflow 
management.

3.3.9  Model analysis

An important part of every QSAR modeling based research is the model analysis. The 
researcher should not  only build the model,  but  estimate the model  performance with 
regards to its  generalization and prediction abilities,  identify the outliers  and study the 
reasons  why  the  outliers  occurred,  access  the  model's  applicability  domain,  etc.  The 
OCHEM provides a set of convenient tools to perform these tasks.

The established metrics of the regression model performance are root mean squared 
error (RMSE), mean absolute error (MAE) and the squared correlation coefficient (r2). The 
OCHEM provides these values for both training and validation sets of the model on the 
model summary page (Figure 3.10).

Figure  3.10. Model summary for a aqueous solubility model. Displays basic model 
statistics, a detailed summary of model parameters and a real-vs-predicted plot.

56



3.3 Modeling framework

Another extremely illustrative tool for model analysis it the real-vs-predicted plot. It is 
a plot where every compound is displayed as a dot, and x-axis shows the real observer 
property value for this compound, and y-axis represents a value obtained for this compound 
via model prediction. This plot allows to estimate model performance in a single glance, as 
well  as  identify  outliers  -  compounds,  for  which  the  real  and  predicted  values  are 
significantly different. 

The OCHEM real-vs-predicted plot allows clicking on every individual dot and seeing 
the compound represented by this dot, as well as descriptors for this compound. This is a 
unique  feature  and  is  only  possible  due  to  integration  of  the  experimental  properties 
database and the modeling environment. By clicking on a very distinctive outlier a user ma 
find out, that the record in question has an error in its value, has wrong or inconsistent 
measurement conditions, etc. Since all the references for the measurements are stored in the 
database, the user may track the experimental value to the original publication. If there are 
suspicions on the quality of  particular datapoint, the user can exclude it from the training 
set by a single click.  

The classification models are best characterized by the classification accuracy - overall 
percentage of correctly classified instances, and accuracies within each class. In the OCHEM 
the  confusion  matrix  is  displayed  for  classification  models.  All  correctly  classified  or 
misclassified records can be accessed by on click on the appropriate confusion matrix cell. 
The example of the classification model summary is displayed on Figure 3.11.

Figure 3.11. Summary of the classification model predicting CYP1A2 inhibitors. It displays 
the classification accuracy values, confusion matrices for both training and test sets, and a 
summary of model parameters.

3.3.10  Additional model assessment tools

The OCHEM provides several additional tools for model evaluation and comparison. 

For multilearning models (models predicting several properties simultaneously) the 
user can have a look at the summary page with short statistics for each of the predicted 
properties (Figure 3.12).

57



3 OCHEM – The database of experimental measurements and modeling environment

Figure 3.12. A summary page for logP+Solubility multilearning model-building.

If there are several models built on the same training set, the user can have a 
comparison summary of the performances of all the models for this set. The sample  
multi-model summary is depicted on Figure 3.13.

Figure 3.13. Multi-model comparison for a logP+Solubility training set

3.3.11  Applicability domain assessment

The OCHEM has powerful applicability domain tools that implement methods 
described in section 2.9 , page 34.

The DMs implemented in the OCHEM modeling framework are: LEVERAGE, 
ASNN-STD, BAGGING-STD, CORREL, CLASS-LAG and STD-PROB. Every model 
is  complemented with a applicability domain summary,  that  is  appropriate for  the 
modeling  task  type  (classification  or  regression),  machine  learning  method  and 
validation  method  used  in  the  model  creation.  Figure  3.14 displays  the  sample 
applicability domain chart for a classification problem with bagging validation.
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Figure  3.14. Applicability  domain  for  classification  CYP1A2  model  with  bagging 
validation

The controls left to the applicability domain chart allow dynamic changing of  
the DM metrics, averaging type (sliding window, bin-based, cumulative), size of the  
window  (where  applicable),  and  the  X  axis  meaning  (DM  value  or  percentage  of 
compounds). The Y axis displays accuracy metrics (for classification problems - total  
ratio of correctly classified instances).

3.3.12  Model application

Since the actual purpose of the QSAR model is prediction of new compounds,  
the OCHEM platform includes a model applier facility. The user has a possibility to 
choose one or several models from a model registry (Figure 3.15) and apply them to 
a  set  of  new  compounds.  The  set  may  either  be  a  molecule  set  in  the  OCHEM 
database (and then the user has the possibility to compare model predictions with  
the actual property values) or a set of molecule structures uploaded as an SDF file 
during the application process.

Figure 3.15. Model registry displaying published models filtered by “CYP” keyword. 
Three first models are selected for model applier.

The result of model application is the list of predictions (one prediction from 
each model for each molecule) accompanied by accuracy values, deduced from the  
AD  methods.  The  results  of  model  application  can  be  exported  in  Excel  or  CSV  
format.  Figure 3.16 displays predictions for one molecule by three models from the 
previous example.
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Figure  3.16. Predictions  for  CYP1A2  inhibition  activity  for  a  molecule  by  three 
models

3.4 Implementation notes

The OCHEM server-side code is developed with Java 6 programming language 
(compiles with OpenJDK6) and runs on the Tomcat 6 servlet container. The database 
is stored in the MySQL 5.1 DMBS, table engines are InnoDB. The Apache 2.2 HTTP 
server is used for seamless integration of several OCHEM services into single URL 
space. 

The Java Hibernate 3.6 is used for object-relationship mapping abstraction layer. 
The  Spring  Framework  3  is  used  to  support  the  MVC  programing  paradigm 
(separation of code, data and representation). The XML generation is performed by 
the  JAXB  Reference  Implementation  libraries.  The  XSLT  technology  is  used  to 
convert XML data representation to HTML web pages. 

On the client  side  Javascript  is  the main programming language.  The jQuery 
and YUI libraries are used. The AJAX technology is used to create an interactive user  
experience  and  JavascriptMVC  framework  is  used  to  convert  JSON  data  and 
javascript templates to HTML code snippets to be displayed to the user. 

All  chemistry-related  processing  (i.e.,  molecule  format  conversion,  molecule 
depiction generation,  molecule  standardization,  neutralization and salt  removal)  is 
performed by Chemaxon library set.

Individual  calculation server  implementations include tools  mostly  written in 
Java and C++.

The  OCHEM  comprises  about  100,000  lines  of  Java  code.  Several  of  its 
components  were  inspired  by  the  Virtual  Computational  Chemistry  Laboratory 
(VCCLAB, http://www.vcclab.org).

3.5 Summary

The  Online  Chemical  Modeling  Environment  (OCHEM)  is  a  set  of  tools  to 
facilitate QSAR research.  One of  its  two main components is  the user-contributed 
database of experimental measurements. The user-friendly interface allows searching 
for  specific  data  by  property,  publication,  molecular  properties,  etc.  Special  tools  
allow introducing of large amounts of user data for further analysis.  The database 
allows storing various supplementary information (e.g.,  conditions of experimental  

60

http://www.vcclab.org/


3.5 Summary

measurements), which allows creation of refined, consistent datasets.

The modeling framework is integrated with the database and can use the data 
from  the  database  in  the  modeling  process.  The  framework  contains  calculation 
nodes for all  the typical steps of the QSAR modeling. The molecule preprocessing  
nodes  allow  performing  such  essential  steps  as  molecule  normalization  and 
neutralization.  Molecule  structure  optimization  nodes  give  the  user  the  choice 
between  several  options  of  molecule  3D  optimization  for  three-dimensional 
descriptors.  A large  amount of available descriptor  calculation nodes include both 
such industry standard descriptors as Dragon and such experimental descriptors as 
Protein-Ligand Interaction-Based descriptors and allow modeling of a wide range of 
physicochemical and biological properties. An important feature of the OCHEM is  
using experimental property conditions as descriptors to allow accurate modeling of  
condition-dependent  properties.  The  machine  learning  method  nodes  include 
implementations of several  most widespread methods and support both regression 
and classification tasks, as well as multilearning. The resulting model profile displays  
most  integral  model  performance  metrics  and  also  allows  to  track  model  
performance to an individual compound in the model's training set. 

A  cluster  of  over  500  cores  employed  by  OCHEM  makes  even  rather 
computationally intensive tasks feasible.

The  OCHEM  is  available  at  http://ochem.eu and  contains  over  750,000  data 
points  for  around 500 different  properties.  Tools  are  being developed to integrate 
OCHEM with other  databases  such as  ChemExper  (http://  www.chemexper.com  )  for 
physical properties such as boiling point, melting point and density or ChemSpider 
(http://www.chemspider.com). 

The OCHEM platform was used as a main framework for all studies presented  
in  this  work.  The  Protein-Ligand  Interaction-Based  descriptors  presented  in  this  
work are available for a limited number of proteins. The top performing models for  
human CYP inhibition presented in this thesis are available on the OCHEM online.  
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4 QSAR studies of CYP 
inhibition

his chapter is dedicated to describing the three QSAR studies of human CYP 
inhibition modeling.  The methods used in the studies are briefly mentioned in 
appropriate “Methodology” sections of the studies and are described in great 

detail  in chapter  2 (page  7).  The studies  were performed using the OCHEM platform 
(chapter 3, page 41). 

T
In section 4.1  dataset overview and analysis is performed. The datasets are described, 

their qualitative and quantitative properties are determined. The cross-dataset relationships 
are calculated. Finally, the fragment-based analysis is performed and structural features of 
the datasets are described.

Section 4.2  presents benchmarking of traditional QSAR approaches, that involve well-
established descriptors and machine learning techniques. The CYP1A2 dataset was chosen 
for  this  benchmarking  study.  The  most  successful  descriptors  and  machine  learning 
methods are determined in this section.

Section  4.3   demonstrates modeling results obtained by the most successful model 
configurations  for  CYP1A2,  CYP2C9,  CYP2C19,  CYP2D6 and CYP3A4 isoforms.  The 
protein-ligand atom pair descriptors introduced in subsection 2.4.2   are used and the results 
are benchmarked against traditional approaches. Applicability domain and fragment-based 
analyses are performed.

In section  4.4   an attempt is made to predict activities of small molecules against a 
protein based on experimental data measured for another protein. The motivation is to 
determine whether the atom pair descriptors allow extrapolation of QSAR modeling results 
to clinically significant  mutations of cytochromes.  Due to lack of consistent dataset for 
mutated cytochrome activity, the CYP2C19 activity was chosen as the target property and 
CYP2C9 activity as the measured property. 

4.1 Datasets overview and analysis

4.1.1  Datasets description

Throughout the studies presented in this chapter datasets from different sources were 
used. All molecules in all datasets were processed as described in section 2.2.1  , page 11.

PubChem AID410 dataset. PubChem [172,200] is a project hosted by a database 
by National Center for Biotechnology Information of National Library of Medicine of 
National Institute of Health funded by the U.S. government. The PubChem database is a 
rich storage of information about the properties of small molecules.

PubChem BioAssay – a section of the database that stores results of bioassays with 
brief  descriptions.  BioAssays  in  this  database  have  unique  numerical  assay  identifiers 
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(AIDs).

AID410 [201] holds the results of high throughput screening (HTS) measurements 
of human cytochrome 1A2 inhibition activity of small molecules, deposited in October 
2007.  The results  include  the  structural  information  about  the  molecules,  inhibition 
activities of small molecules at different concentrations, the AC50 values obtained from 
fitted  concentration-response  curves,  and  the  resulting  “inhibitor”  /  “non-inhibitor” 
labels. Only structure information and “inhibitor” / “non-inhibitor” labels were used to 
form the PubChem AID410 dataset in this study.

The description of the AID410 bioassay experiment shows that the demethylation 
of luciferin 6' methyl ether (the Luciferin-ME P450 Glo-Buffer provided by Promega-
Glo) to luciferin was used as a target reaction for human CYP1A2 for this dataset. The 
luciferin was then measured by luminescence after the addition of a luciferase detection 
reagent.  The dataset  obtained from this  bioassay contained 8,348 compounds,  out  of 
which  4,175  were  determined  as  active,  3,673  –  inactive,  713  –  inconclusive.  The 
protocol  summary  of  the  assay  is  available  from the  assay  page  on  PubChem.  The 
detailed protocol description is available in the Promega-Glo technical bulletin [202].

The dataset was subject to preprocessing (as described in the “Data preprocessing” 
section). After the preprocessing, if the same molecule was in both “active” and “inactive” 
sets or if a molecule was found in an “inconclusive” set, as specified by PubChem, it was 
removed from all sets. This was the case for 241 molecules. The number of non-conflicting 
inconclusive compounds was 543. There were also 66 molecules, that were duplicates within 
“inactive” or “active” lists, respectively. As a result of this preprocessing a non-redundant set 
of 4,016 active and 3,470 inactive molecules (a total of 7,486 molecules) was formed.  

PubChem AID883 dataset. AID883 is a qHTS assay for inhibitors of cytochrome 
P450  2C9,  deposited  in  December  2007  [203]. Similarly  to  the  previously  described 
assay,  it  contains  molecular  structures,  inhibition  activities  of  tested  molecules  at 
different concentrations, as well as the resulting “inhibitor” / “non-inhibitor” labels. The 
PubChem  AID883  dataset  for  this  study  includes  the  structural  information  and 
“inhibitor” / “non-inhibitor” labels.

The assay  used human CYP2C9 to measure the hydroxylation of deoxyluciferin 
(the Luciferin-H P450 Glo-Buffer provided by Promega-Glo) to luciferin. The luciferin 
was then measured by luminescence after the addition of a luciferase detection reagent. 
Luciferin-H concentration in the assay was equal to its Michaelis constant for CYP2C9. 
It contains a total of  9,567 molecules out of which 1,273 where determined as active, 
6,937 - inactive, and 1,357 - inconclusive. The technical details about the assay can be 
found on AID883 assay page or in the Promega-Glo technical bulletin [202].

During  the  preprocessing  stage  74  molecules  were  removed  from  the  dataset  as 
duplicates  within  “active”  or  “inactive”  classes,  and  208  molecules  were  removed  as 
duplicates  across  “active”,  “inactive”  or  “inconclusive”  classes.  The  resulting  PubChem 
AID883 dataset holds a total of  7,879 molecules, among them 1,167 are inhibitors and 6,712 
- non-inhibitors. 

PubChem AID899 dataset. AID899 is a qHTS assay for inhibitors of cytochrome 
P450 2C19, deposited to PubChem in December 2007 [204].
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This assay used human CYP2C19 to measure the hydroxylation of ethylene glycol ester 
of 6' deoxyluciferin (Luciferin-H EGE by Promega-Glo) to luciferin. In this assay activities of 
9,621  molecules  were  measured,  1,901  were  reported  active,  6,441  -  inactive,  1,279  - 
inconclusive. 

Based on this assay a dataset was formed. There were 67 duplicates within “active” or 
“inactive” molecule classes and 267 duplicates between “active” and “inactive” classes. The 
resulting PubChem AID899 dataset contained 7,922 molecules (1,756 active molecules and 
6,166 inactive ones).

PubChem AID891 dataset.  AID891 is a qHTS assay for inhibitors of cytochrome 
P450 2D6, deposited to PubChem in December 2007 [205]. Structural information and 
“inhibitor” / “non-inhibitor” labels from the assay were used to form this dataset. 

This assay used human CYP2D6 to measure the demethylation of ethylene glycol ester 
of  luciferin  6'  methyl  ether  (Luciferin-ME  EGE  from  Promega-Glo)  to  luciferin.  The 
luciferin  is  then measured by  luminescence after  the  addition of  a  luciferase  detection 
reagent. Luciferin-ME EGE concentration in the assay was equal to its Michaelis constant for 
CYP2D6.  The  assay  reports  9,598  molecules:  1,623  -  active,  6,335  -  inactive,  1,640  - 
inconclusive. The assay details and comments on molecule scoring and “active”/”inactive” 
labeling can be found on the assay page.

On the preprocessing stage 73 molecules were removed as duplicates within activity 
classes and 240 - as duplicates across activity classes. As a result, PubChem AID891 dataset 
contains 7,574 molecules (1,468 of them are active, and 6,106 - inactive). 

PubChem AID884 dataset. AID884 is a qHTS assay for inhibitors of cytochrome 
P450 3A4, deposited to PubChem in December 2007 [206]. Structural information and 
“inhibitor” / “non-inhibitor” labels from the assay were used to form this dataset. 

This  assay  used  human  CYP3A4  to  measure  the  dealkylation  of  luciferin-6' 
phenylpiperazinylyl (Luciferin-PPXE; luciferin detection buffer) to luciferin. The luciferin is 
then  measured  by  luminescence  after  the  addition  of  a  luciferase  detection  reagent. 
Luciferin-PPXE concentration in the assay was equal to its Michaelis constant for CYP3A4. 
In total 13,312 molecules were measured. Among them 3,438 where reported as active, 7,066 
- inactive, and 2,808 - inconclusive. 

After removal of duplicates within activity classes (210 molecules) and between activity 
classes (311 molecules) the resulting dataset contains 9,979 molecules (3,303 - active, and 
6,676 - inactive). 

PubChem AID1851 datasets.  AID1851 is a cytochrome panel assay with activity 
outcomes  [207,208]. The  study determined  potency  values  for  17,143  compounds 
against  five  CYP  isozymes  (1A2,  2C9,  2C19,  2D6  and  3A4)  using  an  in  vitro 
bioluminescent assay. The compounds included libraries of US FDA-approved drugs and 
screening  libraries.  Among  these  molecules  8,019  were  the  compounds  from  the 
Molecular  Libraries  Small  Molecule  Repository,  including  compounds  chosen  for 
diversity  and  rule-of-five  compliance,  synthetic  tractability  and  availability;  6,144 
compounds were from biofocused libraries, which included 1,114 FDA-approved drugs; 
and the rest 2,980 compounds were from combinatorial chemistry libraries, containing 
privileged structures targeted at G protein–coupled receptors and kinases and containing 
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purified natural products or related structures. 

This assay used various human CYP P450 isozymes to measure the dealkylation of 
various pro-luciferin substrates to luciferin. The luciferin is then measured by luminescence 
after the addition of a luciferase detection reagent. Pro-luciferin substrate concentration in 
the assay was equal to its Michaelis constant for its CYP P450 isozyme. Inhibitors and some 
substrates limit the production of luciferin, and decrease measured luminescence. 

To address potential artifacts due to the assay format, particularly important for pan-
active compounds, we used a database of potency values determined for the variant of the 
firefly luciferase used in the assay to remove any compounds that interfered with luciferase 
detection (only 0.7% were found to be interfering in the compound collection used for the 
assay). 

Since this thesis focuses only on CYP inhibitors, all the activators an inconclusive 
molecules were discarded.

The  AID1851  dataset  was  deposited  in  July  2009  and contains  larger  amount  of 
molecules and from more diverse sources that AID410, AID883, AID899, AID891 and 
AID884  assays.  This  makes  data  from  AID1851  a  perfect  validation  set  for  unbiased 
evaluation of predictive abilities of QSAR models for CYP inhibition. 

Only confident results with log(AC50) < -5 were taken as “inhibitors”. The molecules 
with low confidence results and molecules with log(AC50) > -5 were considered inconclusive 
and removed from the set. 

Only  molecules  that  were  explicitly  marked  as  “inactive”  were  taken  as  “non-
inhibitors” in the set.

AID1851 CYP1A2 Full dataset contains 12,157 molecules (5,430 inhibitors and 6,727 
non-inhibitors). To have an unbiased estimation of QSAR models built on AID410 dataset, 
the  AID1851 CYP1A2 Filtered set was prepared. This set contained only molecules not 
present in AID410 dataset and therefore not used in model development. The set contained 
6,636 molecules (3,016 inhibitors and 3,620 non-inhibitors).

Similarly,  AID1851  CYP2C9  Full  dataset  contains  12,034  compounds  (3,983 
inhibitors and 8,051 non-inhibitors). The  AID1851 CYP2C9 Filtered  (against  AID883) 
dataset contains 5,728 molecules (3,306 inhibitors and 2,422 non-inhibitors).

AID1851 CYP2C19 Full  dataset contains 11,717 compounds (4,893 inhibitors and 
6,824 non-inhibitors). The AID1851 CYP2C19 Filtered (against  AID899) dataset contains 
5,569 molecules (3,790 inhibitors and 1,779 non-inhibitors).

AID1851 CYP2D6 Full  dataset contains 12,914 compounds (2,372 inhibitors and 
10,542 non-inhibitors). The AID1851 CYP2D6 Filtered (against  AID891) dataset contains 
6,817 molecules (1,415 inhibitors and 5,402 non-inhibitors).

AID1851 CYP3A4 Full  dataset  contains 11,412 compounds (4,211 inhibitors and 
7,201 non-inhibitors). The AID1851 CYP3A4 Filtered (against  AID884) dataset contains 
6,029 molecules (2,664 inhibitors and 3,365 non-inhibitors). 

Table 4.1 summarizes quantitative contents of the studied datasets.
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CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4

Training sets

Active 4016 1167 1756 1468 3303
Inactive 3470 6712 6166 6106 6676
CSI 0.31 0.31 0.32 0.31 0.34
Assay AID410 AID883 AID899 AID891 AID884

Test sets full

Active 5430 3983 4893 2372 4211
Inactive 6727 8051 6824 10542 7201
CSI 0.28 0.27 0.28 0.29 0.27
Assay AID1851 AID1851 AID1851 AID1851 AID1851

Test sets filtered

Active 3016 3306 3790 1415 2664
Inactive 3620 2422 1779 5402 3365
CSI 0.21 0.21 0.2 0.21 0.21

Assay
AID1851 

excluding 
AID410

AID1851 
excluding 

AID883

AID1851 
excluding 

AID899

AID1851 
excluding 

AID891

AID1851 
excluding 

AID884

Table 4.1. Distribution of inhibitors and non-inhibitors in the studied datasets . CSI (chemical 
similarity index) – an averaged pairwise Tanimoto similarity index calculated on 512 bit 
daylight structural fingerprint for all molecules in a set; it represents a basic chemical diversity 
measure for a set (lower values – higher diversity).

Experimental accuracy of the PubChem data sets. To have a basis for comparison of 
model accuracy to the experimental accuracy, we considered the inconclusive compounds in 
the dataset as experimental errors. Since not all inconclusive compounds should be treated 
as  experimental  errors,  this  value  is  an  overestimation.  However,  it  provides  a  lower 
boundary for accuracy estimation.

For PubChem AID410 Dataset the error rate is is 713 / 8,348 = 0.085 ~ 9%. For 
PubChem AID883 error rate is 1,357 / 9,567 = 0.141 ~ 14%. For PubChem AID899 dataset 
the error rate is 1,279 / 9,621 = 0.133 ~ 13%. For PubChem AID891 the error rate is 1,640 /  
9,598 = 0.171 ~ 17%. For PubChem AID884 the error rate is 2,808 / 13,312 = 0.210 ~ 21%. 

We can see that for the training sets our estimated accuracies lie in the ranges of 80 - 
91%. 

For the AID1851 the experimenters have performed confirmatory measurements on 
91  compound  randomly  selected  from  the  17,143  molecules  and  have  reported  the 
reproducibility of measurements in the ranges of 84-90% [206]. This number agrees with 
our estimation.

4.1.2  Preliminary analysis of datasets

A short preliminary analysis of the datasets was performed. For this we have calculated 
daylight fingerprints (as implemented in Chemaxon software) on the molecular structures 
of the datasets. The length of each fingerprint is 512 bit.

We then calculated chemical similarity indices (CSI), which are averaged Tanimoto 
indices on these fingerprints within each dataset to evaluate the structural diversity of the 
sets. Table 4.1 displays the ratios of active / inactive compounds in each set along with the 
chemical similarity index for each set.

We can see that the AID1851 filtered datasets are more diverse than the datasets used 
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for model training (average chemical similarity index of 0.21 for test sets, average chemical 
similarity index of 0.31 for training sets). This means that the test sets represent a larger 
fraction of chemical space and contain more diverse classes of compounds. We can also 
observe  that  the  ratios  of  active  and inactive  compounds in  the  AID1851 datasets  are 
different from the ratios in the training set. This gives additional reasons to evaluate models 
using measures that account for accuracies within each class equally.

The preliminary conclusion is that the models built on the training sets can not be 
applicable to all the compounds of the test set and the average prediction accuracies are 
expected  to  be  lower  than  cross-validated  accuracies  on  the  training  set.  Applicability 
domain methods should be used to separate reliable model predictions from unreliable ones.

To assess the similarity of activity classes of different studied CYP isoforms ratios of 
molecules with the same inhibitory activity were calculated, separately for training sets, full 
test sets and filtered test sets.

For each group of datasets a set of molecules was selected, that is present in all datasets 
in a group (a total of 3,878 molecules for training sets, 5,270 for full test sets and 1,651 for 
filtered test sets). After that for each pair of datasets activity classes for these molecules were 
compared. A similarity measure was calculated as a ratio of molecules with the same activity 
class to the overall amount of molecules. 

Table 4.2 displays these pairwise similarity measures for three groups of datasets.

1A2 2C9 2C19 2D6 3A4
1A2 1,000 0,656 0,708 0,675 0,722
2C9 0,656 1,000 0,898 0,790 0,797
2C19 0,708 0,898 1,000 0,835 0,832
2D6 0,675 0,790 0,835 1,000 0,773
3A4 0,722 0,797 0,832 0,773 1,000

1A2 2C9 2C19 2D6 3A4
1A2 1,000 0,692 0,716 0,667 0,657
2C9 0,692 1,000 0,849 0,702 0,749
2C19 0,716 0,849 1,000 0,722 0,755
2D6 0,667 0,702 0,722 1,000 0,707
3A4 0,657 0,749 0,755 0,707 1,000

1A2 2C9 2C19 2D6 3A4
1A2 1,000 0,669 0,697 0,631 0,598
2C9 0,669 1,000 0,793 0,581 0,696
2C19 0,697 0,793 1,000 0,563 0,686
2D6 0,631 0,581 0,563 1,000 0,656
3A4 0,598 0,696 0,686 0,656 1,000

Table 4.2. Similarity measures for activities of isoforms for training sets, full test sets 
and filtered test sets.

We can see that the highest similarity in all datasets is consistently among the CYP2C9 
and CYP2C19 isoforms. This can be attributed to the fact that these isoforms belong to the 
same 2C subfamily and share a large amount of structural similarity [209,210]. 
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CYP3A4  is  closer  to  CYP2D6,  CYP1A2,  CYP2C9  than  these  isoforms  among 
themselves. CYP3A4 is especially close to CYP2C19. This fact reflects high promiscuity of 
CYP3A4 isoform. CYP3A4 is involved in around 50% of all CYP-mediated metabolism [17] 
(see section 1.2, page 2).

4.1.3  Fragment analysis

Figures 4.1 - 4.3 display the structurally diverse fragments that were found to influence 
CYP inhibition activity. The bar plots show the negative decimal logarithm of the p-value for 
abundance of active (p-value active) or inactive (p-value inactive) compounds containing 
the fragment, relative to the whole dataset (calculated as a binomial probability of such 
abundance when randomly sampling a subset of such size from the original set). Larger bars 
indicate stronger correlation between the presence of a specific fragment in a molecule and 
the CYP-related activity of this molecule. Only four top fragments were selected for analysis 
from each fragment group.

Simple fragments

Figure 4.1. Simple fragments with disproportionally distributed activity classes relative to the 
full molecule sets.

Among determined simple fragments we can observe two different activity patterns.

 Acetic acid and  sulfonic acid fragments demonstrate a strong correlation with CYP 
non-inhibitor  molecules.  Based  on  the  analyzed  dataset  the  presence  of  either  of  the 
fragments  statistically  significantly  makes  a  molecule  CYP non-inhibitor  for  all  of  the 
studied CYP isoforms. The effect is most apparent for the acetic acid fragment.

The trimethylamine fragment demonstrates a case of isoform selectivity. Based on both 
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training  and  test  datasets,  the  presence  of  this  fragment  strongly  indicates  CYP2D6 
inhibition activity. The analysis for the rest of the isoforms in inconclusive. However, it 
suggests  a  non-inhibitor  correlation  for  CYP1A2,  CYP2C9 and CYP2C19  and a  weak 
inhibitor correlation for CYP3A4.

Formonitrile fragment  displays  strong  correlation  with  CYP1A2  and  CYP3A4 
inhibition activity and weak correlation with CYP2D6 non-inhibition. The results for the 
other isoforms are inconclusive and can't be determined statistically based on the given 
datasets.

Simple aromatic-containing fragments

Figure 4.2. Simple aromatic-containing fragments with disproportionally distributed activity 
classes relative to the full molecule sets.

Chlorobenzene  fragment displays a correlation with CYP inhibition activity for 1A2, 
2C9, 2C19 and 2D6 isoforms and has inconclusive results for 3A4 isoform. The correlation 
between the presence of this fragment and 1A2, 2C9 and 2C19 inhibition activity is very 
strong with -Log10(P-Value) > 9 for both studied datasets. 

Fluorobenzene fragment  can be  associated with CYP1A2 and CYP3A4 inhibition 
activity. There is also week correlation between presence of the fragment in a molecule and a 
non-inhibition activity of this molecule for CYP2D6 isoform. Activity against other isoforms 
in inconclusive for this fragment.

Despite the structural similarity the pyrimidine and pyridine fragments have  different 
activity patterns. 

The pyrimidine displays a strong case of isoform selectivity. There is strong correlation 
between the presence of this fragment in a molecule and inhibition activity of this molecule 
against CYP1A2, CYP2C19, CYPD6 and CYP3A4. However, apparently  presence of this 
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fragment in a molecule makes it a non-inhibitor for CYP2C9. This is one of the cases of a 
strong difference in CYP2C9 and CYP2C19 activities. 

The  pyridine  displays inconclusive results for CYP1A2 and somewhat less apparent 
(compared to pyrimidine) correlation with CYP2C19 and CYP2D6 inhibition activities. It's 
noteworthy that pyridine-containing molecules demonstrate weak correlation with CYP2C9 
inhibition activity.

Complex heterocycles

Figure 4.3. Complex heterocyclic fragments with disproportionally distributed activity classes 
relative to the full molecule sets.

Quinazoline  and 8H-pteridin-7-one  were  earlier  determined  as  a  fragment  that 
correlates with CYP1A2 inhibition activity [39]. 

In this analysis we can see that quinazoline has strong correlation with 1A2, 2C19, 2D6 
and 3A4 inhibition activity. The fragment also demonstrates isoform selectivity, since, based 
on  the  studied  datasets,  quinazoline-containing  molecules  tend  to  be  CYP2C9  non-
inhibitors with -Log10(P-Value) ~ 5.

8H-pteridin-7-one can be statistically associated with CYP1A2 and CYP3A4 inhibition 
activity and CYP2D6 non-inhibition activity. The results for other isoforms are inconclusive. 
The analysis  of  the training dataset  displays a  strong correlation between the fragment 
presence  and  CYP2C9  inhibition  activity.  However,  the  test  set  analysis  demonstrates 
opposite results, i.e. the fragment is mostly associated with non-inhibition activity. 

1H-indole fragment  displays  a  consistent  correlation  with  CYP  inhibition  activity 
against all studied isoforms.

9H-purine fragment displays a stable non-inhibition pattern.
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4.1.4  Summary

For  the  experiments  presented  in  this  thesis  datasets  from  PubChem  BioAssay 
database were obtained. 

Both  training  and  test  sets  are  results  of  high  throughput  screening  experiments 
against  five major cytochrome P450 isoforms.  The training sets  are obtained from five 
different  assays  – AID410,   AID883,  AID899,  AID891 and AID884.  The experimental 
measurements in these assays were performed using same methodology and on similar sets 
of compounds. 

The test sets were based on AID1851 assay. This assay was performed  using the same 
measurement methodology but on a wider and more chemically diverse set of compounds. 
The test sets were obtained by removing all molecules present in the training sets from the 
AID1851 assay dataset.

All datasets were processed in the same way by removing salts,  standardizing and 
neutralizing the molecules. All duplicates, conflictual or inconclusive results were removed.

Based on inconclusive molecule analysis, the experimental accuracy of the datasets are 
80-91%. This corresponds with the similar estimates of dataset authors, who reported 84-
90% accuracy.

A correlation of inhibition activity across datasets for different isoforms was calculated. 
The CYP2C9 and CYP2C19 showed the highest degree of similarity with 85-89% of similar 
activity molecules. CYP3A4 was found to be the closest isoform to CYP1A2 , CYP2C9, 
CYP2C19 and CYP2D6. This corresponds to the known fact that CYP3A4 has the largest 
fraction of metabolized exogenous compounds and often serves as a secondary metabolism 
pathway in case the activity of other isoforms is lowered.

The fragment-based analysis of the datasets was performed and activity profiles were 
built.  Some fragments demonstrated a statistically significant correlation with inhibition 
(chlorobenzene,  pyridine, 1H-indole) or non-inhibition (Acetic acid, sulfonic acid, 9H-purine) 
activity.  Other  fragments  displayed  statistically  significant  isoform  selectivity 
(trimethylamine only inhibitor for CYP2D6, pyrimidine and quinazoline are inhibitors for all 
isoforms except CYP2C9,  8H-pteridin-7-one  -  inhibitor for CYP1A2 and CYP3A4 and 
non-inhibitor for CYP2D6).

The datasets were prepared for further use in all QSAR studies in this thesis.
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4.2 Benchmarking of QSAR models for 
CYP1A2 inhibitor classification

4.2.1  Materials and methods

Datasets. For this study the PubChem AID410 dataset was used as a training set for all 
the  models.  All  cross-validation  and bagging  results  are  reported  for  this  dataset.  The 
PubChem AID1851 CYP1A2 Filtered dataset was used as an external test set for this study. 

Descriptors. One of the goals of the study was to determine the influence of different 
representation of molecules on the quality of models for the prediction of CYP1A2 inhibitor. 
One of the specific questions researched in this study is whether the  3D descriptors are 
necessary to achieve high prediction accuracy for this property. Three descriptors sets were 
used: fragments-base descriptors (ISIDA SMF)[125], 2D topological descriptors (E-state)[127] 
and a diverse set of 0D – 3D descriptors (Dragon) [124]. The descriptors were described in the 
methodology section (section  2.4  ,  page  18). The models  were built  using the following 
descriptor combinations and configurations: 

• Estate: E-State indices (atom type indices and bond type indices)
• ISIDA: ISIDA descriptors (fragment length from 2 to 5 atoms)
• Dragon2D: 0D-2D descriptors from Dragon package
• Dragon: 0D-3D descriptors from Dragon package
• All: the full set containing all descriptors from the aforementioned sets

In these sets only Dragon and All configurations include 3D descriptors. The detailed 
description of all used tools can be found in section 2.4  on page 18. 

The models in this study were created both with full set of descriptors and with the use 
of descriptor selection procedure. The descriptor selection procedure is based on a custom-
implemented unsupervised correlation-based method. The descriptors are split into subsets 
and  in  each  subset  the  correlation  coefficients  among  descriptors  are  calculated.  The 
descriptors having a  correlation coefficient  of  more than some particular  threshold are 
filtered out. The descriptors that correlate the least amount of other descriptors in a subset 
are kept. For the purpose of this study a correlation threshold of 0.7 was adopted. 

Machine  learning  methods. Several  popular  machine-learning  methods  that  were 
found efficient  for  QSAR modeling were used in this  study.  When applied to the same 
datasets, these methods provide a basis for comparison of efficiency of each method to predict 
CYP1A2  inhibitors.  The  analyzed  methods  were  Associative  Neural  Networks  (ASNN)
[147,148], k Nearest Neighbors (kNN), Random Forest (RF) [151,152], C4.5 Tree (J48) [153], 
and  Support  Vector  Machines  (SVM)[149,150] as  implemented  in  LibSVM  [211]. The 
detailed description of the methods is provided in section  2.5  , page  23.   Two validation 
strategies  were  used:  the  5-fold  cross-validation,  and  bagging.  The  number  of  bagging 
instances was 64. 

Applicability domain.  For bagging models the applicability domain approaches were 
studied. The DM measure was BAGGING-STD [163]. The ability of this measure to separate 
accurate and inaccurate predictions was studied. The details of applicability domain methods 
and BAGGING-STD DM are described in section 2.9 , page 34. 
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4.2.2  Modeling results

The benchmarking performed in this study included combination of four parameters - 
descriptor  set,  machine  learning  method,  validation  strategy  and  descriptor  selection 
approach. The total amount of possible models was 5×5×2×2=100 . Only 94 models were 
built,  however.  The  SVM  bagging  models  for  non-decorrelated  descriptors  and  for 
decorrelated full set were too large and could not be calculated.

Table  4.3 displays  30  top  performing  models  out  of  these  94.  The  selection  was 
performed based on overall model balanced accuracy (BACC). The table contains the details 
of  each model (descriptor  set,  machine learning method,  ensemble  approach) as well  as 
additional accuracy measures - accuracy (ACC), sensitivity (SENS), specificity (SPEC) and 
Matthew’s correlation coefficient (MCC) (section 2.6 , page 29). The table is divided into three 
groups. Within each group the models are statistically non-significantly different to the top 
model in the group with the significance level of 0.05. 

Descriptors Method Validation Selection ACC BACC SENS SPEC MCC
All Ann Bagging None 0,828 0,829 0,826 0,832 0,656
All J48 Bagging None 0,827 0,827 0,828 0,825 0,653
All Ann Bagging Decor 0,826 0,826 0,823 0,829 0,651
All J48 Bagging Decor 0,826 0,826 0,827 0,825 0,650
Dragon J48 Bagging None 0,823 0,823 0,822 0,824 0,644
Dragon J48 Bagging Decor 0,822 0,821 0,833 0,808 0,641
Estate J48 Bagging None 0,821 0,819 0,848 0,791 0,640
All RF Bagging Decor 0,823 0,819 0,866 0,772 0,643
Dragon RF Bagging Decor 0,822 0,819 0,863 0,774 0,642
Dragon Ann Cv None 0,817 0,817 0,822 0,812 0,633
Estate RF Bagging None 0,819 0,817 0,851 0,782 0,636
Dragon2D RF Bagging Decor 0,820 0,817 0,858 0,775 0,637
All Ann Cv None 0,817 0,816 0,821 0,812 0,632
Estate J48 Bagging Decor 0,818 0,816 0,849 0,783 0,634
All Ann Cv Decor 0,816 0,816 0,828 0,803 0,631
Dragon2D J48 Bagging Decor 0,818 0,815 0,857 0,774 0,634
Dragon Svm Bagging Decor 0,815 0,815 0,813 0,818 0,629
Estate RF Bagging Decor 0,818 0,815 0,852 0,778 0,633
All RF Bagging None 0,818 0,815 0,862 0,767 0,634
Dragon RF Bagging None 0,817 0,814 0,861 0,766 0,632
Dragon Ann Bagging Decor 0,813 0,813 0,809 0,817 0,625
All Svm Cv Decor 0,811 0,813 0,783 0,842 0,624
Dragon Ann Cv Decor 0,813 0,813 0,815 0,810 0,625
ISIDA Svm Bagging Decor 0,809 0,811 0,784 0,839 0,621
Dragon2D J48 Bagging None 0,813 0,811 0,847 0,775 0,624
ISIDA J48 Bagging None 0,812 0,809 0,850 0,768 0,621
ISIDA J48 Bagging Decor 0,808 0,807 0,814 0,801 0,614
Dragon2D RF Bagging None 0,810 0,807 0,849 0,765 0,617
Dragon Ann Bagging None 0,807 0,807 0,810 0,803 0,613
ISIDA RF Bagging None 0,810 0,806 0,853 0,760 0,617

Table  4.3. The performance of best 30 models for the set of CYP1A2 inhibitors and non-
inhibitors from PubChem BioAssay database. ANN – Associative Neural Networks[147,148], 
RF and J48 – random trees  [152] and C4.5 pruned trees  [153] as implemented in WEKA 
[154], SVM - support vector machines  [149] as implemented in LibSVM  [211]. Dragon, 
Dragon2D - 3D and 2D descriptors by software by Talete inc.  [124], ISIDA - substructural 
molecular fragments as implemented in ISIDA [125], Estate - electrotopological state indices 
[127]. 
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To investigate the influence of the studied parameters of models on their test set 
accuracy, the cumulative plots were built. Firstly, the models were sorted according to 
BACC  in  descending  order  and  n  top-performing  models  were  selected.  Secondly, 
among the list  of  n-top ranked models  the percentage of models of each particular 
machine learning method was calculated. 

Figure 4.4a shows the calculated percentage of models,  built  with the use of  a 
particular descriptor set (y axis) among the n top-performing models (x axis). Number 
n changes from 2 to 94 with a step of 2 models. Methods with higher areas in the left  
part of the plot had higher performance.

Figure 4.4b uses the same concept to illustrate the difference in machine learning 
method  performance,  while  Figure  4.4c  shows  the  performance  of  bagging  versus 
single (cross-validated)  method.  Figure 4.4d uses the same concept  to illustrate the 
difference between models build on full sets of descriptors versus decorrelated sets of  
descriptors.

Figure  4.4. Cumulative  charts  of  share  of  models  of  each  type  among  the  top-
performing models. The horizontal axis displays the amount of top performing models 
taken into account; the vertical axis displays a share of each type of machine learning  
methods, descriptors or ensemble approaches among these models. Larger areas (J48 
and ANN, Dragon and All, Bagging) demonstrate more successful approaches.
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Comparison  of  machine  learning  methods. Among  the  used  methods,  best 
performances were achieved with ANN and J48 methods. The model with the highest 
balanced accuracy -  82.9% correctly  classified  instances  -  is  nonsignificantly  better  
than the following five models with balanced accuracies of 82.1% - 82.7%, with the  
significance level of 0.05 (hypothesis testing was performed as described in “Bootstrap 
testing” in the methodology section).

 Overall  most  of  the J48  and Ann models  performed significantly better  than 
models based on other machine learning methods. The KNN was the only machine  
learning method that  didn't  produce a  model within  top 30 most  accurate  models.  
Thus,  this  method had a lower performance than other  machine learning methods 
analyzed in our work. 

Comparison  of  descriptors. The  models  based  on  descriptors  with  3D 
information  (Dragon  and  All)  significantly  outperformed  models  based  on  2D 
descriptors only. When used separately, Dragon descriptors demonstrated the highest  
performance. Among the 2D descriptors E-State indices performed best, followed by 
Dragon2D and ISIDA with approximately equal performance. These results show, that  
a combination of the descriptor sets calculated with different approaches brought new 
information to the model and increased its performance. 

It is important to note that 3D descriptors increased model performance, which 
demonstrated  the  importance  of  3D  information  for  modeling  CYP1A2  inhibition 
activity. On the other hand, the generation of 3D structures can be a limiting step and 
can significantly increase the time required for application of models using these sets 
of descriptors.

Bagging/ensembles  provided  better  results  compared  to  the  single  models. 
The charts at Figure 1c demonstrate that bagging/ensemble methods performed better  
then single-models. Table 1 confirms this result and also indicates that bagging and 
ensemble approaches significantly improved the performance of ASNN, SVM, RT and 
J48 models. However, these approaches had less or no influence on the KNN models.  
The KNN methods is more stable and is less influenced by distortions of the training 
set  due  to  bagging.  The  former  four  methods,  however,  have  a  stronger  intrinsic 
variability and models calculated with such methods using different bagging replica  
have larger variations. 

The standard deviations of predictions for bagging-validated molecules were 0.31, 
0.27, 0.26 and 0.19 for J48, RF, SVM and ASNN methods, respectively, while they were  
only  0.08  for  KNN.  This  result  indicates  that  methods  with  higher  variation  of 
predictions (SVM, RT, ASNN and J48) had a higher gain from using bagging approach, 
as  it  is  clear  from  Table  4.3.  This  result  is  in agreement of previous conclusions of 
Breiman  [152],  who  reported  similar  results  by  considering  bias  and  variance  of 
models. He assumed that methods with higher variation of results may have lower bias  
and  their  low  performance  could  be  mainly  due  to  higher  variation  of  their 
predictions. The average of predictions of such methods decreases their variance and 
improves their accuracy. The performances of more stable methods (e.g., KNN) are to  
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a larger degree dependent on their biases. Therefore,  the use of ensemble approach 
does not improve their accuracy. 

The  increase  of  model  accuracy  came  at  a  price  of  increasing  usage  of 
computational resources both for training and application of a model. In the presented  
study  the  bag  consisted  of  64  model  instances.  This  led  to  a  64  times  increase  of 
computational time required to create and apply these models and the corresponding 
increase in the size of the models.

Unsupervised descriptor selection does not influence modeling results.  In this 
study the models trained on the preselected set of descriptors performed similar to 
those  trained  on  the  full  set  of  descriptors.  This  illustrates  that  unsupervised 
correlation-based  descriptor  selection  method  did  not  reduce  the  amount  of 
information  contained  in  the  descriptor  set.  It  is  therefore  beneficial  to  use  the  
descriptor selection procedure to reduce the computational complexity of the models,  
decrease their calculation time and overall size. 

Figure  4.5 shows  the  PCA  plots  of  the  descriptor  sets  before  and  after 
decorrelation  procedure.  The  decorrelation  procedure  keeps  the  variability  of  the 
descriptor set while removing the possible bias caused by correlating descriptors. The 
effect is most obvious for ISIDA and Dragon descriptors. 

Figure  4.5.  PCA  plots  of  descriptors  before  (left  panel)  and  after  (right  panel)  
decorrelation procedure.

4.2.3  PCA Plot model comparison

Figure 4.6 displays a PCA plot of the researched set of models in the space of  
predictions.  The  colors  indicate  the  used  machine  learning  method,  a  total  of  5  
different colors. The size of the points indicate a validation approach (bigger points -  
bagging, smaller points - cross-validation). The point shape denotes the descriptor set, 
a total of 5 shapes. 
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Figure 4.6. PCA plot of models in prediction space

It is visible that models are grouped into several distinctive clusters. The clusters are 
machine learning method based, that is, the distinctions between model predictions can be 
attributed to the difference in machine learning methods rather than descriptor sets. The 
three main clusters of models that can be observed are KNN and ANN-Bagging models, 
decision tree models, and SVM and ANN-Cv models. 

Several conclusion can be made based on the plot:

• KNN is the only method for which the cross-validated and bagging models form a 
single cluster, that is, bagging has little influence on the KNN prediction results

• RF cross-validated and bagging results form separate clusters, but the clusters are 
nearby. This can be explained by the aggregating nature of the RF method itself. It 
internally uses a bagging procedure for individual trees to form a final results

• The bagging clusters are smaller and more dense, that is, the results of the bagging 
models are less dependent on the descriptor set and descriptor selection procedure 
used

• J48 models have the biggest variance of predictions among the studied methods

• In a majority of cases the decorrelation of descriptors had little impact on prediction 
results
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4.2.4  Applicability domain of models

Figures  4.7 and  4.8 show  two  different  chart  types  that  illustrate  the  ability  to 
differentiate accurate and inaccurate predictions for CYP1A2 models using the BAGGING-
STD DM. Both figures 4 and 5 display the charts for all  descriptors,  no decorrelation, 
bagging models. Since bagging model could not be produced for full set of descriptors for 
SVM models, the SVM chart is missing. 

Figure 4.7. Local balanced accuracy of model predictions, when ordered by BAGGING-STD 
DM. The charts are shown for all descriptors, no decorrelation, bagging models only.

The charts are plotted for the internal test set compounds sorted by BAGGING-STD. 
Figure 4.7 displays the accuracy of predictions calculated as simple moving average over a 
window of 10% compounds. The plot shows the percentage of correct predictions in a 
window for each particular value of BAGGING-STD measure. For unification reasons the X 
axis of the plot does not display the BAGGING-STD value itself, but rather the percentage of 
compounds that have the BAGGING-STD value lower than a particular threshold. The plot 
has a general downward trend that shows a strong correlation of the prediction accuracy and 
a DM. 

The  molecules  with  higher  balanced  accuracies  can  be  considered  confidently 
predicted.  The  molecules  with  balanced  accuracies  around  50-60%  can  be  treated  as 
“randomly guessed” by the model and should be experimentally measured.

Figure 4.8 represents cumulative accuracy-coverage plots. This chart displays balanced 
prediction accuracy (y axis) for a group of compounds, having DM less than some threshold 
against percentage of this group of compounds in the whole set (x axis). The plot start from 
high accuracy values (for compounds with low BAGGING-STD measures) and drop to the 
level of  approximately 83% - the average accuracy for the whole set.

79



4 QSAR studies of CYP inhibition

Figure 4.8. Overall balanced accuracy of model predictions for a subset of compounds as a 
function of the size of this subset, when ordered by BAGGING-STD DM. The charts are 
shown for ISIDA, decorrelated, bagging models.

We can see that BAGGING-STD measure is  less  successful  for  the KNN and RF 
methods.  On  the  subset  of  20%  most  confident  predictions,  however,  the  cumulative 
accuracy for KNN method allowed to reach the balanced accuracy of 95%. The BAGGING-
STD measure was most  successful  for  ANN method,  allowing to achieve the  balanced 
accuracy of 95% of correctly classified instances on a subset of approximately 43% of most 
confident predictions. This result is not significantly lower for the J48 method (balanced 
accuracy of 95% on a subset of 41% most confident predictions).

As we can see, the behavior of the plots is similar for different models. This means the 
BAGGING-STD  DM  worked  universally,  and  was  successfully  used  with  all  sets  of 
descriptors and machine learning methods, as long as bagging approach was used.

4.2.5  External test set results

Table 4.4 shows the external set model performance measures of the 30 top models in 
this study. It also displays the balanced accuracy on a top 20% most confidently predicted 
molecules. 

The overall balanced accuracy of predictions for this external dataset was 71% - 83% of 
correctly  classified  instances.  The  balanced  accuracy  of  the  top  20%  most  confidently 
predicted molecules is 83-96%. The high accuracy values on the subsets of most confidently 
predicted  molecules,  the  size  of  the  models,  the  computational  intensity  of  the  model 
training and application process, and the better balance between sensitivity and specificity 
make  the  ANN  and  J48  decision  trees,  developed  using  bagging,  the  most  successful 
approaches in this study. 
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Descriptors Method Validation Selection ACC BACC SENS SPEC MCC BACC(AD)
All Ann Bagging None 0,79 0,77 0,91 0,63 0,58 0,92
All J48 Bagging None 0,81 0,8 0,87 0,74 0,61 0,95
All Ann Bagging Decorr. 0,84 0,83 0,91 0,75 0,68 0,9
All J48 Bagging Decorr. 0,8 0,79 0,87 0,71 0,59 0,96
Dragon J48 Bagging None 0,8 0,79 0,86 0,72 0,59 0,94
Dragon J48 Bagging Decorr. 0,8 0,79 0,88 0,7 0,59 0,94
Estate J48 Bagging None 0,78 0,76 0,91 0,6 0,55 0,92
All RF Bagging Decorr. 0,78 0,76 0,93 0,59 0,56 0,86
Dragon RF Bagging Decorr. 0,78 0,75 0,92 0,58 0,55 0,85
Dragon Ann Cv None 0,78 0,76 0,89 0,64 0,55 -
Estate RF Bagging None 0,77 0,75 0,91 0,59 0,54 0,85
Dragon2D RF Bagging Decorr. 0,78 0,75 0,92 0,59 0,55 0,87
All Ann Cv None 0,78 0,76 0,91 0,62 0,56 -
Estate J48 Bagging Decorr. 0,78 0,76 0,91 0,61 0,55 0,92
All Ann Cv Decorr. 0,72 0,71 0,78 0,64 0,43 -
Dragon2D J48 Bagging Decorr. 0,78 0,75 0,92 0,59 0,55 0,91
Dragon Svm Bagging Decorr. 0,43 0,5 0 1 0 0
Estate RF Bagging Decorr. 0,78 0,76 0,91 0,6 0,55 0,88
All RF Bagging None 0,78 0,76 0,92 0,59 0,56 0,86
Dragon RF Bagging None 0,78 0,75 0,92 0,58 0,55 0,83
Dragon Ann Bagging Decorr. 0,79 0,77 0,9 0,65 0,57 0,94
All Svm Cv Decorr. 0,82 0,82 0,8 0,84 0,64 -
Dragon Ann Cv Decorr. 0,73 0,71 0,86 0,57 0,45 -
ISIDA RF Cv None 0,75 0,74 0,86 0,61 0,49 -
Dragon2D J48 Bagging None 0,79 0,77 0,9 0,64 0,57 0,94
ISIDA J48 Bagging Decorr. 0,78 0,77 0,83 0,7 0,54 0,91
ISIDA Ann Cv None 0,7 0,69 0,75 0,63 0,38 -
Dragon2D RF Bagging None 0,78 0,76 0,9 0,62 0,56 0,87
Dragon Ann Bagging None 0,8 0,78 0,91 0,66 0,59 0,93
ISIDA RF Bagging Decorr. 0,79 0,77 0,91 0,62 0,57 0,9

Table  4.4.  The performance of best 30 models for the external validation set of CYP1A2 
inhibitors and non-inhibitors from PubChem BioAssay database. ANN – Associative Neural 
Networks[147,148],  RF  and  J48  –  random  trees  [152] and  C4.5  pruned  trees  [153] as 
implemented in WEKA  [154],  SVM - support  vector  machines  [149] as implemented in 
LibSVM [211]. Dragon, Dragon2D - 3D and 2D descriptors by software by Talete inc. [124], 
ISIDA  -  substructural  molecular  fragments  as  implemented  in  ISIDA  [125],  Estate  - 
electrotopological state indices [127]. 

Figure 4.9 represents cumulative accuracy-coverage plot  of expected and observed 
accuracies of the top model in the list (Ann, full descriptor set, bagging). The expected 
accuracy is plotted based on the DM to local accuracy relationship derived from the training 
set of the same model. We can see in Figure 4.9 that the behavior of the accuracy-coverage 
plot of the external test set is similar to the estimated behavior, however the actual accuracy 
is up to five percent higher than estimated accuracy. 

The difference between the real and expected accuracies can be attributed both to the 
differences in the relationship between the DM measure and the accuracy of prediction for a 
specific compound in the training and the external test set, and to the different distribution of 
compounds with specific DM values in the training and the test set. 
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Figure 4.9 Cumulative balanced accuracy of model predictions, when ordered by BAGGING-
STD DM for the training and external test sets. The charts are shown for full set of descriptors, 
ANN bagging model.

Figure 4.10. The relationship between the BAGGING-STD DM and local balanced accuracy 
for the training and the external test sets (left panel) – the chart shows that for the same values 
of BAGGING-STD DM the compounds from the training set generally have lower accuracy 
than those from the test set; the distribution of molecules with a particular BAGGING-STD 
DM value in the training and test sets (right panel) – the training set contains a significantly 
higher amount of compounds with lower BAGGING-STD DM values than the test set. The 
charts are shown for full set of descriptors, ANN bagging model.

Figure 4.10a shows the relationship between the BAGGING-STD DM and the local 
balanced accuracy, as described earlier. The molecules with the same BAGGING-STD DM 
value tend to have higher accuracy of predictions for the external test set. This means that the 
DM measure is somewhat pessimistic in estimating the prediction accuracy. 
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Figure 4.10b shows the distribution of molecules in the training and external sets by 
BAGGING-STD  values.  It  can  serve  as  a  visual  representation  of  differences  between 
training and test set in prediction space.

The higher accuracy values for DM values of 0.15 - 0.3 and higher percentage (over 
60%) of  test  set  compounds having these  values  constitute  to  a  higher  than estimated 
prediction accuracy of the model on the test set.

4.2.6  Summary

In this part of the study, different QSAR approaches for the prediction of CYP1A2 
inhibition were compared. Dragon full set, Dragon 2D set only, E-State and ISIDA SMF 
descriptors were used. The kNN, SVM, ASNN, RF and J48 methods were studied. Models 
built on the PubChem BioAssay A410 dataset were tested by cross-validation on the same 
set, and applied to predict an external test set from another assay - PubChem BioAssay 
A1851.

SVM and J48 models displayed highest accuracy among the used methods. The top 
performing model is SVM on a Dragon descriptor set  with balanced accuracy of 83%. 
Several other models, including SVM models on ISIDA descriptors and J48 models on full 
descriptor  set  displayed  the  balanced  accuracies  over  82%  and  were  non-significantly 
different from the top-performing model. On average, the 3D descriptors (Dragon set and 
full set) outperformed the 2D descriptors. 

The decorrelation of  descriptors  had no influence on model  accuracy,  but  greatly 
increased the speed of model creation and application. 

For  all  methods,  except  for  KNN,  the  bagging  approach  allowed  a  statistically 
significant increase of performance.

Based on PCA in model prediction space, three groups of models were determined: 
KNN  and  ANN-Bagging  models,   J48  and  RF  models,  SVM  and  ANN-Cv  models. 
Predictions of these groups of models form distinctive clusters on the PCA plot.

The external test accuracies for the models are 71% - 82% correctly classified instances. 
Using the BAGGING-STD measure allowed us to increase the accuracies to 83%-96% on 
about 10% of external set compounds. The top performing bagging model (ANN model on 
full set of descriptors) displayed 96% accuracy on 10% of most confident predictions. 

As we have shown in section 4.1.1 (page 67), the prediction accuracy of the models on 
the  most  confidently  predicted  compounds  is  close  to  experimental  accuracy  of 
measurements for CYP inhibition. This proves that the models can be used to decrease the 
number of experiments on a subset of studied compounds. 
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4.3 Using novel descriptors in QSAR 
modeling of CYP 1A2, 2C9, 2C19, 
2D6 and 3A4

4.3.1  Materials and methods

Datasets.  For  this  study  the  PubChem  AID410,  AID883,  AID899,  AID891  and 
AID884 datasets were used as training sets for the models. The PubChem AID1851 Filtered 
datasets were used as test sets for the models.

Descriptors. The goal of this study is to determine whether descriptors derived from 
protein-ligand  complex  obtained  by  docking  procedure  can  increase  the  predictive 
capabilities of QSAR models for CYP inhibition. Therefore the base descriptors were chosen 
based on the results of the previous study.

• Estate: E-State indices (atom type indices and bond type indices)

• Dragon: 0D-3D descriptors from Dragon package

• AP: docking-derived protein-ligand atom pair descriptors

• Estate+AP: A combination of two sets of descriptors

• Dragon+AP: A combination of two sets of descriptors

The Estate indices were chosen since this is the set of 2D descriptors that showed the 
best performance in the previous study. The Dragon descriptors was chosen as the set of 3D 
descriptors that showed performance statistically similar to the best performing model in 
the previous study.

The models built on combined sets will allow to evaluate whether docking-derived 
descriptors bring new information to the model and increase its performance.

All the models in this study are built with the use of descriptor selection procedure. 
The previous study showed that unsupervised correlation-based descriptor selection does 
not decrease model performance.

Machine learning methods. Based on the results of the previous study, the machine 
learning methods used were ASNN neural networks and J48 decision trees. These methods 
showed the best performance in predicting CYP1A2 inhibition. Both methods were chosen 
for their complementary nature - neural networks is a regression-based machine learning 
method, while J48 is a classification decision tree.

All models were built with bagging meta-learning method. The number of model 
instance in each bag was 32 for ANN models and 512 for J48 models. Higher number of 
instances for J48 models further increased model performance, as well as provided higher 
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resolution for applicability domain measurements.

Applicability domain. In the previous study the  BAGGING-STD DM was shown to 
be successful in CYP modeling task, therefore the same DM was used in the current study.

4.3.2  Modeling results

For each isoform in this study a total of 10 models were built (two different machine 
learning methods, five different descriptor sets). To keep the results consistent, balanced 
accuracy (BACC) was used to assess models predictive abilities. This metrics is especially 
useful in case of highly imbalanced datasets. For isoforms 2C9 and 2D6 the ratio of non-
inhibitors to inhibitors is as high 5 to 1. Using average accuracy for these datasets might 
produce misleading results.

Table 4.5 shows the balanced accuracies for all models built in this study. 

Descriptors Method
BACC

CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4
Dragon+AP J48 0.835 0.833 0.827 0.849 0.87
Estate+AP J48 0.833 0.807 0.803 0.843 0.861

AP J48 0.823 0.773 0.752 0.779 0.821
Dragon J48 0.817 0.811 0.807 0.832 0.854

Estate J48 0.817 0.803 0.799 0.838 0.854
Dragon+AP Ann 0.824 0.807 0.816 0.833 0.864

Estate+AP Ann 0.822 0.788 0.783 0.817 0.846
AP Ann 0.795 0.742 0.704 0.766 0.803

Dragon Ann 0.808 0.8 0.809 0.825 0.856
Estate Ann 0.777 0.77 0.781 0.798 0.809

Table  4.5. The performance of the models for CYP inhibitors and non-inhibitors. ANN – 
Associative Neural Networks  [147,148], J48 – C4.5 pruned trees  [153] as implemented in 
WEKA  [154].  Dragon  -  3D  descriptors  by  software  by  Talete  inc.  [124],  Estate  - 
electrotopological  state  indices  [127],  AP  -  docking-derived  protein-ligand  atom  pair 
descriptors (section 2.4.2, page 22). 

In this and all following prediction accuracy tables yellow background cells designate 
the best models and models statistically similar to the best models. Green background cells 
represent  the  second  group  of  models,  statistically  similar  between  themselves,  but 
statistically  worse than the best  model.  Blue  background cells  represent  the rest  of  the 
models with lower performance.

We can see that for this study the decision tree machine learning method was more 
successful than the neural networks. For each of the isoforms the best performing model is 
the J48 decision tree model, and CYP3A4 is the only isoform for which the neural networks 
managed to  produce  the  model  statistically  similar  to  the  best  performing model.  On 
average model balanced accuracy is 2 - 3% higher for the decision tree model and the neural 
network model built on the same descriptors for the same CYP isoform.

The  models  where  atom  pair  descriptors  were  the  only  descriptor  set  used 
performed among the worst in the study (balanced accuracy of 77% - 82% depending on 
the isoform in question). This can be explained by the design of these descriptors. The 
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atom pair descriptors only describe interaction between the atoms of the small molecule 
and the  protein  and contain  no  information  about  structural  arrangement  of  atoms 
within a molecule or any additional molecular properties. This way only the atom pair 
descriptors do not contain enough information to produce predictive models and are 
meant to be used in combination with traditional molecular descriptors.

When comparing models with and without atom pair descriptors we can see that in all 
models regardless of the molecular descriptors and machine learning method used and 
regardless of the CYP isoform being modeled, addition of atom pair descriptors to the 
descriptor set increased model performance. In 12 out of 16 cases studied (4 isoforms, 2 base 
descriptor  types,  2 machine learning methods)  the increase of model  performance was 
statistically significant with the significance level of 0.05.

The best performing model for all isoforms is built on a combination of Dragon and 
atom pair descriptors and has the balanced accuracy of 83% - 87%.

4.3.3  PCA plot model comparison

Figure  4.11 displays  a  PCA plot  of  the  researched set  of  models  in  the  space  of 
predictions.  Each point on the plot represents a single model, a total of 50 studied models. 
Point colors designate descriptors, point sizes - machine learning methods (smaller points - 
neural networks, bigger point - decision trees). Point shape represent the CYP isoform for 
which the model is built.

Figure 4.11. PCA plot in model prediction space
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Several conclusion can be made based on the plot:

• The main characteristic defining the clusters on the plot is the CYP isoform - all 
five isoforms form distinctive clusters. 

• While  CYP1A2  and  CYP2D6  clusters  are  isolated  and  far  apart,  CYP2C9, 
CYP2C19 and CYP3A4 are closer together. 

• The placement of the clusters reflects the conclusions of the dataset analysis from 
the previous section.  CYP2C9 and CYP2C19 clusters are close to each other. 
CYP3A4 cluster  is  closer  to  CYP2D6,  CYP1A2,  CYP2C9  than  these  clusters 
among themselves.  CYP3A4 cluster is especially close to CYP2C19 cluster.

• Inside  each  individual  CYP isoform cluster  sub-clusters  by  machine  learning 
method can be seen. This confirms the conclusions from the previous study.

4.3.4  Applicability domain of models

Figure 4.12 shows cumulative and local  balanced accuracy applicability domain 
charts.  These  types  of  charts  were  introduced in  the  previous  study.  The  charts  are  
presented for CYP1A2 isoform only. The charts for other isoforms can be found in the 
appendix section, Figure A1.

Figure  4.12. Cumulative  (left)  and  local  (right)  balanced  accuracies  of  model 
predictions, ordered by BAGGING-STD DM.

The cumulative charts (Figure 4.12, left) display balanced prediction accuracy (y 
axis) for a group of compounds, having DM less than some threshold against percentage 
of this group of compounds in the whole set (x axis). The plot start from high accuracy 
values (for compounds with low BAGGING-STD measures) and drop to the the average 
balanced accuracy for the whole set. These average values are also reported in Table 4.5.

Local  accuracy  charts  display  the  accuracy  of  predictions  calculated  as  simple 
moving average over a window of 10% compounds. The plot shows the percentage of 
correct predictions in a window for each particular value of BAGGING-STD measure. 
These charts reflect the estimated accuracy of predictions of each individual compound 
with a  specific  BAGGING-STD value,  which makes it  different  from the cumulative 
charts,  that  display  average  balanced  accuracies  of  groups  of  compounds  that  have 
BAGGING-STD values less than a certain threshold. 
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Table  4.6 displays  training  set  validated  accuracies  for  top  20%  most  confident 
predictions. 

Descriptors Method
BACC for top 20% most confident predictions

CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4
Dragon+AP J48 0,995 0,97 0,987 0,988 0,994
Estate+AP J48 0,985 0,981 0,97 0,99 0,992
AP J48 0,98 0,971 0,902 0,972 0,983
Dragon J48 0,956 0,936 0,951 0,976 0,981
Estate J48 0,973 0,955 0,943 0,98 0,983
Dragon+AP Ann 0,982 0,951 0,97 0,97 0,987
Estate+AP Ann 0,961 0,954 0,947 0,965 0,984
AP Ann 0,95 0,918 0,88 0,919 0,965
Dragon Ann 0,954 0,93 0,938 0,974 0,978
Estate Ann 0,948 0,917 0,924 0,964 0,966

Table 4.6. The performance of the models for CYP inhibitors and non-inhibitors for top 20% 
most confident predictions of the validated training sets. ANN – Associative Neural Networks 
[147,148], J48 – C4.5 pruned trees  [153] as implemented in WEKA  [154]. Dragon - 3D 
descriptors by software by Talete inc. [124], Estate - electrotopological state indices [127], AP - 
docking-derived protein-ligand atom pair descriptors (section 2.4.2, page 22). 

We can see that BAGGING-STD works well for differentiating between confident 
and  unconfident  predictions  for  all  five  studied  isoforms.  Large  fractions  of  the 
datasets  could  be  predicted  with  balanced  accuracy  of  0.95.  Table  4.7 summarizes 
model performance.

Table 4.7. Fractions of the datasets predicted with a given accuracy

The  most  successful  modeling  technique  that  allowed  to  achieve  the  highest 
balanced accuracy results was the decision trees with a combination of atom pair and 
Dragon descriptors. 

Models  built  on  combined  descriptors  (AP+Estate  and  AP+Dragon  models) 
outperformed  models  with  no  protein-ligand  atom  pair  information  both  for 
BACC=0.95 and BACC=0.90 thresholds. For BACC=0.95 adding atom pair descriptors 
increased  the  fraction  of  the  dataset  predicted  with  this  accuracy  by  7%  -  10% 
depending on the isoform. 
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BACC=0.95 BACC=0.90
CYP1A2 C4.5 AP+Dragon 60% 83%

CYP2C9 C4.5 AP+Estate 43% 62%
C4.5 AP+Dragon 73%

CYP2C19 C4.5 AP+Dragon 30% 65%
C4.5 AP+Estate 60%
Ann AP+Dragon 62%

CYP2D6 C4.5 AP+Dragon 63% 82%
C4.5 AP+Estate

CYP3A4 C4.5 AP+Dragon 71% 90%

Isoform Best performing 
models

Fraction of the set predicted by 
the best model with given BACC
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We can also see that decision trees in general were more successful regardless of  
the descriptor set.

Applicability domain methodology also worked for models built entirely on atom 
pair  descriptors   -  there  is  an  obvious  correlation  between  the  actual  prediction 
accuracy of the compound and its BAGGING-STD measure.

4.3.5  Application of models to the external test sets

This  section  describes  the  results  of  applying  the  models  from  the  study  to 
external test sets. As described in the dataset section, the training and test sets consist  
of  data  measured  using  the  same  methodology.  The  test  sets,  however,  include 
molecules from a larger number of libraries and, therefore, can be used to model a real  
life  scenario  where  models  are  used  to  replace  measurements  in  novel  sections  of  
chemical space.  Table 4.8 shows the balanced accuracy values of applying the models 
from the previous section to the AID1851 datasets for cytochromes 1A2, 2C9, 2C19,  
2D6 and 3A4.

Descriptors Method
BACC

CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4
Dragon+AP J48 0.791 0.775 0.748 0.763 0.784
Estate+AP J48 0.777 0.713 0.729 0.736 0.744
AP J48 0.762 0.723 0.702 0.68 0.717
Dragon J48 0.777 0.736 0.722 0.74 0.754
Estate J48 0.758 0.687 0.711 0.731 0.756
Dragon+AP Ann 0.79 0.757 0.746 0.756 0.781
Estate+AP Ann 0.78 0.727 0.718 0.744 0.767
AP Ann 0.75 0.698 0.677 0.701 0.723
Dragon Ann 0.77 0.732 0.734 0.738 0.761
Estate Ann 0.749 0.693 0.701 0.705 0.745

Table  4.8. The performance of the models for CYP inhibitors and non-inhibitors for 
the  external  test  sets.  ANN  –  Associative  Neural  Networks  [147,148],  J48  –  C4.5 
pruned  trees  [153] as  implemented  in  WEKA  [154].  Dragon  -  3D  descriptors  by 
software  by  Talete  inc.  [124],  Estate  -  electrotopological  state  indices  [127],  AP  - 
docking-derived protein-ligand atom pair descriptors (section 2.4.2, page 22). 

We can see that the accuracy of the results of application of the models to the  
external test sets is significantly lower compared to the bagging-validated accuracies  
derived from the training sets. The drop in prediction accuracy ranges from about 4% 
(for the top performing model for CYP1A2 inhibition) to as much as 9% (for the top 
performing models for CYP2D6 and CYP3A4 inhibition). This drop in performance 
was expected and was due to the higher chemical  diversity of  the test  sets  and the 
presence of additional chemical libraries (that represent different chemical classes) in  
the test sets. (see “Dataset analysis and interpretation” section).

Applicability domain methods can help separate the reliable model predictions 
(predictions for the compounds similar enough to the compounds in the training sets) 
from  unreliable  ones  (predictions  of  novel  chemical  scaffolds,  unfamiliar  to  the 
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model). The threshold of 20% most confident predictions was chosen and cumulative 
accuracy on this fraction of the test sets were calculated. Table 4.9 shows the results of 
the  models,  when  only  20%  of  most  confident  predictions  (according  to  the 
applicability domain measure) are considered. 

Descriptors Method
BACC for top 20% most confident predictions

CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4
Dragon+AP J48 0,964 0,898 0,871 0,908 0,941
Estate+AP J48 0,922 0,834 0,837 0,886 0,914
AP J48 0,918 0,811 0,829 0,829 0,902
Dragon J48 0,924 0,832 0,865 0,861 0,916
Estate J48 0,891 0,77 0,821 0,862 0,894
Dragon+AP Ann 0,897 0,865 0,863 0,88 0,921
Estate+AP Ann 0,887 0,807 0,827 0,849 0,919
AP Ann 0,886 0,788 0,808 0,798 0,88
Dragon Ann 0,869 0,84 0,829 0,839 0,905
Estate Ann 0,848 0,793 0,807 0,783 0,887

Table  4.9.  The performance of the models for CYP inhibitors and non-inhibitors for 
top 20% most confident predictions of the external test sets. ANN – Associative Neural  
Networks  [147,148], J48 – C4.5 pruned trees  [153] as implemented in WEKA  [154]. 
Dragon - 3D descriptors by software by Talete inc.  [124], Estate - electrotopological 
state indices [127], AP - docking-derived protein-ligand atom pair descriptors (section 
2.4.2, page 22). 

Based on the relationship between the BAGGING-STD DM and actual prediction 
accuracy derived from the training set, we evaluated the expected model accuracy based on 
DM values for predicted compounds. This estimation was based on the assumption that the 
relationship between the DM values and prediction accuracy was  exactly  same for  the 
training and the test sets. Figure 5 features three plots for each CYP isoform studied: the 
cumulative applicability domain plot with the actual and estimated accuracy curves, the 
local accuracy plot for the training and test sets, and the applicability domain bar plot for the 
training and test sets. All the plots are built for the top performing model for each isoform 
(the C4.5 model based on Dragon + Docking descriptors). 

We can see in  Figure 4.13 that the behavior of the accuracy-coverage plots of the 
external  test  sets  is  similar  to the estimated behavior.  The plots  are given for  CYP1A2 
isoform only. Plots for other studied isoforms are available in the appendix, Figure A2.

There's one general pattern for all the accuracy-coverage plots in Figure 4.13. The real 
accuracies are lower than the estimated ones in the area of high-confidence predictions and 
higher than the estimated ones  in  area of  all  predictions.  That  is,  using AD estimated 
accuracy values would be over-optimistic for a fraction of most confident predictions and 
over-pessimistic for the whole dataset.

One reason for this is the difference in the relationship between the DM measure and 
the accuracy of prediction for a specific compound in the training and the external test set.  
As we can see in Figure 4.13 local accuracy plots, the actual accuracy for the molecules with 
low BAGGING-STD DM values is lower for the test set than for the training set. This makes 
the accuracy over-optimistic for the most confident predictions.
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Figure 4.13. Actual and estimated cumulative applicability domain accuracy plots. Displayed 
model is C4.5 decision tree model built on Dragon + atom pair descriptors. 

The distribution of molecules among different DM values is another reason. The 
large fraction of the test  sets  (50-60%) have fallen to the DM area of 0.4-0.5,  which 
indicates low confidence of the model in the accuracy of predictions. 

The DM distribution bar chart (which has some disadvantages, since it relies on a 
particular DM measure and the distribution of it's values in the training and test sets)  
was replaced for further analysis by a percent-based DM distribution bar chart (Figure
4.14). In Figure 4.14 the boundaries for plot bins are given in “percentage of the training 
set” scale rather than DM values scale.  In the “percentage of the training set” scale the  
actual  DM values for the boundaries are chosen in a way that would make the DM 
distribution bar chart universally distributed. This way the deviation of the test set bar 
chart  from the universal  distribution would serve as model  prediction based dataset 
similarity measure. 

Figure 4.14. Balanced DM distribution plot for training and test sets (C4.5 models built on 
Dragon + AP descriptors).
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Note that these charts do not require experimentally measured values for the test set 
and therefore can be built even for a virtual dataset of compounds to estimate it's similarity 
to the model's training set.

As we can see on  Figure 4.14,  the test  datasets in this study are dissimilar to the 
training sets; therefore, the drop in in model performance on the test set compared to the 
cross-validated training set is to be expected.

Since  both  prediction  accuracy  and  prediction  confidence  are  non-uniformly 
distributed among different chemical classes, applicability domain based fragment analysis 
can be helpful to identify substructures reliably or unreliably predicted by the model. Figure
4.15 and Figure 4.16 display three most confidently predicted and three most unconfidently 
predicted fragments for CYP1A2 isoform. Similar diagrams for other cytochrome isoforms 
can be found in the appendix, Figure A3 - Figure A12.

Fragments in Figure 4.15 and Figure 4.16 were selected in such a way so that at least a 
100 molecules would contain each of them. If two fragment-containing molecule groups 
contain the same amount of molecules and one of the fragments is the exact subfragment of 
the other, the bigger fragment was selected. For each fragment-containing molecule group 
average BAGGING-STD DM was calculated. The top three and bottom three fragments 
were selected as “most confidently predicted fragments” and “least confidently predicted 
fragments”, respectively.

High confidence of predictions for certain fragment-containing molecules  indicate 
that the training set contained a big amount of diverse compounds containing this fragment 
and adding  more compounds  with  this  substructure  will  not  significantly  improve  the 
overall model performance. 

Low confidence of  predictions  for  certain  fragment-containing molecules  indicate 
absence or low number of compounds of this chemical class in the model training set. When 
using the prediction models for decision support in experiment planning, it is beneficial to 
select these kinds of molecules for experimental testing. Introducing measured values for 
these molecules would have the highest benefit for the overall model performance. This also 
may indicate that the fragment itself posses properties that may prevent reliable activity 
measurement or prediction (i.e. - interaction with the solvent).

We can see that the most confidently predicted fragments are linear and branched 
fragments containing 4 -  6 atoms, among which - carbon, nitrogen and oxygen. Of 15 
presented fragments  only  two contain  aromatic  rings  and one  -  non-aromatic  circular 
structure. 

Least confidently predicted fragments are mostly aromatic (12 out of 15 presented 
fragments contain aromatic rings). On average they contain more atoms and have a higher 
molecular weight. One particular fragment (trifluoromethylbenzene) was marked as least 
confidently predicted for three isoforms out of five (CYP2C9, CYP2C19 and CYP3A4). 
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Figure 4.15. Diagram of best-predicted fragments for CYP1A2 isoform

Figure 4.16. Diagram of worst-predicted fragments for CYP1A2 isoform
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4.3.6  Summary

In this part of the study the most successful descriptors (Dragon descriptors and Estate 
indices)  and machine learning methods (ASNN and C4.5 decision tree)  determined in 
section  4.2   were  used  to  model  CYP  inhibition  activity  for  five  different  isoforms. 
Additionally, protein-ligand atom pair descriptors were used in the study in combination 
with traditional descriptors to benchmark their predictive abilities.

Confirming the results from the study in section 4.2 , the C4.5 decision tree models 
were consistently more predictive, with an average increase of 2-3% of correctly classified 
instances. 

Models containing Dragon descriptors were on average more predictive than Estate 
indices. The atom pair descriptors provided lower prediction accuracy, with the average 
balanced accuracy of  77% - 82% depending on the isoform. 

However,  the best  performing models  (with the significance value of  0.05)  for all 
isoforms were built on a combination of Dragon and atom pair descriptors and had the 
balanced accuracy of 83% - 87%.

The PCA analysis in model prediction space confirmed the dataset similarity analysis 
results from section  4.1.2   summarized in  Table 4.2, page  68. CYP2C9 and CYP2C19 
isoform activity results formed the closest  clusters. The CYP3A4 cluster was the closest 
cluster to all other isoforms.

The external test accuracies for the models are 74% - 79% correctly classified instances 
for the best performing model (C4.5 decision tree, Dragon and atom pair descriptors). A 
drop in prediction accuracy can be explained by a significant structural difference between 
training and test sets. 

Using the BAGGING-STD measure allowed us to increase the accuracies to 87%-96% 
on about 20% of  external  set  compounds for  the  top performing model.  The detailed 
applicability  domain  analysis  showed  that  the  used  applicability  domain  approach  is 
somewhat optimistic in estimating model accuracy.

Fragment-based applicability  domain  analysis  determined the  fragments  predicted 
with more than average and less than average confidence. The molecules that were predicted 
most confidently contained linear and branched fragments with the size of 4 - 6 atoms, 
among which - carbon, nitrogen and oxygen. Molecules, which were predicted with the 
lowest confidence contained fragments that were mostly aromatic and on average contained 
more  atoms  and  had  a  higher  molecular  weight.  One  particular  fragment 
(trifluoromethylbenzene) was marked as least confidently predicted for three out of five 
isoforms(CYP2C9, CYP2C19 and CYP3A4). 

The fragments overrepresented in least confidently predicted molecules can be used as 
structural hints for additional experimental measurements.
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4.4 Novel descriptors in predicting 
CYP2C19 activity based on CYP2C9 
dataset

4.4.1  Materials and methods

In  this  part  of  the  study  we  research  the  possible  methods  to  extrapolate  activity 
prediction  across  closely  related  cytochrome  targets,  measure  the  accuracies  of  possible 
extrapolation approaches and evaluate the practical applications of these methods. For this 
study we have chosen the cytochromes from CYP2C subfamily: the models built on CYP2C9 
dataset are applied to predict CYP2C19 activity.

The  datasets  involved  in  this  study  are  PubChem  AID883  for  CYP2C9  data  and 
PubChem  AID899 and AID1851 for CYP2C19 data. 

The idea of the study is based on the fact that docking-derived atom pair descriptors are 
based on the protein-ligand complex structure rather then small molecule structure. The 
hypothesis is that for closely related protein structures same atom pair descriptors retain 
(qualitatively and quantitatively) the same relation to the modeled activity (in our case - CYP 
inhibition activity). Therefore it would be possible to reuse the models built on CYP2C9 data 
to predict inhibition activity of small molecules for CYP2C19. 

We compare the performance of QSAR model in three different scenarios. All the three 
scenarios focus on prediction CYP2C19 inhibition activity for new molecules, but differ in the 
amount of information that is used in the model creation process.

QSAR  for  CYP2C19  data.  The  most  straightforward  scenario  (that  is  labeled 
“CYP2C19 to CYP2C19”) is traditional QSAR. We assume that we have some amount of 
experimental data for the target itself we are interested in - CYP2C19 inhibition. We then build 
the QSAR model on this data and use it to predict novel compounds. For this scenario we 
mirror all the conditions from the previous study.  

We use PubChem AID899 dataset as the training set and build ten different QSAR 
models. These models were built using two different machine learning approaches (ASNN - 
neural networks, and J48 - decision trees) for five different descriptor sets (Estate indices only, 
Dragon descriptors only, atom pair descriptors only, Estate indices with atom pair descriptors, 
Dragon descriptors with atom pair descriptors). Similarly to the previous study, BAGGING-
STD  DM  was  used  to  evaluate  prediction  accuracy  on  the  subset  of  most  confident 
predictions. 

The models are then used to predict both the bagging-validated results for the same 
PubChem AID899 set and the external test set represented by  PubChem AID1851 dataset. 

QSAR  for  CYP2C9  data,  naive  extrapolation  to  CYP2C19  activity.  The  “naive” 
scenario (labeled “CYP2C9 to CYP2C19 (naive)”) can be used when there's no available 
experimental data for the target itself (CYP2C19 in our case). We then create traditional QSAR 
models for the closely related target with available experimental data (CYP2C9 in our case). 
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That is, we use PubChem AID883 dataset as the training set and build ten different 
QSAR models for CYP2C9 inhibition activity. 

Given no additional data, we just assume that CYP2C9 and CYP2C19 activities are 
completely same and under this assumption try to predict CYP2C19 activity by CYP2C9 
models.

As we have shown in Table 4.2 (page 68), CYP2C9 and CYP2C19 datasets are strongly 
correlated  and  the  number  of  compounds  sharing  the  same  activity  values  for  both 
cytochromes reaches about 80-90% of a significantly diverse set of compounds.  Due to this 
fact our current scenario may produce a reasonable amount of accurate CYP2C19 inhibition 
predictions. 

QSAR  for  CYP2C9  data,  novel  extrapolation  to  CYP2C19  activity.  This  novel 
scenario (labeled “CYP2C9 to CYP2C19 (novel)”) is also used when no experimental data for 
CYP2C19 is available and uses CYP2C9 model to predict CYP2C19 activity. 

The model creation stage is exactly same as in the previous scenario: we use PubChem 
AID883  dataset  as  the  training  set  and  build  ten  different  QSAR  models  for  CYP2C9 
inhibition activity.  The important part that makes this  scenario possible is  including the 
protein-ligand complex descriptors to the modeling process.

The  difference  from  previous  scenario  is  in  the  model  application  process.  The 
descriptors  for  the predicted structures  are calculated based on CYP2C19 protein-ligand 
complexes rather than CYP2C9 complexes. This introduces new information to the modeling 
process and enhances the prediction results. 

The process of applying a model to a set of compounds in this scenario therefore differs 
from the traditional QSAR approach in the phase of descriptor calculation. The molecule-
based descriptors (Estate indices, Dragon descriptors) are calculated as usual. The protein-
ligand  atom  pair  descriptors  are  calculated  on  CYP2C19  protein  structure  rather  then 
CYP2C9 structure. The combined sets of descriptors are then used in CYP2C9 model to 
predict CYP2C19 inhibition activity. The diagram of the process is displayed on Figure 4.17.

Same  as  for  the  previous  scenario,  the  models  were  applied  to  the  two  available 
CYP2C19 datasets to make the models comparable to other scenarios. 

Applying the suggested approaches to both PubChem AID899 and PubChem AID1851 
CYP2C19 datasets models the real life scenarios of virtual screening of compounds to predict 
activities of new structures on a target based on experimental data for a closely related target. 
The difference is that PubChem AID899 experiments reflect the situation when the screened 
compounds and the compounds in the training set come from the same molecular library and 
therefore contain a high amount of structurally similar entities.  The PubChem AID1851 
CYP2C19 experiments represent screening of more structurally diverse molecules. 

Both situations may arise in early stage drug discovery when the available amount of 
measurements for the specific cytochrome is used to screen potential drug candidates for 
inhibition activity not only for this cytochrome but also for its most probable variations. 

Figure  4.18 illustrates  which  datasets  were  used  as  training  and  test  sets  in  each 
experiment outlined in this chapter.
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Figure 4.17. QSAR model creation and application processes for CYP2C9 to CYP2C19 novel 
extrapolation scenario

Figure  4.18.  Relationships between datasets and modeling experiments described in this 
section

97



4 QSAR studies of CYP inhibition

4.4.2  Modeling results

Table 4.10 and Table 4.11 summarize the model application results. 

Descriptors Method

BACC

Dragon+AP J48 0,811 0,781 0,827
Estate+AP J48 0,799 0,779 0,803
AP J48 0,757 0,751 0,752
Dragon J48 0,79 0,807
Estate J48 0,788 0,799
Dragon+AP Ann 0,793 0,762 0,816
Estate+AP Ann 0,759 0,733 0,783
AP Ann 0,692 0,681 0,704
Dragon Ann 0,779 0,809
Estate Ann 0,752 0,781

CYP2C9 to 
CYP2C19 (novel)

CYP2C9 to 
CYP2C19 (naive)

CYP2C19 to 
CYP2C19

Table  4.10.  Results  of  three  different  approaches  to  CYP2C19  inhibition  modeling, 
PubChem AID899 dataset. ANN – Associative Neural Networks [147,148], J48 – C4.5 pruned 
trees [153] as implemented in WEKA [154]. Dragon - 3D descriptors by software by Talete 
inc. [124], Estate - electrotopological state indices [127], AP - docking-derived protein-ligand 
atom pair descriptors (section 2.4.2, page 22). 

Descriptors Method

BACC

Dragon+AP J48 0,751 0,728 0,748
Estate+AP J48 0,731 0,714 0,729
AP J48 0,695 0,652 0,702
Dragon J48 0,728 0,722
Estate J48 0,68 0,711
Dragon+AP Ann 0,732 0,722 0,746
Estate+AP Ann 0,71 0,699 0,718
AP Ann 0,695 0,659 0,677
Dragon Ann 0,719 0,734
Estate Ann 0,696 0,701

CYP2C9 to 
CYP2C19 (novel)

CYP2C9 to 
CYP2C19 (naive)

CYP2C19 to 
CYP2C19

Table  4.11.  Results  of  three  different  approaches  to  CYP2C19  inhibition  modeling, 
PubChem AID1851 CYP2C19 dataset. ANN – Associative Neural Networks [147,148], J48 – 
C4.5 pruned trees [153] as implemented in WEKA [154]. Dragon - 3D descriptors by software 
by Talete inc.  [124], Estate -  electrotopological state indices  [127], AP - docking-derived 
protein-ligand atom pair descriptors (section 2.4.2, page 22). 

The  “CYP2C9  to  CYP2C19  (novel)”  column  shows  the  results  of  applying 
CYP2C9 models to predict CYP2C19 activity through extrapolation as described in  
the  methods section.  Evaluation of  quality  and applicability  of  this  method is  the  
main  goal  of  this  study.  The  “CYP2C9  to  CYP2C19  (naive)”  displays  the  model  
accuracies  when  CYP2C9  models  are  normally  applied  to  data  to  get  CYP2C9 
activity predictions and then checking if these predictions are accurate for CYP2C19 
cytochrome as  well.  This  approach  is  well  known  and requires  neither  additional  
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experimental data nor additional computational resources to use. Therefore, it will  
serve as a baseline for comparison. The “CYP2C19 to CYP2C19” column represents  
the  results  of  bagging-validated  CYP2C19  modeling  from the  previous  section.  It 
shows  the  situation  when  the  experimentally  measured  data  for  the  mutated 
cytochrome is available and, therefore, no special techniques are required to model  
this protein's activity.

Note, that for models built only on Dragon or Estate descriptors the results for 
“naive” and “novel” columns are same, since they represent exactly the same models;  
the difference between the two approaches stems from the difference in methodology 
of calculation of docking descriptors. For the models where docking descriptors are 
not used the models and prediction results are identical.

The  results  presented  in  Table  4.10 and  Table  4.11 confirm  the  general 
conclusions about QSAR modeling of CYP inhibition from the previous chapter. 

Decision tree methods in general have displayed slightly higher performance for 
this classification task than neural networks: average performance of J48 models is  
around 3% higher than ANN models. The best performing J48 model is on average  
1.5  -  2% more  accurate  than  the  best  performing  ANN  model.  The  difference  is  
statistically  significant  (with significance value of 0.05)  according to the bootstrap 
test performed on 10000 replicas. 

Three  dimensional  descriptors  (represented in  these  experiments  by Dragon)  
have been proven to be essential for CYP inhibition modeling. In the majority of the  
performed  experiments  models  containing  Dragon  descriptors  are  significantly  
better  than those not  containing them. Adding atom pair  descriptors significantly  
increased  the  performance  of  both  Estate  and  Dragon  models.  For  most  of  the 
experiments  therefore  Dragon+AP  descriptor  set  yielded  the  models  with  highest  
prediction accuracy. 

The traditional  QSAR models  built  on CYP2C19 training data (“CYP2C19 to 
CYP2C19”  models)  have  shown  the  best  performance  among  the  three  studied 
approaches,  in most  cases significantly outperforming the other  approaches in the 
study. Since this is the only approach among three that used CYP2C19 experimental  
data on the stage of model training, the higher accuracy results are explainable and  
once  more  confirm  the  importance  of  relevant  experimental  data  to  produce 
predictable QSAR models. This approach allowed the 0.827 accuracy for the bagging-
validated  training  set.  Applying  the  models  to  the  structurally  diverse  external  
validation set resulted into a significant drop of model performance (the balanced 
accuracy of 0.748). This confirms the importance of good structural diversity of the 
training  set  and importance  of  applicability  domain  analysis  for  QSAR models  to  
avoid applying them to data that is too different from the model training set. 

The naive approach showed the least accurate results among the three studied 
approaches for all the models built in the study. This shows that for proteins from 
one subfamily  that  share  up to 90% of  activity  values  just  assuming same activity  
results  does  not  yield  models  with  acceptable  prediction  accuracy.  The  best  
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performing models for this approach reached the  0.781 balanced accuracy value for 
the  PubChem  AID899  dataset  and  0.728 balanced  accuracy  for  the  PubChem 
AID1851 CYP2C19 dataset. The speciality of this set of models is that additional four 
out  of  ten  models  have  achieved  accuracy  values  statistically  similar  to  the  top 
performing model. 

In most performed modeling experiments the use of novel approach allowed to 
significantly increase the balanced accuracy (for up to 3%) as compared to the naive 
approach.  For   Dragon+AP  and  Estate+AP  for  both  decision  tree  and  neural 
networks  machine  learning  methods  the  difference  in  prediction  quality  of  this  
extrapolation  approach  from  the  “CYP2C19  to  CYP2C19”  approach  was  not 
statistically significant with significance value of 0.05 (as measured by bootstrap test  
with 10000 bootstrap replicas). The Dragon+AP and Estate+AP models built using 
decision tree approach displayed best results in predicting CYP2C19 activity based 
on CYP2C9 data. For the PubChem AID899 dataset the top performing model was 
the  Dragon+AP  J48  model  with  the  balanced  accuracy  of  0.812,  which  was  not 
significantly lower than the performance of the same model built on CYP2C19 data  
(balanced accuracy of  0.827). The models built  using this approach experience the 
drop in  prediction accuracy common for  all  other  QSAR models  when presented 
with  structurally  diverse  external  validation  set  data.  For  the  PubChem AID1851 
CYP2C19  dataset  the  balanced  accuracies  of  predictions  by  novel  model  and 
CYP2C19  model  are  0.751 and  0.748,   respectively.  The  difference  is  statistically 
insignificant,  which  means  that  the  extrapolation  approach  in  this  experiment 
managed  to  achieve  the  accuracy  comparable  to  the  model  built  on  relevant 
experimental data.

We can conclude  that  applying  QSAR models  to  predict  even closely  related 
targets in most cases leads to insufficiently accurate results (as we can see from the 
“CYP2C9  to  CYP2C19  naive”  experiments).  Introducing  new  information  to  the 
modeling process, however, leads to significant increase in modeling accuracy. The 
best kind of information is the experimental data for the specific target (the highest  
results  are  achieved  by  “CYP2C19  to  CYP2C19”  traditional  QSAR approach”).  In 
some  cases  similar  results  can  be  achieved  by  introducing  only  some  additional  
information  about  the  target  (in  form of  atom  pair  descriptors  calculated  on  the 
crystal structure of the target) and using modified methodology of model building 
and application. 

4.4.3  Applicability domain analysis

Applicability domain analysis methods can be applied to the models in this study in a 
similar way to traditional QSAR. Since all models were built and applied through bootstrap 
aggregation, BAGGING-STD DM can be calculated for each predicted molecule. 

Validated training set analysis

Figure 4.19 displays  cumulative and local balanced accuracies of model predictions 
ordered by BAGGING-STD DM for all three methods of CYP2C19 activity prediction for 
PubChem AID899 dataset.
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Figure 4.19. Cumulative and local balanced accuracies (ordered by BAGGING-STD DM) for 
PubChem AID899 dataset.

As  we  can  see  on  Figure  4.19,  applicability  domain  charts  for  extrapolation 
approaches  (both  novel  and  naive)  exhibit  the  same  behavior  as  for  the  traditional 
QSAR. On the cumulative charts the “CYP2C19 to CYP2C19” models demonstrate the 
balanced accuracy of up to 100% on a fraction of 10% of most confident predictions. The 
cumulative accuracy curves then gradually fall  to the average model accuracy values 
(82.7%  for  the  best  performing  Dragon+AP  J48  model).  The  local  accuracies  for 
individual molecules are as high as 100% for the most confidently predicted molecules 
and as low as 60% for the least confidently predicted ones. This shows that the chosen 
applicability domain approach works well for the studied models and allows separation 
of  confidently  and  unconfidently  predicted  molecules.  The  approach works  best  for 
Dragon+AP J48 model and worst - for the AP-only models. 
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The  “CYP2C9  to  CYP2C19  naive”  cumulative  accuracy  charts  fall  from  the 
maximum of 92% balanced accuracy for a subset of 5% most confident predictions to 
the  average accuracy of  79% on the  whole  set.  Local  accuracy charts  show that  the 
highest individual balanced accuracy is around 92% for the most confident predictions 
and is around 65% for the least confident ones. 

We can see that for both ANN Dragon descriptor containing models (Dragon ANN 
and Dragon+AP ANN) the charts do not follow the usual pattern and start at around 
82% for the top 5% most confident predictions and rise, reaching a peak on the mark of 
around 20% most confident predictions, and then fall similarly to the rest of the models. 
This displays that for these models high confidence of predictions does not correspond 
to the real  prediction accuracy.  This may be caused by a  subset  of  CYP2C9-specific  
descriptors having a high weight in the resulting model. That is, a similarity measure 
defined in the CYP2C9 inhibition property space fails for the CYP2C19 property space. 

The chosen AD approach fails as well for the AP-only models in this modeling 
scenario. The local accuracy charts for these models show no correlation between the 
BAGGING-STD DM and the actual prediction accuracy for the particular molecule. As 
a  consequence,  the  cumulative  accuracy charts  for  these  models  display  the  average 
accuracy  for  any  subset  of  most  confidently  predicted  molecules.  This  highlights  a 
drawback of AP descriptors and demonstrates, that AP information alone is insufficient 
to define similarity in extrapolated CYP2C19 property space. 

The  “CYP2C9  to  CYP2C19  novel”  models  do  not  have  some  of  the  problems 
described for the “CYP2C9 to CYP2C19 naive” models. The best performing model is 
Dragon+AP J48  and it  achieves the  accuracy of  around 93% on the top 40% of  the 
dataset. The local accuracy chart displays good correlation between the BAGGING-STD 
DM and the real prediction accuracy for individual molecules.  The most confidently 
predicted  molecules  have  the  local  accuracy  of  93%,  the  least  confidently  predicted 
molecules - 65%.

The AD analysis fails for the AP-only models in this modeling scenario as well. 
This highlights the necessity of traditional molecule-centered descriptors in models to 
reliably define the “distance to model” in property space. 

Two  different  approaches  to  assessing  the  success  of  applying  the  applicability 
domain analysis to a set of models include: determining the average accuracy on a subset 
of fixed size that would contain only most confident predictions; and determining a size 
of the subset of most confident predictions on which a fixed predetermined accuracy 
could be expected.

 From the cumulative balanced accuracy graph we can fill Table 4.12 with balanced 
accuracy results when only 20% most confident predictions are taken into account (as  
identified by BAGGING-STD DM). 
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Table 4.12. Results of three different approaches to CYP2C19 inhibition modeling, 
PubChem AID899 dataset; only top 20% most confident predictions are considered. ANN – 
Associative Neural Networks  [147,148], J48 – C4.5 pruned trees  [153] as implemented in 
WEKA  [154].  Dragon  -  3D  descriptors  by  software  by  Talete  inc.  [124],  Estate  - 
electrotopological  state  indices  [127],  AP  -  docking-derived  protein-ligand  atom  pair 
descriptors (section 2.4.2, page 22). 

As we can see, the most successful models displayed the balanced accuracies of 98%, 
89% and 93% for the “CYP2C19 to CYP2C19”, “CYP2C9 to CYP2C19 naive” and “CYP2C9 
to CYP2C19 novel” approaches, respectively. The extrapolation approaches are significantly 
worse than the approach based on relevant experimental data. However the novel approach 
is good enough to be practically use in virtual screening studies. 

Table 4.13 reflects a second view on the applicability domain  accuracy charts. 

Table 4.13. Fractions of the PubChem AID899 dataset predicted by a specific approach with 
given balanced accuracy

This table can be interpreted as a summary of success of using a BAGGING-STD DM 
applicability domain approach with each of the models in the study. We fix a particular 
balanced accuracy requirements and evaluate whether a model is capable of fulfilling it.

The experimental data based approach is the most successful,  with all the models 
allowing to some extent the 90% balanced accuracy (the most unsuccessful model is the AP 
Ann model with only 4% of the dataset, and the most successful - the Dragon+AP J48 model 
with 77% of the dataset).

103

Descriptors Method
BACC for top 20% most confident predictions

Dragon+AP J48 0.933 0.895 0.987
Estate+AP J48 0.876 0.859 0.97
AP J48 0.755 0.752 0.901
Dragon J48 0.892 0.952
Estate J48 0.902 0.944
Dragon+AP Ann 0.893 0.858 0.971
Estate+AP Ann 0.839 0.801 0.949
AP Ann 0.693 0.702 0.884
Dragon Ann 0.895 0.937
Estate Ann 0.802 0.925

CYP2C9 to 
CYP2C19 (novel)

CYP2C9 to 
CYP2C19 (naive)

CYP2C19 to 
CYP2C19

Descriptors Method

Fraction of the set predicted by the best model with given BACC

Dragon+AP J48 54% 80% 9% 55% 77% 93%
Estate+AP J48 3% 71% - 50% 62% 81%
AP J48 - - - - 27% 57%
Dragon J48 12% 56% 12% 56% 60% 83%
Estate J48 26% 64% 26% 64% 56% 88%
Dragon+AP Ann 15% 67% 2% 27% 55% 83%
Estate+AP Ann 1% 7% - 1% 46% 69%
AP Ann - - - - 4% 31%
Dragon Ann 22% 59% 22% 59% 49% 80%
Estate Ann 3% 6% 3% 6% 39% 66%

CYP2C9 to 
CYP2C19 (novel)

CYP2C9 to 
CYP2C19 (naive)

CYP2C19 to 
CYP2C19

BACC 
=0.90

BACC 
=0.85

BACC 
=0.90

BACC 
=0.85

BACC 
=0.90

BACC 
=0.85
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The best approach for the “CYP2C9 to CYP2C19 naive” from the point of view of this 
table was Estate J48 model.  It  achieved the 90% accuracy on 26% of  most  confidently 
predicted compounds. 

The  most  successful  model  of  the  “CYP2C9  to  CYP2C19  novel”  approach  was 
Dragon+AP J48 as well. The balanced accuracy of 90% could be achieved on around 54% of 
most confident predictions. 

External test set analysis
The analysis can be also performed for the external validation set - PubChem AID1851 

CYP2C19  dataset.  Figure  4.20 displays  the  local  and  cumulative  balanced  accuracies 
obtained by applying the studied models to the external validation set. 

Figure 4.20. Cumulative and local balanced accuracies (ordered by BAGGING-STD DM) for 
PubChem AID1851 CYP2C19 dataset.
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The external  validation set  results  are similar  to those of  the  PubChem AID899 
dataset analysis. 

The best balanced accuracy results are achieved by “CYP2C19 to CYP2C19” models. 
The highest accuracy model was Dragon+AP J48 and achieved over 90% balanced accuracy 
on the top 20% most confident predictions. The local accuracies for this dataset range from 
around 95% for the most confidently predicted compound to 60% for the least confidently 
predicted  compounds.  The  AP  J48  model  displayed  reasonable  correlation  between 
BAGGING-STD DM and prediction accuracy. The most confidently predicted molecules 
have the local accuracy of around 90%, and the least  confidently predicted molecules - 
around 58%. 

The most accurate model in the “CYP2C9 to CYP2C19 novel” scenario demonstrates 
the 90% local accuracy for the most confidently predicted molecules. As a result, around 
20% of the most confidently predicted molecules have the balanced accuracy of 87%.

Table 4.14 contains balanced accuracy results for top 20% most confident predictions 
from the PubChem AID1851 CYP2C19 dataset.

Table  4.14. Results  of  three  different  approaches  to  CYP2C19  inhibition  modeling, 
PubChem  AID1851  CYP2C19  dataset;  only  top  20%  most  confident  predictions  are 
considered. ANN – Associative Neural Networks [147,148], J48 – C4.5 pruned trees  [153] as 
implemented in WEKA [154]. Dragon - 3D descriptors by software by Talete inc. [124], Estate 
-  electrotopological  state  indices  [127],  AP  -  docking-derived  protein-ligand  atom  pair 
descriptors (section 2.4.2, page 22). 

Since none of the models in the extrapolation scenarios achieved the 90% balanced 
accuracy on any fraction of the dataset,  Table 4.15 only presents results for BACC=0.85 
threshold. 

As we can see, under given accuracy threshold the use of novel extrapolation 
approach allows to extend the fraction of compounds predicted with this accuracy  
from 14% to 24% of the chemically diverse external validation set. 
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Descriptors Method

BACC for top 20% most confident predictions

Dragon+AP J48 0,87 0,84 0,905
Estate+AP J48 0,79 0,776 0,842
AP J48 0,711 0,674 0,852
Dragon J48 0,825 0,841
Estate J48 0,785 0,848
Dragon+AP Ann 0,828 0,805 0,855
Estate+AP Ann 0,784 0,76 0,826
AP Ann 0,672 0,679 0,774
Dragon Ann 0,844 0,84
Estate Ann 0,776 0,817

CYP2C9 to 
CYP2C19 (novel)

CYP2C9 to 
CYP2C19 (naive)

CYP2C19 to 
CYP2C19



4 QSAR studies of CYP inhibition

Table  4.15. Fractions of the PubChem AID1851 CYP2C19 dataset predicted by a specific 
approach with given balanced accuracy.

Since the most useful task of applicability domain analysis is prediction of model 
accuracy  for  a  specific  compound,  we  performed  a  detailed  estimated  prediction 
accuracy vs. real prediction accuracy for a top performing model for each of the three 
scenarios in the study.  Dragon+AP, J48 model is the top performing model both for 
PubChem AID899  and PubChem AID1851  CYP2C19  datasets,  and  the  behavior  of 
applicability  domain  plots  is  qualitatively  and  quantitatively  similar  for  both  sets. 
Therefore  to  avoid  redundancy  we  will  perform the  analysis  for  the  “worst  case”  - 
PubChem AID1851 CYP2C19 experiments only.

Figure 4.21 displays the training and test set DM distribution bar plots, training 
and test set local accuracy plots and real and estimated applicability domain cumulative 
balanced accuracy plots.

DM distribution plots display the fractions of the training and test sets that have 
DM values within specific ranges. We can build this plots for any external validation sets  
with no prior knowledge about the actual activity values for the predicted molecules, 
since DM values are produced by the model for each individual molecule. 

We can  see  that  the  distribution  plots  for  the  three  scenarios  are  similar.  The 
squared mean values of BAGGING-STD values are 0.391, 0.392 and 0.392 for training 
sets for the three scenarios, and 0.449, 0.442 and 0.437 for the test sets, respectively. This 
means that the cause of the difference between real and estimated accuracies for the 
studied models  stem from different  relationships between DM values and prediction 
accuracies for training and test sets.
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Descriptors Method

BACC =0.85 BACC =0.85 BACC =0.85
Dragon+AP J48 24% 14% 32%
Estate+AP J48 1% - 19%
AP J48 - - 20%
Dragon J48 16% 16% 22%
Estate J48 1% 1% 21%
Dragon+AP Ann - - 21%
Estate+AP Ann - 2% 9%
AP Ann - - -
Dragon Ann 17% 17% 21%
Estate Ann - - -

Fraction of the set predicted by the best model with 
given BACCCYP2C9 to 

CYP2C19 
(novel)

CYP2C9 to 
CYP2C19 

(naive)
CYP2C19 to 

CYP2C19
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Figure 4.21. DM value distribution diagrams, local accuracy plots, and actual and estimated 
cumulative applicability domain accuracy plots for three studied methods. Displayed model is 
C4.5 decision tree model built  on Dragon + Docking descriptors,   PubChem AID1851 
CYP2C19 dataset.

Local accuracy plots display the relationship between BAGGING-STD DM and the 
accuracy  of  prediction  of  every  particular  compound  (as  determined  by  averaging 
prediction accuracy by sliding window over DM-sorted compounds). We can not build this 
plot if we don't know actual activity values for the predicted set. Therefore, when estimating 
accuracy of prediction of each particular molecule we assume that the relationship between 
DM values and prediction accuracy is same for training and test sets. We then proceed to 
evaluate the accuracy of the test set based on the DM-accuracy dependency for the training 
set.  Figure  4  shows  that  this  assumption  is  not  totally  correct.  The  squared  mean  of 
differences  between  training  and test  accuracies  for  the  same BAGGING-STD  for  the 
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CYP2C19 to CYP2C19 scenario is 0.045, for CYP2C9 to CYP2C19 naive is  0.107 and for 
CYP2C9 to CYP2C19 novel is 0.071. The lower value for the novel approach (as compared 
to naive approach) identifies the higher quality of expected accuracy estimations. 

The “real” cumulative accuracy plot is exactly the same plot for Dragon+AP J48 model 
from the previous chapter. It can only be built if the test set experimental values are known. 
The “estimated” cumulative accuracy plot is the same cumulative accuracy plot, but built for 
the test set of the model based on the hypothesis that the relationship between DM and 
compound prediction accuracy is quantitatively same for training and test sets of the model. 
The estimated plot can be built for any test set and does not require experimental values. The 
difference between the real and estimated plot  reflects the quality of prediction accuracy 
estimation using the chosen AD approach.

Therefore using the novel extrapolation technique we increase the accuracy of model 
prediction (as demonstrated in previous chapter), and also achieve higher quality accuracy 
estimations by applicability domain techniques.  

4.4.4  Fragment-based interpretation

In  this  section  the  applicability  domain  measures  are  studied  on  fragment-based 
subsets of the  PubChem AID1851 CYP2C19 dataset.  Fragments are generated in a way 
similar to the previous studies. Only fragments that are part of at least 100 molecules in a set 
were considered. If two fragment-containing molecule groups contain the same amount of 
molecules  and one  of  the  fragments  is  the  exact  subfragment  of  the  other,  the  bigger 
fragment was selected. The BAGGING-STD DM measures were calculated based on the 
predictions for a group of molecules containing a fragment only. Within each fragment-
containing subset of molecules balanced accuracy was calculated.

The goal of this section is fragment-based explanation of higher accuracy values of 
novel approach as compared to naive approach. 

Among  all  generated  fragment-containing  subsets  four  subsets  demonstrated  an 
increase in prediction accuracy that could not be explained by general increase in model 
prediction accuracy: molecules containing  acetophenone,  3-nitrotoluene,  N-phenylthiourea 
and  cyclohexane fragments have higher increase in prediction accuracy than the whole 
dataset with significance value of 0.05. 

 Figure 4.22 shows statistics for the determined fragments and DM values distribution 
plot for the C4.5 decision tree model built on Dragon + Docking descriptors,   PubChem 
AID1851 CYP2C19 dataset, naive and  novel approaches.

Note  that  the  size  of  molecule  subsets  slightly  differ  due  to  the  fact  that  not  all 
molecules could be successfully docked to both CYP2C9 and CYP2C19 isoforms. Balanced 
distance to model value distribution plots built for these fragment-containing subsets show a 
shift from “mostly unconfident predictions” to “mostly confident predictions” for the naive 
vs. novel approach.
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Figure 4.22. Fragments statistics and DM value distribution plot for C4.5 decision tree model 
built on Dragon + Docking descriptors, naive (top) and novel (bottom) approach.

Table 4.16 demonstrates a comparison of real and estimated balanced accuracies for 
the studied models. 
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CYP2C9 to CYP2C19 (naive) CYP2C9 to CYP2C19 (novel)

BACC (Estimated) BACC BACC (Estimated) BACC

acetophenone 0,708 0,659 0,749 0,792 0,702

3-nitrotoluene 0,712 0,607 0,881 0,862 0,672

N-phenylthiourea 0,694 0,71 0,892 0,911 0,595

cyclohexane 0,785 0,704 0,794 0,815 0,642

FULL SET 0,77 0,728 0,77 0,751 0,793

CYP2C9/CYP2C19 
correlation

Table  4.16.  Comparison of model balanced accuracies (real and estimated) for determined 
fragments, naive and novel approach.

From  Table  4.16 we can see that for the determined fragments the percentage of 
molecules with the same activity values for CYP2C9 and CYP2C19 is significantly lower 
than for the whole external test set (~0.6-0.7 values for the fragment-containing subsets and 
~0.8 for the whole dataset). This can be explained by the possibility that for these molecules 
the  CYP2C9  activity  and  CYP2C19  activity  is  significantly  different  (consequence  of 
substrate selectivity of the studied CYP isoforms). As a result we can see that in the case of 
naive  approach the balanced accuracies are comparatively low (compared with the average 
model  accuracy)  and  the  estimated  accuracy  values  obtained  via  applicability  domain 
approach are over optimistic. 

The novel approach model, however, takes into account the target protein structure 
and compensates for some of isoform selectivity differences.  We can see that the novel 
approach estimated accuracies are close to the real model accuracies. The accuracy values of 
the fragment-containing subsets are significantly higher than of the full external test set 
(~0.79-0.91 for the subsets, 0.751 for the whole set).

To  explain  the  increase  in  model  accuracy  we  analyze  the  docking 
conformations  of  the  selected  subset  of  molecules.  Several  sources  [209,210,212] 
indicate the important role of ILE99 (CYP2C9) / HIS99 (CYP2C19) amino-acids in  
CYP  substrate selectivity for a wide range of compounds. 

The sample docking conformations of cyclohexane- and 3-nitrotoluene- containing 
compounds for CYP2C9 and CYP2C19 proteins are displayed on  Figure 4.23 and figure 
Figure 4.24, respectively. The heme is displayed in green color. The protein is displayed in 
secondary structure representation. The ILE99/HIS99 amino-acids are explicitly displayed 
to the left of the sample compounds.

For the selected fragment subsets the fraction of molecules docked within 4A of the 
ILE99/HIS99 amino-acid is 87%, which is significantly higher than for the whole set (only 
72%).

Therefore the naive vs. novel approach fragment-based comparison has provided a 
testable hypothesis of importance of ILE99/HIS99 amino-acid for the CYP2C9/CYP2C19 
substrate selectivity for the determined subset of molecules. 
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Figure 4.23. Docking conformations of sample cyclohexane (left) and 3-nitrotoluene (right) 
containing compounds in the CYP2C9 pocket near the ILE99 amino acid.

Figure 4.24. Docking conformations of sample cyclohexane (left) and 3-nitrotoluene   (right) 
containing compounds in the CYP2C19 pocket near the HIS99 amino acid.

4.4.5  Summary

In this study we predicted activities of small molecules against a protein based on 
experimental data measured for another protein. The motivation was to determine whether 
the  atom  pair  descriptors  allow  extrapolation  of  QSAR  modeling  results  to  clinically 
significant  mutations  of  cytochromes.  Due  to  lack  of  consistent  dataset  for  mutated 
cytochrome activity, the CYP2C19 activity was chosen as the target property and CYP2C9 
activity as the measured property. 

The QSAR models were built using the same descriptors (Dragon and Estate indices, 
protein-ligand atom pair descriptors) and machine learning methods (C4.5 decision trees 
and ASNN neural networks) as in the previous study. 
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Three kinds of experiments were performed. The CYP2C19 to CYP2C19 experiments 
used CYP2C19 experimental data to predict the CYP2C19 activity and was used as the 
upper  threshold  for  expected  experiment  accuracy.  The  CYP2C9  to  CYP2C19  naive 
experiments just assumed that CYP2C9 and CYP2C19 activities are exactly same, and the 
prediction  accuracies  were  calculated  from  predictions  based  on  this  hypothesis.  The 
CYP2C9  to  CYP2C19  novel  experiments  used  atom  pair  descriptors  and  modified 
methodology to predict CYP2C19 activity based on CYP2C9 experimental data.

The novel approach allowed to increase the accuracy of predictions by up to 4% (as 
compared to the naive approach) and achieve the balanced accuracy of 81% for AID899 
dataset and 79% for the AID1851 dataset. For the best performing model for the AID1851 
dataset  the  prediction  accuracy  was  statistically  similar  to  the  CYP2C19  to  CYP2C19 
approach.

The  applicability  domain  approach  used  in  combination  with  the  CYP2C9  to 
CYP2C19 novel approach achieved the balanced accuracy of 87% on the top 20% most 
confident predictions for the AID1851 dataset. It was also determined that the use of novel 
approach increased the quality of accuracy estimation: the squared error of real vs. estimated 
accuracy was 7% (as compared to 11% for the naive approach).

The  fragment-based  analysis  of  model  accuracy  increase  for  “naive”  vs.  “novel” 
approach  has  determined  four  specific  fragments.  Prediction  accuracy  for  molecules 
containing  these  fragments  has  increased  significantly  more  (as  compared  to  average 
accuracy  increase).  The  acetophenone,  3-nitrotoluene,  N-phenylthiourea  and  cyclohexane 
fragments demonstrate a significantly higher prediction accuracy and applicability-domain 
based accuracy estimation compared to the whole set. The DM value distribution plots also 
display that the molecules containing these fragments are distributed in the mostly confident 
predictions area for the “novel” approach. This is a direct result of the approach, which 
included  protein-specific  information  into  the  model  and  therefore  captured  substrate 
selectivity behavior for these classes of compounds. 

This signals that the fragments hold structural features that can be especially accurately 
predicted by using atom pair descriptors in combination with the correct target protein 
structure.  The  hypothesis  is  that  the  molecules  containing  these  fragments  are  mostly 
located near the ILE99 (CYP2C9) / HIS99 (CYP2C19) amino acid of the binding site. It has 
been shown that this amino acid substitution plays an important role in CYP2C9/CYP2C19 
substrate selectivity.
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5 Conclusions and outlook
n this work the challenges and possibilities of QSAR approaches to prediction 
of  human  cytochrome  P450  inhibition  were  investigated.  The  CYP1A2, 
CYP2C9, CYP2C19, CYP2D6 and CYP3A4 isoforms were selected for detailed 

analysis based on their reported importance in drug metabolism and potential drug-
drug interaction studies.

I
Datasets of sufficient chemical diversity coming from high-throughput screening 

experiments were chosen for analysis in this study. The training sets (the ones presented 
to the machine learning methods) and the test sets (used to evaluate the quality of the 
obtained models) were chosen in a way to prevent any chance of falsely optimistic results 
and to present a realistic estimation of performance of the methodology introduced in 
this study. The experimental accuracy of the datasets was estimated to be 80-91%.

Preliminary analysis of the datasets confirmed a high degree of similarity between 
CYP2C9 and CYP2C19 isoforms, as well as a relatively high degree of similarity between 
CYP3A4 and the other analyzed isoforms.

The molecule-fragment-based analysis methodology was presented and fragment-
based  analysis  of  the  datasets  was  performed.  It  was  found  that  some  molecular 
fragments demonstrated a statistically significant correlation with cytochrome inhibition 
(chlorobenzene,  pyridine, 1H-indole) or non-inhibition (acetic acid, sulfonic acid,  9H-
purine)  activity.  Other  fragments  displayed  statistically  significant  isoform selectivity 
(trimethylamine  only inhibitor for CYP2D6,  pyrimidine and  quinazoline  are inhibitors 
for  all  isoforms  except  CYP2C9,  8H-pteridin-7-one   -   inhibitor  for  CYP1A2  and 
CYP3A4 and non-inhibitor for CYP2D6).

A comprehensive QSAR study was performed on the CYP1A2 datasets using well-
established  general  molecular  descriptors  and  machine  learning  methods.  Several 
models  showed the bagging-validated prediction accuracy of  82% - 83% of  correctly 
classified instances of the initial training set. These results are similar to the performance 
of models published in several related papers. The external test accuracies for the models 
are  71%  -  82%  correctly  classified  instances.  Using  the  distance  to  model  based 
applicability domain approaches allowed us to increase the accuracies to 83% - 96% on 
about 10% of external  set  compounds. These prediction accuracy values are close to 
estimated experimental accuracy values for this set. This proves that QSAR models can 
be used to decrease the number of experimental measurements on a subset of studied 
compounds in early stage drug discovery scenarios. 

In  an  effort  to  incorporate  more  problem-specific  information  into  the  QSAR 
models,  the  novel  set  of  chemogenomics  based  descriptors  was  developed.  The 
descriptors are calculated on a protein-ligand complex (instead of the ligand structure 
only).  The protein-ligand complex  for  the  descriptors  can be  obtained by  molecular 
docking experiments. 

The docking experiments on the studied datasets were performed and the database 
of protein-ligand complexes for five studied CYP isoforms was created. A comprehensive 
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QSAR  study  on  all  studied  CYP  isoform  datasets  was  performed.  The  novel 
chemogenomics  based  descriptors  were  used  in  the  study.  It  was  shown  that 
incorporation of additional information (via novel descriptors) into the model results 
into statistically significant increase in model performance. For all studied isoforms the 
top-performing model included novel descriptors, with an average increase of 2-3% of 
correctly classified instances. The resulting models had the balanced accuracy of 83% - 
87% on the validated training sets and 74% - 83% on the test sets. Using the distance to 
model based applicability domain approaches allowed us to increase the accuracies to 
87% - 96% on about 20% of external set compounds for the top performing model.

A fragment-based applicability domain analysis methodology was presented and 
the analysis determined groups of molecular fragments that are predicted with more 
than  average  confidence  and less  than  average  confidence.  The  molecules  that  were 
predicted most confidently contained linear and branched fragments with the size of 4 - 
6 atoms, among which - carbon, nitrogen and oxygen. Molecules, which were predicted 
with  the  lowest  confidence  contained  fragments  that  were  mostly  aromatic  and  on 
average  contained  more  atoms  and  had  a  higher  molecular  weight.  One  particular 
fragment (trifluoromethylbenzene) was marked as least confidently predicted for three 
out of five isoforms (CYP2C9, CYP2C19 and CYP3A4). This indicates that the datasets  
contain  inconclusive  data  for  molecules  containing  this  fragment  and  additional 
experimental measurements are required to reliably predict CYP inhibition activity for 
trifluoromethylbenzene containing molecules.

The clinically significant genetic polymorphism of the studied CYP isoforms makes 
it challenging to use models built for non-mutated proteins in early stage drug design. In 
this study the possibility to use the novel descriptors to extrapolate modeling results for 
one protein to a family of closely related proteins is explored.

The methodology was presented to build QSAR using novel descriptors in a way 
that would allow to extrapolate their predictions to a family of closely related proteins. 
As a proof of concept, a series of QSAR studies was performed where modeling results of 
CYP2C9  were  extrapolated  to  predict  CYP2C19  activity.  The  presented  CYP2C9  to 
CYP2C19 extrapolation approach demonstrated the increase of up to 4% of correctly 
classified instances (as compared to the naive approach) and achieves the prediction 
accuracy  that  was  statistically  similar  to  QSAR  modeling  of  CYP2C19  activity  on 
experimental CYP2C19 data. The applicability domain approach used in combination 
with the CYP2C9 to CYP2C19 novel approach achieved the balanced accuracy of 87% 
on the top 20% most confident predictions for the external test dataset.

The fragment-based analysis  of  model  accuracy increase  for  “naive”  vs.  “novel” 
approach has determined four specific fragments, for which the increase in prediction 
accuracy  was  significantly  higher  than  for  the  dataset  in  general:  acetophenone,  3-
nitrotoluene,  N-phenylthiourea  and  cyclohexane.  The hypothesis  is  that  the  molecules 
containing  these  fragments  are  mostly  located  near  the  ILE99  (CYP2C9)  /  HIS99 
(CYP2C19)  amino acid of  the  binding site.  It  has  been shown that  this  amino acid 
substitution plays an important  role in CYP2C9/CYP2C19 substrate selectivity.  Since 
novel  descriptor include protein-ligand interaction information, their presence in the 
model explain the specific increase of prediction accuracy for these fragments.
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All the models built in this thesis are available online on the OCHEM platform. 
They can be used by researchers to validate the introduced methodology, benchmark 
their own models and screen molecular databases for cytochrome P450 activity. 

The  goal  of  QSAR  models  is  not  only  to  help  screen  molecular  libraries  and 
prioritize compounds for experimental measurements, but also to guide the drug design 
process. This should be the main focus of the future work that follows this study. To be 
able to generate useful conclusions from QSAR models the researcher should not only 
know that a particular molecule is active, but also why it's active and what can be done to 
make it inactive. Therefore, the model interpretation facilities and methodologies are of 
crucial  importance  in  QSAR  modeling  in  general  and  QSAR  approaches  to  the 
prediction of human cytochrome P450 inhibition in particular. 

The fragment-based analysis methodology can be extended to take into account 
fragment hierarchies to account for synergistic effects of different fragments present in 
one molecule.  QSAR and 3D-QSAR studies on subsets of molecules only containing 
specific  fragments  can  be  performed  to  derive  the  mechanistic  explanation  of 
importance  of  each  determined  fragment.  Combination  of  applicability  domain  and 
fragment  analysis  can  be  employed  to  determine  classes  of  compounds  with  higher 
prediction errors.

Further development of the suggested descriptor set is required. The simple atom 
types used in this study can be extended to include information on nearest neighboring 
atoms and bond types, as well as information on functional group into which the atom is 
incorporated.  This  will  make  the  descriptors  more  interpretable.  Well  established 
methods of  linear  modeling and PCA in descriptor  space can then be  performed to 
obtain information on particular protein-ligand interaction importance. 

Modeling results extrapolation across closely related proteins is a prospective topic, 
which can be researched further by including further protein or protein-ligand specific 
information into the modeling process.  The assumption that  all  descriptors bear  the 
same relation to inhibition activity (both qualitatively and quantitatively) for all closely 
related proteins can not be true in a general case. Therefore further study is required to 
validate this assumption.

The  author  hopes  that  this  work  will  contribute  to  the  applicability  of  QSAR 
approaches in early stage drug discovery and drug-drug interaction studies, as well as 
toxicity and risk assessment fields.  The models  of  the study were made available on 
OCHEM platform to promote standards of model reproducibility and collaboration in 
QSAR community working on the cytochrome P450 inhibition prediction.
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Appendix

Figure  A1.  Cumulative  and local  balanced  accuracies  of  model  predictions,  ordered by 
BAGGING-STD DM.
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Figure A2. Actual and estimated cumulative applicability domain accuracy plots. Displayed 
model is C4.5 decision tree model built on Dragon + atom pair descriptors. 
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Figure A3. Diagram of best-predicted fragments for CYP1A2 isoform

Figure A4. Diagram of worst-predicted fragments for CYP1A2 isoform

133



Figure A5. Diagram of best-predicted fragments for CYP2C9 isoform

Figure A6. Diagram of worst-predicted fragments for CYP2C9 isoform
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Figure A7. Diagram of best-predicted fragments for CYP2C19 isoform

Figure A8. Diagram of worst-predicted fragments for CYP2C19 isoform

135



Figure A9. Diagram of best-predicted fragments for CYP2D6 isoform

Figure A10. Diagram of worst-predicted fragments for CYP2D6 isoform
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Figure A11. Diagram of best-predicted fragments for CYP3A4 isoform

Figure A12. Diagram of worst-predicted fragments for CYP3A4 isoform
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