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Abstract—In a multiuser broadcast channel with M antennas
at the base station andK ≥ M i.i.d. users, multiuser diversity
can be exploited by optimally choosing a set ofM users to serve
simultaneously with linear beamforming. In order to perform the
user selection, the base station requireschannel state information
(CSI) of all K users which is obtained through limited feedback in
frequency division duplex (FDD) systems. In this work we assume
the feedback consists solely of thechannel direction information
(CDI) of the users. Although most of the literature assumes a
per-user limited feedback, a constraint on the system limited
feedback is actually more appropriate. Given a constraint on the
total amount of channel uses reserved for the feedback of all the
users, we experience a tradeoff between the attainable degree of
multiuser diversity and the CDI feedback quality. The optimum
number of feedback users are determined based on a closed-form
approximation of a lower bound on the sum rate achieved with
user selection. It is shown that the optimum number of feedback
users increases linearly with the total amount of channel uses
reserved for the feedback of all the users.

I. I NTRODUCTION

In a multiuser downlink, abase station (BS) equipped with
M antennas can serve in the downlinkM single-antenna users
simultaneously employing linear beamforming. WithK ≥ M

i.i.d. users, multiuser diversity can be exploited by performing
user selection to optimally choose a set ofM users to serve.
To this end, the base station requireschannel state information
(CSI) of allK users. In atime division duplex (TDD) system,
the reciprocity between the downlink and uplink channels can
be exploited, enabling the base station to have access to the
downlink CSI of the users based on uplink channel estimation.
In an FDD system, however, the transmit CSI for the downlink
is obtained through limited feedback in the uplink [1]. In this
work we assume the feedback consists solely of thechannel
direction information (CDI) of the users.

In an FDD system, the CSI at the base station becomes
available in a three step process. First, each of theK ≥ M

users estimate theirM -dimensional downlink channel vector
with the aid of a common pilot. Each user afterwards quantizes
with B bits the CDI of its channel estimate, i.e. the normalized
version of its channel estimate, using therandom vector
quantization (RVQ) scheme. Finally,B bits per user are fed
back to the base station. We assume error- and delay-free
transmission of the feedback to focus on the effects of the
CDI quantization.

With the quantized CDI of theK users, the base station can
perform user selection to optimally choose a set ofM users
to serve simultaneously [4], for instance, by choosing the set
of users which are most orthogonal to one another. The base

station can afterwards serve the selected set of users employing
zero forcing (ZF) beamforming [2] orminimum mean square
error (MMSE) beamforming [3] based on the fed back CDI
of the selected users.

User selection in order to maximize the sum rate with zero-
forcing beamforming based on limited feedback has been con-
sidered in the literature [4], [6]–[8]. In such works, however,
theK users must report achannel quality indicator (CQI) in
addition to their quantized CDI. The CQI includes information
about thechannel magnitude information (CMI) and/or about
the CDI quantization error, to aid the user selection at the base
station. Such a CQI feedback is necessary to exploit multiuser
diversity for very large values ofK. Nevertheless, it is usually
assumed in such works that the base station has access to
an unquantized version of the CQI of the users. In practice,
however, the limited feedback reserved for each user has to be
shared for reporting back the quantized CDI and the quantized
CQI. In this paper we consider only CDI feedback of the uers,
i.e., the entire limited feedback ofB bits per user is employed
for quantizing the CDI.

In most of the literature, a per-user limited feedback load is
assumed, which implies that givenK users the total available
feedback load is given byKB bits, i.e. it increases with
K. Despite this fact, asystem limited feedback is actually
more appropriate. Given a constraint on the total amount of
channel uses reserved for the feedback of all theK users,
we experience a tradeoff between the attainable degree of
multiuser diversity and the CDI feedback quality. In this case,
the question arises whether it is desired that many users
feedback a small number of feedback bits, i.e. potentially
higher multiuser diversity, in contrast to having few usersfeed
back more feedback bits, i.e. to have better CDI feedback
quality (with smaller quantization error). Such tradeoff has
also been discussed in [11] in the context of minimizing the
sum MSE of the selected users and in [13] for maximizing
the sum rate of the selected users with ZF beamforming but
assuming in the latter a constraint on the total number of
feedback bits.

With the user selection and MMSE beamforming based on
CDI feedback of the users, we derive a very good approxima-
tion for a lower bound on the sum rate with limited feedback
and user selection. Based on this lower bound we are able to
find the optimum number of feedback users given a constraint
on the system limited feedback, by taking into account the
inherent tradeoff between potentially higher multiuser diversity
and a smaller CDI quantization error. To this end, this work is
organized as follows. Section II presents the system model and
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the MMSE beamforming based on the CDI feedback from the
users. User selection based on the CDI feedback of the users
is discussed in Section III. The approximation of the lower
bound on the average sum rate is derived in Section IV. The
system limited feedback is treated in Section V, along with
some simulation results. We conclude the paper in Section VI.

II. SYSTEM MODEL

We consider an FDD downlink system in a single-cell
with a base station equipped withM antennas andK i.i.d.
single-antenna users. The available power at the base station
is PDL and the transmit signals of the users are zero-mean
unit-variance complex Gaussian, i.e. we assume Gaussian
signalling. The downlink channel of userk is denoted by
hk ∈ C

M , whose entries are assumed to independent zero-
mean unit-variance complex Gaussian random variables. As
discussed before, the CSI of theK users is obtained in a
three step process

1) Training Phase: Each user first obtains aminimum
mean square error (MMSE) estimateĥk ∈ C

M of its
downlink channel employing a common downlink pilot
consisting ofTDL pilot symbols. We assumeTDL ≥ M

such that the users can obtain a meaningful estimate of
its channel vector. Withek ∈ C

M as the error vector of
userk, the downlink channel for userk is given by

hk = ĥk + ek, (1)

where the elements ofek are zero-mean complex Gaus-
sian random variables with varianceσ2

e while the ele-
ments ofhk are zero-mean complex Gaussian random
variables with variance(1 − σ2

e). The variance of the
estimation error is given by [9]

σ2
e =

1

1 + PDL
Mσ2

n
TDL

, (2)

whereσ2
n is the variance of the AWGN at the users.

2) Quantization: Each user computes its estimatedchannel
direction information (CDI) ĥk,n = ĥk

‖ĥk‖2

. The esti-
mated CDI is quantized withB bits employing random
vector quantization (RVQ) [10] as follows

hk,q = argmax
tk,j∈Ck

|tH
k,jĥk,n|, (3)

where each userk has a different codebookCk consisting
of 2B unit-norm random beamforming vectorstk,j ∈ Ck,
which is also available at the BS1. Let us further define

ck = hH
k,qĥk,n ∈ C (4)

such that

|ck| = ‖hk,q‖2 ‖ĥk,n‖2 cos θk = cos θk (5)

1We assume a different codebook for each user since otherwise there
exists a non-zero probability that two or more users feed backthe same
channel vector which can lead to numerical problems when computing the
beamforming vectors.

where θk is the angle betweenhk,q and ĥk,n and we
have thathk,q and ĥk,n have unit norm. The downlink
channel for userk can be now expressed as

hk = ‖ĥk‖2 (ck hk,q + ek,q) + ek, (6)

with the estimated CDI as

ĥk,n = ck hk,q + ek,q, (7)

where we denoteek,q as the quantization error, which
is orthogonal tohk,q:

hH
k,qek,q = 0. (8)

This implies eq,k lies in the nullspace ofhH
k,q and

is uniformly distributed in theM − 1 dimensional
nullspace, due to the i.i.d. assumption of the channel
elements. In addition,ek,q has also zero mean and since
‖hk,n‖22 = ‖hk,q‖22 = 1, from (7) with (5), we obtain

‖eq,k‖22 = sin2 θk (9)

3) Feedback: Afterwards, each user feeds back to the base
station theB bits corresponding to the index of the
quantized CDIhk,q. We assume the feedback bits are
sent using QPSK symbols in the uplink during asystem
feedback phase consisting ofTF channel uses. Since
the base station is equipped withM antennas, we can
exploit the spatial dimension for the feedback link, such
that at each channel use during the feedback phase
at mostM users can simultaneously send one QPSK
feedback symbol. The base station can receive and detect
simultaneously the feedback ofM users in the uplink by
employing, for instance, MMSE receive beamforming.
To this end, we assume that the base station knows
when the users transmit their feedback and in addition,
the base station has estimated the uplink channel of
each of theK users2. Hence, givenTF channel uses
reserved for the feedback of allK users and assuming
the same number of feedback bitsB per user, each user
can feedback

B = 2

⌊

TFM

K

⌋

bits, (10)

where⌊•⌋ is the floor operator. We assume error- and
delay-free transmission of the feedback, to focus on the
effects of the quantization.

After error-free feedback of theB bits from each user, the
BS would have access to theK users’ CDI as transmit CSI
for the downlink, with which it can perform user selection.
In the following, we present the MMSE beamforming scheme
and the user selection based on CDI feedback of theK users.

2Note that the uplink channel estimation of theK users does not really
impose an additional overhead for the feedback detection if all the K users
intend to transmit data in the uplink and multiuser diversity is to be exploited
in the uplink data transmission of the users. In this case, we point out that
the base station would need to estimate the uplink channels ofthe K users
anyhow in order to perform user selection in the uplink.
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A. CDI-based MMSE Beamforming

Define the set ofKs ≤ M selected users asS with

S = {π(1), π(2), · · · , π(Ks)} , (11)

whereπ(m) ∈ {1, 2, · · · ,K} for m = 1, . . . ,KS. We define
pπ(m) as the beamforming vector for the selected userπ(m),
such that the power constraint is given by

Ks
∑

m=1

‖pπ(m)‖22 = PDL . (12)

The SINR for userπ(m) is given by

SINRπ(m) =

∣

∣

∣hT
π(m)pπ(m)

∣

∣

∣

2

σ2
n +

Ks
∑

n=1,n6=m

∣

∣

∣h
T
π(m)pπ(n)

∣

∣

∣

2
. (13)

Let us collect the fed back CDI of the selected users in the
matrix

Hq =
[

ĥq,π(1), ĥq,π(2), · · · , ĥq,π(Ks)

]T
∈ C

Ks×M , (14)

whose rows correspond to the CDIs of theKs selected users.
We collect the beamforming vectors of the selected users

in the setS in the matrixP =
[

pπ(1), . . .pπ(Ks)

]

∈ C
M×Ks.

The MMSE beamforming vectors for the selected set of users
based on the fed back CDIs are given by [3]

P =
1

g

(

(1− κ)HH
q Hq + ξq1M

)−1
HH

q , (15)

where g is chosen in order to satisfy the power constraint
tr
(

P HP
)

= PDL from (12), such that

g =

√

√

√

√

tr
(

(

(1− κ)HH
q Hq + ξq1M

)−2
HH

q Hq

)

PDL
.

The constantsκ and ξq depend on the quantization and
estimation error and are defined as [3]

κ =
E
[

tan2 θk
]

M − 1
(16)

ξq = Ksκ+
KsE

[

cos−2 θk
]

(M − 1)
(

1− σ2
eDL

)

(

σ2
eDL

+
σ2

n

PDL

)

,(17)

where we can use the approximation E
[

cos−2 θk
]

≈ 1
E[cos2 θk]

and where E
[

cos2 θk
]

= 1− E
[

sin2 θk
]

, with [2]

E
[

sin2 θk
]

= 2B Beta

(

2B ,
M

M − 1

)

, (18)

where Beta(a, b) =
∫ 1

0
ya−1 (1−y)b−1 dy is the Beta function

and E
[

tan2 θk
]

≈ E[sin2 θk]
E[cos2 θk]

. Both approximations represent
lower bounds for very smallB but become quite tight asB
increases.

III. U SERSELECTION BASED ONCDI FEEDBACK

In the following we discuss a user selection scheme where
Ks = M users are selected solely based on CDI feedback of
theK users, i.e. no CQI is employed for the user selection at
the base station. WithK users andKs = M selected users, the
optimum setS has to be chosen among K!

M !(K−M)! possible
sets. Similarly as howHq from (14) for the optimum user set
S was defined, let us define the matrixHq,ℓ ∈ C

M×M , whose
rows correspond to the CDIs of theKs = M users from the
ℓ-th possible set. Based on the quantized CDI of the users in
ℓ-th set, i.e.Hq,ℓ, we can express thesum mean square error
(SMSE) of the users in theℓ-th user set as [11]

SMSEℓ=

(

−Mκ+ξqtr

(

(

(1−κ)Hq,ℓH
H
q,ℓ + ξq1M

)−1
))

1− κ
.

(19)
Note that for every possible setℓ, the entries on the diagonal
of Hq,ℓH

H
q,ℓ are always1 since the rows ofHq,ℓ correspond to

users’ CDIs, which by definition have unit norm. Hence with
the user selection we can only influence the off-diagonal terms
of Hq,ℓH

H
q,ℓ. If we are interested in selecting the optimum user

set S, which minimizes the SMSE based on the quantized
CDI of the served users, we need to choose the users’ CDIs
which are most orthogonal to one another. Based on the CDI
feedback of the users, this implies the best decision is to find
the optimum setℓ∗ among all sets which most closely fulfills

Hq,ℓ∗H
H
q,ℓ∗ ≈ 1M . (20)

where let us recall that we have defined the CDIs of the
selected set of users in (14) and hence, we have that

Hq = Hq,ℓ∗ .

The optimum set of usersS corresponds to the set with
the smallest SMSE among all K!

M !(K−M)! possible sets. The
optimum set can be obtained for instance via an exhaustive
search among the SMSE of all possible sets.

Having found orthogonal quantized CDIs, i.e.,

HqH
H
q = 1M (21)

does not obviously imply that the actual channels of the users
in the selectedS are orthogonal, due to the quantization error!
In fact asK → ∞, such that the base station is able to
find an optimum set of users with orthogonal CDIs such that
(21) holds, the average sum rate of the selected users would
nevertheless saturate since the average SINRs of the selected
users cease to increase withK, i.e. multiuser diversity can
no longer be exploited as in the case with perfect CSI. This
indicates indeed that the user selection based solely on the
CDI of the users does not benefit from multiuser diversity for
largeK. However, for finiteK we can benefit from multiuser
diversity by selectingKs = M users whose quantized CDIs
are the most orthogonal to each other, such that, for instance,
the selected set of users achieves the smallest sum MSE (19)
based on the quantized CDI feedback among all possible sets.

In order to observe the effect of the quantization, let us
compute an approximation for the SINR asK → ∞ without
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considering estimation errors. From (6), the downlink channel
can be expressed without estimation errors as

hk = ‖hk‖2 (ck hk,q + ek,q) . (22)

With Ks = M and assuming an optimum user set withM
orthogonal CDIs, i.e. that (21) is fulfilled, implies that with the
power constraint (12) the matrix (15) with the beamforming

vectors of the selected set of users is given byP =
√

PDL
M

HH
q

and hence, the beamforming vectors of the selected set of users
are

pπ(m) =

√

PDL

M
h∗
π(m),q (23)

for m = 1, . . . ,M and in addition since the selected set of
CDIs are orthogonal

hT
π(m),q,pπ(i) = 0 ∀n 6= m.

For this case, the terms in the numerator and denominator of
the SINR expression (13) are
∣

∣

∣h
T
π(m)pπ(m)

∣

∣

∣

2

=
PDL

M
‖hπ(m)‖22 cos2 θπ(m)

∣

∣

∣h
T
π(m)pπ(n)

∣

∣

∣

2

=
PDL

M
‖hπ(m)‖22 sin2 θπ(m)

∣

∣

∣ē
T
π(m),qh

∗
π(n),q

∣

∣

∣

2

for n 6= m, which result from (5), (22), (8) (9) and (23) with
eπ(m),q = sin θπ(m) ēπ(m),q where‖ēπ(m),q‖22 = 1. Based on
these expressions, the SINR from (13) can be written as

SINRπ(m),sat=

PDL

M
‖hπ(m)‖22 cos2 θπ(m)

σ2
n+

PDL

M
‖hπ(m)‖22 sin2 θπ(m)

M
∑

n=1,n6=m

∣

∣

∣
ēT
π(m),qh

∗
π(n),q

∣

∣

∣

2

≈
PDL

M
‖hπ(m)‖22 cos2 θπ(m)

σ2
n +

PDL

M
‖hπ(m)‖22 sin2 θπ(m)

(24)

where under the assumption of orthogonal CDIs,
∣

∣

∣ēT
π(m),qh

∗
π(n),q

∣

∣

∣

2

is the magnitude square of the product
of two independent unit norm vectors, which lie in the
(M − 1)-dimensional nullspace ofhH

π(m),q and hence is a
random variable distributed according to the beta distribution
with parameters(1,M − 2) and independent ofθπ(m) [2,
Lemma 2]. The approximation in the second step results from

the fact that the mean of
∣

∣

∣
ēT
π(m),qh

∗
π(n),q

∣

∣

∣

2

is 1
M−1 [12] and

therefore,
∑M

n=1,n6=m

∣

∣

∣ēT
π(m),qh

∗
π(n),q

∣

∣

∣

2

≈ (M − 1) · 1
M−1 .

As K → ∞, such that the base station is always able to
select an orthogonal set of CDIs, the SINR of the selected
users will be given by the previous expression. Since the
user selection is not based on the CMI‖hπ(m)‖2 or on the
quantization errorθπ(m), the average SINR of the selected
users will not increase withK once the base station has been
able to find an orthogonal set of CDIs. This means that the
sum rate saturates for large values ofK to the following rate

Rsat = EH

[

M
∑

m=1

log2
(

1 + SINRπ(m),sat

)

]

= M EH

[

log2
(

1 + SINRπ(m),sat

)]

, (25)

where EH [•] is the expectation over the channels of the
selected users and the second step follows from the fact that
the users are i.i.d. Thus, no multiuser diversity can be exploited
for large values ofK. This saturation could be avoided if the
users report a CQI including the CMI and the quantization
error [4]. However, the quantization of the CQI has to be
taken into account. Due to simplicity and due to the fact that
CQI feedback is only beneficial for very large values ofK, we
focus only on the CDI feedback with which multiuser diversity
can be exploited for up to moderate values ofK.

IV. L OWER BOUND ON SUM RATE WITH USERSELECTION

As a figure of merit of the FDD downlink system under
consideration, we consider the average sum rate with Gaussian
signalling. Withǫπ(m) as themean square error (MSE) of the
m-th selected user based on the quantized CDI of the selected
users, i.e.Hq, we can express thesum mean square error
(SMSE) of the selected users (19) as

M
∑

m=1

ǫπ(m) =

(

−Mκ+ tr
(

(

γHqH
H
q + 1M

)−1
))

1− κ
(26)

whereγ = 1−κ
ξq

. The SMSE of the selected set of users defined
in (26) can be employed to obtain a lower bound on the sum
rateR with limited feedback MMSE beamforming and user
selection with quantized CDI of theK users as transmit CSI
available at the base station

R
(a)
≥ EH

[

M
∑

m=1

log2
(

1 + SINRπ(m)

)

]

(27)

(b)
= −EH

[

M
∑

m=1

log2 ǫ
′

π(m)

]

(c)
≥ −

M
∑

m=1

log2 EH

[

ǫ
′

π(m)

]

(d)
≥ −

M
∑

m=1

log2 EHq

[

ǫπ(m)

]

(28)

(e)
= −M log2

EHq

[

∑M

m=1 ǫπ(m)

]

M
(29)

where step (a) follows by asuming Gaussian signalling which
does not need to be capacity achieving for this case. In addition
we assume the MMSE beamforming scheme discussed before.
Step (b) results assuming the selected users employ an MMSE
receiver with the resulting MSE for them-th selected user
defined asǫ

′

π(m). Jensen’s inequality is applied in step (c). Let
us defineEH [•] as the expectation over the CDIs of the se-
lected users. Step (d) results by taking the expectation over all
the random variables except the quantized CDIs. Additionally
we employ the fact thatEH

[

ǫ
′

π(m)

]

≤ EHq

[

ǫ
π(m)

]

, since

the MSE ǫ
′

π(m) is a convex function of the selected users’
channels. In step (e), we use the fact that the users are i.i.d.
and hence the average SMSE can be written as

EHq

[

M
∑

m=1

ǫπ(m)

]

= M EHq

[

ǫπ(m)

]

.
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In order to provide a closed-form for the lower bound
on the sum rate with user selection given in (29), we re-
quire the expectation of the SMSE (26) over the quantized
CDI Hq of the selected users, which implies we need

EHq

[

tr
(

(

γHqH
H
q + 1M

)−1
)]

which can be approximated

asEHq

[

tr
(

(

γHqH
H
q +1M

)−1
)]

(a)≈ EHq,all

[

tr

(

(

γ
M

K
HH

q,allHq,all + 1M

)−1
)]

(b)
= EH′

q

[

tr

(

(

γH
′,H
q H

′

q + 1M

)−1
)]

(c)≈M











1−

(

√

γ
(

1+
√
µ
)2
+1 −

√

γ
(

1−√
µ
)2
+1

)2

4µγ











(30)

where step (a) follows by denoting the matrix

Hq,all = [hq,1, . . . ,hq,K ]
T ∈ C

K×M ,

which contains the quantized CDI ofall theK users and from
the following argument. Consider the case whenK → ∞,
such that the optimum user selection picks outM users whose
CDIs are all perfectly orthogonal to one another, i.e.HqH

H
q =

1M since the rows ofHq contain unit norm vectors (quantized
CDIs). In this case we can show that

1

M
λi

(

HqH
H
q

)

≈ 1

K
λi

(

HH
q,allHq,all

)

(31)

holds, whereλi (A) denotes thei-th ordered eigenvalue of
A. ForK → ∞, theM eigenvalues ofHqH

H
q ∈ C

M×M are
equal to one and theM eigenvalues ofHH

q,allHq,all ∈ C
M×M

are all equal toK
M

, since

tr
(

HH
q,allHq,all

)

= tr
(

Hq,allH
H
q,all

)

= K,

since all the diagonal elements of the matrixHq,allH
H
q,all are

equal to one, since the rows ofHq,all correspond to CDIs
which by definition have unit norm. Albeit (31) holds strictly
only whenK → ∞, simulation results indicate that it is still
indeed a good approximation for finite values ofK such that
the approximation of the expected value given in step (a) of the
derivation of (30) is also still very good. In step (b) we have

simply employed the substitutionH
′

q =
√

M
K

Hq,all ∈ C
K×M ,

such that the elements ofH
′

q have zero mean and variance1
K

since the variance of the elements ofHq,all is 1
M

due to the
fact that the rows have unit norm, i.e.‖hq,k‖22 = 1 ∀ k.

The final approximation (c) in the derivation of (30) follows
from applying withµ = M

K
a central result in random matrix

theory [14, Th. 2.39], that states that when the entries ofH
′

q

are zero-mean i.i.d. with variance1
K

, the empirical distribution

of the eigenvalues ofH
′

qH
′,H
q converges almost surely, as

K,M → ∞ with M
K

= µ, to the Mařcenko-Pastur law [14,
(1.16)]. The approximation given in [14] uses the concepts of
large system analysis and the fact that ifK,M → ∞ with
M
K

= µ, the spread of the eigenvalues ofHqH
H
q decreases

with increasingK andM . Let us recall thatHq includes the

CDIs of the optimum selected users (c.f. (14)), which best
fulfill (20). As K,M → ∞ with M

K
= µ, the eigenvalues

converge to deterministic values. Although the elements of
Hq are not completely independent because of the fact that
the rows of Hq have unit norm, (c) it is still very good
approximation for smallK andM as verified by simulation
results in the following. With (30) and also (26) and (29), we
have a closed-form approximation for the lower bound on the
sum rate with user selection, which is given by

Rlb ≈−M log2
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


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µ
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(

1−√
µ
)2
+1

)2

4µγ(1− κ)











(32)
In order to verify the previous approximation for the lower

bound of the sum rate with MMSE beamforming we depict in
Figure 1, the average sum rate given by (27), the lower bound
on the average sum rate given by (28) and the approximation
of the lower boundRlb given in (32). To this end, we have
assumed that the user selection is performed via an exhaustive
search in order to find the optimum user set which corresponds
to the set with the smallest SMSE based on the quantized
CDI. For Figure 1 we assumeM = 4 antennas,B = 12
feedback bits per user,Ks = M users served with the MMSE
beamforming scheme based on CDI feedback presented in
Section II-A. The SNRPDL

σ2
n

= 10 and no estimation errors
are considered. In addition, we include the upper bound on
the average sum rate (25), to which the average sum rate
(27) converges asK → ∞. The average values required in
(27), (28) and (25) are computed via Monte Carlo simulations.
From the figure, we can observe that (32) is a very good
approximation for the lower bound on the average sum rate
(28), except for small values ofK. Therefore we state that the
average sum rateR with limited feedback beamforming and
user selection is bounded by

Rlb ≤ R ≤ Rub. (33)

V. SYSTEM L IMITED FEEDBACK

As discussed in Section II, we assume a system limited
feedback phase consisting ofTF channel uses, which are
reserved for the feedback of allK users. As shown before,
in this case each user can feedback

B = 2

⌊

TFM

K

⌋

(34)

feedback bits. In this work, we are interested in finding the
optimal number of usersKF,opt which should feed back in
order to maximize a average sum rate with CDI-based limited
feedback and user selection. From the expression in (34), we
can observe a tradeoff between multiuser diversity and the
accuracy of the quantization. During the availableTF channel
uses of the feedback phase at mostK = MTF users can feed
back B = 2 bits or at leastK = M users can feed back
B = 2TF bits, i.e.

M ≤ KF,opt ≤ MTF. (35)
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Figure 1. Average Sum Rate vs. Number of Users

In order to observe the tradeoff between potentially higher
multiuser diversity (many users feeding back coarsely quan-
tized CDIs) and better CDI quality (few users feeding back
quantized CDIs with smaller quantization error), we depict
in Figure 2 the average sum rate (27), the lower bound on
the average sum rate (28) and the approximationRlb from
(32) as a function of the number of usersK that could
feedback. For the figure, we assumeM = 4, Ks = M ,
PDL
σ2

n
= 10 and no estimation errors are considered. The curves

are plotted for different lengths of the system feedback phase:
TF = {10, 20, 40} channel uses. For eachK, the number of
feedback bits per user is given by (34). The sudden jumps in
the curves is a result of the fact that the number of feedback
bitsB can only take even values and that not at every instance
during the feedback phase areM users relaying their feedback
to the base station. This is because we assume the same
amount of limited feedback per user. We can observe that for
eachTF the maximum of each of the three curves is achieved
with approximately the same value ofK. Hence, this implies
that we can employ the approximation of the lower boundRlb

from (32) in order to find the optimum number of feedback
usersKF,opt, without needing to perform exhaustive Monte
Carlo simulations to determine the average sum rate (27).

It is clear that the optimal number of feedback usersKF,opt

which maximize the sum rate with user selection increases
with TF. This can be seen in Figure 3, where we have plotted
the optimum number of feedback users based on the average
sum rate (27), the lower bound on the average sum rate (28)
and the approximationRlb (32) as a function ofTF for the
same scenario as in the previous figure. We can see that the
optimum number of feedback users for the average sum rate
is almost the same as the optimum number of feedback users
based on the approximation of the lower bound. The optimum
number of feedback usersKF,opt is able to increase linearly
with TF. The number of feedback bits with which the optimum
number of feedback users should relay their quantized CDI is
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Figure 2. Tradeoff between Multiuser Diversity and CDI Quality

given by (34) and is depicted in Figure 4.
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Figure 3. Optimum Number of Feedback Users

The sum rate as a function ofTF achieved with the optimum
number of feedback usersKF,opt feeding back their CDI with
the corresponding number of feedback bits is depicted in
Figure 5. We can observe that the average sum rate increases
with TF.

VI. SUMMARY AND CONCLUSION

In this paper, we have derived an approximation for the
lower bound of the sum rate with limited feedback beam-
forming and user selection based solely on the quantized
CDI of the users. Given a constraint on the system feedback,
we have a tradeoff between the CDI quantization quality
and the mulituser diversity. We have shown that the derived
approximation can be employed to find the optimum number
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Figure 5. Average Sum Rate vs.TF

of feedback users, i.e. to find the optimum operating point
considering the tradeoff. Although it was shown that with
the presented user selection scheme based solely on quantized
CDI feedback, multiuser diversity is not able to be exploited
for large values ofK, this happens for very large values of
K. In addition, the notion that the sum rate with perfect CSI
grows unbonded as a function of the number of usersK is a
consequence of the assumed channel model, since in practice
the sum rate would saturate asK → ∞ even with perfect
CSI. Hence, a user selection scheme based solely on the CDI
feedback is still able to benefit from multiuser diversity.
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